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Abstract
Offline reinforcement learning (RL), which seeks to learn an optimal policy using offline data, has

garnered significant interest due to its potential in critical applications where online data collection
is infeasible or expensive. This work explores the benefit of federated learning for offline RL, aiming
at collaboratively leveraging offline datasets at multiple agents. Focusing on finite-horizon episodic
tabular Markov decision processes (MDPs), we design FedLCB-Q, a variant of the popular model-free
Q-learning algorithm tailored for federated offline RL. FedLCB-Q updates local Q-functions at agents
with novel learning rate schedules and aggregates them at a central server using importance averaging
and a carefully designed pessimistic penalty term. Our sample complexity analysis reveals that, with
appropriately chosen parameters and synchronization schedules, FedLCB-Q achieves linear speedup in
terms of the number of agents without requiring high-quality datasets at individual agents, as long as
the local datasets collectively cover the state-action space visited by the optimal policy, highlighting the
power of collaboration in the federated setting. In fact, the sample complexity almost matches that of the
single-agent counterpart, as if all the data are stored at a central location, up to polynomial factors of the
horizon length. Furthermore, FedLCB-Q is communication-efficient, where the number of communication
rounds is only linear with respect to the horizon length up to logarithmic factors.

Keywords: offline RL, federated RL, Q-learning, the principle of pessimism, sample complexity, linear
speedup, collaborative coverage
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1 Introduction
Offline RL (Levine et al., 2020), also known as batch RL, addresses the challenge of learning a near-optimal
policy using offline datasets collected a priori, without further interactions with an environment. Fueled
by the cost-effectiveness of utilizing pre-collected datasets compared to real-time explorations, offline RL
has received increasing attention. However, the performance of offline RL crucially depends on the quality
of offline datasets due to the lack of additional interactions with the environment, where the quality is
determined by how thoroughly the state-action space is explored during data collection.

Encouragingly, recent research (Li et al., 2022; Rashidinejad et al., 2021; Shi et al., 2022; Xie et al., 2021b)
indicates that being more conservative on unseen state-action pairs, known as the principle of pessimism,
enables learning of a near-optimal policy even with partial coverage of the state-action space, as long as the
distribution of datasets encompasses the trajectory of the optimal policy. However, acquiring high-quality
datasets that have good coverage of the optimal policy poses challenges because it requires the state-action
visitation distribution induced by a behavior policy employed for data collection to be very close to the
optimal policy. Alternatively, multiple datasets can be merged into one dataset to supplement insufficient
coverage of one other, but this may be impractical when offline datasets are scattered and cannot be easily
shared due to privacy and communication constraints.

Federated offline RL. Driven by the need to harvest multiple datasets to address insufficient coverage,
there is a growing interest in implementing offline RL in a federated manner without the need to share
datasets (Khodadadian et al., 2022; Woo et al., 2023; Zhou et al., 2023). For model-based RL, a study
has proposed a federated variant of pessimistic value iteration (Zhou et al., 2023), which requires sharing
of model estimates. On the other hand, for model-free RL, while Woo et al. (2023) introduced a federated
Q-learning algorithm that achieves linear speedup with collaborative coverage of agents, due to the absence
of pessimism, it still carries the risk of overestimation on state-action pairs that are insufficiently covered by
the agents. Indeed, it remains unknown whether the principle of pessimism can be implemented in federated
offline RL to eliminate the risk of overestimation, while fully utilizing the collaborative coverage provided
by agents, and without sharing datasets or model estimates.

Our goal in this paper is to develop a federated variant of Q-learning (Watkins and Dayan, 1992) for
offline RL, which allows agents to learn a near-optimal Q-function with improved sample efficiency and
relaxed coverage assumption. In the single-agent case, pessimism is implemented by penalizing the value
estimates by subtracting a penalty term measuring the uncertainty of the estimates (Shi et al., 2022; Yan
et al., 2023). However, federated settings are communication-constrained, implying that agents only have a
limited chance of synchronization and they perform multiple local updates without knowing other agents’
training progress. Allowing multiple local updates leads to higher uncertainty of local Q-estimates beyond
the control of the pessimism penalty, potentially impacting both sample complexity and communication
efficiency. This underscores the technical challenge of incorporating pessimism while managing local updates
and raises the question:

How to judiciously incorporate the principle of pessimism in federated RL without hurting its sample and
communication efficiency?
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1.1 Our contribution
This work presents a federated Q-learning algorithm with pessimism for offline RL, which achieves lin-
ear speedup and low communication cost, while requiring only collaborative coverage of the optimal policy.
Formally, we consider episodic finite-horizon tabular Markov decision processes (MDPs) with S states, A
actions, and horizon length H. A total number of M agents, each with K trajectories (collected using its
local behavior policy), collaborate in a federated setting with the help of a central server to learn the optimal
policy. Our main contributions are summarized as below; see also Table 1 for a detailed comparison.

• Federated Q-learning for offline RL. We propose a federated offline Q-learning algorithm named
FedLCB-Q, which involves iterative local updates at agents and global aggregation at a central server
with scheduled synchronizations. We introduce essential components that implement pessimism com-
pensating for the uncertainty in both local and global Q-function updates. First, to address the
uncertainty arising from independent local updates, we employ learning rate rescaling at local agents
and importance averaging at server aggregation. The former restricts the drifts of local Q-estimates
by rapidly decreasing the learning rates during local updates, and the latter reduces uncertainty of
the aggregated Q-estimates by assigning smaller weights to rarely updated local values. Additionally,
for every global aggregation, a global penalty calculated based on aggregated visitation counts is sub-
tracted from the aggregated global Q-estimate. These design choices play a crucial role in achieving
both sample and communication efficiency while preventing the overestimation of the Q-function.

• Linear speedup with collaborative single-policy coverage. Our analysis of sample complexity
of FedLCB-Q (see Theorem 1) demonstrates that FedLCB-Q finds an ε-optimal policy, as long as the
total number of samples per agent T = KH exceeds

Õ

(
H7SC⋆avg
Mε2

)
,

where C⋆avg denotes the average single-policy concentrability coefficient of all agents (see (9) for the
formal definition). This shows linear speedup in terms of number agents M , which is achieved with a
significantly weaker data requirement at individual agents than prior art. In truth, each agent affords to
have a non-expert dataset collected by a sub-optimal behavior policy, as long as all agents collectively
cover the state-action pairs visited by the optimal policy, even they don’t cover the entire state-action
space as in Woo et al. (2023). The bound nearly matches the sample complexity obtained for a single-
agent pessimistic Q-learning algorithm (Shi et al., 2022) with a similar Hoeffding-style penalty, up to
a factor of H, as if all the datasets are processed at a central location.

• Low communication cost. Under appropriate choices of synchronization schedules, FedLCB-Q re-
quires approximately Õ(H) rounds of synchronizations to achieve the targeted accuracy (see Corol-
lary 1), which is almost independent with the size of the state-action space and the number of agents.
The analysis suggests that frequent synchronizations are not necessary, outperforming prior art (Woo
et al., 2023).

1.2 Related work
Offline RL. Offline RL addresses the problem of learning improved policies from a logged static dataset.
The main challenge of offline RL is how to reliably estimate the values of unseen or rarely visited state-action
pairs. To tackle this challenge, most offline RL algorithms prevent agents from taking uncertain actions by
regularizing the policy to be close to the behavior policy (Fujimoto and Gu, 2021; Fujimoto et al., 2019; Siegel
et al., 2020) or penalizing value estimates on out-of-distribution state-action pairs (Kostrikov et al., 2022;
Kumar et al., 2020; Liu et al., 2020; Wu et al., 2019), which is also known as the principle of pessimism.
Recently, the pessimistic approach has been developed and theoretically studied for various RL settings,
such as model-based approaches (Jin et al., 2021; Kidambi et al., 2020; Kim and Oh, 2023; Li et al., 2022;
Rashidinejad et al., 2021; Xie et al., 2021b; Yin and Wang, 2021; Yu et al., 2020), policy-based approaches
(Xie et al., 2021a; Zanette et al., 2021), and model-free approaches (Shi et al., 2022; Uehara et al., 2023; Yan
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type reference number of coverage sample communication
agents complexity rounds

model-based

VI-LCB (Xie et al., 2021b) 1 single H6SC⋆

ε2 -

PEVI-Adv (Xie et al., 2021b) 1 single H4SC⋆

ε2 -

VI-LCB (Li et al., 2022) 1 single H4SC⋆

ε2 -

model-free

LCB-Q (Shi et al., 2022) 1 single H6SC⋆

ε2 -

LCB-Q-Adv (Shi et al., 2022) 1 single H4SC⋆

ε2 -

FedAsynQ (Woo et al., 2023) M collaborative H6

Mdavgε2
HM
davg

FedLCB-Q (Theorem 1) M collaborative H7SC⋆
avg

Mε2 H

Table 1: Comparison of sample complexity upper bounds of model-based and model-free algorithms for
offline RL to learn an ε-optimal policy in finite-horizon non-stationary MDPs, where logarithmic factors and
burn-in costs are hidden. Here, S is the size of state space, A is the size of action space, H is the horizon
length, M is the number of agents, C⋆ and C⋆avg denote the single-policy concentrability and the average
single-policy concentrability, respectively (cf. (7) and (8)), and davg is the minimum entry of the average
stationary state-action occupancy distribution of all agents. We follow standard conversion to translate the
best sample complexity in Woo et al. (2023) to the finite-horizon setting for comparison.

et al., 2023). Most of these works have focused on the single-agent case and suggested that the state-action
visitation distribution induced by the behavior policy should cover that of the optimal policy (Rashidinejad
et al., 2021; Shi et al., 2022; Yan et al., 2023), and the distribution mismatch among the two visitation
distributions governs the hardness of offline RL (Li et al., 2022). Another interesting work (Shi et al., 2023)
considered offline RL from multiple perturbed data sources, requiring a centralized setting in which an agent
has full access to all the datasets.

Federated RL. There has been an increasing interest in federated and distributed RL, driven by the need
to address more realistic constraints, including privacy, communication efficiency, and data heterogeneity, as
well as training speedup. Recent works have investigated federated RL from various perspectives, such as
robustness to adversarial attacks (Fan et al., 2021; Wu et al., 2021), environment or task heterogeneity (Jin
et al., 2022; Wang et al., 2023; Yang et al., 2023; Zhou et al., 2023), as well as sample and communication
complexities under asynschronous sampling (Khodadadian et al., 2022; Woo et al., 2023) and online sampling
(Zhang et al., 2024; Zheng et al., 2023). For model-based RL, Zhou et al. (2023) studied a pessimistic variant
of value iteration with multi-task offline datasets under the federated setting and showed the improved sample
efficiency by sharing representations of common task structures. However, for model-free RL, although Woo
et al. (2023) provided a federated Q-learning algorithm that achieves linear speedup in terms of the number
of agents with relaxed coverage assumption for individual agents, it still requires agents to cover the entire
state-action space uniformly due to the lack of pessimism.

Q-learning. Characterizing the finite-sample complexity of single-agent Q-learning has been examined
extensively under various data collection and function approximation schemes, including but not limited
the synchronous setting (Beck and Srikant, 2012; Even-Dar and Mansour, 2003; Li et al., 2024; Wainwright,
2019), the asynchronous and offline setting (Li et al., 2024, 2021; Qu and Wierman, 2020; Shi et al., 2022;
Yan et al., 2023), the online setting (Bai et al., 2019; Jin et al., 2018; Wang et al., 2019), under function
approximation (Chen et al., 2019; Fan et al., 2020; Xu and Gu, 2020), to mention just a few.
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Notation. In this paper, we use ∆(S) to refer to the probability simplex over a set S, and [K] := {1, · · · ,K}
for any positive integer K > 0. In addition, f(·) = Õ(g(·)) or f ≲ g (resp. f(·) = Ω̃(g(·)) or f ≳ g) indicates
that f(·) is order-wise not larger than (resp. not smaller than) g(·) up to some logarithmic factors. The
notation f ≍ g signifies that both f ≲ g and f ≳ g simultaneously hold.

2 Background and problem formulation

2.1 Background
Basics of episodic finite-horizon MDPs. Consider an episodic finite-horizon MDP represented by

M =
(
S,A, H, {Ph}Hh=1, {rh}Hh=1

)
,

where S is the state space of size S, A is the action space of size A, H is the horizon length, Ph : S×A → ∆(S)
and rh : S × A → [0, 1] denote the probability transition kernel and the reward function at the h-th time
step (1 ≤ h ≤ H), respectively.

A policy is denoted by π = {πh}Hh=1, where πh : S → ∆(A) specifies the probability distribution over the
action space at time step h in state s. With slight abuse of notation, we use πh(s) to denote the selected
action when the policy πh is deterministic. For h = 1, . . . ,H, the value function V πh (s) of policy π is defined
as the expected cumulative rewards starting from state s at step h by following π, i.e.,

V πh (s) := E

[
H∑
t=h

rt
(
st, at

) ∣∣∣ sh = s

]
, (1)

where the expectation is taken over the randomness of the trajectory {st, at, rt}Ht=h induced by the policy π
as well as the MDP transitions according to at ∼ πt(· | st) and st+1 ∼ Pt(· | st, at). Similarly, the Q-function
Qπh(s, a) of a policy π at step h in state-action pair (s, a) is defined as

Qπh(s, a) := rh(s, a) + E

[
H∑

t=h+1

rt(st, at)
∣∣∣ sh = s, ah = a

]
, (2)

where the expectation is again over the randomness induced by π and the MDP transitions.
It is well-known (Puterman, 2014) that one can always find a deterministic optimal policy π⋆ = {π⋆h}Hh=1,

which maximizes the value function (resp. the Q-function) simultaneously over all states (resp. state-action
pairs) among all policies. The resulting optimal value function V ⋆ = {V ⋆h }Hh=1 and optimal Q-functions
Q⋆ = {Q⋆h}Hh=1 are denoted respectively by

V ⋆h (s) := V π
⋆

h (s) = max
π

V πh (s), Q⋆h(s, a) := Qπ
⋆

h (s, a) = max
π

Qπh(s, a)

for any (s, a, h) ∈ S × A × [H]. Given an initial state distribution ρ ∈ ∆(S), the expected value of a given
policy π and that of the optimal policy π⋆ at the initial step are defined respectively by

V π1 (ρ) := Es1∼ρ
[
V π1 (s1)

]
and V ⋆1 (ρ) := Es1∼ρ

[
V ⋆1 (s1)

]
. (3)

Bellman equations. Of crucial importance are the Bellman equations that connect the value functions
across different time steps (Bertsekas, 2017). For any policy π, it follows that

Qπh(s, a) = rh(s, a) + Es′∼Ph,s,a

[
V πh+1(s

′)
]

(4)

for all (s, a, h) ∈ S × A × [H], where V πH+1(s) = 0 for any s ∈ S. Moreover, Bellman’s optimality equation
says that

Q⋆h(s, a) = rh(s, a) + Es′∼Ph,s,a

[
V ⋆h+1(s

′)
]

(5)

for all (s, a, h) ∈ S ×A× [H], and the optimal policy satisfies π⋆h(s) = argmaxa∈AQ
⋆
h(s, a).
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2.2 Problem formulation: federated offline RL
In offline RL, one has access to a offline dataset containing episodes collected by following some behavior
policy. Here, we formulate a federated version of the offline RL problem with M agents, where each agent
has access to a local offline dataset. For 1 ≤ m ≤ M , the offline dataset Dm at agent m is composed of K
episodes,1 each generated independently according to a behavior policy µm = {µmh }Hh=1, resulting in

Dm :=
{(
smk,1, a

m
k,1, r

m
k,1, . . . , s

m
k,H , a

m
k,H , r

m
k,H

)}K
k=1

,

where the initial state smk,1 ∼ ρ is drawn from some initial state distribution ρ ∈ ∆(S), smk,h amk,h, rmk,h are the
state, action and reward at step h in the k-th episode, amk,h ∼ µmh (· | smk,h) and rmk,h = rh(s

m
k,h a

m
k,h).

