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Successes of reinforcement learning (RL)

At last — a computer program that
can beat achampion Go player pace484

ALL SYSTEMS GO
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Recap: Supervised learning

Given i.i.d training data, the goal is to make prediction on unseen data:

— pic from internet
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Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

e no training data

e maximize total rewards

trial-and-error

sequential and online

‘Recalculating ... recalculating ...”
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Challenges of RL

explore or exploit: unknown or changing environments
credit assignment problem: delayed rewards or feedback

enormous state and action space

nonconvex optimization

/50



Sample efficiency
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Source: chinsights.com B2 CBINSIGHTS

e prohibitively large state & action space
e collecting data samples can be expensive or time-consuming
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Sample efficiency
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e prohibitively large state & action space
e collecting data samples can be expensive or time-consuming

Challenge: design sample-efficient RL algorithms J
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Computational efficiency

Running RL algorithms might take a long time ...

e enormous state-action space

e nonconvexity
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Computational efficiency

Running RL algorithms might take a long time ...

e enormous state-action space

e nonconvexity

Challenge: design computationally efficient RL algorithms J
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Theoretical foundation of RL

asymptotic 28
ana Iysy
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Theoretical foundation of RL

o~ (B inite-
;\3.‘526 finite sample
analysis «

asymptotic ,\
analysy

Understanding sample efficiency of RL requires a modern suite of
non-asymptotic analysis tools
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This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION High-Dimensional

Amir Beck

(large-scale) optimization (high-dimensional) statistics

Demystify sample- and computational efficiency of RL algorithms
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This tutorial

FIRsT-ORDER METHODS
IN OPTIMIZATION

Amir Beck

(large-scale) optimization (high-dimensional) statistics
Demystify sample- and computational efficiency of RL algorithms

Part 1. basics, and model-based RL
Part 2. model-free RL

Part 3. policy optimization
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Outline (Part 1)

e Basics: Markov decision processes
e Basic dynamic programming algorithms

e Model-based RL (“plug-in" approach)
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Basics: Markov decision processes



Markov decision process (MDP)

state s; action a;
agent ——1

environment [« — -

VY

y W N

e S: state space

e A: action space
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Markov decision process (MDP)

state s; action a;
agent ——1

reward |
i 7y =1(5¢, I

A A 4

environment [« — —J

y W N

e S: state space
e A: action space

e r(s,a) € [0,1]: immediate reward
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Markov decision process (MDP)

action

state st; a; ~ 7T('|St)
s agent —
reward I
Ty = (8¢, at |
T environment |« — —/

S: state space
A: action space
r(s,a) € [0,1]: immediate reward

m(-|s): policy (or action selection rule)
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Markov decision process (MDP)

tat action
sta estk a; ~ 7T('|St)

____________ , agent l— -1

reward I

i 7y = T(St, ay |

environment ¢ — —J

y W N

next state
str1 ~ P(|se, ar)

S: state space

A: action space

r(s,a) € [0,1]: immediate reward
m(-|s): policy (or action selection rule)

P(+|s,a): unknown transition probabilities

15 /50



Help the mouse!
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Help the mouse!

e state space S: positions in the maze
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e action space A: up, down, left, right
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Help the mouse!

e state space S: positions in the maze
e action space A: up, down, left, right

e immediate reward r: cheese, electricity shocks, cats
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Help the mouse!

state space S: positions in the maze
action space A: up, down, left, right
immediate reward 7: cheese, electricity shocks, cats

policy m(-|s): the way to find cheese

16
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Value function

T4

stf1 ~ P([st, ar)

Value of policy 7: cumulative discounted reward

VseS: VT(s):=E Z’ytr(st,at) |so=s
=0

S|
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Value function

state s actiore | )
ar ~ m(-|s¢
_______ 5| agent —_ -I To ™1 T2 3 T4
reward S I S I S: I S; I S l
= | 4 1 27 3 14—
re =1(st, at T ' 0 ¥ : ] : ]
4 N '~ —— e’ g e’ N’
~ """\ environment — ag ai as as as
Al

stf1 ~ P([st, ar)

Value of policy 7: cumulative discounted reward

VseS: VT(s):=E Z’ytr(st,at) |so=s
=0

e v €10,1): discount factor

> take v — 1 to approximate long-horizon MDPs

» effective horizon: ﬁ
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Q-function (action-value function)

T T T2 T3 T4 Ts

QW(So,ao) ’—‘I—vsl—‘l—>52—‘|—>33—‘|—>34—‘|—>s5—‘|—> oo
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-~ S S — <!

ag a1 ay a3 ay ds

Q-function of policy 7:

V(s,a) e SxA: Q7 (s,a) :=E nyt'r’t|so =s,a0=a
=0

e (ae7 S1,a1,S2,az,---): induced by policy ™
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Q-function (action-value function)

To 1 T2 T3 T4 Ts
VW(SO) . » 31_\|_'32 0 '53_‘L’54_‘L’35—‘|—0 oo
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QW(So,ao) ’—‘I—vsl—‘l—vsz—,(l—>33—‘|—>34—‘|—>s5—‘|—> oo
[ A '\\_/‘ L [ A
ao ay ay as ay as
Q-function of policy 7:
o
V(s,a) e SxA: Q7 (s,a) :=E E Vre|so = s,a0 = a
t=0

e (ae7 S1,a1,S2,az,---): induced by policy ™

18/50



Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™
Proposition (Puterman’94)

For infinite horizon discounted MDP, there always exists a deterministic
policy ©*, such that

V™ (s) > V™(s), Vs, and .

19/50



Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™

e optimal value / Q function: V* := V7™, Q* := Q™
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Optimal policy and optimal value

optimal policy 7*: maximizing value function max, V™
e optimal value / Q function: V* := V7™, Q* := Q™

e How to find this 7#*7?

19/50



Basic dynamic programming algorithms
when MDP specification is known



Policy evaluation: Given MDP M = (S, A, r, P,v) and policy
m: S8 +— A, how good is 7?7 (i.e., how to compute V™, Vs7)



Policy evaluation: Given MDP M = (S, A, r, P,v) and policy
m: S8 +— A, how good is 7?7 (i.e., how to compute V™, Vs7)

Possible scheme:
e execute policy evaluation for each

e find the optimal one



Policy evaluation: Bellman’s consistency equation

e V™ /QT: value / action-value function under policy 7

22 /50



Policy evaluation: Bellman’s consistency equation

e V™ /QT: value / action-value function under policy 7

Bellman’s consistency equation

V7(s) = Eqmr(s) [Q’r(s, a)]

Q(sa)= r(sa) +7 E | V) |
~—— s'~P(-|s,a) ——

immediate reward next state's value

Richard Bellman
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Q(sa)= r(sa) +7 E | V) |
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immediate reward next state's value
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Policy evaluation: Bellman’s consistency equation

e V™ /QT: value / action-value function under policy 7

Bellman’s consistency equation

V7(s) = Eqmr(s) [Q’r(s, a)]

Q(sa)= r(sa) +7 E | V) |
~—— s'~P(-|s,a) ——

immediate reward next state's value

e one-step look-ahead

e let P™ be the state-action transition matrix
induced by m:

QT =r+yP"Q" — Q"=IT-~+P")r
Richard Bellman
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Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(Q)(s,a):= r(s,a) +~v E |maxQ(s,a)
s'~P(:|s,a) La’EA
immediate reward
next state's value

e one-step look-ahead
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Optimal policy 7*: Bellman’s optimality principle

Bellman operator

T(Q)(s,a):= r(s,a) +~v E |maxQ(s,a)
s'~P(:|s,a) La’EA
immediate reward
next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to
TQ)=Q"
~v-contraction of Bellman operator:

[7(Q1) — T(Q2)lloo < V/IQ1 — Q200 Richard Bellman

23 /50



Two dynamic programming algorithms

Value iteration (VI)
Fort=0,1,..

