Reinforcement Learning:
Fundamentals, Algorithms, and Theory

Yuting Wei Yuxin Chen Yuejie Chi
UPenn UPenn cMU

ICASSP Tutorial, May 2022

Reinforcement Learning:
Fundamentals, Algorithms, and Theory (Part 1)

Yuting Wei

Statistics & Data Science, Wharton
University of Pennsylvania

ICASSP, May 2022

Our wonderful collaborators

Lt @

- | o
" ;

Gen Li Shicong Cen Chen Cheng Laixi Shi Yuling Yan

UPenn CcMU Stanford CcMU Princeton

v

H A

Changxiao Cai Wenhao Zhan Yuantao Gu Jason Lee Jianging Fan

UPenn Princeton Tsinghua Princeton Princeton

Successes of reinforcement learning (RL)

At last — a computer program that
can beat achampion Go player pace484

ALL SYSTEMS GO

SONGBIRDS SAFEGUARD
T

50

Recap: Supervised learning

Given i.i.d training data, the goal is to make prediction on unseen data:

— pic from internet

5/50

Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

e no training data

e maximize total rewards

trial-and-error

sequential and online

‘Recalculating ... recalculating ...”

6 /50

Challenges of RL

explore or exploit: unknown or changing environments
credit assignment problem: delayed rewards or feedback

enormous state and action space

nonconvex optimization

/50

Sample efficiency

I
CLINICAL TRIAL

DISCOVERY &
PRE-CLINICAL

FDA
APPROVAL

PHASE | PHASE 2 PHASE 3

i
@‘

Source: chinsights.com B2 CBINSIGHTS

e prohibitively large state & action space
e collecting data samples can be expensive or time-consuming

8/50

Sample efficiency

DISCOVERY & CLINICAL TRIAL

PRE-CLINICAL

‘ 7]
N
o

{2
A3
(z

FDA
APPROVAL

PHASE | PHASE 2 PHASE 3

S 9

A
/
5

4 +
]

Source: chinsights.com B2 CBINSIGHTS

e prohibitively large state & action space
e collecting data samples can be expensive or time-consuming

Challenge: design sample-efficient RL algorithms J

8/50

Computational efficiency

Running RL algorithms might take a long time ...

e enormous state-action space

e nonconvexity

9/50

Computational efficiency

Running RL algorithms might take a long time ...

e enormous state-action space

e nonconvexity

Challenge: design computationally efficient RL algorithms J

9/50

Theoretical foundation of RL

asymptotic 28
ana Iysy

10/50

Theoretical foundation of RL

o~ (B inite-
;\3.‘526 finite sample
analysis «

asymptotic ,\
analysy

Understanding sample efficiency of RL requires a modern suite of
non-asymptotic analysis tools

10/50

This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION High-Dimensional

Amir Beck

(large-scale) optimization (high-dimensional) statistics

Demystify sample- and computational efficiency of RL algorithms

11 /50

This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION

Amir Beck

(large-scale) optimization (high-dimensional) statistics
Demystify sample- and computational efficiency of RL algorithms

Part 1. basics, and model-based RL
Part 2. model-free RL

Part 3. policy optimization

11 /50

Outline (Part 1)

e Basics: Markov decision processes
e Basic dynamic programming algorithms

e Model-based RL (“plug-in" approach)

12/50

Basics: Markov decision processes

Markov decision process (MDP)

state s; action a;
agent ——1

environment [« — -

VY

y W N

e S: state space

e A: action space

14 /50

Markov decision process (MDP)

state s; action a;
agent ——1

reward |
i 7y =1(5¢, I

A A 4

environment [« — —J

y W N

e S: state space
e A: action space

e r(s,a) € [0,1]: immediate reward

14 /50

Markov decision process (MDP)

action

state st; a; ~ 7T('|St)
s agent —
reward I
Ty = (8¢, at |
T environment |« — —/

S: state space
A: action space
r(s,a) € [0,1]: immediate reward

m(-|s): policy (or action selection rule)

15 /50

Markov decision process (MDP)

tat action
sta estk a; ~ 7T('|St)

____________ , agent l— -1

reward I

i 7y = T(St, ay |

environment ¢ — —J

y W N

next state
str1 ~ P(|se, ar)

S: state space

A: action space

r(s,a) € [0,1]: immediate reward
m(-|s): policy (or action selection rule)

P(+|s,a): unknown transition probabilities

15 /50

Help the mouse!

16 /50

Help the mouse!

e state space S: positions in the maze

16 /50

Help the mouse!

e state space S: positions in the maze

e action space A: up, down, left, right

16 /50

Help the mouse!

e state space S: positions in the maze
e action space A: up, down, left, right

e immediate reward r: cheese, electricity shocks, cats

16 /50

Help the mouse!

state space S: positions in the maze
action space A: up, down, left, right
immediate reward 7: cheese, electricity shocks, cats

policy m(-|s): the way to find cheese

16

50

Value function

T4

stf1 ~ P([st, ar)

Value of policy 7: cumulative discounted reward

VseS: VT(s):=E Z’ytr(st,at) |so=s
=0

S|

17/50

Value function

state s actiore |)
ar ~ m(-|s¢
_______ 5| agent —_ -I To ™1 T2 3 T4
reward S I S I S: I S; I S l
= | 4 1 27 3 14—
re =1(st, at T ' 0 ¥ :] :]
4 N '~ —— e’ g e’ N’
~ """\ environment — ag ai as as as
Al

stf1 ~ P([st, ar)

Value of policy 7: cumulative discounted reward

VseS: VT(s):=E Z’ytr(st,at) |so=s
=0

e v €10,1): discount factor

> take v — 1 to approximate long-horizon MDPs

» effective horizon: ﬁ

17 /50

Q-function (action-value function)

T T T2 T3 T4 Ts

QW(So,ao) ’—‘I—vsl—‘l—>52—‘|—>33—‘|—>34—‘|—>s5—‘|—> oo
__/ L/ L/ A L A/

-~ S S — <!

ag a1 ay a3 ay ds

Q-function of policy 7:

V(s,a) e SxA: Q7 (s,a) :=E nyt'r’t|so =s,a0=a
=0

e (ae7 S1,a1,S2,az,---): induced by policy ™

18 /50

Q-function (action-value function)

To 1 T2 T3 T4 Ts
VW(SO) . » 31_\|_'32 0 '53_‘L’54_‘L’35—‘|—0 oo
wooa @& a w
To T T2 T3 T4 s
QW(So,ao) ’—‘I—vsl—‘l—vsz—,(l—>33—‘|—>34—‘|—>s5—‘|—> oo
[A '_/‘ L [A
ao ay ay as ay as
Q-function of policy 7:
o
V(s,a) e SxA: Q7 (s,a) :=E E Vre|so = s,a0 = a
t=0

e (ae7 S1,a1,S2,az,---): induced by policy ™

18/50

Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™
Proposition (Puterman’94)

For infinite horizon discounted MDP, there always exists a deterministic
policy ©*, such that

V™ (s) > V™(s), Vs, and .

19/50

Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™

e optimal value / Q function: V* := V7™, Q* := Q™

19/50

Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™
e optimal value / Q function: V* := V7™, Q* := Q™

e How to find this 7#*7?

19/50

Basic dynamic programming algorithms
when MDP specification is known

Policy evaluation: Given MDP M = (S, A, r, P,v) and policy
m: S8 +— A, how good is 7?7 (i.e., how to compute V™, Vs7)

Policy evaluation: Given MDP M = (S, A, r, P,v) and policy
m: S8 +— A, how good is 7?7 (i.e., how to compute V™, Vs7)

Possible scheme:
e execute policy evaluation for each

e find the optimal one

Policy evaluation: Bellman’s consistency equation

e V™ /QT: value / action-value function under policy 7

22 /50

Policy evaluation: Bellman’s consistency equation

e V™ /QT: value / action-value function under policy 7

Bellman’s consistency equation

V7(s) = Eqmr(s) [Q’r(s, a)]

Q(sa)= r(sa) +7 E | V) |
~—— s'~P(-|s,a) ——

immediate reward next state's value

Richard Bellman

22/50

Policy evaluation: Bellman’s consistency equation

e V™ /QT: value / action-value function under policy 7

Bellman’s consistency equation

V7(s) = Eqmr(s) [Q’r(s, a)]

Q(sa)= r(sa) +7 E | V) |
~—— s'~P(-|s,a) ——

immediate reward next state's value

e one-step look-ahead

Richard Bellman

22/50

Policy evaluation: Bellman’s consistency equation

e V™ /QT: value / action-value function under policy 7

Bellman’s consistency equation

V7(s) = Eqmr(s) [Q’r(s, a)]

Q(sa)= r(sa) +7 E | V) |
~—— s'~P(-|s,a) ——

immediate reward next state's value

e one-step look-ahead

e let P™ be the state-action transition matrix
induced by m:

QT =r+yP"Q" — Q"=IT-~+P")r
Richard Bellman

22 /50

Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(Q)(s,a):= r(s,a) +~v E |maxQ(s,a)
s'~P(:|s,a) La’EA
immediate reward
next state's value

e one-step look-ahead

23 /50

Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(Q)(s,a):= r(s,a) +~v E |maxQ(s,a)
s'~P(:|s,a) La’EA
immediate reward
next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to
TQ)=Q"
~v-contraction of Bellman operator:

[7(Q1) — T(Q2)lloo < V/IQ1 — Q200 Richard Bellman

23 /50

Two dynamic programming algorithms

Value iteration (VI)
Fort=0,1,..

