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Abstract

Many problems encountered in machine learning and signal processing can be formulated as esti-

mating a low-rank object from incomplete, and possibly corrupted, linear measurements; prominent

examples include matrix completion and tensor completion. Through the lens of matrix and tensor

factorization, one of the most popular approaches is to employ simple iterative algorithms such

as gradient descent to recover the low-rank factors directly, which allow for small memory and

computation footprints. However, the convergence rate of gradient descent depends linearly, and

sometimes even quadratically, on the condition number of the low-rank object, and therefore, slows

down painstakingly when the problem is ill-conditioned. This thesis introduces a new algorithm:

scaled gradient descent (ScaledGD), which provably converges linearly at a constant rate indepen-

dent of the condition number of the low-rank object, while maintaining the low per-iteration cost

of gradient descent. In addition, a nonsmooth variant of ScaledGD provides further robustness to

corruptions by optimizing the least absolute deviation loss. In total, ScaledGD highlights the power

of appropriate preconditioning in accelerating nonconvex statistical estimation, where the iteration-

varying preconditioners promote desirable invariance properties of the trajectory with respect to

the symmetry in low-rank factorization.
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Chapter 1

Introduction

Most signal processing and machine learning tasks propose to solve a mathematical optimiza-

tion problem, for which gradient descent and its variants such as stochastic gradient descent and

momentum methods are the most popular algorithms. When the optimization problem is convex

and smooth, which is often the case in classical models, gradient descent is guaranteed to work

efficiently [Bec17]. On the other hand, modern machine learning models, like deep neural networks,

often require solving a nonconvex and nonsmooth problem. This leads to a rapid paradigm shift

in large-scale inference: heuristic nonconvex algorithms, instead of tractable convex approaches,

become increasingly more popular due to their superior efficiency and scalability. In general, non-

convex optimization problems cannot be solved efficiently. However, in practice, many important

nonconvex problems enjoy benign geometric landscape [ZQW20], thus gradient descent and its

variants can solve them successfully. These competing facts indicate that often there are special

structures such that the optimization problems are not as hard as they seem. This thesis studies

a set of such problems categorized as follows, with specific questions called out to advance the

state-of-the-art.

• Many problems encountered in data science can be formulated as low-rank matrix estimation

[CLC19]. Examples include phase retrieval [SEC+15], blind deconvolution [ARR14], robust prin-

cipal component analysis [CSPW11,CLMW11], low-rank matrix completion [CR09,DR16], and so

on. A common goal is to develop reliable, scalable, and robust algorithms to estimate a low-rank

matrix from highly incomplete, potentially corrupted and noisy observations. Broadly speaking,

one aims to recover a rank-r matrix X? ∈ Rn1×n2 from a set of observations y = A(X?), where

the operator A(·) models the measurement process. It is natural to minimize the least-squares
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loss function subject to a rank constraint:

minimize
X∈Rn1×n2

f(X) := 1
2‖A(X)− y‖22 s.t. rank(X) ≤ r, (1.1)

which is, however, computationally intractable in general due to the rank constraint. In the last

decades, convex relaxation approaches have been developed, where the basic idea is to replace the

rank constraint by a convex surrogate, e.g. a nuclear norm [CR09,DR16]. Such convex relaxation

approaches exhibit intriguing performance in many aspects, however, the parameter space is

often much larger than the target space. As the size of the matrix increases, the costs involved in

optimizing over the full matrix space (i.e. Rn1×n2) are prohibitive in terms of both memory and

computation. To cope with these challenges, one popular approach is to parametrize X = LR>

by two low-rank factors L ∈ Rn1×r and R ∈ Rn2×r that are more memory-efficient, and then to

optimize over the factors instead:

minimize
L∈Rn1×r,R∈Rn2×r

L(L,R) := f(LR>). (1.2)

Although this leads to a nonconvex optimization problem over the factors, recent breakthroughs

have shown that simple algorithms (e.g. gradient descent, alternating minimization), when prop-

erly initialized (e.g. via the spectral method), can provably converge to the true low-rank factors

under mild statistical assumptions. These benign convergence guarantees hold for a growing num-

ber of problems such as low-rank matrix sensing, matrix completion, robust principal component

analysis (robust PCA), phase synchronization, and so on.

However, upon closer examination, existing approaches such as gradient descent and alternating

minimization are still computationally expensive, especially for ill-conditioned matrices. Take

low-rank matrix sensing as an example: although the per-iteration cost is small, the iteration

complexity of gradient descent scales linearly with respect to the condition number of the low-rank

matrix X? [TBS+16]; on the other end, while the iteration complexity of alternating minimization

[JNS13] is independent of the condition number, each iteration requires inverting a linear system

whose size is proportional to the dimension of the matrix and thus the per-iteration cost is
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prohibitive for large-scale problems. These together raise an important open question:

Can we design an algorithm with a comparable per-iteration cost as gradient descent, but con-

verges much faster at a rate that is independent of the condition number as alternating mini-

mization in a provable manner for a wide variety of low-rank matrix estimation tasks?

• In addition, due to the heavy-tailed nature of certain measurement operators, such as those

encountered in phase retrieval [CLS15] and quadratic sampling [SWW17], the least-squares for-

mulation mentioned above may suffer from a large smoothness parameter (and hence a large

condition number of the loss function) that scales at least linearly with respect to the ambi-

ent dimension, where the iteration complexity of gradient descent scales poorly both with the

dimension as well as the condition number of the low-rank matrix, leading to a conservative

choice of stepsizes and a high iteration complexity when the problem dimension is large. More-

over, the smooth formulation is not robust to corruptions. While there have been encouraging

activities [CCD+21, MWCC19, LMCC21, TMC21a] that try to alleviate these issues regarding

ill-conditioning, none of the existing first-order approaches are able to simultaneously remove

both sources of ill-conditioning and achieve fast convergence. In contrast, nonsmooth formula-

tions yield better conditioning in such problems and exhibit apparent benefits over their smooth

counterparts. This leads to the following important question:

Can we develop first-order methods for nonsmooth formulations that are guaranteed to converge

at a fast rate that is almost dimension-free and independent of the condition number, even in

the presence of corruptions?

• Moving beyond matrix estimation, a natural higher-order generalization is tensors [KB09,SDLF+17],

which provide a powerful and flexible model for representing multi-attribute data and multi-way

interactions across various fields, play an indispensable role in modern data science with ubiqui-

tous applications in image inpainting [LMWY12], hyperspectral imaging [DFL17], collaborative

filtering [XCH+10], topic modeling [AGH+14], network analysis [PFS16], and many more. In

many problems across science and engineering, the central task is low-rank tensor estimation,

where the goal is to estimate a tensor X ? ∈ Rn1×n2×···×nK from its observations y ∈ Rm given
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by y ≈ A(X ?). Here, A(·) represents a certain linear map modeling the data collection process.

Examples include tensor completion [CLPC19, LM20] and tensor regression [HWZ20, ARB20].

There are intrinsic difficulties of estimating a tensor in many aspects, thus one hopes to answer

the question:

Can we develop a factored gradient-based algorithm that converges fast even for highly ill-

conditioned tensors with near-optimal sample complexities for tensor completion and tensor

regression?

1.1 Contributions and organization

In this thesis, we answer these questions affirmatively by proposing a nonconvex optimization

framework—scaled gradient methods, whose variants designed for various low-rank matrix and

tensor estimation tasks are described as follows.

• Low-rank matrix estimation. We set forth a competitive algorithmic approach dubbed Scaled

Gradient Descent (ScaledGD) which can be viewed as preconditioned or diagonally-scaled gradient

descent, where the preconditioners are adaptive and iteration-varying with a minimal computa-

tional overhead. We expect that the ScaledGD algorithm can accelerate the convergence for other

low-rank matrix estimation problems, as well as facilitate the design and analysis of other quasi-

Newton first-order algorithms. As a teaser, Figure 1.1 illustrates the relative error of completing

a 1000 × 1000 incoherent matrix of rank 10 with varying condition numbers from 20% of its

entries, using either ScaledGD or vanilla GD with spectral initialization. Even for moderately

ill-conditioned matrices, the convergence rate of vanilla GD slows down dramatically, while it is

evident that ScaledGD converges at a rate independent of the condition number and therefore is

much more efficient.

With tailored variants for low-rank matrix sensing, robust principal component analysis and

matrix completion, we theoretically show that ScaledGD achieves the best of both worlds: it

converges linearly at a rate independent of the condition number of the low-rank matrix similar

as alternating minimization, while maintaining the low per-iteration cost of gradient descent.
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Figure 1.1: Performance of ScaledGD and vanilla GD for completing a 1000 × 1000 incoherent
matrix of rank 10 with different condition numbers κ = 2, 10, 50, where each entry is observed
independently with probability 0.2. Here, both methods are initialized via the spectral method.
It can be seen that ScaledGD converges much faster than vanilla GD even for moderately large
condition numbers.

Our analysis is also applicable to general loss functions that are restricted strongly convex and

smooth over low-rank matrices. To the best of our knowledge, ScaledGD is the first algorithm that

provably has such properties over a wide range of low-rank matrix estimation tasks. At the core of

our analysis is the introduction of a new distance function that takes account of the preconditioners

when measuring the distance between the iterates and the ground truth. Numerical examples are

provided to demonstrate the effectiveness of ScaledGD in accelerating the convergence rate of ill-

conditioned low-rank matrix estimation in a wide number of applications. Details are presented

in Chapter 2, based on the paper [TMC21a].

• Robust low-rank matrix estimation. We propose scaled subgradient methods (ScaledSM) to

minimize a family of nonsmooth and nonconvex formulations—in particular, the residual sum

of absolute errors—which is guaranteed to converge at a fast rate that is almost dimension-free

and independent of the condition number, even in the presence of corruptions. We illustrate

the effectiveness of our approach when the observation operator satisfies certain mixed-norm

restricted isometry properties, and derive state-of-the-art performance guarantees for a variety of

problems such as robust low-rank matrix sensing and quadratic sampling. Details are presented
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in Chapter 3, based on the paper [TMC21b].

