Reliability Prediction And Field Data Michael Collins. 18-849, Section B Spring 1999

Topics

- Relationships
- Prediction Models
 - ◆ MIL-HDBK vs. Civilian Specifications
- Data Sources
 - ◆ EPRD-97, other sources
 - ◆ What to do when you have no data?
- **■** Conclusions
- Paper

Relationships

- Electronic/Electrical Reliability
- Mechanical Reliability
- Multi-Disciplinary Design

Reliability Prediction

- Standard model is MIL-HDBK 217
 - ◆ Complicated model
 - ◆ Tools exist to simplify the job
- Industry has developed other models
 - ◆ SAE based around 400 hrs use/year
 - ◆ Bellcore specializing in communications systems
- There is no one appropriate model, economic concerns often demand different models
- Models are good for comparing analyses, not necessarily objective.

SAE Prediction Model

$$\lambda_p = \lambda_p \prod_{\forall_i} \pi_i$$
 $\lambda_p = \text{predicted failure rate}$
 $\lambda_b = \text{generic failure rate}$

for component

 $\pi_i = \text{Correction factor}$

The SAE Model (2)

- Classic "fudge factor" model.
 - ◆ Orthogonal factors are thrown in until something accurate results
- Emphasis on generic components
 - ◆ Models a generic component and then throws in a collection of factors based on the physical characteristics of the component.
 - ◆ Model is 'coarser' than the MIL-217 model
- Motivated by cost over reliability
 - ◆ 400 hrs/year is stressed over and over again

Field Data

- Prediction schemes are useless without field data
 - ◆ SAE: fudge factors are calculated by analyzing field data
- Depending on the scheme, field data varies
 - ◆ These collections do not have to match each other.
 - ◆ Possible to map between models
 - ◆ Definition of failure can vary

Gathering Data

- Various sources
 - ◆ Direct observation
 - ◆ Manufacturer info
 - ♦ Maintenance databases
- Sometimes you can't get enough data
 - ◆ EPRD contains both detailed and summary data
 - ◆ Rely on the law of averages
- Data can be skewed
 - ◆ Warranty data will only cover warranted repairs

EPRD-97

- Electronic Parts Reliability Data handbook
- Intended specifically as a complement to MIL-HDBK-217
 - ◆ Failures/E6 hours
- Data acquired from manufacturers, direct observation
 - ◆ Large amount of data to sift through
- Two levels of information
 - ◆ Generic summary, detailed summaries
 - ◆ Encouraged to take the most conservative prediction

Conclusions

- Field data acquisition is motivated by the model.
- Reliability models are motivated by economic concerns for the target industry
- As with any other experimental science, this is an onerous task. Data acquisition takes a lot of time.
- Reliability prediction is a science of compromises:
 - ◆ Perfectly accurate data may not be available
 - ◆ You guess conservatively

Paper

- Demonstrates the SAE model of reliability prediction
 - ◆ Note the emphasis on 400 hours/year
 - ◆ Emphasis placed on the physical location of the component
- Industrial concerns
 - ◆ Anonymity