Software Safety

18-849b Dependable Embedded Systems
Michael Scheinholtz
March 2nd, 1999

Required Reading: High-Pressure Steam Engines and Computer Software, by
Nancy Leveson

[
Carnegie
Best Tutorial: Chapter 8 of Safeware by Nancy Leveson

Mellon



Overview: Software Safety

¢ Introduction

* More and more hazardous systems are being controlled by
software.

¢ Key concepts
» Safety 1s an emergent system property.
* How computers cause accidents.

» Software design and system design.

¢ Tools / techniques / metrics
» System safety techniques can be applied to software.

» Validation of software safety.

¢ Relationship to other topics

* Any topic dealing with software in a potentially dangerous system.

¢ Conclusions & future work
2



YOU ARE HERE MAP

VERIFICATION/
VALIDATION/

CERTIFICATION

SOCIAL &
LEGAL
CONCERNS

Software
Safety

Safety
Critical
Systems/
Analysis




Description of Topic

¢ Software Safety

* Ensuring the software will execute within a system context
without resulting in unacceptable risk.

¢ List Key Concepts

« Reliable software does not mean safe software
— Specification errors can lead to unsafe system states

— Poor user interface design can hurt operators understanding of “correct”
software

 Safety must be designed in from the beginning

— Safety is similar to security. It is hard to retrofit.

» Software fails differently than hardware or mechanical system

— Mechanical systems are continuos, software systems are discrete.

4



Safety Is an emergent system property

¢ System safety looks at the whole system, not just its
components
* Must involve software people in the analysis
e Make sure component interactions are safe.

* No single component is responsible fore safety.
¢ Perfect software may not produce safe systems

e Difference between safe and reliable.

* Most software errors come from requirement errors.

¢ Safety concerns go beyond engineering
« Management must buy into safety.
* QOperators must be well trained.

A strong safety culture in needed.




How Computers Cause Accidents

¢ Problems validating and understanding software
 Machines exhibit continuous behavior.
e Software 1is discrete.

» Methods of validating software are not as rigorous as those for
mechanical systems.

¢ The lure of flexibility

* Can’t we just add that one extra feature? Sure! Its only software!

¢ Requirements errors and misunderstandings

» Should that valve be open or closed when the power goes off?

¢ Operator issues

» Software should make the operators job easier.




Software Safety and System Safety

¢ Safety should be part of software design from the start
* Much cheaper to eliminate hazards.
* Modifying software late in the development cycle can cause
more bugs.
¢ Software engineers must not isolate software design
from system design
» Software should not be a black box.
» Software engineers should have some knowledge of the system
larger system they are helping to build.

¢ Communication is key ¢

» Keep safety requirements updated. )




Tools / Techniques

¢ Software cannot realistically be made bug free.

* Formal methods help some.

Software testing helps some too.
Still depends on perfect requirements

¢ Software can’t really be made fault tolerant...

* N-version programming... etc.

¢ Applying system safety methods to software

You can apply system safety methods to Software to make it safer.

Safety Critical systems analysis can find behaviors that lead to
unsafe system states.

Find the functions that are safety critical and validate them as
much as possible.

Hardware interlocks aren’t so bad.

8



Metrics

¢ Verification is difficult
» Software should be designed to be verifiable.
» Keep software small and simple

» Separate safety critical functions from non-safety critical functions
to minimize the amount of software to verify.

¢ Dynamic analysis
» Execute the software and check it.
* Check all of the safety features.

* (Can catch missed requirements.
¢ Static analysis

* Formal verification, Software Fault Tree analysis

o Static safety analysis very similar to a structured code
walkthrough.



Relationship To Other Topic Areas

¢ Verification, Validation, and Certification

» How can you tell if a piece of software 1s “safe”?

¢ Safety Critical Systems Analysis

» A key part of software safety 1s getting the requirements correct.

¢ Social and Legal Concerns

* How much safety can you afford?

10



Conclusions & Future Work

¢ Correct software is hard; safe software is harder
» Even perfect software is not necessarily safe.
* Requirements analysis is a major factor in getting safe software.
* Don’t depend on software. Keep hardware checks.

» Complexity 1s the enemy.

¢ Safety is a system wide process, software must be an
integral part

» Software engineers must be aware of what 1s outside the box.

» Systems engineers should have an understanding of the software.

* Everyone must buy into safety.
¢ There is no way to measure safety, so the options are:

» Use good process, with structured safety reviews.

* Hope best practice is good enough.
11



Steam Engines and Computer Software

¢ “Exploding Software?”
¢ Major points
» Computers and software are profitable.

« Computers are not as well understood as the devices they replace.

* Are we putting too much faith in fledgling software engineering?

¢ Some of Leveson’s conclusions

* Need more rigorous understanding of software and the humans
that build it.

* Do we need strict regulation of safety critical software?

12