• Low-rank Tensor estimation. We generalize ScaledGD to low-rank tensor estimation, and

show that it provably converges at a linear rate independent of the condition number of the

ground truth tensor for two canonical problems — tensor completion and tensor regression — as

soon as the sample size is above the order of n3/2 ignoring other parameter dependencies, where

n is the dimension of the tensor. This leads to an extremely scalable approach to low-rank tensor

estimation compared with prior art, which suffers from at least one of the following drawbacks:

extreme sensitivity to ill-conditioning, high per-iteration costs in terms of memory and computa-

tion, or poor sample complexity guarantees. To the best of our knowledge, ScaledGD is the first

algorithm that achieves near-optimal statistical and computational complexities simultaneously

for low-rank tensor completion with the Tucker decomposition. Our algorithm highlights the

power of appropriate preconditioning in accelerating nonconvex statistical estimation, where the

iteration-varying preconditioners promote desirable invariance properties of the trajectory with

respect to the underlying symmetry in low-rank tensor factorization. Details are presented in

Chapter 4, based on the paper [TMPB+21].

• Robust low-rank tensor estimation. We generalize ScaledSM to estimate the tensor fac-

tors by solving a nonsmooth and nonconvex composite optimization problem that minimizes the

least absolute deviation loss. The proposed algorithm—built on subgradient methods—harnesses

preconditioners that are designed to be equivariant w.r.t. the low-rank parameterization, and is

shown to achieve local linear convergence at a constant rate under the Gaussian design. Numeri-

cal experiments are provided to corroborate the superior performance of the proposed algorithm.

Details are presented in Chapter 5.

1.2 Notation

Before continuing, we introduce several notation used throughout the thesis. First of all, we use

boldfaced symbols (e.g. x) to denote vectors, boldface capitalized letters (e.g.X) to denote matrices,

and boldface calligraphic letters (e.g. X ) to denote tensors. For a vector v, we use ‖v‖0 to denote
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its `0 counting norm, and ‖v‖2 to denote the `2 norm. For any matrix A, we use σi(A) to denote

its i-th largest singular value, and σmax(A) (resp. σmin(A)) to denote its largest (resp. smallest)

nonzero singular value. Let Ai,· or A(i, :) (resp. A·,j or A(:, j)) to denote its i-th row (resp. j-th

column). In addition, ‖A‖, ‖A‖F, ‖A‖1,∞, ‖A‖2,∞, and ‖A‖∞ stand for the spectral norm (i.e. the

largest singular value), the Frobenius norm, the `1,∞ norm (i.e. the largest `1 norm of the rows), the

`2,∞ norm (i.e. the largest `2 norm of the rows), and the entrywise `∞ norm (the largest magnitude

of all entries) of a matrix A. Let Pdiag(A) denote the projection that keeps only the diagonal entries

of A, and Poff-diag(A) = A− Pdiag(A), for a square matrix A. We denote

Pr(A) = min
Ã:rank(Ã)≤r

‖A− Ã‖2F (1.3)

as the rank-r approximation of A, which is given by the top-r SVD of A by the Eckart-Young-

Mirsky theorem. We also use vec(A) to denote the vectorization of a matrix A. For matrices A,B

of the same size, we use 〈A,B〉 =
∑

i,j Ai,jBi,j = tr(A>B) to denote their inner product. The set

of invertible matrices in Rr×r is denoted by GL(r).

Let a ∨ b = max{a, b} and a ∧ b = min{a, b}. Throughout, f(n) . g(n) or f(n) = O(g(n))

means |f(n)|/|g(n)| ≤ C for some constant C > 0, f(n) & g(n) means |f(n)|/|g(n)| ≥ C for some

constant C > 0, and f(n) � g(n) means C1 ≤ |f(n)|/|g(n)| ≤ C2 for some constants C1, C2 > 0.

Additionally, f(n) � g(n) indicates |f(n)|/|g(n)| ≤ c for some sufficient small constant c > 0,

and f(n) � g(n) indicates |f(n)|/|g(n)| ≥ C for some sufficient large constant C > 0. We use

C,C1, C2, c, c1, c2 . . . to represent positive constants, whose values may differ from line to line. Last

but not least, we use the terminology “with overwhelming probability” to denote the event happens

with probability at least 1− c1n
−c2 .

1.3 Reproducible research

The simulations are performed in Matlab with a 3.6 GHz Intel Xeon Gold 6244 CPU. The codes

are available at

https://github.com/Titan-Tong/ScaledGD.
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Chapter 2

Low-rank Matrix Estimation

2.1 Introduction

Low-rank matrix estimation plays a critical role in fields such as machine learning, signal processing,

imaging science, and many others. The goal is to recover a rank-r matrix X? ∈ Rn1×n2 from

a set of observations y = A(X?), where the operator A(·) models the measurement process. In

consideration of memory and computation efficiency, we parametrize X = LR> by two low-rank

factors L ∈ Rn1×r and R ∈ Rn2×r that are more memory-efficient, and then optimize over the

factors:

minimize
L∈Rn1×r,R∈Rn2×r

L(L,R) := f(LR>). (2.1)

In this chapter, we introduce scaled gradient descent (ScaledGD) algorithm for low-rank matrix

estimation. Given an initialization (L0,R0), ScaledGD proceeds as follows

Lt+1 = Lt − η∇LL(Lt,Rt)(R
>
t Rt)

−1,

Rt+1 = Rt − η∇RL(Lt,Rt)(L
>
t Lt)

−1,

(2.2)

where η > 0 is the step size and∇LL(Lt,Rt) (resp.∇RL(Lt,Rt)) is the gradient of the loss function

L with respect to the factor Lt (resp. Rt) at the t-th iteration. Comparing to vanilla gradient

descent, the search directions of the low-rank factors Lt,Rt in (2.2) are scaled by (R>t Rt)
−1 and

(L>t Lt)
−1 respectively. Intuitively, the scaling serves as a preconditioner as in quasi-Newton type

algorithms, with the hope of improving the quality of the search direction to allow larger step sizes.

Since the computation of the Hessian is extremely expensive, it is necessary to design preconditioners
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that are both theoretically sound and practically cheap to compute. Such requirements are met by

ScaledGD, where the preconditioners are computed by inverting two r × r matrices, whose size is

much smaller than the dimension of matrix factors. Therefore, each iteration of ScaledGD adds

minimal overhead to the gradient computation and has the order-wise same per-iteration cost as

gradient descent. Moreover, the preconditioners are adaptive and iteration-varying. Another key

property of ScaledGD is that it ensures the iterates are covariant with respect to the parameterization

of low-rank factors up to invertible transforms.

While ScaledGD and its alternating variants have been proposed in [MAS12,MS16,TW16] for a

subset of the problems we studied, none of these prior art provides any theoretical validations to the

empirical success. In this work, we confirm theoretically that ScaledGD achieves linear convergence

at a rate independent of the condition number of the matrix when initialized properly, e.g. using the

standard spectral method, for several canonical problems: low-rank matrix sensing, robust PCA,

and matrix completion. Table 2.1 summarizes the performance guarantees of ScaledGD in terms

of both statistical and computational complexities with comparisons to prior algorithms using the

vanilla gradient method.

• Low-rank matrix sensing. As long as the measurement operator satisfies the standard restricted

isometry property (RIP) with an RIP constant δ2r . 1/(
√
rκ), where κ is the condition number

of X?, ScaledGD reaches ε-accuracy in O(log(1/ε)) iterations when initialized by the spectral

method. This strictly improves the iteration complexity O(κ log(1/ε)) of gradient descent in

[TBS+16] under the same sample complexity requirement.

• Robust PCA. Under the deterministic corruption model [CSPW11], as long as the fraction α of

corruptions per row / column satisfies α . 1/(µr3/2κ), where µ is the incoherence parameter

of X?, ScaledGD in conjunction with hard thresholding reaches ε-accuracy in O(log(1/ε)) itera-

tions when initialized by the spectral method. This strictly improves the iteration complexity of

projected gradient descent [YPCC16].

• Matrix completion. Under the random Bernoulli observation model, as long as the sample com-

plexity satisfies n1n2p & (µκ2 ∨ log n)µnr2κ2 with n = n1 ∨ n2, ScaledGD in conjunction with

9



Matrix sensing Robust PCA Matrix completion

Algorithms sample iteration corruption iteration sample iteration
complexity complexity fraction complexity complexity complexity

GD nr2κ2 κ log 1
ε

1
µr3/2κ3/2∨µrκ2 κ log 1

ε (µ ∨ log n)µnr2κ2 κ log 1
ε

ScaledGD
nr2κ2 log 1

ε
1

µr3/2κ log 1
ε (µκ2 ∨ log n)µnr2κ2 log 1

ε(this Chapter)

Table 2.1: Comparisons of ScaledGD with gradient descent (GD) when tailored to various problems
(with spectral initialization) [TBS+16,YPCC16, ZL16], where they have comparable per-iteration
costs. Here, we say that the output X of an algorithm reaches ε-accuracy, if it satisfies ‖X−X?‖F ≤
εσr(X?). Here, n := n1 ∨ n2 = max{n1, n2}, κ and µ are the condition number and incoherence
parameter of X?.

a properly designed projection operator reaches ε-accuracy in O(log(1/ε)) iterations when ini-

tialized by the spectral method. This improves the iteration complexity of projected gradient

descent [ZL16] at the expense of requiring a larger sample size.

In addition, ScaledGD does not require any explicit regularizations that balance the norms of two

low-rank factors as required in [TBS+16, YPCC16, ZL16], and removed the additional projection

that maintains the incoherence properties in robust PCA [YPCC16], thus unveiling the implicit

regularization property of ScaledGD. To the best of our knowledge, this is the first factored gradient

descent algorithm that achieves a fast convergence rate that is independent of the condition number

of the low-rank matrix at near-optimal sample complexities without increasing the per-iteration

computational cost. Our analysis is also applicable to general loss functions that are restricted

strongly convex and smooth over low-rank matrices.

