Recent Advances in Nonconvex Methods for High-Dimensional Estimation

Yuxin Chen Princeton

Yuejie Chi CMU

Yue M. Lu Harvard

ICASSP 2018 Tutorial Calgary, Canada

Slides available at: https://goo.gl/TndZoW

Acknowledgement

Collaborators: Emmanuel Candès, Jianqing Fan, Hong Hu, Gen Li, Yuanxin Li, Yingbin Liang, Wangyu Luo, Cong Ma, Jonathan Mattingly, Chuang Wang, Kaizheng Wang, Huishuai Zhang

Sponsors: This work is supported in part by AFOSR FA9550-15-1-0205, ONR N00014-18-1-2142, NSF ECCS-1818571, CCF-1806154, ARO W911NF-16-1-0265, NSF CCF-1319140, and NSF CCF-1718698

Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

 $\operatorname{minimize}_x \quad f(x;y) \longrightarrow \operatorname{Loss} \text{ function may be nonconvex}$

Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

$$\mathbf{minimize}_x \qquad f(\boldsymbol{x};\boldsymbol{y}) \qquad \longrightarrow$$

Loss function may be nonconvex

- · nonlinear regression
- · low-rank matrix completion
- blind deconvolution
- · dictionary learning
- learning mixture models
- deep learning
- · generative adversarial networks
- ...

Nonconvex optimization may be super scary

There may be bumps everywhere and exponentially many local optima

e.g. 1-layer neural net [Auer, Herbster, Warmuth '96; Vu '98]

Convex relaxation

Examples:

- sparse recovery (ℓ_1 -minimization) [Donoho '06], [Candès, Romberg, Tao, '16]
- phase retrieval and low-rank matrix estimation (lifting and SDP) [Candès et al., '13], [Jaganathan et al., '13], [Waldspurger et al., '15]
- subspace clustering (SSC) [Elhamifar & Vidal, '12]
- MAXCUT (SDP relaxation) [Goemans & Williamson '95]

Pros:

- mature theory + efficient algorithms
- strong performance guarantees

Pros:

- mature theory + efficient algorithms
- · strong performance guarantees

Cons:

• much higher computation/memory cost (e.g. lifting)

$$y_i = |\boldsymbol{a}_i^T \boldsymbol{x}|^2 = \boldsymbol{a}_i^T \boldsymbol{x} \boldsymbol{x}^T \boldsymbol{a}_i$$

Pros:

- mature theory + efficient algorithms
- · strong performance guarantees

Cons:

· much higher computation/memory cost (e.g. lifting)

$$y_i = |\boldsymbol{a}_i^T \boldsymbol{x}|^2 = \boldsymbol{a}_i^T \boldsymbol{x} \boldsymbol{x}^T \boldsymbol{a}_i \qquad \Rightarrow \qquad \text{s.t.} \quad y_i = \boldsymbol{a}_i^T \boldsymbol{X} \boldsymbol{a}_i, \qquad i = 1, \dots, m$$

$$\boldsymbol{X} \succeq 0$$

Pros:

- · mature theory + efficient algorithms
- strong performance guarantees

Cons:

• much higher computation/memory cost (e.g. lifting)

$$y_i = |\boldsymbol{a}_i^T \boldsymbol{x}|^2 = \boldsymbol{a}_i^T \boldsymbol{x} \boldsymbol{x}^T \boldsymbol{a}_i \qquad \Rightarrow \qquad \text{s.t.} \quad y_i = \boldsymbol{a}_i^T \boldsymbol{X} \boldsymbol{a}_i, \qquad i = 1, \dots, m$$

$$\boldsymbol{X} \succeq 0$$

many problems have no effective convex relaxation

Nonconvex problems are solved on a daily basis ...

- · Fineup algorithm for phase retrieval
- Gradient descent for robust regression
- EM-algorithm for parameter estimation
- alternating minimization for dictionary learning
- "back propagation" for training deep neural nets
- · Simulated annealing and MCMC

Simple algorithms (such as *gradient descent*) are often remarkably successful for solving nonconvex problems *in practice*

Why?

Nonconvex optimization with performance guarantees

Phase retrieval: [Gerchberg-Saxton, '72], [Netrapalli et al. '13], [Candes, Li, Soltanolkotabi, '15], [Wei, '15], [Chen & Candes, '16], [Waldspurger, '16], [Wang et al. '18], and many others ...

Matrix completion: [Keshavan et al., '09], [Jain et al. '12], [Hardt, '13], [Jin et al., '16], [Wei, '16], [Zheng & Lafferty, '16], [Sun & Luo, '16], [Ding & Chen. '18], and many others ...

Landscape analysis: [Sun et al. '15], [Ge et al., '16], [Mei, Bai & Montanari, '16], [Li et al. '18], [Soltanolkotabi et al., '17], [Davis et al., '17], [Ge & Ma, '17], [Ge et al., '17], [Ballard et al., '17]

Blind deconvolution: [Li et al. '16], [Lee et al., '16], [Ling & Strohmer, '16], [Huang & Hand, '17], ...

Blind calibration: [Cambareri & Jacques, '16], [Ling & Strohmer, '16], [Li, Lee & Bresler, '17]

Dictionary learning: [Arora et al., '14], [Sun et al., '15], [Chatterji & Bartlett, '17]

Spectral initialization: [Keshavan et al., '09], [Netrapalli et al. '13], [Sun et al., '15], [Lu & Li, '17]

Stochastic gradient methods: [Ghadimi & Lan, '13], [De Sa et al., '14], [Rong, '15], [Jin et al., '16], [Wang, Mattingly & Lu, '17], [Tripuraneri et al., '18]

Tutorial outline

Part I: Overview

Part II: Phase retrieval: a case study

Spectral initialization

Local refinement: algorithm and analysis

Part III: Low-rank matrix estimation

Part IV: Closing remarks

Tutorial outline

Part I: Overview

Part II: Phase retrieval: a case study

冷 Spectral initialization

Local refinement: algorithm and analysis

Part III: Low-rank matrix estimation

Part IV: Closing remarks

Signal estimation from nonlinear measurements

Model:

* Unknown vector: $oldsymbol{x}^
atural} \in \mathbb{R}^n$

* Sensing vectors: $\{a_i\}_{i=1}^m \subset \mathbb{R}^n$

Signal estimation from nonlinear measurements

Model:

* Unknown vector: $oldsymbol{x}^
atural} \in \mathbb{R}^n$

* Sensing vectors: $\{a_i\}_{i=1}^m \subset \mathbb{R}^n$

Examples:

- \cdot Nonlinear sensors: $y_i = f(oldsymbol{a}_i^T oldsymbol{x}^{
 atural}) + w_i$
- Finaging: $y_i \sim \text{Poisson}(\boldsymbol{a}_i^T \boldsymbol{x}^{\natural})$
- * Logistic regression: $y_i \sim \text{Bernoulli}\left[\text{Logit}(\boldsymbol{a}_i^T \boldsymbol{x}^{\natural})\right]$

Example: Phase Retrieval

Reconstruct $oldsymbol{x}^{ atural} \in \mathbb{C}^n$ without the phase information

$$egin{align} y_1 &= \left| \left< oldsymbol{a}_1, oldsymbol{x}^{
atural}
ight>
ight|^2 \ &oldsymbol{i} \ &y_m &= \left| \left< oldsymbol{a}_m, oldsymbol{x}^{
atural}
ight>
ight|^2 \end{aligned}$$

Nobel Prize for Watson, Crick, and Wilkins in 1962 based on work by Rosalind Franklin

Applications:

- Phase retrieval (X-ray crystallography, diffractive imaging, ...)
- · Blind deconvolution
- · Channel estimation
- · Spectral factorization

Fig credit: Stanford SLAC

M-estimator:

$$\widehat{m{x}} = \operatorname*{arg\;min}_{m{x} \in \mathbb{R}^n} \; rac{1}{m} \sum_i \mathrm{Loss}(y_i, m{a}_i^T m{x}) + \Phi(m{x})$$

M-estimator:

M-estimator:

M-estimator:

Challenges:

Nonconvex loss functions (e.g. phase retrieval)

minimize_{$$\boldsymbol{x}$$} $\frac{1}{m} \sum_{i} (y_i - (\boldsymbol{a}_i^T \boldsymbol{x})^2)^2$

Nonconvex regularizers

$$\Phi(x) = ||x||_p^p$$
 for 0

M-estimator:

Challenges:

Nonconvex loss functions (e.g. phase retrieval)

$$\text{minimize}_{\boldsymbol{x}} \ \frac{1}{m} \sum_{i} (y_i - (\boldsymbol{a}_i^T \boldsymbol{x})^2)^2$$

Nonconvex regularizers

$$\Phi(\boldsymbol{x}) = \|\boldsymbol{x}\|_p^p \quad \text{for} \quad 0$$

Nonconvex optimization with *performance quarantee*?

Where is hope?

PCA: a classical success story of nonconvex optimization

Find the best $\it rank-one$ approximation of a symmetric PSD matrix $\it M$

minimize_{**x**}
$$f(x) = \|\mathbf{x}\mathbf{x}^T - \mathbf{M}\|_{\mathrm{F}}^2$$

Nonconvex, but global optimal solution is well-known.

PCA: a classical success story of nonconvex optimization

Find the best $\emph{rank-one}$ approximation of a symmetric PSD matrix M

$$\text{minimize}_{\boldsymbol{x}} \quad f(x) = \left\| \boldsymbol{x} \boldsymbol{x}^T - \boldsymbol{M} \right\|_{\text{F}}^2$$

Nonconvex, but global optimal solution is well-known.

Eckart-Young Theorem:

1. Eigenvalue decomposition:

$$\boldsymbol{M} = \boldsymbol{U} \operatorname{diag} \{\sigma_1, \sigma_2, \dots, \sigma_n\} \boldsymbol{U}^T$$

2. Find the dominant eigenvector: $~m{x}_{\mathrm{opt}} = \sqrt{\sigma_1} \, m{u}_1$

The optimization landscape of PCA

Example:

minimize_x
$$f(x) = \left\| xx^T - \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\|_{F}^2$$

Critical points are either **global optima** or **strict saddles** [see Part III for details]

In many problems: nonconvex but benign landscapes

Under certain *statistical models*, we see benign global geometry: critical points are either global optima or strict saddles

Empirical risk and population risk

Example: phase retrieval with Gaussian designs $a_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n)$

minimize_x
$$f_m(x) = \frac{1}{m} \sum_{i=1}^m (y_i - (\boldsymbol{a}_i^T \boldsymbol{x})^2)^2$$
 with $y_i = (\boldsymbol{a}_i^T \boldsymbol{x}^{\natural})^2$

Empirical risk and population risk

Example: phase retrieval with Gaussian designs $a_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n)$

minimize_{$$\boldsymbol{x}$$} $f_m(\boldsymbol{x}) = \frac{1}{m} \sum_{i=1}^m (y_i - (\boldsymbol{a}_i^T \boldsymbol{x})^2)^2$ with $y_i = (\boldsymbol{a}_i^T \boldsymbol{x}^{\natural})^2$

"law of large numbers"
$$m o \infty$$

minimize_{$$\boldsymbol{x}$$} $f(\boldsymbol{x}) = \mathbb{E} (y_1 - (\boldsymbol{a}_1^T \boldsymbol{x})^2)^2$

Empirical risk and population risk

Example: phase retrieval with Gaussian designs $a_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n)$

minimize_{$$\boldsymbol{x}$$} $f_m(\boldsymbol{x}) = \frac{1}{m} \sum_{i=1}^m (y_i - (\boldsymbol{a}_i^T \boldsymbol{x})^2)^2$ with $y_i = (\boldsymbol{a}_i^T \boldsymbol{x}^{\natural})^2$

"law of large numbers" $m o \infty$

minimize_{\boldsymbol{x}} $f(\boldsymbol{x}) = \mathbb{E} (y_1 - (\boldsymbol{a}_1^T \boldsymbol{x})^2)^2$

$$f(x_1, x_2) = 3 + 3(x_1^2 + x_2^2)^2 - 6x_1^2 - 2x_2^2$$

Sample complexity:

how large m needs to be?

