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Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

minimize,, f(x;y) — Loss function may be nonconvex




Nonconvex estimation problems are everywhere

Empirical risk minimization is usually nonconvex

minimize,, f(x;y) — Loss function may be nonconvex

* nonlinear regression

* low-rank matrix completion
* blind deconvolution

* dictionary learning

* learning mixture models

* deep learning

* generative adversarial networks



Nonconvex optimization may be super scary

[There may be bumps everywhere and exponentially many local optima

e.g. 1-layer neural net [Auer, Herbster, Warmuth "96; Vu '98]



Convex relaxation

Relaxation
—»

Examples:
* sparse recovery (£1-minimization) [Donoho '06], [Candés, Romberg, Tao, '16]

* phase retrieval and low-rank matrix estimation (lifting and SDP) [Candes et
al., "13], [Jaganathan et al., '13], [Waldspurger et al., '15]

* subspace clustering (SSC) [Elhamifar & Vidal, "12]

* MAXCUT (SDP relaxation) [Goemans & Williamson "95]
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Convex optimization

PRINCETON LAVDMARES

Pros:
+ mature theory + efficient algorithms 4 < Opt‘_m(ioam{\‘ss;
=\ Zatlo
« strong performance guarantees Analysis
Cons:

* much higher computation/memory cost (e.g. lifting)

find X
yi = laTz)? = alzxT a; = st. v =alXa,, i=1,...,m
X >0

G many problems have no effective convex reIaxation)




Nonconvex problems are solved on a daily basis ...

Fineup algorithm for phase retrieval
Gradient descent for robust regression

EM-algorithm for parameter estimation

alternating minimization for dictionary learning
“back propagation” for training deep neural nets

Simulated annealing and MCMC

Simple algorithms (such as gradient descent) are often remarkably
successful for solving nonconvex problems in practice



Why?



Nonconvex optimization with performance guarantees
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Phase retrieval: [Gerchberg-Saxton, '72], [Netrapalli et al. "13],
[Candes, Li, Soltanolkotabi, “15], [Wei, '15], [Chen & Candes,
’16], [Waldspurger, '16], [Wang et al. 18], and many others ...

Matrix completion: [Keshavan et al., '09], [Jain et al. "12],
[Hardt, "13], [Jin et al., "16], [Wei, '16], [Zheng & Lafferty, '16],
[Sun & Luo, '16], [Ding & Chen, "18], and many others ...

Landscape analysis: [Sun et al. "15], [Ge et al., "16], [Mei, Bai
& Montanari, ‘16], [Li et al. 18], [Soltanolkotabi et al., "17],
[Davis et al., "17], [Ge & Ma, ’17], [Ge et al., ’17], [Ballard et
al,, '17]

Blind deconvolution: [Li et al. '16], [Lee et al., "16], [Ling &
Strohmer, '16], [Huang & Hand, '17], ...

Blind calibration: [Cambareri & Jacques, '16], [Ling &
Strohmer, ’16], [Li, Lee & Bresler, ’17]

Dictionary learning: [Arora et al., "14], [Sun et al., 15],
[Chatterji & Bartlett, '17]

Spectral initialization: [Keshavan et al., '09], [Netrapalli et al.
’13], [Sun et al., "15], [Lu & Li, "17]

Stochastic gradient methods: [Ghadimi & Lan, "13], [De Sa et
al,, '14], [Rong, "15], [Jin et al., "16], [Wang, Mattingly & Lu,
’17], [Tripuraneri et al., "18]

See http://sunju.org/research/nonconvex/ for a detailed list of references.




Tutorial outline

Part I: Overview

Part Il: Phase retrieval: a case study
‘+ Spectral initialization

‘+ Local refinement: algorithm and analysis

Part Ill: Low-rank matrix estimation

Part IV: Closing remarks

10



Tutorial outline

Part I: Overview
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Signal estimation from nonlinear measurements

Model:

Yi
— P(y: | agwh) —>

arbitrary “channel”

+ Unknown vector: =’ € R” + Sensing vectors: {a;};~, C R"
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Signal estimation from nonlinear measurements

Model:
T, .h .
a; T Yi
Py | agwh) —>
arbitrary “channel”
+ Unknown vector: =’ € R” + Sensing vectors: {a;};~, C R"
Examples:

= Nonlinear sensors: Y; = f(aszh) + w;
‘+ lmaging: y; ~ POiSSOD(azTCL‘h)

‘+ Logistic regression: y; ~ Bernoulli [Logit(a?m“)]

11



Example: Phase Retrieval

Reconstruct x* € C™ without the phase information

2
=i a2
b 2
Y2 = <a'27 T > ‘
2 . .
— < a :Bh> Nobel Prize for Watson, Crick,
Ym m and Wilkins in 1962 based on

work by Rosalind Franklin

Applications:

* Phase retrieval (X-ray crystallography, diffractive imaging, ...)

* Blind deconvolution
* Channel estimation

* Spectral factorization

Fig credit: Stanford SLAC
12



Empirical risk minimization

M-estimator:

T = ar mm— Loss(y;,al z) + ®
g min Z (yi, a] ) + O(x)

13



Empirical risk minimization

M-estimator:

data fidelity

Z = arg min — ZLoss(yz,a- z)+ ¢(x)
weRn

13



Empirical risk minimization

M-estimator:

data fidelity prior

SIS > T I

13



Empirical risk minimization

Me-estimator:
data fidelity prior
Z = arg min — Z Loss(yi, al =)+ ®(z)
wER"
Challenges:

‘+ Nonconvex loss functions (e.g. phase retrieval)
minimize, l Z(yz - (az«w)g)z
me
+ Nonconvex regularizers
o) =|z]} for 0<p<1
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Empirical risk minimization

Me-estimator:
data fidelity prior
T = arg min — ZLOSS(yi, aZTm) + ®(x)
xeR™
Challenges:

= Nonconvex loss functions (e.g. phase retrieval)

L 1
minimize,, - Z(yz - (a?w)2)2

‘+ Nonconvex regularizers

Nonconvex optimization with
d(x) = ||33||§ for 0<p<1 performance guarantee?

13



Where is hope?
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PCA: a classical success story of nonconvex optimization

Find the best rank-one approximation of a symmetric PSD matrix M
- 2
minimize, f(z) = sz — MH
F

Nonconvex, but global optimal solution is well-known.
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PCA: a classical success story of nonconvex optimization

Find the best rank-one approximation of a symmetric PSD matrix M

2
minimize, f(z) = HamT — MH
F

Nonconvex, but global optimal solution is well-known.

(Eckart-Young Theorem:

1. Eigenvalue decomposition:

M = U diag {01,09,...,0,} UT

2. Find the dominant eigenvector: Topt = /01 U1

-

15



The optimization landscape of PCA

Example:

minimize, f(z) =

Critical points are either global optima or strict saddles [see Part Ill for details]

16



In many problems: nonconvex but benign landscapes

intractable (worst-case) tractable (typical case)

Under certain statistical models, we see benign global geometry:
critical points are either global optima or strict saddles

17



Empirical risk and population risk

Example: phase retrieval with Gaussian designs a; S N(0,1I,)

. 1 —
minimizeg fm (@) = EZ(yr (alz)*)?  with v = (al z")?

18



Empirical risk and population risk

Example: phase retrieval with Gaussian designs a; S N(0,1I,)

1 m
minimize, fo,(x) = ooy Z with ¥; = (aiTxh)Q

“law of large numbers”

m — o0

minimize, f(x) =E (y1 — (a1T$)2)2

18



Empirical risk and population risk

Example: phase retrieval with Gaussian designs a; S N(0,1I,)

1 m
i ful) = 520~ @[ it 1= (o] o)

“law of large numbers”
m — 00

minimize, f(z) = E (y; — (alx)?)?

f(@1,a2) =34 3(2] + 23)% — 627 — 223

18



Sample complexity:

how large m needs to be?

