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Parameter Estimation or Image Inversion I

I Image: Observable image y ∼ p(y;θ), whose distribution is
parameterized by unknown parameters θ.

I Inversion: Estimate θ, given a set of samples of y.
I Source location estimation in MRI and EEG
I DOA estimation in sensor array processing
I Frequency and amplitude estimation in spectrum analysis
I Range, Doppler, and azimuth estimation in radar/sonar



Parameter Estimation or Image Inversion II
I Canonical Model: Supperposition of modes:

y(t) =

r∑
i=1

ψ(t; νi)αi + n(t)

I p = 2r unknown parameters: θ = [ν1, . . . , νr, α1, . . . , αr]
T

I Parameterized modal function: ψ(t; ν)
I Additive noise: n(t)

I After Sampling:
y(t0)
y(t1)

...
y(tn−1)

 =

r∑
i=1


ψ(t0; νi)
ψ(t1; νi)

...
ψ(tn−1; νi)

αi +


n(t0)
n(t1)

...
n(tn−1)


or

y = Ψ(ν)α+ n =

r∑
i=1

ψ(νi)αi + n

I Typically, ti’s are uniformly spaced and almost always n > p.



Parameter Estimation or Image Inversion III

Canonical Model:

y = Ψ(ν)α+ n =

r∑
i=1

ψ(νi)αi + n

I DOA estimation and spectrum analysis:

ψ(ν) = [ejt0ν , ejt1ν , . . . , ejtm−1ν ]T

where ν is the DOA (electrical angle) of a radiating point source.

I Radar and sonar:

ψ(ν) = [w(t0 − τ)ejωt0 , w(t1 − τ)ejωt1 , . . . , w(tm−1 − τ)ejωtm−1 ]T

where w(t) is the transmit waveform and ν = (τ, ω) are delay and
Doppler coordinates of a point scatterer.



New Challenges for Parameter Estimation

I Limited Sampling Rate:
ultra-wideband signals, large antenna arrays, etc.

I Noise, corruptions and missing data:
sensor failures, attacks, outliers, etc.

I Multi-modal data: the received signal exhibits
superpositions of multiple modal functions:

which occurs frequently in multi-user/multi-channel environments.

I Calibration and Blind Super-resolution: the modal
function needs to be calibrated or estimated
before performing parameter estimation.



Motivating applications: Super-resolution Imaging

I Single-molecule based superresolution techniques (STORM/PALM)
achieve nanometer spatial resolution by integrating the temporal
information of the switching dynamics of fluorophores (emitters).

I In each frame, our goal is to localize a point source model via observing
its convolution with a point spread function (PSF) g(t):

z (t) =

(
r∑
i=1

diδ(t− ti)
)
∗ g(t) =

r∑
i=1

dig(t− ti)

I The final image is obtained by superimposing the reconstruction of each
frame.

I The reconstruction requires estimating locations of point sources.



Three-Dimensional Super-resolution Imaging
I This principle can be extended to reconstruct 3-D objects from 2-D

images, by modulating the shape, e.g. ellipticity, of the PSFs along the
z-dimension.
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I The reconstruction requires separation of point sources modulated by
different PSFs.

M. J. Rust, M. Bates, X. Zhuang, ”Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)”, Nature
Methods 3, 793-795 (2006).

J. Huang, M. Sun, K. Gumpper, Y. Chi and J. Ma, ”3D Multifocus Astigmatism and Compressed Sensing (3D MACS) Based
Superresolution Reconstruction”, Biomedical Optics Express, 2015.



Motivating Applications: Neural Spike Sorting

I The electrode measures firing activities of neighboring neurons with
unknown characteristic functions (or PSF).

I The goal is to identify and separate the firing times of each neuron from
the observed voltage trace at the electrode.

I The reconstruction requires simultaneous estimation of the activation
time and the PSF.



Motivating Applications: Blind multi-path channel
identification

I In multi-user communication systems, each user transmits a waveform
g(t) modulated by unknown data symbols, which arrives at the receiver
asynchronously

y(t) =

r∑
i=1

αigi(t− ti)

I The goal is to simultaneously decode and estimate the multi-path delay.



Tutorial Outline

I Review conventional parameter estimation methods, with a focus on
spectrum estimation.

I Super-resolution Parameter Estimation via `1-minimization:
consequences of basis mismatch

I Super-resolution Parameter Estimation via atomic norm minimization

I Super-resolution Parameter Estimation via structured matrix completion

I Final remarks



Classical Parameter Estimation: Matched Filtering I

I Matched filtering

I Sequence of rank-one subspaces, or 1D test images, is matched to the
measured image by filtering, correlating, or phasing.

I Test images are generated by scanning a prototype image (e.g., a
waveform or a steering vector) through frequency, wavenumber, doppler,
and/or delay at some desired resolution ∆ν.

P (`) = ‖ψ(`∆ν)Hy‖22

A. Pezeshki: Multi-rank MVDR Beamforming      
ISS Seminar, Princeton University, Feb. 1, 2007

Beamforming

A simple beamformer: Conventional (or Bartlett) beamformer

Sequence of plane-waves

Properties of the Bartlett beamformer:

Very simple 
Low resolution and high sidelobes
Good interference suppression 
at some angles

Estimates the 
signal power

Matched Filtering

Bearing Response Cross-Ambiguity
I Peak locations are taken as estimates of νi and peak values are taken as

estimates of source powers |αi|2.
I Resolution: Rayleigh Limit (RL), inversely proportional to the number of

measurements



Classical Parameter Estimation: Matched Filtering II

I Matched filtering (Cont.)

I Extends to subspace matching for those cases in which the model for the
image is comprised of several dominant modes.

I Extends to whitened matched filter, or minimum variance unbiased
(MVUB) filter, or generalized sidelobe canceller.

H. L. Van Trees, “Detection, Estimation, and Modulation Theory: Part I”,

D. J. Thomson, “Spectrum estimation and harmonic analysis,” Proc. IEEE, vol. 70, pp. 10551096, Sep. 1982.

T.-C.Lui and B. D. Van Veen, “Multiple window based minimum variance spectrum estimation for multidimensional random fields,”
IEEE Trans. Signal Process., vol. 40, no. 3, pp. 578–589, Mar. 1992.

L. L. Scharf and B. Friedlander, “Matched subspace detectors,” IEEE Trans. Signal Process., vol. 42, no. 8, pp. 21462157, Aug. 1994.

A. Pezeshki, B. D. Van Veen, L. L. Scharf, H. Cox, and M. Lundberg, “Eigenvalue beamforming using a multi-rank MVDR beamformer
and subspace selection,” IEEE Trans. Signal Processing, vol. 56, no. 5, pp. 1954–1967, May 2008.



Classical Parameter Estimation: ML Estimation I

I ML Estimation in Separable Nonlinear Models

I Low-order separable modal representation for the image:

y = Ψ(ν)α+ n =

r∑
i=1

ψ(νi)αi + n

Parameters ν in Ψ are nonlinear parameters (like frequency, delay, and
Doppler) and α are linear parameters (comples amplitudes).

I Estimates of linear parameters (complex amplitudes of modes) and
nonlinear mode parameters (frequency, wavenumber, delay, and/or
doppler) are extracted, usually based on maximum likelihood (ML), or
some variation on linear prediction, using `2 minimization.



Classical Parameter Estimation: ML Estimation II

I Estimation of Complex Exponential Modes
I Physical model:

y(t) =

r∑
i=1

αiν
t
i + n(t); ψ(t; νi) = νti

where νi = edi+jωi is a complex exponential mode, with damping di and
frequency ωi.

I Uniformly sampled measurement model:

y = Ψ(ν)α

Ψ(ν) =


ν01 ν02 · · · ν0r
ν11 ν12 · · · ν1r
ν21 ν22 · · · ν2r
...

...
. . .

...
νn−1
1 νn−1

2 · · · νn−1
r

 .
Here, without loss of generality, we have taken the samples at t = `t0, for
` = 0, 1, . . . , n− 1, with t0 = 1.



Classical Parameter Estimation: ML Estimation III
I ML Estimation of Complex Exponential Modes

min
ν,α
‖y −Ψ(ν)α‖22

α̂ML = Ψ(ν)†y

ν̂ML = argmin yHPA(ν)y; AHΨ = 0

Prony’s method (1795), modified least
squares, linear prediction, and Iterative
Quadratic Maximum Likelihood (IQML)
are used to solve exact ML or its
modifications.