Landscape analysis for phase retrieval

minimize_{$$\mathbf{x} \in \mathbb{R}^n$$} $f(\mathbf{x}) = \frac{1}{4m} \sum_{i=1}^m [y_i - (\mathbf{a}_i^T \mathbf{x})^2]^2$

Theorem: (informal) [Sun, Qu, Wright, '16]

Let
$$\boldsymbol{a}_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \boldsymbol{I})$$
. When $m \gtrsim n \log^3 n$, w.h.p.,

- * All local (and global) minimizers are of the form $\,m{x}^{
 atural}, -m{x}^{
 atural}$
- * All other critical points of $f(m{x})$ are strict saddles (i.e. there exist escape directions)

Landscape analysis for phase retrieval

minimize_{$$\mathbf{x} \in \mathbb{R}^n$$} $f(\mathbf{x}) = \frac{1}{4m} \sum_{i=1}^m [y_i - (\mathbf{a}_i^T \mathbf{x})^2]^2$

Notation:
$$f(n) \gtrsim g(n) \text{ means } \lim_{n \to \infty} \frac{\left| f(n) \right|}{\left| g(n) \right|} \geq \text{const}$$

Theorem: (informal) [Sun, Qu, Wright, '16]

Let
$$oldsymbol{a}_i \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, oldsymbol{I})$$
. When $m \gtrsim n \log^3 n$, w.h.p.,

- * All local (and global) minimizers are of the form $\,m{x}^{
 atural}, -m{x}^{
 atural}$

More general results on the landscapes of empirical risk

empirical risk: minimize_x
$$f_m(x) = \frac{1}{m} \sum_{i=1}^m \ell(y_i; x)$$

 $\label{eq:model} \begin{array}{ll} & \text{ "law of large numbers"} \\ & m \to \infty \end{array}$

$$m \to \infty$$

population risk: minimize_{\boldsymbol{x}} $f(x) = \mathbb{E}_{\text{model}} \ell(y; \boldsymbol{x})$

More general results on the landscapes of empirical risk

minimize_{$$\boldsymbol{x}$$} $f_m(x) = \frac{1}{m} \sum_{i=1}^{m} \ell(y_i; \boldsymbol{x})$

"law of large numbers" $m \to \infty$

 $minimize_{\boldsymbol{x}} f(x) = \mathbb{E}_{model} \ell(y; \boldsymbol{x})$ population risk:

Theorem: (informal) [Mei, Bai, Montanari, '17]

Under technical assumptions on the loss function $\ell(\cdot;\cdot)$, w.h.p.,

- 1. $\sup \|\nabla f_m(\boldsymbol{x}) \nabla f(\boldsymbol{x})\|_2 \lesssim \sqrt{n \log m/m}$
- 2. $\sup_{\boldsymbol{x}} \left\| \nabla^2 f_m(\boldsymbol{x}) \nabla^2 f(\boldsymbol{x}) \right\|_{\text{op}} \lesssim \sqrt{n \log m/m}$

Uniform convergence of gradient and hessian

Example: binary linear classification

Model:
$$y_i \in \{0,1\}$$
 with $\mathbb{P}(Y = 1 \mid R = a_i) = \sigma(a_i^T x^{\natural})$

Nonlinear least-squares: minimize_{$$\boldsymbol{x}$$} $f_m(x) = \frac{1}{m} \sum_{i=1}^m [y_i - \sigma(\boldsymbol{a}_i^T \boldsymbol{x})]^2$

Example: binary linear classification

Model:
$$y_i \in \{0,1\}$$
 with $\mathbb{P}(Y=1 \mid R=\boldsymbol{a}_i) = \sigma(\boldsymbol{a}_i^T \boldsymbol{x}^{\natural})$

Nonlinear least-squares: minimize
$$_{\boldsymbol{x}}$$
 $f_m(x) = \frac{1}{m} \sum_{i=1}^m [y_i - \sigma(\boldsymbol{a}_i^T \boldsymbol{x})]^2$

Fig credit: Mei, Bai and Montanari

Benign landscapes lead to efficient algorithms with polynomial complexity

Generic results and algorithms for benign landscapes

- * Gradient decent with random initialization escapes saddles almost surely [Lee et al., '16]
- * Saddle escaping algorithms with polynomial complexity:
 - Trust-region [Sun et al. '16]
 - Perturbed GD [Jin et al. '17]
 - Perturbed accelerated GD [Jin et al. '17]
 - Natasha [Allen-Zhu '17]
 - Cubic-regularized method [Agarwal et al., '17]

Fig. credit: Turnhout et al.

Generic results and algorithms for benign landscapes

- * Gradient decent with random initialization escapes saddles almost surely [Lee et al., '16]
- * Saddle escaping algorithms with polynomial complexity:
 - Trust-region [Sun et al. '16]
 - Perturbed GD [Jin et al. '17]
 - Perturbed accelerated GD [Jin et al. '17]
 - Natasha [Allen-Zhu '17]
 - Cubic-regularized method [Agarwal et al., '17]

Fig. credit: Turnhout et al.

Cons: computational complexity is Poly(n)

→ *Ideally*: linear complexity (proportional to the time to load the data)

Much **stronger guarantees** are possible by studying **specific problems**!

Tutorial outline

Part I: Overview

Part II: Phase retrieval: a case study

➢ Spectral initialization

★ Local refinement: algorithm and analysis

Part III: Low-rank matrix estimation

Part IV: Closing remarks

Phase retrieval: solving quadratic systems of equations

Recover $oldsymbol{x}^{
atural} \in \mathbb{R}^n$ from m random quadratic measurements

$$y_i = \left| \boldsymbol{a}_i^T \boldsymbol{x}^{\natural} \right|^2, \qquad i = 1, \dots, m$$

Common theme: two-stage approach

1. *Initialization*: find an initial point within a local basin close to x^{\natural}

Common theme: two-stage approach

1. *Initialization*: find an initial point within a local basin close to x^{\natural}

Careful iterative *local refinement* (e.g. gradient descent)

Common theme: two-stage approach

1. *Initialization*: find an initial point within a local basin close to x^{\natural}

Careful iterative *local refinement* (e.g. gradient descent)

A spectral method for initialization

Spectral Initialization

Model:

$$y_i \approx f(\boldsymbol{a}_i^T \boldsymbol{x}^{\natural}), \qquad i = 1, 2, \dots, m$$

Spectral Initialization

Model:

$$y_i \approx f(\boldsymbol{a}_i^T \boldsymbol{x}^{\natural}), \qquad i = 1, 2, \dots, m$$

Spectral initialization:

1.
$$D_m = \frac{1}{m} \sum_{i=1}^m \mathcal{T}(y_i) \boldsymbol{a}_i \boldsymbol{a}_i^T$$

2. $oldsymbol{x}_1 = \mathsf{top}\ \mathsf{eigenvector}(oldsymbol{D}_m)$

PHD: principal Hessian direction [Li '92], [Keshavan et al. '10], [Netrapalli et al. '13]

Why doe it work?

The model:

$$y_i \approx f(\boldsymbol{a}_i^T \boldsymbol{x}^{\natural}), \qquad i = 1, 2, \dots, m$$

The data matrix:

$$oldsymbol{D}_m = rac{1}{m} \sum_{i=1}^m \mathcal{T}(y_i) oldsymbol{a}_i oldsymbol{a}_i^T igsquare \mathbb{E}\left[\mathcal{T}(y) oldsymbol{a} oldsymbol{a}^T
ight]$$

Why doe it work?

The model:

$$y_i \approx f(\boldsymbol{a}_i^T \boldsymbol{x}^{\natural}), \qquad i = 1, 2, \dots, m$$

The data matrix:

$$\boldsymbol{D}_{m} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{T}(y_{i}) \boldsymbol{a}_{i} \boldsymbol{a}_{i}^{T} \quad \Longrightarrow \quad \mathbb{E}\left[\mathcal{T}(y) \boldsymbol{a} \boldsymbol{a}^{T}\right] = \beta_{1} \boldsymbol{I} + (\beta_{2} - \beta_{1}) \boldsymbol{x}^{\natural} (\boldsymbol{x}^{\natural})^{T}$$

Why doe it work?

The model:

$$y_i \approx f(\boldsymbol{a}_i^T \boldsymbol{x}^{\natural}), \qquad i = 1, 2, \dots, m$$

The data matrix:

$$\boldsymbol{D}_m = \frac{1}{m} \sum_{i=1}^m \mathcal{T}(y_i) \boldsymbol{a}_i \boldsymbol{a}_i^T \quad \Longrightarrow \quad \mathbb{E}\left[\mathcal{T}(y) \boldsymbol{a} \boldsymbol{a}^T\right] = \beta_1 \boldsymbol{I} + (\beta_2 - \beta_1) \boldsymbol{x}^\natural (\boldsymbol{x}^\natural)^T$$

with
$$\beta_1 = \mathbb{E}\,\mathcal{T}(y)$$
, $\beta_2 = \mathbb{E}\left[\mathcal{T}(y)({m a}^T{m x}^{
atural})^2
ight]$

Similar approaches used in matrix completion, blind deconvolution, ...

Why does it work? The deterministic case

The data matrix:

$$\boldsymbol{D}_m = \frac{1}{m} \left\{ (\boldsymbol{a}_1^T \boldsymbol{x}^{\natural})^2 \boldsymbol{a}_1 \boldsymbol{a}_1^T + (\boldsymbol{a}_2^T \boldsymbol{x}^{\natural})^2 \boldsymbol{a}_2 \boldsymbol{a}_2^T + (\boldsymbol{a}_3^T \boldsymbol{x}^{\natural})^2 \boldsymbol{a}_3 \boldsymbol{a}_3^T + \dots (\boldsymbol{a}_m^T \boldsymbol{x}^{\natural})^2 \boldsymbol{a}_m \boldsymbol{a}_m^T \right\}$$

Correlated patterns: higher weights

Uncorrelated patterns: lower weights

Pattern matching: $\max_{\|oldsymbol{x}\|=1} oldsymbol{x}^T oldsymbol{D}_m oldsymbol{x}$

Cosine similarity:

$$ho(oldsymbol{x}^{
atural}, oldsymbol{x}_1) \stackrel{ ext{def}}{=} rac{(oldsymbol{x}_1^T oldsymbol{x}^{
atural})^2}{\|oldsymbol{x}_1\|^2 ig\|oldsymbol{x}^{
atural}\|^2}$$

Performance guarantees:

[Gaussian measurements]

$$ho(oldsymbol{x}^{
atural},oldsymbol{x}_1)>1-\delta$$
 w. high prob. if

Cosine similarity:

$$ho(oldsymbol{x}^{
atural}, oldsymbol{x}_1) \stackrel{ ext{def}}{=} rac{(oldsymbol{x}_1^T oldsymbol{x}^{
atural})^2}{\|oldsymbol{x}_1\|^2 ig\|oldsymbol{x}^{
atural}\|^2}$$

Performance guarantees:

[Gaussian measurements]

$$ho(oldsymbol{x}^{
atural},oldsymbol{x}_1)>1-\delta$$
 w. high prob. if

[Netrapalli et al, '13]

$$m \gtrsim n \log^3 n$$

Cosine similarity:

$$ho(oldsymbol{x}^{
atural}, oldsymbol{x}_1) \stackrel{ ext{def}}{=} rac{(oldsymbol{x}_1^T oldsymbol{x}^{
atural})^2}{\|oldsymbol{x}_1\|^2 ig\|oldsymbol{x}^{
atural}\|^2}$$

Performance guarantees:

[Gaussian measurements]

$$ho(oldsymbol{x}^{
atural},oldsymbol{x}_1)>1-\delta$$
 w. high prob. if

[Netrapalli et al, '13] [Candes et al., '15]

$$m \gtrsim n \log^3 n$$
 $m \gtrsim n \log n$

Cosine similarity:

$$ho(oldsymbol{x}^{
atural}, oldsymbol{x}_1) \stackrel{ ext{def}}{=} rac{(oldsymbol{x}_1^T oldsymbol{x}^{
atural})^2}{\|oldsymbol{x}_1\|^2 ig\|oldsymbol{x}^{
atural}\|^2}$$

[Gaussian measurements]

$$ho(oldsymbol{x}^{
atural},oldsymbol{x}_1)>1-\delta$$
 w. high prob. if

[Netrapalli et al, '13] [Candes et al., '15] [Chen & Candes, '15]

$$m \ge n \log^3 n$$

$$m \gtrsim n \log n$$

$$m \gtrsim n$$

Cosine similarity:

$$ho(oldsymbol{x}^{
atural}, oldsymbol{x}_1) \stackrel{ ext{def}}{=} rac{(oldsymbol{x}_1^T oldsymbol{x}^{
atural})^2}{\|oldsymbol{x}_1\|^2 ig\|oldsymbol{x}^{
atural}\|^2}$$

Performance guarantees:

[Gaussian measurements]

$$ho(oldsymbol{x}^{
atural},oldsymbol{x}_1)>1-\delta$$
 w. high prob. if

[Netrapalli et al, '13] [Candes et al., '15] [Chen & Candes, '15]

 $m \gtrsim n \log^3 n$

 $m \gtrsim n \log n$

$$m \gtrsim n$$

Truncation: $\mathcal{T}(y) = y \, \mathbb{1}_{\{|y| \le t\}}$

Truncated spectral initialization

$$egin{aligned} \mathbb{E}[oldsymbol{D}] &= \mathbb{E}\left[rac{1}{m}\sum_{i=1}^m y_ioldsymbol{a}_ioldsymbol{a}_i^T
ight] \ &= oldsymbol{I} + 2oldsymbol{x}^{
atural}(oldsymbol{x}^{
atural})^T \end{aligned}$$

Truncated spectral initialization

$$egin{aligned} \mathbb{E}[oldsymbol{D}] &= \mathbb{E}\left[rac{1}{m}\sum_{i=1}^m y_ioldsymbol{a}_ioldsymbol{a}_i^T
ight] \ &= oldsymbol{I} + 2oldsymbol{x}^{
atural}(oldsymbol{x}^{
atural})^T \end{aligned}$$

Problem: Unless $m \gg n$, dangerous to use empirical average as large observations $y_i = (a_i^T x^{\natural})^2$ bear too much influence

Truncated spectral initialization

$$egin{aligned} \mathbb{E}[oldsymbol{D}] &= \mathbb{E}\left[rac{1}{m}\sum_{i=1}^m y_ioldsymbol{a}_ioldsymbol{a}_i^T
ight] \ &= oldsymbol{I} + 2oldsymbol{x}^{
atural}(oldsymbol{x}^{
atural})^T \end{aligned}$$