Goal. The goal of federated offline RL is to learn an ε-optimal policy π̂ = {π̂h}Hh=1 satisfying

V ⋆1 (ρ)− V π̂1 (ρ) ≤ ε

using the history dataset D =
{
Dm
}
1≤m≤M without sharing the local offline datasets, with the help of a

parameter server. Furthermore, it is greatly desirable to achieve as high accuracy as possible, in a memory-
and communication-efficient manner.

Metric. Obviously, the success of offline RL highly relies on the quality of the history dataset. In order to
define the metric, let us first introduce the occupancy distributions dπh(s) and dπh(s, a) induced by policy π
at step h, given by

dπh(s) := P(sh = s | s1 ∼ ρ, π), dπh(s, a) := P(sh = s | s1 ∼ ρ, π)πh(a | s). (6)

Recent works (Rashidinejad et al., 2021; Shi et al., 2022; Xie et al., 2021b) have advocated the notion of
single-policy concentrability, which measures the mismatch between the occupancy distributions induced by
the optimal policy π⋆ and the behavior policy µ, with the benefit that this assumes away the need for the
offline dataset to cover the entire state-action space, which is often impractical. Li et al. (2022) offered a
more refined notion called single-policy clipped concentrability, defined as follows.

Definition 1 (single-policy clipped concentrability). The single-policy clipped concentrability coefficient
C⋆ ∈ [1/S,∞) of a behavior policy µ is defined to be the smallest quantity that satisfies

max
(h,s,a)∈[H]×S×A

min{dπ⋆

h (s, a), 1/S}
dµh(s, a)

≤ C⋆, (7)

where we adopt the convention 0/0 = 0.

The single-policy clipped concentrability coefficient C⋆ <∞ is finite whenever the behavior policy covers
the state-action pairs visited by the optimal policy, rather than having to cover the entire state-action space.
Recall that since π⋆ is deterministic, dπ

⋆

h (s, a) = dπ
⋆

h (s)I(a = π⋆h(s)), that is, dπ
⋆

h (s, a) is non-zero only for
the optimal action a = π⋆h(s). Compared with the unclipped counterpart introduced in Rashidinejad et al.
(2021), the clipping of the occupancy distribution dπ

⋆

h (s, a) by the threshold 1/S ensures that C⋆ will not
be excessively large when dπ

⋆

h (s) is highly concentrated in a small number of states in state space.
In the federated setting, we further introduce a tailored notion that highlights the potential benefit of

collaborative learning in the presence of multiple agents. For ease of notation, denote

dmh (s) = dµ
m

h (s) and dmh (s, a) = dµ
m

h (s, a)

as the occupancy distributions induced by the behavior policy µm at agent m. Based on these, we define
the average occupancy distributions as

davgh (s) =
1

M

M∑
m=1

dmh (s) and davgh (s, a) =
1

M

M∑
m=1

dmh (s, a). (8)

1For simplicity, we assume all the agents have the same number of episodes. It is straightforward to generalize to the scenario
when the local offline datasets have different sizes.
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Algorithm 1: Federated pessimistic Q-learning (FedLCB-Q)
1: Parameters: horizon length H, number of agents M , total number of episodes per agent K,

synchronization schedule T (K), target error δ ∈ (0, 1), ζ1 = log
(
SAK2MH

δ

)
, cB > 0.

2: Initialization: set Qm0,h(s, a) = 0, V m0,h(s) = 0, Nm
0,h(s, a) = 0, nm0,h(s, a) = 0, N0,h(s, a) = 0,

n0,h(s, a) = 0 for all (m, s, a, h) ∈ [M ]× S ×A× [H + 1].
for k = 1, · · · ,K do
/* Update the local Q-estimate and visitation counts at each agent */

1 (Qmk,h, n
m
k,h) = Local-Q-learning();

2 if k ∈ T (K) then
/* Agent-to-server communication */

3 Agents communicate Qmk,h and nmk,h to the server;
/* Global pessimistic averaging in a server */

4 (Qk,h, Vk,h, πk,h) = Global-pessimistic-averaging();
/* Server-to-agent communication */

5 Server communication Qk,h, Vk,h and Nk,h to agents;
/* Synchronize local Q-estimates */

6 for (m, s, a, h) ∈ [M ]× S ×A× [H] do
7 Qmk,h(s, a) = Qk,h(s, a), V mk,h(s) = Vk,h(s)

return: Q̂ = {QK,h}h∈[H] and π̂ = {πK,h}h∈[H].

Definition 2 (average single-policy clipped concentrability). The average single-policy concentrability coef-
ficient C⋆avg ∈ [1/S,∞) of multiple behavior policies {µm}m∈[M ] is defined to be the smallest quantity that
satisfies

max
(h,s,a)∈[H]×S×A

min{dπ⋆

h (s, a), 1/S}
davgh (s, a)

≤ C⋆avg, (9)

where we adopt the convention 0/0 = 0.

An important implication of the above definition is that, as long as the agents collaboratively cover the
state-action pairs visited by the optimal policy, the average single-policy concentrability coefficient C⋆avg <∞
is finite. Therefore, this is much weaker than the coverage requirement in the single-agent case.

3 Proposed algorithm and theoretical guarantees
In this section, we first introduce the proposed model-free federated offline RL algorithm called FedLCB-Q,
followed by its theoretical performance guarantees.

3.1 Algorithm description
We introduce a federated variant of Q-learning algorithm for offline RL, called FedLCB-Q, that learns a near-
optimal Q-function without overestimation on unseen components of the state-action space. The complete
description of FedLCB-Q is provided in Algorithm 1, with its agent-end and server-end subroutines described
in Algorithm 2 and Algorithm 3 respectively. On a high level, FedLCB-Q performs local Q-function updates
at all the agents using its own local offline dataset, and occasionally, globally aggregates the local estimates
in a pessimistic fashion at a central server. To facilitate flexible communication patterns, we follow a
synchronization schedule T (K), which contains the indices of episodes where communication occurs between
the agents and the server.

To begin, FedLCB-Q initializes the local estimate (Qm0,h and V m0,h) at each agent m ∈ [M ] and the global
estimates (Q0,h and V0,h) at the server as follows:

Qm0,h(s, a) = 0, V m0,h(s, a) = 0, for all (s, a, h) ∈ S ×A× [H + 1], (10a)
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Episodes

Agent 1

Agent 𝑀

…

…

…

Central server…

Local updates Aggregation

<latexit sha1_base64="FtHR7xtsWmxaZJC4riIRfghcI+o=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68SK0YNpCG8tmu2mXbjZhdyKU0t/gxYMiXv1B3vw3btsctPXBwOO9GWbmhakUBl3321lZXVvf2CxsFbd3dvf2SweHDZNkmnGfJTLRrZAaLoXiPgqUvJVqTuNQ8mY4vJ36zSeujUjUA45SHsS0r0QkGEUr+fWu93jfLZXdijsDWSZeTsqQo9YtfXV6CctirpBJakzbc1MMxlSjYJJPip3M8JSyIe3ztqWKxtwE49mxE3JqlR6JEm1LIZmpvyfGNDZmFIe2M6Y4MIveVPzPa2cYXQdjodIMuWLzRVEmCSZk+jnpCc0ZypEllGlhbyVsQDVlaPMp2hC8xZeXSeO84l1WvPpFuXqTx1GAYziBM/DgCqpwBzXwgYGAZ3iFN0c5L8678zFvXXHymSP4A+fzByFrjj4=</latexit>

QM
1

<latexit sha1_base64="MgMvB3V9RNOTWl/hcjJ5TADu+R4=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgqewWUY9FL16EFty20K4lm2bb0Gx2SbJCWfobvHhQxKs/yJv/xrTdg7Y+GHi8N8PMvCARXBvH+UaFtfWNza3idmlnd2//oHx41NJxqijzaCxi1QmIZoJL5hluBOskipEoEKwdjG9nfvuJKc1j+WAmCfMjMpQ85JQYK3nNfu3xvl+uOFVnDrxK3JxUIEejX/7qDWKaRkwaKojWXddJjJ8RZTgVbFrqpZolhI7JkHUtlSRi2s/mx07xmVUGOIyVLWnwXP09kZFI60kU2M6ImJFe9mbif143NeG1n3GZpIZJulgUpgKbGM8+xwOuGDViYgmhittbMR0RRaix+ZRsCO7yy6ukVau6l1W3eVGp3+RxFOEETuEcXLiCOtxBAzygwOEZXuENSfSC3tHHorWA8plj+AP0+QMi8Y4/</latexit>
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1, · · · , K

…

…

Figure 1: FedLCB-Q with M agents and a central server. Each agent m performs local updates on its
local Q-table Qmk for each kth episode in a local history dataset Dm. When synchronization is scheduled at
k ∈ T (K), the agents send their local Q-tables to the server and the server aggregates the Q-tables into a
global Q-table and synchronizes local Q-tables.

Q0,h(s, a) = 0, V0,h(s, a) = 0, for all (s, a, h) ∈ S ×A× [H + 1]. (10b)

Then, FedLCB-Q proceeds the following steps for each episode k ∈ [K].

1. Local updates: Each agent m samples the kth trajectory {(smk,h, amk,h, rmk,h)}Hh=1 from its local offline
datasets Dm. For each step h ∈ [H], agent m updates its local Q-estimate Qmk,h as follows:

Qmk,h(s, a) =

{
(1− ηmk,h(s, a))Q

m
k−1,h(s, a) + ηmk,h(s, a)(r

m
k,h + V mk−1,h+1(s

m
k,h+1)) if (s, a) = (smk,h, a

m
k,h)

Qmk−1,h(s, a) otherwise
,

(11)

where ηmk,h(s, a) is the learning rate, whose schedule will be specified later, and V mk−1,h(s) is set as

V mk−1,h(s) = V mι(k),h(s) = Vι(k),h(s), for all (m, s, h, k) ∈ [M ]× S × [H + 1]× [K], (12)

where ι(k) denotes the most recent episode where aggregation occurs before the kth episode, i.e.,

ι(k) := max
k′

{1 ≤ k′ < k : k′ ∈ T (K)} .

2. Pessimistic aggregation: If synchronization is scheduled at episode k, i.e., k ∈ T (K), each agent
sends its local Q-estimate to a central server for aggregation after finishing the local update for the
kth episode. Then, the server updates the global Q-estimate Qk,h by averaging the local Q-estimates
and subtracting a penalty as follows:

∀(s, a) ∈ S ×A : Qk,h(s, a) =

(
M∑
m=1

αmk,h(s, a)Q
m
k,h(s, a)

)
−Bk,h(s, a), (13)

where αmk,h = [αmk,h(s, a)](s,a)∈S×A ∈ [0, 1]SA is an entry-wise weight matrix assigned to agentm for each
h ∈ [H], and Bk,h(s, a) is a penalty term (to be specified later below) that introduces the pessimism
preventing the overestimation of unseen state-action pairs. Accordingly, the global value estimate is
updated as

∀(s, a) ∈ S ×A : Vk,h(s) = max

{
Vι(k),h(s), max

a∈A
Qk,h(s, a)

}
. (14)
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Algorithm 2: Local-Q-learning (agents)
1: for m = 1, · · · ,M do

Sample the k-th trajectory {(smk,h, amk,h, rmk,h, smk,h+1)}Hh=1 from Dm

for h = 1, · · · , H do
for (s, a) ∈ S ×A do

Qmk,h(s, a) = Qmk−1,h(s, a), V
m
k,h(s) = V mk−1,h(s)

// Update the local counters and learning rates
1 nmk,h(s

m
k,h, a

m
k,h) = nmk−1,h(s

m
k,h, a

m
k,h) + 1

2 ηmk,h(s
m
k,h, a

m
k,h) =

M(H+1)
Nι(k),h(s

m
k,h,a

m
k,h)+M(H+1)nm

k,h(s
m
k,h,a

m
k,h)

// Update local Q-estimates
3 Qmk,h(s

m
k,h, a

m
k,h) =

(
1− ηmk,h(s

m
k,h, a

m
k,h)

)
Qmk−1,h(s

m
k,h, a

m
k,h) + ηmk,h(s, a)(r

m
k,h + V mk−1,h+1(s

m
k,h+1))

Algorithm 3: Global-pessimistic-averaging (server)
1: for (s, a, h) ∈ S ×A× [H] do
// Update the average counter

1 nk,h(s, a) =
∑M
m=1 n

m
k,h(s, a), Nk,h(s, a) = Nι(k),h(s, a) + nk,h(s, a)

// Compute global penalty and averaging weights

2 Bk,h(s, a) =
(H+1)nk,h(s,a)

Nk,h(s,a)+Hnk,h(s,a)

√
cBζ21H

4

Nk,h(s,a)
if Nk,h(s, a) > 0, otherwise, Bk,h(s, a) = 0

3 for m = 1 · · ·M do
4 αmk,h(s, a) =

1
M

Nι(k),h(s,a)+M(H+1)nm
k,h(s,a)

Nk,h(s,a)+Hnk,h(s,a)
if nmk,h(s, a) > 0, otherwise, αmk,h(s, a) =

1
M

// Update global Q-estimates
5 Qk,h(s, a) =

∑M
m=1 α

m
k,h(s, a)Q

m
k,h(s, a)−Bk,h(s, a)

6 Vk,h(s) = max
{
Vι(k),h(s),maxa∈AQk,h(s, a)

}
7 πk,h(s) = argmaxa∈AQk,h(s, a) if Vk,h(s) = maxa∈AQk,h(s, a), otherwise, πk,h(s) = πι(k),h(s)

where the outer maximum ensures a monotonic update, as we explain later in the analysis. If Vk,h(s) =
maxa∈AQk,h(s, a), the global policy is updated as πk,h(s) = argmaxa∈AQk,h(s, a), otherwise πk,h(s) =
πι(k),h(s). After aggregation, the server sends the global Q-function and value estimates to every agent,
where

∀(k,m) ∈ T (K)× [M ] : Qmk,h = Qk,h, V mk,h = Vk,h. (15)

At the end of K episodes, FedLCB-Q outputs a global Q-estimate Q̂h(s, a) = QK,h(s, a) for all (s, a, h) ∈
S × A × [H] and a solution policy π̂h(s) = πK,h(s) for all (s, h) ∈ S × [H]. For simplicity, we assume that
the aggregation step always occurs after the last episode K, i.e., K ∈ T (K).

3.2 Choices of key parameters
The success of FedLCB-Q relies on careful and judicious selections of key algorithmic parameters, in a data-
driven manner, which we detail below. To begin, let us introduce the following useful notation, which pertains
to the counters for visits of agents on each state-action pair (s, a) ∈ S×A. For any (m, k, h) ∈ [M ]×[K]×[H],

• nmk,h(s, a): the number of episodes in the interval (ι(k), k] during which agent m visits (s, a) at step h,
i.e., nmk,h(s, a) := |{ι(k) < i ≤ k : (smi,h, a

m
i,h) = (s, a)}|.

• Nm
k,h(s, a): the number of episodes in the interval [1, k] during which agent m visits (s, a) at step h,

i.e., Nm
k,h(s, a) := |{1 ≤ i ≤ k : (smi,h, a

m
i,h) = (s, a)}|.

• nk,h(s, a): the total number of episodes in the interval (ι(k), k] during which all agents visit (s, a) at
step h, i.e., nk,h(s, a) :=

∑M
m=1 n

m
k,h(s, a) = |{ι(k) < i ≤ k : (smi,h, a

m
i,h) = (s, a)}|.
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• Nk,h(s, a): the total number of episodes in the interval [1, k] during which all agents visit (s, a) at step
h, i.e., Nk,h(s, a) :=

∑M
m=1N

m
k,h(s, a) = |{1 ≤ i ≤ k : (smi,h, a

m
i,h) = (s, a)}|.

