
ON THE SENSITIVITY OF SPECTRAL INITIALIZATION FOR NOISY PHASE RETRIEVAL

Vincent Monardo and Yuejie Chi

Department of Electrical and Computer Engineering
Carnegie Mellon University

Emails: {vmonardo, yuejiec}@andrew.cmu.edu

ABSTRACT

The spectral method is an important approach for signal esti-
mation that is often used as an initialization to iterative methods as
well as a stand-alone estimator, where the signal is estimated by the
top eigenvector of certain carefully-constructed data matrix. A re-
cent line of work has characterized the asymptotic behavior of such
data matrices used in spectral methods, which reveals an interesting
phase transition phenomenon: there exists a critical sampling thresh-
old below which the estimate of the spectral method is uninforma-
tive. Furthermore, optimal preprocessing functions are developed
to minimize this critical sampling threshold. In particular, most of
the existing work is focused on the noiseless phase retrieval prob-
lem. In this paper, our goal is to examine the sensitivity of such
optimal preprocessing functions in noisy phase retrieval, when there
is a mismatch between the noise model used in deriving the optimal
preprocessing function and the actual noise model in practice. Our
results provide important insights into the choice of preprocessing
functions in spectral methods.

Index Terms— spectral method, phase retrieval, noise sensitiv-
ity

1. INTRODUCTION

Consider the problem of estimating an n-dimensional vector x\ ∈
Cn from a set of m generalized linear measurements of the form

yi ∼ p(y | 〈ai,x\〉), i = 1, 2, ...,m, (1)

where p(· | ·) is a known conditional probability density that de-
scribes how the measurements are obtained, {ai}mi=1 is an ensem-
ble of sensing vectors, and 〈·, ·〉 is the inner product. The spectral
method [1, 2] is a popular approach for estimating x\, where it is
estimated via the top eigenvector (up to scaling) of a carefully con-
structed data matrix that is a sum of rank-one matrices aiaHi , each
weighted by the corresponding measurement yi, or a function T (yi)
of it. The spectral method can either be used as a stand-alone estima-
tor or as the initialization of a more sophisticated method. For exam-
ple, for the celebrated phase retrieval problem, the spectral method
can be used to initialize a nonconvex iterative method such as gradi-
ent descent or alternating minimization [3–9] or provide an anchor
vector to a convex linear program such as the Phasemax [10, 11].

Recently, a few works [12, 13] studied the asymptotic perfor-
mance of the spectral method under the Gaussian design, where the
sensing vectors are generated with i.i.d. standard complex Gaussian
entries, in the regime where both m and n go to infinity with a fixed
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sampling ratio α = m/n. It not only provides a precise character-
ization of the performance of the spectral method, but also reveals
an interesting phase transition phenomenon: there exists a critical
sampling ratio threshold such that below which the estimate of the
spectral method is uninformative, i.e. it is orthogonal to the ground
truth signal. Moreover, [13] provides formula for an optimal prepro-
cessing function T (yi) to minimize this critical sampling threshold.

The goal of this paper is to study the sensitivity of spectral ini-
tialization under model mismatch, when the actual signal model in
practice is different from the one used to derive the optimal prepro-
cessing function. This is of great relevance in practice, since typi-
cally the model is only imperfectly known, and may change during
deployment. Therefore, it is necessary to see if the performance of
the preprocessing functions are robust to model mismatch.

1.1. Our Contributions

In this work, we demonstrate the impact of model mismatch on the
performance of preprocessing functions that are derived for specific
noise models. In order to reach this goal, we consider the problem of
recovering an n-dimensional complex signal fromm quadratic mea-
surements, known as phase retrieval, which is also studied in [12,13]
for the noiseless setting. In contrast, we consider the noisy set-
ting, where the measurements are corrupted by either additive white
Gaussian noise (AWGN) or Poisson noise. We first derive opti-
mal preprocessing functions using the formula provided in [13], and
characterize how the critical sampling threshold varies as a function
of the noise level. Furthermore, through both empirical experiments
and theoretical analyses, we examine the performance of the pre-
processing functions when the noise level of the measurements are
different from the one used in the derivation, which suggest some
preprocessing functions are more sensitive to model perturbations.

1.2. Related Works

Though we use phase retrieval as an example, the spectral method
has been applied to many statistical estimation problems such as
low-rank matrix estimation [14–16], blind deconvolution [7, 17],
subspace estimation [18], to name a few. Many regularized variants
of the spectral method have been proposed to improve its perfor-
mance, which typically apply truncation or trimming to remove
measurements that have high leverage [4, 19]. The asymptotic
performance of the spectral method is analyzed first in [12] and
then [13] for generalized linear models.