At the core of our analysis, we introduce a new distance metric (i.e. Lyapunov function) that

accounts for the preconditioners, and carefully show the contraction of the ScaledGD iterates under

the new distance metric.

Remark 1 (ScaledGD for PSD matrices). When the low-rank matrix of interest is positive semi-

definite (PSD), we factorize the matrix X ∈ Rn×n as X = LL>, with L ∈ Rn×r. The update rule

of ScaledGD simplifies to

Lt+1 = Lt − η∇LL(Lt)(L
>
t Lt)

−1. (2.3)
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We focus on the asymmetric case since the analysis is more involved with two factors. Our theory

applies to the PSD case without loss of generality.

2.1.1 Related work

Our work contributes to the growing literature of design and analysis of provable nonconvex op-

timization procedures for high-dimensional signal estimation; see e.g. [JK17,CC18,CLC19] for re-

cent overviews. A growing number of problems have been demonstrated to possess benign ge-

ometry that is amenable for optimization [MBM18] either globally or locally under appropriate

statistical models. On one end, it is shown that there are no spurious local minima in the op-

timization landscape of matrix sensing and completion [GLM16, BNS16, PKCS17, GJZ17], phase

retrieval [SQW18,DDP20], dictionary learning [SQW15], kernel PCA [CL19] and linear neural net-

works [BH89,Kaw16]. Such landscape analysis facilitates the adoption of generic saddle-point escap-

ing algorithms [NP06,GHJY15,JGN+17] to ensure global convergence. However, the resulting iter-

ation complexity is typically high. On the other end, local refinements with carefully-designed ini-

tializations often admit fast convergence, for example in phase retrieval [CLS15,MWCC19], matrix

sensing [JNS13,ZL15,WCCL16], matrix completion [SL16,CW15,MWCC19,CLL20,ZL16,CCF+20],

blind deconvolution [LLSW19,MWCC19], and robust PCA [NNS+14,YPCC16,CFMY21], to name

a few.

Existing approaches for asymmetric low-rank matrix estimation often require additional regu-

larization terms to balance the two factors, either in the form of 1
2‖L

>L−R>R‖2F [TBS+16,PKCS17]

or 1
2‖L‖

2
F + 1

2‖R‖
2
F [ZLTW18,CCF+20,CFMY21], which ease the theoretical analysis but are often

unnecessary for the practical success, as long as the initialization is balanced. Some recent work

studies the unregularized gradient descent for low-rank matrix factorization and sensing including

[CCD+21,DHL18,MLC21]. However, the iteration complexity of all these approaches scales at least

linearly with respect to the condition number κ of the low-rank matrix, e.g. O(κ log(1/ε)), to reach

ε-accuracy, therefore they converge slowly when the underlying matrix becomes ill-conditioned. In

contrast, ScaledGD enjoys a local convergence rate of O(log(1/ε)), therefore incurring a much smaller

computational footprint when κ is large. Last but not least, alternating minimization [JNS13,HW14]
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(which alternatively updates Lt and Rt) or singular value projection [NNS+14,JMD10] (which op-

erates in the matrix space) also converge at the rate O(log(1/ε)), but the per-iteration cost is much

higher than ScaledGD. Another notable algorithm is the Riemannian gradient descent algorithm

in [WCCL16], which also converges at the rate O(log(1/ε)) under the same sample complexity for

low-rank matrix sensing, but requires a higher memory complexity since it operates in the matrix

space rather than the factor space.

From an algorithmic perspective, our approach is closely related to the alternating steepest

descent (ASD) method in [TW16] for low-rank matrix completion, which performs the proposed

updates (2.2) for the low-rank factors in an alternating manner. Furthermore, the scaled gradient

updates were also introduced in [MAS12,MS16] for low-rank matrix completion from the perspective

of Riemannian optimization. However, none of [TW16,MAS12,MS16] offered any statistical nor

computational guarantees for global convergence. Our analysis of ScaledGD can be viewed as pro-

viding justifications to these precursors. Moreover, we have systematically extended the framework

of ScaledGD to work in a large number of low-rank matrix estimation tasks such as robust PCA.

2.1.2 Chapter organization

The rest of this chapter is organized as follows. Section 2.2 describes the proposed ScaledGD

method and details its application to low-rank matrix sensing, robust PCA and matrix completion

with theoretical guarantees in terms of both statistical and computational complexities, highlighting

the role of a new distance metric. The convergence guarantee of ScaledGD under the general loss

function is also presented. In Section 2.3, we outline the proof for our main results. Section 2.4

illustrates the excellent empirical performance of ScaledGD in a variety of low-rank matrix estimation

problems. Finally, we conclude in Section 2.5.

2.2 Scaled Gradient Descent for Low-Rank Matrix Estimation

This section is devoted to introducing ScaledGD and establishing its statistical and computational

guarantees for various low-rank matrix estimation problems. Before we instantiate tailored versions

of ScaledGD on concrete low-rank matrix estimation problems, we first pause to provide more
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insights of the update rule of ScaledGD, by connecting it to the quasi-Newton method. Note that

the update rule (2.2) for ScaledGD can be equivalently written in a vectorization form as

vec(Ft+1) = vec(Ft)− η

(R>t Rt)
−1 ⊗ In1 0

0 (L>t Lt)
−1 ⊗ In2

 vec(∇FL(Ft))

= vec(Ft)− ηH−1
t vec(∇FL(Ft)), (2.4)

where we denote Ft = [L>t ,R
>
t ]> ∈ R(n1+n2)×r, and by ⊗ the Kronecker product. Here, the block

diagonal matrix Ht is set to be

Ht :=

(R>t Rt)⊗ In1 0

0 (L>t Lt)⊗ In2

 .
The form (2.4) makes it apparent that ScaledGD can be interpreted as a quasi-Newton algorithm,

where the inverse of Ht can be cheaply computed through inverting two rank-r matrices.

2.2.1 Assumptions and error metric

Denote by U?Σ?V
>
? the compact singular value decomposition (SVD) of the rank-r matrix X? ∈

Rn1×n2 . Here U? ∈ Rn1×r and V? ∈ Rn2×r are composed of r left and right singular vectors,

respectively, and Σ? ∈ Rr×r is a diagonal matrix consisting of r singular values of X? organized in

a non-increasing order, i.e. σ1(X?) ≥ · · · ≥ σr(X?) > 0. Define

κ := σ1(X?)/σr(X?) (2.5)

as the condition number of X?. Define the ground truth low-rank factors as

L? := U?Σ
1/2
? , and R? := V?Σ

1/2
? , (2.6)
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so that X? = L?R
>
? . Correspondingly, denote the stacked factor matrix as

F? :=

L?
R?

 ∈ R(n1+n2)×r. (2.7)

Next, we are in need of a right metric to measure the performance of the ScaledGD iterates

Ft := [L>t ,R
>
t ]>. Obviously, the factored representation is not unique in that for any invertible

matrix Q ∈ GL(r), one has LR> = (LQ)(RQ−>)>. Therefore, the reconstruction error metric

needs to take into account this identifiability issue. More importantly, we need a diagonal scaling in

the distance error metric to properly account for the effect of preconditioning. To provide intuition,

note that the update rule (2.2) can be viewed as finding the best local quadratic approximation of

L(·) in the following sense:

(Lt+1,Rt+1) = argmin
L,R

L(Lt,Rt) + 〈∇LL(Lt,Rt),L−Lt〉+ 〈∇RL(Lt,Rt),R−Rt〉

+
1

2η

(∥∥∥(L−Lt)(R
>
t Rt)

1/2
∥∥∥2

F
+
∥∥∥(R−Rt)(L

>
t Lt)

1/2
∥∥∥2

F

)
,

where it is different from the common interpretation of gradient descent in the way the quadratic

approximation is taken by a scaled norm. When Lt ≈ L? and Rt ≈ R? are approaching the ground

truth, the additional scaling factors can be approximated by L>t Lt ≈ Σ? and R>t Rt ≈ Σ?, leading

to the following error metric

dist2(F ,F?) := inf
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥2

F
. (2.8)

Correspondingly, we define the optimal alignment matrix Q between F and F? as

Q := argmin
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥2

F
, (2.9)

whenever the minimum is achieved.1 It turns out that for the ScaledGD iterates {Ft}, the optimal

alignment matrices {Qt} always exist (at least when properly initialized) and hence are well-defined.
1If there are multiple minimizers, we can arbitrarily take one to be Q.
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The design and analysis of this new distance metric are of crucial importance in obtaining the im-

proved rate of ScaledGD; see Appendix A.1.1 for a collection of its properties. In comparison, the

previously studied distance metrics (proposed mainly for GD) either do not include the diagonal scal-

ing [MLC21,TBS+16], or only consider the ambiguity class up to orthonormal transforms [TBS+16],

which fail to unveil the benefit of ScaledGD.

2.2.2 Matrix sensing

Assume that we have collected a set of linear measurements about a rank-r matrix X? ∈ Rn1×n2 ,

given as

y = A(X?) ∈ Rm, (2.10)

where A(X) = {〈Ak,X〉}mk=1 : Rn1×n2 7→ Rm is the linear map modeling the measurement process.

The goal of low-rank matrix sensing is to recover X? from y, especially when the number of mea-

surements m � n1n2, by exploiting the low-rank property. This problem has wide applications in

medical imaging, signal processing, and data compression [CP11].

Algorithm. Writing X ∈ Rn1×n2 into a factored form X = LR>, we consider the following

optimization problem:

minimize
F∈R(n1+n2)×r

L(F ) =
1

2

∥∥∥A(LR>)− y
∥∥∥2

2
. (2.11)

Here as before, F denotes the stacked factor matrix [L>,R>]>. We suggest running ScaledGD (2.2)

with the spectral initialization to solve (2.11), which performs the top-r SVD on A∗(y), where A∗(·)

is the adjoint operator of A(·). The full algorithm is stated in Algorithm 1. The low-rank matrix

can be estimated as XT = LTR
>
T after running T iterations of ScaledGD.