I Rank-reduction is used to combat noise.

I Requires to estimate the modal order.

D. W. Tufts and R. Kumaresan, “Singular value decomposition and improved frequency estimation using linear prediction,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 30, no. 4, pp. 671675, Aug. 1982.

D. W. Tufts and R. Kumaresan, “Estimation of frequencies of mul- tiple sinusoids: Making linear prediction perform like maximum
likelihood,” Proc. IEEE., vol. 70, pp. 975989, 1982.

L. L. Scharf “Statistical Signal Processing,” Prentice Hall, 1991.



Classical Parameter Estimation: ML Estimation IV

I Example: Exact recovery via Linear Prediction
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Classical Parameter Estimation: Fundamental Limits

I Estimation-theoretic fundamental limits and performance bounds:

I Fisher Information

I Kullback-Leibler divergence

I Cramér-Rao bounds

I Ziv-Zakai bound

I SNR Thresholds

Fisher Edgeworth Kullback

Leibler Cramér Rao

I Key fact: Any subsampling of the measured image (e.g. compressed
sensing) has consequences for resolution (or bias) and for variability (or
variance) in parameter estimation.

L. L. Scharf “Statistical Signal Processing,” Prentice Hall, 1991.



CS and Fundamental Estimation Bounds I

I Canonical model before compression:

y = Ψ(ν)α+ n = s(θ) + n

where θT = [νT ,αT ] ∈ Cp and s(θ) = Ψ(ν)α ∈ Cn.

I Canonical model after compression (of noisy data):

Φy = Φ(Ψ(ν)α+ n) = Φ(s(θ) + n)

where Φ ∈ Cm×n, m� n, is a compressive sensing matrix.

I Observation: y ∼ p(y;θ) (or Φy ∼ p(Φy;θ) after compression)



CS and Fundamental Estimation Bounds II

Estimation-theoretic measures:

I Fisher information matrix: Covariance of Fisher score

{J(θ)}i,j = E

[(
∂

∂θi
log p(y;ν)

)(
∂

∂θj
log p(y;θ)

)
|θ
]

= −E
[

∂2

∂2θiθj
log p(y;θ)|θ

]
I Cramér-Rao lower bound (CRB): Lower bounds the error covariance of

any unbiased estimator T (y) of the parameter vector θ from
measurement y:

tr[covθ(T (y))] ≥ tr[J−1(θ)]

In particular, the ith diagonal element of J−1(θ) lower bounds the MSE
of any unbiased estimator Ti(y) of the ith parameter θi from y.



CS, Fisher Information, and CRB
Question: What is the impact of compression (e.g. CS) on the Fisher
information matrix and the CRB for estimating parameters?

Theorem (Pakrooh, Pezeshki, Scharf, Chi ’13)

(a) For any compression matrix, we have

(J−1(θ))ii ≤ (Ĵ−1(θ))ii ≤ 1/λmin(GT (θ)PΦTG(θ))

(b) For a random compression matrix, we have

(Ĵ−1(θ))ii ≤
λmax(J−1(θ))

C(1− ε)

with probability at least 1− δ − δ′.

Remarks:

I (Ĵ−1)ii is the CRB in estimating the ith parameter θi.

I CRB always gets worse after compressive sampling.

I Theorem gives a confidence interval and a confidence level for the
increase in CRB after random compression.



CS, Fisher Information, and CRB

(Ĵ−1(θ))ii ≤
λmax(J−1(θ))

C(1− ε)

I δ satisfies

Pr
(
∀q ∈ 〈G(θ)〉 : (1− ε)‖q‖22 ≤ ‖Φq‖22 ≤ (1 + ε)‖q‖22

)
≥ 1− δ.

I 1− δ′ is the probability that λmin((ΦΦT )−1) is larger than C.

I If entries of Φm×n are i.i.d. N (0, 1/m), then

I δ ≤ d(2√p/ε′)pee−m(ε2/4−ε3/6), where

(
3ε′

1− ε′ )
2 + 2(

3ε′

1− ε′ ) = ε.

I δ′ is determined from the distribution of the largest eigenvalue of a
Wishart matrix, and the value of C, from a hypergeometric function.

P. Pakrooh, L. L. Scharf, A. Pezeshki and Y. Chi, “Analysis of Fisher information and the Cramer-Rao bound for nonlinear parameter
estimation after compressed sensing”, in Proc. 2013 IEEE Int. Conf. on Acoust., Speech and Signal Process. (ICASSP), Vancouver May
26-31, 2013.



CRB after Compression
Example: Estimating the DOA of a point source at boresight θ1 = 0 in the
presence of a point interferer at electrical angle θ2.

I The figure shows the after compassion CRB (red) for estimating θ1 = 0
as θ2 is varied inside the (−2π/n, 2π/n] interval. Gaussian compression
is done from dimension n = 8192 to m = 3000. Bounds on the after
compression CRB are shown in blue and black. The upper bounds in
black hold with probability at least 1− δ − δ′, where δ′ = 0.05.



Applying `1 minimization to Parameter Estimation

I Convert the nonlinear modal representation into a linear system via
discretization of the parameter space at desired resolution:

s(θ) =

r∑
i=1

ψ(νi)αi

= Ψphα

Over-determined &
nonlinear

s ≈ [ψ(ω1), · · · ,ψ(ωn)]

x1...
xn


= Ψcsx

Under-determined linear & sparse

I The set of candidate νi ∈ Ω is quantized to Ω̃ = {ω1, · · · , ωn}, n > m;
Ψph unknown and Ψcs assumed known.



Basis Mismatch: A Tale of Two Models

Mathematical (CS) model:

s = Ψcsx

The basis Ψcs is assumed,
typically a gridded imaging matrix
(e.g., n point DFT matrix or
identity matrix), and x is
presumed to be k-sparse.

Physical (true) model:

s = Ψphα

The basis Ψph is unknown, and is
determined by a point spread
function, a Green’s function, or an
impulse response, and α is
k-sparse and unknown.

Key transformation:

x = Ψmisα = Ψ−1
cs Ψphα

x is sparse in the unknown Ψmis

basis, not in the identity basis.



Basis Mismatch: From Sparse to Incompressible

DFT Grid Mismatch:

Ψmis = Ψ
−1
cs Ψph =



L(∆θ0 − 0) L(∆θ1 −
2π(n−1)

n
) · · · L(∆θn−1 −

2π
n

)

L(∆θ0 −
2π
n

) L(∆θ1 − 0) · · · L(∆θn−1 −
2π·2
n

)

.

.

.

.

.

.

.
.
.

.

.

.

L(∆θ0 −
2π(n−1)

n
) L(∆θ1 −

2π(n−2)
n

) · · · L(∆θn−1 − 0)



where L(θ) is the Dirichlet kernel:

L(θ) =
1

n

n−1∑
`=0

ej`θ =
1

n
ej
θ(n−1)

2
sin(θn/2)

sin(θ/2)
.

−10 −5 0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

θ/(2π/N)

si
n
(N

θ
/
2
)

N
si
n
(θ
/
2
)

Slow decay of the Dirichlet
kernel means that the
presumably sparse vector
x = Ψmisα is in fact
incompressible.



Basis Mismatch: Fundamental Question

Question: What is the consequence of assuming that x is k-sparse in I, when
in fact it is only k-sparse in an unknown basis Ψmis, which is determined by
the mismatch between Ψcs and Ψph?

. . . . . .

Basis Mismatch

Two models:

s = Ψ0x = Ψ1θ

Key transformation:

x = Ψθ = Ψ−1
0 Ψ1θ

x is sparse in the unknown Ψ basis, not in the identity basis.

Physical Model CS InverterCS Sampler

y = Φs

min ‖x‖1

s.t. y = ΦΨcsx
s = Ψphα

() June 25, 2014 1 / 1



Sensitivity to Basis Mismatch

I CS Inverter: Basis pursuit solution satisfies

Noise-free: ‖x∗ − x‖1 ≤ C0‖x− xk‖1
Noisy: ‖x∗ − x‖2 ≤ C0k

−1/2‖x− xk‖1 + C1ε

where xk is the best k-term approximation to x.