Before continuing, it is worth emphasizing the critical role of
initialization in nonconvex statistical estimation. For several prob-
lems such as phase retrieval [20], low-rank matrix sensing [21] and
completion [22], it is shown that with high probability, there are no
spurious local minima in the landscape of the loss function except



strict saddle points. Therefore, gradient descent with random initial-
ization converge to the global optima almost surely for such prob-
lems [23], however the iteration complexity can be very high. In
contrast, an optimally designed spectral initialization can provably
land in a local basin of attraction near the ground truth [3], leading
to faster convergence.

1.3. Paper Organization and Notations

The rest of this paper is organized as follows. Section 2 presents
the signal model, and provides key metrics and backgrounds. Sec-
tion 3 presents the optimal preprocessing functions derived for dif-
ferent noise models in phase retrieval. Section 4 provides numerical
experiments to study the noise sensitivity of different preprocessing
functions. Finally, we conclude in Section 5.

Throughout the paper, we use boldfaced symbols to represent
vectors and matrices. For any vector v, we let ‖v‖2 denote the `2
norm, and let vH indicate the conjugate transpose. We use Q(x) to
represent the tail distribution function of the standard normal distri-
bution, i.e. Q(x) =

∫∞
x

1√
2π

exp(−z2/2)dz. Given two vectors
x,y ∈ Cn, 〈x,y〉 =

∑n
i=1 xiy

∗
i . We let Ex{·} denote taking the

expectation with respect to a random variable x.

2. BACKGROUNDS

In this section, we present the signal model for noisy phase retrieval,
define key metrics and review the phase transition phenomenon as
well as the design of optimal preprocessing functions in [12, 13] for
the spectral method.

2.1. Signal Model and Important Definitions

We consider the problem of recovering an n-dimensional signal
x\ ∈ Cn from m intensity (quadratic) measurements in the pres-
ence of noise, where each measurement yi is collected according
to

yi ∼ p(y | |〈ai,x\〉|2), i = 1, 2, ...,m. (2)

The set of known sensing vectors ai is independently drawn from
a complex Gaussian distribution, namely ai

i.i.d.∼ N (0, 1
2
In) +

jN (0, 1
2
In), where In is the identity matrix of size n. Let

α = m/n be defined as the sampling ratio. Furthermore, p(·)
specifies some noise distribution such as additive white Gaussian
noise (AWGN), or Poisson noise.

The spectral method first constructs a data matrix

D =
1

m

m∑
i=1

T (yi)aia
H
i , (3)

where T : R −→ R is a deterministic function which we refer to
as a preprocessing function. With spectral initialization, we take the
top eigenvector x̂ ∈ Cn of D as the initialization1. The intuition
behind the spectral initialization is that, if we let m → ∞, the top
eigenvector of D perfectly recovers x\ up to scaling. In practice, it is
desirable to carefully design the preprocessing function so that x̂ is
as close as possible to x\ when it is calculated using a finite number
of measurements. Thus, we wish to carefully design preprocessing
functions that leverage our knowledge of the measurement model (2)
in order to obtain a desirable initialization.

1The norm ‖x\‖2 can be estimated easily, for example using the average
of the measurements, which is not the focus here.

We study the regime wherem→∞ and n→∞, but their ratio
tends to a positive constant, i.e. m/n → α. The two metrics we
will consider to determine the success of a preprocessing function
are the cosine-squared similarity between the ground truth vector x\

and the top eigenvector x̂ of the data matrix D:

ρ(x̂,x\) =
|〈x̂,x\〉|2

‖x̂‖22 ‖x\‖
2
2

, (4)

and the sampling threshold,

αu = argmin
α∗

{
∀α > α∗, lim inf

m→∞
Ey
{
ρ(x̂,x\)

}
> 0
}
, (5)

the minimum sampling threshold required to have a non-zero cosine-
squared similarity.

By analyzing the asymptotic characterization of the spectral
method, one can derive the behavior of the cosine-squared similarity
as a function of the sampling ratio. The cosine-squared similarity
0 ≤ ρ(x̂,x\) ≤ 1 gives us a measure of how aligned our estimate is
with the ground truth, by specifying the correlations between these
two vectors. In [12], Lu and Li provided precise asymptotic predic-
tions of the cosine-squared similarity as a function of the sampling
threshold α and the distribution p(·). These predictions highlight the
existence of a phase transition phenomenon, such that there exists
a sampling threshold αu that determines the effectiveness of the
spectral method. When the sampling ratio α is below the threshold
α < αu, we have ρ = 0 and the spectral method is uninforma-
tive; and when α > αu, we have ρ bounded away from 0, and the
spectral estimate can be computed efficiently via the power method.
The precise form of ρ(x̂,x\) with respect to α is derived in [12] for
generalized linear models including phase retrieval.