Theoretical guarantees. To understand the performance of ScaledGD for low-rank matrix sens-

ing, we adopt a standard assumption on the sensing operator A(·), namely the Restricted Isometry

Property (RIP).
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Algorithm 1 ScaledGD for low-rank matrix sensing with spectral initialization
Spectral initialization: Let U0Σ0V

>
0 be the top-r SVD of A∗(y), and set

L0 = U0Σ
1/2
0 , and R0 = V0Σ

1/2
0 . (2.12)

Scaled gradient updates: for t = 0, 1, 2, . . . , T − 1 do

Lt+1 = Lt − ηA∗(A(LtR
>
t )− y)Rt(R

>
t Rt)

−1,

Rt+1 = Rt − ηA∗(A(LtR
>
t )− y)>Lt(L

>
t Lt)

−1.
(2.13)

Definition 1 (RIP [RFP10]). The linear map A(·) is said to obey the rank-r RIP with a constant

δr ∈ [0, 1), if for all matrices M ∈ Rn1×n2 of rank at most r, one has

(1− δr)‖M‖2F ≤ ‖A(M)‖22 ≤ (1 + δr)‖M‖2F.

It is well-known that many measurement ensembles satisfy the RIP property [RFP10,CP11].

For example, if the entries of Ai’s are composed of i.i.d. Gaussian entries N (0, 1/m), then the RIP

is satisfied for a constant δr as long as m is on the order of (n1 + n2)r/δ2
r . With the RIP condition

in place, the following theorem demonstrates that ScaledGD converges linearly — in terms of the

new distance metric (cf. (2.8)) — at a constant rate as long as the sensing operator A(·) has a

sufficiently small RIP constant.

Theorem 1. Suppose that A(·) obeys the 2r-RIP with δ2r ≤ 0.02/(
√
rκ). If the step size obeys

0 < η ≤ 2/3, then for all t ≥ 0, the iterates of the ScaledGD method in Algorithm 1 satisfy

dist(Ft,F?) ≤ (1− 0.6η)t0.1σr(X?), and
∥∥∥LtR>t −X?

∥∥∥
F
≤ (1− 0.6η)t0.15σr(X?).

Theorem 1 establishes that the distance dist(Ft,F?) contracts linearly at a constant rate,

as long as the sample size satisfies m = O(nr2κ2) with Gaussian random measurements [RFP10],

where we recall that n = n1 ∨ n2. To reach ε-accuracy, i.e. ‖LtR>t −X?‖F ≤ εσr(X?), ScaledGD

takes at most T = O(log(1/ε)) iterations, which is independent of the condition number κ of X?.

In comparison, alternating minimization with spectral initialization (AltMinSense) converges in
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O(log(1/ε)) iterations as long as m = O(nr3κ4) [JNS13], where the per-iteration cost is much

higher.2 On the other end, gradient descent with spectral initialization in [TBS+16] converges in

O(κ log(1/ε)) iterations as long as m = O(nr2κ2). Therefore, ScaledGD converges at a much faster

rate than GD at the same sample complexity while requiring a significantly lower per-iteration cost

than AltMinSense.

Remark 2. [TBS+16] suggested that one can employ a more expensive initialization scheme,

e.g. performing multiple projected gradient descent steps over the low-rank matrix, to reduce

the sample complexity. By seeding ScaledGD with the output of updates of the form Xτ+1 =

Pr (Xτ −A∗(A(Xτ )− y)) after T0 & log(
√
rκ) iterations, where Pr(·) is defined in (1.3), ScaledGD

succeeds with the sample size O(nr) which is information theoretically optimal.

2.2.3 Robust PCA

Assume that we have observed the data matrix

Y = X? + S?,

which is a superposition of a rank-r matrix X?, modeling the clean data, and a sparse matrix S?,

modeling the corruption or outliers. The goal of robust PCA [CLMW11,CSPW11] is to separate

the two matrices X? and S? from their mixture Y . This problem finds numerous applications in

video surveillance, image processing, and so on.

Following [CSPW11,NNS+14,YPCC16], we consider a deterministic sparsity model for S?,

in which S? contains at most α-fraction of nonzero entries per row and column for some α ∈ [0, 1),

i.e. S? ∈ Sα, where we denote

Sα := {S ∈ Rn1×n2 : ‖Si,·‖0 ≤ αn2 for all i, and ‖S·,j‖0 ≤ αn1 for all j}. (2.14)

2The exact per-iteration complexity of AltMinSense depends on how the least-squares subproblems are solved
with m equations and nr unknowns; see [LHLZ20, Table 1] for detailed comparisons.
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Algorithm. Writing X ∈ Rn1×n2 into the factored form X = LR>, we consider the following

optimization problem:

minimize
F∈R(n1+n2)×r,S∈Sα

L(F ,S) =
1

2

∥∥∥LR> + S − Y
∥∥∥2

F
. (2.15)

It is thus natural to alternatively update F = [L>,R>]> and S, where F is updated via the

proposed ScaledGD algorithm, and S is updated by hard thresholding, which trims the small entries

of the residual matrix Y −LR>. More specifically, for some truncation level 0 ≤ ᾱ ≤ 1, we define

the sparsification operator that only keeps ᾱ fraction of largest entries in each row and column:

(Tᾱ[A])i,j =


Ai,j , if |A|i,j ≥ |A|i,(ᾱn2), and |A|i,j ≥ |A|(ᾱn1),j

0, otherwise
, (2.16)

where |A|i,(k) (resp. |A|(k),j) denote the k-th largest element in magnitude in the i-th row (resp. j-th

column).

The ScaledGD algorithm with the spectral initialization for solving robust PCA is formally

stated in Algorithm 2. Note that, comparing with [YPCC16], we do not require a balancing term

‖L>L−R>R‖2F in the loss function (2.15), nor the projection of the low-rank factors onto the `2,∞

ball in each iteration.

Algorithm 2 ScaledGD for robust PCA with spectral initialization
Spectral initialization: Let U0Σ0V

>
0 be the top-r SVD of Y − Tα[Y ], and set

L0 = U0Σ
1/2
0 , and R0 = V0Σ

1/2
0 . (2.17)

Scaled gradient updates: for t = 0, 1, 2, . . . , T − 1 do

St = T2α[Y −LtR
>
t ],

Lt+1 = Lt − η(LtR
>
t + St − Y )Rt(R

>
t Rt)

−1,

Rt+1 = Rt − η(LtR
>
t + St − Y )>Lt(L

>
t Lt)

−1.

(2.18)
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Theoretical guarantee. Before stating our main result for robust PCA, we introduce the inco-

herence condition which is known to be crucial for reliable estimation of the low-rank matrix X? in

robust PCA [Che15].

Definition 2 (Incoherence). A rank-r matrix X? ∈ Rn1×n2 with compact SVD as X? = U?Σ?V
>
?

is said to be µ-incoherent if

‖U?‖2,∞ ≤
√

µ

n1
‖U?‖F =

√
µr

n1
, and ‖V?‖2,∞ ≤

√
µ

n2
‖V?‖F =

√
µr

n2
.

The following theorem establishes that ScaledGD converges linearly at a constant rate as long

as the fraction α of corruptions is sufficiently small.

Theorem 2. Suppose that X? is µ-incoherent and that the corruption fraction α obeys α ≤

c/(µr3/2κ) for some sufficiently small constant c > 0. If the step size obeys 0.1 ≤ η ≤ 2/3,

then for all t ≥ 0, the iterates of ScaledGD in Algorithm 2 satisfy

dist(Ft,F?) ≤ (1− 0.6η)t0.02σr(X?), and
∥∥∥LtR>t −X?

∥∥∥
F
≤ (1− 0.6η)t0.03σr(X?).

Theorem 2 establishes that the distance dist(Ft,F?) contracts linearly at a constant rate, as

long as the fraction of corruptions satisfies α . 1/(µr3/2κ). To reach ε-accuracy, i.e. ‖LtR>t −

X?‖F ≤ εσr(X?), ScaledGD takes at most T = O(log(1/ε)) iterations, which is independent of κ. In

comparison, the AltProj algorithm3 with spectral initialization converges in O(log(1/ε)) iterations

as long as α . 1/(µr) [NNS+14], where the per-iteration cost is much higher both in terms of

computation and memory as it requires the computation of the low-rank SVD of the full matrix.

On the other hand, projected gradient descent with spectral initialization in [YPCC16] converges

in O(κ log(1/ε)) iterations as long as α . 1/(µr3/2κ3/2 ∨ µrκ2). Therefore, ScaledGD converges at

a much faster rate than GD while requesting a significantly lower per-iteration cost than AltProj.

In addition, our theory suggests that ScaledGD maintains the incoherence and balancedness of

the low-rank factors without imposing explicit regularizations, which is not captured in previous
3AltProj employs a multi-stage strategy to remove the dependence on κ in α, which we do not consider here. The

same strategy might also improve the dependence on κ for ScaledGD, which we leave for future work.
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analysis [YPCC16].

2.2.4 Matrix completion

Assume that we have observed a subset Ω of entries of X? given as PΩ(X?), where PΩ : Rn1×n2 7→

Rn1×n2 is a projection such that

(PΩ(X))i,j =


Xi,j , if (i, j) ∈ Ω

0, otherwise
. (2.19)

Here Ω is generated according to the Bernoulli model in the sense that each (i, j) ∈ Ω independent

with probability p. The goal of matrix completion is to recover the matrix X? from its partial obser-

vation PΩ(X?). This problem has many applications in recommendation systems, signal processing,

sensor network localization, and so on [CR09].

Algorithm. Again, writing X ∈ Rn1×n2 into the factored form X = LR>, we consider the

following optimization problem:

minimize
F∈R(n1+n2)×r

L(F ) :=
1

2p

∥∥∥PΩ(LR> −X?)
∥∥∥2

F
. (2.20)

Similarly to robust PCA, the underlying low-rank matrixX? needs to be incoherent (cf. Definition 2)

to avoid ill-posedness. One typical strategy to ensure the incoherence condition is to perform

projection after the gradient update, by projecting the iterates to maintain small `2,∞ norms of the

factor matrices. However, the standard projection operator [CW15] is not covariant with respect to

invertible transforms, and consequently, needs to be modified when using scaled gradient updates.