.7

QU =T(QY)

Q(0>
T
Q(l)

T
Q(f)

Q4
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Two dynamic programming algorithms

Q(O)
Value iteration (VI) T
(1)
Fort=0,1,..., ¢
-
Q(t-‘rl) _ T(Q(t)) Qw .
Qd

Policy iteration (PI)
Fort=0,1,...,

policy evaluation: Q) = Q™"

policy improvement: 711 (s) = argmax QY (s,a)
ac

V.
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Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1 = @[l < '1|Q" - Q"I
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Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1R - @[l <+ - |,

Implications: to achieve |Q() — Q*| . < ¢, it takes no more than

©) _ o*
. log <”QQH°O> iterations
1—7x €
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Iteration complexity

Theorem (Linear convergence of policy/value iteration)

1 = @[l < '1|Q" - Q"I

Implications: to achieve |Q() — Q*| . < ¢, it takes no more than

1 ©) _ o*
—log <”QQH°O> iterations
1—7x €

Linear convergence at a dimension-free rate! |

25 /50



When the model is unknown .

L eene

Reinforcement |\ — Dynamic Programming
Learning and Optimal Control

DIMITRI P. BERTSEKAS

An Introduction §
second edition /

Richard . Suton and Ancrew G, Barto / /77 |
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When the model is unknown

Reinforcement
Learning

An Introduction
second edition

Richard S. Sutton and Andrew G. Barto / /7

L eene

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

Need to learn optimal policy from samples w/o model specification

26 /50



Three approaches

Wy model P4,

&M‘f/ (ie. P e RISIAIxIsh[ 7 %"3
/ model-based B

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate Pfor P

2. planning based on the empirical P
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Three approaches

‘("vo‘*:' ____ > model P,

&’é”‘f’)’ - (ie. P RISIMIXISH 7o %“9
/ model-based :

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate Pfor P

2. planning based on the empirical P

Tutorial Part 2: Model-free approach
— learning w/o estimating the model explicitly

Tutorial Part 3: Policy based approach
— optimization in the space of policies
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Three approaches

o, model P4,

- i SllAlxIShy| T .
,ﬂf” (ie. P € RISIAIxIS]) %“9

/

! model-based :

samples value function
(experience) policy

Model-based approach (“plug-in”)
1. build an empirical estimate P for P

2. planning based on the empirical P

Tutorial Part 2: Model-free approach
— learning w/o estimating the model explicitly

Tutorial Part 3: Policy based approach
— optimization in the space of policies
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Model-based RL (a “plug-in” approach)

1. Sampling from a generative model (simulator)

2. Offline RL / batch RL



A generative model / simulator

— [Kearns and Singh, 1999]

gewerative model

e sampling: for each (s,a), collect N samples {(s,a, Sl(i))}lﬁiSN
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A generative model / simulator

— [Kearns and Singh, 1999]

gewerative model

e sampling: for each (s,a), collect N samples {(s,a, Sl(i))}lﬁiSN

e construct 7 based on samples (in total |S||.A| x N)

29 /50



(+-sample complexity: how many samples are required to

learn an e-optimal policy 7

-~

Vs: V(s)>V*(s)—¢



An incomplete list of works

[Kearns and Singh, 1999]
[Kakade, 2003]

[Kearns et al., 2002]
[Azar et al., 2012]

[Azar et al., 2013]
[Sidford et al., 2018a]
[Sidford et al., 2018b]
[Wang, 2019]

[Agarwal et al., 2019]
[Wainwright, 2019a]
[Wainwright, 2019b]
[Pananjady and Wainwright, 2019]
[Yang and Wang, 2019]
[Khamaru et al., 2020]
[Mou et al., 2020]

[Li et al., 2020]

[Cui and Yang, 2021]

31/50



Model estimation

generative model

Sampling: for each (s, a), collect
N ind. samples {(s,a, S/(i))}lgiSN

32 /50



Model estimation

generative model

Sampling: for each (s, a) collect
N ind. samples {(s, a, s )}1<Z<N

Empirical estimates

P(s]s,q) Z]l{s

empirical frequency

32 /50



Empirical MDP + planning

— [Azar et al., 2013, Agarwal et al., 2019]

[/ empirical MDP

HEN
| [ |
| - H =
planning =%
= .. = oracle
| [ | _ .
| | ] B e.g. dynamic programming
H_ BN
| |
r

empirical P

Find policy based on the empirical MDP (empirical maximizer)
—_———— ~——_— ———

using, e.g., policy iteration (ﬁ,r)

33/50



Challenges in the sample-starved regime

| H B
[
| =
|
]
H N
|
L
H B
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|A|!
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Challenges in the sample-starved regime

| H B
[
| =
[
]
H N
|
L
H B
H |
truth: P € RISIMAIXIS] empirical estimate: P

e Can't recover P faithfully if sample size < |S|?|A|!

e Can we trust our policy estimate when reliable model estimation is
infeasible?

34 /50



(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1
V31—’

Forany 0 < e < the optimal policy T of empirical MDP achieves
IV =V <e

with high prob., with sample complexity at most

o (w==)
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(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1
V31—’

Forany 0 < e < the optimal policy ™™ of empirical MDP achieves
IV = VYoo <&

with high prob., with sample complexity at most

5 (_ISIIA]
o202
((1 —7)%?
e matches minimax lower bound: ﬁ((l‘ﬂ;‘;;) when ¢ < 1177

(equivalently, when sample size exceeds ('f_”;‘;L) [Azar et al., 2013]
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(~-based sample complexity

Theorem (Agarwal, Kakade, Yang'19)

1

Forany 0 < e < T

the optimal policy ™™ of empirical MDP achieves
V™ = VYo <€

with high prob., with sample complexity at most

5 (_ISIIA]
o =2
<(1 —7)%?
- S _ISIIA ,
e matches minimax lower bound: Q((lu)g%;?Awhen e < \/llfv

(equivalently, when sample size exceeds (1_7)2) [Azar et al., 2013]

e established upon leave-one-out analysis framework

35/50



sample
complexity

ISII-A]
(T=7)3

1s)14] |

(L—=9)?

‘K:%'
«be’ ) .
© — Sidford et al."18a

Agarwal et al.'19

S, BN ‘\/ g2
7
z\ >
N
> S
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sample
complexity
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sample
complexity
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ke
[Agarwal et al., 2019] still requires a burn-in sample size = (‘i”:;;g
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sample

complexity
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5114 i
(1—7)3 = © — Sidford et al. "18a
N
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\)(\
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\(‘\«\’b
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1-7 L 1 1 >
@\\ é‘\\ @\\\/ 5-2
% ’
ke
3 S
[Agarwal et al., 2019] still requires a burn-in sample size = (‘i”:;;g

Question: is it possible to break this sample size barrier?