Problem: Unless $m\gg n$, dangerous to use empirical average as large observations $y_i=(a_i^Tx^{\natural})^2$ bear too much influence

Solution: Discard high leverage samples and consider a truncated sum

$$\frac{1}{m} \sum_{i=1}^{m} y_i \boldsymbol{a}_i \boldsymbol{a}_i^T \cdot \mathbb{1}_{\left\{|y| \le t\right\}}$$

[Chen & Candes, '15]

Importance of truncated spectral initialization

real Gaussian m=6n

complex CDP m = 12n

Cosine similarity:

$$ho(oldsymbol{x}^{
atural}, oldsymbol{x}_1) \stackrel{ ext{def}}{=} rac{(oldsymbol{x}_1^T oldsymbol{x}^{
atural})^2}{\|oldsymbol{x}_1\|^2 ig\|oldsymbol{x}^{
atural}\|^2}$$

Performance guarantees:

[Gaussian measurements]

$$ho(oldsymbol{x}^{
atural},oldsymbol{x}_1)>1-\delta$$
 w. high prob. if

[Netrapalli et al, '13] [Candes et al., '15] [Chen & Candes, '15]

$$m \ge n \log^3 n$$

$$m \gtrsim n \log n$$

$$m \gtrsim n$$

Cosine similarity:

$$ho(oldsymbol{x}^{
atural}, oldsymbol{x}_1) \stackrel{ ext{def}}{=} rac{(oldsymbol{x}_1^T oldsymbol{x}^{
atural})^2}{\|oldsymbol{x}_1\|^2 ig\|oldsymbol{x}^{
atural}\|^2}$$

Performance guarantees:

[Gaussian measurements]

$$ho(oldsymbol{x}^{
atural},oldsymbol{x}_1)>1-\delta$$
 w. high prob. if

[Netrapalli et al, '13] [Candes et al., '15] [Chen & Candes, '15]

$$m \gtrsim n \log^3 n$$

 $m \gtrsim n \log n$

Cosine similarity:

$$ho(oldsymbol{x}^{
atural}, oldsymbol{x}_1) \stackrel{ ext{def}}{=} rac{(oldsymbol{x}_1^T oldsymbol{x}^{
atural})^2}{\|oldsymbol{x}_1\|^2 ig\|oldsymbol{x}^{
atural}\|^2}$$

Performance guarantees:

[Gaussian measurements]

$$ho(oldsymbol{x}^{
atural},oldsymbol{x}_1)>1-\delta$$
 w. high prob. if

[Netrapalli et al, '13] [Candes et al., '15] [Chen & Candes, '15] [Lu & Li, '17]

 $m \ge n \log^3 n$

 $m \geq n \log n$

Precise analysis

Why do we care about a precise analysis?

1. Order-wise estimates are not good enough for practitioners

Vehicle for commute	Energy consumption
Bike	$\mathcal{O}(ext{distance})$

Credit: Yoram Bresler

Why do we care about a precise analysis?

1. Order-wise estimates are not good enough for practitioners

Vehicle for commute	Energy consumption
Bike	$\mathcal{O}(ext{distance})$
Tractor	$\mathcal{O}(ext{distance})$

Credit: Yoram Bresler

Why do we care about a precise analysis?

1. Order-wise estimates are not good enough for practitioners

Vehicle for commute	Energy consumption
Bike	$\mathcal{O}(ext{distance})$
Tractor	$\mathcal{O}(\mathrm{distance})$

Credit: Yoram Bresler

2. From precise analysis to optimal designs

Precise Asymptotic Characterizations

Setting:

- * High-dimensional $m,n \to \infty$, linear sample complexity $\frac{m}{n} \to \alpha > 0$
- ♣ i.i.d. Gaussian sensing ensemble

Proposition: [Lu and Li '17] Under a few technical conditions*:

$$\rho(\boldsymbol{x}^{\natural}, \boldsymbol{x}_{1}) \stackrel{\mathcal{P}}{\longrightarrow} \begin{cases} 0, & \text{if } \alpha < \alpha_{c, \min}, \\ \rho(\alpha), & \text{if } \alpha > \alpha_{c, \max}, \end{cases}$$

where *analytical formulas* are given for $\rho(\alpha)$, $\alpha_{c,\min}$ and $\alpha_{c,\max}$

^{*}These results were recently extended in [Mondelli & Montanari, '17], with some technical conditions relaxed

Phase transitions

Recall
$$\alpha=m/n$$

Uncorrelated phase: $\alpha < \alpha_{c, \min}$

$$ho({m x}^{
atural},{m x}_1) \stackrel{\mathcal{P}}{\longrightarrow} 0$$
 uninformative

$$\lambda_1 - \lambda_2 \stackrel{\mathcal{P}}{\longrightarrow} 0$$
 slow convergence

Phase transitions

Recall
$$\alpha=m/n$$

Uncorrelated phase: $\alpha < \alpha_{c, min}$

$$ho({m x}^{
atural},{m x}_1) \stackrel{\mathcal{P}}{\longrightarrow} 0$$
 uninformative

$$\lambda_1 - \lambda_2 \stackrel{\mathcal{P}}{\longrightarrow} 0$$
 slow convergence

Correlated phase: $\alpha > \alpha_{c,max}$

$$\rho(\boldsymbol{x}^{\natural}, \boldsymbol{x}_1) \xrightarrow{\mathcal{P}} \rho(\alpha) > 0$$

 $\rho(x^{\natural}, x_1) \xrightarrow{\mathcal{P}} \rho(\alpha) > 0$ concentration on the surface of a cone

$$\lambda_1 - \lambda_2 \xrightarrow{\mathcal{P}} \zeta(\alpha) > 0$$

 $\lambda_1 - \lambda_2 \xrightarrow{\mathcal{P}} \zeta(\alpha) > 0$ rapid convergence in $\mathcal{O}(\log n)$ steps

Phase transitions

Recall
$$\alpha = m/n$$

Uncorrelated phase: $\alpha < \alpha_{c,min}$

$$ho(oldsymbol{x}^{
atural},oldsymbol{x}_1) \stackrel{\mathcal{P}}{\longrightarrow} 0 \qquad ext{uninformative}$$

$$\lambda_1 - \lambda_2 \stackrel{\mathcal{P}}{\longrightarrow} 0$$
 slow convergence

Correlated phase: $\alpha > \alpha_{c, \text{max}}$

$$\rho(\boldsymbol{x}^{\natural}, \boldsymbol{x}_1) \xrightarrow{\mathcal{P}} \rho(\alpha) > 0$$

 $\rho(x^{\natural}, x_1) \xrightarrow{\mathcal{P}} \rho(\alpha) > 0$ concentration on the surface of a cone

$$\lambda_1 - \lambda_2 \stackrel{\mathcal{P}}{\longrightarrow} \zeta(\alpha) > 0$$

 $\lambda_1 - \lambda_2 \xrightarrow{\mathcal{P}} \zeta(\alpha) > 0$ rapid convergence in $\mathcal{O}(\log n)$ steps

Related phenomena: spiked model [Baik, Ben Arous & Peche, '05] low-rank perturbation of random matrices [Benaych-Georges & Nadakuditi, '11] Is the asymptotic prediction useful?

Theoretical predictions vs. simulations

Image size: 64×64

Designing the pre-processing function

Quadratic measurements: $y_i = ({m a}_i^T {m x}^{
atural})^2$

$$oldsymbol{D}_m = rac{1}{m} \sum_{i=1}^m \mathcal{T}(y_i) oldsymbol{a}_i oldsymbol{a}_i^T$$

1. Trimming [Chen & Candes '15]

$$\mathcal{T}(y) = y \, \mathbb{1}_{[0,t]}(y)$$

2. Subset [Wang, Eldar, Giannakis '16]

$$\mathcal{T}(y) = \mathbb{1}(y_i > t)$$

Designing the pre-processing function

Quadratic measurements: $y_i = ({m a}_i^T {m x}^{
atural})^2$

$$oldsymbol{D}_m = rac{1}{m} \sum_{i=1}^m \mathcal{T}(y_i) oldsymbol{a}_i oldsymbol{a}_i^T$$

1. Trimming [Chen & Candes '15]

$$\mathcal{T}(y) = y \, \mathbb{1}_{[0,t]}(y)$$

2. Subset [Wang, Eldar, Giannakis '16]

$$\mathcal{T}(y) = \mathbb{1}(y_i > t)$$

Designing the pre-processing function

Quadratic measurements: $y_i = (\boldsymbol{a}_i^T \boldsymbol{x}^{\natural})^2$

$$\boldsymbol{D}_m = \frac{1}{m} \sum_{i=1}^m \frac{\mathcal{T}(y_i)}{\boldsymbol{a}_i \boldsymbol{a}_i^T}$$

1. Trimming [Chen & Candes '15]

$$\mathcal{T}(y) = y \, \mathbb{1}_{[0,t]}(y)$$

2. Subset [Wang, Eldar, Giannakis '16]

$$\mathcal{T}(y) = \mathbb{1}(y_i > t)$$

From Sharp Predictions to Optimal Design

For any fixed α , what is the *optimal* pre-processing function $\mathcal{T}^*_{\alpha}(y)$?

$$m{D}_m = rac{1}{m} \sum_{i=1}^m \mathcal{T}(y_i) m{a}_i m{a}_i^T$$
 Challenge: functional optimization

[Mondell & Montanari, 2017]: optimal function to minimize phase transition threshold

From Sharp Predictions to Optimal Design

For any fixed α , what is the *optimal* pre-processing function $\mathcal{T}^*_{\alpha}(y)$?

$$oldsymbol{D}_m = rac{1}{m} \sum_{i=1}^m \mathcal{T}(y_i) oldsymbol{a}_i oldsymbol{a}_i^T$$

Challenge: functional optimization

[Mondell & Montanari, 2017]: optimal function to minimize phase transition threshold

Uniformly optimal solution:

$$\mathcal{T}^*(y) = 1 - \frac{\mathbb{E}_s[p(y|s)]}{\mathbb{E}_s[s^2p(y|s)]}$$

Finding a minimum norm solution in an affine subspace of finite co-dimension

Uniformly Optimal Pre-Processing

Example:

$$y_i \sim \text{Poisson}[(\boldsymbol{a}_i^T \boldsymbol{x}^{\natural})^2]$$
 optimal $\mathcal{T}^*(y) = \frac{y-1}{2y+1}$

Uniformly Optimal Pre-Processing

Example:

$$y_i \sim \text{Poisson}[(\boldsymbol{a}_i^T \boldsymbol{x}^{\natural})^2]$$
 optimal $\mathcal{T}^*(y) = \frac{y-1}{2y+1}$

Beyond the Gaussian assumption

Towards physical setups: coded diffraction

random mask + diffraction

Coded diffraction

Figure credit: Candes et al. '11

Measurements: Fourier transform of randomly modulated samples

$$|\mathcal{F}(\boldsymbol{w} \circ \boldsymbol{x})|^2$$
, $\boldsymbol{w} \in \text{Patterns}$

Performance of spectral method for coded diffraction

Original image

 $\alpha=6$; trimming $\mathcal{T}(\cdot)$

Performance of spectral method for coded diffraction

Figure credit: Mondelli & Montanari, '17

Original image

 $\alpha=6$; trimming $\mathcal{T}(\cdot)$

 $\alpha=6$; optimized $\mathcal{T}(\cdot)$

Common theme: two-stage approach

1. *Initialization*: find an initial point within a local basin close to x^{\natural}

2. Careful iterative *local refinement* (e.g. gradient descent) to stay within the local basin

Common theme: two-stage approach

1. *Initialization*: find an initial point within a local basin close to x^{\natural}

2. Careful iterative *local refinement* (e.g. gradient descent) to stay within the local basin

A nonlinear least squares formulation

given:
$$y_i = \left| \boldsymbol{a}_i^T \boldsymbol{x}^\natural \right|^2, \qquad i = 1, \dots, m$$

$$\bigvee^{\prod}_{\mathbf{v}}$$

$$\text{minimize}_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{i=1}^m \left[y_i - (\boldsymbol{a}_i^T \boldsymbol{x})^2 \right]^2$$

A nonlinear least squares formulation

given:
$$y_i = \left| \boldsymbol{a}_i^T \boldsymbol{x}^{\natural} \right|^2, \qquad i = 1, \dots, m$$

$$\bigvee_{\boldsymbol{y}} \sum_{i=1}^m \left[y_i - (\boldsymbol{a}_i^T \boldsymbol{x})^2 \right]^2$$
 minimize $\boldsymbol{x} \in \mathbb{R}^n$ $f(\boldsymbol{x}) = \frac{1}{4m} \sum_{i=1}^m \left[y_i - (\boldsymbol{a}_i^T \boldsymbol{x})^2 \right]^2$

pros: often exact as long as sample size is sufficiently large

 $\it cons: f(x)$ is nonconvex

--- computationally challenging!