To that end, we introduce the following new projection operator: for every F̃ ∈ R(n1+n2)×r =

[L̃>, R̃>]>,

PB(F̃ ) = argmin
F∈R(n1+n2)×r

∥∥∥(L− L̃)(R̃>R̃)1/2
∥∥∥2

F
+
∥∥∥(R− R̃)(L̃>L̃)1/2

∥∥∥2

F

s.t.
√
n1

∥∥∥L(R̃>R̃)1/2
∥∥∥

2,∞
∨
√
n2

∥∥∥R(L̃>L̃)1/2
∥∥∥

2,∞
≤ B

, (2.21)
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which finds a factored matrix that is closest to F̃ and stays incoherent in a weighted sense. Luckily,

the solution to the above scaled projection admits a simple closed-form solution, as stated below.

Proposition 1. The solution to (2.21) is given by

PB(F̃ ) :=

L
R

 , where Li,· :=

(
1 ∧ B
√
n1‖L̃i,·R̃>‖2

)
L̃i,·, 1 ≤ i ≤ n1,

Rj,· :=

(
1 ∧ B
√
n2‖R̃j,·L̃>‖2

)
R̃j,·, 1 ≤ j ≤ n2.

(2.22)

Proof. See Appendix A.5.1.

With the new projection operator in place, we propose the scaled projected gradient descent

(ScaledPGD) method with the spectral initialization for solving matrix completion, formally stated

in Algorithm 3.

Algorithm 3 ScaledPGD for matrix completion with spectral initialization
Spectral initialization: Let U0Σ0V

>
0 be the top-r SVD of 1

pPΩ(X?), and set

[
L0

R0

]
= PB

([
U0Σ

1/2
0

V0Σ
1/2
0

])
. (2.23)

Scaled projected gradient updates: for t = 0, 1, 2, . . . , T − 1 do[
Lt+1

Rt+1

]
= PB

([
Lt − η

pPΩ(LtR
>
t −X?)Rt(R

>
t Rt)

−1

Rt − η
pPΩ(LtR

>
t −X?)

>Lt(L
>
t Lt)

−1

])
. (2.24)

Theoretical guarantee. Consider a random observation model, where each index (i, j) belongs

to the index set Ω independently with probability 0 < p ≤ 1. The following theorem establishes that

ScaledPGD converges linearly at a constant rate as long as the number of observations is sufficiently

large.

Theorem 3. Suppose that X? is µ-incoherent, and that p satisfies p ≥ C(µκ2∨log(n1∨n2))µr2κ2/(n1∧

n2) for some sufficiently large constant C. Set the projection radius as B = CB
√
µrσ1(X?) for
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some constant CB ≥ 1.02. If the step size obeys 0 < η ≤ 2/3, then with probability at least

1− c1(n1 ∨ n2)−c2, for all t ≥ 0, the iterates of ScaledPGD in (2.24) satisfy

dist(Ft,F?) ≤ (1− 0.6η)t0.02σr(X?), and
∥∥∥LtR>t −X?

∥∥∥
F
≤ (1− 0.6η)t0.03σr(X?).

Here c1, c2 > 0 are two universal constants.

Theorem 3 establishes that the distance dist(Ft,F?) contracts linearly at a constant rate, as

long as the probability of observation satisfies p & (µκ2 ∨ log(n1 ∨n2))µr2κ2/(n1 ∧n2). To reach ε-

accuracy, i.e. ‖LtR>t −X?‖F ≤ εσr(X?), ScaledPGD takes at most T = O(log(1/ε)) iterations, which

is independent of κ. In comparison, projected gradient descent [ZL16] with spectral initialization

converges in O(κ log(1/ε)) iterations as long as p & (µ ∨ log(n1 ∨ n2))µr2κ2/(n1 ∧ n2). Therefore,

ScaledPGD achieves much faster convergence than its unscaled counterpart, at an expense of higher

sample complexity. We believe this higher sample complexity is an artifact of our proof techniques,

as numerically we do not observe a degradation in terms of sample complexity.

2.2.5 Optimizing general loss functions

Last but not least, we generalize our analysis of ScaledGD to minimize a general loss function in

the form of (2.1), where the update rule of ScaledGD is given by

Lt+1 = Lt − η∇f(LtR
>
t )Rt(R

>
t Rt)

−1,

Rt+1 = Rt − η∇f(LtR
>
t )>Lt(L

>
t Lt)

−1.

(2.25)

Two important properties of the loss function f : Rn1×n2 7→ R play a key role in the analysis.

Definition 3 (Restricted smoothness). A differentiable function f : Rn1×n2 7→ R is said to be

rank-r restricted L-smooth for some L > 0 if

f(X2) ≤ f(X1) + 〈∇f(X1),X2 −X1〉+
L

2
‖X2 −X1‖2F,

for any X1,X2 ∈ Rn1×n2 with rank at most r.
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Definition 4 (Restricted strong convexity). A differentiable function f : Rn1×n2 7→ R is said to be

rank-r restricted µ-strongly convex for some µ ≥ 0 if

f(X2) ≥ f(X1) + 〈∇f(X1),X2 −X1〉+
µ

2
‖X2 −X1‖2F,

for any X1,X2 ∈ Rn1×n2 with rank at most r. When µ = 0, we simply say f(·) is rank-r restricted

convex.

Further, when µ > 0, define the condition number of the loss function f(·) over rank-r matrices

as

κf := L/µ. (2.26)

Encouragingly, many problems can be viewed as a special case of optimizing this general loss (2.25),

including but not limited to:

• low-rank matrix factorization, where the loss function f(X) = 1
2‖X −X?‖2F in (2.27) satisfies

κf = 1;

• low-rank matrix sensing, where the loss function f(X) = 1
2‖A(X − X?)‖22 in (2.11) satisfies

κf ≈ 1 when A(·) obeys the rank-r RIP with a sufficiently small RIP constant;

• quadratic sampling, where the loss function f(X) = 1
2

∑m
i=1 |〈aia>i ,X −X?〉|2 satisfies restricted

strong convexity and smoothness when ai’s are i.i.d. Gaussian vectors for sufficiently large m

[SWW17,LMCC21];

• exponential-family PCA, where the loss function f(X) = −
∑

i,j log p(Yi,j |Xi,j), where p(Yi,j |Xi,j)

is the probability density function of Yi,j conditional on Xi,j , following an exponential-family

distribution such as Bernoulli and Poisson distributions. The resulting loss function satisfies

restricted strong convexity and smoothness with a condition number κf > 1 depending on the

property of the specific distribution [GRG14,Laf15].

Indeed, the treatment of a general loss function brings the condition number of f(·) under the
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spotlight, since in our earlier case studies κf ≈ 1. Our purpose is thus to understand the interplay

of two types of conditioning numbers in the convergence of first-order methods. For simplicity,

we assume that f(·) is minimized at the ground truth rank-r matrix X?.4 The following theorem

establishes that as long as properly initialized, then ScaledGD converges linearly at a constant rate.

Theorem 4. Suppose that f(·) is rank-2r restricted L-smooth and µ-strongly convex, of which X?

is a minimizer, and that the initialization F0 satisfies dist(F0,F?) ≤ 0.1σr(X?)/
√
κf . If the step

size obeys 0 < η ≤ 0.4/L, then for all t ≥ 0, the iterates of ScaledGD in (2.25) satisfy

dist(Ft,F?) ≤ (1− 0.7ηµ)t0.1σr(X?)/
√
κf , and

∥∥∥LtR>t −X?

∥∥∥
F
≤ (1− 0.7ηµ)t0.15σr(X?)/

√
κf .

Theorem 4 establishes that the distance dist(Ft,F?) contracts linearly at a constant rate, as

long as the initialization F0 is sufficiently close to F?. To reach ε-accuracy, i.e. ‖LtR>t −X?‖F ≤

εσr(X?), ScaledGD takes at most T = O(κf log(1/ε)) iterations, which depends only on the condi-

tion number κf of f(·), but is independent of the condition number κ of the matrix X?. In contrast,

prior theory of vanilla gradient descent [PKCS18,BKS16] requires O(κfκ log(1/ε)) iterations, which

is worse than our rate by a factor of κ.

2.3 Proof Sketch

In this section, we sketch the proof of the main theorems, highlighting the role of the scaled distance

metric (cf. (2.8)) in these analyses.

2.3.1 A warm-up analysis: matrix factorization

Let us consider the problem of factorizing a matrix X? into two low-rank factors:

minimize
F∈R(n1+n2)×r

L(F ) =
1

2

∥∥∥LR> −X?

∥∥∥2

F
. (2.27)

4In practice, due to the presence of statistical noise, the minimizer of f(·) might be only approximately low-rank,
to which our analysis can be extended in a straightforward fashion.
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For this toy problem, the update rule of ScaledGD is given as

Lt+1 = Lt − η(LtR
>
t −X?)Rt(R

>
t Rt)

−1,

Rt+1 = Rt − η(LtR
>
t −X?)

>Lt(L
>
t Lt)

−1.

(2.28)

To shed light on why ScaledGD is robust to ill-conditioning, it is worthwhile to think of

ScaledGD as a quasi-Newton algorithm: the following proposition (proven in Appendix A.2.1) reveals

that ScaledGD is equivalent to approximating the Hessian of the loss function in (2.27) by only

keeping its diagonal blocks.

Proposition 2. For the matrix factorization problem (2.27), ScaledGD is equivalent to the following

update rule

vec(Ft+1) = vec(Ft)− η

∇2
L,LL(Ft) 0

0 ∇2
R,RL(Ft)


−1

vec(∇FL(Ft)).

Here, ∇2
L,LL(Ft) (resp. ∇2

R,RL(Ft)) denotes the second order derivative w.r.t. L (resp. R) at Ft.

The following theorem, whose proof can be found in Appendix A.2.2, formally establishes that

as long as ScaledGD is initialized close to the ground truth, dist(Ft,F?) will contract at a constant

linear rate for the matrix factorization problem.