19



Landscape analysis for phase retrieval

1 m
minimizegzcgrn —_— E

4m
i=1

Theorem: (informal) [Sun, Qu, Wright, "16]
Let a; Lt (0,I). When m = nlog®n, w.h.p.,

+ All local (and global) minimizers are of the form zf, —’

+ All other critical points of f(x)are strict saddles (i.e. there exist escape
directions)



Landscape analysis for phase retrieval

1 m
minimize,ecgrn R Z
=1
Notation:
_|f)
f(n) = g(n) means lim > const

Theorem: (informal) [Sun, Qu, Wright, ’16]/

Let a; Lt (0,I). When m = nlog®n, w.h.p.,

+ All local (and global) minimizers are of the form zf, —’

+ All other critical points of f(x)are strict saddles (i.e. there exist escape
directions)

20



More general results on the landscapes of empirical risk

1 m
empirical risk: ~ minimize, f,,(x) = po— Zﬁ(yi; x)
i=1

“law of large numbers”

m — o0

population risk: minimize, f(z) = Epode £(y; )

21



More general results on the Iandscapes of empirical risk

empirical risk: minimizey fon(z E Uy, @

“law of large numbers”
m — 00

population risk: minimize, f(z) = Epode £(y; )

Theorem: (informal) [Mei, Bai, Montanari, "17]

Under technical assumptions on the loss function £(+; ), w.h.p.,

1. sup||Vfm(x) — Vf(2)||, < v/nlogm/m
x Uniform convergence of
gradient and hessian

2. sup [V fu(@) - V2f(w)H0p < Vnlogm/m

21



Example: binary linear classification

Model: y; € {0,1}with P(Y =1 | R = a;) = o(al z")

m
1

Nonlinear least-squares: minimize, f,(z) = — E
m

22



Example: binary linear classification

Model: y; € {0,1} with P(Y = 1| R = a;) = o(a] 2%

Nonlinear least-squares: minimize,, fy,(x)

empirical risk

7 77

Q

0

o
7 7 7 77 77

Fig credit: Mei, Bai and Montanari
22



Benign landscapes lead to efficient algorithms
with polynomial complexity

23



Generic results and algorithms for benign landscapes

-+ Gradient decent with random initialization escapes saddles almost surely
[Lee et al., ’16]

+ Saddle escaping algorithms with polynomial complexity:

* Trust-region [Sun et al. '16]
* Perturbed GD [lin et al. ’17]

* Perturbed accelerated GD [Jin et al. "17]

Natasha [Allen-Zhu '17]

* Cubic-regularized method [Agarwal et al., "17]
Fig. credit: Turnhout et al.

24



Generic results and algorithms for benign landscapes

-+ Gradient decent with random initialization escapes saddles almost surely
[Lee et al., ’16]

+ Saddle escaping algorithms with polynomial complexity:

* Trust-region [Sun et al. '16]
* Perturbed GD [lin et al. ’17]

* Perturbed accelerated GD [Jin et al. "17]

Natasha [Allen-Zhu '17]

* Cubic-regularized method [Agarwal et al., "17]
Fig. credit: Turnhout et al.

Cons: computational complexity is Poly(n)

— Ideally: linear complexity (proportional to the time to load the data)
24



Much stronger guarantees are possible
by studying specific problems)

25



Tutorial outline

Part Il: Phase retrieval: a case study
‘+ Spectral initialization

‘+ Local refinement: algorithm and analysis

26



Phase retrieval: solving quadratic systems of equations

A x Ax y:\Aw|2
rHEE BE 1 [ | M
=EEl_3 H
B T —> B
AN B BN | 2] sl
[ B [ | i
BN B [ |
N EEE | o
] | o
. H Emn u L

3

Recover z € R™ from m random guadratic measurements

2

T .
yi:‘aiwh , 1=1,...,m

assume w.l.o.g. ||xz°|s =1 ”



Common theme: two-stage approach

0

initial guess ®
1

1. Initialization: find an initial point within

a local basin close to !

basin of attraction
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Common theme: two-stage approach

0

initial guess ®
1

1. Initialization: find an initial point within

a local basin close to !

basin of attraction

2. Careful iterative local refinement
(e.g. gradientdescent) MV e

!
basin of attraction I
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Common theme: two-stage approach

0

initial guess ®
1

1. Initialization: find an initial point within

a local basin close to !

basin of attraction

28



A spectral method for initialization

29



Spectral Initialization

Model:

yi ~ f(alx?), i=1,2,...,m

30



Spectral Initialization

Model:
yzzf(a;rxh)v 7::1,2,...,772
Spectral initialization:
1 m
1. D, = m ZT(yi)aiaiT 2. x; =top eigenvector(D,,)
i=1

PHD: principal Hessian direction [Li ’92], [Keshavan et al. ’10], [Netrapalli et al. "13]

30



Why doe it work?

The model:

The data matrix: “Law of large numbers”

D= Tlwaa! —= E[T()aa’]

i=1

31



Why doe it work?

The model:

The data matrix: “Law of large numbers”

D= 3 Taa! —=> E[T()aa"] = 41+ (5 - f)a'(a)’

=1

31



Why doe it work?

The model:

The data matrix: “Law of large numbers”

m

Dy =Y Taa! — E[T()aa"] = 5L+ (5 — f)a" ()"

=1

with 5 = ET(y), f = E [T(y)(a"a")’]

Similar approaches used in matrix completion, blind deconvolution, ...

31



Why does it work? The deterministic case

The data matrix:

1
D, = - {(alTwh)ZalalT + (a,ZTal:h)Qaga2 + (a3 wh)2a3a3 +...(apx

Correlated patterns: higher weights

Uncorrelated patterns: lower weights

Pattern matching: HmHax ' D,,x
rll=

32



Performance Analysis

Cosine similarity:
T )2
p(x!, @) (2, 2%

e Pt

Performance guarantees:

[Gaussian measurements]

p(x®, 1) > 1 — & w. high prob.

~

if



Performance Analysis

Cosine similarity:

T, 0\2
p(xf, 1) dzef%
[EAER

Performance guarantees:

[Gaussian measurements]

p(mh, 1) > 1 — & w. high prob. if

[Netrapalli et al, '13]

m > nlog®n
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Performance Analysis

Cosine similarity:

T, 0\2
p(xf, 1) dzef%
[EAER

Performance guarantees:

[Gaussian measurements]

p(mh, 1) > 1 — & w. high prob. if
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Performance Analysis

Cosine similarity:
T )2
p(x!, @) (2, 2%

e Pt

Performance guarantees:

[Gaussian measurements]

p(mh, 1) > 1 — & w. high prob. if

[Netrapalliet al,’13] [Candes et al.,'15] [Chen & Candes, '15]

m > nlog®n m 2 nlogn m22n
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Performance Analysis

Cosine similarity:
T )2
p(x!, @) (2, 2%

e Pt

Performance guarantees:

[Gaussian measurements]

p(mh, 1) > 1 — & w. high prob. if

[Netrapalliet al,’13] [Candes et al.,'15] [Chen & Candes, '15]

m > nlog®n m 2 nlogn

Truncation: T (y) =y ﬂ{\y\it}
33



Truncated spectral initialization

1 m
E[D]=E p- Zyiaialr
i=1

=1+ 2wh(a:h)T

34



Truncated spectral initialization

Tan @Y o

1 m
E[D]=E p- Zyiaialr 4

= I+ 2z%(z")T

k  (m=06n)

Problem: Unless m > n, dangerous to use empirical average as large
observations ; = (a’ )2 bear too much influence

34



Truncated spectral initialization

Tan @Y o

1 m
E[D]=E p- Zyiaialr 4

= I+ 2z%(z")T

6000

k  (m=06n)

Problem: Unless m > n, dangerous to use empirical average as large
observations ; = (a’ )2 bear too much influence

Solution: Discard high leverage samples and consider a truncated sum

1 m
m 21 yiaia?-ﬂ{‘y‘gt} [Chen & Candes, "15]