Wirtinger flow (Candès, Li, Soltanolkotabi '14)

$$\text{minimize}_{\boldsymbol{x} \in \mathbb{R}^n} \quad f(\boldsymbol{x}) = \frac{1}{4m} \sum_{i=1}^m \left[y_i - (\boldsymbol{a}_i^T \boldsymbol{x})^2 \right]^2$$

* spectral initialization: $x^0 \leftarrow$ leading eigenvector of the data matrix

radient descent:

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \eta \nabla f(\boldsymbol{x}^t), \qquad t = 0, 1, \dots$$

Computational cost

$$oldsymbol{A}\coloneqq egin{bmatrix} oldsymbol{a}_i^Toldsymbol{x} \end{bmatrix}_{1\leq i\leq m}$$

* **Spectral initialization**: leading eigenvector \longrightarrow a few applications of A and A^T

$$\frac{1}{m} \sum_{i=1}^{m} \mathcal{T}(y_i) \boldsymbol{a}_i \boldsymbol{a}_i^T = \frac{1}{m} \boldsymbol{A}^T \operatorname{diag} \left\{ \mathcal{T}(y_i) \right\} \boldsymbol{A}$$

* *Gradient descent*: one application of $m{A}$ and $m{A}^T$ per iteration

Gradient descent: performance guarantees?

Asymptotic notation

 $\bullet \ \ f(n) \lesssim g(n) \ \text{or} \ f(n) = O(g(n)) \ \text{means}$

$$\lim_{n \to \infty} \frac{|f(n)|}{|g(n)|} \ \leq \ \operatorname{const}$$

• $f(n) \gtrsim g(n)$ means

$$\lim_{n o \infty} rac{|f(n)|}{|g(n)|} \, \geq \, \operatorname{const}$$

• $f(n) \asymp g(n)$ means

$$\mathsf{const}_1 \; \leq \; \lim_{n \to \infty} \frac{|f(n)|}{|g(n)|} \; \leq \; \mathsf{const}_2$$

$$\mathsf{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\natural) := \min\{\|\boldsymbol{x}^t \pm \boldsymbol{x}^\natural\|_2\}$$

Theorem 1 (Candès, Li, Soltanolkotabi '14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\mathsf{dist}(oldsymbol{x}^t,oldsymbol{x}^{
atural}) \lesssim \left(1-rac{\eta}{4}
ight)^{t/2} \|oldsymbol{x}^{
atural}\|_2,$$

with high prob., provided that step size $\eta \lesssim 1/n$ and sample size: $m \gtrsim n \log n$

$$\mathsf{dist}(\boldsymbol{x}^t,\boldsymbol{x}^\natural) := \min\{\|\boldsymbol{x}^t \pm \boldsymbol{x}^\natural\|_2\}$$

Theorem 1 (Candès, Li, Soltanolkotabi '14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\mathsf{dist}(oldsymbol{x}^t,oldsymbol{x}^{
atural}) \lesssim \left(1-rac{\eta}{4}
ight)^{t/2} \|oldsymbol{x}^{
atural}\|_2,$$

with high prob., provided that step size $\eta \lesssim 1/n$ and sample size: $m \gtrsim n \log n$

• Iteration complexity: $O(n\log\frac{1}{\epsilon})$

$$\mathsf{dist}(oldsymbol{x}^t, oldsymbol{x}^{
atural}) := \min\{\|oldsymbol{x}^t \pm oldsymbol{x}^{
atural}\|_2\}$$

Theorem 1 (Candès, Li, Soltanolkotabi '14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\mathsf{dist}(oldsymbol{x}^t,oldsymbol{x}^{
atural}) \lesssim \left(1-rac{\eta}{4}
ight)^{t/2} \|oldsymbol{x}^{
atural}\|_2,$$

with high prob., provided that step size $\eta \lesssim 1/n$ and sample size: $m \gtrsim n \log n$

- Iteration complexity: $O(n\log\frac{1}{\epsilon})$
- Sample complexity: $O(n \log n)$

$$\mathsf{dist}(oldsymbol{x}^t,oldsymbol{x}^{
atural}) := \min\{\|oldsymbol{x}^t \pm oldsymbol{x}^{
atural}\|_2\}$$

Theorem 1 (Candès, Li, Soltanolkotabi '14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\mathsf{dist}(oldsymbol{x}^t, oldsymbol{x}^{
atural}) \lesssim \left(1 - rac{\eta}{4}
ight)^{t/2} \|oldsymbol{x}^{
atural}\|_2,$$

with high prob., provided that step size and sample size:

- Iteration complexity: $O(n\log\frac{1}{\epsilon})$
- Sample complexity: $O(n \log n)$
- Derived based on (worst-case) local geometry

Improved theory of WF

$$\mathsf{dist}(oldsymbol{x}^t,oldsymbol{x}^{
atural}) := \min\{\|oldsymbol{x}^t \pm oldsymbol{x}^{
atural}\|_2\}$$

Theorem 2 (Ma, Wang, Chi, Chen '17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

$$\mathsf{dist}(oldsymbol{x}^t,oldsymbol{x}^{
atural}) \lesssim \left(1-rac{\eta}{2}
ight)^t \|oldsymbol{x}^{
atural}\|_2$$

with high prob., provided that step size $\eta \approx 1/\log n$ and sample size $m \gtrsim n \log n$.

- Iteration complexity: $O(n \log \frac{1}{\epsilon}) \searrow O(\log n \log \frac{1}{\epsilon})$
- Sample complexity: $O(n \log n)$
- Derived based on finer analysis of GD trajectory

Consider unconstrained optimization problem

$$\mathsf{minimize}_{\boldsymbol{x}} \qquad f(\boldsymbol{x})$$

Two standard conditions that enable geometric convergence of GD

Consider unconstrained optimization problem

$$\mathsf{minimize}_{\boldsymbol{x}} \qquad f(\boldsymbol{x})$$

Two standard conditions that enable geometric convergence of GD

• (local) restricted strong convexity (or regularity condition)

Consider unconstrained optimization problem

Two standard conditions that enable geometric convergence of GD

- (local) restricted strong convexity (or regularity condition)
- (local) smoothness

$$abla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$
 and is well-conditioned

f is said to be α -strongly convex and β -smooth if

$$\mathbf{0} \leq \alpha \mathbf{I} \leq \nabla^2 f(\mathbf{x}) \leq \beta \mathbf{I}, \quad \forall \mathbf{x}$$

 ℓ_2 error contraction: GD with $\eta=1/\beta$ obeys

$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le \left(1 - \frac{\alpha}{\beta}\right) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$

f is said to be lpha-strongly convex and eta-smooth if

$$\mathbf{0} \leq \alpha \mathbf{I} \leq \nabla^2 f(\mathbf{x}) \leq \beta \mathbf{I}, \quad \forall \mathbf{x}$$

 ℓ_2 error contraction: GD with $\eta=1/\beta$ obeys

$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \le \left(1 - \frac{\alpha}{\beta}\right) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$

• Condition number β/α determines rate of convergence

f is said to be lpha-strongly convex and eta-smooth if

$$\mathbf{0} \leq \alpha \mathbf{I} \leq \nabla^2 f(\mathbf{x}) \leq \beta \mathbf{I}, \quad \forall \mathbf{x}$$

 ℓ_2 error contraction: GD with $\eta=1/\beta$ obeys

$$\|\boldsymbol{x}^{t+1} - \boldsymbol{x}^{\natural}\|_{2} \leq \left(1 - \frac{\alpha}{\beta}\right) \|\boldsymbol{x}^{t} - \boldsymbol{x}^{\natural}\|_{2}$$

- Condition number β/α determines rate of convergence
- Attains ε -accuracy within $O(\frac{\beta}{\alpha}\log\frac{1}{\varepsilon})$ iterations

What does this optimization theory say about WF?

Gaussian designs:
$$a_k \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n), \quad 1 \leq k \leq m$$

What does this optimization theory say about WF?

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \asymp n \log n)$

$$\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$

What does this optimization theory say about WF?

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(\boldsymbol{x}) \succ \mathbf{0}$$
 but ill-conditioned (even locally) condition number $\approx n$

What does this optimization theory say about WF?

Gaussian designs:
$$a_k \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \quad 1 \leq k \leq m$$

Finite-sample level $(m \approx n \log n)$

$$\nabla^2 f(x) \succ \mathbf{0}$$
 but ill-conditioned (even locally)

Consequence (Candès et al '14): WF attains ε -accuracy within $O(n\log\frac{1}{\varepsilon})$ iterations if $m\asymp n\log n$

WF converges in O(n) iterations

WF converges in O(n) iterations

Step size taken to be $\eta = O(1/n)$

WF converges in O(n) iterations

Step size taken to be $\eta = O(1/n)$

This choice is suggested by worst-case optimization theory

WF converges in O(n) iterations

Step size taken to be $\eta = O(1/n)$

This choice is suggested by worst-case optimization theory

Does it capture what really happens?

Numerical efficiency with $\eta_t = 0.1$

Vanilla GD (WF) converges fast for a constant step size!

Which local region enjoys both strong convexity and smoothness?

$$\nabla^2 f(\boldsymbol{x}) = \frac{1}{m} \sum_{k=1}^m \left[3 (\boldsymbol{a}_k^\top \boldsymbol{x})^2 - (\boldsymbol{a}_k^\top \boldsymbol{x}^{\natural})^2 \right] \boldsymbol{a}_k \boldsymbol{a}_k^\top$$

Which local region enjoys both strong convexity and smoothness?

$$abla^2 f(oldsymbol{x}) = rac{1}{m} \sum_{k=1}^m \left[3 oldsymbol{(a_k^ op oldsymbol{x})}^2 - oldsymbol{(a_k^ op oldsymbol{x})}^2
ight] oldsymbol{a}_k oldsymbol{a}_k^ op$$

ullet Not sufficiently smooth if x and a_k are too close (coherent)

Which local region enjoys both strong convexity and smoothness?

ullet x is incoherent w.r.t. sampling vectors $\{a_k\}$ (incoherence region)

Which local region enjoys both strong convexity and smoothness?

ullet x is incoherent w.r.t. sampling vectors $\{a_k\}$ (incoherence region)

Which local region enjoys both strong convexity and smoothness?

• x is incoherent w.r.t. sampling vectors $\{a_k\}$ (incoherence region)

Prior works suggest enforcing regularization (e.g. truncation, projection, regularized loss) to promote incoherence

GD implicitly forces iterates to remain incoherent with $\{\boldsymbol{a}_k\}$ $\max_k |\boldsymbol{a}_k^\top (\boldsymbol{x}^t - \boldsymbol{x}^\natural)| \lesssim \sqrt{\log n} \, \|\boldsymbol{x}^\natural\|_2, \quad \forall t$

 cannot be derived from generic optimization theory; relies on finer statistical analysis for entire trajectory of GD

Theoretical guarantees for local refinement stage

Theorem 3 (Ma, Wang, Chi, Chen'17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

• $\max_k |\boldsymbol{a}_k^{ op} \boldsymbol{x}^t| \lesssim \sqrt{\log n} \, \|\boldsymbol{x}^{\natural}\|_2$ (incoherence)

Theoretical guarantees for local refinement stage

Theorem 3 (Ma, Wang, Chi, Chen '17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

- $\max_k |\boldsymbol{a}_k^{ op} \boldsymbol{x}^t| \lesssim \sqrt{\log n} \, \|\boldsymbol{x}^{\natural}\|_2$ (incoherence)
- ullet dist $(oldsymbol{x}^t,oldsymbol{x}^{
 atural})\lesssim \left(1-rac{\eta}{2}
 ight)^t\|oldsymbol{x}^{
 atural}\|_2$ (linear convergence)

provided that step size $\eta \approx 1/\log n$ and sample size $m \gtrsim n \log n$.

ullet Attains arepsilon accuracy within $O(\log n \, \log rac{1}{arepsilon})$ iterations

For each $1 \leq l \leq m$, introduce leave-one-out iterates $\boldsymbol{x}^{t,(l)}$ by dropping lth measurement

ullet Leave-one-out iterate $oldsymbol{x}^{t,(l)}$ is independent of $oldsymbol{a}_l$

- ullet Leave-one-out iterate $oldsymbol{x}^{t,(l)}$ is independent of $oldsymbol{a}_l$
- ullet Leave-one-out iterate $oldsymbol{x}^{t,(l)} pprox ext{true}$ iterate $oldsymbol{x}^t$

- ullet Leave-one-out iterate $oldsymbol{x}^{t,(l)}$ is independent of $oldsymbol{a}_l$
- ullet Leave-one-out iterate $oldsymbol{x}^{t,(l)} pprox ext{true}$ iterate $oldsymbol{x}^t$

$$\implies x^t$$
 is nearly independent of a_l

No need of sample splitting

• Several prior works use sample-splitting: require fresh samples at each iteration; not practical but helps analysis

No need of sample splitting

• Several prior works use sample-splitting: require fresh samples at each iteration; not practical but helps analysis

• This tutorial: reuses all samples in all iterations

Questions

So far we have presented theory for

spectral initialization + vanilla gradient descent (WF)

Questions

So far we have presented theory for

spectral initialization + vanilla gradient descent (WF)

Questions:

- Is carefully-designed initialization necessary for fast convergence?
- Can we further improve sample complexity?
- Robustness vis a vis noise and outliers?

Initialization

• Spectral initialization gets us reasonably close to truth

Initialization

- Spectral initialization gets us reasonably close to truth
- Cannot initialize GD from anywhere, e.g. it might get stucked at local stationary points (e.g. saddle points)

Initialization

- Spectral initialization gets us reasonably close to truth
- Cannot initialize GD from anywhere, e.g. it might get stucked at local stationary points (e.g. saddle points)

Can we initialize GD randomly, which is simpler and model-agnostic?