)
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Perturbed model-based approach (Li et al. ’20)

( empirical MDP

|
= |
o ]

empirical P

|

~

empirical

N

<
o°

—/[Li et al., 2020]

planning ’ﬁ;
oracle

e.g. dynamic programming

Find policy based on the empirical MDP with slightly perturbed rewards
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Optimal /..-based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen ’20)

Forany 0 <e < ﬁ the optimal policy 7, of perturbed empirical MDP
achieves

IV = V¥ <€

with high prob., with sample complexity at most

i)
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Optimal /,.-based sample complexity

Theorem (Li, Wei, Chi, Gu, Chen ’20)

Forany 0 < e < ﬁ the optimal policy 7, of perturbed empirical MDP
achieves

IV = V¥ <€

with high prob., with sample complexity at most

5 (_IsiA
(1 — )3
e matches minimax lower bound: ﬁ((l“_gg;é;) [Azar et al., 2013]
e full e-range: € € (0, ﬁ] — no burn-in cost

e established upon more refined leave-one-out analysis and a
perturbation argument

38 /50
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Model-based RL (a “plug-in” approach)

1. Sampling from a generative model (simulator)

2. Offline RL / batch RL



Offline RL / Batch RL

e Collecting new data might be expensive or time-consuming

e But we have already stored tons of historical data

THECOMING INAUTONOMOUS VEHICLES

o kﬁ ‘.‘ s i ]
< .o ,.‘ ./ mEm i i
- é M\
-
[ N>

»t

s

(LS

’g

n
5 S = musomw
<< =

/- O

medical records data of self-driving clicking times of ads
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Offline RL / Batch RL

e Collecting new data might be expensive or time-consuming

e But we have already stored tons of historical data

THECOMING INAUTONOMOUS VEHICLES
RO -t o

L
L] mEw

OB\

»t

s
U

///<““

n
PRRIAL DY ——
3 @ ’

&l
aﬁ%

medical records data of self-driving clicking times of ads

Question: Can we design algorithms based solely on historical J
data?

41 /50



Offline RL / batch RL

A historical dataset D = { a(® s/(l))}: N independent copies of
s~ p°, an~m(-|s), s' ~ P(-]s,a)

for some state distribution p® and behavior policy 7®

42 /50



Offline RL / batch RL

A historical dataset D = { a(® s/(l))}: N independent copies of
s~ p°, an~m(-|s), s' ~ P(-]s,a)

for some state distribution p® and behavior policy 7®

Goal: given some test distribution p and accuracy level ¢, find an
g-optimal policy 7 based on D obeying

V() -V = E [V(s)] - B [VA() <e

S~p S~ p

— in a sample-efficient manner

42 /50



Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*

43 /50



Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*

¢ Partial coverage of state-action space:

.
T2
- S
L
SN

uniform coverage over entire space

(sufficiently explored)
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Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under 7*

e Partial coverage of state-action space:

/ Practically,
\ {

/ Lo A
~ .-\ samples cover all (s,a) & all poI|C|e§/i\ ; historical dataset D
N - N
(@f&%@}@ \

T2 -

N A
Y /

. J_ R

SN p o

uniform coverage over entire space

partial coverage
(sufficiently explored)

(inadequately explored)

43

50



How to quantify quality of historical dataset D (induced by 7°)?
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient

C* := max —d b(s, )
S, dﬂ (S,(I)

where d™(s,a) = (1 — ) Y52, Y'"P((s%,a") = (s,a) | 7)
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient

C* := max d b(s,a) =
s,a dﬂ— (S,CL)

where d™(s,a) = (1 —~) Y52, Y'"P((s',a") = (s,a) | 7)

occupancy density of m*

; b
occupancy density of 7° ||

e captures distributional shift { - 3

e allows for partial coverage {

44 /50



A model-based offline algorithm: VI-LCB

Pessimism in the face of uncertainty: penalize value estimate of those
(s,a) pairs that were poorly visited [Jin et al., 2021, Rashidinejad et al., 2021]
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A model-based offline algorithm: VI-LCB

Pessimism in the face of uncertainty: penalize value estimate of those
(s,a) pairs that were poorly visited [Jin et al., 2021, Rashidinejad et al., 2021]

Algorithm: value iteration w/ lower confidence bounds

e compute empirical estimate Pof P
e initialize Q = 0, and repeat

~

Q(s,a) <—max{ (s,a) +v(P P(-|s,a), >—bsaV) }

Bernstein-style confidence bound

for all (s,a), where V(s) = max, Q(s,a)

45 /50



Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)
Forany 0 < e < ﬁ the policy 7 returned by VI-LCB achieves

V¥(p) = V7(p)<e

with high prob., with sample complexity at most

(=)
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Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)
Forany 0 < e < ﬁ the policy 7 returned by VI-LCB achieves

V¥(p) = V7(p)<e

with high prob., with sample complexity at most
~ SC~*
ol—-=2"=__
((1 = ’7)362>

e matches minimax lower bound: ﬁ(%) [Rashidinejad et al., 2021]

e depends on distribution shift (as reflected by C*)

e full e-range (no burn-in cost)

46 /50
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Summary of this part

sample sample
complexity 4 complexity
sc
[SIIA| (1—7)° Yan et al.
(1=9)3 X
ISIIAl sc: ;
[ (1—=7)
ISIIA] £<
! 1 1 1 -y | R
- - - > - ! >
DN ° N, e? N , < S, €
7 < B
- ‘O\\ § >

generative model offline/batch RL

Model-based RL is minimax optimal with no burn-in cost!

J
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Reinforcement Learning:
Fundamentals, Algorithms, and Theory (Part 2)

Yuxin Chen
Wharton Statistics & Data Science, ICASSP 2022



Model-based vs. model-free RL

o model A,
7o | e P e RISIMIXIS) < T
& ~g
/ model-based \
samples value function
(experience) policy
2. ~
e wodel-free -

Model-based approach (“plug-in”
1. build empirical estimate P for P
2. planning based on empirical P

Model-free approach

— learning w/o modeling & estimating environment explicitly
— memory-efficient, online, ...
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finite-time &
finite-sample analysis

asymptotic
analysis

1989 1992 1994 2018

Focus of this part: classical Q-learning algorithm and its variants



Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
N—— s'~P(:|s,a) a’'eA

immediate reward ——

next state's value

e one-step look-ahead
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A starting point: Bellman optimality principle

Bellman operator

TQ)(s,0) = r(s,q) +7 E |maxQ(s,a)]
s'~P(-|s,a) La’EA
immediate reward
next state's value

e one-step look-ahead
Bellman equation: Q* is unique solution to
TQ)=0Q"

e takeaway message: it suffices to solve the
Bellman equation

. . . Richard Bellman
e challenge: how to solve it using stochastic

samples?
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Q-learning: a stochastic approximation algorithm

i

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951

TQ) -Q=0
where
@ e 1 g o)

immediate reward ;
next state’s value
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qui1(s,a) = Qu(s,a) + nu(Te(Q) (s, a) — Qu(s,a)), t=0

sample transition (s,a,s’
b b
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) — Q =0

Qir1(s,a) = (1 —n)Q4(s,a) +n:Ti(Q¢)(s,a), t>0

sample transition (s,a,s’)

Te(Q)(s,a) = 7(s,a) +ymax Q(s', a’)

T(Q)(s,a) =T(S,a)+’y E [maXQ(sl,a’)]

s'~P(-|s,a) a’
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Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



A generative model / simulator

— Kearns, Singh '99

generative model

In each iteration, collect an independent sample (s, a, s’) for each

(s,a)

9/ 47



Synchronous Q-learning

v :_
ol

Chris Watkins Peter Dayan

fort=0,1,...,7T
for each (s,a) e S x A

draw a sample (s, a,s’), run

Qu1(s,a) = (1= n)Qu(s, a) + Ut{T(S,a) +7max Qu(s, a')}

synchronous: all state-action pairs are updated simultaneously )

10/ 47



Sample complexity of synchronous Q-learning

Theorem 1 (Li, Cai, Chen, Gu, Wei, Chi’21)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob., with sample complexity (i.e., T|S||.A|) at most