2.2. Optimal Preprocessing Functions

The results in [12] suggest that the performance of spectral initializa-
tion can be drastically different using different preprocessing func-
tions. In [13], an optimal preprocessing function was proposed to
optimize the sampling threshold, so that it obtains the minimum sam-
pling threshold and the best cosine-squared similarity for all sam-
pling ratios. In [?], Luo et. al. constructed an optimal design of
spectral methods that is uniformly optimal for all sampling ratios.
We present Theorem 1 from [?] below.

Theorem 1 (Theorem 1 from [?]). Let x\ ∈ Cn, {ai}mi=1 be a
known sensing vector ensemble, and yi ∼ p(y | |〈ai,x\〉|2). Define
s = 〈ai,x\〉. Then the optimal preprocessing function for a pair of
sensing vectors and noise distribution is given by

T (y) = 1− Es{p(y | |s|)}
Es{|s|2p(y | |s|)}

. (6)

Furthermore, the sampling threshold can be derived as

αu =

(∫
R

Es
{
p(y | |s|)(1− |s|2)

}
Es {p(y | |s|)}

)−1

. (7)

This theorem is very useful for obtaining optimal preprocessing
functions for a given measurement ensemble (2). In [13], an optimal
preprocessing function was derived for the noiseless phase retrieval
problem, given as T (y) = 1− 1/y, with a corresponding sampling
threshold αu = 1.



3. OPTIMAL PREPROCESSING FUNCTIONS FOR NOISY
PHASE RETRIEVAL

We proceed to present the optimal preprocessing functions for the
cases where the measurements are contaminated by AWGN and
Poisson noise in phase retrieval (2), as well as the corresponding
theoretical sampling threshold, which were not considered in [13].
Due to space limits, all the proofs are omitted and can be found at
the full version at [24]. In Propositions 1 and 2, the preprocessing
functions and sampling thresholds are obtained using (6) and (7),
respectively, by plugging in the relevant probability distribution and
sensing vector model.

Proposition 1 (AWGN, Complex Gaussian Sensing Vectors). Con-
sider the set up described in Theorem 1, where ai

i.i.d.∼ N (0, 1
2
In) +

jN (0, 1
2
In) and p(y | |〈ai,x\〉|2) ∼ N (|〈ai,x\〉|2, σ2). Then

the optimal preprocessing function is given as

Tσ(y) = 1−

y − σ2 +

√
σ2

2π

exp
(
− (y−σ2)2

2σ2

)
Q
(
− (y−σ2)

σ

)
−1

, (8)

and the corresponding sampling threshold is

αu =

(
1− σ2 − σ4 +

σ3e−σ
2/2

2π

∫ ∞
−∞

exp
(
−σu− u2

)
Q(−u)

du

)−1

.

(9)

It is evident that both the optimal preprocessing function and
the sampling threshold depends on the noise level σ2 in a nonlinear
manner. Fig. 1 shows the optimal preprocessing function Tσ(y) with
respect to y for varied noise levels. For smaller measurements, i.e.
0 < y < 1, the preprocessing function maps the measurements to
a wide range of negative values; as the value of the measurement
continues to increase yi > 1, the preprocessing functions maps the
measurements to the range (0, 1). When there is no noise σ2 = 0,
this recovers the optimal preprocessing function introduced in [13],
that is T0(y) = 1−1/y. At we increase the noise level, the dynamic
range of the Tσ(y) also decreases.

Proposition 2 (Poisson Noise, Complex Gaussian Sensing). Con-
sider the set up described in Theorem 1, where ai

i.i.d.∼ N (0, 1
2
In) +

jN (0, 1
2
In) and p(y | |〈ai,x\〉|2) follows a Poisson distribution

with rate |〈ai,x\〉|2. Then the optimal preprocessing function is
given as

T (y) =
y − 1

y + 1
. (10)

The sampling threshold is αu = 2.