34



Importance of truncated spectral initialization

Relative error

0.9

0.8

0.7

0.6

spectral method

I
truncated Ispecfr'cll method

1000 2000 3000 4000
n: signal dimension

real Gaussian m = 6n

5000

Relative error

0.8

0.6

0.4

spectral method

|
|
|
|

truncated spec’rr‘al method
|

1

0.5 1 15 2 2.5 3 35
n : signal dimension (105)

complex CDP m = 12n

4
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Performance Analysis

Cosine similarity:
T )2
p(x!, @) (2, 2%

e Pt

Performance guarantees:

[Gaussian measurements]

p(mh, 1) > 1 — & w. high prob. if

[Netrapalliet al,’13] [Candes et al.,'15] [Chen & Candes, '15]

m > nlog®n m 2 nlogn m22n
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Performance guarantees:

[Gaussian measurements]

p(mh, 1) > 1 — & w. high prob. if
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m > nlog®n m 2 nlogn

order-optimal, but

unknown constant
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Performance Analysis

Cosine similarity:
T )2
p(x!, @) (2, 2%

e Pt

Performance guarantees:

[Gaussian measurements]

p(mh, 1) > 1 — & w. high prob. if

[Netrapalliet al,’13] [Candes etal.,’15] [Chen & Candes, ’15] [Lu & Li, ’17]

m > nlog®n m > nlogn Precise analysis

order-optimal, but

unknown constant
36



Why do we care about a precise analysis?

1. Order-wise estimates are not good enough for practitioners

Vehicle for commute Energy consumption

Bike O(distance)

Credit: Yoram Bresler
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Why do we care about a precise analysis?

1. Order-wise estimates are not good enough for practitioners

Vehicle for commute Energy consumption
Bike O(distance)
Tractor O(distance)

Credit: Yoram Bresler
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Why do we care about a precise analysis?

1. Order-wise estimates are not good enough for practitioners

Vehicle for commute Energy consumption
Bike O(distance)
Tractor O(distance)

Credit: Yoram Bresler

2. From precise analysis to optimal designs

37



Precise Asymptotic Characterizations

Setting:
. . . . .Lom
¢ High-dimensional m,n — oo, linear sample complexity — — a > 0
n

‘# i.i.d. Gaussian sensing ensemble

Proposition: [Lu and Li “17] Under a few technical conditions*:

p(mh 1) L 0, if @ < @ min,
7 p(a)7 if o > Qe max;

where analytical formulas are given for p(c), @c,min and Qe max

*These results were recently extended in [Mondelli & Montanari, “17], with some
technical conditions relaxed

38



Phase transitions

Recall o = m/n
Uncorrelated phase: & < 0 min

plxf, z) 2,0 uninformative

A1 — Ao .0  slow convergence

39



Phase transitions

Correlated phase: o > 0 max
f P
p<m axl) — p(Oé) >0

A= 25 (@) >0

Recall « = m/n

Uncorrelated phase: & < 0 min

h P

p(x?, 1) — 0  uninformative

A1 — Ao .0  slow convergence

concentration on the surface of a cone

rapid convergence in O(log n) steps

39



Phase transitions

Recall o = m/n
Uncorrelated phase: & < 0 min

P

p(xf x1) =0  uninformative

A1 — Ao .0  slow convergence

Correlated phase: o > 0 max
p(z, @) N p(a) >0  concentration on the surface of a cone

AL — Ao N ¢(a) >0 rapid convergence in O(log n) steps

Related phenomena: spiked model [Baik, Ben Arous & Peche, '05]

low-rank perturbation of random matrices [Benaych-Georges & Nadakuditi, '11]
39



Is the asymptotic prediction useful?

40



Theoretical predictions vs. simulations

061 o
0.4

0.2}

Rademacher
complex Gaussian

1 1 1 1

0 2 4 6 8 10 12
a=m/n

Image size: 64 x 64

41



Designing the pre-processing function

Subset
= Trimming

4 6 8 10

12

Quadratic measurements: y; = (al z%)?

1 m
D, = — ZT(yi)aiaf
i=1

1. Trimming [Chen & Candes ’15]

T =yLlpyy)
2. Subset [Wang, Eldar, Giannakis '16]

T(y) =1(yi > 1)

22



Designing the pre-processing function

Subset
= Trimming

4 6 8 10

12

Quadratic measurements: y; = (al z%)?

1 m
i=1

1. Trimming [Chen & Candes ’15]

T =yLlpyy)
2. Subset [Wang, Eldar, Giannakis '16]

T(y) =1(yi > 1)

22



Designing the pre-processing function

0.8
06 Quadratic measurements: y; = (al x%)?
- 04 1 &
T
4 D, = L3 Tgaa:
* 02 Subset =1
= Trimming
0

0 2 4 6 8§ 10 12

a 1. Trimming [Chen & Candes "15]
S 102 T(y) =Y ]I[O,t](y)
k|
2
= 10 2. Subset [Wang, Eldar, Giannakis '16]
2
= 100 =1(y; >t
E e T(y) = 1 > 1)
% ——— Trimming
= 10!
- 1.5 2 25 3 35 4

t 42



From Sharp Predictions to Optimal Design

For any fixed a, what is the optimal pre-processing function 7 (y)?

1 m
Dr, = — > T(yiaial Challenge: functional optimization
=1

[Mondell & Montanari, 2017]: optimal function to minimize phase transition threshold

43



From Sharp Predictions to Optimal Design

For any fixed a, what is the optimal pre-processing function 7 (y)?

1 m
m E T (yi)aia; Challenge: functional optimization

i=1

[Mondell & Montanari, 2017]: optimal function to minimize phase transition threshold

Uniformly optimal solution:

L EDpl)

70 = 1= g Tap(yis)

Finding a minimum norm solution in an
affine subspace of finite co-dimension

43



Uniformly Optimal Pre-Processing

Example:

optimal N -1
y; ~ Poisson[(a’ z")?] _— T (y) = Y

a4



Uniformly Optimal Pre-Processing

Example:

optimal N -1
y; ~ Poisson[(a’ z")?] _— T (y) = Y

Uniformly optimal solution

[Mondell & Montanari, 2017]

Trimming scheme: [Candes & Chen, "15]

a4



Beyond the Gaussian assumption

Towards physical setups: coded diffraction

xray
sample source

mask a !

diffraction
pattern

Figure credit: Candes et al. ‘11

random mask + diffraction

a5



Coded diffraction

n
diffraction patterns diffraction patterns

source
sample phase plate ! sample

diffraction patterns N = diffraction patterns

source.
s:

Figure credit: Candes et al. '11

Measurements: Fourier transform of randomly modulated samples

| F(wo :1c)|2 , w € Patterns

46



Performance of spectral method for coded diffraction

Figure credit: Mondelli & Montanari, 17

Original image

a = 6; trimming 7(+)

a7



Performance of spectral method for coded diffraction

Figure credit: Mondelli & Montanari, 17

Original image

a = 6; trimming 7(+) o = 6; optimized 7 (+)
47



Common theme: two-stage approach

0

initial guess ®
1

1. Initialization: find an initial point within

a local basin close to !

basin of attraction

2. Careful iterative local refinement (e.g.
gradient descent) to stay within the local basin ™ | R

!
basin of attraction I

a8



Common theme: two-stage approach

2. Careful iterative local refinement (e.g.
gradient descent) to stay within the local basin

|
|
|
|
| !
= basin of attraction

a8



A nonlinear least squares formulation

2

given: y; = aziTach 1=1

|

m

o 1
minimizegern  f(x) = 72
4m 1
i=

m

5 yeeey

49



A nonlinear least squares formulation

2

T,.b S
a; x| t=1,...,m

given: y; =

., 1 & 2
minimizegern  f(x) = e Z [yi — (a] ©)?]
i=1

pros: often exact as long as sample size is sufficiently large

cons: f(x) is nonconvex

— | computationally challenging!