Numerical efficiency of randomly initialized GD

$$\eta_t = 0.1, \ a_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n), \ m = 10n, \ \mathbf{x}^0 \sim \mathcal{N}(\mathbf{0}, n^{-1}\mathbf{I}_n)$$

Numerical efficiency of randomly initialized GD

Randomly initialized GD enters local basin within a few iterations

Numerical efficiency of randomly initialized GD

Randomly initialized GD enters local basin within a few iterations

A geometric analysis

- if $m \gtrsim n \log^3 n$, then (Sun et al. '16)
 - o there is no spurious local mins
 - o all saddle points are strict (i.e. associated Hessian matrices have at least one sufficiently negative eigenvalue)

A geometric analysis

 With such benign landscape, GD with random initialization converges to global min almost surely (Lee et al. '16)

No convergence rate guarantees for vanilla GD!

Exponential growth of signal strength in Stage 1

Exponential growth of signal strength in Stage 1

Exponential growth of signal strength in Stage 1

Numerically, $O(\log n)$ iterations are enough to enter local region

Exponential growth of signal strength in Stage 1

Numerically, $O(\log n)$ iterations are enough to enter local region

Linear / geometric convergence in Stage 2

Linear / geometric convergence in Stage 2

Numerically, GD converges linearly within local region

These numerical findings can be formalized when $a_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, I_n)$:

Theorem 4 (Chen, Chi, Fan, Ma'18)

Under i.i.d. Gaussian design, GD with $x^0 \sim \mathcal{N}(\mathbf{0}, n^{-1}\mathbf{I}_n)$ achieves

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_2, \qquad t \geq T_{\gamma}$$

for $T_{\gamma} \lesssim \log n$ and some constants $\gamma, \rho > 0$, provided that step size $\eta \asymp 1$ and sample size $m \gtrsim n$ poly $\log m$

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_2, \quad t \geq T_{\gamma} \approx \log n$$

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_2, \quad t \geq T_{\gamma} \asymp \log n$$

• Stage 1: takes $O(\log n)$ iterations to reach $\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\natural) \leq \gamma$

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_2, \quad t \geq T_{\gamma} \asymp \log n$$

- Stage 1: takes $O(\log n)$ iterations to reach $\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^\natural) \leq \gamma$
- Stage 2: linear convergence

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_2, \quad t \geq T_{\gamma} \asymp \log n$$

• near-optimal compututational cost:

— $O(\log n + \log \frac{1}{\varepsilon})$ iterations to yield ε accuracy

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \leq \gamma (1 - \rho)^{t - T_{\gamma}} \|\boldsymbol{x}^{\natural}\|_2, \quad t \geq T_{\gamma} \approx \log n$$

- near-optimal compututational cost:
 - $O(\log n + \log \frac{1}{\varepsilon})$ iterations to yield ε accuracy
- near-optimal sample size: $m \gtrsim n$ poly $\log m$

Experiments on images

- coded diffraction patterns
- ullet $oldsymbol{x}^
 atural} \in \mathbb{R}^{256 imes 256}$
- m/n = 12

GD with random initialization

$$oldsymbol{x}^t$$
 GD iterate

$$\langle oldsymbol{x}^t, oldsymbol{x}^{
atural}
angle oldsymbol{x}^{
atural}$$
 signal component

$$\langle x^t, x^{
atural}
angle x^{
atural} = x^t - \langle x^t, x^{
atural}
angle x^{
atural}$$
 signal component perpendicular component

use Adobe Acrobat to see animation

Saddle-escaping schemes?

Randomly initialized GD never hits saddle points in phase retrieval!

Other saddle-escaping schemes

	iteration complexity	num of iterations needed to escape saddles	local iteration complexity
Trust-region (Sun et al. '16)	$n^7 + \log \log \frac{1}{\varepsilon}$	n^7	$\log \log \frac{1}{\varepsilon}$
Perturbed GD (Jin et al. '17)	$n^3 + n \log \frac{1}{\varepsilon}$	n^3	$n\log\frac{1}{\varepsilon}$
Perturbed accelerated GD (Jin et al. '17)	$n^{2.5} + \sqrt{n} \log \frac{1}{\varepsilon}$	$n^{2.5}$	$\sqrt{n}\log\frac{1}{\varepsilon}$
GD (Chen et al. '18)	$\log n + \log \frac{1}{\varepsilon}$	$\log n$	$\log \frac{1}{\varepsilon}$

Generic optimization theory yields highly suboptimal convergence guarantees

Even simplest possible nonconvex methods are quite efficient for phase retrieval

smart	sample	saddle	
initialization	splitting	escaping	
NEED	NEED	NEED	

Improving search directions

WF (GD):
$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \frac{\eta}{m} \sum_k \nabla f_k(\boldsymbol{x}^t)$$

Improving search directions

WF (GD):
$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \frac{\eta}{m} \sum_k \nabla f_k(\boldsymbol{x}^t)$$

Improving search directions

WF (GD):
$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \frac{\eta}{m} \sum_k \nabla f_k(\boldsymbol{x}^t)$$

Problem: descent direction might have large variability

Solution: variance reduction via trimming

More adaptive rule: $m{x}^{t+1} = m{x}^t - rac{\eta}{m} \sum_{k \in \mathcal{T}_t} \nabla f_k(m{x}^t)$

Solution: variance reduction via trimming

More adaptive rule: $x^{t+1} = x^t - \frac{\eta}{m} \sum_{k \in \mathcal{T}_t} \nabla f_k(x^t)$

• \mathcal{T}_t trims away excessively large grad components

$$\mathcal{T}_t := \left\{k: \quad \left\|\nabla f_k(\boldsymbol{x}^t)\right\|_2 \; \lesssim \; \text{typical-size} \Big\{\left\|\nabla f_l(\boldsymbol{x}^t)\right\|_2\Big\}_{1 \leq l \leq m}\right\}$$

Slight bias + much reduced variance

Summary: truncated Wirtinger flow

(1) Regularized spectral initialization: $x^0 \leftarrow$ principal component of

$$\frac{1}{m} \sum\nolimits_{k \in \mathcal{T}_0} y_k \, \boldsymbol{a}_k \boldsymbol{a}_k^*$$

(2) Follow adaptive gradient descent

$$oldsymbol{x}^t = oldsymbol{x}^t - rac{\eta_t}{m} \sum
olimits_{k \in \mathcal{T}_t}
abla f_k(oldsymbol{x}^t)$$

Adaptive and iteration-varying rules: discard high-leverage data $\{y_k : k \notin \mathcal{T}_t\}$

Theoretical guarantees (noiseless data)

Theorem 5 (Chen, Candès '15)

Suppose $a_k \overset{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, I_n)$ and sample size $m \gtrsim n$. With high prob.,

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) := \min \|\boldsymbol{x}^t \pm \boldsymbol{x}^{\natural}\|_2 \leq \nu (1 - \rho)^t \|\boldsymbol{x}\|_2$$

where $0 < \nu, \rho < 1$ are universal constants

Empirical success rate (noiseless data)

Empirical success rate vs. sample size

Stability under noisy data

- Noisy data: $y_k = |\boldsymbol{a}_k^* \boldsymbol{x}^{\natural}|^2 + \eta_k$
- Signal-to-noise ratio:

$$\mathsf{SNR} := \frac{\sum_k |\boldsymbol{a}_k^* \boldsymbol{x}^\natural|^4}{\sum_k \eta_k^2} \approx \frac{3m \|\boldsymbol{x}^\natural\|^4}{\|\boldsymbol{\eta}\|^2}$$

ullet i.i.d. Gaussian design $oldsymbol{a}_k \overset{\mathsf{i.i.d.}}{\sim} \mathcal{N}(oldsymbol{0}, oldsymbol{I}_n)$

Stability under noisy data

- Noisy data: $y_k = |\boldsymbol{a}_k^* \boldsymbol{x}^{\natural}|^2 + \eta_k$
- Signal-to-noise ratio:

$$\mathsf{SNR} := \frac{\sum_k |\boldsymbol{a}_k^* \boldsymbol{x}^\natural|^4}{\sum_k \eta_k^2} \approx \frac{3m \|\boldsymbol{x}^\natural\|^4}{\|\boldsymbol{\eta}\|^2}$$

ullet i.i.d. Gaussian design $oldsymbol{a}_k \overset{\mathsf{i.i.d.}}{\sim} \mathcal{N}(oldsymbol{0}, oldsymbol{I}_n)$

Theorem 6 (Chen, Candès '15)

Relative error of TWF converges to $O(\frac{1}{\sqrt{\mathsf{SNR}}})$

Relative MSE vs. SNR (Poisson data)

Empirical evidence: relative MSE scales inversely with SNR

This accuracy is nearly un-improvable (empirically)

Comparison with ideal MLE (with phase info. revealed)

ideal knowledge:
$$y_k \sim \mathsf{Poisson}(\left| oldsymbol{a}_k^* oldsymbol{x}^{\natural} \right|^2)$$
 and $arepsilon_k = \mathrm{sign}(oldsymbol{a}_k^* oldsymbol{x}^{\natural})$

Little loss due to missing phases!

This accuracy is nearly un-improvable (theoretically)

- ullet Poisson data: $y_k \overset{ ext{ind.}}{\sim} \operatorname{Poisson}(\,|oldsymbol{a}_k^*oldsymbol{x}^{
 atural}|^2\,)$
- Signal-to-noise ratio:

$$\mathsf{SNR} \ pprox \ rac{\sum_k |oldsymbol{a}_k^* oldsymbol{x}^\dagger|^4}{\sum_k \mathsf{Var}(y_k)} \ pprox \ 3\|oldsymbol{x}^\sharp\|_2^2$$

This accuracy is nearly un-improvable (theoretically)

- ullet Poisson data: $y_k \overset{ ext{ind.}}{\sim} \operatorname{Poisson}(\,|oldsymbol{a}_k^*oldsymbol{x}^{
 atural}|^2\,)$
- Signal-to-noise ratio:

$$\mathsf{SNR} \; \approx \; \frac{\sum_k |\boldsymbol{a}_k^* \boldsymbol{x}^\natural|^4}{\sum_k \mathsf{Var}(y_k)} \; \approx \; 3 \|\boldsymbol{x}^\natural\|_2^2$$

Theorem 7 (Chen, Candès '15)

. Under i.i.d. Gaussian design, for any estimator \widehat{x} ,

$$\inf_{\widehat{\boldsymbol{x}}} \sup_{\boldsymbol{x}: \ \|\boldsymbol{x}\|_2 \geq \log^{1.5} m} \frac{\mathbb{E}\left[\operatorname{dist}\left(\widehat{\boldsymbol{x}}, \boldsymbol{x}\right) \mid \{\boldsymbol{a}_k\}\right]}{\|\boldsymbol{x}\|_2} \ \gtrsim \ \frac{1}{\sqrt{\mathsf{SNR}}},$$

provided that sample size $m \approx n$

Robust recovery vis a vis outliers

Consider now two sources of corruption: *sparse outliers* and *bounded noise*

$$y_i = |\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x}^{\natural}|^2 + \eta_i + w_i, \quad i = 1, \dots, m,$$

- $\|\eta\|_0 \le s \cdot m$: sparse outlier, where $0 \le s < 1$ is fraction of outliers
- w: bounded noise

Motivation: outliers happen with sensor failures, malicious attacks ...

