Embedded Communication

18-849b Dependable Embedded Systems Leo Rollins February 9, 1999

Required Reading: Communication Protocols For Embedded Systems, Koopman and Upender,

Embedded Systems Programming, 7(11), November 1994, pp 46-58.

Best Tutorial: Data Communication, NUREG/CR-6082, G. Preckshot, Lawrence Livermore Laboratory,

August 1993

Authoritative Books: Real-Time Systems, H. Kopetz, Kluwer Academic Publishers, 1997, Chapters 7-8

Overview

- Background: System Types
- Key Concepts
 - Event vs State Based Communication
 - Best Real-Time Protocol?
 - Error Detection/Diagnostics
- Tools / Techniques / Metrics
- Connections
- Conclusion
- Paper Discussion

Background: System Types

- ♦ Point to Point: Data Links
 - Simple
 - Reliable
 - Easy to meet real-time deadlines
- Shared Media: Data Highway
 - Reduction in wiring
 - Easily extendable
 - Added protocol complexity

Event vs State Based Communication

- Event Transmit changes only
 - Effective use of BW
 - Every message is important
 - Alarm flood problem
- ◆ State Transmit whole state
 - Less efficient
 - Network load is fixed
 - Static scheduling is possible
 - Can tolerate missed message
 - Must hold state for short events (pulse-stretch)

Best Real-Time Protocol?

- Fundamental Conflicts (Kopetz)
 - External Control vs Composability
 - Flexibility vs Error Detection
 - Sporadic vs Regular Data
 - Spontaneous Service vs Interface Simplicity
 - Prob. Access vs Replica Determinism
- Examples (standard protocols)
 - CSMA/CD Ethernet
 - CSMA/CA CAN
 - Polling BitBus
 - Token Passing Token Bus
 - TDMA ARINC 629
- Interoperability => higher layers

Embedded

System Focus

Error Detection / Diagnostics

Error Type	Defense
channel noise	CRC
	fiber optics
stale message	time-stamp
repeated message	serial number
station run-on	anti-jabber circuit
failure propagation	surge protection
	redundant network
	fiber optics
memory errors	checksum
intermittent errors	statistical counters
interface H/W failures	loopback testing
cable breaks	dynamic reconfiguration

Dynamic Reconfiguration Example

Normal Operation

Single Break

2 Double Breaks

Tools / Techniques / Metrics

- Protocol Analysis/Verification Tools
 - Petri Nets, Lotos, SDL, Z...
- Protocol Selection / Evaluation
 - NUREG/CR-6082 provides guidance
- Metrics
 - Data Rate
 - Throughput vs Load
 - Delay vs Throughput
 - Worst Case Utilization
 - Error Rates

Connections

- **♦** I/O
 - Field busses
- Distrib. Dependability
 - Comm. Architecture
- Real Time
 - Schedulability
- Fault Tolerant Computing
 - Redun, Error Detection
- Error Coding
 - Reliability, SNR, Compression, Error Detect
- Formal Methods
 - Protocol Verification

Conclusions

- State based for Critical Systems
- ◆ Media access => real-time and failure mode properties
- Protocol selection driven by real-time issues, technology, media access properties
- ◆ Low-level protocol focus may change due to interoperability issues
- Consider all error modes of system
- Other Issues Not Covered
 - Clock Synchronization important for event based
 - Mixing syncronous (real-time) and asynchronous (non-critical) data on a network

Paper: Embedded Protocols

- ♦ Good overview of media access
- Comparison of more than 3 protocols is hard to find in literature

