Quality of Service

18-849b Dependable Embedded Systems Kanaka Juvva 2/11/99

Required Reading: The QoS Broker, Klara Nahrstedt and Jonathan M. Smith

Tutorial : Fourth International IFIP Workshop on Quality of Service,

IWQoS'96

Overview: QoS

♦ Introduction

• What is Quality of Service?

Key concepts

- QoS Metrics
- Fundamental Research Issues
- Current QoS Research
- AMARANTH (CMU)

Tools / techniques / metrics

- Operating System Support
- Middleware Toolkits
- Conclusions & future work

YOU ARE HERE MAP

What is QoS?

QoS in real-life

- Telephone Systems
- Daily business transactions
- TVs

Can we apply the above notion to Computer Systems?

- Better Throughput
- High Availability

- Timeliness (1)
- Reliability
- Security

Quantitative or Qualitative

Both

- Overall Utility determines the QoS of an application
 - Multiple dimensions
- Quantitative Metrics measure the utility

QoS Dimensions and Metrics

- Timeliness
 - Delay, Delay Jitter
- Dependability
- Security
- Resolution
- Sampling Rate
 - Video Sampling Rate
 - Audio Sampling Rate

Fundamental Research Issues

- Different Types of Applications
 - Telephony
 - Videoconferencing
 - E-Commerce
- User Preferences
 - Audio or Video or Text
 - Dependability
 - Cost
 - Reliability
 - Ultimately quality is the end user's satisfaction
- **◆** Is it almost difficult to provide the unifying framework for these orthogonal issues ✓

Current research on QoS

Operating System QoS

- Brokers are employed to negotiate and renegotiate the QoS
 - How much QoS can be provided to each user/application
 - There are finite resources in practice

- Tradeoffs have to be worked out
- Translate QoS ----> Resource Requirements
- Assurance of the Quality
 - Best-effort services
 - Guaranteed services

Network QoS

- ISPs employ differential Services
- Application-oriented Services

QoS Broker - One Approach

QoS Broker contd...

Broker is an end-point resource manager

- The resources are described through application QoS parameters
 - { Sample Size, Sample Rate, Priority/Criticality, End-to-End delay bound..}
- Network QoS parameters
 - {Round trip delay, jitter, packet loss rate, packet ordering, topology, cost..}
- OS (System) Parameters are processing times required for tasks
- The above parameters are stored in profile/databases

Brokerage Process

- Automates the choice of tradeoffs
 - eg. Burstiness in the network could be accommodated by an elastic buffer with an acceptable end-to-end delay
 - Similarly Jitter
 - The profiles define the space in which decisions can be made
 - Global optimization of multiple resources among applications

Tools

Operating System Support

- QoS Extension to Solaris and NT (UIUC)
- Application Independent QoS EPIQ (UIUC)
 - Provides mechanisms capable of supporting application-specific policies
 - Open Kernel

◆ XENA: Service Broker (CMU)

- Network QoS
- Application and service providers use XENA to identify the network resources needed to meet QoS and cost objectives.

Quo (BBN)

• Provides tools for specifying and enforcing QoS contracts between service providers and clients

Conclusions & Future Work

- QoS is in research phase
- Amaranth (CMU)
- **♦ QoS** is Multidimensional <

- ◆ Tradeoffs will have to be made <</p>
- Operating System and Network support will be required
 - QoS and Resource Brokers can be one of the approaches
- Application to Embedded Systems

THE READING PAPER: QoS Broker

- QoS in networked multimedia systems
- End-point design for resource orchestration
- Broker negotiates resource guarantees using databases
- Contribution
 - A system architecture for translation, admission tests and negotiation
- Prototype and testing with an application