Similar to the AWGN case, the optimal preprocessing function
for Poisson noise maps smaller measurements to a wider range of
values (in a relative sense), while mapping larger measurements to
values approaching 1 as y → ∞, similar to a simple truncation
scheme. For example, y ∈ {0, 1, ..., 5} maps to a range of −1 ≤
T (y) ≤ 2

3
, while for yi ≥ 6, 5

7
≤ T (y) < 1. Additionally, notice

that the sampling threshold for Poisson noise is 2, in contrast to the
sampling threshold in the AWGN case, which can approach 1 when
the noise goes to zero. In comparison, to achieve the same sampling
threshold, processing the Poisson noise is about the same as AWGN
at σ2 ≈ 1.34.
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Fig. 1. The optimal preprocessing function Tσ(y) with respect to the
measurement value y for noisy phase retrieval with AWGN under
different noise levels σ2 = 0, 0.2, 1, and 5.

4. SENSITIVITY STUDIES VIA NUMERICAL
EXPERIMENTS

In this section, we provide numerical experiments that demonstrate
the sensitivity to model mismatch of the preprocessing function per-
formance, focusing on the cases of AWGN and Poisson noise for
noisy phase retrieval. Specifically, imagine one applies the opti-
mal preprocessing function designed for a postulated measurement
model, while the actual measurement noise is different from the pos-
tulated one. This situation is highly relevant in practice, since we ei-
ther do not have perfect knowledge of the model, or the model might
change during measurements collection. We will examine the sensi-
tivity of both the sampling threshold and the cosine-squared similar-
ity under model mismatch.

For all experiments, the sensing vectors ai are identically and
independently distributed as complex Gaussian vectors, i.e. ai

i.i.d.∼
N (0, 1

2
In)+jN (0, 1

2
In), for i = 1, ...,m. For the cosine-squared

similarity curves, we refer to “trimming” as the preprocessing func-
tion where T (y) = min(y,K) for some constant K. For testing
the empirical performance of each preprocessing function, we run 8
Monte Carlo experiments, where the signal dimensions are fixed to
n = 1024. We note that as the signal dimension increases, the em-
pirical curve becomes closer to the theoretical curve. The theoretical
curves for the cosine-squared similarity are obtained following the
derivations from [12].

4.1. Sensitivity of Sampling Thresholds

We start by investigating the sampling threshold of the optimal pre-
processing functions in AWGN for noisy phase retrieval. We as-
sume that a fixed preprocessing function is used to process the mea-
surements, designed for a postulated noise level σ2

f , while the true
noise level is set at σ2

r . Fig. 2 plots the sampling threshold of the
preprocessing function with respect to the true noise level, when it
is designed with respect to different postulated noise level σ2

f =
0.2, 0.5, 1, 2, 3, 5, and 7. In addition, Fig. 2 also plots the sampling
threshold in (9) corresponds to the case when the postulated noise
level in the preprocessing function matches with the true noise level,
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Fig. 2. The sampling threshold αu with respect to the true AWGN
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r for a preprocessing function designed to be optimal
for a postulated noise level σ2

f = 0.2, 0.5, 1, 2, 3, 5, 7, respectively.
The sampling threshold of the adaptive preprocessing function cor-
responds to (9) when σ2

f = σ2
r .
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f = σ2
r = 0.5, whereas the Mismatch

AWGN curve assume σ2
f = 5.

dubbed as the adaptive AWGN preprocessing function. Clearly, the
adaptive AWGN preprocessing function where σ2

f = σ2
r serves as

a lower bound of the minimal sampling threshold. It is interesting
to observe that when the mismatch level is small, the deviation in
the sampling threshold is also relatively small. However, the perfor-
mance can be drastically worse when the mismatch level is high.

4.2. Sensitivity of Cosine-Squared Similarities

Next, we examine the sensitivity of cosine-squared similarities over
a wide range of the sampling ratio in both AWGN and Poisson noise.
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Fig. 4. The theoretical prediction and the empirical realizations of
the cosine-squared similarity of each preprocessing function with re-
spect to the sampling ratio under Poisson noise. The Optimal AWGN
curve postulates σ2

f = 0.5 and applies (8).

In Fig. 3, we examine the empirical and theoretical performance
of the optimal AWGN preprocessing function in the presence of
AWGN with true noise level σ2

r = 0.5 as the sampling ratio in-
creases. The AWGN preprocessing function where σ2

f = σ2
r out-

performs the other in terms of achieving the theoretical sampling ra-
tio threshold as well as the overall cosine-squared similarity perfor-
mance. Compared with the mismatched AWGN preprocessing func-
tion where σ2

f = 5, the trimming preprocessing function obtains a
smaller sampling ratio threshold, but the overall cosine-squared sim-
ilarity does not increase at the same rate as the mismatched AWGN
preprocessing function. Therefore, one may not determine the per-
formance of the spectral method based only on the sampling thresh-
old. The performance of the vanilla spectral initialization without
preprocessing is much worse with more variability.