.7

QU =T(QY)

Q(0>
T
Q(l)

T
Q(f)

Q4

24 /50

Two dynamic programming algorithms

Q(O)
Value iteration (VI) T
(1)
Fort=0,1,..., ¢
-
Q(t-‘rl) _ T(Q(t)) Qw .
Qd

Policy iteration (PI)
Fort=0,1,...,

policy evaluation: Q) = Q™"

policy improvement: 711 (s) = argmax QY (s,a)
ac

V.

24 /50

Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1 = @[l < '1|Q" - Q"I

25 /50

Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1R - @[l <+ - |,

Implications: to achieve |Q() — Q*| . < ¢, it takes no more than

©) _ o*
. log <”QQH°O> iterations
1—7x €

25 /50

Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1 = @[l < '1|Q" - Q"I

Implications: to achieve |Q() — Q*| . < ¢, it takes no more than

1 ©) _ o*
—log <”QQH°O> iterations
1—7x €

Linear convergence at a dimension-free rate! |

25 /50

When the model is unknown .

L eene

Reinforcement |\ — Dynamic Programming
Learning and Optimal Control

DIMITRI P. BERTSEKAS

An Introduction §
second edition /

Richard . Suton and Ancrew G, Barto / /77 |

26 /50

When the model is unknown

Reinforcement
Learning

An Introduction
second edition

Richard S. Sutton and Andrew G. Barto / /7

L eene

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

Need to learn optimal policy from samples w/o model specification

26 /50

Three approaches

Wy model P4,

&M‘f/ (ie. P e RISIAIxIsh[7 %"3
/ model-based B

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate Pfor P

2. planning based on the empirical P

27 /50

Three approaches

‘("vo‘*:' ____ > model P,

&’é”‘f’)’ - (ie. P RISIMIXISH 7o %“9
/ model-based :

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate Pfor P

2. planning based on the empirical P

Tutorial Part 2: Model-free approach
— learning w/o estimating the model explicitly

Tutorial Part 3: Policy based approach
— optimization in the space of policies

27 /50

Three approaches

o, model P4,

- i SllAlxIShy| T .
,ﬂf” (ie. P € RISIAIxIS]) %“9

/

! model-based :

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical P

Tutorial Part 2: Model-free approach
— learning w/o estimating the model explicitly

Tutorial Part 3: Policy based approach
— optimization in the space of policies

27 /50

Model-based RL (a “plug-in” approach)

1. Sampling from a generative model (simulator)

2. Offline RL / batch RL

A generative model / simulator

— [Kearns and Singh, 1999]

gewerative model

e sampling: for each (s,a), collect N samples {(s,a, Sl(i))}lﬁiSN

29 /50

A generative model / simulator

— [Kearns and Singh, 1999]

gewerative model

e sampling: for each (s,a), collect N samples {(s,a, Sl(i))}lﬁiSN

e construct 7 based on samples (in total |S||.A| x N)

29 /50

(+-sample complexity: how many samples are required to

learn an e-optimal policy 7

-~

Vs: V(s)>V*(s)—¢

An incomplete list of works

[Kearns and Singh, 1999]
[Kakade, 2003]

[Kearns et al., 2002]
[Azar et al., 2012]

[Azar et al., 2013]
[Sidford et al., 2018a]
[Sidford et al., 2018b]
[Wang, 2019]

[Agarwal et al., 2019]
[Wainwright, 2019a]
[Wainwright, 2019b]
[Pananjady and Wainwright, 2019]
[Yang and Wang, 2019]
[Khamaru et al., 2020]
[Mou et al., 2020]

[Li et al., 2020]

[Cui and Yang, 2021]

31/50

Model estimation

generative model

Sampling: for each (s, a), collect
N ind. samples {(s,a, S/(i))}lgiSN

32 /50

Model estimation

generative model

Sampling: for each (s, a) collect
N ind. samples {(s, a, s)}1<Z<N

Empirical estimates

P(s]s,q) Z]l{s

empirical frequency

32 /50

Empirical MDP + planning

— [Azar et al., 2013, Agarwal et al., 2019]

[/ empirical MDP

HEN
| [|
| - H =
planning =%
= .. = oracle
| [| _ .
| |] B e.g. dynamic programming
H_ BN
| |
r

empirical P

Find policy based on the empirical MDP (empirical maximizer)
—_———— ~——_— ———

using, e.g., policy iteration (ﬁ,r)

33/50

Challenges in the sample-starved regime

| H B
[
| =
|
]
H N
|
L
H B
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|A|!

34 /50

Challenges in the sample-starved regime

| H B
[
| =
[
]
H N
|
L
H B
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|A|!

e Can we trust our policy estimate when reliable model estimation is
infeasible?

34 /50

(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1
V31—’

Forany 0 < e < the optimal policy T of empirical MDP achieves
IV =V <e

with high prob., with sample complexity at most

o (w==)

35/50

(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1
V31—’

Forany 0 < e < the optimal policy ™™ of empirical MDP achieves
IV = VYoo <&

with high prob., with sample complexity at most

5 (_ISIIA]
o202
((1 —7)%?
e matches minimax lower bound: ﬁ((l‘ﬂ;‘;;) when ¢ < 1177

(equivalently, when sample size exceeds ('f_”;‘;L) [Azar et al., 2013]

35/50

(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1

Forany 0 < e < T

the optimal policy ™™ of empirical MDP achieves
V™ = VYo <€

with high prob., with sample complexity at most

5 (_ISIIA]
o =2
<(1 —7)%?
- S _ISIIA ,
e matches minimax lower bound: Q((lu)g%;?Awhen e < \/llfv

(equivalently, when sample size exceeds (1_7)2) [Azar et al., 2013]

e established upon leave-one-out analysis framework

35/50

sample
complexity

ISII-A]
(T=7)3

1s)14] |

(L—=9)?

‘K:%'
«be’) .
© — Sidford et al."18a

Agarwal et al.'19

S, BN ‘\/ g2
7
z\ >
N
> S

36 /50

sample
complexity

S b

|SIA|
1-v [1 1 >
@\\ , é‘\\ @\\\/ 5-2
z\ N
S %

36 /50

sample
complexity

\:%'
«be’ . s
° — Sidford et al."18a

..... o\)‘\é
7/ Agarwal et al. 19
garwal et a \N(
f , 4\
3
\(‘\«\
| 1 1 » —
6‘\\ , @\\) @\\\/ 52
ke
[Agarwal et al., 2019] still requires a burn-in sample size = (‘i”:;;g

36 /50

sample

complexity
]
-~
‘K:%'
5114 i
(1—7)3 = © — Sidford et al. "18a
N

o &
\)(\
% A/gamal y o
? +
\(‘\«\’b

isial |- ®
1-7 L 1 1 >
@\\ é‘\\ @\\\/ 5-2
% ’
ke
3 S
[Agarwal et al., 2019] still requires a burn-in sample size = (‘i”:;;g

Question: is it possible to break this sample size barrier?

)

36 /50

Perturbed model-based approach (Li et al. ’20)

(empirical MDP

|
= |
o]

empirical P

|

~

empirical

N

<
o°

—/[Li et al., 2020]

planning ’ﬁ;
oracle

e.g. dynamic programming

Find policy based on the empirical MDP with slightly perturbed rewards

37/50

Optimal /..-based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen ’20)

Forany 0 <e < ﬁ the optimal policy 7, of perturbed empirical MDP
achieves

IV = V¥ <€

with high prob., with sample complexity at most

i)

38 /50

Optimal /,.-based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen ’20)

Forany 0 < e < ﬁ the optimal policy 7, of perturbed empirical MDP
achieves

IV = V¥ <€

with high prob., with sample complexity at most

5 (_IsiA
(1 —)3
e matches minimax lower bound: ﬁ((l“_gg;é;) [Azar et al., 2013]
e full e-range: € € (0, ﬁ] — no burn-in cost

e established upon more refined leave-one-out analysis and a
perturbation argument

38 /50

sample

complexity
M
Y%
N\ s
2 7
|SIIA] S b
(1—7)3 g@* — Sidford et al."18a
= R
SIAL | , o
3 garwal et al. o
(I=2) Q o
:’L ‘ 6(5"
(N
((\\
814 L~
1 I I >
& « é‘\\ N

Model-based RL (a “plug-in” approach)

1. Sampling from a generative model (simulator)

2. Offline RL / batch RL

Offline RL / Batch RL

e Collecting new data might be expensive or time-consuming

e But we have already stored tons of historical data

THECOMING INAUTONOMOUS VEHICLES

o kﬁ ‘.‘ s i]
< .o ,.‘ ./ mEm i i
- é M\
-
[N>

»t

s

(LS

’g

n
5 S = musomw
<< =

/- O

medical records data of self-driving clicking times of ads

41/50

Offline RL / Batch RL

e Collecting new data might be expensive or time-consuming

e But we have already stored tons of historical data

THECOMING INAUTONOMOUS VEHICLES
RO -t o

L
L] mEw

OB\

»t

s
U

///<““

n
PRRIAL DY ——
3 @ ’

&l
aﬁ%

medical records data of self-driving clicking times of ads

Question: Can we design algorithms based solely on historical J
data?