),

other papers sample complexity
= _ISllAl
Even-Dar & Mansour '03 21—~
(1-)%e?
- [S|2]41%
Beck & Srikant'12 (1—7)5:2
P S|IA]
w. ht 'l |s11A
ainwright '19 (1—)5<2
. [SIA]
Chen et al.'20 (1—~)5c2
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Sample complexity of synchronous Q-learning

Theorem 1 (Li, Cai, Chen, Gu, Wei, Chi’21)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob., with sample complexity (i.e., T|S||.A|) at most

(s

S A] )

1 —)te?

e Covers both constant and
rescaled linear learning rates:

1

c1(1—y)T

N =
1+

log? T
1

14+ c2(1—y)t

or n =

log? T

other papers

sample complexity

1
Even-Dar & Mansour '03 2T—7 S| "2‘ 5
(1—=v)%e
kant" 1s121A1%
Beck & Srikant'12 (1-7)52
P [SIHA]
Wainwright '19 (1=~)5e2
. [SIIA]
Chen et al.'20 (1—)52
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All this requires sample size at least Ao)icz -

NN
Ny
N SR
sample 4

Q
complexity \5\\P‘ \wj‘
(log scale) 0/%
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All this requires sample size at least % e

NN
N2
A SN
sample 4

N

complexity \5\@;;&
A

(log scale) ¢
N
s@\
N

(log scale)

Question: Is Q-learning sub-optimal, or is it an analysis artifact?



. S
A numerical example: % samples seem necessary . ..
(1-7)%e

— observed in Wainwright '19

a=1
a=2 . 108
1 g
Q 1-p O ! g
—
©O—— 0 g
1- z
3]
=¥
Q
N
2 10°
4'7 - 1 E ——— Q-learning .
p frd T § , ———— Theory: N =< iy
")/ 10 10 15 20 25 30 35 40
discount complexity:
r(07 1) — O, 74(1, 1) — T.(l, 2) — 1 1scount complexity: g p
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Q-learning is NOT minimax optimal

Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi, 2021)

For any 0 < € < 1, there exist an MDP such that to achieve
|Q — Q*||so < &, synchronous Q-learning needs at least

Q <(1‘f|,’;4;482> samples

14/ 47




Q-learning is NOT minimax optimal

Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi, 2021)

For any 0 < € < 1, there exist an MDP such that to achieve
|Q — Q*||so < &, synchronous Q-learning needs at least

Q <(1‘f|,’;4;482> samples

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates

a=1
a=2
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Q-learning is NOT minimax optimal

Theorem 2 (Li, Cai, Chen, Gu, Wei, Chi, 2021)

For any 0 < € < 1, there exist an MDP such that to achieve
|Q — Q*||so < &, synchronous Q-learning needs at least

Q (%) samples

s
sample
complexity

(log scale)

— (log scale)
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Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun & Schwartz'93; Hasselt '10)

e maxgec 4 E[X (a)] tends to be
over-estimated (high positive
bias) when E[X (a)] is replaced
by its empirical estimates using a
small sample size

e often gets worse with a large
number of actions (Hasselt, Guez,
Silver '15)

I max, Q(s,a) — V.(s)
10 l = Qs argmax, Qs,0) — Va(s)

error

%%
number of actions

Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €, and the errors {e, }7-; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.
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Improving sample complexity via variance reduction

— a powerful idea from finite-sum stochastic optimization



Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang '13)

Qu(s,a) = (1 =m)Qi-1(5,0) + n(Ti(Qr-1) =T(@Q) + T(@Q) )(s,a)

use @ to help reduce variability
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Variance-reduced Q-learning updates (Wainwright '19)
— inspired by SVRG (Johnson & Zhang '13)

Qu(s,a) = (1 =m)Qi-1(5,0) + n(Ti(Qr-1) =T(@Q) + T(@Q) )(s,a)

use @ to help reduce variability

e (Q: some reference Q-estimate

e 7 empirical Bellman operator (using a batch of samples)
Te(Q)(s,a) = 7(s,a) + ymax Q(s', a’)

TQa) =r(sa)+y  E  [maxQ(s',a)]

s'~P(ls,a)  ©
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An epoch-based stochastic algorithm

— inspired by Johnson & Zhang '13

update variance-reduced

Q-learning
)-)-)‘)‘
epoch 1 epoch 2 epoch 3

for each epoch
1. update Q and 7(Q) (which stay fixed in the rest of the epoch)

2. run variance-reduced Q-learning updates iteratively

18/ 47



Sample complexity of variance-reduced Q-learning

Theorem 3 (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||QQ — Q*||cc < € is at most

(=)

e allows for more aggressive learning rates
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Sample complexity of variance-reduced Q-learning

Theorem 3 (Wainwright '19)

For any 0 < € < 1, sample complexity for variance-reduced
synchronous Q-learning to yield ||QQ — Q*||cc < € is at most

(=)

e allows for more aggressive learning rates

e minimax-optimal for 0 < e <1
o remains suboptimal if 1 < ¢ < ;-
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Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Markovian samples and behavior policy

observed: (So——+(81——>S2——>83——> 84 ——>(55
\_a’l '\_,j '\_all ’\_f” {\_II’ \_—"

ao a az as Qg as

T(-|s0) m(-[s1) mu(-[s2) mu([s3) mb(-|sa) mb(:|s5)

s

learn:  sp—— 81—~ 52— 83— 84— 85—
( ’, (\_a,, (\_I' \\_all (\_all (\ -’ !
ao aj a2 as aq as

7*(-|so) m*(ls1) m*([s2) 7*(:|ss) 7*(:|sa) 7*(:[s5)

Observed:  {s;,as,7:}+>0  generated by behavior policy
—_——

stationary Markovian trajectory

Goal: learn optimal value V* and Q* based on sample trajectory
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Markovian samples and behavior policy

observed: (So——+(81——>S2——>83——> 84 ——>(55
\_a’l '\_,j '\_all ’\_f” {\_II’ \_—"

ag aj az as ay as

T(-|s0) m(-[s1) mu(-[s2) mu([s3) mb(-|sa) mb(:|s5)

s

learn:  sp—— 81—~ 52— 83— 84— 85—
( ’, (\_a,, (\_I' \\_all (\_all (\ - !
ao ap a2 0%’, %4 as

7*(-|so) m*(ls1) m*([s2) 7*(:|ss) 7*(:|sa) 7*(:[s5)

Key quantities of sample trajectory
e minimum state-action occupancy probability (uniform coverage)
Hmin i=min  pr (s, a)
——
stationary distribution

e mixing time: tmix
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Q-learning on Markovian samples

Chris Watkins Peter Dayan

Qt+1(st,at) = (1 —m)Qe(st, ar) + meTe(Qt) (e, ae), >0

only update (s¢,at)-th entry
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Q-learning on Markovian samples

<
»
fy

< |

(s0 aoj\\\
(s11a1

observed: (50 2SS el S| <
T 1l H J v 1 H J H 1 (

\\_a' ‘\_a’ ‘\_— ‘\_a’ ‘\_a \~_¢' (52’
ag ay az as aq as Yj I
bo) I

Qs,a

e asynchronous: only a single entry is updated each iteration
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Q-learning on Markovian samples

(s0}ao)
J,
(s1}ar)
observed: So——>81—— 82— 83— 84 ——>55 — S
(o (o (o [ (- [ (52)a2)
ag ai az as a4 as
(|
Ss,lla)
Q(s,a)

e asynchronous: only a single entry is updated each iteration
o resembles Markov-chain coordinate descent
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Q-learning on Markovian samples

observed: S1—— 82
L (\_/' \
ay

m(+1s0) mo([s1) mo(ls2) mb([s3) mo(-|sa) mu(-Is5)