49



Wirtinger flow (Candeés, Li, Soltanolkotabi ’14)

e T,212
minimizegzern  f(x) = I E [yi —(a; ) ]
i=1
e 1\\\\\ ‘+ spectral initialization: 2’ leading
P <~ ) .
/ /s__\:‘\\\\\\ eigenvector of the data matrix
R
LU T T
o A\ Vel
\\ N N ~—=2y [ |7
NN \:‘:;J///’
N \\_,/:,/:/’ ‘+ gradient descent:
- -
N S———

't =x' -V f(xh), t=0,1,...
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Computational cost

A = [a]z]

1<i<m
+ Spectral initialization: leading eigenvector —» a few applications of A and AT

1N T aal — L ATa ,
mZT(y’L)a”La’i - mA dlag{T(yz)}A

i=1

+ Gradient descent: one application of A and A7 per iteration
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Gradient descent: performance guarantees?
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Asymptotic notation

e f(n) S g(n)or f(n) = O(g(n)) means
[f(n)]

im < const
n=oo |g(n)|
e f(n) 2 g(n) means
im \f(n)] > const
n=oo |g(n)|

e f(n) =< g(n) means

const; < lim |£(n)
n=oo |g(n)|

< consty
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First theory of WF

dist(x!, %) := min{||z’ £ 22}
Theorem 1 (Candes, Li, Soltanolkotabi’14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

t/2
dist(act,ach) < (1 — Z) ||whH2,

with high prob., provided that step size n < 1/n and sample size:
m 2 nlogn
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First theory of WF

dist(x!, %) := min{||z’ £ 22}
Theorem 1 (Candes, Li, Soltanolkotabi’14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

t/2
dist(act,ach) < (1 — Z) ||whH2,

with high prob., provided that step size < 1/n and sample size:
m 2 nlogn

e lteration complexity: O(nlog?)
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First theory of WF

dist(x!, %) := min{||z’ £ 22}
Theorem 1 (Candes, Li, Soltanolkotabi’14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

/2
aist(a, ) 5 (1= 1) el

with high prob., provided that step size n < 1/n and sample size:
m 2 nlogn

e lteration complexity: O(nlog?)

e Sample complexity: O(nlogn)
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First theory of WF

dist(xt, 2?) := min{|x? + x7|2}

Theorem 1 (Candeés, Li, Soltanolkotabi’14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

t/2
dist(@ ) £ (1) ol

with high prob., provided that step size and sample size:

e lteration complexity: O(nlog %)
e Sample complexity: O(nlogn)

e Derived based on (worst-case) local geometry
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Improved theory of WF

dist(x!, 2?) := min{||z! + x|}
Theorem 2 (Ma, Wang, Chi, Chen’17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves

t
dist(@", 2%) < (1 - ;7) 12

with high prob., provided that step size < 1/logn and
sample size m 2 nlogn.

e lteration complexity: O(nlog2) \, O(lognlog?)
e Sample complexity: O(nlogn)

e Derived based on finer analysis of GD trajectory
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Gradient descent theory revisited

Consider unconstrained optimization problem

minimize, f(x)

Two standard conditions that enable geometric convergence of GD
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Gradient descent theory revisited

Consider unconstrained optimization problem

minimize, f(x)

Two standard conditions that enable geometric convergence of GD

e (local) restricted strong convexity (or regularity condition)

56



Gradient descent theory revisited

Consider unconstrained optimization problem

minimize, f(x)

Two standard conditions that enable geometric convergence of GD
e (local) restricted strong convexity (or regularity condition)

e (local) smoothness

V2f(z) =0 and is well-conditioned

56



Gradient descent theory revisited

f is said to be a-strongly convex and (-smooth if

0 < o < V3f(x) < pI, Va
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Gradient descent theory revisited

f is said to be a-strongly convex and S-smooth if

0 < ol < V3f(x) =< BI, Va

¢y error contraction: GD with 1) = 1/ obeys

(0%
ot = &l < (1= 5 ) 2! - 27

e Condition number 3/« determines rate of convergence
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Gradient descent theory revisited

f is said to be a-strongly convex and S-smooth if

0 < ol < V3f(x) =< BI, Va

¢y error contraction: GD with 1) = 1/ obeys

(0%
ot = &l < (1= 5 ) 2! - 27

e Condition number 3/« determines rate of convergence

e Attains e-accuracy within O(g log 1) iterations

57



What does this optimization theory say about WF?

Gaussian designs: ay, L N(,I,), 1<k<m
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What does this optimization theory say about WF?

Gaussian designs: ay, L N(,I,), 1<k<m

Finite-sample level (m = nlogn)

Vif(x) =0
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What does this optimization theory say about WF?

Gaussian designs: ay, L N(,I,), 1<k<m

Finite-sample level (m = nlogn)

V2f(x) =0 but ill-conditioned (even locally)

condition number <X n
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What does this optimization theory say about WF?

Gaussian designs: ay, L N(,I,), 1<k<m

Finite-sample level (m = nlogn)

V2f(x) =0 but ill-conditioned (even locally)

condition number <X n

Consequence (Candes et al '14): WEF attains e-accuracy within
O(nlog 1) iterations if m =< nlogn

58



Generic optimization theory gives pessimistic bounds

WEF converges in O(n) iterations
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Generic optimization theory gives pessimistic bounds

WEF converges in O(n) iterations

i}

Step size taken to be = O(1/n)
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Generic optimization theory gives pessimistic bounds

WEF converges in O(n) iterations

i}

Step size taken to be = O(1/n)

i}

This choice is suggested by worst-case optimization theory

59



Generic optimization theory gives pessimistic bounds

WEF converges in O(n) iterations

i}

Step size taken to be = O(1/n)

i}

This choice is suggested by worst-case optimization theory

i}

Does it capture what really happens?
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Numerical efficiency with n, = 0.1

10°

- ||2 error
5
o

1020

Relative ||

1015 | | | I
0 100 200 300 400 500
Iteration count

Vanilla GD (WF) converges fast for a constant step size!
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

m
Z { ak ) a; h)z] aka;—

1
oom k=1
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

1 & T2 T
EZ{ akm ak; h)]akak

e Not sufficiently smooth if  and ay, are too close (coherent)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

ay

}a:(m —r:)} < Vlegn

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

as ay

g (x —2%)| < VA
‘az (@—2 )| ~ Voosn Ja] (x — 2| < /logn

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)
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A second look at gradient descent theory

Which local region enjoys both strong convexity and smoothness?

as ay

g (x —2%)| < VA
‘az (@—2 )| ~ Voosn Ja] (x — 2| < /logn

e x is incoherent w.r.t. sampling vectors {ay} (incoherence region)

Prior works suggest enforcing regularization (e.g. truncation,
projection, regularized loss) to promote incoherence

61



Encouraging message: GD is implicitly regularized

region of local strong convexity 4+ smoothness
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Encouraging message: GD is implicitly regularized

region of local strong convexity 4+ smoothness
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Encouraging message: GD is implicitly regularized

region of local strong convexity 4+ smoothness
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Encouraging message: GD is implicitly regularized

region of local strong convexity 4+ smoothness
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Encouraging message: GD is implicitly regularized

region of local strong convexity 4+ smoothness

GD implicitly forces iterates to remain incoherent with {ay}
maxy, |a; (xt — z%)| < logn ||zf||2, V¢

— cannot be derived from generic optimization theory; relies on
finer statistical analysis for entire trajectory of GD
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Theoretical guarantees for local refinement stage

Theorem 3 (Ma, Wang, Chi, Chen’17)
Under i.i.d. Gaussian design, WF with spectral initialization achieves
e maxy |a; z'| < logn ||x¥||2 (incoherence)
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Theoretical guarantees for local refinement stage

Theorem 3 (Ma, Wang, Chi, Chen’17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves
e maxy |a; z'| < logn ||x¥||2 (incoherence)

o dist(z!, ") < (1 —1)"||z¥||o (linear convergence)

provided that step size n =< 1/logn and sample size m 2 nlogn.

e Attains ¢ accuracy within O(logn log 1) iterations
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Key proof idea: leave-one-out analysis

For each 1 <[ < m, introduce leave-one-out iterates b0
by dropping [th measurement

A T y(l) — |A(l)w|2

u
H N
HEE N
H
_

a,
H n
HEN
||

|

EEEE EEEEE 2
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Key proof idea: leave-one-out analysis

a;
{mt,(l)}
0--,\
A S
N
| ¢

incoherence region
w.r.t. a;

e Leave-one-out iterate () is independent of a;
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Key proof idea: leave-one-out analysis

a;
{xh{)

)/

Y
| &

incoherence region
w.r.t. a;

e Leave-one-out iterate () is independent of a;

e Leave-one-out iterate z0() = true iterate x!
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Key proof idea: leave-one-out analysis

aj
{xh{)
&~
t N
xr
fa') \
Y
| 4
incoherence region
w.r.t. a;

e Leave-one-out iterate () is independent of a;
e Leave-one-out iterate z0() = true iterate x!