41 /50

Offline RL / batch RL

A historical dataset D = { a(® s/(l))}: N independent copies of
s~ p°, an~m(-|s), s' ~ P(-]s,a)

for some state distribution p® and behavior policy 7®

42 /50

Offline RL / batch RL

A historical dataset D = { a(® s/(l))}: N independent copies of
s~ p°, an~m(-|s), s' ~ P(-]s,a)

for some state distribution p® and behavior policy 7®

Goal: given some test distribution p and accuracy level ¢, find an
g-optimal policy 7 based on D obeying

V() -V = E [V(s)] - B [VA() <e

S~p S~ p

— in a sample-efficient manner

42 /50

Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*

43 /50

Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*

¢ Partial coverage of state-action space:

.
T2
- S
L
SN

uniform coverage over entire space

(sufficiently explored)

43 /50

Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*

e Partial coverage of state-action space:

/ Practically,
\ {

/ Lo A
~ .-\ samples cover all (s,a) & all poI|C|e§/i\ ; historical dataset D
N - N
(@f&%@}@ \

T2 -

N A
Y /

. J_ R

SN p o

uniform coverage over entire space

partial coverage
(sufficiently explored)

(inadequately explored)

43

50

How to quantify quality of historical dataset D (induced by 7°)?

44 /50

How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient

C* := max —d b(s,)
S, dﬂ (S,(I)

where d™(s,a) = (1 —) Y52, Y'"P((s%,a") = (s,a) | 7)

44 /50

How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient

C* := max d b(s,a) =
s,a dﬂ— (S,CL)

where d™(s,a) = (1 —~) Y52, Y'"P((s',a") = (s,a) | 7)

occupancy density of m*

; b
occupancy density of 7° ||

e captures distributional shift { - 3

e allows for partial coverage {

44 /50

A model-based offline algorithm: VI-LCB

Pessimism in the face of uncertainty: penalize value estimate of those
(s,a) pairs that were poorly visited [Jin et al., 2021, Rashidinejad et al., 2021]

45 /50

A model-based offline algorithm: VI-LCB

Pessimism in the face of uncertainty: penalize value estimate of those
(s,a) pairs that were poorly visited [Jin et al., 2021, Rashidinejad et al., 2021]

Algorithm: value iteration w/ lower confidence bounds

e compute empirical estimate Pof P
e initialize Q = 0, and repeat

~

Q(s,a) <—max{ (s,a) +v(P P(-|s,a), >—bsaV) }

Bernstein-style confidence bound

for all (s,a), where V(s) = max, Q(s,a)

45 /50

Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)
Forany 0 < e < ﬁ the policy 7 returned by VI-LCB achieves

V¥(p) = V7(p)<e

with high prob., with sample complexity at most

(=)

46 /50

Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)
Forany 0 < e < ﬁ the policy 7 returned by VI-LCB achieves

V¥(p) = V7(p)<e

with high prob., with sample complexity at most
~ SC~*
ol—-=2"=__
((1 = ’7)362>

e matches minimax lower bound: ﬁ(%) [Rashidinejad et al., 2021]

e depends on distribution shift (as reflected by C*)

e full e-range (no burn-in cost)

46 /50

sample

Y N
complexi
* v
78
RN
/
NG

Summary of this part

sample sample
complexity 4 complexity
sc
[SIIA| (1—7)° Yan et al.
(1=9)3 X
ISIIAl sc: ;
[(1—=7)
ISIIA] £<
! 1 1 1 -y | R
- - - > - ! >
DN ° N, e? N , < S, €
7 < B
- ‘O\\ § >

generative model offline/batch RL

Model-based RL is minimax optimal with no burn-in cost!

J

48 /50

Reference |

“Reinforcement Learning: Theory and Algorithms,” A. Agarwal, N. Jiang,
S. Kakade, W. Sun, in preparation.

“Dynamic programming and optimal control (4th edition),” D. Bertsekas,
2017.

“Finite-sample convergence rates for Q-learning and indirect algorithms,”
M. Kearns, S. Singh NeurlPS, 1998.

“Minimax PAC bounds on the sample complexity of reinforcement learning
with a generative model,” M. Azar, R. Munos, H. J. Kappen, Machine
Learning, vol. 91, no. 3, 2013.

“Near-optimal time and sample complexities for solving Markov decision
processes with a generative model,” A. Sidford, M. Wang, X. Wu,
L. Yang, Y. Ye, NeurlPS, 2018.

“Model-based reinforcement learning with a generative model is minimax
optimal,” A. Agarwal, S. Kakade, L. F. Yang, COLT, 2020.

49 /50

Reference |l

“Breaking the sample size barrier in model-based reinforcement learning
with a generative model,” G. Li, Y. Wei, Y. Chi, Y. Gu, Y. Chen, NeurlPS,
2020.

“Offline reinforcement learning: Tutorial, review, and perspectives on open
problems,” S. Levine, A. Kumar, G. Tucker, J. Fu, arXiv:2005.01643, 2020.

“Is pessimism provably efficient for offline RL?" Y. Jin, Z. Yang, Z. Wang,
ICML, 2021

“Bridging offline reinforcement learning and imitation learning: A tale of
pessimism,” P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, S. Russell, NeurlPS,
2021.

“Policy finetuning: Bridging sample-efficient offline and online
reinforcement learning,” T. Xie, N. Jiang, H. Wang, C. Xiong, Y. Bai,
NeurlPS, 2021.

“Settling the sample complexity of model-based offline reinforcement
learning,” G. Li, L. Shi, Y. Chen, Y. Chi, Y. Wei, arXiv:2204.05275, 2022.

50 /50

50/50

Reinforcement Learning:
Fundamentals, Algorithms, and Theory (Part 2)

Yuxin Chen
Wharton Statistics & Data Science, ICASSP 2022

Model-based vs. model-free RL

o model A,
7o | e P e RISIMIXIS) < T
& ~g
/ model-based \
samples value function
(experience) policy
2. ~
e wodel-free -

Model-based approach (“plug-in”
1. build empirical estimate P for P
2. planning based on empirical P

Model-free approach

— learning w/o modeling & estimating environment explicitly
— memory-efficient, online, ...

2/ 47

finite-time &
finite-sample analysis

asymptotic
analysis

1989 1992 1994 2018

Focus of this part: classical Q-learning algorithm and its variants

Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)

A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
N—— s'~P(:|s,a) a’'eA

immediate reward ——

next state's value

e one-step look-ahead

5/ 47

A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
N—— s'~P(:|s,a) a’'eA

immediate reward ——

next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to

T(Q) ="

5/ 47

A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
s'~P(-|s,a) La’EA
immediate reward
next state's value

e one-step look-ahead
Bellman equation: Q* is unique solution to
TQ)=0Q"

e takeaway message: it suffices to solve the
Bellman equation

. . . Richard Bellman
e challenge: how to solve it using stochastic

samples?

5/ 47

Q-learning: a stochastic approximation algorithm

i

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951

TQ) -Q=0
where
@ e 1 g o)

immediate reward ;
next state’s value

6/ 47

Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qui1(s,a) = Qu(s,a) + nu(Te(Q) (s, a) — Qu(s,a)), t=0

sample transition (s,a,s’
b b

7/ 47

Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) — Q =0

Qir1(s,a) = (1 —n)Q4(s,a) +n:Ti(Q¢)(s,a), t>0

sample transition (s,a,s’)

7/ 47

Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) — Q =0

Qir1(s,a) = (1 —n)Q4(s,a) +n:Ti(Q¢)(s,a), t>0

sample transition (s,a,s’)

Te(Q)(s,a) = 7(s,a) +ymax Q(s', a’)

T(Q)(s,a) =T(S,a)+’y E [maXQ(sl,a’)]

s'~P(-|s,a) a’

7/ 47

Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)

A generative model / simulator

— Kearns, Singh '99

generative model

In each iteration, collect an independent sample (s, a, s’) for each

(s,a)

9/ 47

Synchronous Q-learning

v :_
ol

Chris Watkins Peter Dayan

fort=0,1,...,7T
for each (s,a) e S x A

draw a sample (s, a,s’), run

Qu1(s,a) = (1= n)Qu(s, a) + Ut{T(S,a) +7max Qu(s, a')}

synchronous: all state-action pairs are updated simultaneously)

10/ 47

Sample complexity of synchronous Q-learning

Theorem 1 (Li, Cai, Chen, Gu, Wei, Chi’21)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob., with sample complexity (i.e., T|S||.A|) at most

),

other papers sample complexity
= _ISllAl
Even-Dar & Mansour '03 21—~
(1-)%e?
- [S|2]41%
Beck & Srikant'12 (1—7)5:2
P S|IA]
w. ht 'l |s11A
ainwright '19 (1—)5<2
. [SIA]
Chen et al.'20 (1—~)5c2

11/ 47

Sample complexity of synchronous Q-learning

Theorem 1 (Li, Cai, Chen, Gu, Wei, Chi’21)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob., with sample complexity (i.e., T|S||.A|) at most

(s

S A])

1 —)te?

e Covers both constant and
rescaled linear learning rates:

1

c1(1—y)T

N =
1+

log? T
1

14+ c2(1—y)t

or n =

log? T

other papers

sample complexity

1
Even-Dar & Mansour '03 2T—7 S| "2‘ 5
(1—=v)%e
kant" 1s121A1%
Beck & Srikant'12 (1-7)52
P [SIHA]
Wainwright '19 (1=~)5e2
. [SIIA]
Chen et al.'20 (1—)52

11/ 47

IS[IA

All this requires sample size at least Ao)icz -

NN
Ny
N SR
sample 4

Q
complexity \5\\P‘ \wj‘
(log scale) 0/%
~
\é"\/
&
& [ox"
B A
N we > %
0"
<o Vit
/ \’T\.\\'\‘max
> (log scale)

All this requires sample size at least % e

NN
N2
A SN
sample 4

N

complexity \5\@;;&
A

(log scale) ¢
N
s@\
N

(log scale)

Question: Is Q-learning sub-optimal, or is it an analysis artifact?

