Input/Output

18-849b Dependable Embedded Systems Leo Rollins March 2, 1999

Required Reading: Toleration Sensor Timing Faults in Highly Responsive Hard Real-Time Systems,

Polenda, S., IEEE Transactions on Computing, 44(2), Feb 1995, pp 181-191.

Best Tutorial: Fieldbus Tutorial, http://rolf.ece.curtin.edu.au/~clive/Fieldbus/fieldbus.htm, 1995

Authoritative Books: Analog-to-Digital Conversion, A Practical Approach, Daugherty, K. M.,

McGraw Hill, 1995

Process/Industrial Instruments and Controls Handbook, ed. Considine, D. G.

McGraw Hill, 1993

Overview

- **♦** Introduction
- Key Concepts
 - Reliable I/O
 - Fieldbus Trend
 - Smart Sensors and Actuators
- Tools / Techniques / Metrics
- Connections
- **♦** Conclusion
- Paper Discussion

Rosemount intelligent vortex flow sensor with readout

Introduction

- ◆ I/O Scope
 - Physical measurement
 - Digital Conversion
 - Delivery to control
- Make I/O Dependable?
 - Individual I/O design
 - Introduce Redundancy
 - Second sensor
 - Mechanical interlocks
 - Manual controls

Source: Vehicle sensing gets an inflated image, Holligan, J., Sensor Review, 16(4), 1996, p. 32.

Strange Sensors

- ◆ Electronic tongue
 - Research project
 - "... taste of foodstuffs such as beer, sake, coffee, mineral water, milk and vegetables can be discussed quantitatively..."
- **♦** Electronic nose
 - Nordic Sensor Technologies AB
 - Medical diagnositics and food industry

Reliable Individual I/O

- Major I/O Requirements
 - EMC
 - Noise
 - Shock / Vibration / Seismic *
 - Environment
 - Accuracy and Resolution *
 - Conversion Speed *
 - Drift
 - Diagnostics / Error Detection *
 - Calibration / Testing *
 - Fail-safe techniques *

Rosemount insertion Flowmeter

* Embedded challenges

Trends in I/O Signaling

Digital + Analog: Hart

Analog: 4-20 mA

Pnuematic: 3-15 psi

Source: Fisher Controls, Understanding Fieldbus http://www.fisher/products/produpdf/fbus-all.pdf

Fieldbus

- ♦ What is it?
 - Networking sensors and actuators
 - Implies intelligence
- Advantages
 - Wiring reduction (installation cost)
 - Config and calib (maint cost)
 - Flexibility
 - Interoperability
- Standardization
 - ISP + WorldFIP -> FF (ISA SP50)
 - Profibus leads Europe (41% Market)
 - Over 200 fieldbusses being used

Smart Sensors

Definitions

- "... highly sophisticated sensing devices capable of signal analysis, self-diagnosis, and digital communication."

 Lawrence Holloway (1993)
- Sensor takes over some functionality of control system

Advantages

- Off-load main controller
- Higher conversion rates
- Storage of samples
- Self-Diagnostics
- Electronic data sheets
- Safety Control on network loss

Non-contact part measurement

Tools / Techniques / Metrics

- Tools / Techniques
 - Config for fieldbus (Every vendor has one)
 - Transducer techniques
 - A/D conversion
 - DSP
 - Filters
 - Control Theory
- Metrics
 - SNR, ENOB
 - Dynamic Range
 - Conversion Speed

Matlab Filter Design Tool

Connections

- Communication
 - Fieldbus
- ◆ Real-Time
 - Usually RT controls
- Control Theory
 - Sampling (stability)
- MEMS

Conclusions

- ◆ I/O dependability achieve through:
 - Highly reliable individual components
 - Redundancy techniques: diversity, interlocks and human overrides
- ◆ Trend toward intelligent networked devices promises cost reduction and increased functionality
- Embedded I/O becomes plug-n-play?
- ◆ Future work
 - DASP Digital Alias-Free Signal Processing

Paper: Timing Faults...

- Most systems only consider value faults
- Merging of Event Based and Time Based Communication to balance efficiency vs predictability
- Require operating system and interrupts?
- ◆ Limited to specific sensor types (speed, rotation)?