= x! is nearly independent of a;

nearly orthogonal to
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No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

2t 23 5

N\
fresh samples
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No need of sample splitting

e Several prior works use sample-splitting: require fresh samples at
each iteration; not practical but helps analysis

2t 23 5

N\
fresh samples

24

z
z2

e This tutorial: reuses all samples in all iterations
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Questions

So far we have presented theory for

spectral initialization + vanilla gradient descent (WF)
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Questions

So far we have presented theory for

spectral initialization + vanilla gradient descent (WF)

Questions:
e |s carefully-designed initialization necessary for fast convergence?
e Can we further improve sample complexity?

e Robustness vis a vis noise and outliers?
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Is carefully-designed initialization necessary for fast convergence?



Initialization

spectral
initialization

e Spectral initialization gets us reasonably close to truth
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Initialization

saddle points

spectral
initializatio

e Spectral initialization gets us reasonably close to truth

e Cannot initialize GD from anywhere, e.g. it might get stucked at
local stationary points (e.g. saddle points)
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Initialization

saddle points

spectral
initialization

initialization

e Spectral initialization gets us reasonably close to truth

e Cannot initialize GD from anywhere, e.g. it might get stucked at
local stationary points (e.g. saddle points)

Can we initialize GD randomly, which is simpler and model-agnostic? J
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Numerical efficiency of randomly initialized GD

ny = 0.1, a; ~ N(0,1I,,), m = 10n, z° ~ N (0,n"'1,)

” \

relative ¢y error

——n =100
105t n = 200
n = 500
n = 800
n = 1000

0 50 100 150 200
t : iteration count
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Numerical efficiency of randomly initialized GD

m =0.1, a; ~N(0,I,), m = 10n, z° ~ N(0,n"'1,)
Stage 1

100~

W)

relative ¢y error

——n =100
105t n = 200
n = 500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

Randomly initialized GD enters local basin within a few iterations J
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Numerical efficiency of randomly initialized GD

m =0.1, a; ~N(0,I,), m = 10n, z° ~ N(0,n"'1,)
Stage 1 Stage 2

100~

—
e}
=
=
o
Il
B
o
>
o
=
<
—
o
=

——n =100
105t n = 200
n = 500
n = 800
n = 1000

0 50 100 150 200
t : iteration count

Randomly initialized GD enters local basin within a few iterations J
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A geometric analysis

e if m > nlog®n, then (Sun et al.'16)

o there is no spurious local mins

o all saddle points are strict (i.e. associated Hessian matrices have
at least one sufficiently negative eigenvalue)
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A geometric analysis

e With such benign landscape, GD with random initialization
converges to global min almost surely (Lee et al. '16)

No convergence rate guarantees for vanilla GD!
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Exponential growth of signal strength in Stage 1

relative ¢y error
1
1

A\
100 Foees
1072
107
—e—dist(zt,zt) (n = 500)

0 50 100 150
t : iteration count
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Exponential growth of signal strength in Stage 1

relative ¢y error |(mt, w”)| : signal component
1 ]

C ¥

—A ‘(zt,zlﬂ (n = 500)

—o—dist(z", 2%) (n = 500)

0 50 100 150
t : iteration count
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Exponential growth of signal strength in Stage 1

relative ¢y error |(mt, w”)| : signal component
1 ]
1

10 O(logn)

—A—‘(zt,zl)\ (n = 500)

—e—dist(z,2%) (n = 500)

0 50 100 150
t : iteration count

Numerically, O(logn) iterations are enough to enter local region ]
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Exponential growth of signal strength in Stage 1

relative £y error |(wt, w”)| : signal component
1 ]

0 50 100 150
t : iteration count

Numerically, O(logn) iterations are enough to enter local region

J
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Linear / geometric convergence in Stage 2

relative ¢y error

1001

n = 200

n = 500
n = 800

n = 1000

50 100 150

t : iteration count

200
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Linear / geometric convergence in Stage 2

10
-
o
-
— 1
[«5) 1
~ i )
= i linear convergence
L 1
=
=
8 5 n = 100
10° [ —n =200
n = 500
n = 800
n = 1000
0 50 100 150 200

t : iteration count

Numerically, GD converges linearly within local region

73



Theoretical guarantees for randomly initialized GD

These numerical findings can be formalized when a; Hg N(0,I,):

Theorem 4 (Chen, Chi, Fan, Ma’18)
Under i.i.d. Gaussian design, GD with ° ~ N'(0,n~'I,,) achieves

dist(z', %) <y(1—p)' " |at]e,  t>T,

for T’y < logn and some constants vy, p > 0, provided that step size
1 =< 1 and sample size m 2 n polylogm
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Theoretical guarantees for randomly initialized GD

dist(z!, 2%) < y(1 — p) D ||&f||a, t > T, <logn J

s
B

relative ¢y error

0 50 100 150 200
t : iteration count
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Theoretical guarantees for randomly initialized GD

dist(at, %) < y(1 — p)t D |j&f||a, t > T, =logn J

O(logn)

100F

relative ¢y error

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(x!, x%) < v
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Theoretical guarantees for randomly initialized GD

dist(at, %) < y(1 — p) =D ||&f||a, ¢ > T, <logn |
O(logn) O(log %)
100

relative ¢y error

0 50 100 150 200
t : iteration count

e Stage 1: takes O(logn) iterations to reach dist(x!, x%) < v
e Stage 2: linear convergence
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Theoretical guarantees for randomly initialized GD

dist(z!, 2%) < y(1 — p) D ||&f||a, t > T, <logn |
O(logn) O(log %)
100

relative ¢y error

0 50 100 150 200
t : iteration count

e near-optimal compututational cost:
— O(logn + log %) iterations to yield £ accuracy
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Theoretical guarantees for randomly initialized GD

dist(z!, 2%) < y(1 — p) D ||&f||a, t > T, <logn |
O(logn) O(log %)
100

relative ¢y error

0 50 100 150 200
t : iteration count

e near-optimal compututational cost:
— O(logn + log %) iterations to yield £ accuracy

e near-optimal sample size: m 2 npoly logm
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Experiments on images

e coded diffraction patterns

o i € R256x256

e m/n=12
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GD with random initialization

t

x! (xt, 2" 2" xt — (xt, )"
GD iterate signal component perpendicular component

use Adobe Acrobat to see animation
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Saddle-escaping schemes?

1 T ]
1 uld
0.8 MM 0.7 T
+ 00 "~~ l/l \
QU saddle points %
0.4+ \&K
5 =0.01 AN
021 =0.05 |
n =0.1 3
0 ‘ ‘ ‘ ‘ o}
0 02 04 06 08 1 k\
O

LWV
global minimizer

Randomly initialized GD never hits saddle points in phase retrieval! J
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Other saddle-escaping schemes

iteration num of iterations needed | local iteration
complexity to escape saddles complexity
Trust-region 7 l 7 o
(Sun et al. '16) n' +loglog < n loglog <
Perturbed GD 3 1 3 Bl
(Jin et al. '17) n’ +nlog: " nlog 2
Perturbed accelerated

GD n%® +/nlog 1 n2d Vnlogl
(Jin et al. '17)

GD
(Chen et al. '18) logn + log é logn log %

Generic optimization theory yields highly suboptimal convergence
guarantees
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smart sample saddle
initialization splitting escaping




Can we further improve sample complexity?