Pessimism in the federated RL. In offline RL, pessimism is key to preventing the overestimation of Q-
function on unseen state-action space. For a single-agent case, the pessimism is implemented by subtracting
a penalty term computed based on the visiting counter of an agent for each state-action pair, which makes
the estimation highly dependent on the quality of agents’ datasets (Rashidinejad et al., 2021). For example,
when an agent has non-expert data collected using a highly sub-optimal behavior policy, it is inevitable
to subtract a large penalty for optimal actions that cannot be reached with the agent’s behavior policy,
and this leads to slow convergence or convergence to a sub-optimal policy close to the behavior policy. In
the federated setting, from the perspective of a server, as the aggregated information from multiple agents
increases confidence, it is natural to be less pessimistic compared to an individual agent. Based on this
intuition, given some prescribed probability δ ∈ (0, 1), we suggest a global penalty computed with the
aggregated counters of agents at k ∈ T (K):

Bk,h(s, a) :=

{
(H+1)nk,h(s,a)

Nk,h(s,a)+Hnk,h(s,a)

√
cBζ21H

4

Nk,h(s,a)
if Nk,h(s, a) > 0

0 if Nk,h(s, a) = 0
, (16)

where ζ1 = log
(
SAMK2H

δ

)
and cB is some positive constant. Here, the penalty for each state-action pair

decreases as long as the agents collectively explore the state-action pair enough. This relaxes the dependency
on an individual agent and prevents the estimated policy from being restricted to a local behavior policy.

Local update uncertainty. To guarantee that the pessimism introduced by the global penalty is enough
to prevent overestimation on rarely seen state-action pairs, the penalty should dominate the uncertainty of
the Q-estimates. However, when agents independently update their own local Q-estimates without frequent
communication, the global penalty, which is subtracted only at the aggregation step, may fail to cover the
increasing uncertainty of the local Q-estimates during local updates. To handle this, we propose a choice
of key parameters (learning rates ηmk,h and averaging weights αmk,h) that effectively controls the uncertainty
arising from the local updates as follows.

• Importance averaging. In the federated setting, agents have offline datasets with heterogeneous
distributions induced by different behavior policies, leading to imbalanced uncertainty of local Q-
estimates.To minimize the uncertainty of the averaged estimate, we propose the following entrywise
weighting scheme for averaging:

αmk,h(s, a) :=

{
1
M

Nι(k),h(s,a)+(H+1)Mnm
k,h(s,a)

Nk,h(s,a)+Hnk,h(s,a)
if nk,h(s, a) > 0

1
M if nk,h(s, a) = 0

. (17)

By assigning smaller weights to less frequently updated local Q-estimates with smaller nmk,h(s, a), which
has high uncertainty, the averaged Q-estimate can always maintain an uncertainty level low enough to
be dominated by the global penalty, regardless of the heterogeneity in local data distributions. The
idea aligns with the notion of importance averaging introduced by Woo et al. (2023), which favors
frequently updated local Q-values. Nevertheless, our approach differs in that, unlike Woo et al. (2023),
where the assigned weights are determined solely based on local counters nmk,h in a myopic manner,
our weights, factoring in the global counter Nι(k),h, limit bias towards specific agents as the training
of local Q-estimates stabilizes. The weighting scheme, mindful of the entire training progress, prevents
some local values that have undergone intense updates recently from dominating the global learning
of the Q-function, preserving the information accumulated through old updates.

• Learning rates rescaling. Local updates without synchronization increase the deviation of local Q-
estimates, and this increases the variance of the global Q-estimate at aggregation. However, requiring
agents to communicate frequently may be too stringent for many applications in the federated setting.
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To address this issue, we propose a novel choice of learning rate that exhibits slower decay based on a
global counter Nι(k),h, and faster decay during local updates according to the local counter nmk,h:

ηmk,h(s, a) :=
M(H + 1)

Nι(k),h(s, a) +M(H + 1)nmk,h(s, a)
. (18)

The rescaling of the learning rate is crucial to obtain linear speedup without frequent synchronizations.
The gradual decay with a global counter allows more aggressive updates of the Q-estimates once
collective information from all agents is aggregated, which enables convergence speedup. On the other
hand, the fast decrease in learning rates during local updates ensures that agents adaptively slow down
their drifts and maintain low variance of their local Q-estimates, without overly restricting the length
of local updates. We will further discuss how this effectively reduces the variance of local estimates in
Section 4.1.

The computation of the global penalty (16) and importance averaging (17) at a server requires local counters
nmk,h(s, a) from every agent, and determining the learning rates (18) at each agent requires access to recently
aggregated global counters Nι(k),h(s, a). Therefore, for FedLCB-Q with the specified parameters choices,
agents and a server additionally exchange the updated local and global counters at every aggregation step.

3.3 Theoretical guarantees
Given the parameters described above, we now give sample complexity guarantees on the performance of
the proposed FedLCB-Q algorithm.

Theorem 1. Consider δ ∈ (0, 1) and let π̂ be the solution policy of FedLCB-Q. If a synchronization schedule
T (K) is independent of trajectories in datasets D and satisfies

τ1 ≤
√
H2SC⋆avgK

M
and

τu+1

τu
≤ 1 +

2

H
(19)

for any u ≥ 1, where τu is the number of episodes between the (u−1)-th and the u-th aggregations. Denoting
the total number of samples per agent T = KH, the following holds:

V ⋆1 (ρ)− V π̂1 (ρ) ≤ c

√H7SC⋆avgζ
2
1

MT
+
H4SC⋆avgζ1

MT

 (20)

at least with probability 1− δ, where ζ1 = log
(
SAMK2H

δ

)
and c > 0 is some universal constant.

Theorem 1 implies that as long as the initial synchronization occurs early and the synchronization intervals
do not increase too rapidly (cf. (19)), FedLCB-Q is guaranteed to find an ε-optimal policy, i.e., V ⋆1 (ρ) −
V π̂1 (ρ) ≤ ε, for any target accuracy ε ∈ (0, H], if the total number of samples per agent T exceeds

Õ

(
H7SC⋆avg
Mε2

)
.

A few implications are in order.

Linear speedup without expert datasets. The value function gap shows linear speedup with respect to
the number of agents M , highlighting the benefit of collaboration. Notably, the guarantee holds even when
every agent has low-quality datasets collected by some sub-optimal behavior policy, as long as agents’ local
data distributions collectively cover the distribution of the optimal policy, where the average single-policy
concentrability C⋆avg (cf. (9)) is finite. On the other end, when performing offline RL using a single agent, it
requires that the behavior policy of the single agent individually cover the optimal policy, i.e., C⋆ < ∞ (cf.
(7)), which is much more stringent. Therefore, federated offline RL enables policy learning that otherwise
will not be possible in the single-agent setting. Specializing to the case M = 1, our bound nearly matches
the sample complexity bound Õ

(
H6SC⋆

ε2

)
obtained for a single-agent pessimistic Q-learning algorithm with

a similar Hoeffding-style penalty (Shi et al., 2022), up to a factor of H.
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Periodic sync. (𝜏)
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Local updates Aggregation

𝜏 𝜏

Figure 2: Illustration of the periodic synchronization with constant period τ and the exponential synchro-
nization with a rate (1 + γ).

Comparison with offline RL using shared datasets. To benchmark the tightness of our bound, let us
consider the minimax lower bound of the sample complexity for single-agent offline RL (Li et al., 2022), as if
we collect all the agents’ datasets at a central location. Note that the effective single-policy concentrability
coefficient (cf. (7)) for the combined datasets Dall = ∪Mm=1Dm becomes

max
(h,s,a)∈[H]×S×A

min{dπ⋆

h (s, a), 1/S}∑M
m=1 d

m
h (s, a)

= max
(h,s,a)∈[H]×S×A

min{dπ⋆

h (s, a), 1/S}
Mdavgh (s, a)

=
C⋆avg
M

, (21)

leading to the minimax lower bound (Li et al., 2022)

Ω̃

(
H4SC⋆avg
Mε2

)
.

Comparing with the sample complexity bound of FedLCB-Q, obtained as Õ
(
H7SC⋆

avg

Mε2

)
, this suggests that

the performance of FedLCB-Q is near-optimal up to polynomial factors of H3 even when compared with the
single-agent counterpart assuming shared access to all agents’ datasets.

Communication efficiency. Theorem 1 suggests initiating the first synchronization early and avoiding
rapid increases in synchronization intervals (cf. (19)) to ensure fast convergence. This is attributed to large
deviations among agents in the early stages, arising due to coarse Q-estimates and large learning rates,
which diminish as training proceeds. For communication efficiency, it is essential to design a synchronization
schedule that meets the constraints with the least number of synchronizations. We investigate the following
two specific synchronization schedules for FedLCB-Q:

(a) Periodic synchronization: For a fixed period τ ≥ 1, communication between agents and a server is
available for every τ episodes, i.e., τi = τ for all i ≥ 1, and we denote the synchronization schedule as
Tperiod(K, τ).

(b) Exponential synchronization: For a fixed ratio γ > 0, initializing τ1 = H, set τi = ⌊(1 + γ)τi−1⌋
for each i ≥ 2. Under this scheduling, agents communicate frequently at initial iterations, but the
period between aggregation steps increases exponentially with the rate of (1 + γ) and synchronization
occurs rarely as training proceeds enough. We denote the synchronization schedule as Texp(K, γ).

Now, we analyze the number of communication rounds required to achieve a target accuracy, for each
scheduling scheme.
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Corollary 1. For any given δ ∈ (0, 1) and target error ε ∈ (0,min{H, H
3SC⋆

avg

M }], suppose the total number
of samples per agent T = KH satisfies

T ≍ H7SC⋆avg
Mε2

,

and FedLCB-Q performs under the periodic synchronization scheduling, i.e., T (K) = Tperiod(K, τ), with

τ ≍
√

HSC⋆
avgT

M , or the exponential synchronization scheduling, i.e., T (K) = Texp(K, γ), with γ = 2
H . Then,

each schedule requires the number of synchronizations at most

(Periodic) |Tperiod(K, τ)| ≲
√

MK

H2SC⋆avg
, (22a)

(Exponential) |Texp(K, γ)| ≲ H, (22b)

respectively, and the solution policy π̂ of FedLCB-Q is guaranteed to be an ε-optimal policy at least with
probability 1− δ.

Corollary 1 implies that FedLCB-Q requires only Õ(H) aggregations to achieve the target accuracy under
appropriate synchronization schedules, such as the exponential synchronization schedule. Notably, the num-
ber of communication rounds is nearly independent of the size of the state-action space, the total number of
episodes, or the number of agents, and this outperforms prior art (Woo et al., 2023). Furthermore, analysis
suggests that exponential synchronization with a modest rate γ = 2/H is a key to achieving such communi-
cation efficiency. With our strategic choices of learning rates, local Q-estimates stabilize as training proceeds,
and thus agents can perform more local updates than previous rounds without increasing uncertainty beyond
the control of the global pessimism penalty. Exponential synchronization reduces the number of synchroniza-
tions by capturing the additional room for local updates arising from the stabilization of Q-estimates. On
the other hand, periodic synchronization does not exploit this benefit, even if we set the period τ maximally
under (19) due to which it necessitates more communication rounds, which increase with K and M .

4 Analysis
In this section, we will outline useful properties of FedLCB-Q and the key steps of the proof of Theorem 1,
deferring the details, such as proofs of supporting lemmas, to Appendix A and B.

Throughout the paper, we adopt the following shorthand notation

Ph,s,a := Ph(· | s, a) ∈ [0, 1]1×S , (23)

which represents the transition probability vector given the current state-action pair (s, a) at step h. In
addition, define Pmk,h ∈ {0, 1}1×S as the empirical transition vector at step h of the k-th episode at agent m,
namely

Pmk,h(s) = I(s = smk,h+1), for all s ∈ S. (24)
These are the notations pertaining to the counters for visits of agents on each state-action pair (s, a) ∈

S ×A. For any (m, k, h) ∈ [M ]× [K]× [H],

• lmk,h(s, a): a set of episodes in the interval (ι(k), k] during which agent m visits (s, a) at step h, i.e.,
lmk,h(s, a) := {ι(k) < i ≤ k : (smi,h, a

m
i,h) = (s, a)}.

• Lmk,h(s, a): a set of episodes in the interval [1, k] during which agent m visits (s, a) at step h, i.e.
Lmk,h(s, a) := {1 ≤ i ≤ k : (smi,h, a

m
i,h) = (s, a)}.

We also introduce the following notation related to the synchronization schedule T (K). For any positive
integer k and u,

• tu: the index of episodes, after which the uth synchronization occurs.

• τu: the number of local updates (episodes) taken between the (u− 1)th and the uth synchronizations.

• ι(k): the most recent episode where the aggregation occurs before the kth episode.

• ϕ(k): the minimum index of aggregation occurring after k-th episode.
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4.1 Basic facts
Error recursion of Q-estimates. We begin with the following key error decomposition of the Q-estimate
at each synchronization, whose proof is provided in Appendix B.1.

Lemma 1 (Q-estimation error decomposition). Consider a Q-function Qπ = {Qπh(s, a)}[H]×S×A and value
function V π = {V πh (s)}[H]×S induced by a policy π. Then, for any [H] × S × A and k ∈ T (K), the error
between Qπh and Qk,h is decomposed as follows:

Qπh(s, a)−Qk,h(s, a) = ω0,k,h(s, a)(Q
π
h(s, a)−Q0,h(s, a))︸ ︷︷ ︸

=:Dπ
1 (s,a,k,h): initialization error

+

M∑
m=1

∑
i∈Lm

k,h(s,a)

ωmi,k,h(s, a)(Ph,s,a − Pmi,h)V
m
i−1,h+1︸ ︷︷ ︸

=:D2(s,a,k,h): transition variance

+

ϕ(k)∑
u=1

Btu,h(s, a)

ϕ(k)∏
u′=u+1

λu′,h(s, a)︸ ︷︷ ︸
=:D3(s,a,k,h): global penalty

+

M∑
m=1

∑
i∈Lm

k,h(s,a)

ωmi,k,h(s, a)Ph,s,a(V
π
h+1 − V mi−1,h+1)︸ ︷︷ ︸

=:Dπ
4 (s,a,k,h): recursion

, (25)

where Lmk,h(s, a) := {1 ≤ i ≤ k : (smi,h, a
m
i,h) = (s, a)} and lmk,h(s, a) := {ι(k) < i ≤ k : (smi,h, a

m
i,h) = (s, a)}.

And, for simplicity, we use the shortened notations defined as

λv,h(s, a) =

{
1 if Nk,h(s, a) = 0

Nι(k),h(s,a)

Nk,h(s,a)+Hnk,h(s,a)
otherwise

, v = ϕ(k), (26a)

ωm0,k,h(s, a) =

{
1 if Nk,h(s, a) = 0

0 otherwise
, (26b)

ωmi,k,h(s, a) =
H + 1

Nk,h(s, a) +Hnk,h(s, a)

ϕ(k)−1∏
x=ϕ(i)

Ntx,h(s, a)

Ntx,h(s, a) +Hntx,h(s, a)

 , i ∈ Lmk,h(s, a). (26c)

Equally favoring episodes within the same local update round. According to the decomposition
(25) in Lemma 1, for any (s, a, h) ∈ S×A× [H], the Q-estimation error at episode k significantly depends on
the weighted sum of transition difference for each episode where the local update occurs, namelyD2(s, a, k, h).
Intuitively, the weight ωmi,k,h(s, a) assigned to each episode i balances the accumulation of information from
old and new updates. Our choice of learning rates, which decreases fast during local updates, as illustrated
in Figure 3a, ensures that the weight ωmi,k,h(s, a) within the same local update round is always equal for all
episodes and agents, as shown in (26c) and Figure 3b. The uniform weights allow the transition information
of each episode to be accumulated evenly, regardless of other transitions that occur in future episodes
or other agents’ episodes. This is essential to keep variance arising from local updates low, especially
when a synchronization interval is long. Assigning equal weight to every episode allows to fully utilize
transitions observed during local updates without forgetting old information, regardless of the length of the
synchronization interval.