Robust recovery vis a vis outliers

Goal: develop algorithms that are *oblivious* to outliers, and statistically and computationally efficient

- performs equally well regardless of existence of outliers
- small sample size: ideally $m \asymp n$
- large fraction of outliers: ideally $s \approx 1$
- low computational complexity and easy to implement

Existing approaches are not robust in the presence of arbitrary outliers

ullet Spectral initialization would fail: leading eigenvector of $oldsymbol{Y}$ can be arbitrarily perturbed

$$m{Y} = rac{1}{m} \sum_{i=1}^m m{y_i} m{a_i} m{a}_i^ op \quad ext{(WF)}$$
 or $m{Y} = rac{1}{m} \sum_{i=1}^m y_i m{a_i} m{a}_i^ op \mathbb{1}_{\{|y_i| \lesssim \mathsf{mean}(\{y_i\})\}} \quad ext{(TWF)}$

Existing approaches are not robust in the presence of arbitrary outliers

ullet Spectral initialization would fail: leading eigenvector of $oldsymbol{Y}$ can be arbitrarily perturbed

$$m{Y} = rac{1}{m} \sum_{i=1}^m m{y_i} m{a}_i m{a}_i^ op \quad ext{(WF)}$$
 or $m{Y} = rac{1}{m} \sum_{i=1}^m m{y}_i m{a}_i m{a}_i^ op \mathbb{1}_{\{|y_i| \lesssim \mathsf{mean}(\{y_i\})\}} \quad ext{(TWF)}$

• GD would fail: search directions can be arbitrarily perturbed

$$oldsymbol{x}^{t+1} = oldsymbol{x}^t - rac{\eta}{m} \sum_{i=1}^m
abla f_k(oldsymbol{x}^t)$$

Solution: median truncation

Median is often more stable for various levels of outliers

well-known in robust statistics to be outlier-resilient

no outliers

small outlier magnitudes

large outlier magnitudes

Solution: median truncation

Median is often more stable for various levels of outliers

well-known in robust statistics to be outlier-resilient

no outliers

small outlier magnitudes

large outlier magnitudes

Key idea: "median-truncation" — discard samples *adaptively* based on how large sample gradients/values deviate from median

Median-truncated gradient descent

(1) Median-truncated spectral initialization: $x^0 \leftarrow$ leading eigenvector of

$$oldsymbol{Y} = rac{1}{m} \sum_{i=1}^m y_i oldsymbol{a}_i oldsymbol{a}_i^ op \mathbb{1}_{\{|y_i| \lesssim \mathsf{median}(\{y_i\})\}}$$

(2) Median-truncated gradient descent:

$$\boldsymbol{x}^{t+1} = \boldsymbol{x}^t - \frac{\eta}{m} \sum_{k \in \mathcal{T}_t} \nabla f_k(\boldsymbol{x}^t),$$

where

$$\mathcal{T}_t = \left\{k: \ \left|y_k - |\boldsymbol{a}_k^\top \boldsymbol{x}^t|\right| \lesssim \mathsf{median}\left(\left\{\left|y_k - |\boldsymbol{a}_k^\top \boldsymbol{x}^t|\right|\right\}\right)\right\}$$

Performance guarantees

Theorem 8 (Zhang, Chi and Liang '16)

Assume $\|\boldsymbol{w}\|_{\infty} \leq c_1 \|\boldsymbol{x}^{\natural}\|_2^2$, and $\boldsymbol{a}_i \overset{i.i.d.}{\sim} \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}_n)$. If $m \gtrsim n \log n$ and $s \lesssim s_0$, then with high prob., median-TWF/RWF yields

$$\operatorname{dist}(\boldsymbol{x}^t, \boldsymbol{x}^{\natural}) \lesssim \frac{\|\boldsymbol{w}\|_{\infty}}{\|\boldsymbol{x}^{\natural}\|_{2}} + (1 - \rho)^t \|\boldsymbol{x}^{\natural}\|_{2}, \quad t = 0, 1, \cdots$$

for some constants $0 < \rho, s_0 < 1$

- ullet Exact recovery when $oldsymbol{w}=oldsymbol{0}$ but with a constant fraction of outliers $ssymbol{lpha}1$
- Stable recovery with additional bounded noise
- Resist outliers obliviously: no prior knowledge of outliers (except sparsity)

Numerical experiment with both dense noise and sparse outliers

Median-TWF with outliers achieves almost identical accuracy as TWF without outliers

Tutorial outline

- Part I: Overview
- Part II: Phase retrieval: a case study
 - o Spectral initialization
 - o Local refinement: algorithm and analysis
- Part III: Low-rank matrix estimation
- Part IV: Closing remarks

Motivation

Low-rank matrix estimation problems arise in many applications

A popular example is **recommendation systems**: how to predict unseen user ratings for movies?

figure credit: E. Candes

Low-rank modeling

A few factors explain most of the data

Low-rank modeling

A few factors explain most of the data \longrightarrow low-rank approximation

How to exploit (approx.) low-rank structure in prediction?

Other problems with low-rank matrices

- sensor network localization
- structure from motion
- system identification and time series analysis
- spatial-temporal data modeling, e.g. video, network traffic, ...
- face recognition
- quantum state tomography
- community detection
- ..

Rank-constrained optimization

Rank-constrained optimization:

$$\mathsf{minimize}_{oldsymbol{M} \in \mathbb{R}^{n \times n}} \quad F(oldsymbol{M}) \quad \mathsf{s.t.} \quad \mathsf{rank}(oldsymbol{M}) \leq r,$$

where F(M) is convex in M, and $r \ll n$

- useful model for many low-rank estimation problems;
- computationally intractable.

Convex relaxation

Convex relaxation:

$$\mathsf{minimize}_{\boldsymbol{M} \in \mathbb{R}^{n \times n}} \quad F(\boldsymbol{M}) \quad \mathsf{s.t.} \quad \|\boldsymbol{M}\|_* \leq \zeta$$

where $\|\cdot\|_*$ is nuclear norm — convex relaxation of rank

- Pros: mature theory; versatile to incorporate other constraints
- \bullet Cons: run-time in $O(n^3)$; even ${\bf M}$ itself takes $O(n^2)$ storage

Question: can we develop algorithms that work with $\underline{\text{computational}}$ and memory complexities nearly linear in n?

Burer-Monteiro factorization

Matrix factorization:

$$\mathsf{minimize}_{\boldsymbol{U},\boldsymbol{V}} f(\boldsymbol{U},\boldsymbol{V}) := F(\boldsymbol{U}\boldsymbol{V}^\top)$$

where $\boldsymbol{M} = \boldsymbol{U}\boldsymbol{V}^{\top}$, where $\boldsymbol{U}, \boldsymbol{V} \in \mathbb{R}^{n \times r}$.

- pioneered by Burer, Monteiro '03
- highly non-convex
- global ambiguity: for any orthonormal ${m R} \in \mathbb{R}^{r imes r}$ and lpha
 eq 0,

$$\boldsymbol{U}\boldsymbol{V}^{\top} = (\alpha \boldsymbol{U}\boldsymbol{R})(\alpha^{-1}\boldsymbol{V}\boldsymbol{R})^{\top}$$

i.e. if $(\boldsymbol{U}, \boldsymbol{V})$ is a global minimizer, so does $(\alpha \boldsymbol{U}\boldsymbol{R}, \alpha^{-1}\boldsymbol{V}\boldsymbol{R})$

Revisiting PCA

Given PSD $M \in \mathbb{R}^{n \times n}$ (not necessarily low-rank), solve *low-rank* approximation problem (best rank-r approximation):

$$\widehat{\underline{M}} = \mathop{\rm argmin}_{\pmb{Z}} \|\pmb{Z} - \pmb{M}\|_{\rm F}^2 \quad \text{s.t.} \quad \mathop{\rm rank}(\pmb{Z}) \leq r$$
 nonconvex optimization!

Solution is truncated eigen-decomposition (Eckart-Young theorem)

ullet let $M=\sum_{i=1}^n\sigma_i oldsymbol{u}_ioldsymbol{u}_i^ op$ be EVD of M $(\sigma_1\geq\cdots\geq\sigma_n)$, then

$$\widehat{m{M}} = \sum_{i=1}^r \sigma_i m{u}_i m{u}_i^{ op}$$

— nonconvex, but tractable

Optimization viewpoint

Factorize $\pmb{Z} = \pmb{X} \pmb{X}^{ op}$ with $\pmb{X} \in \mathbb{R}^{n \times r}.$ We're interested in the landscape of

$$f(\boldsymbol{X}) := \frac{1}{4} \| \boldsymbol{X} \boldsymbol{X}^{\top} - \boldsymbol{M} \|_{\mathrm{F}}^{2}$$

Optimization viewpoint

Factorize $\pmb{Z} = \pmb{X} \pmb{X}^{ op}$ with $\pmb{X} \in \mathbb{R}^{n \times r}$. We're interested in the landscape of

$$f(\boldsymbol{X}) := \frac{1}{4} \|\boldsymbol{X}\boldsymbol{X}^\top - \boldsymbol{M}\|_{\mathrm{F}}^2$$

To simplify exposition: set r = 1.

$$f(\boldsymbol{x}) = \frac{1}{4} \|\boldsymbol{x}\boldsymbol{x}^\top - \boldsymbol{M}\|_{\mathrm{F}}^2$$

Definition 9 (critical points)

A first-order critical point (stationary point) of f satisfies

$$\nabla f(\boldsymbol{x}) = \mathbf{0}$$

Several types of critical points

Figure credit: Li et al. '16

Critical points of f(x)

$$m{x}$$
 is critical point, i.e. $abla f(m{x}) = (m{x}m{x}^ op - m{M})m{x} = m{0}$
$$\updownarrow \\ m{M}m{x} = \|m{x}\|_2^2 m{x}$$

$$\updownarrow$$

 $oldsymbol{x}$ aligns with eigenvectors of $oldsymbol{M}$ or $oldsymbol{x}=oldsymbol{0}$

Since $m{M}m{u}_i = \sigma_im{u}_i$, set of critical points is given by

$$\{\mathbf{0}\} \cup \{\sqrt{\sigma_i} \boldsymbol{u}_i, \ i = 1, \dots, n\}$$

Categorization of critical points

Critical points can be further categorized based on **Hessians**:

$$\nabla^2 f(\boldsymbol{x}) := 2\boldsymbol{x}\boldsymbol{x}^\top + \|\boldsymbol{x}\|_2^2 \boldsymbol{I} - \boldsymbol{M}$$

ullet For any non-zero critical points $oldsymbol{x}_k := \sqrt{\sigma_k} oldsymbol{u}_k$:

$$\nabla^{2} f(\boldsymbol{x}_{k}) = 2\sigma_{k} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top} + \sigma_{k} \boldsymbol{I} - \boldsymbol{M}$$

$$= 2\sigma_{k} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top} + \sigma_{k} \left(\sum_{i=1}^{n} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} \right) - \sum_{i=1}^{n} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}$$

$$= \sum_{i:i \neq k} (\sigma_{k} - \sigma_{i}) \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} + 2\sigma_{k} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top}$$

Categorization of critical points

Critical points can be further categorized based on **Hessians**:

$$\nabla^2 f(\boldsymbol{x}) := 2\boldsymbol{x}\boldsymbol{x}^\top + \|\boldsymbol{x}\|_2^2 \boldsymbol{I} - \boldsymbol{M}$$

 $\begin{array}{lll} \bullet & \mbox{ If } \sigma_1 > \sigma_2 \geq \ldots \geq \sigma_n \geq 0, \mbox{ then} \\ & \circ & k = 1 \colon \nabla^2 f(\boldsymbol{x}_1) \succ \boldsymbol{0} & \to & \mbox{ local minima} \\ & \circ & 1 < k \leq n \colon \lambda_{\min}(\nabla^2 f(\boldsymbol{x}_k)) < 0, \ \lambda_{\max}(\nabla^2 f(\boldsymbol{x}_k)) > 0 \\ & \to & \mbox{ strict saddle} \\ & \circ & \boldsymbol{x} = \boldsymbol{0} \colon \nabla^2 f(\boldsymbol{0}) \preceq \boldsymbol{0} & \to & \mbox{ local maxima (or strict saddle)} \\ \end{array}$

Good news: benign landscape

For example, for 2-dimensional case $f(x) = \left\|xx^\top - \begin{bmatrix}1 & 1\\1 & 1\end{bmatrix}\right\|_{\mathrm{F}}^2$

global minima
$$m{x}=\pm \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 & strict saddle $m{x}=\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, and $\pm \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ — No "spurious" local minima!

Key messages from landscape analysis

$$f(\boldsymbol{X}) := \frac{1}{4} \| \boldsymbol{X} \boldsymbol{X}^{\top} - \boldsymbol{M} \|_{\mathrm{F}}^{2}, \qquad \boldsymbol{X} \in \mathbb{R}^{n \times r}$$

If $\sigma_r > \sigma_{r+1}$:

- ullet all local minima are global: X contains top-r eigenvectors (up to orthonormal transformation)
- **strict saddle points:** all stationary points are saddle points except global optimum

Low-rank recovery with few measurements

Consider linear measurements:

$$y = \mathcal{A}(M), \quad y \in \mathbb{R}^m, \quad m \ll n^2$$

where $M \in \mathbb{R}^{n \times n}$ is rank-r $(r \ll n)$ and PSD (for simplicity).

• Consider least-squares loss function:

$$f(\boldsymbol{X}) := \frac{1}{4} \| \mathcal{A}(\boldsymbol{X} \boldsymbol{X}^{\top} - \boldsymbol{M}) \|_{\mathrm{F}}^{2}$$

• If \mathcal{A} is isotropic (i.e. $\mathbb{E}[\mathcal{A}^*\mathcal{A}] = \mathcal{I}$), then

$$\mathbb{E}[f(\boldsymbol{X})] = \frac{1}{4} \|\boldsymbol{X}\boldsymbol{X}^{\top} - \boldsymbol{M}\|_{\mathrm{F}}^{2}$$

• Does f(X) inherit benign landscape?