Improving search directions

WF (GD): z't! =a' - —Zka
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Improving search directions

WF (GD): z't! =a' - % Zka(a:t)

Y

locus of»{ka (2)}
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Improving search directions

WF (GD): z't! =a' - —Zka

locus of {ka( )}

Problem: descent direction might have large variability




Solution: variance reduction via trimming

: C ot ot t
More adaptive rule: '™ =z’ — L5, -V fi(x')



Solution: variance reduction via trimming

More adaptive rule: x!t! =zt — ke V fi(2)
~_ B
N
XA
SRV
A

//l \\t\ X
// Ns
‘ /] \\\\ P \}\‘:\:\
Vo
N

e 7; trims away excessively large grad components

Te = {k: |V fu@)ll, < typical-size{ |V fula!), }1Sl§m}

Slight bias 4+  much reduced variance
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Summary: truncated Wirtinger flow

1) Regularized spectral initialization: x° < principal component of
2 p p p p

1 *
— aia
m Zke% Yi Gk
(2) Follow adaptive gradient descent
t_ ot t
== E ke”ﬁvfk(w)

Adaptive and iteration-varying rules: discard high-leverage data

{yr : kb & T}
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Theoretical guarantees (noiseless data)

initial guess ¥ Q0
! 3
1
+, %)
)
| | \%
| | =
I | o1’
| | 5
| |
I I 2
| | T
: ) ? . : Eﬂja
| basin of attraction 0 60

20 . 40
lteration

Theorem 5 (Chen, Candes’15)
Suppose ay, Hid. N(0,1,,) and sample size m = n. With high prob.,
dist (2!, 2%) := min ||z’ £ 2] < v(1—p)" ||z

where 0 < v, p < 1 are universal constants
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Empirical success rate (noiseless data)

1} == TWF
|~ WF

Empirical success rate
o
o

[

I
5n 6n

“m: number of measurements (n=1000)

Empirical success rate vs. sample size
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Stability vis a vis noise and outliers?



Stability under noisy data

e Noisy data: yx = |ajz!|? +

e Signal-to-noise ratio:

ST 1 . 1 il s

Skt [[m|?

o i.i.d. Gaussian design aj, " N(0,1,)
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Stability under noisy data

e Noisy data: yx = |ajz!|? +

e Signal-to-noise ratio:

onR o Selaiaflt _ smlat|!

Skt [[m|?

e i.i.d. Gaussian design ay hig N(0,1,)

Theorem 6 (Chen, Candes '15)

Relative error of TWF converges to O( SlNR)

:
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Relative MSE

vs. SNR (Poisson data)

-20

25

=30+

-35}

40

-45+

-50 F

-55 |

Relative MSE (dB)

-60

65 L

Slop;e = -1

-~ m=6n
- m=8n
-~ m=10n

/
/

15 20 25

30 35 40 45 50 55

SNR (dB) (n=1000)

Empirical evidence: relative MSE scales inversely with SNR




This accuracy is nearly un-improvable (empirically)

Comparison with ideal MLE (with phase info. revealed)

ideal knowledge: y; ~ Poisson( }a}gmu|2) and ¢, = sign(ajx?)

truncated WF

Little loss due to
missing phases!

Relative MSE (dB)

I genie-aided MLE

1‘5 Zb 2‘5 Sb 3‘5 4‘0 4‘5 50 55
SNR (dB) (n =100)
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This accuracy is nearly un-improvable (theoretically)

. ind. .
e Poisson data: y;, '~ Poisson(|ajz?|?)
e Signal-to-noise ratio:

2k |a"1>:;33h|4

SNR ~ =~ &
>k Var(yk)

~ 33
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This accuracy is nearly un-improvable (theoretically)

. ind. .
e Poisson data: y;, '~ Poisson(|ajz?|?)
e Signal-to-noise ratio:

2k |a"1>:;33h|4 —

SNR ~ =k L~ 3|2
> Var(ye) Il

Theorem 7 (Chen, Candes '15)

. Under i.i.d. Gaussian design, for any estimator &,

E [dist (z, 1
inf sup [dist (2, z) | {ax}] >
T 2 |afs>log! S m (4P SNR

provided that sample size m =< n
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Robust recovery vis a vis outliers

Consider now two sources of corruption: sparse outliers and bounded
noise
= |a, zr:h] +ntw, i=1,...,m,

o |n]lo < s-m: sparse outlier, where 0 < s < 1 is fraction of
outliers

e w: bounded noise

Motivation: outliers happen with sensor failures, malicious attacks ...
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Robust recovery vis a vis outliers

Goal: develop algorithms that are oblivious to outliers, and
statistically and computationally efficient
e performs equally well regardless of existence of outliers
e small sample size: ideally m < n
e large fraction of outliers: ideally s < 1

e low computational complexity and easy to implement
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Existing approaches are not robust in the presence
of arbitrary outliers

e Spectral initialization would fail: leading eigenvector of Y can
be arbitrarily perturbed

1 .
Y = — Zg/iaiai (WF)
mia

1 m
or Y =% 1iaia] Ly <mean((sp)y  (TWF)
=1
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Existing approaches are not robust in the presence
of arbitrary outliers

e Spectral initialization would fail: leading eigenvector of Y can
be arbitrarily perturbed
1 & T
Y =—> yaa  (WF)
miz

1 m
or 'Y = E Zyia’ia’;rﬂﬂyﬂgmean({yi})} (TVVF)
i=1

e GD would fail: search directions can be arbitrarily perturbed
77 m
t+H1 _ ot t
T =x"—— ) Vfi(z
- ; (")
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Solution: median truncation

Median is often more stable for various levels of outliers

e well-known in robust statistics to be outlier-resilient

Inl, =0, s=01

ol =, 501

Inl, =20, s=0.1

median threshold

1000 mean threshold
500
“Top-k threshold
o

Measurements

no outliers

2000

1500]

1000]

small outlier magnitudes

Measurements

Tiean threshold

[Top-k threshold

2000)

A

fiean threshold

1000] ‘ ‘
‘ n

Measurements

[p hreshold

large outlier magnitudes
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Solution: median truncation

Median is often more stable for various levels of outliers

e well-known in robust statistics to be outlier-resilient

bl =0, s=01 Inl, =, s=01 Inl, =20, s=0.1
2500 2500 2500)
2000 20m0) 2000 l ‘ ‘ | hean threshold
: e
1500 1500)

I
median teshold i ‘
"

1000 mean threshold 1000 iean threshold 1000 ‘
500 500 s00) [Top-k threshold
“Top-k threshold [Top-k threshold
o

Measurements Measurements

Measurements

no outliers small outlier magnitudes  large outlier magnitudes

Key idea: “median-truncation” — discard samples adaptively
based on how large sample gradients/values deviate from median J
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Median-truncated gradient descent

(1) Median-truncated spectral initialization: x=° < leading eigenvector
of

m

T
Zy’iaiai L {1yl Smedian({y:1)}

=1

1

Y =—
m

(2) Median-truncated gradient descent:

t+1 _ -t T t
T =2 - Zka.(:c ),
keT:

where

T = {k : |yk — |a,Ia:t|| < median ({|yk — \a;mt“})}

96



Performance guarantees

Theorem 8 (Zhang, Chi and Liang '16)

Assume |w| oo < 183, and a; tig N(0,1,). If m 2 nlogn and
s < so, then with high prob., median-TWF/RWF yields

dist($t7$h) 5 %‘F(l_P)tnwhH% t:071a
(B

for some constants 0 < p,sg < 1

e Exact recovery when w = 0 but with a constant fraction of
outliers s < 1

e Stable recovery with additional bounded noise

e Resist outliers obliviously: no prior knowledge of outliers (except

sparsity)
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Numerical experiment with both dense noise and

10° !
x TWF with outliers
ks -=--median-RWF with outliers
LY O median-TWF with outliers
\6( TWF without outliers
)
.10 T [
e o
2 Vo
] \
g |\
\ o
10 \ o
\ o
o
g
10 . . . .
0 20 40 60 80 100
Iterations

Median-TWF with outliers achieves almost identical accuracy as
TWEF without outliers
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Tutorial outline

Part 11lI: Low-rank matrix estimation



Motivation

Low-rank matrix estimation problems arise in many applications

A popular example is recommendation systems: how to predict
unseen user ratings for movies?
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figure credit: E. Candes
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Low-rank modeling
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A few factors explain most of the data
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Low-rank modeling
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A few factors explain most of the data — low-rank approximation

How to exploit (approx.) low-rank structure in prediction?




