Non-Operating Reliability

18-849b Dependable Embedded Systems Michael Carchia 3/4/1999

Required Reading: "Reliability Assessment of Electronic Components Exposed to Long-Term Non-

Operating Conditions", McCluskey et. al., 1998.

Authoritative Books: "Long-Term Non-Operating Reliability of Electronic

Products", Pecht 1995.

See references

Overview: Non-Operating Reliability

Introduction

- Definition
- Clusters it belongs to

Key concepts

- The Non-Operating Environment.
- Failure Mechanisms
- Failure Rate Distribution

Tools / techniques / metrics

- Reliability Models
- Dealing with Non-Operating Environments

Conclusions & future work

Introduction/Definitions

- **♦ The Non-Operating Condition/Dormant State**
- Different definitions here and there
 - Includes parts/systems:
 - Connected to a functioning system such that they are immediately ready to operate on demand.
 - Where there is a reduction or elimination of most of the physical, electrical stressed compared with operating condition.
 - Sometimes doesn't include
 - Equipment operating at <u>low levels of its function</u>, <u>disconnected</u> or in <u>storage</u>.
 - We're going to group both storage and dormancy environments together.

YOU ARE HERE MAP

Can be related to:

- Field Data
- Requirements and Spec.
- Maintenance
- Environment/EMC/EMI
- Many more really.. Traditional, Mechanical, Electrical Reliability

Non-Operating Environments

Some usage data:

Typical Percentages of Calendar Time for Equipment in Dormancy [Harris, 1980]

Cars (personal use)	93%
Taxis	38%
Safety equipment	98%
Standby power	>90%
Air conditioning	50% - 80%
Built-in test equipment	99%

- ◆ Diurnal temperature ranges from -50C +75C
- ◆ Relative humidity, sea spray, industrial pollutants, mechanical shock, fungus, [Livesay, 1978], sand, dust, extreme temperatures [Pecht95]

Failure Mechanisms

- [Pecht95] gives a very complete listing of mechanisms but not a lot of talk about which are most common in practice.
- ◆ Perhaps because "in practice" varies from environment to environment and from application to application.
- Electrical Failure Mechanisms
- Corrosion Failure Mechanisms
- Radiation Failure Mechanisms
- Mechanical Failure Mechanisms

Failure Mechanisms (cont.)

Electrical Failure Mechanisms

• ESD, Lightning

Mechanical Failure Mechanisms

- Temperature Cycling: portions of IC die have different thermals expansion coefficients: dies can fracture, chips can pop off board.
- Failures induced by Shock/Vibration:
 - Flexing of leads and interconnects.
 - Damaging of pumps, bearings, and electronics.
 - Dislodging of foreign particles in filters.
- Failures Induced by Sand/Dust:
 - Can degrade equipment by abrasion, causing friction (wear and heat)
 - Abrasion of optical surfaces
 - May provide corrosive effects if alkaline, acidic, or microbiological.

Failure Mechanisms (cont.)

Corrosion Failure Mechanisms (Dry & Wet)

- Temperature falls below dew point.
- Moisture can enter through cracks.
- Present in IC package from time of manufacturing.
- Types: Galvanic Corrosion, Crevice Corrosion, Defects in Passivation, Pitting Corrosion, Surface Oxidation, Corrosion due to Microorganisms.

Radiation Failure Mechanisms

- Mechanical Degradation: Embrittlement, alter properties, etc.
- Electrical Degradation:
 - Alpha particles can accumulate?
 - Gamma and Neutron Heating..

Failure Distribution

- Exponential arrivals and Poisson distribution imply constant failure rates.
- Common to regard most:
 - Electronic parts as possessing patterns of failure that follow exponential distributions.
 - Mechanical parts as following Normal or other failure rate showing increasing failure rates with time.
- ◆ In the Non-Operating environment, there is <u>evidence</u> that most electrical/mechanical systems/parts have a constant failure rate.
 - HOWEVER, Not true for all components and creates problems with certain reliability assessment models.
 - Electrolytic capcitors

Non-Operating Reliability Assessment

- Specific Field Data
- RADC-TR-85-91 Method
 - $\lambda_p = \lambda_{Nb} \Pi_{NT} \Pi_{NE} \Pi_{NQ} \Pi_{cyc}$ (base rate * non-operating factors)
- MIL-HDBK-217 "Zero Electrical Stress Approach"
- The "K" Factor Approach
 - Switches 10:1, ICs 80:1, Mechanical Parts 30:1 60:1
- ◆ The Martin-Marietta Test Program
- Automated Reliability prediction programs

Failure Rates [Harris, 1980]

Relays, 5 Amp.

Source	Dormant Failure Rate
Field Data	.032
K-Factor Approach (Ratio Method) 1:60	.046
MIL-HDBK-217 Model	.058

Connectors, PCB

Source	Dormant
	Failure Rate
Field Data	.0015
K-Factor Approach (Ratio Method) 1:60	.0007
MIL-HDBK-217 Model	.042

Dealing with Non-Operating Environments

Physics of Failure Based Approach

- Define Realistic System Requirements
- Define the System Usage Environment
- Identify Potential Failure Sites and Mechanisms (FMECA)
- Characterize the Materials, Manufacturing and Assembly Processes
- Design Reliable Products Within the Capabilities of the Materials and Manufacturing Processes Used.
- Qualify the Manufacturing and Assembly Processes
- Control the Manufacturing and Assembly Processes
- Manage the Life Cycle of the Product

Conclusions & Future Work

- ◆ Designing for operating reliability is not necessarily the same as worrying about non-operating reliability.
- No single most common failure mechanism. It all depends on YOUR particular environment.
- **◆** Moisture is one of the larger enemies.
- Often a bunch of failure mechanisms that cause problems, not just the existence of one.
- ◆ Statistically significant part failure data not always available to designer; Careful assessment of the potential dangers to device technologies is key.
- Models can be inaccurate.

The Paper...

- "Military/Aerospace industries are indeed being 'forced' to use PEMS, a package technology which has been shown to be just as reliable as older cavity type DIPS"
- Summarized previous work testing COTS PEMS
 - PEMS perform good enough in most long term applications.
 - Components not the limiting factor; board assemblies are.
 - Intermittent use is a more severe corrosion environment that either long term storage or continuos use.
 - Automotive environment at least as harsh as field storage environment.

List of References...

- [Livesay78] Livesay, B.R. The reliability of devices in storage environments. *Solid State Technology*. (October): 63-8.
- ◆ [Harris80] Harris, A.P. Reliability in the dormant condition. *Microelectronics and Reliability*. Vol 20. p33-44. 1980.
- ◆ [McCluskey98] McCluskey, F.P., E.B. Hakim, J. Fink, A. Fowler, and M. Pecht. Reliability assessment of electronic components exposed to long-term non-operating conditions. *IEEE Transactions on Components, Packaging, and Manufacturing Technology*. Part A. Vol 21. No. 2. (June): 1998. 352-359.
- ◆ [Electronics Reliability Subcommitee87] Electronics Reliability Subcommittee. 1987. *Automotive electronics reliability handbook*. Warrendale, PA: Society of Automotive Engineers, Inc.
- ◆ [Pecht95] Pecht, J. and Pecht M. Long-term non-operating reliability of electronic products. Boca Raton, FL: CRC Press, 1995.