I Similar bounds CoSaMP and ROMP.

I Where does mismatch enter? k-term approximation error.

x = Ψmisα = Ψ−1
cs Ψphα

I Key: Analyze the sensitivity of ‖x− xk‖1 to basis mismatch.



Degeneration of Best k−Term Approximation

Theorem (Chi, Scharf, Pezeshki, Calderbank, 2011)

Let Ψmis = Ψ−1
cs Ψph = I + E, where x = Ψmisα. Let 1 ≤ p, q ≤ ∞ and

1/p+ 1/q = 1.

I If the rows eT` ∈ C1×n of E are bounded as ‖e`‖p ≤ β, then

‖x− xk‖1 ≤ ‖α−αk‖1 + (n− k)β‖α‖q.

I The bound is achieved when the entries of E satisfy

emn = ±β · ej(arg(αm)−arg(αn)) · (|αn|/‖α‖q)q/p.

Y. Chi, L.L. Scharf, A. Pezeshki, and A.R. Calderbank, “Sensitivity to basis mismatch in compressed sensing,” IEEE Transactions on
Signal Processing, vol. 59, no. 5, pp. 2182–2195, May 2011.



Bounds on Image Inversion Error

Theorem (inversion error)

Let A = ΦΨmis satisfy δA
2k <

√
2− 1 and 1/p+ 1/q = 1. If the rows of E

satisfy ‖em‖p ≤ β, then

‖x− x∗‖1 ≤ C0(n− k)β‖α‖q. (noise-free)

‖x− x∗‖2 ≤ C0(n− k)k−1/2β‖α‖q + C1ε. (noisy)

I Message: In the presence of basis mismatch, exact or near-exact sparse
recovery cannot be guaranteed. Recovery may suffer large errors.

Y. Chi, L.L. Scharf, A. Pezeshki, and A.R. Calderbank, “Sensitivity to basis mismatch in compressed sensing,” IEEE Transactions on
Signal Processing, vol. 59, no. 5, pp. 2182–2195, May 2011.



Mismatch of DFT Basis in Modal Analysis I

I Frequency mismatch
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Mismatch of DFT Basis in Modal Analysis II

I Damping mismatch
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Mismatch of DFT Basis in Modal Analysis III
I Frequency mismatch–noisy measurements
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Mismatch in DFT Frame for Modal Analysis I

But what if we make the grid finer and finer?

I Over-resolution experiment:

I m = 25 samples

I Equal amplitude complex tones at f1 = 0.5 Hz and f2 = 0.52 Hz (half
the Rayleigh limit apart), mismatched to mathematical basis.

I Mathematical model is s = Ψcsx, where Ψcs is the m×mL, “DFT”
frame that is over-resolved to ∆f = 1/mL.

Ψcs =
1√
m


1 1 · · · 1

1 ej
2π
mL · · · ej

2π(mL−1)
mL

...
...

. . .
...

1 ej
2π(m−1)
mL · · · ej

2π(m−1)(mL−1)
mL

 .



Mismatch in DFT Frame for Modal Analysis II

I MSE of inversion is noise-defeated, noise-limited, or null-space limited
— depending on SNR.
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I The results are worse for a weak mode in the presence of a strong
interfering mode.

L. L. Scharf, E. K. P. Chong, A. Pezeshki, and J. R. Luo, “Sensitivity considerations in compressed sensing,” in Conf. Rec. Asilomar’11,
Pacific Grove, CA,, Nov. 2011, pp. 744–748.



Intermediate Recap: Sensitivity of CS to Basis Mismatch

I Basis mismatch is inevitable when exploiting `1 minimization and
sensitivities of CS to basis mismatch need to be fully understood. No
matter how finely we grid the parameter space, the actual modes almost
never lie on the grid.

I The consequence of over-resolution (very fine gridding) is that
performance follows the Cramer-Rao bound more closely at low SNR, but
at high SNR it departs more dramatically from the Cramer-Rao bound.

I This matches intuition that has been gained from more conventional
modal analysis where there is a qualitatively similar trade-off between
bias and variance. That is, bias may be reduced with frame expansion
(over-resolution), but there is a penalty to be paid in variance.
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Some Remedies to Basis Mismatch : A Partial List

These approaches still assume a grid.
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for perturbed compressive sampling,” IEEE Transactions on Signal Processing,
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179-202, 2012.



Inspirations for Atomic Minimization I

I Prior information to exploit: there are only a few active parameters
(sparse!), the exact number of which is unknown.

I In compressive sensing, a sparse signal is simple – it is a parsimonious
sum of the canonical basis vectors {ek}.

I These basis vectors are building blocks for sparse signals.

I The `1 norm enforces sparsity w.r.t. the canonical basis vectors.

I The unit `1 norm ball is conv{±ek}, the convex hull of the basis vectors.

I A hyperplane will most likely touch the `1 norm ball at spiky points,
which correspond to sparse solutions.

= + + 

I This is the geometrical reason that minimize ‖x‖1 subject to y = Ax
will produce a sparse solution.



Inspirations for Atomic Minimization II

I Given a finite dictionary D =
[
d1 · · · dp

]
, we can consider simple

signals that have sparse decompositions w.r.t. building blocks {dk}.
I We promote sparsity w.r.t. D by using the norm:

‖x‖D = min{‖α‖1 : x = Dα}

I The unit norm ball is precisely the convex hull conv{±dk}.
I Minimizing ‖ · ‖D subject to linear constraint is likely to recover

solutions that are sparse w.r.t. D.

= + + 



Inspirations for Atomic Minimization III

I A low rank matrix has a sparse representation in terms of unit-norm,
rank-one matrices.

I The dictionary D = {uvT : ‖u‖2 = ‖v‖2 = 1} is continuously
parameterized and has infinite number of primitive signals.

I We enforce low-rankness using the nuclear norm:

‖X‖∗ = min{‖σ‖1 : X =
∑
i

σiuiv
T
i }

I The nuclear norm ball is the convex hull of unit-norm, rank-one matrices.

I A hyperplane touches the nuclear norm ball at low-rank solutions.

= + 



Atomic Norms I
Convex geometry.

I Consider a dictionary or set of atoms A = {ψ(ν) : ν ∈ N} ⊂ Rn or Cn.
I The parameter space N can be finite, countably infinite, or continuous.
I The atoms {ψ(ν)} are building blocks for signal representation.
I Examples: canonical basis vectors, a finite dictionary, rank-one matrices.
I Line spectral atoms:

a(ν) = [1, ej2πν , . . . , ej2π(n−1)ν ]T : ν ∈ [0, 1]

I 2D line spectral atoms:

a(ν1, ν2) = a(ν1)⊗ a(ν2), ν1, ν2 ∈ [0, 1]

I Tensor atoms: A = {u⊗ v ⊗w ∈ Rm×n×p : ‖u‖ = ‖v‖ = ‖w‖ = 1},
unit-norm, rank-one tensors.



Atomic Norms II

I Prior information: the signal is simple w.r.t. A— it has a parsimonious
decomposition using atoms in A

x =
∑r
k=1 αkψ(νk)

I The atomic norm of any x is defined as (Chandrasekaran, Recht, Parrilo,
& Willsky, 2010)

‖x‖A = inf{‖α‖1 : x =
∑
k αkψ(νk)} = inf{t > 0 : x ∈ t conv(A)}

I The unit ball of the atomic norm is the convex hull of the atomic set A.



Atomic Norms III
Finite optimization.

I Given linear measurements of a signal x?, possibly with missing data and
corrupted by noise and outliers, we want to recover the signal.

I Suppose we have some prior information that the signal is simple – it
has a sparse representation with respect to an atomic set A.

I We can recover the signal by solving convex optimizations:

Basis Pursuit: minimize ‖x‖A subject to y = Ax

LASSO: minimize
1

2
‖y −Ax‖22 + λ‖x‖A

Demixing: minimize ‖x‖A + λ‖z‖1 subject to y = x + z.



Atomic Norms IV

I The dual atomic norm is defined as

‖q‖∗A := sup
x:‖x‖A≤1

|〈x,q〉| = sup
a∈A
|〈a,q〉|

I For line spectral atoms, the dual atomic norm is the maximal
magnitude of a complex trigonometric polynomial.