83
qx_a
as

\ 4
) )

’

85— S
'\ - a’l

as

%
7
’

~ -’ qx_a
as a4
T

A

Jao)

tss, lla)
|

Q(s,a)

an)l ™

e asynchronous: only a single entry is updated each iteration

o resembles Markov-chain coordinate descent

e off-policy: target policy 7 # behavior policy
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A highly incomplete list of works

Watkins, Dayan '92

Tsitsiklis '94

Jaakkola, Jordan, Singh '94

Szepesvari '98

Borkar, Meyn '00

Even-Dar, Mansour '03

Beck, Srikant'12
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Lee, He'18
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Chen, Maguluri, Shakkottai, Shanmugam '21
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Sample complexity of asynchronous Q-learning

Theorem 4 (Li, Cai, Chen, Gu, Wei, Chi’21)
Fcir any 0 < e < ﬁ sample complexity of async Q-learning to yield
|Q — Q*||co < € is at most (up to log factor)
1 tmix
,umin(1 - 7)452 ,umin(1 - 7)




Sample complexity of asynchronous Q-learning

Theorem 4 (Li, Cai, Chen, Gu, Wei, Chi’21)
Fcir any 0 < e < ﬁ sample complexity of async Q-learning to yield
|Q — Q*||co < € is at most (up to log factor)
1 — + tmix
Hmin(1 - 7) € Mmin(1 - )

other papers sample complexity

Even-Dar et al.'03

Even-Dar et al.'03

° learning I’ates: Beck & Srikant '12

constant & rescaled linear Qu & Wierman '20

- - 1 b
Li et al. 20 T (=152 T i (1—7)

Chen et al.’21 W + other-term(mix)




Linear dependency on 1/imin

sample
complexity




Effect of mixing time on sample complexity

Markov Chains
and Mixing Times

1 + tmix
,“min(1 - ’7)452 Nmin(1 - 7)

e reflects cost taken to reach steady state

e one-time expense (almost independent of ¢)
— it becomes amortized as algorithm runs

e can be improved with the aid of variance reduction (Li et al. '20)

— prior art: #(tlmﬁ'xg (Qu & Wierman '20)

min
27/ 47



Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Recap: offline RL / batch RL

Historical dataset D = {(s¥,a(", s'¥)}: N independent copies of
Sprv aNﬂ-b("s)» S,NP('|Sva)

for some state distribution p® and behavior policy 7®
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Recap: offline RL / batch RL

Historical dataset D = {(s¥,a(", s'¥)}: N independent copies of
Sprv aNﬂ-b("s)» S,NP('|87G)

for some state distribution p® and behavior policy 7®

Single-policy concentrability
* T 4 ’ \\»\\
d™ (s,a
C* := max M >1 B \
s, d” (37 CL) 7 historical dataset D //\
where d™: occupancy distribution under 7 \}\ . \
| ! T r
e captures distributional shift

e allows for partial coverage

29/ 47



How to design offline model-free algorithms
with optimal sample efficiency?



How to design offline model-free algorithms
with optimal sample efficiency?

pessimism variance
(low confidence bounds) reduction

— | LCB-Q| = [LCB—Q—Advantage]




LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty
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— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty
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LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

QtJrl(st»at) <~ (1 - nt)Qt(Stvat) + 0Ty (Qt) (5t7 at) - ntbt(sta (lt)

———
classical Q-learning LCB penalty

e b.(s,a): Hoeffding-style confidence bound

e pessimism in the face of uncertainty

sample size: é(ﬁ;?) =  sub-optimal by a factor of ﬁ; J

Issue: large variability in stochastic update rules
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Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference
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Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3
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Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

Qit1(5¢,a1) (1 = 1)Qe(5¢,a1) — ¢ be(54,a¢)
~—_———
LCB penalty

+n(TQ) -~ T@)+ T@) ) (51, )

advantage reference

e incorporates variance reduction into LCB-Q

> > >

epochm =1 epoch m =2 epoch m =3

Theorem 5 (Yan, Li, Chen, Fan’22, Shi, Li, Wei, Chen, Chi’22)

Fore € (0,1 — ], LCB-Q-Advantage achieves V*(p) — V%(p) <e
with optimal sample complexity O(ﬁ)

32/ 47



sample sample .
complexity i A complexity
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infinite-horizon MDPs finite-horizon MDPs



Model-free RL

. Basics of Q-learning

. Synchronous Q-learning and variance reduction (simulator)
. Asynchronous Q-learning (Markovian data)

. Q-learning with lower confidence bounds (offline RL)

. Q-learning with upper confidence bounds (online RL)



Finite-horizon MDPs

action

| environment [« — I

¢
next state
Shi1 ~ Pu(-|sh, an)

H: horizon length

S: state space with size S e A: action space with size A
rh(Sn,ap) € [0, 1]: immediate reward in step h

= {ﬁh}lez policy (or action selection rule)

Py,(-|s,a): transition probabilities in step h
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Finite-horizon MDPs

action
ap ~ mh(:|sn)

reward

Th = 7(Sn, an I
“""" environment [« — I

next state
Shi1 ~ Pu(-|sh, an)

value function: V)" (s) =E

H

Zrh(sh,ah) | Sp = 51

t=h

H

Zrh(sh,ah) | sh =s,an = a}
=h

t

Q-function: Q}(s,a) =E
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Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7'

episode 1 |:> {sh»ah, 7 e
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Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7!

episode 1 |::> {sh»ah, 7 e

[n=ane! execute 7>
\
L 2 92 2\H
episode 2 {8h> @ T =1
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Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

LE execute 7'

episode 1 |::> {sh»ah, 7 e

= e ] execute 7>

Lo 2 2 2\H
episode 2 :> {8h: @k, i h=1

e execute &

episode K |:> {Sf a£{7 Tf}{j:l
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Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps
— sample size: T'= KH

ik execute 7!

episode 1 |::> {sh»ah, 7 e

SRR ! LL execute 7>
35
L 2 2 2\H
episode 2 :> {8h: @k, i h=1

e execute &

episode K |:> {Sf ai{7 T}{(}hH:I

exploration (exploring unknowns) vs. exploitation (exploiting learned info)J
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Regret: gap between learned policy & optimal policy

adversary learner

A
-3/ )

initial state execute
51 = policy !

episode 1
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Regret: gap between learned policy & optimal policy

adversary learner

initial state : execute . |n|t|aI state execute
3% policy 7" . = policy 7€

episode 1 episode K
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Regret: gap between learned policy & optimal policy

adversary learner

initial state execute initial state execute
I 51 I = policy 7! = = s{{ = policy ©f

episode 1 episode K

Performance metric: given initial states {s¥}X_ | define

chosen by nature/adversary

K

Regret(T) = > (Vi(sf) — Vi (s}))
k=1

37/ 47



Existing algorithms
e UCB-VI: Azar et al.'17
e UBEV: Dann et al.'17
e UCB-Q-Hoeffding: Jin et al. 18
e UCB-Q-Bernstein: Jin et al.’18
e UCB2-Q-Bernstein: Bai et al.'19
Regret(T) > VH2SAT e EULER: Zanette et al.'19
e UCB-Q-Advantage: Zhang et al.’20
o UCB-M-Q: Menard et al. 21

e Q-EarlySettled-Advantage: Li et
al.’21

Lower bound
(Domingues et al. '21)



Which model-free algorithms are sample-efficient for online RL?