Lastly, we test the performance of preprocessing functions de-
rived for different noise models in the presence of Poisson noise in
Fig. 4. The optimal preprocessing function for Poisson noise ob-
tains the optimal sampling ratio threshold and outperforms the other
preprocessing functions also in terms of the cosine-squared similar-
ity. The AWGN preprocessing function with σ2

f = 0.5 performs
nearly as well as the sampling ratio increases, but does not obtain
the optimal sampling ratio threshold.

5. CONCLUSIONS

In this paper we studied the sensitivity of optimal preprocessing
functions in spectral methods when there is a mismatch between
the theoretical model and the practical model. Using noisy phase
retrieval as a case study, we derived the optimal preprocessing func-
tions under both Gaussian noise and Poisson noise, and further com-
pared their performances under model mismatch. Our study high-
lights the importance of considering model mismatch and designing
robust preprocessing functions that provide desirable performance
over a wide range of measurement distributions.
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In the appendix, we provide the derivations of the optimal preprocessing functions in AWGN and Poisson noise using the formula
in [13]. For the derivations, suppose that x ∈ Cn is uniformly distributed over the n-dimensional complex sphere with radius

√
n, i.e.,

x ∼ Unif(
√
nSn−1

C ), and {ai}mi=1

i.i.d.∼ N (0, 1
2n

In) + jN (0, 1
2n

In). Let si = 〈x,ai〉, the optimal preprocessing function can be derived
as

T (y) = 1− Es{p(y | |s|)}
Es{|s|2p(y | |s|)}

. (11)

Furthermore, the sampling threshold can be derived as

αu =

(∫
R

Es
{
p(y | |s|)(1− |s|2)

}
Es {p(y | |s|)}

)−1

. (12)

A. DERIVATIONS FOR THE AWGN CASE

In the presence of AWGN, the measurement yi follows the distribution yi ∼ p(y | |si|), where

p(y | |si|) =
1

σ
√

2π
exp

(
− (y − |si|2)2

2σ2

)
. (13)

Furthermore, we can rewrite si = Re(si) + j Im(si), where (Re(si), Im(si)) ∼ N (0, 1
2
I2). Let R = |si| =

√
Re(si)2 + Im(si)2.

Then R follows a Rayleigh distribution with scale parameter 1√
2
.

A.1. Optimal Preprocessing Function for AWGN

By the calculations in A.1.1, we have

Es{p(y | |s|)} = exp

(
− (2y − σ2)

2

)
Q(−(y − σ2)/σ). (14)

By the calculations in A.1.2, we have

Es{|s|2p(y | |s|)} = (y − σ2) exp

(
− (2y − σ2)

2

)
Q(−(y − σ2)/σ) +

σ√
2π

exp

(
− y2

2σ2

)
. (15)

Therefore, plugging (14) and (15) into (11), we obtain the optimal preprocessing function as

T (y) = 1− Es{p(y | |s|)}
Es{|s|2p(y | |s|)}

= 1−
exp

(
− (2y−σ2)

2

)
Q(−(y − σ2)/σ)

(y − σ2) exp
(
− (2y−σ2)

2

)
Q(−(y − σ2)/σ) + σ√

2π
exp

(
− y2

2σ2

)
= 1−

y − σ2 +

√
σ2

2π

exp
(
− (y−σ2)2

2σ2

)
Q
(
− (y−σ2)

σ

)
−1

. (16)



A.1.1. Calculations for Es{p(y | |s|)} in AWGN

We have

Es{p(y | |s|)} = ER{p(y | R)}

=

∫ ∞
0

1

σ
√

2π
exp

(
− (y − z)2

2σ2

)
exp(−z)dz

=

∫ ∞
0

1

σ
√

2π
exp

(
−y

2 − 2yz + z2

2σ2

)
exp(−z)dz

=

∫ ∞
0

1

σ
√

2π
exp

(
−y

2 − 2yz + z2 + 2σ2z

2σ2

)
dz

=

∫ ∞
0

1

σ
√

2π
exp

(
−y

2 − (2y − 2σ2)z + z2

2σ2

)
dz

=

∫ ∞
0

1

σ
√

2π
exp

(
− (z − (y − σ2))2 + σ2(2y − σ2)

2σ2

)
dz

= exp

(
− (2y − σ2)

2

)∫ ∞
0

1

σ
√

2π
exp

(
− (z − (y − σ2))2

2σ2

)
dz

= exp

(
− (2y − σ2)

2

)∫ ∞
−(y−σ2)

1

σ
√

2π
exp

(
− z2

2σ2

)
dz

= exp

(
− (2y − σ2)

2

)
Q(−(y − σ2)/σ).

