
Exception Handling

18-849b Dependable Embedded Systems
Charles P. Shelton

March 9, 1999

Required Reading: Romanovsky, Alexander; Xiu, Jie; Randell, Brian;

Exception Handling in Object-Oriented Real-Time Distributed

Systems

2

Overview: Exception Handling
◆ Introduction
◆ Key concepts

• Known versus Unknown exceptions

• Forward and Backward error recovery

• Robust Exception Handling versus Real-Time System Constraints

◆ Tools / techniques
• Dependability Cases

• Xept

◆ Metrics
• Ballista

◆ Relationship to other topics
◆ Conclusions & future work

3

YOU ARE HERE
◆ Exception Handling is a method of achieving

Robustness:

Fault
Injection

Exception
Handling VERIFICATION/

VALIDATION/
CERTIFICATION

ROBUSTNESS

4

Introduction: Exception Handling
◆ Exception Handling is the method of building a system

to detect and recover from exceptional conditions
• Instances of things occurring outside the specifications of normal

operation

• Incorrect input

• Memory/Data corruption

• Software defects

• Environmental anomalies, etc.

◆ Exception failures are estimated to

account for up to 2/3 of system crashes
and 50% of security vulnerabilities

5

Known versus Unknown Exceptions
◆ Known exceptions

• Exception handlers can be written for exceptional conditions the
designers know are likely to occur

• Code reviews, walkthroughs, and testing can illuminate more
conditions that can be accounted for

• e.g. checking for null pointers, validating inputs to modules,
assuring files exist before attempting to read/write to them, etc.

◆ Unknown exceptions
• Designers cannot achieve complete coverage

of all exceptional conditions

• What about complex situations no one could

anticipate?

• Build in graceful degradation to exception handlers to minimize
damage

6

Forward and Backward Error Recovery
◆ Forward Error Recovery: Programmed Exception

Handling
• When an exceptional condition is reached, call exception handler

to recover from error condition, but try to continue execution from
error state back to normal operation

• Implemented for known exceptional conditions at design stage

◆ Backward Error Recovery: Default Exception Handling
• Catch-all for unanticipated exceptions and

design defects

• Exception handler halts execution and tries

to return system to a previous known state

• Good for protecting against transient and intermittent errors,
where simply retrying the operation will fix the problem

7

Exception Handling vs. Real-Time Systems
◆ Robust Exception Handling may require extra

processing time
• Transferring control from module to exception handling routine

• Resetting system state and retrying an operation

◆ Real-Time Systems may not tolerate delays due to
exception handling
• Exception Handling routines may not

be factorable into deadline constraints

because of unpredictability of whether exceptions will occur

• More bulletproof exception handling may require longer code and
longer processing time to account for different execution paths

8

Tools / Techniques
◆ No rigorous methods of exception handling design exist
◆ Major problem is covering all exceptional cases

• traditional software engineering techniques; code walkthroughs,
code reviews, testing

• Dependability cases develop taxonomies for improving coverage

◆ Xept
• Method of automatically generating software

wrappers correcting for exceptional inputs

before passing them to the software module

• Useful for COTS software where source code is

not available for modification but you want more

exception handling than module provides

9

Metrics
◆ Measuring a system’s level of exception handling is

difficult
• How can we know a system handles all exceptional conditions if

we cannot think of all possible exceptions?

• Exhaustive testing is intractable

◆ Ballista
• Black box method of testing software modules’

responses to exceptional inputs

• Measured relative robustness of POSIX

operating systems

• Limited to repeatable exceptions at the module level; exceptions
occurring from complex interactions not covered

• Exceptional inputs must be generated by developers

10

Relationship To Other Topic Areas
◆ Robustness
◆ Fault Tolerant Computing
◆ Software Fault Tolerance
◆ Checkpoint/Recovery

• Method of handling exceptions by returning system to a known
state

◆ Security
• Robust exception handling will patch a lot of security holes

◆ Human Interface/Human Error
• Humans are one of the biggest sources

of exceptional inputs to a system

• Exception Handling at the HCI level may prevent propagating
faults

11

Conclusions & Future Work
◆ Conclusions

• Coverage is a major problem. It is unrealistic to cover all
exceptional conditions because they are not predictable

• It is difficult to develop strategies to safely handle exceptions for
unanticipated situations

• Tradeoff between developing robust exception handlers and
meeting real-time system deadline constraints

◆ Future Work
• Xept and Ballista: Generating software wrappers for trapping

exceptional inputs to COTS software modules

• Using object-oriented techniques to structure designing exception
handlers

12

Paper: Exception Handling in RT Systems
◆ Trying to apply Object-Oriented techniques to

exception handling in real-time distributed systems
◆ Uses coordinated atomic (CA) actions to encapsulate all

operations and exception handling procedures
• CA actions coordinate and operate on system objects

• CA actions manage real-time deadlines and confine scope of
exception handlers

◆ Developing a more structured approach to resolving
exception handling and real-time constraints
• Addresses both timing constraints and exceptions as well as data

and procedure exceptions