Other problems with low-rank matrices

sensor network localization
structure from motion

system identification and time series analysis

spatial-temporal data modeling, e.g. video, network traffic, ..

face recognition
quantum state tomography

community detection
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Rank-constrained optimization

Rank-constrained optimization:

minimizepscrnxn  F(M) s.t. rank(M) <,

where F'(M) is convex in M, and r < n

e useful model for many low-rank estimation problems;

e computationally intractable.
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Convex relaxation

Convex relaxation:
minimizepysepnxn  F(M) st. ||[Mls <¢

where || - ||« is nuclear norm — convex relaxation of rank

e Pros: mature theory; versatile to incorporate other constraints

e Cons: run-time in O(n?); even M itself takes O(n?) storage

Question: can we develop algorithms that work with computational
and memory complexities nearly linear in n?
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Burer-Monteiro factorization

Matrix factorization:
minimizey v f(U,V):= F{UV")

where M = UV T, where U,V € R,

e pioneered by Burer, Monteiro '03

e highly non-convex

e global ambiguity: for any orthonormal R € R™*" and « # 0,
UV' =(aUR)(a"'VR)"

i.e. if (U, V) is a global minimizer, so does (c(UR,a" 'V R)



Revisiting PCA

Given PSD M € R™ ™ (not necessarily low-rank), solve low-rank
approximation problem (best rank-r approximation):

M = argming ||Z — M3 st rank(Z) <r

nonconvex optimization!

Solution is truncated eigen-decomposition (Eckart-Young theorem)
o let M =", o;uu] be EVD of M (01 > --- > 0y,), then

'
i=1
— nonconvex, but tractable
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Optimization viewpoint

Factorize Z = X X T with X € R™"*". We're interested in the
landscape of

1
F(X) = {IXXT - M2
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Optimization viewpoint

Factorize Z = X X T with X € R™"*". We're interested in the
landscape of

1
F(X) = {IXXT - M2

To simplify exposition: set r = 1.

1
fl@) = llzaT ~ M
Definition 9 (critical points)

A first-order critical point (stationary point) of f satisfies

Vfi(x)=0
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Several types of critical points

AW
2 2

0

(a) strict saddle (b) local minimum (c) global minimum

Figure credit: Li et al.'16
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Critical points of f(x)

x is critical point, i.e. Vf(x) = (xzx' — M)z =0

)

Mz = ||z|3z

)

x aligns with eigenvectorsof M or =0

Since Mu; = o;u;, set of critical points is given by

{0} U{ou;, i=1,...,n}
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Categorization of critical points

Critical points can be further categorized based on Hessians:

Vif(x) = 2w’ + |lx|3] - M

e For any non-zero critical points @ 1= \/orug:

v2f(£l,'k) = 20kuku; + O'kI - M

n n

T T T

= 20puruy + o (Z u;u, > — Z oiuiU;
i=1

i=1
= Z (o) — o)) uwiw; + 20w,
IREI
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Categorization of critical points

Critical points can be further categorized based on Hessians:

Vif(x) = 2w’ + |lx|3] - M

o lfoy >09>...>0,>0, then
o k=1: V2f(x1) =0 — local minima

o 1<k <n: )\min(VQf(wk>) <0, )\max(VQf(:Ek)) >0
—  strict saddle

ox=0: V2f(0) <0 — local maxima (or strict saddle)
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Good news: benign landscape

2
For example, for 2-dimensional case f(x) = ||zz ' — B ﬂ
F

= [’ — 12"

global minima ¢ = + E] & strict saddle « = [8} and + [_11}

— No “spurious” local minima!
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Key messages from landscape analysis

1 ,
f(X):= Z||XXT - M|}, X eR™

If o0 > opg1:

e all local minima are global: X contains top-r eigenvectors (up
to orthonormal transformation)

e strict saddle points: all stationary points are saddle points
except global optimum
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Low-rank recovery with few measurements

Consider linear measurements:
y=AM), yeR™, m<n?
where M € R™ " is rank-r (r < n) and PSD (for simplicity).

e Consider least-squares loss function:
1
f(X) = ZHA(XXT — M)|[%

o If A is isotropic (i.e. E[A*A] = Z), then

E[7(X)] = I XXT - M3

e Does f(X) inherit benign landscape?



Landscape preserving under RIP

Definition 10
Rank-r restricted isometry constants ¢, is smallest quantity obeying

(1= o) IMIIE < [AM)# < (1+06,)| MI|g, YM : rank(M) < r
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Landscape preserving under RIP

Definition 10
Rank-r restricted isometry constants ¢, is smallest quantity obeying

(1= o) IMIIE < [AM)# < (1+06,)| MI|g, YM : rank(M) < r

Key message: benign landscape is preserved when A satisfies RIP
e.g., when A follows the Gaussian design
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Landscape preserving under RIP

Definition 10
Rank-r restricted isometry constants ¢, is smallest quantity obeying

(1= o) IMIIE < [AM)# < (1+06,)| MI|g, YM : rank(M) < r

Theorem 11 (Bhojanapalli et al.’16, Ge et al.’17)

If A satisfies RIP with 62, < &, then
e all local min are global: any local minimum X of f(-) satisfies
XX"=M
e strict saddle points: any non-local min critical point X of f(-)
satisfies Amin[V2f(X)] < —20,
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Landscape without RIP

Matrix completion:

Complete M from partial entries M; ;, (i,j) €

where (7, j) is included in €2 independently with prob. p

find low-rank M st. Po(M) = Pq(M)

In matrix completion, RIP does not hold
— need to regularize loss function by promoting incoherent
solutions
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Incoherence for matrix completion

Definition 12 (Incoherence for matrix completion)

A rank-r matrix M with eigendecomposition M = UXU ' is said to

be p-incoherent if

[ pr
01 < /210 = /25
1 00 0 1 1 1 1
0 0 0 0 1 11 1
e.g. _ )
000 1 1 1 1
hard p=n easy p=1
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Regularization

One possible regularizer:

Q(X) = §(|’jﬂ2 —a)} = ; Qilllef X|l2)

where « is regularization parameter, and z; = max{z,0}

1.0 f
0.8
0.6| / (x from -0.2 to 2.2)
04| /

L
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MC has no spurious local minima under proper
regularization

Consider regularized loss function

freg(X) = LPo(XXT - M)E+ AQX)
p ——

promote incoherence

where \: regularization parameter

Theorem 13 (Ge et al, 2016)

If sample size n?p > p*nrSlogn and if « and X are chosen properly,
then with high prob.,

e all local min are global: any local minimum X of fre(-) satisfies
XXT=M

e saddle points that are not local minima are strict saddles
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Initialization-free theory

Implications:

e Under benign landscape, local search algorithms that can find
local minima are often sufficient, regardless of initialization

e Key algorithm issue: how to escape saddle points
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Saddle-point escaping algorithms

e Vanilla GD with random initialization: converges to global
minimizers almost surely, but no rates are known (Lee et al. '16)

e Second-order algorithms (Hessian-based): trust-region methods,
... (Sun et al.'16)

e First-order algorithms: (perturbed) gradient descent, stochastic
gradient descent, ... (Jin et al.'17)

Open problem: does MC converge fast with random initialization? J
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Gradient descent for matrix completion

Let M = X!X"5T. Observe
Yij=M;+Ei; (ij)€

where P ((i,j) € Q) = p and E; j ~ N(0,0%)L.