A.1.2. Calculations for Es{|s|2p(y | |s|)} in AWGN

Similarly,

Es{|s|2p(y | |s|)} =

∫ ∞
0

z

σ
√

2π
exp

(
− (y − z)2

2σ2

)
exp(−z)dz

= exp

(
− (2y − σ2)

2

)∫ ∞
0

z

σ
√

2π
exp

(
− (z − (y − σ2))2

2σ2

)
dz

= exp

(
− (2y − σ2)

2

)∫ ∞
−(y−σ2)

z + (y − σ2)

σ
√

2π
exp

(
− z2

2σ2

)
dz

= exp

(
− (2y − σ2)

2

)[∫ ∞
−(y−σ2)

z

σ
√

2π
exp

(
− z2

2σ2

)
dz +

∫ ∞
−(y−σ2)

(y − σ2)

σ
√

2π
exp

(
− z2

2σ2

)
dz

]

= exp

(
− (2y − σ2)

2

)∫ ∞
−(y−σ2)

z

σ
√

2π
exp

(
− z2

2σ2

)
dz + (y − σ2) exp

(
− (2y − σ2)

2

)
Q(−(y − σ2)/σ).

Note that the first term can be further simplified as

∫ ∞
−(y−σ2)

z

σ
√

2π
exp

(
− z2

2σ2

)
dz =

1√
π

∫ ∞
−(y−σ2)

z

σ
√

2
exp

(
−
(

z

σ
√

2

)2
)
dz

=
σ
√

2√
π

∫ ∞
− (y−σ2)

σ
√

2

u exp
(
−u2) du

=
σ
√

2√
π

[
−1

2
exp(−u2)

]∞
− (y−σ2)

σ
√

2

=
σ√
2π

exp

(
− (y − σ2)2

2σ2

)
,

leading to the expression in (15).



A.2. Sampling Ratio Threshold for AWGN

Plugging (14) and (15) into (12), we tackle the calculation of the sampling threshold as

α−1
u =

∫
R

(
Es{p(y | |s|)(|s|2 − 1)}

)2
Es{p(y | |s|)}

dy

=

∫
R

[
Es{|s|2p(y | |s|)} − Es{p(y | |s|)}

]2
Es{p(y | |s|)}

dy

=

∫
R

[
(y − σ2) exp

(
− (2y−σ2)

2

)
Q(−(y − σ2)/σ) + σ√

2π
exp

(
− y2

2σ2

)
− exp

(
− (2y−σ2)

2

)
Q(−(y − σ2)/σ)

]2
exp

(
− (2y−σ2)

2

)
Q(−(y − σ2)/σ)

dy

=

∫
R

[
(y − σ2 − 1) exp

(
− (2y−σ2)

2

)
Q(−(y − σ2)/σ) + σ√

2π
exp

(
− y2

2σ2

)]2
exp

(
− (2y−σ2)

2

)
Q(−(y − σ2)/σ)

dy

=

∫
R
(y − σ2 − 1)2 exp

(
− (2y − σ2)

2

)
Q(−(y − σ2)/σ)dy︸ ︷︷ ︸

T1

(17)

+

∫
R

2σ(y − σ2 − 1)√
2π

exp

(
− y2

2σ2

)
dy︸ ︷︷ ︸

T2

(18)

+
σ2

2π

∫
R

exp(− y2

2σ2 ) exp(− (y−σ2)2

2σ2 )

Q(−(y − σ2)/σ)
dy︸ ︷︷ ︸

T3

. (19)

We separately handle the calculation of the three terms, T1, T2, and T3 in equations (17), (18), and (19), respectively.

A.2.1. Calculation of T1

T1 =

∫
R
(y − σ2 − 1)2 exp

(
− (2y − σ2)

2

)
Q(−(y − σ2)/σ)dy

=

∫
R
(y − σ2 − 1)2 exp

(
− (2y − σ2)

2

)[∫ ∞
−(y−σ2)

1

σ
√

2π
exp

(
− z2

2σ2

)
dz

]
dy

=

∫
R

[∫ ∞
−(y−σ2)

(y − σ2 − 1)2 exp

(
− (2y − σ2)

2

)
1

σ
√

2π
exp

(
− z2

2σ2

)
dz

]
dy

=

∫ ∞
−∞

[∫ ∞
−(z−σ2)

(y − σ2 − 1)2 exp

(
− (2y − σ2)

2

)
1

σ
√

2π
exp

(
− z2

2σ2

)
dy

]
dz

=
1

σ
√

2π
exp

(
σ2

2

)∫ ∞
−∞

exp

(
− z2

2σ2

)[∫ ∞
−(z−σ2)

(y − σ2 − 1)2 exp(−y)dy

]
︸ ︷︷ ︸

S

dz.