. S
A numerical example: % samples seem necessary . ..
(1-7)%e

— observed in Wainwright '19

a=1
a=2 . 108
1 g
Q 1-p O ! g
—
©O—— 0 g
1- z
3]
=¥
Q
N
2 10°
4'7 - 1 E ——— Q-learning .
p frd T § , ———— Theory: N =< iy
")/ 10 10 15 20 25 30 35 40
discount complexity:
r(07 1) — O, 74(1, 1) — T.(l, 2) — 1 1scount complexity: g p

13/ 47

Q-learning is NOT minimax optimal

Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi, 2021)

For any 0 < € < 1, there exist an MDP such that to achieve
|Q — Q*||so < &, synchronous Q-learning needs at least

Q <(1‘f|,’;4;482> samples

14/ 47

Q-learning is NOT minimax optimal

Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi, 2021)

For any 0 < € < 1, there exist an MDP such that to achieve
|Q — Q*||so < &, synchronous Q-learning needs at least

Q <(1‘f|,’;4;482> samples

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates

a=1
a=2

14/ 47

Q-learning is NOT minimax optimal

Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi, 2021)

For any 0 < € < 1, there exist an MDP such that to achieve
|Q — Q*||so < &, synchronous Q-learning needs at least

Q (%) samples

s
sample
complexity

(log scale)

— (log scale)

14/ 47

Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun & Schwartz'93; Hasselt '10)

e maxgec 4 E[X (a)] tends to be
over-estimated (high positive
bias) when E[X (a)] is replaced
by its empirical estimates using a
small sample size

e often gets worse with a large
number of actions (Hasselt, Guez,
Silver '15)

I max, Q(s,a) — V.(s)
10 l = Qs argmax, Qs,0) — Va(s)

error

%%
number of actions

Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €, and the errors {e, }7-; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.

15/ 47

Improving sample complexity via variance reduction

— a powerful idea from finite-sum stochastic optimization

Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang '13)

Qu(s,a) = (1 =m)Qi-1(5,0) + n(Ti(Qr-1) =T(@Q) + T(@Q))(s,a)

use @ to help reduce variability

17/ 47

Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang '13)

Qu(s,a) = (1 =m)Qi-1(5,0) + n(Ti(Qr-1) =T(@Q) + T(@Q))(s,a)

use @ to help reduce variability

e (Q: some reference Q-estimate

e 7 empirical Bellman operator (using a batch of samples)
Te(Q)(s,a) = 7(s,a) + ymax Q(s', a’)

TQa) =r(sa)+y E [maxQ(s',a)]

s'~P(ls,a) ©

17/ 47

An epoch-based stochastic algorithm

— inspired by Johnson & Zhang '13

update variance-reduced

Q-learning
)-)-)‘)‘
epoch 1 epoch 2 epoch 3

for each epoch
1. update Q and 7(Q) (which stay fixed in the rest of the epoch)

2. run variance-reduced Q-learning updates iteratively

18/ 47

Sample complexity of variance-reduced Q-learning

Theorem 3 (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||QQ — Q*||cc < € is at most

(=)

e allows for more aggressive learning rates

19/ 47

Sample complexity of variance-reduced Q-learning

Theorem 3 (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||QQ — Q*||cc < € is at most

(=)

e allows for more aggressive learning rates

e minimax-optimal for 0 < e <1
o remains suboptimal if 1 < ¢ < ;-

19/ 47

Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)

Markovian samples and behavior policy

observed: (So——+(81——>S2——>83——> 84 ——>(55
a’l ',j '_all ’_f” {_II’ _—"

ao a az as Qg as

T(-|s0) m(-[s1) mu(-[s2) mu([s3) mb(-|sa) mb(:|s5)

s

learn: sp—— 81—~ 52— 83— 84— 85—
(’, (_a,, (_I' _all (_all (\ -’ !
ao aj a2 as aq as

7*(-|so) m*(ls1) m*([s2) 7*(:|ss) 7*(:|sa) 7*(:[s5)

Observed: {s;,as,7:}+>0 generated by behavior policy
—_——

stationary Markovian trajectory

Goal: learn optimal value V* and Q* based on sample trajectory

21/ 47

Markovian samples and behavior policy

observed: (So——+(81——>S2——>83——> 84 ——>(55
a’l ',j '_all ’_f” {_II’ _—"

ag aj az as ay as

T(-|s0) m(-[s1) mu(-[s2) mu([s3) mb(-|sa) mb(:|s5)

s

learn: sp—— 81—~ 52— 83— 84— 85—
(’, (_a,, (_I' _all (_all (\ - !
ao ap a2 0%’, %4 as

7*(-|so) m*(ls1) m*([s2) 7*(:|ss) 7*(:|sa) 7*(:[s5)

Key quantities of sample trajectory
e minimum state-action occupancy probability (uniform coverage)
Hmin i=min pr (s, a)
——
stationary distribution

e mixing time: tmix

21/ 47

Q-learning on Markovian samples

Chris Watkins Peter Dayan

Qt+1(st,at) = (1 —m)Qe(st, ar) + meTe(Qt) (e, ae), >0

only update (s¢,at)-th entry

22/ 47

Q-learning on Markovian samples

Chris Watkins Peter Dayan

Qt+1(st,at) = (1 —m)Qe(st, ar) + meTe(Qt) (e, ae), >0

only update (s¢,at)-th entry

Te(Q)(st, at) = r(st, ar) +ymax Q(si41,a’)

22/ 47

Q-learning on Markovian samples

<
»
fy

< |

(s0 aoj\\\
(s11a1

observed: (50 2SS el S| <
T 1l H J v 1 H J H 1 (

_a' ‘_a’ ‘_— ‘_a’ ‘_a \~_¢' (52’
ag ay az as aq as Yj I
bo) I

Qs,a

e asynchronous: only a single entry is updated each iteration

23/ 47

Q-learning on Markovian samples

(s0}ao)
J,
(s1}ar)
observed: So——>81—— 82— 83— 84 ——>55 — S
(o (o (o [(- [(52)a2)
ag ai az as a4 as
(|
Ss,lla)
Q(s,a)

e asynchronous: only a single entry is updated each iteration
o resembles Markov-chain coordinate descent

23/ 47

Q-learning on Markovian samples

observed: S1—— 82
L (_/' \
ay

m(+1s0) mo([s1) mo(ls2) mb([s3) mo(-|sa) mu(-Is5)

83
qx_a
as

\ 4
))

’

85— S
'\ - a’l

as

%
7
’

~ -’ qx_a
as a4
T

A

Jao)

tss, lla)
|

Q(s,a)

an)l ™

e asynchronous: only a single entry is updated each iteration

o resembles Markov-chain coordinate descent

e off-policy: target policy 7 # behavior policy

23/ 47

A highly incomplete list of works

Watkins, Dayan '92

Tsitsiklis '94

Jaakkola, Jordan, Singh '94

Szepesvari '98

Borkar, Meyn '00

Even-Dar, Mansour '03

Beck, Srikant'12

Chi, Zhu, Bubeck, Jordan'18

Lee, He'18

Chen, Zhang, Doan, Maguluri, Clarke '19
Du, Lee, Mahajan, Wang '20

Chen, Maguluri, Shakkottai, Shanmugam '20
Qu, Wierman '20

Devraj, Meyn '20

Weng, Gupta, He, Ying, Srikant '20

Li, Wei, Chi, Gu, Chen'20

Li, Cai, Chen, Gu, Wei, Chi'21

Chen, Maguluri, Shakkottai, Shanmugam '21

24/ 47

Sample complexity of asynchronous Q-learning

Theorem 4 (Li, Cai, Chen, Gu, Wei, Chi’21)
Fcir any 0 < e < ﬁ sample complexity of async Q-learning to yield
|Q — Q*||co < € is at most (up to log factor)
1 tmix
,umin(1 - 7)452 ,umin(1 - 7)

Sample complexity of asynchronous Q-learning

Theorem 4 (Li, Cai, Chen, Gu, Wei, Chi’21)
Fcir any 0 < e < ﬁ sample complexity of async Q-learning to yield
|Q — Q*||co < € is at most (up to log factor)
1 — + tmix
Hmin(1 - 7) € Mmin(1 -)

other papers sample complexity

Even-Dar et al.'03

Even-Dar et al.'03

° learning I’ates: Beck & Srikant '12

constant & rescaled linear Qu & Wierman '20

- - 1 b
Li et al. 20 T (=152 T i (1—7)