—

minimize HPQ (]\//.7 — Y)Hi sit. rank(M) <r

can be relaxed to sub-Gaussian noise and asymmetric case.
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Gradient descent for matrix completion

Let M = X!X"5T. Observe
Yij=M;+Ei; (ij)€

where P ((i,j) € Q) = p and E; j ~ N(0,0%)L.

—

minimize HPQ (]\7 — Y)Hi sit. rank(M) <r

minimize x cgnxr  f(X) = Z (GJ—XXTek_Yj,k:)Q
(4,k)€Q

unregularized least-squares loss

can be relaxed to sub-Gaussian noise and asymmetric case.
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Gradient descent for matrix completion

(1) Spectral initialization: let U’X°U°" be rank-r

eigendecomposition of

;PQ(Y).

and set X0 = U° (20)/2

(2) Gradient descent updates:

X = Xt VXY, t=0,1,---
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Gradient descent for matrix completion

Define optimal transform from the tth iterate X! to X" as

Q' = argminReOTwHXtR — XHHF

Theorem 14 (Noiseless MC, Ma, Wang, Chi, Chen’17)

Suppose M = X" X" s rank-r, incoherent and well-conditioned.

Vanilla GD (with spectral initialization ) achieves
o IX'Q" —X"|r S
o | X'Q' - X*| S/ NG HXUH (spectral)
o | X'Q"— XhHQ,oo <p um/%HXhHgm, (incoherence)

where 0 < p < 1, if step size § < 1/0 . and sample complexity
n2p > pdnr3log®n

e vanilla gradient descent converges linearly for matrix completion!
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Numerical evidence for noiseless data

10°
——relative || - ||p error
relateive || - || error
relative || - || error
-5
5 10
=
g
3
o
>
=
=
<
=
Q
R 1010
10715

50 100 150 200 250 300 350 400 450 500
Iteration count

Relative error of X' X'T (measured by ||||lp, ||l , [|-lo,) Vvs. iteration

count for MC, where n = 1000, » = 10, p = 0.1, and i = 0.2
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Noisy matrix completion

Theorem 15 (Noisy MC, Ma, Wang, Chi, Chen’17)

Under sample complexity of Theorem 14, if noise satisfies
\/> < "m‘“ , then GD iterates satisfy

53;”’ og3n’
1 o n
e ﬁ) I,

logn nlogn
IX'Q" - XF||, < | p'ur 1XF ], oo
Urnln

X'Q — X < ( plur Jr(’\fXu
Ix'q - x| <puﬁ 2 M ix

e minimax entrywise error control in || X' X" — X“X“THOO
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Numerical evidence for noisy data

||M [E
Set SNR = " F
-10
relative || - [[p error for X
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=
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Squared relative error of the estimate X (measured by
-l 1 0-lg,00) and M = XX (measured by ||-],
where n = 500, r = 10, p=20.1, and n; = 0.2

) vs. SNR,
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Related theory

minimize x cpnxr  f(X) = Z (GJTXXTek_}/}',k)Q
(J:k)eQ

Related theory promotes incoherence explicitly:
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Related theory

minimize x cpnxr  f(X) = Z (ejTXXTek_Yj,k‘)Q
(4,k)€Q

Related theory promotes incoherence explicitly:

e regularized loss (solve minx f(X)+ Q(X) instead)
o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16
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Related theory

minimize x cpnxr  f(X) = Z (ejTXXTek_E',k‘)Q
(4,k)EQ

Related theory promotes incoherence explicitly:

e regularized loss (solve minx f(X)+ Q(X) instead)
o e.g. Keshavan, Montanari, Oh '10, Sun, Luo '14, Ge, Lee, Ma '16

e projection onto set of incoherent matrices
o e.g. Chen, Wainwright '15, Zheng, Lafferty '16

X' =P (X' = V(X)) t=0,1,---
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Quadratic sampling

A X AX yi = [la] X3
(HANE NE HEE [ |
e i [ [ ] [ |
BN B Il — HEE [ |
H N = —> &
B B 0 | RN [
m < BEEE ‘2
[ T N OB
EE —— HEN [ |
nph - HE i+
H
 H EE B EEE [ |

3

Recover X € R™*" from m random quadratic measurements
T 2 .
yi = |a; X”Hz, i=1,....,m

Applications: quantum state tomography, covariance sketching, ...
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Gradient descent with spectral initialization

N 1 & 2
minimize x cgnxr = ,;1 (Hak XH2 )
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Gradient descent with spectral initialization

. - - 1 o 2
minimize x cgnxr ml;lmak XH2 )

Theorem 16 (Quadratic sampling)
Under i.i.d. Gaussian designs a; g~ N(0,1I), GD (with spectral
initialization) achieves

e max [|a] (X'Q" — X9)||, < Viogn H?g() (incoherence)

o | X'Q! — XY|p < (1 — %Xu)") | X5 (linear convergence)

provided that 1 = m and m > nrtlogn
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Demixing sparse and low-rank matrices

Suppose we are given a matrix

M= L + S eR™
- =~

low-rank sparse

Question: can we hope to recover both L and S from M?
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Applications

e Robust PCA

.
°
°
° o °
P ° L
X ° .
'.° e e ° . o *®8he
° ° o o . LR 2 o °
. . * W o ® . 0...
LN} L] L]
o o . o oo ’ hd
e ®, o _°°
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Nonconvex approach

e rank(L) < r; if we write the SVD of L = UXV', set
X*=Un? yr=vxl/?

e non-zero entries of S are “spread out” (no more than s fraction
of non-zeros per row/column), but otherwise arbitrary

85 = {S € R . "SZ7H0 <s-mn; HSZJ'HO <s- n}

1
minimize F(X,Y,8):=|M - XY -S|} +-| X' X -Y'Y|3
X,Y,S€eS; 4

least- squares loss . . .
fix scaling ambiguity

where X, Y € R"*",
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Gradient descent and hard thresholding

minimizeX7y,S€58 F(X, Y, S)

e Spectral initialization: Set S° = H. (M). Let U'EVOT be
rank-r SVD of M := Po(M — 89); set X° = U° (20)1/2 and
YO0 — yoO (20)1/2
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Gradient descent and hard thresholding

minimizeX7y,S€58 F(X, Y, S)

e Spectral initialization: Set S° = Hos(M). Let U'SOVOT be
rank-r SVD of M := Po(M — 89); set X° = U° (20)1/2 and
YO0 — yoO (20)1/2

e fort=0,1,2,---

o Hard thresholding: S'™! =H (M — X'Y'T)

o Gradient updates:
Xt+1 — Xt _ nVXF (Xt,Yt7 St+1)
Y =Y —pVyF (X' YY" 8
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Efficient nonconvex recovery

Theorem 17 (Nonconvex RPCA, Yi et al.’16)

Set vy =2 and n = 1/(360max). Suppose that

sgmin{

1 1
k3’ kT }
Then GD+HT satisfies

¢
3.2

||X'5YtT = L||12; < <1 — 2818/-/{) /,u?m" 50 max

e O(rlogl/e) iterations to reach e-accuracy

e For adversarial outliers, optimal fraction is s = O(1/ur);
Theorem 17 is suboptimal by a factor of \/r

e extendable to partial observation models
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Tutorial outline

e Part IV: Closing remarks



A growing list of “benign” nonconvex problems

e blind deconvolution / self-calibration
e dictionary learning

e tensor decomposition

e robust PCA

e mixture linear regression

e Gaussian mixture models

e etc...
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Topics we did not cover

e other algorithms: alternating minimization, stochastic gradient
descent, mirror descent, singular value projection, etc...

e additional structures: e.g. sparsity, piece-wise smoothness

e saddle-point escaping algorithms
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