‖q‖∗A = sup
a∈A
|〈a,q〉| = sup

ν∈[0,1]

∣∣∣∣∣
n−1∑
k=0

qke
j2πkν

∣∣∣∣∣
Atoms Atomic Norm Dual Atomic Norm
canonical basis vectors `1 norm `∞ norm
finite atoms ‖ · ‖D ‖DTq‖∞
unit-norm, rank-one matrices nuclear norm spectral norm
unit-norm, rank-one tensors tensor nuclear norm tensor spectral norm
line spectral atoms ‖ · ‖A ‖ · ‖∗A



Atomic Norms V

Measure optimization.

I Rewrite the decomposition x =
∑r
k=1 αkψ(νk) as

x =

∫
N

ψ(ν)µ(dν)

where µ =
∑r
k=1 αkδ(ν − νk) is a discrete signed measure defined on

the parameter space N .

I The atomic norm ‖x‖A equals the optimal value of an infinite
dimensional `1 minimization:

minimize
µ∈M(N)

‖µ‖TV subject to x =

∫
N

ψ(ν)µ(dν)

I Here M(N) is the set of all measures defined on N , and ‖µ‖TV is the
total variation norm of a measure.



Atomic Norms VI

I When µ =
∑r
k=1 αkδ(ν − νk) is a discrete measure,

‖µ‖TV =
∑r
k=1 |αk|.

I When µ has a density function ρ(ν), ‖µ‖TV =
∫
N
|ρ(ν)|dν = ‖ρ(ν)‖L1

.

I The equivalent measure optimization definition allows us to apply
optimization theory and convex analysis to study atomic norm problems.

I The dual problem is a semi-infinite program:

maximize 〈q,x〉 subject to |〈q,ψ(ν)〉| ≤ 1,∀ν ∈ N︸ ︷︷ ︸
‖q‖∗A≤1



Problems I

Fundamentals:

I Atomic decomposition: Given a signal, which decompositions achieve
the atomic norm?

I Recovery from noise-free linear measurements: how many measurements
do we need to recover a signal that has a sparse representation w.r.t. an
atomic set?

I Denoising: how well can we denoise a signal by exploiting its simplicity
structure?

I Support recovery: how well can we approximately recover the active
parameters from noisy data?

I Resolution limit: what’s the fundamental limit in resolving active
parameters?

I Computational methods: how shall we solve atomic norm minimization
problems?



Problems II

Special cases and applications:

I Atomic norm of tensors: how to find atomic decompositions of tensors?

I Atomic norm of spectrally-sparse ensembles: how to define the atomic
norm for multiple measurement vector (MMV) models?

I Super-resolution of mixture models: how to solve the problem when
multiple forms of atoms exist?

I Blind super-resolution: how to solve the problem when the form of the
atoms are not known precisely?

I Applications on single-molecule imaging.



Atomic Decomposition I

I Consider a parameterized set of atoms A = {ψ(ν), ν ∈ N} and a signal
x with decomposition

x =

r∑
k=1

α?kψ(ν?k),

under what conditions on the parameters {α?k, ν?k}, we have

‖x‖A = ‖α?‖1?

I For A = {±ek}, this question is trivial.

I For A = {uvT : ‖u‖2 = ‖v‖2 = 1}, the composing atoms should be
orthogonal (Singular Value Decomposition).

I For A = {±dk}, a sufficient condition is that the dictionary matrix D
satisfies restricted isometry property.



Atomic Decomposition II
Optimality condition.

I Define µ? =
∑r
k=1 α

?
kδ(ν − ν?k). We are asking when µ? is the optimal

solution of

minimize
µ∈M(N)

‖µ‖TV subject to x =

∫
N

ψ(ν)µ(dν)

I Atomic decomposition studies the parameter estimation ability of total
variation minimization in the full-data, noise-free case.

I Recall the dual problem:

maximize 〈q,x〉 subject to |〈q,ψ(ν)〉| ≤ 1,∀ν ∈ N︸ ︷︷ ︸
‖q‖∗A≤1

I Optimality condition: µ? is optimal if and only if there exists a dual
certificate q such that

|〈q,ψ(ν)〉| ≤ 1,∀ν ∈ N
〈q,x〉 = ‖µ?‖TV



Atomic Decomposition III

I Define a function q(ν) = 〈q,ψ(ν)〉. The optimality condition becomes

dual feasibility: ‖q(ν)‖L∞ ≤ 1

complementary slackness: q(ν?k) = sign(α?k), k ∈ [r]

I To ensure the uniqueness of the optimal solution µ?, we strengthen the
optimality condition to:

strict boundeness: |q(ν)| < 1, ν ∈ N/{ν?k , k ∈ [r]}
interpolation: q(ν?k) = sign(α?k), k ∈ [r]
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Atomic Decomposition IV

Subdifferential

I The subdifferential of ‖ · ‖A at x is

∂‖x‖A = {q : ‖q‖∗A ≤ 1, 〈q,x〉 = ‖x‖A},

which coincides with the optimality condition.

I Therefore, the dual certificate is a subgradient of the atomic norm.

I Example: For the nuclear norm, if the reduced SVD of a matrix X is
UΣV T , then the subdifferential has the characterization

∂‖X‖∗ = {Q : Q = UV T +W,UTW = 0,WV = 0, ‖W‖ ≤ 1}

I For general atomic norms, it seems hopeless to fully characterize the
subdifferential.

I To find atomic decomposition conditions, a dual certificate is usually
constructed, which merely finds one subgradient in the subdifferential.



Atomic Decomposition V

Minimal energy dual certificate.

I The boundedness and interpolation conditions imply that the function
q(ν) achieves maximum or minimum at ν = ν?k .

I We require that a pre-certificate function to satisfy

∂

∂ν
q(ν?k) = 0, k ∈ [r]

q(ν?k) = sign(α?k), k ∈ [r]

I To ensure that |q(ν)| is small, we push it down by minimizing the
(possibly weighted) energy of q to get a pre-certificate as the solution of

minimize
1

2
qTW−1q

subject to 〈q, ∂
∂ν
ψ(ν?k)〉 = 0, 〈q,ψ(ν?k)〉 = sign(α?k), k ∈ [r]



Atomic Decomposition VI
I This leads to the following kernel expansion of the pre-certificate

function

q(ν) =

r∑
k=1

ckK(ν, ν?k) +

r∑
k=1

dk∂K(ν, ν?k)

where the kernel K(ν, ξ) = ψ(ν)
T
Wψ(ξ).

I For line spectral atoms, when W = diag(w) with w being the
autocorrelation sequence of the triangle function, the corresponding
K(ν, ξ) = K(ν − ξ) is the Jackson kernel (squared Fejér), which decays
rapidly.

ν
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Atomic Decomposition VII

Line spectral decomposition.

I Using these ideas, for line spectal atoms

a(ν) =
[
1 ej2πν · · · ej2πnν

]T
, Candès and Fernandez-Granda

obtained the following theorem

Theorem (Candès & Fernandez-Granda, 2012)

If the true paramters {ν?k} are separated by 4
n , the atomic norm

‖x‖A =
∑r
k=1 |α?k|.

I The critical separation was improved to 2.52
n (Fernandez-Granda, 2015).

I The separation condition is in a flavor similar to the restricted isometry
property for finite dictionaries, and the orthogonality condition for
singular value decomposition.

I For atomic decomposition results (full-data, noise-free), the sparsity level
is typically only restricted by the separattion constraint and can be large.



Atomic Decomposition VIII

Other decomposition results.

I Finite dictionary: restricted isometry property [Candès, Romberg, Tao,
2004]

I 2D line spectral atoms: separation of parameters [Candès &
Fernandez-Granda, 2012].

I Symmetric rank-1 tensors: soft-orthogonality of the factors [Tang &
Shah 2015].

I Non-symmetric rank-1 tensors: incoherence, Gram isometry, etc. [Li,
Prater, Shen & Tang, 2015]

I Translation invariant signals: separation of translations [Tang & Recht
2013; Bendory, Dekel & Feuer 2014]

I Spherical harmonics: separation of parameters [Bendory, Dekel & Feuer
2014]

I Radar signals: separation of time-frequency shifts [Heckel, Morgenshtern
& Soltanolkotabi, 2015]



Resolution Limits I
Why there is a resolution limit?