Chen et al.’21 W + other-term(mix)

Linear dependency on 1/imin

sample
complexity

Effect of mixing time on sample complexity

Markov Chains
and Mixing Times

1 + tmix
,“min(1 - ’7)452 Nmin(1 - 7)

e reflects cost taken to reach steady state

e one-time expense (almost independent of ¢)
— it becomes amortized as algorithm runs

e can be improved with the aid of variance reduction (Li et al. '20)

— prior art: #(tlmﬁ'xg (Qu & Wierman '20)

min
27/ 47

Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)

Recap: offline RL / batch RL

Historical dataset D = {(s¥,a(", s'¥)}: N independent copies of
Sprv aNﬂ-b("s)» S,NP('|Sva)

for some state distribution p® and behavior policy 7®

29/ 47

Recap: offline RL / batch RL

Historical dataset D = {(s¥,a(", s'¥)}: N independent copies of
Sprv aNﬂ-b("s)» S,NP('|87G)

for some state distribution p® and behavior policy 7®

Single-policy concentrability
* T 4 ’ \\»\\
d™ (s,a
C* := max M >1 B \
s, d” (37 CL) 7 historical dataset D //\
where d™: occupancy distribution under 7 \}\ . \
| ! T r
e captures distributional shift

e allows for partial coverage

29/ 47

How to design offline model-free algorithms
with optimal sample efficiency?

How to design offline model-free algorithms
with optimal sample efficiency?

pessimism variance
(low confidence bounds) reduction

— | LCB-Q| = [LCB—Q—Advantage]

LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

31/ 47

LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty

31/ 47

LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty

sample size: é(ﬁ;?) = sub-optimal by a factor of ﬁ; J

Issue: large variability in stochastic update rules

31/ 47

Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@)) (51,)

advantage reference

32/ 47

Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@)) (51,)

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3

32/ 47

Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@)) (51,)

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3

Theorem 5 (Yan, Li, Chen, Fan’22, Shi, Li, Wei, Chen, Chi’22)

Fore € (0,1 —], LCB-Q-Advantage achieves V*(p) — V%(p) <e
with optimal sample complexity O(ﬁ)

32/ 47

sample sample .
complexity i A complexity
W
%
G
L

infinite-horizon MDPs finite-horizon MDPs

Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)

Finite-horizon MDPs

action

| environment [« — I

¢
next state
Shi1 ~ Pu(-|sh, an)

H: horizon length

S: state space with size S e A: action space with size A
rh(Sn,ap) € [0, 1]: immediate reward in step h

= {ﬁh}lez policy (or action selection rule)

Py,(-|s,a): transition probabilities in step h

35/ 47

Finite-horizon MDPs

action
ap ~ mh(:|sn)

reward

Th = 7(Sn, an I
“""" environment [« — I

next state
Shi1 ~ Pu(-|sh, an)

value function: V)" (s) =E

H

Zrh(sh,ah) | Sp = 51

t=h

H

Zrh(sh,ah) | sh =s,an = a}
=h

t

Q-function: Q}(s,a) =E

35/ 47

Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7'

episode 1 |:> {sh»ah, 7 e

36/ 47

Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7!

episode 1 |::> {sh»ah, 7 e

[n=ane! execute 7>
\
L 2 92 2\H
episode 2 {8h> @ T =1

36/ 47

Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7'

episode 1 |::> {sh»ah, 7 e

= e] execute 7>

Lo 2 2 2\H
episode 2 :> {8h: @k, i h=1

e execute &

episode K |:> {Sf a£{7 Tf}{j:l

36/ 47

Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps
— sample size: T'= KH

ik execute 7!

episode 1 |::> {sh»ah, 7 e

SRR ! LL execute 7>
35
L 2 2 2\H
episode 2 :> {8h: @k, i h=1

e execute &

episode K |:> {Sf ai{7 T}{(}hH:I

exploration (exploring unknowns) vs. exploitation (exploiting learned info)J

36/ 47

Regret: gap between learned policy & optimal policy

adversary learner

A
-3/)

initial state execute
51 = policy !

episode 1

37/ 47

Regret: gap between learned policy & optimal policy

adversary learner

initial state : execute . |n|t|aI state execute
3% policy 7" . = policy 7€

episode 1 episode K

37/ 47

Regret: gap between learned policy & optimal policy

adversary learner

initial state execute initial state execute
I 51 I = policy 7! = = s{{ = policy ©f

episode 1 episode K

Performance metric: given initial states {s¥}X_ | define

chosen by nature/adversary

K

Regret(T) = > (Vi(sf) — Vi (s}))
k=1

37/ 47

Existing algorithms
e UCB-VI: Azar et al.'17
e UBEV: Dann et al.'17
e UCB-Q-Hoeffding: Jin et al. 18
e UCB-Q-Bernstein: Jin et al.’18
e UCB2-Q-Bernstein: Bai et al.'19
Regret(T) > VH2SAT e EULER: Zanette et al.'19
e UCB-Q-Advantage: Zhang et al.’20
o UCB-M-Q: Menard et al. 21

e Q-EarlySettled-Advantage: Li et
al.’21

Lower bound
(Domingues et al. '21)

Which model-free algorithms are sample-efficient for online RL?

Which model-free algorithms are sample-efficient for online RL?

early-settled
ucB variance variance
exploration reduction reduction

= |ucBQ| = [UCB—Q—Advantage] =

Jin et al.’18 Zhang et al. '20 Li et al. 21

Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

40/ 47

Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound; encourage exploration
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

40/ 47

Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound; encourage exploration
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of VH J

40/ 47

Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound; encourage exploration
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of VH J

Issue: large variability in stochastic update rules

40/ 47

Q-learning with UCB and variance reduction

— Zhang et al. '20

Incorporates variance reduction into UCB-Q:

41/ 47

Q-learning with UCB and variance reduction

— Zhang et al. '20
Incorporates variance reduction into UCB-Q:

Qn(sn,an) < (1 —n1)Qn(sh,an) + mi bp(sh, an)
——

UCB bonus
+ Mk (E(Qh+1) — Te(Qpi1) + T(§h+1)) (Sh,an)
——
advantage reference

41/ 47

Q-learning with UCB and variance reduction

— Zhang et al. '20
Incorporates variance reduction into UCB-Q:

Qn(sn,an) < (1 —n1)Qn(sh,an) + mi bp(sh, an)
——

UCB bonus
+ Mk (E(Qh+1) — Te(Qpi1) + T(§h+1)) (Sh,an)
——
advantage reference

UCB-Q-Advantage is asymptotically regret-optimal

41/ 47

Q-learning with UCB and variance reduction

— Zhang et al. '20
Incorporates variance reduction into UCB-Q:

Qn(sn,an) < (1 —n1)Qn(sh,an) + mi bp(sh, an)
——

UCB bonus
+ Mk (E(Qh+1) — Te(Qpi1) + T(§h+1)) (Sh,an)
——
advantage reference

UCB-Q-Advantage is asymptotically regret-optimal

Issue: high burn-in cost O(S%A*H?%)

41/ 47

UCB-Q with variance reduction and early settlement

One additional key idea: early settlement of the reference as soon as
it reaches a reasonable quality

42/ 47

UCB-Q with variance reduction and early settlement

One additional key idea: early settlement of the reference as soon as
it reaches a reasonable quality

Theorem 6 (Li, Shi, Chen, Gu, Chi’21)
With high prob., Q-EarlySettled-Advantage achieves

Regret(T) < O(VH2SAT + HSSA)

42/ 47

UCB-Q with variance reduction and early settlement

One additional key idea: early settlement of the reference as soon as

it reaches a reasonable quality

Theorem 6 (Li, Shi, Chen, Gu, Chi’21)
With high prob., Q-EarlySettled-Advantage achieves

Regret(T) < O(VH2SAT + HSSA)

o regret-optimal w/ near-minimal
burn-in cost in S and A

e memory-efficient O(SAH)

e computationally efficient:
runtime O(T)

memory
complexity

S2AH

SAH

0

Q—Ezr\y?ett\edr/\dvznlzge

UCB-Q-Advantage

burn-in cost

SApoly(H) S3AHS

6 A4 1728
st 42/ 47

Summary of this part
memory
complexity
e \
@ UCB-M-Q
sample o S2ZAH | ‘ ® UCB-VI
complexity z
z i
5 &S U
< &
x & ™S
FE A ;
N
120 2L \S\\A\ UCB-Q-Advantage
Lietab = GAH | .
|S|]A| Q—Ezrl)gett\ed—/\dvznuge . burn-in cost
O Sapoly(H) SPAH® SOA'H*

Model-free RL can achieve memory efficiency,
computational efficiency, and sample efficiency at once!
— with some burn-in cost though

43/ 47

Reference |

"A stochastic approximation method,” H. Robbins, S. Monro, Annals
of mathematical statistics, 1951

"Robust stochastic approximation approach to stochastic
programming,” A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro, SIAM
Journal on optimization, 2009

"Learning from delayed rewards,” C. Watkins, 1989
"Q-learning,” C. Watkins, P. Dayan, Machine learning, 1992

"Learning to predict by the methods of temporal differences,”
R. Sutton, Machine learning, 1988

" Analysis of temporal-diffference learning with function approximation,”
B. van Roy, J. Tsitsiklis, IEEE transactions on automatic control, 1997

"Learning Rates for Q-learning,” E. Even-Dar, Y. Mansour, Journal of
machine learning Research, 2003

44/ 47

Reference |l

" The asymptotic convergence-rate of Q-learning,” C. Szepesvari,
NeurlPS, 1998

" Stochastic approximation with cone-contractive operators: Sharp £,
bounds for Q-learning,” M. Wainwright, arXiv:1905.06265, 2019

"Is Q-Learning minimax optimal? A tight sample complexity analysis,”
G. Li, Y. Wei, Y. Chi, Y. Gu, Y. Chen, arXiv:2102.06548, 2021

" Accelerating stochastic gradient descent using predictive variance
reduction,” R. Johnson, T. Zhang, NeurlPS, 2013.