Landscape preserving under RIP

Definition 10

Rank-r restricted isometry constants δ_r is smallest quantity obeying

$$(1 - \delta_r) \|\boldsymbol{M}\|_{\mathsf{F}}^2 \leq \|\mathcal{A}(\boldsymbol{M})\|_{\mathsf{F}}^2 \leq (1 + \delta_r) \|\boldsymbol{M}\|_{\mathsf{F}}^2, \ \forall \boldsymbol{M} : \mathsf{rank}(\boldsymbol{M}) \leq r$$

Landscape preserving under RIP

Definition 10

Rank-r restricted isometry constants δ_r is smallest quantity obeying

$$(1-\delta_r)\|\boldsymbol{M}\|_{\mathsf{F}}^2 \leq \|\mathcal{A}(\boldsymbol{M})\|_{\mathsf{F}}^2 \leq (1+\delta_r)\|\boldsymbol{M}\|_{\mathsf{F}}^2, \ \forall \boldsymbol{M} : \mathsf{rank}(\boldsymbol{M}) \leq r$$

Key message: benign landscape is preserved when $\mathcal A$ satisfies RIP e.g., when $\mathcal A$ follows the Gaussian design

Landscape preserving under RIP

Definition 10

Rank-r restricted isometry constants δ_r is smallest quantity obeying

$$(1 - \delta_r) \|\boldsymbol{M}\|_{\mathsf{F}}^2 \leq \|\mathcal{A}(\boldsymbol{M})\|_{\mathsf{F}}^2 \leq (1 + \delta_r) \|\boldsymbol{M}\|_{\mathsf{F}}^2, \ \forall \boldsymbol{M} : \mathsf{rank}(\boldsymbol{M}) \leq r$$

Theorem 11 (Bhojanapalli et al. '16, Ge et al. '17)

If \mathcal{A} satisfies RIP with $\delta_{2r} < \frac{1}{10}$, then

- \bullet all local min are global: any local minimum ${\pmb X}$ of $f(\cdot)$ satisfies ${\pmb X} {\pmb X}^{\top} = {\pmb M}$
- strict saddle points: any non-local min critical point X of $f(\cdot)$ satisfies $\lambda_{\min}[\nabla^2 f(X)] \leq -\frac{2}{5}\sigma_r$

Landscape without RIP

Matrix completion:

Complete M from partial entries $M_{i,j},\ (i,j)\in\Omega$ where (i,j) is included in Ω independently with prob. p

find low-rank
$$\widehat{m{M}}$$
 s.t. $\mathcal{P}_{\Omega}(\widehat{m{M}}) = \mathcal{P}_{\Omega}(m{M})$

In matrix completion, RIP does not hold

ightarrow need to regularize loss function by promoting **incoherent** solutions

Incoherence for matrix completion

Definition 12 (Incoherence for matrix completion)

A rank-r matrix ${m M}$ with eigendecomposition ${m M} = {m U} {m \Sigma} {m U}^{ op}$ is said to be μ -incoherent if

$$\left\| \boldsymbol{U} \right\|_{2,\infty} \leq \sqrt{\frac{\mu}{n}} \left\| \boldsymbol{U} \right\|_{\mathrm{F}} = \sqrt{\frac{\mu r}{n}}.$$

e.g.
$$\underbrace{\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & & \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}}_{\text{hard } \mu=n} \quad \text{vs.} \quad \underbrace{\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & & \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}}_{\text{easy } \mu=1}$$

Regularization

One possible regularizer:

$$Q(\boldsymbol{X}) = \sum_{i=1}^{n} (\underbrace{\|\boldsymbol{e}_{i}^{\top}\boldsymbol{X}\|_{2}}_{\text{row norm}} - \alpha)_{+}^{4} := \sum_{i=1}^{n} Q_{i}(\|\boldsymbol{e}_{i}^{\top}\boldsymbol{X}\|_{2})$$

where α is regularization parameter, and $z_+ = \max\{z, 0\}$

MC has no spurious local minima under proper regularization

Consider regularized loss function

$$f_{\text{reg}}(\boldsymbol{X}) = \frac{1}{p} \| \mathcal{P}_{\Omega}(\boldsymbol{X}\boldsymbol{X}^{\top} - \boldsymbol{M}) \|_{\text{F}}^2 + \underbrace{\lambda Q(\boldsymbol{X})}_{\text{promote incoherence}}$$

where λ : regularization parameter

Theorem 13 (Ge et al, 2016)

If sample size $n^2p\gtrsim \mu^4nr^6\log n$ and if α and λ are chosen properly, then with high prob.,

- ullet all local min are global: any local minimum $m{X}$ of $f_{\mathsf{reg}}(\cdot)$ satisfies $m{X}m{X}^{ op} = m{M}$
- saddle points that are not local minima are strict saddles

Initialization-free theory

Implications:

- Under benign landscape, local search algorithms that can find local minima are often sufficient, *regardless of initialization*
- Key algorithm issue: how to escape saddle points

Saddle-point escaping algorithms

- Vanilla GD with random initialization: converges to global minimizers almost surely, but no rates are known (Lee et al. '16)
- Second-order algorithms (Hessian-based): trust-region methods,
 ... (Sun et al. '16)
- First-order algorithms: (perturbed) gradient descent, stochastic gradient descent, ... (Jin et al. '17)

Open problem: does MC converge fast with random initialization?

Let $M = X^{\natural}X^{\natural \top}$. Observe

$$Y_{i,j} = M_{i,j} + E_{i,j}, \quad (i,j) \in \Omega$$

where $\mathbb{P}((i,j) \in \Omega) = p$ and $E_{i,j} \sim \mathcal{N}(0,\sigma^2)^1$.

$$\text{minimize} \left\| \mathcal{P}_{\Omega} \left(\widehat{\boldsymbol{M}} - \boldsymbol{Y} \right) \right\|_{\mathrm{F}}^2 \quad \text{s.t.} \quad \text{rank}(\widehat{\boldsymbol{M}}) \leq r$$

¹can be relaxed to sub-Gaussian noise and asymmetric case.

Let $M = X^{\natural}X^{\natural \top}$. Observe

$$Y_{i,j} = M_{i,j} + E_{i,j}, \quad (i,j) \in \Omega$$

where $\mathbb{P}\left((i,j)\in\Omega\right)=p$ and $E_{i,j}\sim\mathcal{N}(0,\sigma^2)^1$.

$$\operatorname{minimize} \left\| \mathcal{P}_{\Omega} \left(\widehat{\boldsymbol{M}} - \boldsymbol{Y} \right) \right\|_{\mathrm{F}}^2 \quad \text{s.t.} \quad \operatorname{rank}(\widehat{\boldsymbol{M}}) \leq r$$

¹can be relaxed to sub-Gaussian noise and asymmetric case.

(1) **Spectral initialization**: let $U^0 \Sigma^0 U^{0 \top}$ be rank-r eigendecomposition of

$$\frac{1}{p}\mathcal{P}_{\Omega}(\boldsymbol{Y}).$$

and set $oldsymbol{X}^0 = oldsymbol{U}^0 \left(oldsymbol{\Sigma}^0
ight)^{1/2}$

(2) Gradient descent updates:

$$\mathbf{X}^{t+1} = \mathbf{X}^t - \eta_t \nabla f(\mathbf{X}^t), \qquad t = 0, 1, \cdots$$

Define optimal transform from the tth iterate $oldsymbol{X}^t$ to $oldsymbol{X}^{
abla}$ as

$$oldsymbol{Q}^t := \mathsf{argmin}_{oldsymbol{R} \in \mathcal{O}^{r imes r}} ig\| oldsymbol{X}^t oldsymbol{R} - oldsymbol{X}^
atural$$

Theorem 14 (Noiseless MC, Ma, Wang, Chi, Chen'17)

Suppose $M=X^{\natural}X^{\natural\top}$ is rank-r, incoherent and well-conditioned. Vanilla GD (with spectral initialization) achieves

- $\|\boldsymbol{X}^t \boldsymbol{Q}^t \boldsymbol{X}^{\natural}\|_{\mathrm{F}} \lesssim \frac{\rho^t}{\rho^t} \mu r \frac{1}{\sqrt{np}} \|\boldsymbol{X}^{\natural}\|_{\mathrm{F}}$,
- $ullet \| oldsymbol{X}^t oldsymbol{Q}^t oldsymbol{X}^{
 atural} \| \lesssim oldsymbol{
 ho}^t \mu r rac{1}{\sqrt{np}} \| oldsymbol{X}^{
 atural} \|, \qquad ext{(spectral)}$
- $ullet \|m{X}^tm{Q}^t-m{X}^etaig\|_{2,\infty}\lesssim
 ho^t\mu r\sqrt{rac{\log n}{np}}\|m{X}^eta\|_{2,\infty}, \qquad ext{(incoherence)}$

where $0<\rho<1$, if step size $\eta \asymp 1/\sigma_{max}$ and sample complexity $n^2p\gtrsim \mu^3nr^3\log^3n$

vanilla gradient descent converges linearly for matrix completion!

Numerical evidence for noiseless data

Relative error of $\boldsymbol{X}^t\boldsymbol{X}^{t\top}$ (measured by $\|\cdot\|_{\mathrm{F}}$, $\|\cdot\|$, $\|\cdot\|_{\infty}$) vs. iteration count for MC, where $n=1000,\ r=10,\ p=0.1,$ and $\eta_t=0.2$

Noisy matrix completion

Theorem 15 (Noisy MC, Ma, Wang, Chi, Chen'17)

Under sample complexity of Theorem 14, if noise satisfies $\sigma\sqrt{\frac{n}{p}}\ll \frac{\sigma_{\min}}{\sqrt{\kappa^3\mu r\log^3 n}}$, then GD iterates satisfy

$$\begin{split} & \left\| \boldsymbol{X}^{t} \boldsymbol{Q}^{t} - \boldsymbol{X}^{\natural} \right\|_{\mathrm{F}} \lesssim \left(\boldsymbol{\rho}^{t} \mu r \frac{1}{\sqrt{np}} + \frac{\sigma}{\sigma_{\min}} \sqrt{\frac{n}{p}} \right) \left\| \boldsymbol{X}^{\natural} \right\|_{\mathrm{F}}, \\ & \left\| \boldsymbol{X}^{t} \boldsymbol{Q}^{t} - \boldsymbol{X}^{\natural} \right\|_{2,\infty} \lesssim \left(\boldsymbol{\rho}^{t} \mu r \sqrt{\frac{\log n}{np}} + \frac{\sigma}{\sigma_{\min}} \sqrt{\frac{n \log n}{p}} \right) \left\| \boldsymbol{X}^{\natural} \right\|_{2,\infty}, \\ & \left\| \boldsymbol{X}^{t} \boldsymbol{Q}^{t} - \boldsymbol{X}^{\natural} \right\| \lesssim \left(\boldsymbol{\rho}^{t} \mu r \frac{1}{\sqrt{np}} + \frac{\sigma}{\sigma_{\min}} \sqrt{\frac{n}{p}} \right) \left\| \boldsymbol{X}^{\natural} \right\| \end{split}$$

ullet minimax entrywise error control in $ig\|m{X}^tm{X}^{t op}-m{X}^{
atural}m{X}^{
atural}ig\|_{\infty}$

Numerical evidence for noisy data

Squared relative error of the estimate \widehat{X} (measured by $\|\cdot\|_{\mathrm{F}}, \|\cdot\|_{\cdot}\|_{\cdot}\|_{2,\infty}$) and $\widehat{M} = \widehat{X}\widehat{X}^{\top}$ (measured by $\|\cdot\|_{\infty}$) vs. SNR, where $n=500,\ r=10,\ p=0.1$, and $\eta_t=0.2$

Related theory

$$\mathsf{minimize}_{\boldsymbol{X} \in \mathbb{R}^{n \times r}} \quad f(\boldsymbol{X}) = \sum_{(j,k) \in \Omega} \left(\boldsymbol{e}_j^\top \boldsymbol{X} \boldsymbol{X}^\top \boldsymbol{e}_k - Y_{j,k}\right)^2$$

Related theory promotes incoherence explicitly:

Related theory

$$\mathsf{minimize}_{\boldsymbol{X} \in \mathbb{R}^{n \times r}} \quad f(\boldsymbol{X}) = \sum_{(j,k) \in \Omega} \left(\boldsymbol{e}_j^\top \boldsymbol{X} \boldsymbol{X}^\top \boldsymbol{e}_k - Y_{j,k}\right)^2$$

Related theory promotes incoherence explicitly:

- regularized loss (solve $\min_{\boldsymbol{X}} f(\boldsymbol{X}) + Q(\boldsymbol{X})$ instead)
 - o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16

Related theory

$$\mathsf{minimize}_{\boldsymbol{X} \in \mathbb{R}^{n \times r}} \quad f(\boldsymbol{X}) = \sum_{(j,k) \in \Omega} \left(\boldsymbol{e}_j^\top \boldsymbol{X} \boldsymbol{X}^\top \boldsymbol{e}_k - Y_{j,k}\right)^2$$

Related theory promotes incoherence explicitly:

- regularized loss (solve $\min_{\boldsymbol{X}} f(\boldsymbol{X}) + Q(\boldsymbol{X})$ instead) • e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16
- projection onto set of incoherent matrices
 - o e.g. Chen, Wainwright '15, Zheng, Lafferty '16

$$\boldsymbol{X}^{t+1} = \mathcal{P}_{\mathcal{C}}\left(\boldsymbol{X}^{t} - \eta_{t} \nabla f(\boldsymbol{X}^{t})\right), \qquad t = 0, 1, \cdots$$

Quadratic sampling

Recover $oldsymbol{X}^{
atural} \in \mathbb{R}^{n imes r}$ from m random quadratic measurements

$$y_i = \|\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{X}^{\natural}\|_2^2, \quad i = 1, \dots, m$$

Applications: quantum state tomography, covariance sketching, ...