We handle the integral within the brackets, S, first.

S =

[∫ ∞
−(z−σ2)

(y − σ2 − 1)2 exp(−y)dy

]

=

∫ ∞
−(z−σ2)

(y2 − y(2σ2 + 2) + (2σ2 + σ4 + 1)) exp(−y)dy

=

∫ ∞
−(z−σ2)

(y2) exp(−y)dy︸ ︷︷ ︸
S1

−
∫ ∞
−(z−σ2)

y(2σ2 + 2) exp(−y)dy︸ ︷︷ ︸
S2

+

∫ ∞
−(z−σ2)

(2σ2 + σ4 + 1) exp(−y)dy︸ ︷︷ ︸
S3

.



The first of these integrals, S1, is

S1 =

∫ ∞
−(z−σ2)

(y2) exp(−y)dy = −(y2 + 2y + 2) exp(−y)
∣∣∞
−(z−σ2)

= [(z − σ2)2 − 2(z − σ2) + 2] exp(z − σ2)

= [(z − σ2 − 2)(z − σ2) + 2] exp(z − σ2)

= [z2 − zσ2 − 2z − zσ2 + σ4 + 2σ2 + 2] exp(z − σ2)

= [z2 − (2σ2 + 2)z + σ4 + 2σ2 + 2] exp(z − σ2).

The second of these integrals, S2, is

S2 = −
∫ ∞
−(z−σ2)

y(2σ2 + 2) exp(−y)dy

= (2σ2 + 2) (y + 1) exp(−y)|∞−(z−σ2)

= −(2σ2 + 2)(−(z − σ2) + 1) exp(z − σ2)

= (2σ2 + 2)(z − σ2 − 1) exp(z − σ2)

= (2σ2z + 2z − 2σ4 − 2σ2 − 2σ2 − 2) exp(z − σ2)

= [z(2σ2 + 2)− 2σ4 − 4σ2 − 2] exp(z − σ2).

The third of these integrals, S3, is

S3 =

∫ ∞
−(z−σ2)

(2σ2 + σ4 + 1) exp(−y)dy

= −(2σ2 + σ4 + 1) exp(−y)|∞−(z−σ2)

= (2σ2 + σ4 + 1) exp(z − σ2)

Therefore,

S =

∫ ∞
−(z−σ2)

(y2) exp(−y)dy −
∫ ∞
−(z−σ2)

y(2σ2 + 2) exp(−y)dy +

∫ ∞
−(z−σ2)

(2σ2 + σ4 + 1) exp(−y)dy

= [z2 − (2σ2 + 2)z + σ4 + 2σ2 + 2] exp(z − σ2) + [z(2σ2 + 2)− 2σ4 − 4σ2 − 2] exp(z − σ2)

+ (2σ2 + σ4 + 1) exp(z − σ2)

= (z2 + 1) exp(z − σ2)

Using this result above, we substitute S back into the equation for T1, and obtain

T1 =
1

σ
√

2π
exp

(
σ2

2

)∫ ∞
−∞

exp

(
− z2

2σ2

)
(z2 + 1) exp(z − σ2)dz

= exp

(
σ2

2

)∫ ∞
−∞

z2

σ
√

2π
exp

(
− (z2 − 2σ2z + 2σ4)

2σ2

)
dz

+ exp

(
σ2

2

)∫ ∞
−∞

1

σ
√

2π
exp

(
− (z2 − 2σ2z + 2σ4)

2σ2

)
dz

=

∫ ∞
−∞

z2

σ
√

2π
exp

(
− (z − σ2)2

2σ2

)
dz +

∫ ∞
−∞

1

σ
√

2π
exp

(
− (z − σ2)2

2σ2

)
dz

= σ4 + σ2 + 1.

A.2.2. Calculation of T2

T2 =

∫
R

2σ(y − σ2 − 1)√
2π

exp

(
− y2

2σ2

)
dy

= 2σ2

∫
R

y

σ
√

2π
exp

(
− y2

2σ2

)
dy −

∫
R

2σ4 + 2σ2

σ
√

2π
exp

(
− y2

2σ2

)
dy

= −2σ4 − 2σ2.