"Variance-reduced Q-learning is minimax optimal,” M. Wainwright,
arXiv:1906.04697, 2019

"Asynchronous stochastic approximation and Q-learning,” J. Tsitsiklis,
Machine learning, 1994

45/ 47

Reference Il

"On the convergence of stochastic iterative dynamic programming
algorithms,” T. Jaakkola, M. Jordan, S. Singh, Neural computation,
1994

" Error bounds for constant step-size Q-learning,” C. Beck, R. Srikant,
Systems and control letters, 2012

"Sample complexity of asynchronous Q-learning: sharper analysis and
variance reduction,” G. Li, Y. Wei, Y. Chi, Y. Gu, Y. Chen, NeurlPS
2020

" Finite-time analysis of asynchronous stochastic approximation and
Q-learning,” G. Qu, A. Wierman, COLT 2020.

" Pessimistic Q-learning for offline reinforcement learning: Towards
optimal sample complexity,” L. Shi, G. Li, Y. Wei, Y. Chen, Y. Chi,
arXiv:2202.13890, 2022.

46/ 47

Reference IV

" The efficacy of pessimism in asynchronous Q-learning,” Y. Yan, G. Li,
Y. Chen, J. Fan, arXiv:2203.07368, 2022.

" Asymptotically efficient adaptive allocation rules,” T. L. Lai,
H. Robbins, Advances in applied mathematics, vol. 6, no. 1, 1985.

"Is Q-learning provably efficient?” C. Jin, Z. Allen-Zhu, S. Bubeck,
and M. Jordan, NeurlPS 2018.

"Almost optimal model-free reinforcement learning via
reference-advantage decomposition,” Z. Zhang, Y. Zhou, X. Ji,
NeurlPS 2020.

"Breaking the sample complexity barrier to regret-optimal model-free
reinforcement learning,” G. Li, L. Shi, Y. Chen, Y. Gu, Y. Chi, NeurlPS
2021.

47/ 47

Yuejie Chi

Carnegie Mellon University

ICASSP, May 2022

A triad of RL approaches

— Figure credit: D. Silver

Policy optimization in practice

maximizey value(policy(#))

e directly optimize the policy, which is the quantity of interest;
e allow flexible differentiable parameterizations of the policy;
e work with both continuous and discrete problems.

%X NN L R

/ A a z

N TN T I IG—
i S~ \l\

input layer output layer

Theoretical challenges: non-concavity

Little understanding on the global convergence of policy gradient
methods until very recently, €.g. (Fazel et al., 2018; Bhandari and Russo,
2019; Agarwal et al., 2019; Mei et al. 2020), and many more.

Our goal:
e understand finite-time convergence rates of popular heuristics;

e design fast-convergent algorithms that scale for finding
policies with desirable properties.

Outline

e Backgrounds and basics

e policy gradient method
e policy gradient theorem

e Convergence guarantees of policy optimization

e (natural) policy gradient methods
o finite-time rate of global convergence
e entropy regularization and beyond

e Concluding remarks and further pointers

Backgrounds: policy optimization in tabular
Markov decision processes

Searching for the optimal policy

Reinforcement
Learning

fm————
1
1
A
]
1
. 1

Goal: find the optimal policy 7* that maximize V™ (s) J

o optimal value / Q function: V* := V™, Q* := Q™

Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximize, V7™ (p) := Esupy [V (5)]

Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximize, V7™ (p) := Esupy [V (5)]

Parameterization:
T = Ty J

Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximize, V7™ (p) := Esupy [V (5)]

Parameterization:
T = Ty J

maximizeg V7"(p) := Eqsup, [V (5)]

Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximize, V7™ (p) := Esupy [V (5)]

Parameterization:
T = Ty J

maximizeg V7"(p) := Eqsup, [V (5)]

Policy gradient method (Sutton et al., 2000)

Fort=0,1,---
(*)
01D = 9 L VeV (p)

where 1 is the learning rate.

The policy gradient theorem

Theorem (Policy gradient theorem, Sutton et al., 2000)

The policy gradient can be evaluated via

1
VOV (0) = 7Bt oy 4| @7 (5)V lom (a5

1

N |

where
° dgg is the discounted state visitation distribution,

e Yy(s,a) := Vlogmy(als) is the score function, and
o A™(s,a) = Q7 (s,a) — V7 (s) is the advantage function.

Provides a general scheme for policy gradient evaluation
(e.g., REINFORCE).

Examples of policy parameterization

Discrete action space: softmax parameterization with function
approximation

m(als) o< exp(¢(s, a) ")

e ¢(s,a) is the feature vector of each state-action pair;

e the score function Vlogmy(als) = ¢(s,a) — Equr,(1s)[B(s,)].

Examples of policy parameterization

Discrete action space: softmax parameterization with function
approximation

m(als) o< exp(¢(s, a) ")

e ¢(s,a) is the feature vector of each state-action pair;

e the score function Vlogmy(als) = ¢(s,a) — Equr,(1s)[B(s,)].

Continuous action space: Gaussian policy
a~N(u(s),o%), u(s) = o(s)

e ¢(s) is the feature of each state;

e 02 is the variance (kept constant for simplicity);
) = (amule)ots)

e the score function V log my(als o2

Softmax policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

@ softmax parameterization:
mo(als) ox exp(8(s, a)) J

maximizeg V7 (p) 1= Eqsu, [V7(5)]

Policy gradient method (Sutton et al., 2000)
Fort=0,1,-
9(t+1) — 9(15) + nvevﬂ.ét) (p)

where) is the learning rate.

10

Finite-time global convergence guarantees

Global convergence of the PG method?

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

12

Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in

O(%) iterations

12

Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in
c(IS],JA], 1=, -) O(2) iterations

» T—y>

12

Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in
c(IS],JA], 1=, -) O(2) iterations

» T—y>

Is the rate of PG good, bad or ugly?)

12

A negative message

Theorem (Li, Wei, Chi, Gu, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

I2f

\ S

iterations

to achieve ||V — V*||o < 0.15.

13

A negative message

Theorem (Li, Wei, Chi, Gu, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

sz

\ S

iterations

to achieve ||V — V*||o < 0.15.

e Softmax PG can take (super)-exponential time to converge
(in problems w/ large state space & long effective horizon)!

e Also hold for average sub-opt gap \3| Sees [V (s) = V*(s)].

13

J;JLMUUUII%QﬁH
oonnnnn P /

/L/FZ /&7 FLW
; “‘ 474:7

‘Seriouslj}, lady, at this hour you'd make a
lot better time taking the subway.”

Booster #1: natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method (Kakade, 2002)
Fort=0,1,---
6D = 9O 4 p(FO) T,V (p)
where 1 is the learning rate and }'g is the Fisher information matrix:
Fl.=FE

p

[(V@ log mg(als)) (Vg log 7T9(CL|S>)T] .

15

Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in
training RL algorithms, with KL regularization

KL($?) ~ %(9 — 0T FI 0 —0")
via constrained or proximal terms:
0+ = argmax V™4 () + (0= 00) VoV () = KL (!)
~ 00 1 (FO) T,V (p),

leading to exactly NPG!

16

Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in
training RL algorithms, with KL regularization

KL($?) ~ %(9 — 0T FI 0 —0")
via constrained or proximal terms:
0+ = argmax V™4 () + (0= 00) VoV () = KL (!)
~ 00 + p(FO) TV (p),

leading to exactly NPG!

NPG =~ TRPO/PPOQO!)

16

NPG in the tabular setting

Natural policy gradient (NPG) method (Tabular setting)
Fort=0,1,---, NPG updates the policy via

7D (s) oc 7B (]s) exp (nQ(t)(s,-))
N—_—— 1-— Y

current policy
soft greedy

where Q(t) = Q’Tm is the Q-function of #®), and n>0.

e invariant with the choice of p

¢ Reduces to policy iteration (Pl) when n = cc.

17

Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set ©(©) as a uniform policy. For allt > 0, we have

log |A| 1
+ 2
n (1=

VO (p) > V¥ (o) - (

)

18

Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set ©(©) as a uniform policy. For allt > 0, we have

log | Al 4 1 > 1
n (1—9)?

VO (p) > V¥ (o) - (L

Implication: set n > (1 — v)2log|.A|, we find an e-optimal policy
within at most
5~ iterations.