Gradient descent with spectral initialization

$$\mathsf{minimize}_{\boldsymbol{X} \in \mathbb{R}^{n \times r}} \quad f(\boldsymbol{X}) = \frac{1}{4m} \sum_{k=1}^{m} \left(\left\| \boldsymbol{a}_k^\top \boldsymbol{X} \right\|_2^2 - y_k \right)^2$$

Gradient descent with spectral initialization

$$\text{minimize}_{\boldsymbol{X} \in \mathbb{R}^{n \times r}} \quad f(\boldsymbol{X}) = \frac{1}{4m} \sum_{k=1}^{m} \left(\left\| \boldsymbol{a}_k^\top \boldsymbol{X} \right\|_2^2 - y_k \right)^2$$

Theorem 16 (Quadratic sampling)

Under i.i.d. Gaussian designs $a_i \overset{i.i.d.}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I})$, GD (with spectral initialization) achieves

- $ullet \max_l \left\|m{a}_l^ op(m{X}^tm{Q}^t-m{X}^
 atural})
 ight\|_2 \lesssim \sqrt{\log n} \, rac{\sigma_r^2(m{X}^
 atural}{\|m{X}^
 atural}_{\|m{K}^
 atural} \, ext{(incoherence)}$
- $\|\boldsymbol{X}^t \boldsymbol{Q}^t \boldsymbol{X}^{\natural}\|_{\mathrm{F}} \lesssim \left(1 \frac{\sigma_r^2(\boldsymbol{X}^{\natural})\eta}{2}\right)^t \|\boldsymbol{X}^{\natural}\|_{\mathrm{F}}$ (linear convergence) provided that $\eta \asymp \frac{1}{(\log n \lor r)^2 \sigma_r^2(\boldsymbol{X}^{\natural})}$ and $m \gtrsim n r^4 \log n$

Demixing sparse and low-rank matrices

Suppose we are given a matrix

$$M = \underbrace{L}_{\mathsf{low-rank}} + \underbrace{S}_{\mathsf{sparse}} \in \mathbb{R}^{n imes n}$$

Question: can we hope to recover both L and S from M?

Applications

Robust PCA

• Video surveillance: separation of background and foreground

Nonconvex approach

ullet rank $(oldsymbol{L}) \leq r$; if we write the SVD of $oldsymbol{L} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^ op$, set

$$oldsymbol{X}^{\star} = oldsymbol{U}_L oldsymbol{\Sigma}^{1/2}; \quad oldsymbol{Y}^{\star} = oldsymbol{V} oldsymbol{\Sigma}^{1/2}$$

• non-zero entries of S are "spread out" (no more than s fraction of non-zeros per row/column), but otherwise arbitrary

$$\mathcal{S}_s = \left\{ \mathbf{S} \in \mathbb{R}^{n \times n} : \|\mathbf{S}_{i,:}\|_0 \le \mathbf{s} \cdot n; \|\mathbf{S}_{:,j}\|_0 \le \mathbf{s} \cdot n \right\}$$

$$\underset{\boldsymbol{X},\boldsymbol{Y},\boldsymbol{S}\in\mathcal{S}_{s}}{\operatorname{minimize}}\,F(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{S}) := \underbrace{\|\boldsymbol{M}-\boldsymbol{X}\boldsymbol{Y}^{\top}-\boldsymbol{S}\|_{\mathrm{F}}^{2}}_{\text{least-squares loss}} + \underbrace{\frac{1}{4}\|\boldsymbol{X}^{\top}\boldsymbol{X}-\boldsymbol{Y}^{\top}\boldsymbol{Y}\|_{\mathrm{F}}^{2}}_{\text{fix scaling ambiguity}}$$

where $X, Y \in \mathbb{R}^{n \times r}$.

Gradient descent and hard thresholding

$$\mathsf{minimize}_{oldsymbol{X},oldsymbol{Y},oldsymbol{S}\in\mathcal{S}_s} \quad F(oldsymbol{X},oldsymbol{Y},oldsymbol{S})$$

• Spectral initialization: Set $m{S}^0 = \mathcal{H}_{\gamma s}(m{M})$. Let $m{U}^0 m{\Sigma}^0 m{V}^{0 op}$ be rank-r SVD of $m{M}^0 := \mathcal{P}_\Omega(m{M} - m{S}^0)$; set $m{X}^0 = m{U}^0 \left(m{\Sigma}^0 \right)^{1/2}$ and $m{Y}^0 = m{V}^0 \left(m{\Sigma}^0 \right)^{1/2}$

Gradient descent and hard thresholding

$$minimize_{\boldsymbol{X},\boldsymbol{Y},\boldsymbol{S}\in\mathcal{S}_s}$$
 $F(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{S})$

- Spectral initialization: Set $m{S}^0 = \mathcal{H}_{\gamma s}(m{M})$. Let $m{U}^0 m{\Sigma}^0 m{V}^{0 op}$ be rank-r SVD of $m{M}^0 := \mathcal{P}_{\Omega}(m{M} m{S}^0)$; set $m{X}^0 = m{U}^0 \left(m{\Sigma}^0 \right)^{1/2}$ and $m{Y}^0 = m{V}^0 \left(m{\Sigma}^0 \right)^{1/2}$
- for $t = 0, 1, 2, \cdots$
 - ullet Hard thresholding: $oldsymbol{S}^{t+1} = \mathcal{H}_{\gamma s}(oldsymbol{M} oldsymbol{X}^t oldsymbol{Y}^{t op})$
 - Gradient updates:

$$\boldsymbol{X}^{t+1} = \boldsymbol{X}^{t} - \eta \nabla_{\boldsymbol{X}} F\left(\boldsymbol{X}^{t}, \boldsymbol{Y}^{t}, \boldsymbol{S}^{t+1}\right)$$
$$\boldsymbol{Y}^{t+1} = \boldsymbol{Y}^{t} - \eta \nabla_{\boldsymbol{Y}} F\left(\boldsymbol{X}^{t}, \boldsymbol{Y}^{t}, \boldsymbol{S}^{t+1}\right)$$

Efficient nonconvex recovery

Theorem 17 (Nonconvex RPCA, Yi et al. '16)

Set $\gamma=2$ and $\eta=1/(36\sigma_{\rm max})$. Suppose that

$$s \lesssim \min\left\{\frac{1}{\mu\sqrt{\kappa r^3}}, \frac{1}{\mu\kappa^2 r}\right\}$$

Then GD+HT satisfies

$$\|\boldsymbol{X}^t \boldsymbol{Y}^{t\top} - \boldsymbol{L}\|_{\mathrm{F}}^2 \lesssim \left(1 - \frac{1}{288\kappa}\right)^t \mu^2 \kappa r^3 s^2 \sigma_{\max}$$

- $O(\kappa \log 1/\epsilon)$ iterations to reach ϵ -accuracy
- For adversarial outliers, optimal fraction is $s=O(1/\mu r)$; Theorem 17 is suboptimal by a factor of \sqrt{r}
- extendable to partial observation models

Tutorial outline

- Part I: Overview
- Part II: Phase retrieval: a case study
 - Spectral initialization
 - o Local refinement: algorithm and analysis
- Part III: Low-rank matrix estimation
- Part IV: Closing remarks

A growing list of "benign" nonconvex problems

- blind deconvolution / self-calibration
- dictionary learning
- tensor decomposition
- robust PCA
- mixture linear regression
- Gaussian mixture models
- etc...

Topics we did not cover

- other algorithms: alternating minimization, stochastic gradient descent, mirror descent, singular value projection, etc...
- additional structures: e.g. sparsity, piece-wise smoothness
- saddle-point escaping algorithms

- [1] Dr. Ju Sun's webpage: "http://sunju.org/research/nonconvex/".
- [2] "Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation," Y. Chen, and Y. Chi, arXiv preprint arXiv:1802.08397, IEEE Signal Processing Magazine, to appear.
- [3] "Phase retrieval via Wirtinger flow: Theory and algorithms," E. Candes, X. Li, M. Soltanolkotabi, IEEE Transactions on Information Theory, 2015.
- [4] "Solving random quadratic systems of equations is nearly as easy as solving linear systems," Y. Chen, E. Candes, Communications on Pure and Applied Mathematics, 2017.
- [5] "Provable non-convex phase retrieval with outliers: Median truncated Wirtinger flow," H. Zhang, Y. Chi, and Y. Liang, ICML 2016.
- [6] "Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion and Blind Deconvolution," C. Ma, K. Wang, Y. Chi and Y. Chen, arXiv preprint arXiv:1711.10467, 2017.

- [7] "Gradient Descent with Random Initialization: Fast Global Convergence for Nonconvex Phase Retrieval," Y. Chen, Y. Chi, J. Fan, C. Ma, arXiv preprint arXiv:1803.07726, 2018.
- [8] "Solving systems of random quadratic equations via truncated amplitude flow," G. Wang, G. Giannakis, and Y. Eldar, IEEE Transactions on Information Theory, 2017.
- [9] "Matrix completion from a few entries," R. Keshavan, A. Montanari, and S. Oh, IEEE Transactions on Information Theory, 2010.
- [10] "Guaranteed matrix completion via non-convex factorization," R. Sun, T. Luo, IEEE Transactions on Information Theory, 2016.
- [11] "Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees," Y. Chen and M. Wainwright, arXiv preprint arXiv:1509.03025, 2015.
- [12] "Fast Algorithms for Robust PCA via Gradient Descent," X. Yi, D. Park, Y. Chen, and C. Caramanis, NIPS, 2016.

- [13] "Matrix completion has no spurious local minimum," R. Ge, J. Lee, and T. Ma, NIPS, 2016.
- [14] "No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis," R. Ge, C. Jin, and Y. Zheng, ICML, 2017.
- [15] "Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization," X. Li et al., arXiv preprint arxiv:1612.09296, 2016.
- [16] "Phase Transitions of Spectral Initialization for High-Dimensional Nonconvex Estimation," Y. M. Lu and G. Li, Information and Inference, to appear, arXiv:1702.06435, 2018.
- [17] "Kaczmarz Method for Solving Quadratic Equations," Y. Chi and Y. M. Lu, IEEE Signal Processing Letters, vol. 23, no. 9, pp. 1183-1187, 2016.
- [18] "Scaling Limit: Exact and Tractable Analysis of Online Learning Algorithms with Applications to Regularized Regression and PCA," C. Wang, J. Mattingly and Y. M. Lu, arXiv preprint arXiv:1712.04332, 2017.
- [19] "A Geometric Analysis of Phase Retrieval," S. Ju, Q. Qu, and J. Wright, to appear, Foundations of Computational Mathematics, 2016.

- [20] "Gradient descent converges to minimizers," J. Lee, M. Simchowitz, M. Jordan, B. Recht, Conference on Learning Theory, 2016.
- [21] "Fundamental limits of weak recovery with applications to phase retrieval," M. Mondelli, and A. Montanari, arXiv:1708.05932, 2017.
- [22] "Phase retrieval using alternating minimization," P. Netrapalli, P. Jain, and S. Sanghavi, NIPS, 2013.
- [23] "Optimization-based AMP for Phase Retrieval: The Impact of Initialization and ℓ₂-regularization," J. Ma, J. Xu, and A. Maleki, arXiv:1801.01170, 2018.
- [24] "How to escape saddle points efficiently," C. Jin, R. Ge, P. Netrapalli, S. Kakade, M. Jordan, arXiv:1703.00887, 2017.
- [25] "Complete dictionary recovery over the sphere," J. Sun, Q. Qu, J. Wright, IEEE Transactions on Information Theory, 2017.
- [26] "A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization," S. Burer, and R. Monteiro, Mathematical Programming, 2003.

- [27] "Memory-efficient Kernel PCA via Partial Matrix Sampling and Nonconvex Optimization: a Model-free Analysis of Local Minima," J. Chen, X. Li, arXiv:1711.01742, 2017.
- [28] "Rapid, robust, and reliable blind deconvolution via nonconvex optimization," X. Li, S. Ling, T. Strohmer, K. Wei, arXiv:1606.04933, 2016.
- [29] "Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming," E. Candes, T. Strohmer, V. Voroninski, Communications on Pure and Applied Mathematics, 2012.
- [30] "Exact matrix completion via convex optimization," E. Candes, B. Recht, Foundations of Computational mathematics, 2009.
- [31] "Low-rank solutions of linear matrix equations via procrustes flow," S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, B. Recht, arXiv:1507.03566, 2015.
- [32] "Global optimality of local search for low rank matrix recovery,"S. Bhojanapalli, B. Neyshabur, and N. Srebro, NIPS, 2016.

- [33] "Phase retrieval via matrix completion," E. Candes, Y. Eldar, T. Strohmer, and V. Voroninski, SIAM Journal on Imaging Sciences, 2013.
- [34] "Optimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flow," T. Cai, X. Li, Z. Ma, The Annals of Statistics, 2016.
- [35] "The landscape of empirical risk for non-convex losses," S. Mei, Y. Bai, and A. Montanari, arXiv:1607.06534, 2016.
- [36] "Non-convex robust PCA," P. Netrapalli, U. Niranjan, S. Sanghavi, A. Anandkumar, and P. Jain, NIPS, 2014.
- [37] "Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach," D. Park, A. Kyrillidis, C. Caramanis, and S. Sanghavi, arXiv:1609.03240, 2016.
- [38] "Solving almost all systems of random quadratic equations" G. Wang, G. Giannakis, Y. Saad, and J. Chen, arXiv:1705.10407, 2017.
- [39] "A Nonconvex Approach for Phase Retrieval: Reshaped Wirtinger Flow and Incremental Algorithms," H. Zhang, Y. Zhou, Y. Liang and Y. Chi, Journal of Machine Learning Research, 2017.

- [40] "Nonconvex Matrix Factorization from Rank-One Measurements," Y. Li, C. Ma, Y. Chen and Y. Chi, arXiv:1802.06286, 2018.
- [41] "Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization,", M. Soltanolkotabi, arXiv:1702.06175, 2017.

Thanks!