I To simultaneously interpolate sign(α?i ) = +1 and sign(α?j ) = −1 at ν?i
and ν?j respectively while remain bounded imposes constraints on the
derivative of q(ν):

‖∇q(ν̂)‖2 ≥
|q(ν?i )− q(ν?j )|

∆i,j
=

2

∆i,j

I For N ⊂ R, there exists ν̂ ∈ (ν?i , ν
?
j ) such that

q′(ν̂) = 2/(ν?j − ν?i )
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Resolution Limits II

I For certain classes of functions F , if the function values are uniformly
bounded by 1, this limits the maximal achievable derivative, i.e.,

sup
g∈F

‖g′‖∞
‖g‖∞

<∞.

I For F = {trigonometric polynomials of degree at most n},

‖g′(ν)‖∞ ≤ 2πn‖g(ν)‖∞.

I This is the classical Markov-Bernstein’s inequality.

I Resolution limit for line spectral signals: If mini 6=j |ν?i − ν?j | < 1
πn , then

there is a sign pattern for {α?k} such that
∑
k α

?
ka(ν?k) is not an atomic

decomposition.



Resolution Limits III

I Using a theorem by Turán about the roots of trigonometric polynomials,
Duval and Peýre obtained a better critical separation bound

min
i 6=j
|ν?i − ν?j | >

1

n
.

I Sign pattern of {α?j} plays a big role. There is no resolution limit if,
e.g., all α?j are positive ([Schiebinger, Robeva & Recht, 2015]).



Recovery from Gaussian Measurements I

I Given y = Ax? where the entries of A are i.i.d. Gaussian, we recover x?

by solving
minimize ‖x‖A subject to y = Ax.

I Highlight the power of atomic regularization.

I When does this work? How many generic (Gaussian) measurements do
we need to recover x? exactly?

I Summary of atomic minimization recovery bounds (Chandrasekaran,
Recht, Parrilo, & Willsky, 2010):



Recovery from Gaussian Measurements II
I Tangent cone: set of directions that decrease the norm at x?

TA(x?) = {d : ‖x? + αd‖A ≤ ‖x?‖A for some α > 0}

I x? is the unique minimizer iff null(A)
⋂
TA(x?) = {0}.

I When does the random subspace null(A) intersect the decent cone
TA(x?) only at the origin?

I The size of the descent cone matters as measured by the mean width:
we need

m ≥ nw(TA(x?)
⋂

Sn−1)2

for the recovery of x?.



Recovery from Gaussian Measurements III

I Here the mean width

w(TA(x?)
⋂

Sn−1) :=
1

2

∫
Sn−1

sup
x∈TA(x?),‖x‖2=1

〈x,u〉du

≤ 1

2

∫
Sn−1

inf
z∈NA(x?)

‖z− u‖2du

I The normal cone NA(x?) is the polar cone of the descent cone, the cone
induced by the subdifferential at x?.

I Find a z ∈ NA(x?) that is good enough (depending on u), which
requires some knowledge of the subdifferential.



Recovery with Missing Data I

I Suppose we observe only a (random) portion of the full signal x?,
y = x?Ω, and would like to complete the rest.

I E.g., matrix completion, recovery from partial Fourier transform in
compressive sensing

I Optimization formulation:

minimize
x

‖x‖A subject to xΩ = x?Ω.

I Results for line spectral signals:

Theorem (Tang, Bhaskar, Shah & Recht, 2012)

If we observe x? =
∑r
k=1 α

?
ka(ν?k) on a size-O(r log(r) log(n)) random

subset of {0, 1, . . . , n− 1} and the true parameters are separated by 4
n , then

atomic norm minimization successfully completes the signal.

Theorem (Chi and Chen, 2013)

Similar results hold for multi-dimensional spectral signals.



Recovery with Missing Data II



Recovery with Missing Data III

I Dual certificate: x? is the unique minimizer iff there exists a dual
certificate vector q such that the dual certificate function
q(ν) = 〈q,a(ν)〉 satisfies

q(ν?k) = sign(α?k), k ∈ [r]

|q(ν)| < 1,∀ν /∈ {ν?k , k ∈ [r]}
qi = 0,∀i /∈ Ω.
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Recovery with Missing Data IV
I The minimal energy construction yields

q(ν) =

r∑
k=1

ckKr(ν − ν?k) +

r∑
k=1

dk∂Kr(ν − ν?k)

where the (random) kernel

Kr(ν) = a(0)
H
Wa(ν) =

∑
lwlIl∈Ωe

j2πνl

I When the observation index set Ω is random, argue that q(ν) is close to
the Candès-Fernandez-Granda decomposition dual certificate function
using concentration of measure.
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Denoising I
Slow rate for general atomic norms

I Observe noisy measurements: y = x? + w with w a noise.

I Denoise y to obtain

x̂ = argmin
x

1

2
‖x− y‖22 + λ‖x‖A.

I Choose λ ≥ E‖w‖∗A.

Theorem (Bhaskar, Tang & Recht, 2012)

Error Rate: 1
nE‖x̂− x?‖22 ≤ λ

n‖x?‖A.

I Specialize to line spectral signals: suppose the signal
x? =

∑r
k=1 α

?
ka(ν?k) and the noise w ∼ N (0, σ2In).

I We can choose λ = σ
√
n log n.

Theorem (Bhaskar, Tang & Recht, 2012)

Error Rate: 1
nE‖x̂− x?‖22 ≤ σ

√
log(n)
n

∑r
l=1 |α?l |.



Denoising II

Fast rate with well-separated frequency parameters.

Theorem (Tang, Bhaskar & Recht, 2013)

Fast Rate: 1
n‖x̂− x?‖22 ≤ Cσ2r log(n)

n if the parameters are separated.

The rate is minimax optimal:

No algorithm can do better than

E
1

n
‖x̂− x?‖22 ≥

C ′σ2r log(n/r)

n

even if the parameters are
well-separated.

No algorithm can do better than

1

n
‖x̂− x?‖22 ≥

C ′σ2r

n

even if we know a priori the
well-separated parameters.



Denoising III
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Noisy Support Recovery/Parameter Estimation I

Gaussian noise (Tang, Bhaskar & Recht, 2013)

I When the noise w is Gaussian, we denoise the signal and recover the
frequencies using:

x̂ = argmin
x

1

2
‖x− y‖22 + λ‖x‖A.

I Dual problem projects y onto the dual norm ball of radius λ.

maximize
1

2

(
‖y‖22 − ‖y − z‖22

)
subject to ‖z‖∗A ≤ λ.

I Optimality condition: The dual certificate for x̂, q = (y − x̂)/λ, is a
scaled version of the noise estimator.

I The places where |〈q̂,ψ(ν)〉| = 1 correspond to support.



Noisy Support Recovery/Parameter Estimation II

I Spurious amplitudes:
∑
l:ν̂l∈F |α̂l| ≤ C1σ

√
r2 log(n)

n .

I Frequency deviation:∑
l:ν̂l∈Nj |α̂l|

{
nminν?j d(ν?j , ν̂l)

}2

≤ C2σ
√

r2 log(n)
n .

I Near-region approximation:
∣∣∣α?j −∑l:ν̂l∈Nj α̂l

∣∣∣ ≤ C3σ
√

r2 log(n)
n .



Noisy Support Recovery/Parameter Estimation III

I For any ν?i such that α?i > C3σ
√

r2 log(n)
n , there exists a recovered

frequency ν̂i such that

|ν?i − ν̂i| ≤
√
C2/C3

n

 |α?i |
C3σ

√
r2 log(n)

n

− 1

− 1
2

Bounded noise (Fernandez-Granda, 2013)

I When the noise w is bounded, ‖w‖2 ≤ δ, we denoise the signal and
recover the frequencies by solving:

minimize ‖x‖A subject to ‖y − x‖2 ≤ δ.

I Spurious amplitudes:
∑
l:ν̂l∈F |α̂l| ≤ C1δ.

I Frequency deviation:
∑
l:ν̂l∈Nj |α̂l|

{
nminν?j d(ν?j , ν̂l)

}2

≤ C2δ.

I Near-region approximation:
∣∣∣αj −∑l:ν̂l∈Nj α̂l

∣∣∣ ≤ C3δ.