Bounded visitation counters. We next introduce the following lemma regarding the visitation counters,
whose proof is provided in Appendix B.2.
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Figure 3: Illustration of the rescaled learning rates (ηmi,h(s, a)) and the episode weights (ωmi,60,h(s, a)) induced
by the learning rates of two agents m = 0, 1 for episodes 1 ≤ i ≤ 60, where H = 5, the occupancy
distribution of each agent on (s, a, h) ∈ S ×A× [5] is d0h(s, a) = 0.7 and d1h(s, a) = 0.3, respectively, and the
synchronization schedule is T (60) = {10, 30, 60}.

Lemma 2 (Concentration bound on the visitation counters). Consider any δ ∈ (0, 1) and some universal
constant c1 > 0, and let

ζ0 := log

(
2|S||A|KH

δ

)
and K0(s, a, h) :=

4ζ0
c1Mdavgh (s, a)

. (27)

Then, for all (s, a, h) ∈ S ×A× [H], the following holds

when k ≥ K0(s, a, h) :
1

2
kMdavgh (s, a) ≤ Nk,h(s, a) ≤ 2kMdavgh (s, a), (28a)

when k ≤ K0(s, a, h) : Nk,h(s, a) ≤ 8ζ0/c1 (28b)

with probability at least 1− δ.

Monotonic and pessimistic global value updates. Note that the global value estimate is always
monotonically non-decreasing, i.e., for k′, k ∈ T (K) it holds

∀s ∈ S : Vk,h(s) ≥ Vk′,h(s) when k′ ≤ k, (29)

which follows directly from the update rule (14). Moreover, we have the following important lemma regarding
the pessimistic property of the value estimate, whose proof is provided in Appendix B.3.

Lemma 3 (Pessimistic global value). Recall Qk,h, Vk,h, and πk,h in Algorithm 1. Let πk = {πk,h}h∈[H].
Given any δ ∈ (0, 1), for all (k, h) ∈ T (K)× [H], it holds with probability at least 1− δ that

∀(s, a) ∈ S ×A : |D2(s, a, k, h)| ≤ D3(s, a, k, h) ≤
√

4cBζ21H
4

max{Nk,h(s, a), 1}
, (30a)

∀(s, a) ∈ S ×A : Qk,h(s, a) ≤ Qπk

h (s, a) ≤ Q⋆h(s, a), (30b)
∀s ∈ S : Vk,h(s) ≤ V πk

h (s) ≤ V ⋆h (s). (30c)

In words, Lemma 3 makes concrete the role of the penalty term in dominating the variability of the value
estimates due to stochastic transitions, and ensures that the estimated value is a pessimistic estimate of the
true optimal value function.
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4.2 Proof of Theorem 1
Now we are ready to provide the proof of Theorem 1, which is divided into several key steps as follows.

Step 1: decomposition of the performance gap. The performance gap between the solution policy π̂
of Algorithm 1 after K episodes and the optimal policy π⋆ can be bounded as follows:

V ⋆1 (ρ)− V π̂1 (ρ) = Es1∼ρ [V ⋆1 (s1)]− Es1∼ρ [V
πK
1 (s1)]

(i)

≤ Es1∼ρ [V ⋆1 (s1)]− Es1∼ρ [VK,1(s1)]

(ii)

≤ 1

K

ϕ(K)∑
v=1

τv
(
Es1∼ρ [V ⋆1 (s1)]− Es1∼ρ [Vtv,1(s1)]

)
=

1

K

ϕ(K)∑
v=1

τv
∑
s∈S

dπ
⋆

1 (s)︸ ︷︷ ︸
=ρ(s)

(V ⋆1 (s)− Vtv,1(s))

≤ 1

K
max
h∈[H]

ϕ(K)∑
v=1

τv
∑
s∈S

dπ
⋆

h (s) (V ⋆h (s)− Vtv,h(s)) , (31)

where (i) follows from Lemma 3, and (ii) follows from the monotonicity property in (29) and
∑ϕ(K)
v=1 τv = K.

Since π⋆ = {π⋆h}h∈[H] is deterministic, for any k ∈ T (K) and h ∈ [H], it follows that∑
s∈S

dπ
⋆

h (s) (V ⋆h (s)− Vk,h(s)) =
∑
s∈S

dπ
⋆

h (s, π⋆h(s)) (V
⋆
h (s)− Vk,h(s))

≤
∑
s∈S

dπ
⋆

h (s, π⋆h(s))
(
Q⋆h(s, π

⋆
h(s))−Qk,h(s, π

⋆
h(s))

)
, (32)

where the inequality holds because Qk,h(s, π⋆h(s)) ≤ maxa∈AQk,h(s, a) ≤ Vk,h(s) due to (14).
To continue, applying Lemma 1 by setting π = π⋆, the Q-estimate error after k episodes is decomposed

as follows:

Q⋆h(s, a)−Qk,h(s, a) = Dπ⋆

1 (s, a, k, h) +D2(s, a, k, h) +D3(s, a, k, h) +Dπ⋆

4 (s, a, k, h)

≤ Dπ⋆

1 (s, a, k, h) +Dπ⋆

4 (s, a, k, h) + 2D3(s, a, k, h), (33)

where the second line follows from Lemma 3. Finally, inserting the decomposition (33) and (32) back into
(31), we control the performance gap with the following terms:

V ⋆1 (ρ)− V π̂1 (ρ)

≤ 1

K
max
h∈[H]

ϕ(K)∑
v=1

τv
∑
s∈S

dπ
⋆

h (s)
[
Dπ⋆

1 (s, π⋆h(s), tv, h) +Dπ⋆

4 (s, π⋆h(s), tv, h) + 2D3(s, π
⋆
h(s), tv, h)

]
=:

1

K
max
h∈[H]

(D1,h +D4,h + 2D3,h) , (34)

for which we shall aim to bound each term individually, adopting the following short-hand notation:

Di,h :=

ϕ(K)∑
v=1

τv
∑
s∈S

dπ
⋆

h (s)Dπ⋆

i (s, π⋆h(s), tv, h) for i ∈ {1, 4},

D3,h :=

ϕ(K)∑
v=1

τv
∑
s∈S

dπ
⋆

h (s)D3(s, π
⋆
h(s), tv, h). (35)
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Step 2: Bounding the decomposed terms. Here, we derive the bound of the decomposed terms
separately as follows under the event that (28) holds, which is denoted as E0 and holds with probability at
least 1− δ.

• Bounding D1,h. Using the fact that 0 ≤ Q⋆h(s, π
⋆
h(s)) − Q0,h(s, π

⋆
h(s)) ≤ H, which follows from

Lemma 3, it follows

D1,h =

ϕ(K)∑
v=1

τv
∑
s∈S

dπ
⋆

h (s, π⋆h(s))ω0,tv,h(s, π
⋆
h(s))(Q

⋆
h(s, π

⋆
h(s))−Q0,h(s, π

⋆
h(s)))

≤
ϕ(K)∑
v=1

τv
∑
s∈S

dπ
⋆

h (s, π⋆h(s))ω0,tv,h(s, π
⋆
h(s))H

= H
∑
s∈S

dπ
⋆

h (s, π⋆h(s))

ϕ(K)∑
v=1

τvI{Ntv,h(s, π⋆h(s)) = 0}, (36)

where the last line follows from (26b). To continue, note that

ϕ(K)∑
v=1

τvI{Ntv,h(s, π⋆h(s)) = 0} =
∑

v∈[ϕ(K)]:tv≤K0(s,π⋆
h(s),h)

τvI{Ntv,h(s, π⋆h(s)) = 0}

≤ K0(s, π
⋆
h(s), h),

since under the event E0, Ntv,h(s, π⋆h(s)) > 0 when tv > K0(s, π
⋆
h(s), h). Plugging the above inequality

and the definition of K0(s, π
⋆
h(s), h) back to (36) leads to

D1,h ≤ H
∑
s∈S

dπ
⋆

h (s, π⋆h(s))K0(s, π
⋆
h(s), h)

= H
∑
s∈S

min{dπ⋆

h (s, π⋆h(s)), 1/S}
davgh (s, π⋆h(s))

(
12ζ0
M

)
dπ

⋆

h (s, π⋆h(s))

min{dπ⋆

h (s, π⋆h(s)), 1/S}

≲
HC⋆avgS

M
, (37)

where the last line follows from the definition of C⋆avg and the fact that

∑
s∈S

dπ
⋆

h (s, π⋆h(s))

min{dπ⋆

h (s, π⋆h(s)), 1/S}
≤
∑
s∈S

(
1 + dπ

⋆

h (s, π⋆h(s))S
)
=
∑
s∈S

(
1 + dπ

⋆

h (s)S
)
= 2S.

• Bounding D3,h. The range of D3(s, a, k, h) is bounded as shown in the following lemma, whose
proof is provided in Appendix B.4.

Lemma 4. For any (s, a, h) ∈ S ×A× [H] and k ∈ T (K), if Nk,h(s, a) = 0, D3(s, a, k, h) = 0, and if,
Nk,h(s, a) > 0, the following holds:

D3(s, a, k, h) ∈
[√

cBζ21H
4

Nk,h(s, a)
,

√
4cBζ21H

4

Nk,h(s, a)

]
. (38)

With the above lemma in hand, recalling (35) gives

D3,h =

ϕ(K)∑
v=1

τv
∑
s∈S

dπ
⋆

h (s, π⋆h(s))D3(s, π
⋆
h(s), tv, h)

≤
∑
s∈S

dπ
⋆

h (s, π⋆h(s))

ϕ(K)∑
v=1

τv

√
4cBζ21H

4

max{Ntv,h(s, π⋆h(s)), 1}
. (39)
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According to Lemma 2, Ntv,h(s, a) ≥ 1
2 tvMdavgh (s, a) holds if tv ≥ K0(s, a, h) under the event E0.

Therefore,

ϕ(K)∑
v=1

τv

√
H4

max{Ntv,h(s, a), 1}
≤

∑
v:tv≤K0(s,a,h)

τvH
2 +

∑
v:tv>K0(s,a,h)

τv

√
H4

max{Ntv,h(s, a), 1}

≲ H2K0(s, a, h) +
∑

v:tv>K0(s,a,h)

τv

√
H4

max{Ntv,h(s, a), 1}

≲ H2K0(s, a, h) +

ϕ(K)∑
v=1

τv

√
H4

Mtvd
avg
h (s, a)

. (40)

Plugging the above inequality and the definitions of K0(s, π
⋆
h(s), h) (cf. (27)) and C⋆avg to (39), we

obtain

D3,h ≲
H2

M

∑
s∈S

dπ
⋆

h (s, π⋆h(s))

davgh (s, π⋆h(s))
+

ϕ(K)∑
v=1

∑
s∈S

dπ
⋆

h (s, π⋆h(s))τv

√
H4

Mtvd
avg
h (s, π⋆h(s))

≲
H2C⋆avg
M

∑
s∈S

dπ
⋆

h (s, π⋆h(s))

min{dπ⋆

h (s, π⋆h(s)), 1/S}
+

ϕ(K)∑
v=1

√
H4C⋆avgτ

2
v

Mtv

∑
s∈S

√
(dπ

⋆

h (s, π⋆h(s)))
2

min{dπ⋆

h (s, π⋆h(s)), 1/S}

(i)

≲
H2C⋆avgS

M
+

√
H4C⋆avgS

M

ϕ(K)∑
v=1

√
τv

√
τv
tv

(ii)

≲
H2C⋆avgS

M
+

√
H4SKC⋆avg

M
, (41)

where (i) holds due to the Cauchy-Schwarz inequality and the fact that

∑
s∈S

dπ
⋆

h (s, π⋆h(s))

min{dπ⋆

h (s, π⋆h(s)), 1/S}
≤
∑
s∈S

(
1 + dπ

⋆

h (s, π⋆h(s))S
)
=
∑
s∈S

(
1 + dπ

⋆

h (s)S
)
= 2S,

and the last line (ii) follows from the Cauchy-Schwarz inequality and the fact that
∑ϕ(K)
v=1 τv = K and∑ϕ(K)

v=1
τv
tv

≤ 1 + logK, with the latter following from Lemma 6 (see Appendix A).

• Bounding D4,h. In the following lemma, whose proof is provided in Appendix B.5, we extract the
recursive formulation of D4,h as follows.

Lemma 5. Consider any δ ∈ (0, 1). For any h ∈ [H], the following holds with probability at least 1−δ:
ϕ(K)∑
v=1

τv
∑

(s,a)∈S×A

dπ
⋆

h (s, a)

M∑
m=1

∑
i∈Lm

tv,h(s,a)

ωmi,tv,h(s, a)Ph,s,a(V
⋆
h+1 − Vι(i),h+1)

≲ σaux +

(
1 +

1

H

) ϕ(K)∑
u=1

τu
∑
s∈S

dπ
⋆

h+1(s)(V
⋆
h+1(s)− Vtu−1,h+1(s)), (42)

where σaux =
√

H2KSC⋆
avg

M +
H2SC⋆

avg

M .

Step 3: Recursion. Combining the bounds of the decomposed errors (cf. (37), (41), and (42)), for any
h ∈ [H], we obtain the following recursive relation:

ϕ(K)∑
v=1

τv
∑
s∈S

dπ
⋆

1 (s) (V ⋆h (s)− Vtv,h(s))
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≲ θK +
(
1 +

1

H

) ϕ(K)∑
u=1

τu
∑
s∈S

dπ
⋆

1 (s)
(
V ⋆h+1(s)− Vtu−1,h+1(s)

)
(i)

≲ (θK +Hτ1) +
(
1 +

1

H

) ϕ(K)−1∑
u=1

τu+1

∑
s∈S

dπ
⋆

1 (s)
(
V ⋆h+1(s)− Vtu,h+1(s)

)
(ii)

≲ (θK +Hτ1) +
(
1 +

2

H

)2 ϕ(K)−1∑
u=1

τu
∑
s∈S

dπ
⋆

1 (s)
(
V ⋆h+1(s)− Vtu,h+1(s)

)
, (43)

where (i) holds because V ⋆h+1(s) − Vtu,h+1(s) ≤ H and (ii) holds due to the condition τu+1

τu
≤ 1 + 2

H for all
1 ≤ u ≤ ϕ(K) and the fact that V ⋆h+1(s) ≥ Vtu,h+1(s) shown in Lemma 3, and we denote

θk :=
HC⋆avgS

M
+
H2C⋆avgS

M
+

√
H4SC⋆avgk

M
+

√
H2kSC⋆avg

M
+
H2SC⋆avg

M
(44)

for any k ∈ [K]. Then, by invoking the recursion (H − h+ 1) times, it follows that

ϕ(K)∑
v=1

τv
∑
s∈S

dπ
⋆

1 (s) (V ⋆h (s)− Vtv,h(s))

≲ (θK +Hτ1) +
(
1 +

2

H

)2
(θtϕ(K)−1

+Hτ1) +
(
1 +

2

H

)4 ϕ(K)−2∑
u=1

τu
∑
s∈S

dπ
⋆

1 (s)
(
V ⋆h+2(s)− Vtu,h+2(s)

)
≲ (θK +Hτ1) +

(
1 +

2

H

)2
(θtϕ(K)−1

+Hτ1) + · · ·+
(
1 +

2

H

)2(H−h+1)

(θtϕ(K)−H+h−1
+Hτ1)

≲ HθK +H2τ1 (45)

where the second line follows from the fact that V ⋆H+1(s)− Vk,H+1(s) = 0 for any k ∈ [K], and the last line
holds because θk ≤ θK for any k ≤ K and (1 + 2

H )2(H−h+1) ≤ (1 + 2
H )2H ≤ e4.

Finally, by plugging the above bound into (31), we obtain the bound of the performance gap as follows:

V ⋆1 (ρ)− V π̂1 (ρ) ≤ 1

K
max
h∈[H]

ϕ(K)∑
v=1

τv
∑
s∈S

dπ
⋆

h (s) (V ⋆h (s)− Vtv,h(s))

≲
1

K
(HθK +H2τ1)

≲
H3SC⋆avg
MK

+

√
H6SC⋆avg
MK

+
H2τ1
K

T=HK

≲

√
H7SC⋆avg
MT

+
H4SC⋆avg
MT

, (46)

where the last line holds if τ1 ≤
√

HSC⋆
avgT

M , and this completes the proof.