2
(1—7)%

Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set ©(©) as a uniform policy. For allt > 0, we have

log | Al 4 1 > 1
n (1—9)?

VO (p) > V¥ (o) - (L

Implication: set n > (1 — v)2log|.A|, we find an e-optimal policy
within at most
5~ iterations.

2
(1—7)%

Global convergence at a sublinear rate independent of |S|, |A|! J

18

Booster #2: entropy regularization

state s o aﬁtl?rn 150) To 1 T2 r3 T4
- l | 1 | |
S0 — S1—; S2—; $3—; S4—;
reward |:> A 0 A G A 0 A .
Tt = ”‘(Sm at I ap ai as as ag
4=~ environment |¢= —J ¢ 2 2 2 2
«— 7(lso) wClst) w(ls2) mCls) wClsa)

sip1 ~ P([se,ar)

To encourage exploration, promote the stochasticity of the policy
using the “soft” value function (Williams and Peng, 1991):

VseS: ny Tt—l-TH (\st)|so—s

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

19

Booster #2: entropy regularization
T3 T4

state s a; aﬁt'?rn [st) e o -
s 010 F 0
S0 — S1—; S2—; $3—; S4—;
reward |:> A 0 A G A 0 A .
Tt = ”‘(Sm at I ap ai as as ag
4=~ environment |¢= —J ¢ 2 2 2 2
«— 7(lso) wClst) w(ls2) mCls) wClsa)

sie1 ~ P(lsg,a0)

To encourage exploration, promote the stochasticity of the policy

using the “soft” value function (Williams and Peng, 1991)

ny Tt—l-TH (\st)|so—s

VseS:
where H is the Shannon entropy, and 7 > 0 is the reg. parameter
V() =Eonp V() |

maximizey

Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Policy Gradient Natural Policy Gradient

D) =8

UOT)RZIIR[NSSI 9SBIIOUT

=2
log (ar) log m(ar)

Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

UOT)RZIIR[NSSI 9SBIIOUT

Policy Gradient

Natural Policy Gradient

2-3 m

-
-1

Y

.
:

N
0

) -3 -2

Policy Gradient

—

Ny
E"%/
g‘ls — //

pat -3 -2 -1
log m(ay)

log 7(a1)

Can we justify the efficacy of entropy-regularized NPG?

20

Entropy-regularized NPG in the tabular setting

*
7T7.

<
Q@

Entropy-regularized NPG (Tabular setting)
Fort=0,1,---, the policy is updated via
nT

a0 ([s) oo 7O () 1T exp(QW (s,) /7) T
——— S———

current policy soft greedy

where Q(Tt) = Q’;m is the soft Q-function of 7, and 0 < n < 1_77

e invariant with the choice of p

e Reduces to soft policy iteration (SPI) when 5 = =2

T

21

Linear convergence with exact gradient

Exact oracle: perfect evaluation of Qﬁ(t) given 7(0);
— Read our paper for the inexact case!

22

Linear convergence with exact gradient

Exact oracle: perfect evaluation of QZM given 7(0);

— Read our paper for the inexact case!

Theorem (Cen, Cheng, Chen, Wei, Chi, 2020)

For any learning rate 0 < n < (1 —~)/7, the entropy-regularized
NPG updates satisfy

¢ Linear convergence of soft Q-functions:
15 — Q¥ V]l < Cry (1 —nr)*

for all t > 0, where Q)% is the optimal soft Q-function, and

T *
C1 = 10: = QP+ 27 (1= {7) 1o —log .

22

Implications

To reach ||Q% —

(1) HOO < ¢, the iteration complexity is at most

i 1—7y.
 General learning rates (0 <n < —7):

1 <Cl’7>
— log
nT €

e Soft policy iteration (n = 1_77)

L (n@:—@(f)um)
0g
1—7 €

23

Implications

To reach ||Q% — (1) HOO < ¢, the iteration complexity is at most

o General learning rates (0 < 7 < +=2):
1 <C’17>
nt €

* Soft policy iteration (1 = —7)

* _ 00)
! bg(n@T QF Hm)
1—7 €

Global linear convergence of entropy-regularized NPG
at a rate independent of |S], |A|!

23

Comparisons with entropy-regularized PG

Natural Policy Gradient Log Policy Difference

Natural Policy Gradient

Policy Gradient

log 7(a1)

0 1000

2000 3000 4000 5000
#iterations

(Mei et al., 2020) showed entropy-regularized PG achieves

V() = Vi) < (Vo) = Vi ()

1=

4 >
¢ 7

cexp | —

(8/7 + 4+ 8log|A|)|S|

P 0<k<t—1 s,a
oo

2
min p(s) (inf minw(k)(a|s))
S

can be exponential

in |S| and ll—,y

Much faster convergence of entropy-regularized NPG

at a dimension-free rate!

24

Comparison with unregularized NPG

Regularized NPG

Vanilla NPG
7 =0.001

T =

B

Q- QY

@ =Qvl

0 1000 2000 3000 4000 5000 1072 0 1000 2000 3000 4000 5000
#iterations #iterations
: e 1 oo (L : : 1
Linear rate: ;- log (1) Sublinear rate:
Ours

(Agarwal et al. 2019)

25

Comparison with unregularized NPG

Regularized NPG

Vanilla NPG
7 =0.001

T =

B

Q- QY

@ =Qvl

0 1000 2000 3000 4000 5000 1072 0 1000 2000 3000 4000 5000
#iterations #iterations
: e 1 oo (L : : 1
Linear rate: ;- log (1) Sublinear rate:
Ours

(Agarwal et al. 2019)

Entropy regularization enables fast convergence! J

25

A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,0)

——
immediate reward
+v E max [Q(s',a") leogW(a'|5’)} ,
§'~P([s,a) | T(Is") a/~m(|s") b S~ —

next state's value entropy

26

A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,0)

immediate reward

+v E [max [Q(s',a") —r7log 7r(a'|s’)}] ,
—— ————

s'~P(-|s,a) | m(:|8") @/~ (-|s")

next state's value entropy

Soft Bellman equation: ()7 is unique solution to

TH(Q7) = Q7

~-contraction of soft Bellman operator: \jﬁ
| 7-(Q1) — T (Q2)]| oo < ¥||Q1 — Q2|00 Richard
Bellman

26

Analysis of soft policy iteration (7

Policy iteration

Bellman operator

27

Analysis of soft policy iteration (n = 1=2)

T

Policy iteration Soft policy iteration

7 70

Bellman operator Soft Bellman operator

27

Beyond entropy regularization

Leverage regularization to promote structural properties of the
learned policy.

cost-sensitive RL sparse exploration constrained and safe RL

weighted 1-norm Tsallis entropy log-barrier

28

Regularized RL in general form

action 70 1 T2 3 T4

state s a; ~ m(-|s;)
------- et = — 900909
0 T 2~ I 4T
reward I :> __,' _/’ _/' _/' _/’
re = 1(S¢, at ap ay az as 2
¢ environment - ¢ 2 2 2
+— w(lso) wClst) wClsa) wClss) wClsa)

sén ~ P(se,ar)

The regularized value function is defined as

VseS: Vi(s):=E

Z’yt(rt — Thst(ﬂ(-\st))) ‘ so=s|,
t=0

where hg is convex (and possibly nonsmooth) w.r.t. 7(+|s).

29

Regularized RL in general form

action 70 1 T2 3 T4
state s a; ~ W("St) S

"""" -] S0 l S I S l S I s l
0 T 2~ I 4T

reward I :> __,l _/l _’,l _’,l _’,I

re = 1(S¢, at ap ay az az ay

¢ environment - ¢ 2 2 2
+— w(lso) wClst) wClsa) wClss) wClsa)

sén ~ P(se,ar)

The regularized value function is defined as

VseS: Vi(s):=E

D 2 (re = The(n(lse)) | s0 = s |
t=0

where hg is convex (and possibly nonsmooth) w.r.t. 7(+|s).

maximizer V[(p) := Egup [V (5)] J

Detour: a mirror descent view of entropy-regularized NPG

PN
s

I
Ve !
‘o
Vo

Entropy-regularized NPG = mirror descent with KL
divergence (Lan, 2021; Shani et al., 2020):

. 1
7T(t+1)("8) = argm1n< — Qg)(s,), p> — T7H(p) + fKL(pHW(t)(-]s))
PEA(A) n
x 70 Js) T exp(Q (s,) /7) T
———

current policy soft greedy

for all s € S.

30

Generalized policy mirror descent (GPMD)

Definition (Generalized Bregman divergence, Kiwiel 1997)

The generalized Bregman divergence w.r.t. to a convex
h: A(A) — R is defined as:

=h(p) —h(g) —(g—c-1,p—q),

for p,q € A(A), where g € Oh(q) and ¢ € R.

31

Generalized policy mirror descent (GPMD)

Definition (Generalized Bregman divergence, Kiwiel 1997)

The generalized Bregman divergence w.r.t. to a convex
h: A(A) — R is defined as:

=h(p) —h(g) —(g—c-1,p—q),

for p,q € A(A), where g € Oh(q) and ¢ € R.