Which model-free algorithms are sample-efficient for online RL?

early-settled
ucB variance variance
exploration reduction reduction

= |ucBQ| = [UCB—Q—Advantage] =

Jin et al.’18 Zhang et al. '20 Li et al. 21




Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus
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Q-learning with UCB exploration (Jin et al., 2018)

Qn(sh.an) — (1 —m)Qn(Sh,an) + kT (Qnt1) (Sh, an) + nk br(sk, an)
———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound; encourage exploration
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)
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e bp(s,a): upper confidence bound; encourage exploration
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of VH J
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———

classical Q-learning exploration bonus

e bp(s,a): upper confidence bound; encourage exploration
— optimism in the face of uncertainty

e inspired by UCB bandit algorithm (Lai, Robbins '85)

Regret(T) < VH3SAT = sub-optimal by a factor of VH J

Issue: large variability in stochastic update rules

40/ 47



Q-learning with UCB and variance reduction

— Zhang et al. '20

Incorporates variance reduction into UCB-Q:
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Q-learning with UCB and variance reduction

— Zhang et al. '20
Incorporates variance reduction into UCB-Q:

Qn(sn,an) < (1 —n1)Qn(sh,an) + mi bp(sh, an)
——

UCB bonus
+ Mk (E(Qh+1) — Te(Qpi1) + T(§h+1)) (Sh,an)
——
advantage reference

UCB-Q-Advantage is asymptotically regret-optimal

Issue: high burn-in cost O(S%A*H?%)

41/ 47



UCB-Q with variance reduction and early settlement

One additional key idea: early settlement of the reference as soon as
it reaches a reasonable quality

42/ 47



UCB-Q with variance reduction and early settlement

One additional key idea: early settlement of the reference as soon as
it reaches a reasonable quality

Theorem 6 (Li, Shi, Chen, Gu, Chi’21)
With high prob., Q-EarlySettled-Advantage achieves

Regret(T) < O(VH2SAT + HSSA)
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UCB-Q with variance reduction and early settlement

One additional key idea: early settlement of the reference as soon as

it reaches a reasonable quality

Theorem 6 (Li, Shi, Chen, Gu, Chi’21)
With high prob., Q-EarlySettled-Advantage achieves

Regret(T) < O(VH2SAT + HSSA)

o regret-optimal w/ near-minimal
burn-in cost in S and A

e memory-efficient O(SAH)

e computationally efficient:
runtime O(T)

memory
complexity

S2AH

SAH

0

Q—Ezr\y?ett\edr/\dvznlzge

UCB-Q-Advantage

burn-in cost

SApoly(H) S3AHS

6 A4 1728
st 42/ 47



Summary of this part
memory
complexity
e \
@ UCB-M-Q
sample o S2ZAH | ‘ ........................ ® UCB-VI
complexity z
z i
5 &S U
< &
x & ™S
FE A ;
N
120 2L \S\\A\ UCB-Q-Advantage
Lietab =  GAH | .
|S|]A| Q—Ezrl)gett\ed—/\dvznuge . burn-in cost
O Sapoly(H)  SPAH®  SOA'H*

Model-free RL can achieve memory efficiency,
computational efficiency, and sample efficiency at once!
— with some burn-in cost though
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A triad of RL approaches

— Figure credit: D. Silver



Policy optimization in practice

maximizey value(policy(#))

e directly optimize the policy, which is the quantity of interest;
e allow flexible differentiable parameterizations of the policy;
e work with both continuous and discrete problems.

%X NN L R

/ A a z

N TN T I IG—
i S~ \l\

input layer output layer



Theoretical challenges: non-concavity

Little understanding on the global convergence of policy gradient
methods until very recently, €.g. (Fazel et al., 2018; Bhandari and Russo,
2019; Agarwal et al., 2019; Mei et al. 2020), and many more.

Our goal:
e understand finite-time convergence rates of popular heuristics;

e design fast-convergent algorithms that scale for finding
policies with desirable properties.



Outline

e Backgrounds and basics

e policy gradient method
e policy gradient theorem

e Convergence guarantees of policy optimization

e (natural) policy gradient methods
o finite-time rate of global convergence
e entropy regularization and beyond

e Concluding remarks and further pointers



Backgrounds: policy optimization in tabular
Markov decision processes



Searching for the optimal policy

Reinforcement
Learning

fm————
1
1
A
]
1
. 1

Goal: find the optimal policy 7* that maximize V™ (s) J

o optimal value / Q function: V* := V™, Q* := Q™



Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximize, V7™ (p) := Esupy [V (5)]
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Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximize, V7™ (p) := Esupy [V (5)]

Parameterization:
T = Ty J
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Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximize, V7™ (p) := Esupy [V (5)]

Parameterization:
T = Ty J

maximizeg  V7"(p) := Eqsup, [V (5)]

Policy gradient method (Sutton et al., 2000)

Fort=0,1,---
(*)
01D = 9 L VeV (p)

where 1 is the learning rate.




The policy gradient theorem

Theorem (Policy gradient theorem, Sutton et al., 2000)

The policy gradient can be evaluated via

1
VOV (0) = 7Bt oy 4| @7 (5 )V lom (a5

1

N |

where
° dgg is the discounted state visitation distribution,

e Yy(s,a) := Vlogmy(als) is the score function, and
o A™(s,a) = Q7 (s,a) — V7 (s) is the advantage function.

Provides a general scheme for policy gradient evaluation
(e.g., REINFORCE).



Examples of policy parameterization

Discrete action space: softmax parameterization with function
approximation

m(als) o< exp(¢(s, a) ")

e ¢(s,a) is the feature vector of each state-action pair;

e the score function Vlogmy(als) = ¢(s,a) — Equr,(1s)[B(s,)].



Examples of policy parameterization

Discrete action space: softmax parameterization with function
approximation

m(als) o< exp(¢(s, a) ")

e ¢(s,a) is the feature vector of each state-action pair;

e the score function Vlogmy(als) = ¢(s,a) — Equr,(1s)[B(s,)].

Continuous action space: Gaussian policy
a~N(u(s),o%), u(s) = o(s)

e ¢(s) is the feature of each state;

e 02 is the variance (kept constant for simplicity);
) = (amule)ots)

e the score function V log my(als o2



Softmax policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximizer V7™ (p) := Esup [V (5)]

@ softmax parameterization:
mo(als) ox exp(8(s, a)) J

maximizeg V7 (p) 1= Eqsu, [V7(5)]

Policy gradient method (Sutton et al., 2000)
Fort=0,1,-
9(t+1) — 9(15) + nvevﬂ.ét) (p)

where ) is the learning rate.

10



Finite-time global convergence guarantees



Global convergence of the PG method?

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.
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Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in

O(%) iterations
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Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in
c(IS],JA], 1=, -) O(2) iterations
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Global convergence of the PG method?

Loading...

7

e (Agarwal et al., 2019) showed that softmax PG converges
asymptotically to the global optimal policy.

e (Mei et al., 2020) Softmax PG converges to global opt in
c(IS],JA], 1=, -) O(2) iterations

» T—y>

Is the rate of PG good, bad or ugly? )

12



A negative message

Theorem (Li, Wei, Chi, Gu, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

I2f

\ S

iterations

to achieve ||V — V*||o < 0.15.
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A negative message

Theorem (Li, Wei, Chi, Gu, Chen, 2021)
There exists an MDP s.t. it takes softmax PG at least

sz

\ S

iterations

to achieve ||V — V*||o < 0.15.

e Softmax PG can take (super)-exponential time to converge
(in problems w/ large state space & long effective horizon)!

e Also hold for average sub-opt gap \3| Sees [V (s) = V*(s)].

