Safety Critical Systems Analysis

18-849b Dependable Embedded Systems Robert Slater February 23, 1999

Carnegie Mellon

Required Reading: Defense Standard 00-58: HAZOP Studies on Systems Containing Programmable

Electronics

http://www.seasys.demon.co.uk/0058h/0058.html

Best Tutorial: Storey, Neil. Safety-Critical Computer Systems. 1996 Ch 3, 4.

Authoritative Book: Blockley, David ed. Safety Engineering. 1992

Overview: Safety Critical Systems Analysis

Introduction

Connections all over the place

Key concepts

- Hazard Analysis
- Risk Analysis
- Fuzzy human factors

Tools / techniques / metrics

- Lots of analysis techniques
- Fuzzy metrics

Relationship to other topics

• Social & legal, Ethics, SW Reliability, SW Safety, Ultra-reliable, Multi-disciplinary design

Conclusions & future work

YOU ARE HERE MAP

Description of Topic

Well, Safety Analysis

- More specifically, it's a way of determining the ways in which a system is unsafe, and what has been done to prevent unsafe events from occurring
- Also development of what is an acceptable level of safety

Comes from nuclear, avionics, civil engineering, chemical processing industries

- Often for certification
- Original definition of safety comes from these field; "avoiding uncontrolled releases of energy"

Key Concepts and Definitions

- Hazard a situation in which there is actual or potential danger to people or the environment
- Risk a combination of the frequency or probability of a specified hazardous event and its consequence
- Risk Management the reduction of risk to acceptable levels

Hazard Analysis

Analytical method to specify hazards

- Use guidelines to identify hazards, their root causes, and possible countermeasures
- Generally follows a rigorous procedure/discipline, often based in committees

Probabilistic Hazard Analysis

Add frequency or probability of occurrence to hazards identified

The Big Problem

How do you know you got them all?

Risk Analysis

Carries the work of Hazard Analysis two steps further

- Identifies the possible consequences of identified hazards, and their probability of occurring
- Combines these to acquire some sort of a 'risk level'
- Identifies untenable hazards, prioritizes list for future work, and may identify safeguards to be used

Probabilistic Risk Analysis - heavy on the statistics

- Extensive modeling and number-crunching on determining peak loads and safety margins
- Traditional probability distributions, First-Order Second Moment (FOSM) analysis, Monte Carlo simulation

The Big Problem

• How accurate is your estimation/calculation?

Fuzzy Human Factors

How much safety is enough?

- Obviously, safety costs
- Human perception of risk an issue, as well as responsibility
- How to account for human error
- In some cases, it mean putting a monetary value on a human life

Some guidelines

- Regulations and codes spell it out
- Sometimes in requirements
- Other times, comes to a judgement call

Accuracy of results

- Highly dependant upon the people and knowledge involved
- Can depend on 'safety culture'

Tools / Techniques

Lots of analysis techniques

- Checklists, Fault Tree Analysis, Event Tree Analysis, Failure Modes and Effects (and Criticality) Analysis, HAZard and OPerability studies
- All basically methodologies to make sure analysis is thorough

Metrics sometimes fuzzy

- Failures per year, fatalities per year, accidents per year, \$ lost to lawsuits, etc...
- Deliniating acceptability can be tough

Codes and regulations

- Lots of codes and regulations out there
- IEC Standard 812, 1025, & 1508, Defense Standard 00-58, FAA, FCC, CAA, DoD, NRC, FDA, everybody's got them

Relationship To Other Topic Areas

Ultra-reliability

• 'Safety cases' can be made for untestable systems

◆ SW Reliability, Fault Tolerance, & Safety

• Analysis techniques being adapted to the software domain

Multi-disciplinary design

 Often design overlaps with other areas because damage occurs in the physical world

Social & Legal concerns, Ethics

 Social values determine what is safe enough, and who is liable for injuries caused

Validation, Verification, & Certification

Often used in 'safety cases' for certification

Conclusions & Future Work

Hazard and Risk analysis are both necessary for a true evaluation of safety

 Good analysis will come up with suggestions for dealing with identified hazards

Highly dependant upon the people involved

- Still an art, not a science; highly domain dependant
- It's an emergent property, so while people grasp these poorly, they're our best shot

Ultimately management issues involved

• Perfect safety is impossible, so must determine: "How important is safety?"

Future Work

- Proving applicability in the computerized domain
- Improving ease of use
- Guidelines for ethical judgement calls

HAZOPS for programmable electronics

◆ Tell you how to do safety analysis on electronic devices

• Isn't this exciting?

Key points

- HAZOPS key words, analysis models, committee process
- Adapts to new areas of concern in computerized systems
- Guidelines in addition to requirements

What's the purpose for the standard?

Trying to adapt old methods to new areas.