A natural idea
Fort=0,1,---,

7-‘-(’5""1)(.|3) = argmin <—QT($, -),p) + Ths(p)
PEA(A)

+ ;Dhs (p, 7O (|5); Oha(r D (-]5)))

31

PMD with Generalized Bregman Divergence (GPMD)

Plugging in a recursive surrogate {€(®)} of dh (") (-]5)), we
obtain the formal algorithm.

Generalized policy mirror descent (GPMD) method
Fort=0,1,---, update

7D (s) = argmin (—Q, (s,), p) + Ths(p)

PEA(A)
1
+EDhs(var(t)("S);g(t)(S?'))7
and)
EHD) (e)t ey T (s .
€)= €000 + Qs)

The subproblem does not admit closed-form solution in general.

32

Linear convergence with exact gradient

Exact oracle: perfect evaluation of QZ(t) given 7(!); exact solution
to subproblems.
— Read our paper for the inexact case!

33

Linear convergence with exact gradient

Exact oracle: perfect evaluation of QZ(t) given 7(!); exact solution
to subproblems.

— Read our paper for the inexact case!

Theorem (Zhan*, Cen*, Huang, Chen, Lee, Chi '21)
For any learning rate n > 0, the GPMD updates satisfy
e Linear convergence of soft Q-functions:

t
« o+ < I o))
10: - QI < Ciy (1= TEZY)

where C1 = ||Q* — ng)Hoo + 1437,7”@: — 70|

33

Implications

To reach ||QF — StH)HOO < ¢, the iteration complexity is at most

¢ General learning rates (1 > 0):

¢ Regularized policy iteration (17 = c0):

* _)
10g<HQT Q! Hw)
€

L=y

34

Implications

To reach * - Stﬂ) 0 < €, the iteration complexity is at most
T p y

¢ General learning rates (1 > 0):

¢ Regularized policy iteration (17 = c0):
0
L o (H@: e Nm)
1—7 €

Global linear convergence of GPMD at a dimension-free rate! |

34

Comparison with PMD (Lan, 2021)

Policy mirror descent (PMD) method (Lan, 2021)
Fort=0,1,---,

7t (|s) = argmin (—Q(s,), p) + Ths(p)
PEA(A)

+ —KL(p|[7(-|s))
n
hs = Tsallis Entropy hs = Log Barrier
;'\5 LT Y L
- Fop=01 e
107 7=1 T
e — PMD .-
e ---- GPMD
10° 107
0 500 1000 1500 2000 2500 30C 0 500 1000 1500 2000 2500 3000
#iterations #iterations

35

Comparison with PMD (Lan, 2021)

Policy mirror descent (PMD) method (Lan, 2021)
Fort=0,1,---,

7t (|s) = argmin (—Q(s,), p) + Ths(p)
PEA(A)

t
+ =KL (p||7"([s)
. .
hs = Tsallis Entropy hs = Log Barrier
101 &Y
__alo™ _
5 10 X =001 w10 X =001
= + p=01 = =01 e
107 n=1 e 107 © =1) -
— PMD . — PMD -
GPMD s GPMD
10 10
0 500 1000 1500 2000 2500 300 0 500 1000 1500 2000 2500 3000
#iterations

#iterations
GPMD achieves faster convergence than PMD! J

35

Concluding Remarks

Concluding remarks

mlﬂ_
it state . Finsv-Onoer Memioos
I\ action I OrtiszAToN
V PR agent AL
Reinforcement |\ Dynamic Programming f
Learning | and Optimal Contral H
g SN PSR iad !
1.
X ILE reWard Amir Beck
i i-—€==1 environment
inext state

Understanding non-asymptotic performances of RL algorithms
is a fruitful playground! J

Future directions:

e function approximation e offline RL
e multi-agent RL e many more...

37

Beyond the tabular setting

Policy network Value network
Py, (@ls) vy (5))
*
@
o °
° e
O o
s s’

Figure credit: (Silver et al., 2016)

e function approximation for dimensionality reduction
e Provably efficient RL algorithms under minimal assumptions

(Osband and Van Roy, 2014; Dai et al., 2018; Du et al., 2019; Jin et al., 2020)

38

Multi-agent RL

e Competitive setting: finding Nash equilibria for Markov
games

e Collaborative setting: multiple agents jointly optimize the
policy to maximize the total reward

(Zhang, Yang, and Basar, 2021; Cen, Wei, and Chi, 2021)

39

Offline RL

V4

'/kﬁi
a0 PR NE

Can we design RL algorithms based on history data?
(Rashidinejad et al., 2021; Xie et al., 2021; Li et al., 2022)

/ =

40

Bibliography |

Disclaimer: this straw-man list is by no means exhaustive (in fact, it is

quite the opposite given the fast pace of the field), and biased towards

materials most related to this tutorial; readers are invited to further delve

into the references therein to gain a more complete picture.

Books and monographs:

Sutton and Barto. Reinforcement learning: An introduction, 2nd edition.
MIT press, 2018.

Agarwal, Jiang, Kakade, and Sun. Reinforcement learning: Theory and
algorithms, monograph, 2021+-.

Bertsekas. Reinforcement learning and optimal control. Athena Scientific,
2019.

Szepesvari. Algorithms for reinforcement learning. Synthesis lectures on
artificial intelligence and machine learning, 2010.

Bertsekas and Tsitsiklis. Neuro-dynamic programming. Athena Scientific,
1996.

41

Bibliography Il

Policy optimization:

Williams. “Simple statistical gradient-following algorithms for
connectionist reinforcement learning.” Machine Learning, 1992.

Sutton, McAllester, Singh, and Mansour. “Policy gradient methods for
reinforcement learning with function approximation.” NeurlPS 1999.

Kakade. “A natural policy gradient.” NeurlPS 2001.

Fazel, Ge, Kakade, and Mesbahi. “Global convergence of policy gradient
methods for the linear quadratic regulator.” ICML 2018.

Agarwal, Kakade, Lee, and Mahajan. “On the theory of policy gradient
methods: Optimality, approximation, and distribution shift." Journal of
Machine Learning Research, 2021.

Mei, Xiao, Szepesvéri, and Schuurmans. “On the global convergence
rates of softmax policy gradient methods.” ICML 2020.

Bhandari and Russo. “Global optimality guarantees for policy gradient
methods.” arXiv preprint arXiv:1906.01786, 2019.

42

Bibliography Il

Cai, Yang, Jin, and Wang. “Provably efficient exploration in policy
optimization.” 1CML 2020.

Shani, Efroni, and Mannor. "Adaptive trust region policy optimization:
Global convergence and faster rates for regularized MDPs." AAAI 2020.

Li, Gen, Wei, Chi, Gu, and Chen. "Softmax policy gradient methods can
take exponential time to converge." arXiv preprint arXiv:2102.11270,
2021.

Cen, Cheng, Chen, Wei, and Chi. “Fast global convergence of natural
policy gradient methods with entropy regularization.” Operations
Research, 2021+.

Zhan, Cen, Huang, Chen, Lee, and Chi."Policy mirror descent for
regularized reinforcement learning: A generalized framework with linear
convergence." arXiv preprint arXiv:2105.11066, 2021.

Lan. “Policy mirror descent for reinforcement learning: Linear
convergence, new sampling complexity, and generalized problem classes.”
arXiv preprint arXiv:2102.00135, 2021.

43

Bibliography IV

® Liu, Zhang, Basar, and Yin. “An improved analysis of (variance-reduced)
policy gradient and natural policy gradient methods.” NeurlPS 2020.

® Zhang, Koppel, Bedi, Szepesvari, and Wang. “Variational policy gradient
method for reinforcement learning with general utilities." NeurlPS 2020.

® Cen, Wei, and Chi. “Fast policy extragradient methods for competitive
games with entropy regularization.” arXiv preprint arXiv:2105.15186,
2021.

Additional ad-hoc pointers:

® Neu, Jonsson, and Gémez. “A unified view of entropy-regularized Markov
Decision Processes.” arXiv preprint arXiv:1705.07798, 2017.

e Dai, Shaw, Li, Xiao, He, Liu, Chen, and Song."SBEED: Convergent
reinforcement learning with nonlinear function approximation.” |CML
2018.

® Geist, Scherrer, and Pietquin. “A theory of regularized Markov Decision
Processes.” ICML 2019.

44

Bibliography V

Du, Kakade, Wang, and Yang. “Is a good representation sufficient for
sample efficient reinforcement learning?’ 1CLR 2019.

Jin, Yang, Wang, and Jordan. “Provably efficient reinforcement learning
with linear function approximation.” COLT 2020.

Zhang, Yang, and Basar. “Multi-agent reinforcement learning: A selective
overview of theories and algorithms.” Handbook of Reinforcement
Learning and Control, 2021.

Rashidinejad, Zhu, Ma, Jiao, and Russell. “Bridging offline reinforcement
learning and imitation learning: A tale of pessimism.” arXiv preprint
arXiv:2103.12021, 2021.

Li, Shi, Chen, Chi, Wei, “Settling the sample complexity of model-based
offline reinforcement learning.” arXiv preprint arXiv:2204.05275, 2022.

45

Thanks!

https://users.ece.cmu.edu/~yuejiec/

46

https://users.ece.cmu.edu/~yuejiec/

	RL_tutorial_Part1
	RL_tutorial_Part2
	RL_tutorial_Part3