13
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Booster #1: natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method (Kakade, 2002)
Fort=0,1,---
6D = 9O 4 p(FO) T,V (p)
where 1 is the learning rate and }'g is the Fisher information matrix:
Fl.=FE

p

[(V@ log mg(als)) (Vg log 7T9(CL|S>)T] .

15



Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in
training RL algorithms, with KL regularization

KL($? ) ~ %(9 — 0T FI 0 —0")
via constrained or proximal terms:
0+ = argmax V™4 () + (0= 00) VoV () = KL (! )
~ 00 1 (FO) T,V (p),

leading to exactly NPG!
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Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in
training RL algorithms, with KL regularization

KL($? ) ~ %(9 — 0T FI 0 —0")
via constrained or proximal terms:
0+ = argmax V™4 () + (0= 00) VoV () = KL (! )
~ 00 + p(FO) TV (p),

leading to exactly NPG!

NPG =~ TRPO/PPOQO! )

16



NPG in the tabular setting

Natural policy gradient (NPG) method (Tabular setting)
Fort=0,1,---, NPG updates the policy via

7D (s) oc 7B (]s) exp (nQ(t)(s,-))
N—_—— 1-— Y

current policy
soft greedy

where Q(t) = Q’Tm is the Q-function of #®), and n>0.

e invariant with the choice of p

¢ Reduces to policy iteration (Pl) when n = cc.

17



Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set ©(©) as a uniform policy. For allt > 0, we have

log |A| 1
+ 2
n (1=

VO (p) > V¥ (o) - (

)
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Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set ©(©) as a uniform policy. For allt > 0, we have

log | Al 4 1 > 1
n (1—9)?

VO (p) > V¥ (o) - ( L

Implication: set n > (1 — v)2log|.A|, we find an e-optimal policy
within at most
5~ iterations.

2
(1—7)%



Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set ©(©) as a uniform policy. For allt > 0, we have

log | Al 4 1 > 1
n (1—9)?

VO (p) > V¥ (o) - ( L

Implication: set n > (1 — v)2log|.A|, we find an e-optimal policy
within at most
5~ iterations.

2
(1—7)%

Global convergence at a sublinear rate independent of |S|, |A|! J

18



Booster #2: entropy regularization

state s o aﬁtl?rn 150) To 1 T2 r3 T4
- l | 1 | |
S0 — S1—; S2—; $3—; S4—;
reward |:> A 0 A G A 0 A .
Tt = ”‘(Sm at I ap ai as as ag
4=~ environment |¢= —J ¢ 2 2 2 2
«— 7(lso)  wClst) w(ls2)  mCls)  wClsa)

sip1 ~ P([se,ar)

To encourage exploration, promote the stochasticity of the policy
using the “soft” value function (Williams and Peng, 1991):

VseS: ny Tt—l-TH (\st)|so—s

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

19



Booster #2: entropy regularization
T3 T4

state s a; aﬁt'?rn [st) e o -
s 010 F 0
S0 — S1—; S2—; $3—; S4—;
reward |:> A 0 A G A 0 A .
Tt = ”‘(Sm at I ap ai as as ag
4=~ environment |¢= —J ¢ 2 2 2 2
«— 7(lso)  wClst) w(ls2)  mCls)  wClsa)

sie1 ~ P(lsg,a0)

To encourage exploration, promote the stochasticity of the policy

using the “soft” value function (Williams and Peng, 1991)

ny Tt—l-TH (\st)|so—s

VseS:
where H is the Shannon entropy, and 7 > 0 is the reg. parameter
V() =Eonp V() |

maximizey




Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Policy Gradient Natural Policy Gradient

D) =8

UOT)RZIIR[NSSI 9SBIIOUT

=2
log (ar) log m(ar)



Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

UOT)RZIIR[NSSI 9SBIIOUT

Policy Gradient

Natural Policy Gradient

2-3 m

-
-1

Y

.
:

N
0

) -3 -2

Policy Gradient

—

Ny
E"%/
g‘ls — //

pat -3 -2 -1
log m(ay)

log 7(a1)

Can we justify the efficacy of entropy-regularized NPG?

20



Entropy-regularized NPG in the tabular setting

*
7T7.

<
Q@

Entropy-regularized NPG (Tabular setting)
Fort=0,1,---, the policy is updated via
nT

a0 ([s) oo 7O () 1T exp(QW (s, ) /7) T
——— S———

current policy soft greedy

where Q(Tt) = Q’;m is the soft Q-function of 7, and 0 < n < 1_77

e invariant with the choice of p

e Reduces to soft policy iteration (SPI) when 5 = =2

T

21



Linear convergence with exact gradient

Exact oracle: perfect evaluation of Qﬁ(t) given 7(0);
— Read our paper for the inexact case!

22



Linear convergence with exact gradient

Exact oracle: perfect evaluation of QZM given 7(0);

— Read our paper for the inexact case!

Theorem (Cen, Cheng, Chen, Wei, Chi, 2020)

For any learning rate 0 < n < (1 —~)/7, the entropy-regularized
NPG updates satisfy

¢ Linear convergence of soft Q-functions:
15 — Q¥ V]l < Cry (1 —nr)*

for all t > 0, where Q)% is the optimal soft Q-function, and

T *
C1 = 10: = QP+ 27 (1= {7 ) 1o —log .

22



Implications

To reach ||Q% —

(1) HOO < ¢, the iteration complexity is at most

i 1—7y.
 General learning rates (0 <n < —7):

1 <Cl’7>
— log
nT €

e Soft policy iteration (n = 1_77)

L (n@:—@(f)um)
0g
1—7 €

23



Implications

To reach ||Q% — (1) HOO < ¢, the iteration complexity is at most

o General learning rates (0 < 7 < +=2):
1 <C’17>
nt €

* Soft policy iteration (1 = —7)

* _ 00)
! bg(n@T QF Hm)
1—7 €

Global linear convergence of entropy-regularized NPG
at a rate independent of |S], |A|!

23



Comparisons with entropy-regularized PG

Natural Policy Gradient Log Policy Difference

Natural Policy Gradient

Policy Gradient

log 7(a1)

0 1000

2000 3000 4000 5000
#iterations

(Mei et al., 2020) showed entropy-regularized PG achieves

V() = Vi) < (Vo) = Vi ()

1=

4 >
¢ 7

cexp | —

(8/7 + 4+ 8log|A|)|S|

P 0<k<t—1 s,a
oo

2
min p(s) ( inf minw(k)(a|s))
S

can be exponential

in |S| and ll—,y

Much faster convergence of entropy-regularized NPG

at a dimension-free rate!

