Security

18-849b Dependable Embedded Systems Kanaka Juvva

2/25/99

Required Reading: Security of the Internet, Marcel Dekker, In the Froehlich/Kent Encyclopedia of

Telecommunications, vol. 15, pp. 231-255.

Tutorial: Chapter 1, Computer System and Network Security, Gregory B. White, Eric A. Fisch,

Udo W. Pooch

Authoritative Books: Computer System and Network Security, Gregory B. White, Eric A. Fisch, Udo W.

Pooch

Overview: Security

Introduction

• Why Computer Security?

Key concepts

- Security Issues
- Security Models
- Cryptography

Metrics

- Unconditional Security
- Computational Security

Relationship to other topics

- Formal Methods
- System Architecture Approaches

Conclusions & future work

YOU ARE HERE

Why Security?

 "Undetected Theft of a Credit-Card Data Raises Concern About On-Line Security" The Wall Street Journal, Friday, February 17, 1995.

Growth in Security Incidents

Issues Involved in Security

Security Policies

- Used to be just physical protection Not any longer
- Confidentiality
- Integrity
- Availability

Secure Operating Systems

Other Issues

- Security is often not included in the originally designed or implemented system but is added later in the project
- Security costs and often "gets in the way"
- Very often the problem lies with the people who use the system and not in the technology

Risk Analysis

Security Models

- Precisely expresses the system's security requirements
- ◆ Bell and LaPadula (for military)
 - Finite State Machine model
 - Secure Transitions lead to secure states
 - Users are constrained by the data they can acess

Clark-Wilson (Commercial)

- Integrity policies are more important than disclosure policies
- Well-formed transactions eg Auditing
- Users are constrained by the programs they can execute

◆ TCSEC (DoD Orange book)

- Provides requirements and specific criteria to develop a system
- Discretionary access controls and Mandatory access controls

Cryptography

Data Encryption Standard (DES)

• Scrambling of data

◆ International Data Encryption Algorithm (IDEA)

Larger keys and complex breaking scheme

Public Key Cryptography

Correspondents never have to exchange secret keys

Tools / Techniques

- Monitoring Tools
 - Network Monitors
- Security Analysis Tools
 - Vulnerability Identification Tools
- Cryptography
- Intrusion Detection

Metrics

Unconditional security

• Adversaries have unlimited computational power.

Computational security

- Adversaries have limited computational power. Breaking system requires at least N operations where N is some specified, very large number. Complexity-theoretic security
 - Adversaries are modeled as having polynomial computational power.
 - » Asymptotic and worse-case analysis used => results may be impractical. E.g., polynomial attacks in model may be computationally infeasible in practice.

Provable security

• The difficulty of defeating cryptosystem can be shown to be essentially as difficult as solving a well-known and supposedly difficult (typically number-theoretic problem.

Practical security

• Perceived level of computation to defeat it using best known attacks exceeds "by a comfortable margin" the assumed computational resources of adversary.

Connections

- System Architecture Approaches
 - Software Engineering
- **♦** Formal Methods
- OS
- Languages

Conclusions & Future Work

- Security issues
- Security Models
- Cryptography
- Security Monitoring Tools
- **♦ OS and Language Support**
- Intrusion Detection

Internet Security:

- Overview of Internet Security
- Types of Incidents
- Types of vulnerabilities
- Improving Security