Theorem 5. Suppose that the initialization F0 satisfies dist(F0,F?) ≤ 0.1σr(X?). If the step size

obeys 0 < η ≤ 2/3, then for all t ≥ 0, the iterates of the ScaledGD method in (2.28) satisfy

dist(Ft,F?) ≤ (1− 0.7η)t0.1σr(X?), and
∥∥∥LtR>t −X?

∥∥∥
F
≤ (1− 0.7η)t0.15σr(X?).

Comparing to the rate of contraction (1 − 1/κ) of gradient descent for matrix factorization

[MLC21, CLC19], Theorem 5 demonstrates that the preconditioners indeed allow better search

directions in the local neighborhood of the ground truth, and hence a faster convergence rate.
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2.3.2 Proof outline for matrix sensing

It can be seen that the update rule (2.13) of ScaledGD in Algorithm 1 closely mimics (2.28) when

A(·) satisfies the RIP. Therefore, leveraging the RIP of A(·) and Theorem 5, we can establish the

following local convergence guarantee of Algorithm 1, which has a weaker requirement on δ2r than

the main theorem (cf. Theorem 1).

Lemma 1. Suppose that A(·) obeys the 2r-RIP with δ2r ≤ 0.02. If the t-th iterate satisfies

dist(Ft,F?) ≤ 0.1σr(X?), then ‖LtR>t − X?‖F ≤ 1.5 dist(Ft,F?). In addition, if the step size

obeys 0 < η ≤ 2/3, then the (t+ 1)-th iterate Ft+1 of the ScaledGD method in (2.13) of Algorithm 1

satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?).

It then boils to down to finding a good initialization, for which we have the following lemma

on the quality of the spectral initialization.

Lemma 2. Suppose that A(·) obeys the 2r-RIP with a constant δ2r. Then the spectral initialization

in (2.12) for low-rank matrix sensing satisfies

dist(F0,F?) ≤ 5δ2r

√
rκσr(X?).

Therefore, as long as δ2r is small enough, say δ2r ≤ 0.02/(
√
rκ) as specified in Theorem 1, the

initial distance satisfies dist(F0,F?) ≤ 0.1σr(X?), allowing us to invoke Lemma 1 recursively. The

proof of Theorem 1 is then complete. The proofs of Lemmas 1-2 can be found in Appendix A.3.

2.3.3 Proof outline for robust PCA

As before, we begin with the following local convergence guarantee of Algorithm 2, which has a

weaker requirement on α than the main theorem (cf. Theorem 2). The difference with low-rank

matrix sensing is that local convergence for robust PCA requires a further incoherence condition on

the iterates (cf. (2.29)), where we recall from (2.9) that Qt is the optimal alignment matrix between
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Ft and F?.

Lemma 3. Suppose that X? is µ-incoherent and α ≤ 10−4/(µr). If the t-th iterate satisfies

dist(Ft,F?) ≤ 0.02σr(X?) and the incoherence condition

√
n1

∥∥∥(LtQt −L?)Σ
1/2
?

∥∥∥
2,∞
∨
√
n2

∥∥∥(RtQ
−>
t −R?)Σ

1/2
?

∥∥∥
2,∞
≤ √µrσr(X?), (2.29)

then ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?). In addition, if the step size obeys 0.1 ≤ η ≤ 2/3, then the

(t+ 1)-th iterate Ft+1 of the ScaledGD method in (2.18) of Algorithm 2 satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?),

and the incoherence condition

√
n1

∥∥∥(Lt+1Qt+1 −L?)Σ
1/2
?

∥∥∥
2,∞
∨
√
n2

∥∥∥(Rt+1Q
−>
t+1 −R?)Σ

1/2
?

∥∥∥
2,∞
≤ √µrσr(X?).

As long as the initialization is close to the ground truth and satisfies the incoherence condition,

Lemma 3 ensures that the iterates of ScaledGD remain incoherent and converge linearly. This allows

us to remove the unnecessary projection step in [YPCC16], whose main objective is to ensure the

incoherence of the iterates.

We are left with checking the initial conditions. The following lemma ensures that the spectral

initialization in (2.17) is close to the ground truth as long as α is sufficiently small.

Lemma 4. Suppose that X? is µ-incoherent. Then the spectral initialization (2.17) for robust PCA

satisfies

dist(F0,F?) ≤ 20αµr3/2κσr(X?).

As a result, setting α ≤ 10−3/(µr3/2κ), the spectral initialization satisfies dist(F0,F?) ≤

0.02σr(X?). In addition, we need to make sure that the spectral initialization satisfies the incoher-

ence condition, which is provided in the following lemma.
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Lemma 5. Suppose that X? is µ-incoherent and α ≤ 0.1/(µrκ), and that dist(F0,F?) ≤ 0.02σr(X?).

Then the spectral initialization (2.17) satisfies the incoherence condition

√
n1

∥∥∥(L0Q0 −L?)Σ
1/2
?

∥∥∥
2,∞
∨
√
n2

∥∥∥(R0Q
−>
0 −R?)Σ

1/2
?

∥∥∥
2,∞
≤ √µrσr(X?).

Combining Lemmas 3-5 finishes the proof of Theorem 2. The proofs of the the three supporting

lemmas can be found in Section A.4.

2.3.4 Proof outline for matrix completion

A key property of the new projection operator. We start with the following lemma that

entails a key property of the scaled projection (2.22), which ensures the scaled projection satisfies

both non-expansiveness and incoherence under the scaled metric.

Lemma 6. Suppose that X? is µ-incoherent, and dist(F̃ ,F?) ≤ εσr(X?) for some ε < 1. Set

B ≥ (1 + ε)
√
µrσ1(X?), then PB(F̃ ) satisfies the non-expansiveness

dist(PB(F̃ ),F?) ≤ dist(F̃ ,F?),

and the incoherence condition

√
n1‖LR>‖2,∞ ∨

√
n2‖RL>‖2,∞ ≤ B.

It is worth noting that the incoherence condition adopts a slightly different form than that

of robust PCA, which is more convenient for matrix completion. The next lemma guarantees the

fast local convergence of Algorithm 3 as long as the sample complexity is large enough and the

parameter B is set properly.

Lemma 7. Suppose that X? is µ-incoherent, and p ≥ C(µrκ4 ∨ log(n1 ∨ n2))µr/(n1 ∧ n2) for

some sufficiently large constant C. Set the projection radius as B = CB
√
µrσ1(X?) for some

constant CB ≥ 1.02. Under an event E which happens with overwhelming probability (i.e. at least

1 − c1(n1 ∨ n2)−c2), if the t-th iterate satisfies dist(Ft,F?) ≤ 0.02σr(X?), and the incoherence
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condition

√
n1‖LtR>t ‖2,∞ ∨

√
n1‖RtL

>
t ‖2,∞ ≤ B,

then ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?). In addition, if the step size obeys 0 < η ≤ 2/3, then the

(t+ 1)-th iterate Ft+1 of the ScaledPGD method in (2.24) of Algorithm 3 satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?),

and the incoherence condition

√
n1‖Lt+1R

>
t+1‖2,∞ ∨

√
n2‖Rt+1L

>
t+1‖2,∞ ≤ B.

As long as we can find an initialization that is close to the ground truth and satisfies the

incoherence condition, Lemma 7 ensures that the iterates of ScaledPGD remain incoherent and

converge linearly. The follow lemma ensures that such an initialization can be ensured via the

spectral method.

Lemma 8. Suppose that X? is µ-incoherent, then with overwhelming probability, the spectral ini-

tialization before projection F̃0 :=

U0Σ
1/2
0

V0Σ
1/2
0

 in (2.23) satisfies

dist(F̃0,F?) ≤ C0

(
µr log(n1 ∨ n2)

p
√
n1n2

+

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)

)
5
√
rκσr(X?).

Therefore, as long as p ≥ Cµr2κ2 log(n1∨n2)/(n1∧n2) for some sufficiently large constant C,

the initial distance satisfies dist(F̃0,F?) ≤ 0.02σr(X?). One can then invoke Lemma 6 to see that

F0 = PB(F̃0) meets the requirements of Lemma 7 due to the non-expansiveness and incoherence

properties of the projection operator. The proofs of the the the supporting lemmas can be found in

Section A.5.
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2.4 Numerical Experiments

In this section, we provide numerical experiments to corroborate our theoretical findings.

2.4.1 Comparison with vanilla GD

To begin, we compare the iteration complexity of ScaledGD with vanilla gradient descent (GD).

The update rule of vanilla GD for solving (2.1) is given as

Lt+1 = Lt − ηGD∇LL(Lt,Rt),

Rt+1 = Rt − ηGD∇RL(Lt,Rt),

(2.30)

where ηGD = η/σ1(X?) stands for the step size for gradient descent. This choice is often recom-

mended by the theory of vanilla GD [TBS+16,YPCC16,MWCC19] and the scaling by σ1(X?) is

needed for its convergence. For ease of comparison, we fix η = 0.5 for both ScaledGD and vanilla

GD (see Figure 2.3 for justifications). Both algorithms start from the same spectral initialization.

To avoid notational clutter, we work on square asymmetric matrices with n1 = n2 = n. We consider

four low-rank matrix estimation tasks:

• Low-rank matrix sensing. The problem formulation is detailed in Section 2.2.2. Here, we collect

m = 5nr measurements in the form of yk = 〈Ak,X?〉+wk, in which the measurement matricesAk

are generated with i.i.d. Gaussian entries with zero mean and variance 1/m, and wk ∼ N (0, σ2
w)

are i.i.d. Gaussian noises.

• Robust PCA. The problem formulation is stated in Section 2.2.3. We generate the corruption with

a sparse matrix S? ∈ Sα with α = 0.1. More specifically, we generate a matrix with standard

Gaussian entries and pass it through Tα[·] to obtain S?. The observation is Y = X? + S? + W ,

where Wi,j ∼ N (0, σ2
w) are i.i.d. Gaussian noises.

• Matrix completion. The problem formulation is stated in Section 2.2.4. We assume random

Bernoulli observations, where each entry ofX? is observed with probability p = 0.2 independently.