5 Discussions
We investigated federated offline RL, which enables multiple agents with history datasets to collaboratively
learn an optimal policy, without sharing datasets. We proposed a federated offline Q-learning algorithm
called FedLCB-Q, which iteratively performs local updates with rescaled learning rates at agents, and global
aggregation with weighted averaging and global penalty at a server, which effectively controls the uncertainty
in both local and global Q-estimates. Our sample complexity analysis demonstrates that FedLCB-Q achieves
linear speedup in terms of the number of agents requiring only collective coverage of agents’ datasets over the
distribution of the optimal policy, not restricted to the quality of individual datasets. Furthermore, we showed
that FedLCB-Q is communication-efficient, requiring only Õ(H) synchronizations under the exponential
synchronization scheduling. For future exploration, this work paves the way for many interesting directions,
some of which are outlined below.
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• Tightening H dependency. Although our sample complexity bound is nearly optimal with respect to
most salient problem parameters, such as state space size and single-policy concentrability coefficient,
it falls short of optimality in terms of horizon length compared to the minimax sample complexity
lower bound in the single-agent setting (Xie et al., 2021b). Closing this gap and improving sample
complexity with variance reduction techniques, as proposed by Shi et al. (2022), will be an interesting
avenue for future exploration.

• Beyond episodic tabular MDPs. Extending episodic tabular MDPs, it would be interesting to broaden
our analysis framework to encompass other RL settings, including, the infinite-horizon setting and the
integration of function approximation.

• Improving robustness. Our work focuses on a scenario in which agents collect datasets from a com-
mon MDP without any disturbances. Yet, in real-world scenarios, some agents may possess datasets
collected from perturbed MDPs. This introduces the need for additional considerations regarding ro-
bustness, as discussed in Shi et al. (2023). Therefore, enhancing our work to effectively handle the
variability or noisiness of MDPs would be a compelling avenue for improvement.

• Multi-task RL. In many applications with multiple clients, multi-task learning, where clients have
heterogeneous goals, holds significant interest due to diversity in clients. It will be of great interest to
extend our work to the multi-task RL setting (Jin et al., 2022; Yang et al., 2023; Zhou et al., 2023),
which enables agents to learn their own optimal policies for their personalized goals while benefiting
from collaboration by sharing common features of tasks.
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A Technical lemmas
Freedman’s inequality. We provide a user-friendly version of Freedman’s inequality (Freedman, 1975).
See Li et al. (2024, Theorem 6) for more details.

Theorem 2 (Li et al. (2024, Theorem 6)). Consider a filtration F0 ⊂ F1 ⊂ F2 ⊂ · · · , and let Ek stand
for the expectation conditioned on Fk. Suppose that Yn =

∑n
k=1Xk ∈ R, where {Xk} is a real-valued scalar

sequence obeying

|Xk| ≤ R and Ek−1

[
Xk

]
= 0 for all k ≥ 1

for some quantity R <∞. We also define

Wn :=

n∑
k=1

Ek−1

[
X2
k

]
.

In addition, suppose that Wn ≤ σ2 holds deterministically for some given quantity σ2 < ∞. Then for any
positive integer m ≥ 1, with probability at least 1− δ one has

|Yn| ≤
√
8max

{
Wn,

σ2

2m

}
log

2m

δ
+

4

3
R log

2m

δ
. (47)

We next present a basic analytical result that is useful in the proof.

Lemma 6. Consider any sequence {xz}z=1,··· ,Z where xz ≥ 1 for all z and let Xz =
∑z
z′=1 xz′ . Then, for

any Z ≥ 1, it follows that

X(Z) =

Z∑
z=1

xz
Xz

≤ 1 + logXZ .

Proof. For Z = 1, X(1) = x1

x1
= 1. For Z > 1, suppose the claim holds for Z − 1. Then, it holds for Z as

follows:

X(Z) = X(Z − 1) +
xZ
XZ

≤ 1 + logXZ−1 + 1− XZ−1

XZ

≤ 1 + logXZ−1 − log

(
XZ−1

XZ

)
= 1 + logXZ , (48)

where the first inequality follows from the induction hypothesis and xZ = XZ −XZ−1, the second inequality
follows from log y ≤ y − 1 for any y > 0. By induction, this completes the proof.

Last but not least, we have the following useful properties regarding the parameters introduced in (26c).

Lemma 7. For any (s, a, h) ∈ S × A× [H], k′ ≤ k ∈ T (K), where we denote u = ϕ(k), and i ∈ Lmk,h(s, a).
Then, it follows that:

ωmi,k,h(s, a) ≤
2H

Nk,h(s, a) +Hnk,h(s, a)
, (49a)

M∑
m=1

∑
j∈Lm

k,h(s,a)

ωmj,k,h(s, a) ≤ 1, (49b)
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M∑
m=1

∑
j∈lm

k′,h(s,a)

ωmj,k,h(s, a) ≤
(H + 1)nk′,h
Nk,h +Hnk,h

, (49c)

M∑
m=1

∑
j∈Lm

k,h(s,a)

(ωmi,k,h(s, a))
2 ≤ 2H

Nk,h(s, a) +Hnk,h(s, a)
, (49d)

∞∑
v≥u

ntv,h(s, a)

M∑
m=1

∑
i∈lmk,h(s,a)

ωmi,tv,h(s, a) ≤ nk,h(s, a)

(
1 +

1

H

)
. (49e)

Proof. For notation simplicity, we will omit (s, a) for the following proofs. Moreover, u = ϕ(k) and tu = k.

Proof of (49a). Recalling the definition of ωmi,k,h in (26c) and using the fact that H ≥ 1,

ωmi,k,h =
H + 1

Nk,h +Hnk,h

ϕ(k)−1∏
x=ϕ(i)

Ntx,h
Ntx,h +Hntx,h

 ≤ 2H

Nk,h +Hnk,h
. (50)

Proof of (49b). By rearranging the terms,

M∑
m=1

∑
j∈Lm

k,h(s,a)

ωmj,k,h =

ϕ(k)∑
v=1

M∑
m=1

∑
j∈lmtv,h

H + 1

Ntv,h +Hntv,h

 ϕ(k)∏
x=v+1

Ntx−1,h

Ntx,h +Hntx,h


=

ϕ(k)∑
v=1

(H + 1)ntv,h
Ntv,h +Hntv,h

 ϕ(k)∏
x=v+1

Ntx−1,h

Ntx,h +Hntx,h


=

ϕ(k)∑
v=1

(
1− Ntv−1,h

Ntv,h +Hntv,h

) ϕ(k)∏
x=v+1

Ntx−1,h

Ntx,h +Hntx,h


=

ϕ(k)∑
v=1

 ϕ(k)∏
x=v+1

Ntx−1,h

Ntx,h +Hntx,h
−
ϕ(k)∏
x=v

Ntx−1,h

Ntx,h +Hntx,h


= 1−

ϕ(k)∏
x=1

Ntx−1,h

Ntx,h +Hntx,h
≤ 1. (51)

Proof of (49c). Let v = ϕ(k′), i.e., k′ = tv. Similarly to the proof of (49b), by arranging some terms, we
obtain the upper bound as follows:

M∑
m=1

∑
j∈lm

k′,h(s,a)

ωmj,k,h(s, a) =

M∑
m=1

∑
j∈lmtv,h(s,a)

H + 1

Ntv,h +Hntv,h

 ϕ(k)∏
x=v+1

Ntx−1,h

Ntx,h +Hntx,h


=

(H + 1)ntv,h
Ntv,h +Hntv,h

 ϕ(k)∏
x=v+1

Ntx−1,h

Ntx,h +Hntx,h


=

(H + 1)ntv,h
Nk,h +Hnk,h

ϕ(k)−1∏
x=v

Ntx,h
Ntx,h +Hntx,h


≤ (H + 1)nk′,h
Nk,h +Hnk,h

. (52)
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Proof of (49d). Using the bound in (49a) and (49b),

M∑
m=1

∑
j∈Lm

k,h

(ωmj,k,h)
2 =

(
max

m∈[M ],j∈Lm
k,h

ωmj,k,h

)
M∑
m=1

∑
j∈Lm

k,h

ωmj,k,h ≤ max
m∈[M ],j∈Lm

k,h

ωmj,k,h ≤ 2H

Nk,h +Hnk,h
. (53)

Proof of (49e). Recall that k = tu. Then, reusing the intermediate result derived in (52),

∞∑
v≥u

ntv,h(s, a)

M∑
m=1

∑
i∈lmtu,h(s,a)

ωmi,tv,h(s, a) =

∞∑
v≥u

ntv,h
(H + 1)ntu,h
Ntv,h +Hntv,h

(
v−1∏
x=u

Ntx,h
Ntx,h +Hntx,h︸ ︷︷ ︸

:=βx,h

)

= (H + 1)ntu,h

∞∑
v≥u

ntv,h
Ntv,h +Hntv,h

(
v−1∏
x=u

βx,h

)

= (H + 1)ntu,h

∞∑
v≥u

1

H
(1− βv,h)

(
v−1∏
x=u

βx,h

)

≤ nk,h

(
1 +

1

H

)
. (54)

B Proofs for main results

B.1 Proof of Lemma 1
For any (h, s, a) ∈ [H]×S ×A and k ∈ T (K), according to the pessimistic aggregation update rule in (13),
the estimate error of Q function at the k-th iteration can be written as follows:

Qπh(s, a)−Qk,h(s, a) = Qπh(s, a)−
(

M∑
m=1

αmk,h(s, a)Q
m
k,h(s, a)

)
+Bk,h(s, a)

=

M∑
m=1

αmk,h(s, a)
(
Qπh(s, a)−Qmk,h(s, a)

)
+Bk,h(s, a), (55)

where the last equality holds by the fact
∑M
m=1 α

m
k,h(s, a) = 1.

Then, invoking the local update rule in (11), for any i such that (smi,h, a
m
i,h) = (s, a), the local Q-estimate

error at each agent m can be written as follows:

Qπh(s, a)−Qmi,h(s, a)

= (1− ηmi,h(s, a))(Q
π
h(s, a)−Qmi−1,h(s, a)) + ηmi,h(s, a)(Q

π
h(s, a)− rh(s, a)− Pmi,hV

m
i−1,h+1)

= (1− ηmi,h(s, a))(Q
π
h(s, a)−Qmi−1,h(s, a)) + ηmi,h(s, a)(rh(s, a) + Ph,s,aV

π
h+1 − rh(s, a)− Pmi,hV

m
i−1,h+1)

= (1− ηmi,h(s, a))(Q
π
h(s, a)−Qmi−1,h(s, a))

+ ηmi,h(s, a)Ph,s,a(V
π
h+1 − V mi−1,h+1) + ηmi,h(s, a)(Ph,s,a − Pmi,h)V

m
i−1,h+1, (56)

where the second line follows from the Bellman’s equation. Then, by invoking the relation recursively, the
local Q-estimate error at each agent m obeys the following relation:

Qπh(s, a)−Qmk,h(s, a) =
∏

i∈lmk,h(s,a)

(1− ηmi,h(s, a))
(
Qπh(s, a)−Qι(k),h(s, a)

)
+

∑
i∈lmk,h(s,a)

ηmi,h(s, a)
∏

{j>i:j∈lmk,h(s,a)}

(1− ηmj,h(s, a))Ph,s,a(V
π
h+1 − V mi−1,h+1)
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+
∑

i∈lmk,h(s,a)

ηmi,h(s, a)
∏

{j>i:j∈lmk,h(s,a)}

(1− ηmj,h(s, a))(Ph,s,a − Pmi,h)V
m
i−1,h+1, (57)

where lmk,h(s, a) denotes a set of episodes where agent m has visited (s, a) at step h within (ι(k), k].
By inserting (57) to (55) and letting v = ϕ(k), we obtain the following recursive relation for u-th local

updates:

Qπh(s, a)−Qk,h(s, a)

=

 M∑
m=1

αmk,h(s, a)
∏

i∈lmk,h(s,a)

(1− ηmi,h(s, a))


︸ ︷︷ ︸

:=λv,h(s,a)

(
Qπh(s, a)−Qι(k),h(s, a)

)
+Bk,h(s, a)

+

M∑
m=1

∑
i∈lmk,h(s,a)

αmk,h(s, a)ηmi,h(s, a) ∏
{j>i:j∈lmk,h(s,a)}

(1− ηmj,h(s, a))

Ph,s,a(V
π
h+1 − V mi−1,h+1)

+

M∑
m=1

∑
i∈lmk,h(s,a)

αmk,h(s, a)ηmi,h(s, a) ∏
{j>i:j∈lmk,h(s,a)}

(1− ηmj,h(s, a))

 (Ph,s,a − Pmi,h)V
m
i−1,h+1

= λv,h(s, a)
(
Qπh(s, a)−Qι(k),h(s, a)

)
+Bk,h(s, a)

+
(H + 1)

Ntv,h(s, a) +Hntv,h(s, a)

M∑
m=1

∑
i∈lmk,h(s,a)

Ph,s,a(V
π
h+1 − V mi−1,h+1)

+
(H + 1)

Ntv,h(s, a) +Hntv,h(s, a)

M∑
m=1

∑
i∈lmk,h(s,a)

(Ph,s,a − Pmi,h)V
m
i−1,h+1. (58)

Here, the last line holds by invoking the definitions in (17) and (18) and observing with abuse of notation
(omit (s, a) when it is clear)

αmk,h(s, a)η
m
i,h(s, a)

∏
{j>i:j∈lmk,h(s,a)}

(1− ηmj,h(s, a))

=
1

M

Nι(k),h +M(H + 1)nmk,h
Nk,h +Hnk,h

M(H + 1)

Nι(i),h +M(H + 1)nmi,h

nm
k,h−n

m
i,h∏

j=1

(Nι(i),h +M(H + 1)(nmi,h + j − 1)

Nι(i),h +M(H + 1)(nmi,h + j)

)
=

1

M

Nι(k),h +M(H + 1)nmk,h
Nk,h +Hnk,h

M(H + 1)

Nι(i),h +M(H + 1)nmi,h

Nι(i),h +M(H + 1)nmi,h
Nι(i),h +M(H + 1)nmk,h

=
(H + 1)

Nk,h +Hnk,h
=

(H + 1)

Ntv,h +Hntv,h
(59)

where the last line holds since ι(i) = ι(k) for i ∈ lmk,h(s, a) and k ∈ T (K) leads to k = tϕ(k) = tv.
Then, by invoking the above recursive relation for each aggregation, the Q-estimate error after k episodes

is decomposed as follows:

Qπh(s, a)−Qk,h(s, a)

=

ϕ(k)∏
u=1

λu,h(s, a)︸ ︷︷ ︸
:=ω0,k,h(s,a)

(Qπh(s, a)−Q0,h(s, a)) +

ϕ(k)∑
u=1

Btu,h(s, a)

ϕ(k)∏
x=u+1

λx,h(s, a)

+

ϕ(k)∑
u=1

M∑
m=1

∑
i∈lmtu,h(s,a)

 H + 1

Ntu,h +Hntu,h

ϕ(k)∏
x=u+1

λx,h(s, a)


︸ ︷︷ ︸

:=ωi,k,h(s,a)

(Ph,s,a − Pmi,h)V
m
i−1,h+1
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+

ϕ(k)∑
u=1

M∑
m=1

∑
i∈lmtu,h(s,a)

 H + 1

Ntu,h +Hntu,h

ϕ(k)∏
x=u+1

λx,h(s, a)

Ph,s,a(V
π
h+1 − V mi−1,h+1)

= ω0,k,h(s, a)(Q
π
h(s, a)−Q0,h(s, a))

+

M∑
m=1

∑
i∈Lm

k,h(s,a)

ωmi,k,h(s, a)(Ph,s,a − Pmi,h)V
m
i−1,h+1

+

ϕ(k)∑
u=1

Btu,h(s, a)

ϕ(k)∏
x=u+1

λx,h(s, a)

+

M∑
m=1

∑
i∈Lm

k,h(s,a)

ωmi,k,h(s, a)Ph,s,a(V
π
h+1 − V mi−1,h+1). (60)

Here, λu,h(s, a), ω0,k,h(s, a), and ωi,k,h(s, a) can be simply written as described in (26a), (26b), and (26c),
respectively, which will be proved momentarily. For notational simplicity, we omit (s, a) in the derivations.

