Real -Time Systems

18-849b Dependable Embedded Systems

Kanaka Juvva
01/28/99

Required Reading: Generalized Rate-Monotonic Scheduling Theory: A Framework for Developing Real-
Time Systems, Lui Sha, Ragunathan Rajkumar and Sathaye.

Authoritative Books: Real-Time Systems Design Principles for Distributed
Embedded Applications, Herman Kopetz

Carnegie
Mellon

Overview: Real-Time Systems

¢ Introduction
 What is a Real-Time System
 (lassification of Real-Time Systems
« Examples

¢ Key concepts
* Modeling Real-Time Systems
» Real-Time Scheduling
» Real-Time Communication
¢ Tools
» Real-Time Operating Systems

e Real-Time Middleware Services

¢ Conclusions & future work

What is a Real-Time System ?

A Real Time System is the one in which the correctness
of the output depends not only on the logical results, but
also on the physical instant at which results are produced.

Correct Output = Correct Result + Correct Time

!

Functional Requirements.: What the system has to do ?
Temporal Requirements . deadline for the function

Components of a Real-Time System:

Man-Machine Instrumentation
Interface Interface

> Real-Time » Controlled

Computer < Object
System

Operator

Environment = Operator + Controlled Object

Examples:

¢ Air Traffic Control %
¢ Defense Systems iﬁ

¢ Embedded Real-Time Systems T\

¢ Multimedia Systems ¢ ¢ %

P~

5

Classification:

Characteristic Hard real- Soft real-time
time
Response Time Hard-required | Soft-desired
Peak-load Predictable Degraded
performance
Control of pace Environment | Computer
safety Often critical | Non-critical
Size of data files | Small/medium | Large
Redundancy type |Active Checkpoint-
recovery
Data integrity Short-term Long-term
Error detection Autonomous User assisted

Modeling Real-Time Systems

¢ Temporal Control
» Scheduling:

— When a task must be execute
* Worst Case Execution Time (WCET)

 Influence of Caches, Pipelines and Context Switches

¢ Logical Control

 Control Flow within a sequential task
¢ Merging of the above brings the complexity

¢ Structural Elements
e Task
 Nodes

e Interfaces

Real-Time Scheduling: Taxonomy

Real-Time Scheduling

7,

Soft

/

Dynamic Static (pre-run time)

ard

Preemp tive Nonpreemptive

Nonpreemptive Preemptive

Schedulability Test:

¢ A Test that determines whether a set of ready tasks can
be scheduled such that each task meets its deadline

¢ Exact Schedulability Test is NP-Complete

If sufficient schedulability [f necessary schedulability
test is positive, these tasks test is negative, these tasks
are definitely schedulable are definitely not schedulable
< >
Sufficient Exact Necessary
Schedulability Schedulability Schedulability
Test Test l Test

Increasing Task Set Complexity

Dynamic Scheduling

¢ Rate Monotonic Algorithm (Liu and Layland)
* Schedules Independent Tasks

* Dynamic preemptive algorithm based on static task priorities
« (C/T;+ B/T.) £ Un) = n2n-1)

C, = worst-case task execution time of task;

T, = period of task;

U(n) = Utilization bound for n tasks
B,= Blocking Time

¢ Earliest-Deadline-First (EDF)

10

Dynamic Scheduling Contd..
¢ Dependant Tasks

» Tasks with precedence and mutual exclusion constraints
« NP Complete again : more intractable
» Kernelized Monitors

 Priority Ceiling Protocols

— Schedules a set of periodic tasks that have exclusive access to common
resources protected by semaphores

¢ Distributed Systems
 Tindell analyzes distributed systems that use CAN bus

11

Tools:

¢ Real-Time Operating Systems
e Real-Time Mach (CMU)
* SPRING (UMASS)
* Nemesis (Cambridge)
 Solaris (Sun)
« VxWorks (WindRiver)

¢ Middleware Services
« RT-CORBA
« RT-JAVA
e Push-Pull Communication Services

12

Conclusions & Future Work
¢ Distributed Real-Time Systems

» Opens up several frontiers of Research
¢ Composability
¢ Merging with Internet

13

GRMS: A Framework for Developing Real-Time Systems

¢ Description of an example is the cool thing in this paper

¢ Key Issues

 Distributed System Extensions for GRMS

— Extensions to Schedulability
— Preemption Control
— System Consistency

¢ Summary
» Software Scheduling Abstractions
» Hardware Scheduling Abstractions

» Description of an example

14