A.2.3. Calculation of T3

T3 =
σ2

2π

∫
R

exp(− y2

2σ2 ) exp(− (y−σ2)2

2σ2 )

Q(−(y − σ2)/σ)
dy

=
σ3

2π

∫ ∞
−∞

exp
(
− (u+σ)2

2

)
exp

(
−u

2

2

)
Q(−u)

du

=
σ3 exp

(
−σ2/2

)
2π

∫ ∞
−∞

exp (−σu) exp
(
−u2

)
Q(−u)

du.

Putting it all together, we finally obtain

αu = (T1 + T2 + T3)−1

=

(
1− σ2 − σ4 +

σ3 exp
(
−σ2/2

)
2π

∫ ∞
−∞

exp (−σu) exp
(
−u2

)
Q(−u)

du

)−1

.

B. DERIVATIONS FOR THE POISSON CASE

Let si = 〈x,ai〉. In the presence of Poisson noise with rate |si|2, the measurement yi follows the distribution yi ∼ p(y | |si|), where

p(y | |si|) =
|si|2ye−|si|

2

y!
. (20)

B.1. Optimal Preprocessing Function for Poisson noise

First, since |s| follows a Rayleigh distribution with scale parameter 1√
2

, we have

Es{p(y | |s|)} =
1

y!

∫ +∞

0

zy exp(−2z)dz

=
1

y!

∫ +∞

0

1

2
(
1

2
x)y exp(−x)dx

=
1

y!

1

2y+1

∫ ∞
0

xy exp(−x)dx

=
1

y!

1

2y+1
Γ(y + 1). (21)

Furthermore,

Es{|s|2p(y | |s|)} =

∫ +∞

0

zy+1

y!
exp(−2z)dz

=
1

y!

∫ +∞

0

zy+1 exp(−2z)dz

=
1

y!

∫ +∞

0

1

2
(
1

2
x)y+1 exp(−x)dx

=
1

y!

1

2y+2

∫ ∞
0

xy+1 exp(−x)dx

=
1

y!

1

2y+2
Γ(y + 2)

=
y + 1

y!2y+2
Γ(y + 1) (22)

Then, plugging (21) and (22) into (11), we can obtain

T (y) = 1−
1
y!

1
2y+1 Γ(y + 1)
y+1
y!2y+2 Γ(y + 1)

= 1− 2

y + 1
=
y − 1

y + 1
. (23)



B.2. Optimal Sampling Threshold for Poisson noise

Plugging (21) and (22) into (12), we have that

α−1
u =

∑
y∈R

[
y+1
y!2y+2 Γ(y + 1)− 1

y!
1

2y+1 Γ(y + 1)
]2

1
y!

1
2y+1 Γ(y + 1)

, (24)

which can be simplified as

∑
y∈R

[
y+1
y!2y+2 Γ(y + 1)− 1

y!
1

2y+1 Γ(y + 1)
]2

1
y!

1
2y+1 Γ(y + 1)

=
∑
y∈R

[
y+1
y!2y+2 Γ(y + 1)− 1

y!
2

2y+2 Γ(y + 1)
]2

1
y!

1
2y+1 Γ(y + 1)

=
∑
y∈R

[
y−1
y!2y+2 Γ(y + 1)

]2
1
y!

1
2y+1 Γ(y + 1)

=
∑
y∈R

[
y−1
y!2y+2

]2
Γ(y + 1)

1
y!

1
2y+1

=
∑
y∈R

(y − 1)2

y!22y+3
Γ(y + 1)

=
1

8

∑
y∈R

y2 − 2y + 1

y!2y

[∫ +∞

0

xy exp(−x)dx

]

=
1

8

∫ +∞

0

∑
y∈R

[(x
2

)y exp
(
−x

2

)
y!

(y2 − 2y + 1)

]
exp

(
−x

2

)
dx

=
1

8

∫ +∞

0

Ey∼Poisson( x
2
)

[
y2 − 2y + 1

]
exp

(
−x

2

)
dx

=
1

8

∫ +∞

0

[(x
2

)
+
(x

2

)2
− 2

(x
2

)
+ 1

]
exp

(
−x

2

)
dx

=
1

8

∫ +∞

0

(x
2

)2
exp

(
−x

2

)
dx− 1

8

∫ +∞

0

(x
2

)
exp

(
−x

2

)
dx+

1

8

∫ +∞

0

exp
(
−x

2

)
dx

=
1

4

∫ +∞

0

u2 exp(−u)du− 1

4

∫ +∞

0

u exp(−u)du+
1

4

∫ +∞

0

exp(−u)du

=
1

4
[2− 1 + 1] =

1

2
(25)

Therefore, αu = 2.