Proof of (26a). Consider k = tv. First, consider a case that Nι(k),h = 0. If nk,h = 0, λv,h =
∑M
m=1 α

m
k,h =

1. Otherwise, if nk,h > 0, where there exists at least one agent m ∈ [M ] that visits the state-action at least
once until k-th episode, it follows that

λv,h =

M∑
m=1

1

M

(H + 1)Mnmk,h
(H + 1)nk,h

nm
k,h∏
j=1

(
M(H + 1)(j − 1)

M(H + 1)j

)

=

M∑
m∈[M ]:nm

k,h=0

nmk,h
nk,h︸︷︷︸
=0

+

M∑
m∈[M ]:nm

k,h>0

nmk,h
nk,h

nm
k,h∏
j=1

(
(H + 1)(j − 1)

(H + 1)j

)
︸ ︷︷ ︸

=0

= 0. (61)

On the other hand, when Nι(k),h > 0,

λv,h =

M∑
m=1

1

M

Nι(k),h +M(H + 1)nmk,h
Nι(k),h + (H + 1)nk,h

nm
k,h∏
j=1

(
Nι(k),h +M(H + 1)(j − 1)

Nι(k),h +M(H + 1)j

)

=

M∑
m=1

1

M

Nι(k),h +M(H + 1)nmk,h
Nι(k),h + (H + 1)nk,h

Nι(k),h

Nι(k),h +M(H + 1)nmk,h
=

Nι(k),h

Nk,h +Hnk,h
. (62)

Proof of (26b). According to (26a), if Nk,h(s, a) = 0, then λu,h(s, a) = 1 for all 1 ≤ u ≤ ϕ(k). Thus,
ω0,k,h(s, a) = 1. Otherwise, let the epsiode when (s, a) is visited at step h by any of the agents for the
first time be j. Then, λϕ(j),h = 0 because Nι(j),h(s, a) = 0. Thus, if Nk,h(s, a) > 0, it always holds that
ω0,k,h(s, a) =

∏ϕ(k)
u=1 λu,h(s, a) = 0.

Proof of (26c). For i such that ϕ(i) = u, by rearranging terms and applying (26a),

ωmi,k,h =
(H + 1)

Ntu,h +Hntu,h

 ϕ(k)∏
x=u+1

Ntx−1,h

Ntx,h +Hntx,h


=

H + 1

Nk,h +Hnk,h

ϕ(k)−1∏
x=u

Ntx,h
Ntx,h +Hntx,h

 . (63)
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B.2 Proof of Lemma 2
Consider any given δ ∈ (0, 1) and (k, s, a, h) ∈ [K]×S×A× [H]. Note that Nm

k,h(s, a) ∼ Binomial(k, dmh (s, a))

for allm ∈ [M ]. Then recall the definition ofNk,h(s, a) in Section 3.2, we can viewNk,h(s, a) =
∑M
m=1N

m
k,h(s, a)

as a sum of kM independent Bernoulli variables with expectation ν := E[Nk,h(s, a)] = kMdavgh (s, a). There-
fore, applying Chernoff bound (see Mitzenmacher and Upfal (2005, Theorem 4.4)) yields:

∀t ∈ [0, 1] : P(
∣∣Nm

k,h(s, a)− ν
∣∣ ≥ νt) ≤ exp

(
−c1νt2

)
, (64a)

∀t ≥ 1 : P(Nm
k,h(s, a)− ν ≥ tν) ≤ exp (−c1νt) , (64b)

for some universal constant c1 > 0.
Armed with above facts and notations, now we are ready to prove (28). First, applying (64a) with t = 1

2 ,
we arrive at:

P
(∣∣Nm

k,h(s, a)− ν
∣∣ ≥ ν

2

)
≤ exp

(
−c1ν

4

)
≤ δ, (65)

where the last line follows from the condition that ν = kMdavgh (s, a) ≥ 4
c1

log (1δ ).
To continue, when ν = kMdavgh (s, a) ≤ 4

c1
log (1/δ), applying (64b) with t = 4 log (1/δ)

νc1
≥ 1 gives:

P
(
Nm
k,h(s, a)− ν ≥ 4 log (1/δ)

c1

)
≤ exp(−4 log (1/δ)) ≤ δ. (66)

Summing up (65) and (66) and taking the union bound over (k, s, a, h) ∈ [K] × S × A × [H] complete
the proof by showing that:

when k ≥ 4

c1Mdavgh
log

( |S||A|KH
δ

)
:

kMdavgh
2

=
ν

2
≤ Nm

k,h(s, a) ≤
3ν

2
≤ 2kMdavgh ,

when k ≤ 4

c1Mdavgh
log

( |S||A|KH
δ

)
: Nm

k,h(s, a) ≤
8

c1
log

( |S||A|KH
δ

)
holds with probability at least 1− 2δ.

B.3 Proof of Lemma 3
B.3.1 Proof of (30a)

Noticing that the (30a) involves two terms of interest, and we start with bounding D2(s, a, k, h). For any
(s, a, h) ∈ S ×A× [H] and any k ∈ T (K), we can rewrite D2(s, a, k, h) as

D2(s, a, k, h) =

k∑
i=1

M∑
m=1

Xm
i,k,h(s, a), (67)

where Xm
i,k,h(s, a) = ωmi,k,h(s, a)(Ph,s,a − Pmi,h)V

m
i−1,h+1I{(smi,h, ami,h) = (s, a)}. To continue, we first introduce

Lemma 8, whose proof is provided in Appendix B.3.3.

Lemma 8. For any (k, s, a, h) ∈ S ×A× [H] and N ∈ [1,MK], let

X̃m
i,k,h(s, a;N) = ω̃mi,k,h(s, a;N)(Ph,s,a − Pmi,h)V

m
i−1,h+1I{(smi,h, ami,h) = (s, a)}, (68)

where

ω̃mi,k,h(s, a;N) :=
H + 1

N +Hnk,h(s, a)

ϕ(k)−1∏
x=ϕ(i)

Ntx,h(s, a)

Ntx,h(s, a) +Hntx,h(s, a)

 Imi,h(s, a;N), (69)
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and Imi,h(s, a;N) := I{∑M
m′=1N

m′

i−1,h(s, a) +
∑m
m′=1 I{(sm

′

i,h, a
m′

i,h) = (s, a)} ≤ N}. Then, for any δ ∈ (0, 1),
the following holds: ∣∣∣∣∣

k∑
i=1

M∑
m=1

X̃m
i,k,h(s, a;N)

∣∣∣∣∣ ≤
√

81H4ζ21
N

(70)

at least with probability 1− δ, where we denote ζ1 = log
(

|S||A|MK2H
δ

)
.

Armed with the above lemma, for any (s, a, k, h) ∈ S × A × [K] × [H] where k ∈ T (K), the following
holds by setting N = Nk,h(s, a):

when Nk,h(s, a) > 0 : |D2(s, a, k, h)| ≤
∣∣∣∣∣
k∑
i=1

M∑
m=1

X̃m
i,k,h(s, a;Nk,h(s, a))

∣∣∣∣∣ ≤
√

81H4ζ21
Nk,h(s, a)

(71)

with probability at least 1−δ. As it is obvious that D2(s, a, k, h) = 0 when Nk,h(s, a) = 0 from the definition
of D2(s, a, k, h), we arrive at

|D2(s, a, k, h)| ≤
∣∣∣∣∣
k∑
i=1

M∑
m=1

X̃m
i,k,h(s, a;Nk,h(s, a))

∣∣∣∣∣ ≤
√

81H4ζ21
Nk,h(s, a)

. (72)

Finally, combining the results for D2(s, a, k, h) (cf. (72)) and D3(s, a, k, h) (cf. (38) in Lemma 4), we
conclude that for any (s, a, k, h) ∈ S ×A× [K]× [H] with k ∈ T (K), it holds with probability at least 1− δ
that

|D2(s, a, k, h)| ≤
√

81H4ζ21
Nk,h(s, a)

=

√
cBζ21H

4

Nk,h(s, a)
≤ D3(s, a, k, h). (73)

B.3.2 Proof of (30b) and (30c)

For all (h, s, a, k) ∈ [H] × S × A × T (K), it is clear that Qπk

h (s, a) ≤ Q⋆h(s, a) and V πk

h (s) ≤ V ⋆h (s) by
definition. Hence, it suffices to show that

Qk,h(s, a) ≤ Qπk

h (s, a) and Vk,h(s) ≤ V πk

h (s)

for all (h, s, a, k) ∈ [H]× S ×A× T (K), which we will prove by an induction argument as below.

• Base case. When h = H + 1, for all (s, a, k) ∈ S × A × T (K), the relation always holds since
Qk,H+1(s, a) = 0 ≤ Qπk

H+1(s, a) and Vk,H+1(s) = 0 ≤ V πk

H+1(s) according to the definition of Qk,H+1

and Vk,H+1, respectively.

• Induction. When h ∈ [H], suppose the relation holds for h + 1, i.e., Qk,h+1(s, a) ≤ Qπk

h+1(s, a) and
Vk,h+1(s) ≤ V πk

h+1(s) for all (s, a, k) ∈ S × A × T (K). First, we will verify the Q-estimates at step h
are pessimistic. For any (s, a, k) ∈ S ×A× T (K), applying Lemma 1,

Qπk

h (s, a)−Qk,h(s, a) = Dπk
1 (s, a, k, h) +D2(s, a, k, h) +D3(s, a, k, h) +Dπk

4 (s, a, k, h). (74)

We control the above four terms one at a time. Here, Dπk
1 (s, a, k, h) ≥ 0 since Qπk

h (s, a) ≥ Q0,h(s, a) =
0. In addition, according to (30a), |D2(s, a, k, h)| ≤ D3(s, a, k, h). And it is clear that D4 ≥ 0 due to

V πk

h+1 ≥ Vk,h+1 ≥ Vι(i),h+1, (75)

where the first inequality holds by the induction assumption, and the last inequality arises from the
monotonicity of the global value update in (14). Therefore, it is clear that for any (s, a, k) ∈ S ×A×
T (K), the Q-estimates at step h are pessimistic, i.e.,

Qπk

h (s, a)−Qk,h(s, a) ≥ 0. (76)
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Next, to show that value estimates at step h are pessimistic, recalling the global update in (14),

V πk

h (s)− Vk,h(s) = Qπk

h (s, πk,h(s))−max{max
a

Qk,h(s, a), Vι(k),h(s)}

= Qπk

h (s, πk,h(s))−max
a

Qk0,h(s, a)

= Qπk

h (s, πk0,h(s))−Qk0,h(s, πk0,h(s)) ≥ 0, (77)

where k0 denotes the most recent episode satisfying Vk,h(s) = maxaQk0,h(s, a) and k ≥ k0 ∈ T (K),
and the last inequality holds because πk,h(s) = πk0,h(s) and Qπk

h (s, a)−Qk0,h(s, a) ≥ 0 can be similarly
verified using (74) and (75) for k0. Now, we verify that Qπk

h (s, a) ≥ Qk,h(s, a) and V πk

h (s) ≥ Vk,h(s)
holds at step h for any (s, a, k) ∈ S ×A× T (K), and this directly completes the induction argument.

B.3.3 Proof of Lemma 8

To begin with, for any time step h ∈ [H], we denote the expectation conditioned on the trajectories j ≤ i of
all agent as

∀(i,m) ∈ [k]× [M ] : E(i,m)[·] = E
[
· |
{
sm

′

j,h, a
m′

j,h, V
m
j,h+1

}
j<i,m′∈[M ]

,
{
sm

′

i,h, a
m′

i,h

}
m′≤m

]
. (78)

Armed with this notation, fixing N , it is easily verified that E(i,m)[X̃
m
i,k(s, a;N)] = 0 since then V mi−1,h+1 can

be regarded as fixed and (Ph,s,a − Pmi,h) is independent from ω̃mi,k,h(s, a;N).
Consequently, we can apply Freedman’s inequality (see the user-friendly version provided in Theorem 2)

and control the term of interest for any (s, a, k, h) ∈ S ×A× [K]× [H] and N ∈ [1,MK] as below:

k∑
i=1

M∑
m=1

X̃m
i,k,h(s, a;N)

(i)

≤
√
8B1ζ1 +

4

3
B2ζ1

(ii)

≤
√

32H4ζ1
N

+
3H2ζ1
N

≤
√

81H4ζ21
N

(79)

at least with probability 1− δ. Here, (i) and (ii) arises from the following definition and facts about B1 and
B2:

B1 :=

k∑
i=1

M∑
m=1

E(i,m)

[(
X̃m
i,k,h(s, a;N)

)2]
≤ 4H4

N
, (80)

B2 := max
(i,m)∈[k]×[M ]

∣∣∣X̃m
i,k,h(s, a;N)

∣∣∣ ≤ 2H2

N
(81)

where the proofs of (80) and (81) are provided as below, respectively.

Proof of (80). In view of that the events happen at any time step h are independent from the transitions
in later time steps including Pmi,h, we have ω̃mi,k,h(s, a;N) is independent from (Ph,s,a − Pmi,h)V

m
i−1,h+1, which

yields

k∑
i=1

M∑
m=1

E(i,m)[(X̃
m
i,k,h(s, a;N))2] =

k∑
i=1

M∑
m=1

E(i,m)[(ω̃
m
i,k,h(s, a;N))2]VarPh,s,a

(V mi−1,h+1)

≤ H2
k∑
i=1

M∑
m=1

E(i,m)[(ω̃
m
i,k,h(s, a;N))2]

≤ H2N

(
2H

N

)2

=
4H4

N
, (82)

where the penultimate inequality holds by the fact that |ω̃mi,k,h(s, a;N)| ≤ 2H
N .

30



Proof of (81). For any (i,m, h) ∈ [k]× [M ]× [H] and fixed N ∈ [1,MK], it is observed that∣∣∣X̃m
i,k,h(s, a;N)

∣∣∣ = ∣∣ω̃mi,k,h(s, a;N)(Ph,s,a − Pmi,h)V
m
i−1,h+1I{(smi,h, ami,h) = (s, a)}

∣∣
≤ |ω̃mi,k,h(s, a;N)| · ∥Ph,s,a − Pmi,h∥1 · ∥V mi−1,h+1∥∞ ≤ 2H2

N
, (83)

where the last inequality follows from ∥V mi−1,h+1∥∞ ≤ H, ∥Ph,s,a − Pmi,h∥1 ≤ 1, and |ω̃mi,k,h(s, a;N)| ≤ 2H
N .

B.4 Proof of Lemma 4
With slight abuse of notation, we will omit (s, a) from some notation when it is clear from the context for
simplicity in this proof. Recall the definition of D3(s, a, k, h) in (25) and the global penalty defined in (16).
When Nk,h(s, a) = 0, the global penalties are all 0, which yields D3(s, a, k, h) = 0. Therefore, it suffices to
focus on the case when Nk,h(s, a) > 0 and show that for cB = 81, cu = 4 and cl = 1,

D3(s, a, k, h) =

ϕ(k)∑
u=1

Btu,h(s, a)

ϕ(k)∏
u′=u+1

λu′,h(s, a) ∈
[√

clcBζ21H
4

Nk,h(s, a)
,

√
cucBζ21H

4

Nk,h(s, a)

]
. (84)

Towards this, for any (s, a) ∈ S ×A, we consider a more general term as below: for any integer z ≥ 1,

z∑
u=1

Btu,h

z∏
u′=u+1

λu′,h =

z∑
u=1

(H + 1)ntu,h
Nk,h +Hntu,h

√
cBζ21H

4

Ntu,h

z∏
u′=u+1

λu′,h

=
√
cBζ21H

4

z∑
u=1

√
1

Ntu,h
(1− λu,h)

z∏
u′=u+1

λu′,h

=
√
cBζ21H

4Y (z) (85)

where the penultimate equality follows from

(H + 1)ntu,h(s, a)

Ntu,h +Hntu,h(s, a)
= 1− λu,h(s, a)

for all (s, a) ∈ S ×A, and the last equality arises by defining

Y (z) :=

z∑
u=1

√
1

Ntu,h
(1− λu,h)

z∏
u′=u+1

λu′,h. (86)

As a result, to show (84), it suffices to verify that

Y (z) ∈
[√

cl
Ntz,h(s, a)

,

√
cu

Ntz,h(s, a)

]
, (87)

which we proceed by an induction argument.

