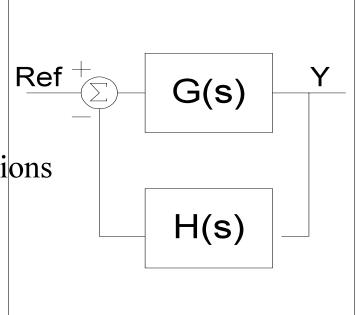
Robust Control

18-849b Dependable Embedded Systems Leo Rollins April 13, 1999

Required Reading: Some Crisp Thoughts on Fuzzy Control, Abramovitch, D.,

Proceedings of the American Control Conference, June 1994.

Best Tutorial: Robust Control of Linear Dynamical Systems, Chandrasekharan, P.,

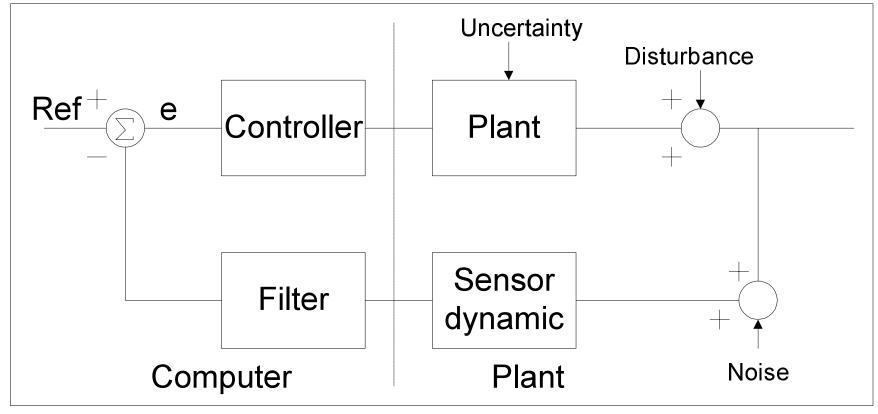

Academic Press, 1996

Overview

- Control Theory
- Key Concepts
 - What is robustness?
 - What's the big deal?
 - Modeling
- ◆ Techniques
- Connections
- **♦** Conclusion
- Paper Discussion

Control Theory

- Conventional Control (to 1950)
 - Feedback theory
 - Classic solution to differential eq.
 - Laplace techniques and transfer funtions
 - SISO
 - Root-locus methods of stability
- ♦ Modern Control (1950 to present)
 - Reducing to n 1st order equations
 - State methods and matrices
 - Optimization
 - MIMO



$$\dot{\vec{x}} = A\vec{x} + B\vec{u}$$

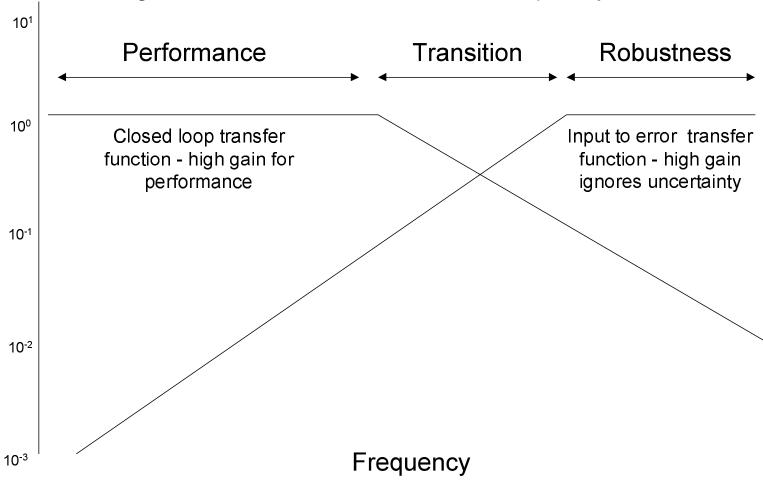
$$\vec{y} = C\vec{x} + D\vec{u}$$

Robustness

 Robust control refers to the control of unknown plants with unknown dynamics subject to unknown disturbances. - Chandrasekharan

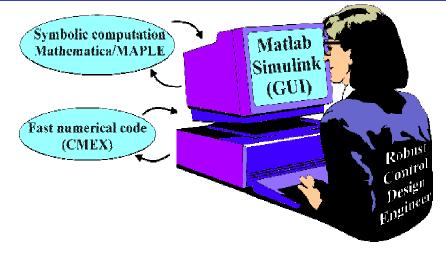
Why do we care?

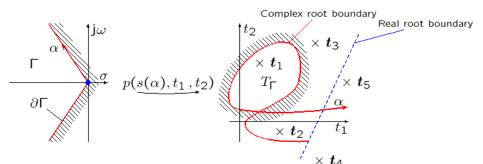
- ♦ Big 3 in Control
 - Observability
 - Controllability
 - STABILITY
- Secondary Considerations
 - Performance
 - Cost
- Stocastic Control
 - Model uncertainty with probability distribributions
- Robust Control
 - Bounding the error



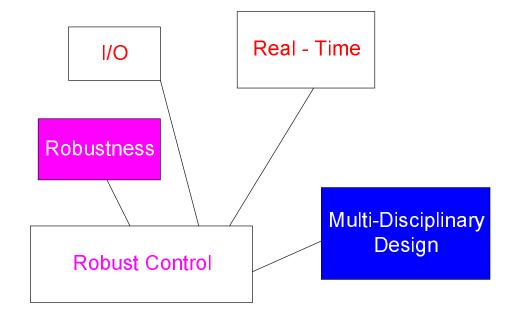
Modeling

- ♦ Why so hard?
 - Imperfect plant data
 - Real world is non-linear and time-varying
 - Higher order dynamic
 - Complexity
 - Tolerances introduce variation
 - Requires various skills
- Model Reduction
 - Simplicity for cost and computation


Performance vs Robustness



Tools / Techniques / Metrics


- Adaptive Control
 - System identification
 - Dual role of Control
- ♦ H₂ and H_{infinity}
 - Frequency domain (stability)
 - Norms are generalization of length
 - Used to bounds ouput power (H₂) or energy (H_{infinity})
- Parameter Estimation
 - Selection of best controller
 - Clues how to change system
- Lypanov
 - Only general method for non-linear
- Fuzzy Control
 - Uncertain sets

Connections

- Multi-Disciplinary
 - Modeling requires mechanical, electrical, process people, applied maths
- **♦** I/O
 - Interface with the plant
- ◆ Real Time
 - Sampling rates
- Robustness

Conclusions

- New concern for extremes of operation
- Trade-off between conservatism (robustness) and performance
- Good models are difficult to construct
- Research in last 15 years has lead to growth in techniques
- Techniques have been criticized for accesibility, tediousness, general application, and conservatism
- ◆ Tools to handle complexity introduce issue of correctness
- Gap between theory and practice closing?

Paper: Crisp Thoughs on Fuzzy ...

- Controversial
- Common sense applications only?
- Sample rate drives performance
- Success relies on lots of sensors
- No help in generating control laws