The observation is Y = PΩ(X?+W ), whereWi,j ∼ N (0, σ2
w) are i.i.d. Gaussian noises. Moreover,
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(a) Matrix sensing (b) Robust PCA
n = 200, r = 10,m = 5nr n = 1000, r = 10, α = 0.1
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(c) Matrix completion (d) Hankel matrix completion
n = 1000, r = 10, p = 0.2 n = 1000, r = 10, p = 0.2

Figure 2.1: The relative errors of ScaledGD and vanilla GD with respect to the iteration count
under different condition numbers κ = 1, 5, 10, 20 for (a) matrix sensing, (b) robust PCA, (c)
matrix completion, and (d) Hankel matrix completion.

we perform the scaled gradient updates without projections.

• Hankel matrix completion. Briefly speaking, a Hankel matrix shares the same value along each

skew-diagonal, and we aim at recovering a low-rank Hankel matrix from observing a few skew-

diagonals [CC14,CWW18]. We assume random Bernoulli observations, where each skew-diagonal
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(a) Matrix Sensing (b) Robust PCA
n = 200, r = 10,m = 5nr n = 1000, r = 10, α = 0.1
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(c) Matrix completion (d) Hankel matrix completion
n = 1000, r = 10, p = 0.2 n = 1000, r = 10, p = 0.2

Figure 2.2: The relative errors of ScaledGD and vanilla GD with respect to the iteration count
under the condition number κ = 10 and signal-to-noise ratios SNR = 40, 60, 80dB for (a) matrix
sensing, (b) robust PCA, (c) matrix completion, and (d) Hankel matrix completion.

of X? is observed with probability p = 0.2 independently. The loss function is

L(L,R) =
1

2p

∥∥∥HΩ(LR> − Y )
∥∥∥2

F
+

1

2

∥∥∥(I −H)(LR>)
∥∥∥2

F
, (2.31)

where I(·) denotes the identity operator, and the Hankel projection is defined as H(X) :=∑2n−1
k=1 〈Hk,X〉Hk, which maps X to its closest Hankel matrix. Here, the Hankel basis ma-
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trix Hk is the n × n matrix with the entries in the k-th skew diagonal as 1√
ωk

, and all other

entries as 0, where ωk is the length of the k-th skew diagonal. Note that X is a Hankel matrix

if and only if (I − H)(X) = 0. The Hankel projection on the observation index set Ω is defined

as HΩ(X) :=
∑

k∈Ω〈Hk,X〉Hk. The observation is Y = HΩ(X? + W ), where W is a Hankel

matrix whose entries along each skew-diagonal are i.i.d. Gaussian noises N (0, σ2
w).

For the first three problems, we generate the ground truth matrix X? ∈ Rn×n in the following

way. We first generate an n× r matrix with i.i.d. random signs, and take its r left singular vectors

as U?, and similarly for V?. The singular values are set to be linearly distributed from 1 to 1/κ.

The ground truth is then defined as X? = U?Σ?V
>
? which has the specified condition number κ

and rank r. For Hankel matrix completion, we generate X? as an n×n Hankel matrix with entries

given as

(X?)i,j =

r∑
`=1

σ`
n
e2πı(i+j−2)f` , i, j = 1, . . . , n,

where f`, ` = 1, . . . , r are randomly chosen from 1/n, 2/n, . . . , 1, and σ` are linearly distributed from

1 to 1/κ. The Vandermonde decomposition lemma tells that X? has rank r and singular values σ`,

` = 1, . . . , r.

We first illustrate the convergence performance under noise-free observations, i.e. σw = 0. We

plot the relative reconstruction error ‖Xt −X?‖F/‖X?‖F with respect to the iteration count t in

Figure 2.1 for the four problems under different condition numbers κ = 1, 5, 10, 20. For all these

models, we can see that ScaledGD has a convergence rate independent of κ, with all curves almost

overlay on each other. Under good conditioning κ = 1, ScaledGD converges at the same rate as

vanilla GD; under ill conditioning, i.e. when κ is large, ScaledGD converges much faster than vanilla

GD and leads to significant computational savings.

We next move to demonstrate that ScaledGD is robust to small additive noises. Denote

the signal-to-noise ratio as SNR := 10 log10
‖X?‖2F
n2σ2

w
in dB. We plot the reconstruction error ‖Xt −

X?‖F/‖X?‖F with respect to the iteration count t in Figure 2.2 under the condition number κ = 10

and various SNR = 40, 60, 80dB. We can see that ScaledGD and vanilla GD achieve the same
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statistical error eventually, but ScaledGD converges much faster. In addition, the convergence

speeds are not influenced by the noise levels.

Careful readers might wonder how sensitivity our comparisons are with respect to the choice

of step sizes. To address this, we illustrate the convergence speeds of both ScaledGD and vanilla

GD under different step sizes η for matrix completion (under the same setting as Figure 2.1 (c)),

where similar plots can be obtained for other problems as well. We run both algorithms for at most

80 iterations, and terminate if the relative error exceeds 102 (which happens if the step size is too

large and the algorithm diverges). Figure 2.3 plots the relative error with respect to the step size η

for both algorithms, where we can see that ScaledGD outperforms vanilla GD over a large range of

step sizes, even under optimized values for performance. Hence, our choice of η = 0.5 in previous

experiments renders a typical comparison between ScaledGD and vanilla GD.
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Figure 2.3: The relative errors of ScaledGD and vanilla GD after 80 iterations with respect to
different step sizes η from 0.1 to 1.2, for matrix completion with n = 1000, r = 10, p = 0.2.

2.4.2 Run time comparisons

We now compare the run time of ScaledGD with vanilla GD and alternating minimization (AltMin)

[JNS13]. Specifically, for matrix sensing, alternating minimization (AltMinSense) updates the fac-
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(a) iteration count with r = 10 (b) run time with r = 10
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(c) iteration count with r = 20 (d) run time with r = 20

Figure 2.4: The relative errors of ScaledGD, vanilla GD and AltMin with respect to the iteration
count and run time (in seconds) under different condition numbers κ = 1, 5, 20 for matrix sensing
with n = 200, and m = 5nr. (a, b): r = 10; (c, d): r = 20.

tors alternatively as

Lt+1 = argmin
L

∥∥∥A(LR>t )− y
∥∥∥2

2
,

Rt+1 = argmin
R

∥∥∥A(Lt+1R
>)− y

∥∥∥2

2
,
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(a) iteration count with r = 10 (b) run time with r = 10
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(c) iteration count with r = 50 (d) run time with r = 50

Figure 2.5: The relative errors of ScaledGD, vanilla GD and AltMin with respect to the iteration
count and run time (in seconds) under different condition numbers κ = 1, 5, 20 for matrix completion
with n = 1000, and p = 0.2. (a, b): r = 10; (c, d): r = 50.

which corresponds to solving two least-squares problems. For matrix completion, the update rule

of alternating minimization proceeds as

Lt+1 = argmin
L

∥∥∥PΩ(LR>t − Y )
∥∥∥2

2
,

Rt+1 = argmin
R

∥∥∥PΩ(Lt+1R
> − Y )

∥∥∥2

2
,
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which can be implemented more efficiently since each row of L (resp. R) can be updated indepen-

dently via solving a much smaller least-squares problem due to the decomposable structure of the

objective function. It is worth noting that, to the best of our knowledge, this most natural variant

of alternating minimization for matrix completion still eludes from a provable performance guar-

antee, nonetheless, we choose it to compare against due to its popularity and excellent empirical

performance.

Figure 2.4 plots the relative errors of ScaledGD, vanilla GD and alternating minimization

(AltMin) with respect to the iteration count and run time (in seconds) under different condition

numbers κ = 1, 5, 20; and similarly, Figure 2.5 plots the corresponding results for matrix completion.

It can be seen that, both ScaledGD and AltMin admit a convergence rate that is independent of

the condition number, where the per-iteration complexity of AltMin is much higher than that of

ScaledGD. As expected, the run time of ScaledGD only adds a minimal overhead to vanilla GD

while being much more robust to ill-conditioning. Noteworthily, AltMin takes much more time and

becomes significantly slower than ScaledGD when the rank r is larger. Nonetheless, we emphasize

that since the run time is impacted by many factors in terms of problem parameters as well as

implementation details, our purpose is to demonstrate the competitive performance of ScaledGD

over alternatives, rather than claiming it as the state-of-the-art.

2.5 Conclusions

This chapter proposes scaled gradient descent (ScaledGD) for factored low-rank matrix estimation,

which maintains the low per-iteration computational complexity of vanilla gradient descent, but

offers significant speed-up in terms of the convergence rate with respect to the condition number

κ of the low-rank matrix. In particular, we rigorously establish that for low-rank matrix sensing,

robust PCA, and matrix completion, to reach ε-accuracy, ScaledGD only takes O(log(1/ε)) iterations

without the dependency on the condition number when initialized via the spectral method, under

standard assumptions. The key to our analysis is the introduction of a new distance metric that

takes into account the preconditioning and unbalancedness of the low-rank factors, and we have

developed new tools to analyze the trajectory of ScaledGD under this new metric. This work opens
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up many venues for future research, as we discuss below.

• Improved analysis. In this chapter, we have focused on establishing the fast local convergence

rate. It is interesting to study if the theory developed herein can be further strengthened in

terms of sample complexity and the size of basin of attraction. For matrix completion, it will be

interesting to see if a similar guarantee continues to hold in the absence of the projection, which

will generalize recent works [MWCC19, CLL20] that successfully removed these projections for

vanilla gradient descent.

• Other low-rank recovery problems. Besides the problems studied herein, there are many other

applications involving the recovery of an ill-conditioned low-rank matrix, such as robust PCA

with missing data, quadratic sampling, and so on. It is of interest to establish fast convergence

rates of ScaledGD that are independent of the condition number for these problems as well. In

addition, it is worthwhile to explore if a similar preconditioning trick can be useful to problems

beyond low-rank matrix estimation.

