Electronic/Electrical Reliability

18-849b Dependable Embedded Systems Michael Carchia 01/26/1999

Required Reading: "Automotive and Aerospace Electronic Systems.

Dependability Requirements", P.D. Rose

Best Tutorial: "Reliability Engineering", P. D. T. O'Connor, Chapter 7

Overview: Electronic/Electrical Reliability

- Why do electrical systems fail?
- ◆ What doesn't fail? (Do they 'wear out'?)
- **◆** Long-term non-operating reliability

- How does one design reliable electronic systems?
- **♦** The automotive world: Wiring Harnesses
- Conclusions, <u>THE BIG PICTURE</u>

Why do electrical systems fail?

- Drift of component parameters
- **♦** Electromagnetic interference
- "Mechanical Failures"
 - Connector breakage
 - Solder joint failures
 - Corrosion
 - Shock/Vibration/Sand/Dust
- Failure induced by temperature
- Transient electrical stresses
 - Electrostatic Discharge (ESD)
 - Lightning
- Radiation

What doesn't fail? (Do they 'wear out'?)

- Bathtub curve applies to Electrical/Electronic Reliability
- One could argue that electrical/electronic systems won't reach the wear-out stage (stage III)
 - except maybe Electromigration
 - some components do wear out: electrolytic capacitors, electromechanical parts
- ◆ Electromigration Phenomenon caused by extremely high current densities in on-chip interconnects. Can result in either open or short circuits in extreme cases.

Electromigration

Long-term non-operating reliability

- Dormancy can have an effect on electronic devices
- ◆ Often viewed as negligible, but some say important

Typical Percentages of Calendar Time for Equipment in Dormancy [Harris, 1980]

Cars (personal use)	93%
Taxis	38%
Safety equipment	98%
Standby power	>90%
Air conditioning	50% - 80%
Built-in test equipment	99%

Looks important to me..

Long-term non-operating reliability (cont.)

- During dormancy, the following may occur:
 - Corrosion
 - Radiation (accumulation of alpha particles)
 - Vibration/Extreme Temperatures
 - Loosening of connectors
 - Damage to plastic encapsulated devices
 - Depolymerization of printed circuit boards
 - Loss of Hermeticity
 - » Moisture
 - » Other contaminants
 - Electrostatic Discharge (ESD)
 - Contamination induced parameter degradation
 - In general: Environmental factors!

Long-term non-operating reliability (cont.)

(the bottom line)

- ◆ LOTS OF BAD THINGS CAN HAPPEN. Know the environment that your device is going to be:
 - used in.
 - stored in.
 - lay dormant in.

6 Design Principles to follow...

On the road to achieving reliable electronic systems, the automotive handbook says "Do the following:"

- Part Selection, Control, and Derating
- Reliable Circuit Design
- Redundancy
- Environmental Design
- Human factors Design
- Design Reviews

Part Selection, Control, and Derating

- Reliability of end item is dependent upon the electronic building blocks that make it up. Part selection cannot be overemphasized!
- To name a few, you must consider:
 - Power dissipation
 - Thermal resistance (heat dissipation)
 - Device parameter drift.
 - Etc.....
- Derating making sure operating environments of components never exceed their specified maximum stress levels.

Marie Reliable Circuit Design

- Simplify designs as much as possible!
 - Since reliability is a function of complexity, anything that can be done to reduce complexity will, as a rule, increase reliability
- Use standard components and circuits when possible
- Transient and overstress protection
 - Consider the effects of EMI, ESD, capacitance, inductance
- Parameter degradation analysis
 - Parts are known to change with time; must ensure that different tolerances can not combine in such a way that interferes with intended function.

Redundancy

- Incorporate when needed.
- <u>Active Redundancy</u> elements not required to perform function of detection, decision and switching when element fails.
- <u>Standby Redundancy</u> elements are required to detect, make a decision and switch as replacement for failed element.

Environment Design

- Temperature protection
 - Heat sinks, fans, thermal conduction plane on printed circuit boards, liquid cooling if severe!
- Shock and vibration protection
 - Heavy components should be supported mechanically rather than completely relying on solder connections
 - Solder has poor fatigue properties
- Moisture and chemical protection
- Sand and dust protection
- Variable electric supply
 - Spikes, ESD
 - Operator misuse: improper powering of automobile batteries
- Transient noise and electrostatic protection

Human Factors Design

- People use systems, people cause problems!
 - People operate systems, people fix systems
 - Design so fixable, usable, etc..

Design Reviews

 Critical audits aimed at assuring that the most satisfactory design has been selected.

The automotive world: Wiring Harnesses

- Automobiles pretty good with dealing with the majority of electrical problems
- Wiring harnesses mainly susceptible to failure for "mechanical reasons"

- Opens or shorts due to physical interruptions
- Damage during wiring installation (piercing with screws)

- Entrapment by an adjacent component during torque down
- Chafing due to omission of retaining clips

The automotive world: Wiring Harnesses

- Largest portions of failures due to:
 - Supplier quality
 - Routing
 - Installation
 - Service

Wiring Harness Failure Modes Causes

Conclusions: the big picture.

- ◆ At first glance, electronics is a safe medium to build safety critical systems.
- Like most aspects of engineering, there are a bunch of things that can go wrong!
 - Some electronic components can wear over time
 - Others "wear" by having their component parameters drift
- Subsystems tend to wear by corrosion, fracture of connectors, etc.
- Non-operating failures can be a significant problem
- Experience, methodology and forethought are the keys to designing reliable Electronic systems!