Noisy Support Recovery/Parameter Estimation IV

I For any ν?i such that α?i > C3δ, there exists a recovered frequency ν̂i
such that

|ν?i − ν̂i| ≤
1

n

√
C2δ

|α?i | − C3δ

Small noise.

Theorem (Duval & Peýre, 2013)

Suppose the frequency parameters are well-separated and the coefficients
{α?i } are real, when both the noise w and the regularization parameter λ are
small, regularized atomic norm minimization will recover exactly r parameters
in a small neighborhood of the true parameters.



Computational Methods I
Semidefinite Reformulations/Relaxations.

I The dual problem involves a dual norm constraint of the form

‖z‖∗A ≤ 1⇔ |〈z,ψ(ν)〉| ≤ 1 ∀ν ∈ N
I Line spectral atoms:

‖z‖∗A ≤ 1⇔ |
n−1∑
k=0

zke
j2πνk| ≤ 1 ∀ν ∈ [0, 1]

I The latter states that the magnitude of a complex trigonometric
polynomial is bounded by 1 everywhere.

I Bounded real lemma (Dumitrescu, 2007):

|
n−1∑
k=0

zke
j2πνk| ≤ 1 ∀ν ∈ [0, 1]

⇔
[
Q z
zH 1

]
� 0,

trace(Q, j) = δ(j = 0), j = 0, . . . , n− 1.



Computational Methods II

I This leads to an exact semidefinite representation of the line spectral
atomic norm (Bhaskar, Tang & Recht, 2012):

‖x‖A = inf

{
1

2
(t+ u0) :

[
Toep(u) x

xH t

]
� 0

}
I Therefore, line spectral atomic norm regularized problems have exact

semidefinite representations, e.g.,

minimize ‖x‖A subject to xΩ = x?Ω

⇔

minimize
1

2
(t+ u0) subject to

[
Toep(u) x

xH t

]
� 0,x = x?Ω



Computational Methods III

Discretization.

I The dual atomic problem involves a semi-infinite constraint

‖z‖∗A ≤ 1⇔ |〈z,ψ(ν)〉| ≤ 1 ∀ν ∈ N

I When the dimension of N is small, discretize the parameter space to get
a finite number of grid points Nm.

I Enforce finite number of constraints:

|〈z,ψ(νj)〉| ≤ 1, ∀νj ∈ Nm

I Equivalently, we replace the set of atoms with a discrete one

‖x‖Am = inf{‖α‖1 : x =
∑
j

αjψ(νj), νj ∈ Nm}



Computational Methods IV

I What happens to the solutions when

ρ(Nm) = max
ν∈N

min
ν′∈Nm

d(ν, ν′)→ 0

Theorem (Tang, Bhaskar & Recht, 2014; Duval & Peýre, 2013)

I The optimal values converge to the original optimal values.

I The dual solutions converge with speed O(ρm).

I The primal optimal measures converge in distribution.

I When the SNR is large enough, the solution of the discretized problem is
supported on pairs of parameters which are neighbors of the true parameters.



Computational Methods V
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Problems

Special cases and applications:

I Atomic norm of tensors: how to find the atomic decomposition of
tensors?

I Atomic norm of spectrally-sparse ensembles: how to define the atomic
norm for multiple measurement vector (MMV) models?

I Super-resolution of mixture models: how to solve the problem when
multiple forms of atoms exist?

I Blind super-resolution: how to solve the problem when the form of the
atoms are not known precisely?

I Applications on single-molecule imaging.



Atomic Decomposition of Tensors I

Tensor decomposition.

I Given a tensor decomposition

T =
∑r
i=1 α

?
iu

?
i ⊗ v?i ⊗w?

i =
∫
K u⊗ v ⊗wdµ?

where the parameter space K = Sn−1 × Sn−1 × Sn−1, the
decomposition measure µ? =

∑r
i=1 α

?
i δ(u− u?i ,v − v?i ,w −w?

i ) is a
nonnegative measure defined on K.

I We propose recovering the decomposition measure µ? by solving,

minimizeµ(K) subject to T =
∫
K u⊗ v ⊗wdµ.

I The optimal value of this optiimization defines the tensor nuclear norm.

I To certify the optimality of µ?, we a construct a pre-certificate following
the minimal energy principle to get

q(u,v,w) = 〈Q,u⊗v⊗w〉 =
∑r
i=1(ai⊗v?i⊗w?

i+u?i⊗bi⊗w?
i+u?i⊗v?i⊗ci)



Atomic Decomposition of Tensors II

I This pre-certificate satisfies the tensor eigenvalue-eigenvector
relationships such as∑

j,k

Q:,j,kv
?
i (j)w

?
i (k) = u?i , i ∈ [r]



Atomic Decomposition of Tensors III

Theorem (Li, Prater, Shen, Tang, 2015)

Suppose

I Incoherence: maxp6=q{|〈u?p,u?q〉|, |〈v?p,v?q〉|, |〈w?
p,w

?
q〉|} ≤ polylog(n)√

n

I Bounded spectra: max{‖U?‖, ‖V ?‖, ‖W ?‖} ≤ 1 + c
√

r
n

I Gram isometry: ‖(U?′U?)� (V ?′V ?)− Ir‖ ≤ polylog(n)
√
r
n

and similar
bounds for U?,W ?, and V ?,W ?

I Low-rank (but still overcomplete): r = O(n17/16/ polylog(n))

Then µ? is the optimal solution of the total mass minimization problem as
certified by the minimal energy dual certificate.

Corollary (Li, Prater, Shen, Tang, 2015)

Suppose that the factors {u?p}, {v?p} and {w?
p} follow uniform distributions

on the unit sphere, then the first three assumptions are satisfied with high
probability.



Atomic Decomposition of Tensors IV

SOS Relaxations.

I Symmetric tensor atoms:

‖Z‖∗A ≤ 1⇔
∑
i,j,k

Zijkuiujuk ≤ 1 ∀‖u‖2 = 1

I The latter states that a third order multivariate polynomial is bounded
by 1, or 1−∑i,j,k Zijkuiujuk is nonnegative on the unit sphere.

I The general framework of Sum-of-Squares (SOS) for non-negative
polynomials over semi-algebraic sets leads to a hierarchy of increasingly
tight semidefinite relaxations for the symmetric tensor spectral norm.

I Taking the dual yields a hierarchy of increasingly tight semidefinite
approximations of the (symmetric) tensor nuclear norm.



Atomic Decomposition of Tensors V

Theorem (Tang & Shah, 2015)

For a symmetric tensor T =
∑r
k=1 λkxk ⊗ xk ⊗ xk, if the tensor factors

X = [x1, · · · ,xr] satisfy ‖X ′X − Ir‖ ≤ 0.0016, then the (symmetric) tensor
nuclear norm ‖T‖∗ equals both

∑r
k=1 λk and the optimal value of the

smallest SOS approximation.



Atomic Decomposition of Tensors VI

Low-rank Factorization.

I Matrix atoms: {u⊗ v : ‖u‖2 = ‖v‖2 = 1}
I Tensor atoms: {u⊗ v ⊗w : ‖u‖2 = ‖v‖2 = ‖w‖2 = 1}
I For a matrix X with rank r, when r̃ ≥ r, the matrix nuclear norm equals

the optimal value of

minimize
{(up,vp)}r̃p=1

1

2

(
r̃∑
p=1

[‖up‖22 + ‖vp‖22]

)
subject to X =

r̃∑
p=1

upv
T
p

I For a tensor T with rank r, when r̃ ≥ r, the tensor nuclear norm equals
the optimal value of

minimize
{(up,vp,wp)}r̃p=1

1

3

(
r̃∑
p=1

[‖up‖32 + ‖vp‖32 + ‖wp‖32]

)

subject to T =

r̃∑
p=1

up ⊗ vp ⊗wp



Atomic Decomposition of Tensors VII
I Incorporate these nonlinear reformulations into atomic norm regularized

problems.

Theorem (Haeffele & Vidal, 2015)

I When r̃ > r, any local minimizer such that one component is zero, e.g.,
ui0 = vi0 = wi0 = 0.

I There exists a non-increasing path an initial point (u(0),v(0),w(0)) to a
global minimizer of the nonlinear formulation.
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Atomic Norm for Ensemble of Spectral Signals I

Signal model.

I In applications such as array signal processing, we receive multiple
snapshots of observations impinging on the array.

