Distributed Dependability

18-849b Dependable Embedded Systems
Robert Slater
February 11, 1999

Required Reading: Bates,I.J.and Burns A. “A dependable Architecture for a Safety Critical Hard Real-Time
System.” IEEE Half-day Colloquium on Hardware Systems for Dependable Applications, p.30 1/1-6

Kopetz, H. “The Time-Triggered Architecture.” Proceedings of the First International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC “98) p. xiv+485 22-9

Best Tutorial: Mullender, Sape ed. “Distributed Systems.” ACM Press 1989

o
Authoritative Books: Chow, Randy and Theodore Johnson “Distributed Operating Carneg le

Systems and Algorithms.” Addison-Wesley 1998

Kopetz, Hermann “Real Time Systems: Design Principles for Mellon

Distributed Applications.” Kluwer Academic Publishers 1997

Overview: Distributed Dependability

¢ Introduction
e What is a distributed system?

¢ Key concepts
» Reliability : synchronization & coordination
 Availability : voting, the Byzantine generals, & checkpointing
 Security: authentication & encryption

¢ Tools

e Software tools/environments

¢ Relationship to other topics

» Real-time, Embedded communication, Fault-tolerant computing

¢ Conclusions & future work

YOU ARE HERE MAP

Error Traditional
| Real-Time Coding Reliability
/ |
o = _
FAULT Checkpoint/
\ TOLERANT Recovery
Embedded COMPUTING
Communications v, :
\ SW Formal Methods
Distributed Fault

Dependability Tolerance

What are Distributed Systems?

¢ Distributed systems coordinate computations between
multiple processors/nodes

]]
[J—C]] —

[== | _

OO0 ==

¢ Multiple Computational Nodes

¢ Connections Between Nodes

¢ Data/process Sharing

& Appears as a single node at any one node

4

Reliability - how do we make it work right?

¢ Synchronization is necessary for ordered operation
» Asynchronous systems must coordinate through system artifacts

* Synchronous systems must provide a global clock

¢ Coordination is necessary to avoid conflicts
* Mutual exclusion techniques ; semaphores, monitors, mutexes
e Communication protocols ; time-shared, polled, arbitrated

» Transactions ; double- and triple- commit

¢ One-Copy Semantics make distribution transparent
» Provides view as if single copy of data

o [f backups exist, then all copies are consistent

¢ Allocates nodes to processes as necessary to complete

» But scheduling becomes more complicated

5

Availability- how do we keep it working?

¢ Depends on your failure mode

o If fail-silent, can use simple detection & masking to continue
operation

 [f more complex failure mode (i.e. fail-consistent, fail-malicious)
then requires complicated fault masking

» The key 1s containment and masking
¢ The simple stuff

e Timeout, re-try

» Requires n+1 nodes to mask out n faults
¢ Voting

» Use redundancy to mask out fail-consistent failures
» Requires 2n+1 nodes to mask out n faults

Byzantine Algorithms

¢ What about malicious failures?

[]

1
i —

o

¢ Byzantine algorithms compare messages received at all
nodes

* Requires 3n+1 nodes & n+1 messages at each node to mask n
faults if origin of messages not known

» Requires n+1 nodes if origin of messages known

¢ Always remember design redundancy!

7

Security- how do we protect our system?

¢ Keeps authorized users and their data safe

¢ Authentication

Passwords, expiring tokens, and public keys

Always ways for this to become insecure

¢ Protection

Provide limited access to resources based on identity
Must insure secrecy, privacy, data authenticity, and data integrity

Must avoid intruder browsing, leaking, inferencing, or
masquerading

Generally use access matrix to match identity/access level to
rights

Depends upon identity to ensure protection, therefore insecure

Software Tools
¢ CORBA

» Abstracts distributed system into objects and references
* Supports process migration through naming service
» Hides network details behind abstraction

» Implementations for embedded systems underway

¢ DCOM

» Allows objects to connect to other objects through interfaces
» More of a desktop solution than an embedded one

o [t 1s Microsoft’s solution, may be more common as Windows
spreads

Relationship To Other Topic Areas

¢ Embedded Communication
* Requires adaptation to the communication protocol

* Embodies functionality above that of the network

¢ Real-time
» Often used for real-time systems
* Scheduling problems similar

¢ Fault-Tolerant Computing

* Provides redundancy necessary to fault-tolerant computing
* Shows the Reliability vs. Availability balance

¢ Checkpoint/Recovery

 Often uses checkpointing in saving and recovering state

10

Conclusions & Future Work

¢ Used to get cheap computation and bring it closer to where it is
needed

* Centralized computing costs more for similar capabilities, and
communication overhead is greater

¢ High availability is a possible benefit, but must be worked into
the system

 usually at the cost of more complicated reliability
¢ Distributed systems are powerful for the right kinds of problems

» Make sure you need the availability and processing power enough
to justify the overhead

¢ Future work
» Better synchronization, fault tolerance, and security measures
» Better matching of distributed solution to problems

* Connecting to the Internet
11

Bate & Burns and Kopetz

¢ One high-level and one design

¢ Bate and Burns
» Highlights the major design issues

» But there’s a lot of hand waving

¢ Kopetz and the TTA

» Correlates with B&B on a lot of areas
* Provides examples of design elements
 Fault-tolerance built into every part of the system

* Obviously embedded : No security discussion

12