24



Comparison with unregularized NPG

Regularized NPG

Vanilla NPG
7 =0.001

T =

B

Q- QY

@ =Qvl

0 1000 2000 3000 4000 5000 1072 0 1000 2000 3000 4000 5000
#iterations #iterations
: e 1 oo (L : : 1
Linear rate: ;- log (1) Sublinear rate:
Ours

(Agarwal et al. 2019)
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Comparison with unregularized NPG

Regularized NPG

Vanilla NPG
7 =0.001

T =

B

Q- QY

@ =Qvl

0 1000 2000 3000 4000 5000 1072 0 1000 2000 3000 4000 5000
#iterations #iterations
: e 1 oo (L : : 1
Linear rate: ;- log (1) Sublinear rate:
Ours

(Agarwal et al. 2019)

Entropy regularization enables fast convergence! J
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A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,0)

——
immediate reward
+v E max [ Q(s',a") leogW(a'|5’)} ,
§'~P([s,a) | T(Is") a/~m(|s") b S~ —

next state's value entropy

26



A key operator: soft Bellman operator

Soft Bellman operator

Tr(Q)(s,a) = r(s,0)

immediate reward

+v E [ max [ Q(s',a") —r7log 7r(a'|s’)}] ,
—— ————

s'~P(-|s,a) | m(:|8") @/~ (-|s")

next state's value entropy

Soft Bellman equation: ()7 is unique solution to

TH(Q7) = Q7

~-contraction of soft Bellman operator: \jﬁ
| 7-(Q1) — T (Q2)]| oo < ¥||Q1 — Q2|00 Richard
Bellman

26



Analysis of soft policy iteration (7

Policy iteration

Bellman operator

27



Analysis of soft policy iteration (n = 1=2)

T

Policy iteration Soft policy iteration

7 70

Bellman operator Soft Bellman operator

27



Beyond entropy regularization

Leverage regularization to promote structural properties of the
learned policy.

cost-sensitive RL sparse exploration constrained and safe RL

weighted 1-norm Tsallis entropy log-barrier

28



Regularized RL in general form

action 70 1 T2 3 T4

state s a; ~ m(-|s;)
------- et = — 900909
0 T 2~ I 4T
reward I :> \\__,' \\_/’ \\_/' \\_/' \\_/’
re = 1(S¢, at ap ay az as 2
¢ environment - ¢ 2 2 2
+— w(lso)  wClst)  wClsa)  wClss)  wClsa)

sén ~ P(se,ar)

The regularized value function is defined as

VseS: Vi(s):=E

Z’yt(rt — Thst(ﬂ(-\st))) ‘ so=s|,
t=0

where hg is convex (and possibly nonsmooth) w.r.t. 7(+|s).

29



Regularized RL in general form

action 70 1 T2 3 T4
state s a; ~ W("St) S

"""" - ] S0 l S I S l S I s l
0 T 2~ I 4T

reward I :> \\__,l \\_/l \\_’,l \\_’,l \\_’,I

re = 1(S¢, at ap ay az az ay

¢ environment - ¢ 2 2 2
+— w(lso)  wClst)  wClsa)  wClss)  wClsa)

sén ~ P(se,ar)

The regularized value function is defined as

VseS: Vi(s):=E

D 2 (re = The(n(lse)) | s0 = s |
t=0

where hg is convex (and possibly nonsmooth) w.r.t. 7(+|s).

maximizer V[ (p) := Egup [V (5)] J




Detour: a mirror descent view of entropy-regularized NPG

PN
s

I
Ve !
‘o
Vo

Entropy-regularized NPG = mirror descent with KL
divergence (Lan, 2021; Shani et al., 2020):

. 1
7T(t+1)("8) = argm1n< — Qg)(s, ), p> — T7H(p) + fKL(pHW(t)(-]s))
PEA(A) n
x 70 Js) T exp(Q (s, ) /7) T
———

current policy soft greedy

for all s € S.

30



Generalized policy mirror descent (GPMD)

Definition (Generalized Bregman divergence, Kiwiel 1997)

The generalized Bregman divergence w.r.t. to a convex
h: A(A) — R is defined as:

=h(p) —h(g) —(g—c-1,p—q),

for p,q € A(A), where g € Oh(q) and ¢ € R.
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Generalized policy mirror descent (GPMD)

Definition (Generalized Bregman divergence, Kiwiel 1997)

The generalized Bregman divergence w.r.t. to a convex
h: A(A) — R is defined as:

=h(p) —h(g) —(g—c-1,p—q),

for p,q € A(A), where g € Oh(q) and ¢ € R.

A natural idea
Fort=0,1,---,

7-‘-(’5""1)(.|3) = argmin <—QT($, -),p) + Ths(p)
PEA(A)

+ ;Dhs (p, 7O (|5); Oha(r D (-]5)))

31



PMD with Generalized Bregman Divergence (GPMD)

Plugging in a recursive surrogate {€(®)} of dh (") (-]5)), we
obtain the formal algorithm.

Generalized policy mirror descent (GPMD) method
Fort=0,1,---, update

7D (s) = argmin (—Q, (s, ), p) + Ths(p)

PEA(A)
1
+EDhs(var(t)("S);g(t)(S?'))7
and )
EHD) (e )t ey T (s .
€)= €000 + Qs )

The subproblem does not admit closed-form solution in general.

32



Linear convergence with exact gradient

Exact oracle: perfect evaluation of QZ(t) given 7(!); exact solution
to subproblems.
— Read our paper for the inexact case!
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Linear convergence with exact gradient

Exact oracle: perfect evaluation of QZ(t) given 7(!); exact solution
to subproblems.

— Read our paper for the inexact case!

Theorem (Zhan*, Cen*, Huang, Chen, Lee, Chi '21)
For any learning rate n > 0, the GPMD updates satisfy
e Linear convergence of soft Q-functions:

t
« o+ < I o))
10: - QI < Ciy (1= TEZY)

where C1 = ||Q* — ng)Hoo + 1437,7”@: — 70|

33



Implications

To reach ||QF — StH)HOO < ¢, the iteration complexity is at most

¢ General learning rates (1 > 0):

¢ Regularized policy iteration (17 = c0):

* _ )
10g<HQT Q! Hw)
€

L=y

34



Implications

To reach * - Stﬂ) 0 < €, the iteration complexity is at most
T p y

¢ General learning rates (1 > 0):

¢ Regularized policy iteration (17 = c0):
0
L o (H@: e Nm)
1—7 €

Global linear convergence of GPMD at a dimension-free rate! |
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Comparison with PMD (Lan, 2021)

Policy mirror descent (PMD) method (Lan, 2021)
Fort=0,1,---,

7t (|s) = argmin (—Q(s, ), p) + Ths(p)
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Comparison with PMD (Lan, 2021)

Policy mirror descent (PMD) method (Lan, 2021)
Fort=0,1,---,

7t (|s) = argmin (—Q(s, ), p) + Ths(p)
PEA(A)

t
+ =KL (p||7"([s)
. .
hs = Tsallis Entropy hs = Log Barrier
101 &Y
__alo™ _
5 10 X =001 w10 X =001
= + p=01 = =01 e
107 n=1 e 107 © =1 ) -
— PMD . — PMD -
GPMD s GPMD
10 10
0 500 1000 1500 2000 2500 300 0 500 1000 1500 2000 2500 3000
#iterations

#iterations
GPMD achieves faster convergence than PMD! J
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Concluding Remarks



Concluding remarks

mlﬂ_
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Understanding non-asymptotic performances of RL algorithms
is a fruitful playground! J

Future directions:

e function approximation e offline RL
e multi-agent RL e many more...
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Beyond the tabular setting

Policy network Value network
Py, (@ls) vy (5))
*
@
o °
° e
O o
s s’

Figure credit: (Silver et al., 2016)

e function approximation for dimensionality reduction
e Provably efficient RL algorithms under minimal assumptions

(Osband and Van Roy, 2014; Dai et al., 2018; Du et al., 2019; Jin et al., 2020)
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Multi-agent RL

e Competitive setting: finding Nash equilibria for Markov
games

e Collaborative setting: multiple agents jointly optimize the
policy to maximize the total reward

(Zhang, Yang, and Basar, 2021; Cen, Wei, and Chi, 2021)
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Offline RL

V4

'/kﬁi
a0 PR NE

Can we design RL algorithms based on history data?
(Rashidinejad et al., 2021; Xie et al., 2021; Li et al., 2022)

/ =
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https://users.ece.cmu.edu/~yuejiec/
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