Proof of (87) by induction. To begin with, for the basic case z = 1, it is easily verified that

Y (1) =

{√
1

Nt1,h
if nt1,h > 0

0 if nt1,h = 0
, (88)

since when nt1,h > 0 we have λ1,h(s, a) = 0, and otherwise λ1,h(s, a) = 1. Then suppose (87) holds for z− 1,
namely,

Y (z − 1) ∈
[√

cl
Ntz−1,h

,

√
cu

Ntz−1,h

]
, (89)
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we hope to show (87) holds for z. Towards this, we first show the upper bound in (87) holds for z as follows:

Y (z) = Y (z − 1)λz,h +

√
1

Ntz,h
(1− λz,h)

(i)

≤
√

cu
Ntz−1,h

Ntz−1,h

Ntz,h +Hntz,h
+

√
1

Ntz,h

(H + 1)ntz,h
Ntz,h +Hntz,h

≤
√

cu
Ntz,h

√
Ntz−1,h

Ntz,h +Hntz,h
+

√
1

Ntz,h

(H + 1)ntz,h
Ntz,h +Hntz,h

=

√
cu

Ntz,h

(√
Ntz−1,h

Ntz,h +Hntz,h
+

√
1

cu

(H + 1)ntz,h
Ntz,h +Hntz,h

)

=

√
cu

Ntz,h

(√
Ntz−1,h

Ntz,h +Hntz,h
+

√
1

cu

(
1−

√
Ntz−1,h

Ntz,h +Hntz,h

)(
1 +

√
Ntz−1,h

Ntz,h +Hntz,h

))

≤
√

cu
Ntz,h

, (90)

where (i) follows from the induction assumption and (H+1)ntz,h(s,a)
Ntz,h+Hntz,h(s,a)

= (1−λz,h(s, a)) for all (s, a) ∈ S×A,
the penultimate equality holds by

1− Ntz−1,h

Ntz,h +Hntz,h
=
Ntz,h −Ntz−1,h +Hntz,h

Ntz,h +Hntz,h
=

(H + 1)ntz,h
Ntz,h +Hntz,h

,

and the last inequality arises from
√

1
cu

(
1 +

√
Ntz−1,h

Ntz,h+Hntz,h

)
≤ 1 as long as cu ≥ 4.

Analogous to (90), the lower bound of Y (z) is derived as below:

Y (z) = Y (z − 1)λz,h +

√
1

Ntz,h
(1− λz,h)

≥
√

cl
Ntz−1,h

Ntz−1,h

Ntz,h +Hntz,h
+

√
1

Ntz,h

(H + 1)ntz,h
Ntz,h +Hntz,h

≥
√

cl
Ntz,h

Ntz−1,h

Ntz,h +Hntz,h
+

√
1

Ntz,h

(H + 1)ntz,h
Ntz,h +Hntz,h

≥
√

cl
Ntz,h

, (91)

where the first inequality follows from the induction assumption and (H+1)ntz,h(s,a)
Ntz,h+Hntz,h(s,a)

= (1− λz,h(s, a)) for
all (s, a) ∈ S × A, and the last equality holds when 1 ≥ cl. Finally, by induction arguments, (87) holds for
any z ∈ ϕ(K), and this completes the proof.

B.5 Proof of Lemma 5
Recall the definition of D4,h (see (35) and (25)), D4,h can be rewritten as follows:

D4,h =

ϕ(K)∑
v=1

τv
∑

(s,a)∈S×A

dπ
⋆

h (s, a)

M∑
m=1

∑
i∈Lm

tv,h(s,a)

ωmi,tv,h(s, a)Ph,s,a(V
⋆
h+1 − Vι(i),h+1)

(i)
=

ϕ(K)∑
v=1

τv
∑

(s,a)∈S×A

dπ
⋆

h (s, a)

v∑
u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)

M∑
m=1

 ∑
i∈lmtu,h(s,a)

ωmi,tv,h(s, a)


︸ ︷︷ ︸

=:ψu,v,h(s,a)
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=
∑

(s,a)∈S×A

ϕ(K)∑
v=1

∑
tv−1<j≤tv

dπ
⋆

h (s, a)

v∑
u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a), (92)

where (i) holds by rewriting the sum as
∑
i∈Lm

tv,h(s,a)
=
∑v
u=1

∑
i∈lmtu,h(s,a)

and the last equality holds by
the definition of τv.

To further control (92), we introduce the following lemma that bounds the expectation form (92) by an
empirical version; the proof is postponed to Appendix B.5.1.

Lemma 9. Consider any δ ∈ (0, 1). For any h ∈ [H], the following holds:

∑
(s,a)∈S×A

ϕ(K)∑
v=1

∑
tv−1<j≤tv

dπ
⋆

h (s, a)

v∑
u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a)

≲
1

M

∑
(s,a)∈S×A

ϕ(K)∑
v=1

dπ
⋆

h (s, a)

davgh (s, a)
ntv,h(s, a)

v∑
u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a) + σaux,1 (93)

at least with probability 1− δ, where

σaux,1 ≲

√
H2KSC⋆avg

M
+
H2SC⋆avg

M
(94)

Then, applying concentration bounds, D4,h is bounded as follows:

D4,h

(i)

≲
1

M

∑
(s,a)∈S×A

ϕ(K)∑
v=1

v∑
u=1

dπ
⋆

h (s, a)

davgh (s, a)
ntv,h(s, a)Ph,s,a(V

⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a) + σaux,1

=
1

M

∑
(s,a)∈S×A

ϕ(K)∑
u=1

dπ
⋆

h (s, a)

davgh (s, a)
Ph,s,a(V

⋆
h+1 − Vtu−1,h+1)

ϕ(K)∑
v=u

ntv,h(s, a)ψu,v,h(s, a) + σaux,1

(ii)

≤ 1

M

∑
(s,a)∈S×A

ϕ(K)∑
u=1

dπ
⋆

h (s, a)

davgh (s, a)
Ph,s,a(V

⋆
h+1 − Vtu−1,h+1)ntu,h(s, a)

(
1 +

1

H

)
+ σaux,1 (95)

where (i) follows from Lemma 9, and (ii) holds because

∞∑
v≥u

ntv,h(s, a)

M∑
m=1

∑
i∈lmtu,h(s,a)

ωmi,tv,h(s, a) ≤ ntu,h(s, a)
(
1 +

1

H

)
(96)

according (49e) in Lemma 7.
To continue, we introduce the following lemma that transfers the distribution at time step h to the

distribution at time step h+ 1; the proof is provided in Appendix B.5.3.

Lemma 10. Consider any δ ∈ (0, 1). For any h ∈ [H], the following holds:

ϕ(K)∑
u=1

∑
(s,a)∈S×A

ntu,h(s, a)

Mdavgh (s, a)
dπ

⋆

h (s, a)Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)

≲
ϕ(K)∑
u=1

τu
∑
s∈S

dπ
⋆

h+1(s)(V
⋆
h+1(s)− Vtu−1,h+1(s)) + σaux,2 (97)

at least with probability 1− δ, where

σaux,2 =

√
H2KSC⋆avg

M
+
HSC⋆avg
M

.
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Armed with the above lemma, rearranging the terms in (95) and applying Lemma 10,

D4 ≲
(
1 +

1

H

) ϕ(K)∑
u=1

∑
(s,a)∈S×A

ntu,h(s, a)

Mdavgh (s, a)
dπ

⋆

h (s, a)Ph,s,a(V
⋆
h+1 − Vtu−1,h+1) + σaux,1

≲
(
1 +

1

H

) ϕ(K)∑
u=1

τu
∑
s∈S

dπ
⋆

h+1(s)(V
⋆
h+1(s)− Vtu−1,h+1(s)) + σaux,1 + σaux,2︸ ︷︷ ︸

=:σaux

,

and this completes the proof.

B.5.1 Proof of Lemma 9

Consider any given (s, a) ∈ S × A and v ∈ [1, ϕ(K)]. Before proceeding, we introduce some notation and
auxiliary terms. Let

Gv,h(s, a) :=

v∑
u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a). (98)

Then, for any tv−1 < j ≤ tv, we introduce the following auxiliary variables:

Y mj,h :=
∑

(s,a)∈S×A

(
davgh (s, a)− I{(s, a) = (smj,h, a

m
j,h)}

) dπ⋆

h (s, a)

davgh (s, a)
Gv,h(s, a) (99)

Ỹ mj,h :=
∑

(s,a)∈S×A

(
dmh (s, a)− I{(s, a) = (smj,h, a

m
j,h)}

) dπ⋆

h (s, a)

davgh (s, a)
G̃−j,m
v,h (s, a), (100)

where we define

G̃−j,m
v,h (s, a) :=

{
ψ̃−j,m
v,v,h (s, a)Ph,s,a(V

⋆
h+1 − Vtv−1,h+1) + (1− ψ̃−j,m

v,v,h (s, a))Gv−1,h(s, a) if v > 1

Ph,s,a(V
⋆
h+1 − V0,h+1) if v = 1

(101)

and

ψ̃−j,m
v,v,h (s, a) :=

(H + 1)(ntv,h(s, a)− I{(s, a) = (smj,h, a
m
j,h)})

Ntv−1,h(s, a) + (H + 1)(ntv,h(s, a)− I{(s, a) = (smj,h, a
m
j,h)})

=
(H + 1)(

∑
(m′,j′)∈[M ]×(tv−1,tv ]\{(j,m)} I{(s, a) = (sm

′

j′,h, a
m′

j′,h)})
Ntv−1,h(s, a) + (H + 1)(

∑
(m′,j′)∈[M ]×(tv−1,tv]\{(j,m)} I{(s, a) = (sm

′
j′,h, a

m′
j′,h)})

. (102)

We replaced Gv,h(s, a) with a surrogate G̃−j,m
v,h (s, a), where the visits of agent m on (s, a) at the j-th episode

are masked regardless of the actual visits of agent m on (s, a). The surrogate is carefully designed to remove
the dependency on the event I{(s, a) = (smj,h, a

m
j,h)} from Gv,h(s, a) while maintaining close distance to the

original value Gv,h(s, a).
Before continuing, we introduce some useful properties of the above defined auxiliary terms whose proofs

are provided in Appendix B.5.2: for any v ∈ [ϕ(K)],

Gv,h(s, a) =

{
ψv,v,h(s, a)Ph,s,a(V

⋆
h+1 − Vtv−1,h+1) + (1− ψv,v,h(s, a))Gv−1,h(s, a) if v > 1

Ph,s,a(V
⋆
h+1 − V0,h+1) if v = 1

, (103a)

0 ≤ G̃−j,m
v,h (s, a), Gv,h(s, a) ≤ H, (103b)

|G̃−j,m
v,h (s, a)−Gv,h(s, a)| ≤ min

{
H,

2H2

Ntv,h(s, a)

}
. (103c)

Now, we are ready to prove (93). Towards this, we first observe that moving the first term in the
right-hand side of (93) to the left-hand side, and multiplying by a factor of M , yields

∑
(s,a)∈S×A

ϕ(K)∑
v=1

 M∑
m=1

∑
tv−1<j≤tv

dπ
⋆

h (s, a)− dπ
⋆

h (s, a)

davgh (s, a)
ntv,h(s, a)

 v∑
u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a)
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(i)
=

∑
(s,a)∈S×A

ϕ(K)∑
v=1

 M∑
m=1

∑
tv−1<j≤tv

davgh (s, a)−
M∑
m=1

nmtv,h(s, a)

 dπ
⋆

h (s, a)

davgh (s, a)
Gv,h(s, a)

(ii)
=

∑
(s,a)∈S×A

M∑
m=1

 K∑
j=1

davgh (s, a)−
K∑
j=1

I{(s, a) = (smj,h, a
m
j,h)}

 dπ
⋆

h (s, a)

davgh (s, a)
Gv,h(s, a)

=

K∑
j=1

M∑
m=1

∑
(s,a)∈S×A

(
davgh (s, a)− I{(s, a) = (smj,h, a

m
j,h)}

) dπ⋆

h (s, a)

davgh (s, a)
Gv,h(s, a) =

K∑
j=1

M∑
m=1

Y mj,h, (104)

where (i) holds by plugging in (98) and ntv,h(s, a) =
∑M
m=1 n

m
tv,h

(s, a), (ii) follows from
∑ϕ(K)
v=1

∑
tv−1<j≤tv 1 =

K and
∑ϕ(K)
v=1 nmtv,h(s, a) =

∑K
j=1 I{(s, a) = (smj,h, a

m
j,h)}, and the last equality arise from the definition of Y mj,h

in (B.5.1).
Therefore, the above fact shows that to prove (93), it is suffices to show:∣∣∣∣∣∣

K∑
j=1

M∑
m=1

Y mj,h

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
K∑
j=1

M∑
m=1

Ỹ mj,h

∣∣∣∣∣∣+
∣∣∣∣∣∣
K∑
j=1

M∑
m=1

(
Y mj,h − Ỹ mj,h

)∣∣∣∣∣∣ ≲Mσaux,1. (105)

We will control the two essential terms separately as below:

• Controlling
∣∣∣∑K

j=1

∑M
m=1 Ỹ

m
j,h

∣∣∣. To begin with, we observe that the approximate G̃−j,m
v,h (s, a) (defined

in (101)) is independent of agent m’s visits on (s, a) at the j-th episode since Vtv−1,h+1, Gv−1,h(s, a)

are independent of the j-th episode and ψ̃−j,m
v,v,h (s, a) is independent from agent m’s visits on (s, a) at

the j-th episode (see (102)). It follows that Ej−1[Ỹ
m
j,h] = 0, where we denote

Ej−1[·] = E
[
· | {(sm′

i,h, a
m′

i,h), V
m′

i,h+1}i<j,m′∈[M ]

]
.