I Recall the atoms for line spectrum is defined as

a(ν) =
[
1, ej2πν , . . . , ej2π(n−1)ν

]T
, ν ∈ [0, 1).

I we consider L signals, stacked in a matrix, X = [x1, . . . ,xL], where
each xl ∈ Cn is composed of the same set of atoms

xl =

r∑
i=1

ci,la(νi), l = 1, . . . , L.

I Continuous-analog of group sparsity.



Atomic Norm for Ensemble of Spectral Signals II

I We define the atomic set as

A =
{
A(ν,b) = a(ν)bH , ‖b‖2 = 1.

}
I The atomic norm ‖X‖A is defined as

‖X‖A = inf {t > 0 : X ∈ t conv(A)}

I The atomic norm ‖X‖A can be written equivalently as

‖X‖A = inf
u∈Cn,W∈CL×L

{
1

2
u0 +

1

2
Tr(W)

∣∣∣ [toep(u) X
XH W

]
� 0

}
.

I The dual norm of ‖X‖A can be defined as

‖Y‖∗A = sup
f∈[0,1)

‖Y∗a(f)‖2 , sup
f∈[0,1)

‖Q(f)‖2,

where Q(f) = YHa(f) is a length-L vector with each entry a
polynomial in f .



Atomic Norm for Ensemble of Spectral Signals III

I Recovery of missing data:

min ‖X‖A subject to YΩ = XΩ.

I For noncoherently generated snapshots, increasing the number of
measurement vectors will increase the localization resolution.
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Atomic Norm for Ensemble of Spectral Signals IV

I Denoising: consider noisy data Z = X + N, where each entry of N is
CN (0, σ2).

X̂ = argmin
X

1

2
‖X− Z‖2F + τ ‖X‖A .

Theorem (Li and Chi, 2014)

Set τ = σ
(

1 + 1
logn

) 1
2
(
L+ log (αL) +

√
2L log (αL) +

√
πL
2 + 1

) 1
2

,

where α = 8πn log n, then the expected error rate is bounded as

1

L
E
∥∥∥X̂ −X?

∥∥∥2

F
≤ 2τ

L
‖X?‖A .

I As τ is set on the order of
√
L, if ‖X?‖A = o

(√
L
)

, then the

per-measurement vector MSE vanishes as L increases.



Super-resolution of Mixture Models I

Mixture Model for Multi-modal Data

I Formally, consider inverting the following mixture model:

y(t) =

I∑
i=1

xi(t) ∗ gi(t) + w(t),

where ∗ is the convolution operator,
I I is the total number of mixtures, assumed known;
I xi(t) is a parametrized point source signal with Ki unknown:

xi(t) =

Ki∑
j=1

aijδ(t− tij), tij ∈ [0, 1], aij ∈ C;

I gi(t) is a point spread function with a finite cut-off frequency 2M ;
I w(t) is the additive noise;

I The goal is to invert the locations and amplitudes of the point sources
for each mixture, {aij , τij}Kij=1, 1 ≤ i ≤ I.



Super-resolution of Mixture Models II

I Set I = 2 for simplicity. Analysis generalizes to cases I ≥ 2.

I In the frequency domain, we have the vector-formed signal

y = g1 � x?1 + g2 � x?2 +w,

where � denotes point-wise product, gi is the DTFT of the PSF gi(t),
and xi’s are spectrally-sparse signals:

x?1 =

K1∑
k=1

a1kc (τ1k) , x?2 =

K2∑
k=1

a2kc (τ2k) ,

where c(τ) =
[
e−j2πτ(−2M), . . . , 1, . . . , e−j2πτ(2M)

]T
.

I Conventional methods such as MUSIC and ESPRIT do not apply due to
interference between different components.



Super-resolution of Mixture Models III
I Convex Demixing: motivate the spectral sparsity of both components

via minimizing the atomic norm:

{x̂1, x̂2} = argmin
x1,x2

‖x1‖A + ‖x2‖A, s.t. y = g1 � x1 + g2 � x2.

I Incoherence condition: Each entry of the sequences g1, g2 is generated
i.i.d. from a uniform distribution on the complex unit circle.

I The PSF functions should be incoherent across components

Theorem (Li and Chi, 2015)

Under the incoherence condition, assume the signals are generated with
random signs from the unit circle satisfying the separation of 4/n, then the
recovery of convex demixing is unique with high probability if

M/ logM & (K1 +K2) log(K1 +K2).



Super-resolution of Mixture Models IV

Phase Transition: Set the separation condition ∆ = 2/n.
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Figure : Successful rates of the convex demixing algorithm as a function of
(K1,K2) when (a) M = 8 and (b) M = 16.



Super-resolution of Mixture Models V

Comparison with CRB for Parameter Estimation:

I We also compared with the Cramer-Rao Bound to benchmark the
performance of parameter estimation in the noisy case when K1 = 1,
and K2 = 1 for estimating source locations.
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Blind Super-resolution I

Super-resolution with unknown point spread functions:

I Model the observed signal as:

y(t) =

r∑
i=1

aig(t− τi) = x(t) ∗ g(t),

where ∗ is the convolution operator,
I x(t) is a point source signal with complex amplitudes, where K is

unknown:

x(t) =
r∑
i=1

aiδ(t− τi), τi ∈ [0, 1], ai ∈ C;

I g(t) is the unknown point spread function of the sensory system;

I In frequency domain, we have

y = g � x,

where x =
∑r
i=1 aic(τi).



Blind Super-resolution II

I Extremely ill-posed without further constraints.

I Subspace assumption: We assume the PSF g lies in some known
low-dimensional subspace:

g = Bh ∈ C4M+1,

where B = [b−2M , · · · ,b2M ]T ∈ C(4M+1)×L, and h ∈ CL.

I Self-calibration of unitary linear arrays: the antenna gains g may be
well-approximated as lying in a low-dimensional (smooth) subspace.

I Blind channel estimation: the transmitted data signal g is coded by
projection in a low-dimensional subspace (e.g. the generating matrix).



Blind Super-resolution III

I Applying the lifting trick: and write the i-th entry of y as yi = xigi as

yi = xi · gi = (eTi x)(bTi h) = eTi (xhT )bi := eTi Z?bi,

where ei is the ith column of I4M+1, and bi as the ith row of B.

I Now y becomes linear measurements of Z? = xhT ∈ C(4M+1)×L:

y = X (Z?),

with (4M + 1) equations and (4M + 1)L unknowns.

I Z? can be regarded as an ensemble of spectrally-sparse signals:

Z? = xhT =

[
r∑
i=1

aic(τi)

]
hT .



Blind Super-resolution IV

I Blind super-resolution via AtomicLift:

min ‖Z‖A s.t. y = X (Z).

I Incoherence condition: Each row of the subspace B is i.i.d. sampled
from a population F , i.e. bn ∼ F , that satisfies the following:

I Isometry property: EbbH = IL, b ∼ F.
I Incoherence property: for b = [b1, . . . , bL]T ∼ F , define the coherence

parameter µ of F as the smallest number such that

max
1≤i≤L

|bi|2 ≤ µ.

Theorem (Chi, 2015)

Assume µ = Θ(1). For deterministic point source signals satisfying the
separation condition of 1/M , M/ logM = O(r2L2) is sufficient for successful
recovery of Z with high probability.



Blind Super-resolution V

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−40

−20

0

20

40

60

80

Point spread function

 

 

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−250

−200

−150

−100

−50

0

50

100

150

200

Before Calibration/Deconvolution

(a) PSF (b) Convolution with the PSF

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−200

−150

−100

−50

0

50

100

150

200

250

After Deconvolution/Calibration

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

dual polynomial

Ground truth

(c) Deconvolution (d) Localization
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PSF using (b); (d) exact localization of the spikes via the dual polynomial.



Blind Super-resolution VI
I Alternatively, consider different modulation for each point source:

y(t) =

r∑
i=1

αigi(t− τi),

motivated by asynchronous multi-user communications.

I The frequency domain model becomes

y =
r∑
i=1

αia(νi)� gi

I Assume all gi lie in the same subspace B and apply the same lifting
procedure, we obtain linear measurements of Z =

∑r
i=1 αihia(νi)

H .

