Mechanical Reliability

18-849b Dependable Embedded Systems
Chris Inacio
January, 1999

Carnegie Mellon

Required Reading: Paper reference

Best Tutorial: Mechanical Applications in Reliability Engineering

Authoritative Books: Very many, see ref's

Overview: Mechanical Reliability

◆ Introduction

Traditional Reliability

♦ Key concepts

- Need to know many fields to do original estimations, use historical info instead
- want to classify failures for use later
- use estimates and surrogate sources to estimate system reliability

◆ Tools / techniques / metrics

- The art of mechanical reliability is very advanced
- Metrics are extremely mature

♦ Relationship to other topics

• Electronic Reliability, Traditional Reliability

♦ Conclusions & future work

YOU ARE HERE MAP

What is Mechanical Reliability

- **◆** The key to mechanical reliability is estimating the reliability of components
- **◆** Component reliability
 - Generic sources
 - AVCO
 - NPRD-3
 - many others
 - Estimating
 - Maximum Normal Stress Theory
 - Distortion Energy theory
 - Historical information
 - This is the best!!!
 - If you have it
- **♦** Figure out what fails and make maintenance schedule for it

Use Historical Data

♦ Historical data is the best

- requires that you've built "it" or something like "it" before
- requires that you have collected data on it
- much better than other methods
- takes into account environmental factors
- includes best knowledge of stresses on the part

Use Generic Sources

♦ Generic Data Sources

- Non-Electronic Parts Reliability Database (NPRD-3)
 - military data
 - based on component usage throughout military hardware
 - military can enforce collection of data much better than most companies
 - military may use their equipment (a lot) harder than commercial
 - all numbers given strictly as number of failures per million hours (λ)
 - » data not as useful for cyclical parts
 - fairly recent data

AVCO

- published in 1966 by AVCO
- gives information about environment and cyclical use
- BUT, it's getting old
- material science is still improving the alloys and everything else
- getting too old to use

Generic Data Sources

- **◆** Easy to use generic sources
- **◆** can estimate system reliability quickly
- ◆ not too accurate, sometimes up to a factor of 10 off
- usually very conservative
- ◆ shouldn't apply it to system critical components

Estimating Component Reliability

◆ Two methods recommended by RAC

◆ Maximum Normal Stress Theory

- good for brittle materials
- take a sample of the material to a lab and estimate its strength
 - apply a uniaxial (single dimensional) force to it
 - measure when it breaks
- determine multi-axial stress on component
 - create normal stress vectors
 - if normal vectors are greater than the maximum tested, the part fails

◆ Distortion Energy Theory

• "Failure is predicted to occur in the multi-axial state of stress when the distortion energy per unit volume, u_d, becomes equal to or exceeds the distortion energy per unit volume at the time of failure in a simple uniaxial stress test using a specimen of the same material."

More Estimating

◆ Distortion Energy Theory

- $\frac{1}{2}[(\sigma_1 \sigma_2)^2 + (\sigma_2 \sigma_3)^2 + (\sigma_3 \sigma_1)^2] >= \sigma_f^2$
 - $-\sigma_1 \sigma_2 \sigma_3 \rightarrow$ maximum normal stresses
 - $-\sigma_f$ -> uniaxial yield stress

◆ Theories based on gaining knowledge from material science and tribology

- tribology study of lubricants and surface wear
 - responsible for many things like replacement joints
 - improving ball bearings significantly
- material science
 - coming up with new alloys
 - improving the strength of the materials all the time

Tools / Techniques

♦ Failure Mode Classification

- capture the mechanism, cause, and mode
- for example: a rolling bearing race experiences adhesive wear and race pitting fatigue as a result of a loss of lubrication which results in excessive vibration and noise.
 - Mechanism -> adhesive wear
 - Cause -> loss of lubrication
 - Mode -> excessive vibration and noise
- the mechanisms are described methods in which mechanical parts fail
 - RAC macro mechanisms: distortion, fracture, wear, corrosion
- the cause is the reason why the part failed
- the mode is the way in which the system demonstrated the failure
 - useful for later diagnostics if it happens again

More Tools/Techniques

◆ Determine system realibility

- Fault Tree Analysis (FTA)
 - top down method
 - can be used on mixed systems
 - build a tree of faults in the system
- Failure Mode, Effects and Criticality Analysis (FMECA)
 - bottom up method
 - can't be used well in mixed systems
- useful for classifying failures in fielded systems
- helps in building maintenance schedules

Metrics

- **◆** Specific metrics exist (en mass) for generic components
 - unfortunately they vary widely!
 - Very dependent on environment
 - NPRD-3 is not rated for maritime use
 - parts fail much faster at sea in the salt-water air
- **◆** Metrics (nearly) impossible for new random components
 - building that special lever into a new mechanical design will not have any metrics

Relationship To Other Topic Areas

◆ Traditional Reliability

- Need to know the math from traditional reliability
- statistics are all in common

◆ Electronic reliability

- can use many of the same redundancies to increase reliability
- electronic parts performance changes over time, but can be recalibrated
- mechanical parts tend to break and fail

Conclusions & Future Work

- **♦** Historical data is the best
- **◆** Generic sources are out there and should be used for quick estimates
- **◆** Generic sources are wrong, but conservative
- **◆** Parts like ball bearings fail the most
- ◆ Must develop a maintenance schedule for mechanical parts, they experience mechanical wear
- ◆ Very hard to determine when a completely newly designed component will fail
- **◆** Methods to estimate component failure are very time intensive
- ◆ Need to understand physics, material science, tribology, etc to build better models ¹⁴

More conclusions

- **◆** Better non-destructive testing methods are needed to estimate part reliability for critical components
- **♦** Non-destructive testing is advancing
- ◆ Tribology and material science making good strides in making better materials and knowing why the fail