Thus, applying the Freedman’s inequality for each h ∈ [H], we can show that the following holds:∣∣∣∣∣∣
K∑
j=1

M∑
m=1

Ỹ mj,h

∣∣∣∣∣∣ ≤
√
8W log

2H

δ
+

8

3
B log

2H

δ

≲
√
H2MKSC⋆avg +HSC⋆avg (106)

at least with probability 1− δ, where B and W is obtained as follows:∣∣∣Ỹ mj,h∣∣∣ ≤ 2C⋆avg(1 + dπ
⋆

h (s, π⋆(s))S)max
s∈S

G̃−j,m
ϕ(j),h(s, π

⋆(s)) ≤ 4SC⋆avgH =: B (107)

K∑
j=1

M∑
m=1

Ej−1

[(
Ỹ mj,h

)2]
≤

K∑
j=1

M∑
m=1

E(smj,h,a
m
j,h)∼d

m
h

( dπ⋆

h (smj,h, a
m
j,h)

davgh (smj,h, a
m
j,h)

G̃−j,m
ϕ(j),h(s

m
j,h, a

m
j,h)

)2


≤
K∑
j=1

M∑
m=1

∑
s∈S

dmh (s, π⋆(s))

(
dπ

⋆

h (s, π⋆(s))

davgh (s, π⋆(s))
G̃−j,m
ϕ(j),h(s, π

⋆(s))

)2

≤ H2C⋆avg

K∑
j=1

∑
s∈S

M∑
m=1

dmh (s, π⋆(s))
dπ

⋆

h (s, π⋆(s))

davgh (s, π⋆(s))
(1 + dπ

⋆

h (s, π⋆(s))S)

≤ H2C⋆avg

K∑
j=1

∑
s∈S

Mdπ
⋆

h (s, π⋆(s))(1 + dπ
⋆

h (s, π⋆(s))S)

≤ 2H2SC⋆avgMK =:W (108)

using the fact that |G̃−j,m
ϕ(j),h(s

m
j,h, a

m
j,h)| ≤ H shown in (103b) and dπ

⋆

h (s,π⋆(s))

min{dπ⋆

h (s,π⋆(s)),1/S} ≤ 1+dπ
⋆

h (s, π⋆(s))S.
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• Bound on the approximation gap of Ỹ mj,h. The approximation gap of Ỹ mj,h is bounded as follows:∣∣∣∣∣∣
K∑
j=1

M∑
m=1

(
Ỹ mj,h − Y mj,h

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
ϕ(K)∑
v=1

M∑
m=1

∑
tv−1<j≤tv

∑
(s,a)∈S×A

(
dmh (s, a)− I{(s, a) = (smj,h, a

m
j,h)}

) dπ⋆

h (s, a)

davgh (s, a)
(G̃−j,m

v,h (s, a)−Gv,h(s, a))

∣∣∣∣∣∣
(i)
=

ϕ(K)∑
v=1

M∑
m=1

∑
tv−1<j≤tv

∑
(s,a)∈S×A

I{(s, a) = (smj,h, a
m
j,h)} (1− dmh (s, a))

dπ
⋆

h (s, a)

davgh (s, a)

∣∣∣G̃−j,m
v,h (s, a)−Gv,h(s, a)

∣∣∣
(ii)

≤
ϕ(K)∑
v=1

M∑
m=1

∑
tv−1<j≤tv

∑
(s,a)∈S×A

I{(s, a) = (smj,h, a
m
j,h)}

dπ
⋆

h (s, a)

davgh (s, a)
min

{
2H2

Ntv,h(s, a)
, H

}
(iii)

≤ C⋆avg
∑
s∈S

ϕ(K)∑
v=1

ntv,h(s, π
⋆(s))

dπ
⋆

h (s, π⋆(s))

min{dπ⋆

h (s, π⋆(s)), 1/S} min

{
2H2

Ntv,h(s, π
⋆(s))

, H

}
(iv)

≤ 2H2C⋆avg
∑
s∈S

(1 + dπ
⋆

h (s, π⋆(s))S)

ϕ(K)∑
v=1

min

{
ntv,h(s, π

⋆(s))

Ntv,h(s, π
⋆(s))

, ntv,h(s, π
⋆(s))

}
(v)

≲ C⋆avgH
2S (109)

where (i) holds because ψ̃−j,m
v,v,h (s, a) = ψ−j,m

v,v,h (s, a) if (smj,h, a
m
j,h) ̸= (s, a) and G̃−j,m

v,h (s, a) = Gv,h(s, a)
according to (103a), (ii) follows from (103c), (iii) naturally holds according to the definition of C⋆avg,

(iv) holds because dπ
⋆

h (s,π⋆(s))

min{dπ⋆

h (s,π⋆(s)),1/S} ≤ 1 + dπ
⋆

h (s, π⋆(s))S, and (v) holds because for any z ∈ [ϕ(K)],

z∑
v=1

ntv,h(s, π
⋆(s))

Ntv,h(s, π
⋆(s))

≤ 1 + log (Ntz,h(s, π
⋆(s))), (110)

according to Lemma 6.

Now, combining the bounds obtained above (cf. (106) and (109)) into (105), we conclude that∣∣∣∣∣∣
K∑
j=1

M∑
m=1

Y mj,h

∣∣∣∣∣∣ ≲
√
H2MKSC⋆avg +H2SC⋆avg =M

(√
H2KSC⋆avg

M
+
H2SC⋆avg

M

)
(111)

which completes the proof.

B.5.2 Proof of (103)

Proof of (103a). We will proof (103a) by considering different cases separately. When v = 1, we have

Gv,h(s, a) = Ph,s,a(V
⋆
h+1 − Vtv−1,h+1)ψ1,1,h(s, a)

= Ph,s,a(V
⋆
h+1 − V0,h+1)

M∑
m=1

 ∑
i∈lmt1,h(s,a)

ωmi,t1,h(s, a)

 = Ph,s,a(V
⋆
h+1 − V0,h+1) (112)

where the second equality follows from the definition of ψu,v,h(s, a) in (92), and the last equality holds since

M∑
m=1

∑
i∈lmt1,h(s,a)

ωmi,t1,h(s, a) =
(H + 1)nt1,h
Nt1,h +Hnt1,h

=
(H + 1)nt1,h
(H + 1)nt1,h

= 1.
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When v > 1, invoking the definition of ωmi,tv,h in (26c) yields that for any u < v,

ψu,v,h(s, a) =

M∑
m=1

∑
i∈lmtu,h(s,a)

ωmi,tv,h(s, a)

=
(H + 1)ntu,h
Ntv,h +Hntv,h

(
v−1∏
x=u

Ntx,h
Ntx,h +Hntx,h

)

=
(H + 1)ntu,h

Ntv−1,h +Hntv−1,h

(
v−2∏
x=u

Ntx,h
Ntx,h +Hntx,h

)
Ntv−1,h

Ntv,h +Hntv,h

= ψu,v−1,h(s, a)(1− ψv,v,h(s, a)). (113)

where the second equality holds by ϕ(i) = u for all i ∈ lmtu,h(s, a) and the fact
∑M
m=1

∑
i∈lmtu,h(s,a)

1 =

ntu,h, and the last equality holds by 1 − ψv,v,h(s, a) = 1 − (H+1)ntv,h

Ntv,h+Hntv,h
=

Ntv−1,h+(H+1)ntv,h−(H+1)ntv,h

Ntv,h+Hntv,h
=

Ntv−1,h

Ntv,h+Hntv,h
.

Consequently, inserting the above fact back into (98) complete the proof by showing that

Gv,h(s, a) =

v∑
u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a)

= Ph,s,a(V
⋆
h+1 − Vtv−1,h+1)ψv,v,h(s, a) +

v−1∑
u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a)

= Ph,s,a(V
⋆
h+1 − Vtv−1,h+1)ψv,v,h(s, a) + (1− ψv,v,h(s, a))

v−1∑
u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v−1,h(s, a)

= Ph,s,a(V
⋆
h+1 − Vtv−1,h+1)ψv,v,h(s, a) + (1− ψv,v,h(s, a))Gv−1,h(s, a). (114)

Proof of (103b). First, applying (30c) in Lemma 3 gives Gv,h(s, a) ≥ 0. Then we focus on deriving the
upper bound Gv,h(s, a). Towards this, we observe that

Gv,h(s, a) =

v∑
u=1

Ph,s,a(V
⋆
h+1 − Vtu−1,h+1)ψu,v,h(s, a)

≤ Ph,s,a(V
⋆
h+1 − V0,h+1)

v∑
u=1

ψu,v,h(s, a)

≤ H

v∑
u=1

ψu,v,h(s, a)

= H

v∑
u=1

M∑
m=1

 ∑
i∈lmtu,h(s,a)

ωmi,tv,h(s, a)

 ≤ H, (115)

where the first and second inequalities hold by the fact Ph,s,a(V ⋆h+1 − Vtx,h+1) ≤ Ph,s,a(V
⋆
h+1 − V0,h+1) ≤ H

for any x ∈ [ϕ(K)] (see the monotonicity of the value estimates in (14) and the basic bound ∥V ⋆h+1∥∞ ≤ H),
the last equality arises from the definition of ψu,v,h(s, a) in (92), and the last inequality follows from (49b)
in Lemma 7.

Similarly, the same facts hold for G̃−j,m
v,h (s, a), which can be derived in the same manner. We omit it for

conciseness.

Proof of (103c). Consider v = ϕ(j). If v = 1, combing (103a) and (101) directly gives G̃−j,m
v,h (s, a) =

Gv,h(s, a). Then we turn to the case when v > 1 and bound the term of interest in two different cases,
respectively.
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• When (smj,h, a
m
j,h) ̸= (s, a). In this case, invoking the definition in (102) gives

ψ̃−j,m
v,v,h (s, a) =

(H + 1)ntv,h(s, a)

Ntv−1,h(s, a) + (H + 1)ntv,h(s, a)
= ψ−j,m

v,v,h (s, a), (116)

which indicates (see the definition in (101))

G̃−j,m
v,h (s, a) = Gv,h(s, a) (117)

• When (smj,h, a
m
j,h) = (s, a). In view of (103a) and (101), it holds that:

|G̃−j,m
v,h (s, a)−Gv,h(s, a)|

=
∣∣∣(ψ̃−j,m

v,v,h (s, a)− ψv,v,h(s, a))Ph,s,a(V
⋆
h+1 − Vtv−1,h+1) + (ψv,v,h(s, a)− ψ̃−j,m

v,v,h (s, a))Gv−1,h(s, a)
∣∣∣

=
∣∣∣(ψv,v,h(s, a)− ψ̃−j,m

v,v,h (s, a))(Gv−1,h(s, a)− Ph,s,a(V
⋆
h+1 − Vtv−1,h+1)

∣∣∣
≤
∣∣∣ψv,v,h(s, a)− ψ̃−j,m

v,v,h (s, a)
∣∣∣max

{
Gv−1,h(s, a), ∥Ph,s,a∥1

∥∥V ⋆h+1 − Vtv−1,h+1

∥∥
∞

}
(i)

≤ H
∣∣∣ψv,v,h(s, a)− ψ̃−j,m

v,v,h (s, a)
∣∣∣

(ii)

≤ min

{
H,

2H2

Ntv,h(s, a)

}
, (118)

where (i) holds by (103b), ∥Ph,s,a∥1 = 1, and
∥∥V ⋆h+1 − Vtv−1,h+1

∥∥
∞ ≤ H. Here, (ii) can be verified by

0
(iii)

≤ ψv,v,h(s, a)− ψ̃−j,m
v,v,h (s, a)

=
(H + 1)ntv,h(s, a)

Ntv−1,h(s, a) + (H + 1)ntv,h(s, a)
−

(H + 1)(ntv,h(s, a)− I{(s, a) = (smj,h, a
m
j,h)})

Ntv−1,h(s, a) + (H + 1)(ntv,h(s, a)− I{(s, a) = (smj,h, a
m
j,h)})

=
(H + 1)ntv,h(s, a)

Ntv−1,h(s, a) + (H + 1)ntv,h(s, a)
− (H + 1)(ntv,h(s, a)− 1)

Ntv−1,h(s, a) + (H + 1)(ntv,h(s, a)− 1)

≤ (H + 1)

Ntv−1,h(s, a) + (H + 1)ntv,h(s, a)

≤ min

{
1,

2H

Ntv,h(s, a)

}
. (119)

where (iii) holds by the fact that x
a+x is monotonically increasing with x when a, x > 0.

B.5.3 Proof of Lemma 10

For each j ∈ [K], let

Zmj,h :=
∑

(s,a)∈S×A

(
I{(s, a) = (smj,h, a

m
j,h)} − dmh (s, a)

) dπ
⋆

h (s, a)

Mdavgh (s, a)
Ph,s,a(V

⋆
h+1 − Vtϕ(j)−1,h+1). (120)

Then, to prove Lemma 10, it suffices to show
∣∣∣∑K

j=1

∑M
m=1 Z

m
j,h

∣∣∣ ≲ σaux,2.

Since Vtϕ(j)−1,h+1 is fully determined by the events before the j-th episode, Ej−1[Z
m
j,h] = 0, where we

denote
Ej−1[·] = E[·|{(sm′

i,h, a
m′

i,h), V
m′

i,h+1}i<j,m′∈[M ]].

Thus, we can apply the Freedman’s inequality as follows:∣∣∣∣∣∣
K∑
j=1

M∑
m=1

Zmj,h

∣∣∣∣∣∣ ≤
√
8W log

2H

δ
+

8

3
B log

2H

δ
≲

√
H2KSC⋆avg

M
+
HSC⋆avg
M

(121)
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using the following properties:

|Zmj,h| ≤
2C⋆avgH

M

(∑
s∈S

(1 + dπ
⋆

h (s, π⋆(s))S)

)
≤ 4HSC⋆avg

M
=: B (122)

K∑
j=1

M∑
m=1

Ej−1[(Z
m
j,h)

2] ≤
K∑
j=1

M∑
m=1

E(smj,h,a
m
j,h)∼d

m
h

( dπ
⋆

h (smj,h, a
m
j,h)

Mdavgh (smj,h, a
m
j,h)

Ph,s,a(V
⋆
h+1 − Vtϕ(j)−1,h+1)

)2


≤ H2
K∑
j=1

M∑
m=1

∑
s∈S

dmh (s, π⋆(s))

(
dπ

⋆

h (s, π⋆(s))

Mdavgh (s, π⋆(s))

)2

≤ H2C⋆avg
M

∑
s∈S

K∑
j=1

(
dπ

⋆

h (s, π⋆(s))

Mdavgh (s, π⋆(s))

)
(1 + dπ

⋆

h (s, π⋆(s))S)

M∑
m=1

dmh (s, π⋆(s))

=
H2C⋆avg
M

∑
s∈S

K∑
j=1

dπ
⋆

h (s, π⋆(s))(1 + dπ
⋆

h (s, π⋆(s))S)

=
2H2KSC⋆avg

M
=:W, (123)

which follows from that fact 0 ≤ ∥V ⋆h+1 − Vtϕ(j)−1,h+1∥∞ ≤ H and dπ
⋆

h (s,π⋆(s))

min{dπ⋆

h (s,π⋆(s)),1/S} ≤ 1 + dπ
⋆

h (s, π⋆(s))S.

B.6 Proof of Corollary 1

Note that if T ≍ H7SC⋆
avg

Mε2 , it always holds that

MT ≳ H5SC⋆avg and H ≤
√
HSC⋆avgT

M
, (124)

as long as ε ≤ H and ε ≤ H3SC⋆
avg

M . Now, we obtain the number of communication rounds of the specified
schedules, periodic and exponential synchronization.

Periodic synchronization. Consider τ ≍
√

HSC⋆
avgT

M . Then, since MT ≳ HSC⋆avg, the value gap is
bounded as

V ⋆1 (ρ)− V π̂1 (ρ) ≲
H4SC⋆avg
MT

+

√
H7SC⋆avg
MT

+
H3

T

√
HSC⋆avgT

M
≲

√
H7SC⋆avg
MT

. (125)

In this case, the number of synchronizations ϕ(K) = |Tperiod(K, τ)| is

ϕ(K) =
⌈K
τ

⌉
≲

√
MK

H2SC⋆avg
≍
√

MT

H3SC⋆avg
≍ H2

ε
.

Exponential synchronization. Using the fact that MT ≳ HSC⋆avg and τ1 = H ≤
√

HSC⋆
avgT

M when

ε ≤ H3SC⋆
avg

M , the value gap is bounded as

V ⋆1 (ρ)− V π̂1 (ρ) ≲
H4SC⋆avg
MT

+

√
H7SC⋆avg
MT

+
H3

T

√
HSC⋆avgT

M
≲

√
H7SC⋆avg
MT

. (126)

To continue, note that if γ = 2
H and τ1 = H, for any u ≥ 1, τu is bounded as(

1 +
1

H

)u−1

H ≤ τu ≤
(
1 +

2

H

)u−1

H,
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since (
1 +

1

H

)
τi ≤

(
1 +

2

H

)
τi − 1 ≤ τi+1 =

⌊(
1 +

2

H

)
τi

⌋
≤
(
1 +

2

H

)
τi

given the fact that τi ≥ H for any i ≥ 1. Then, considering the minimum number of synchronizations
ϕ(K) = |Texp(K, γ)| satisfying

ϕ(K)∑
u=1

τu ≥ H

ϕ(K)∑
u=1

(
1 +

1

H

)u−1

= H2
((

1 +
1

H

)ϕ(K)

− 1
)
≥ K,

we obtain

ϕ(K) =

⌈
log ( KH2 + 1)

log (1 + 1
H )

⌉
≤ 1 + (1 +H) log

( K
H2

+ 1
)
≲ H (127)

because x
x+1 ≤ log(1 + x) for any x > −1.
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