Theorem (Yang, Tang, Wakin, 2015)

For point sources with random signs satisfying the separation condition of
1/M , M = O(rL) is sufficient for successful recovery of Z with high
probability.



Blind Super-resolution VII

K : Dimension of subspace
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Application to Single-molecule imaging I

Synthetic data: discretization-based reconstruction (CSSTORM)

I Bundles of 8 tubes of 30 nm diameter

I Sparse density: 81049 molecules on 12000 frames

I Resolution: 64x64 pixels

I Pixel size: 100nmx100nm

I Field of view: 6400nmx6400nm

I Target resolution: 10nmx10nm

I Discretize the FOV into 640x640 pixels

I I(x, y) =
∑
j cjPSF(x− xj , y − yj),

(xj , yj) ∈ [0, 6400]2, (x, y) ∈ {50, 150, . . . , 6350}2



Application to Single-molecule imaging II



Application to Single-molecule imaging III
TVSTORM [Huang, Sun, Ma and Chi, 2016]: atomic norm regularized
Poisson MLE:

χ̂ = argmin
χ∈G

`(y|χ) + ε‖χ‖A
Our algorithm avoids the realization of the dense dictionary introduced by
discretization in CSSTORM.
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Application to Single-molecule imaging IV
Practical Super-resolution reconstruction on real data:
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Allowing Damping for Spectral Compressed Sensing

Two-Dimensional Frequency Model

I Stack the signal x (t) =
∑r
i=1 die

j2π〈t,fi〉 into a matrix X ∈ Cn1×n2 .

I The matrix X has the following Vandermonde decomposition:

X = Y ·D ·ZT .

Here, D := diag {d1, · · · , dr} and

Y :=


1 1 · · · 1
y1 y2 · · · yr
...

...
...

...

yn1−1
1 yn1−1

2 · · · yn1−1
r


︸ ︷︷ ︸

Vandemonde matrix

,Z :=


1 1 · · · 1
z1 z2 · · · zr
...

...
...

...

zn2−1
1 zn2−1

2 · · · zn2−1
r


︸ ︷︷ ︸

Vandemonde matrix

where yi = exp(j2πf1i), zi = exp(j2πf2i), fi = (f1i, f2i).

I Goal: We observe a random subset of entries of X, and wish to recover
the missing entries.

I Allow damping modes when fi ∈ C2.



Revisiting Matrix Pencil: Matrix Enhancement

Given a data matrix X, Hua proposed the following
matrix enhancement for two-dimensional frequency
models (MEMP):

I Choose two pencil parameters k1 and k2;
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I An enhanced form Xe is an k1 × (n1 − k1 + 1) block Hankel
matrix :

Xe =


X0 X1 · · · Xn1−k1

X1 X2 · · · Xn1−k1+1

...
...

...
...

Xk1−1 Xk1 · · · Xn1−1

 ,
where each block is a k2 × (n2 − k2 + 1) Hankel matrix as follows

Xl =


xl,0 xl,1 · · · xl,n2−k2

xl,1 xl,2 · · · xl,n2−k2+1

...
...

...
...

xl,k2−1 xl,k2 · · · xl,n2−1

 .



Low Rankness of the Enhanced Matrix

I Choose pencil parameters k1 = Θ(n1) and k2 = Θ(n2), the
dimensionality of Xe is proportional to n1n2 × n1n2.

I The enhanced matrix can be decomposed as follows:

Xe =


ZL

ZLYd

...

ZLYk1−1
d

D
[
ZR,YdZR, · · · ,Yn1−k1

d ZR

]
,

I ZL and ZR are Vandermonde matrices specified by z1, . . . , zr,
I Yd = diag [y1, y2, · · · , yr].

I The enhanced form Xe is low-rank.
I rank (Xe) ≤ r
I Spectral Sparsity ⇒ Low Rankness

I holds even with damping modes.

Hua, Yingbo. ”Estimating two-dimensional frequencies by matrix enhancement and matrix pencil.” Signal Processing, IEEE Transactions
on 40, no. 9 (1992): 2267-2280.



Enhanced Matrix Completion (EMaC) I

I Motivated by Matrix Completion, we seek the low-rank solution via
nuclear norm minimization:

(EMaC) : minimize
M∈Cn1×n2

‖Me‖∗ subject to Mi,j = Xi,j ,∀(i, j) ∈ Ω.

I Define GL and GR as r × r Gram matrices such that

(GL)i,l = K(k1, k2, f1i − f1l, f2i − f2l),

(GR)i,l = K(n1 − k1 + 1, n2 − k2 + 1, f1i − f1l, f2i − f2l).

where K(k1, k2, f1, f2) is the 2-D Dirichlet kernel.

I Incoherence condition holds w.r.t. µ if

σmin (GL) ≥ 1

µ
, σmin (GR) ≥ 1

µ
.

only depends on the locations of the frequency, not their amplitudes.



Enhanced Matrix Completion (EMaC) II
I Performance Guarantee in the noise-free case:

Theorem (Chen and Chi, 2013)

Let n = n1n2. If all measurements are noiseless, then EMaC recovers X
perfectly with high probability if

m > Cµr log3 n.

where C is some universal constant.

I µ = Θ(1) holds (w.h.p.) under many scenarios:
I Randomly generated frequencies;
I Mild perturbation of grid points;
I In 1D, well-separated frequencies by 2RL [Liao and Fannjiang, 2014].
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Enhanced Matrix Completion (EMaC) III

Robustness to Bounded Noise.

I Assume the samples are noisy X = Xo + N, where N is bounded noise:

(EMaC-Noisy) : minimize
M∈Cn1×n2

‖Me‖∗ subject to ‖PΩ (M−X) ‖F ≤ δ,

Theorem (Chen and Chi, 2013)

Suppose Xo satisfies ‖PΩ(X−Xo)‖F ≤ δ. Under the conditions of Theorem
1, the solution to EMaC-Noisy satisfies

‖X̂e −Xe‖F ≤
{

2
√
n+ 8n+

8
√

2n2

m

}
δ

with probability exceeding 1− n−2.

I The average entry inaccuracy is bounded above by O( nmδ). In practice,
EMaC-Noisy usually yields better estimate.



Enhanced Matrix Completion (EMaC) IV
Robustness to Sparse Outliers

I Assume a constant portion of the measurements are arbitrarily corrupted
as Xcorrupted

i,l = Xi,l + Si,l, where Si,l is of arbitrary amplitude.

I Reminiscent of the robust PCA approach [Candes et. al. 2011,
Chandrasekaran et. al. 2011], solve the following algorithm:

(RobustEMaC) : minimize
M,S∈Cn1×n2

‖Me‖∗ + λ‖Se‖1

subject to (M + S)i,l = Xcorrupted
i,l , ∀(i, l) ∈ Ω

Theorem (Chen and Chi, 2013)

Assume the percent of corrupted entries is s is a small constant. Set
n = n1n2 and λ = 1√

m logn
. Then RobustEMaC recovers X with high

probability if
m > Cµr2 log3 n,

where C is some universal constant.

I Sample complexity: m ∼ Θ(r2 log3 n), slight loss than the previous case;
I Robust to a constant portion of outliers: s ∼ Θ(1)



Comparisons between EMaC and ANM

EMaC Atomic Norm

Signal model Deterministic Random
Observation model Random Random
Success Condition Coherence Separation condition

Sample Complexity Θ(r log3 n) Θ(r log r log n)
Bounded Noise Yes Yes

Sparse Corruptions Yes Yes
Damping Modes Yes No



Comparisons of EMaC and ANM

Phase transition for line spectrum estimation: numerically, the EMaC
approach seems less sensitive to the separation condition.

• without separation

• with 1.5 RL separation

EMaC Atomic Norm
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Concluding Remarks

I Compression, whether by linear maps (e.g, Gaussian) or by subsampling,
has performance consequences for parameter estimation. Fisher
information decreases, CRB increases, and the onset of breakdown
threshold increases.

I Model mismatch can result in considerable performance degradation,
and therefore sensitivities of CS to model mismatch need to be fully
understood.

I Recent off-the-grid methods (atomic norm and structured matrix
completion) provide a way forward for a class of problems, where modes
to be estimated respect certain separation or coherence conditions.
These methods are also useful for other problems where traditional
methods cannot be applied.

I But sub-Rayleigh resolution still eludes us!
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