• Acceleration schemes? As it is evident from our analysis of the general loss case, ScaledGD may

still converge slowly when the loss function is ill-conditioned over low-rank matrices, i.e. κf is

large. In this case, it might be of interest to combine techniques such as momentum [KC12] from

the optimization literature to further accelerate the convergence.
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Chapter 3

Robust Low-rank Matrix Estimation

3.1 Introduction

Many problems in data science can be treated as estimating a low-rank matrix X? ∈ Rn1×n2 from

highly incomplete, sometimes even corrupted, observations y = {yi}mi=1 given by

yi ≈ Ai(X?), 1 ≤ i ≤ m. (3.1)

Here, A(·) = {Ai(·)}mi=1 : Rn1×n2 7→ Rm is the observation operator that models the measurement

process. Instead of operating in the full matrix space, i.e. Rn1×n2 , a memory-efficient approach is

to resort to low-rank matrix factorization, by writing X? = L?R
>
? , if the rank r of X? is known

a priori, where L? ∈ Rn1×r and R? ∈ Rn2×r are of a size that is proportional to the degrees of

freedom of the low-rank matrix. Furthermore, the low-rank factors can be found by optimizing a

smooth loss function, such as the residual sum of squares

minimize
L∈Rn1×r,R∈Rn2×r

m∑
i=1

(
Ai(LR>)− yi

)2
, (3.2)

using first-order methods (e.g. gradient descent). While tremendous progress has been made in

recent years [CLC19], applying vanilla gradient descent to the above smooth formulation suffers from

ill-conditioning originated from both the measurement operator and the underlying low-rank matrix

X?, which preclude a desirable computational efficiency from classical optimization principles.
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3.1.1 Main contributions

In this chapter, we propose to minimize the following nonsmooth and nonconvex loss function known

as the least absolute deviations, which measures the residual sum of absolute errors

minimize
L∈Rn1×r,R∈Rn2×r

f(LR>) :=

m∑
i=1

∣∣∣Ai(LR>)− yi
∣∣∣ , (3.3)

via a scaled subgradient method:

Lt+1 := Lt − ηtStRt(R
>
t Rt)

−1,

Rt+1 := Rt − ηtS>t Lt(L>t Lt)−1.

(3.4)

Here, St ∈ ∂f(LtR
>
t ) is a subgradient of f(X) :=

∑m
i=1 |Ai(X)− yi| at LtR

>
t , and ηt > 0 is a

sequence of carefully-chosen stepsizes. Compared with vanilla subgradient methods, our new method

(3.4) scales or preconditions the search directions StRt and S>t Lt by (R>t Rt)
−1 and (L>t Lt)

−1,

respectively.1 As explained in Chapter 2 where a similar preconditioning trick was employed for

smooth formulations, the scaled subgradient enables better search directions and therefore larger

stepsizes. Our main results can be summarized as follows:

• Under general geometric assumptions on f(·) such as restricted rank-r Lipschitz continuity and

sharpness conditions, we demonstrate that the convergence rate of scaled subgradient methods

using both Polyak’s and geometrically decaying stepsizes is independent of the condition number

of X?.

• Instantiating our theory under the mixed-norm restricted isometry property (RIP) of the mea-

surement operator, we demonstrate state-of-the-art computational guarantees for low-rank matrix

sensing and quadratic sampling even when the observations are noisy and corrupted by outliers.

This leads to improvements over the computational complexity of scaled gradient methods in

Chapter 2 for heavy-tailed measurement ensembles, as well as of vanilla subgradient methods

in [CCD+21]. Table 3.1 provides a detailed comparison of the local iteration complexities of the
1Under appropriate conditions, the inverse matrices always exist; in practice, one can use the pseudo-inverse

matrices to avoid numerical instabilities.
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matrix sensing quadratic sampling
Algorithms without corruptions with corruptions without corruptions with corruptions

GD
κ log 1

ε N/A r2κ2 log 1
ε N/A[TBS+16,LMCC21]

ScaledGD
log 1

ε N/A poly(n) log 1
ε N/A(Chapter 2)

SM
κ log 1

ε
κ

(1−2ps)2
log 1

ε rκ log 1
ε

rκ
(1−2ps)2

log 1
ε[CCD+21,LZMCSV20]

ScaledSM
log 1

ε
1

(1−2ps)2
log 1

ε r log 1
ε

r
(1−2ps)2

log 1
ε(this Chapter)

Table 3.1: Local iteration complexities of the proposed scaled subgradient method (ScaledSM) in
comparison with prior algorithms for matrix sensing and quadratic sampling. ScaledSM outperforms
the vanilla subgradient method (SM) by a factor of κ in both problems, while outperforms scaled
gradient descent (ScaledGD), and GD with additional robustness guarantees. Here, n = max{n1, n2},
r is the rank, κ is the condition number of X?, and 0 ≤ ps < 1/2 is the fraction of outliers. We say
that the output X of an algorithm reaches ε-accuracy, if it satisfies ‖X −X?‖F ≤ εσr(X?), where
σr(X?) denotes the r-th largest singular value of X?.

proposed scaled subgradient method in comparison with these prior algorithms, highlighting its

robustness to heavy-tailed observations, outliers, as well as a large condition number of the true

matrix X?.

Our work leverages exciting advances in nonsmooth optimization [CCD+21] and scaled first-order

methods in Chapter 2 for low-rank matrix recovery. Our arguments are concise, which avoid the

need of sophisticated trajectory-dependent analysis as have been used in [MWCC19, LMCC21] to

achieve rapid and robust convergence guarantees.

3.1.2 Related work

Low-rank matrix recovery has been a target of intense interest in the last decade; we invite the

readers to [DR16,CC18,CLC19] for recent overviews, and limit our discussions to the most relevant

literature in the sequel.

Nonsmooth formulations for low-rank matrix recovery. Nonsmooth objective functions,

such as the least absolute deviations, have been adopted earlier in both convex and nonconvex for-

mulations of low-rank matrix recovery, including phase retrieval [Han17,DDP20,QZEW19,ZZLC17,

DR19], blind deconvolution [Día19], quadratic sampling [LSC17, CL16, CCD+21, BL20], low-rank
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matrix sensing [CCD+21,Li13,WGMM13,LZMCSV20], robust synchronization [WS13], to name a

few. Our work is most closely related to and generalizes the vanilla subgradient method in [CCD+21],

by establishing novel performance guarantees of scaled subgradient methods for robust low-rank ma-

trix recovery.

Scaled first-order methods for low-rank matrix recovery. Variants of the scaled gradient

methods are proposed in [MAS12, TW16, TMC21a] for minimizing the least-squares formulation

(3.2), where strong statistical and computational complexities are first established in Chapter 2. To

the best of our knowledge, this is the first work that provides rigorous statistical and computational

guarantees for scaled subgradient methods for addressing nonsmooth formulations. When it comes

to problems with heavy-tail observations such as quadratic sampling, while it is possible to establish

faster convergence rates of vanilla gradient descent over the smooth least-squares loss function

through a tailored analysis [MWCC19,LMCC21] via leave-one-out arguments, it is unclear if similar

analyses are viable for scaled gradient methods (ScaledGD) in Chapter 2. Unfortunately, a direct

application of the performance guarantee of ScaledGD on minimizing the smooth least-squares loss

function leads to a much slower rate in terms of the problem dimension (see Table 3.1) for quadratic

sampling. In contrast, our analysis for scaled subgradient methods yields strong guarantees in a more

straightforward manner since the nonsmooth loss function has much better geometric properties

[CCD+21].

Robust low-rank matrix recovery via nonconvex optimization. A pleasant side benefit of

nonsmooth formulations is the added robustness to adversarial outliers under a simple algorithm

design – the low-rank factors are updated essentially in the same manner regardless of the presence

of outliers. In comparison, other nonconvex methods based on smooth formulations often need

to introduce some special treatments to mitigate outliers before updating the low-rank factors,

e.g. truncation or thresholding [ZCL16, LCZL20, LZMCSV20], which can be cumbersome to tune

properly.
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Condition number independent rate of convergence. It is well-known that first-order meth-

ods such as gradient descent exhibit poor scaling with respect to the condition number of the

low-rank matrix. Possible remedies include alternating least-squares in the factored space [JNS13,

HW14], or spectral methods over the matrix space [JMD10]. However, these approaches either

require the inversion of a large matrix or a higher memory footprint, compared with the scaled

first-order methods adopted herein.

3.1.3 Chapter organization

The rest of this chapter is organized as follows. Section 3.2 describes the proposed scaled subgradient

method and its connections to existing methods. Section 3.3 provides the theoretical guarantees

for the scaled subgradient method in terms of both statistical and computational complexities,

which are then instantiated to robust low-rank matrix sensing and quadratic sampling. Section 3.4

illustrates the superior empirical performance of the proposed method. Finally, we conclude in

Section 3.5. The proofs are deferred to the appendix.

3.2 Problem Formulation and Algorithms

In this section, we formulate the low-rank matrix recovery problem, followed by a detailed description

of the proposed scaled subgradient method.

3.2.1 Problem formulation

Let X? ∈ Rn1×n2 be the ground truth rank-r matrix, whose compact singular value decomposition

(SVD) is given by

X? = U?Σ?V
>
? , (3.5)

where U? ∈ Rn1×r and V? ∈ Rn2×r are composed of r left and right singular vectors, respectively,

and Σ? ∈ Rr×r is a diagonal matrix consisting of r singular values of X? organized in a non-

increasing order, i.e. σ1(X?) ≥ · · · ≥ σr(X?) > 0. The condition number of X? is thus defined
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as

κ := σ1(X?)/σr(X?). (3.6)

Without loss of generality, we define the ground truth low-rank factors as

L? := U?Σ
1/2
? , and R? := V?Σ

1/2
? , (3.7)

so that X? = L?R
>
? . Moreover, we denote the ground truth stacked factor matrix as

F? := [L>? ,R
>
? ]> ∈ R(n1+n2)×r. (3.8)

Assume that we have access to a number of observations y = {yi}mi=1 of X?, given as

yi = Ai(X?) + wi + si, 1 ≤ i ≤ m, (3.9)

or equivalently,

y = A(X?) + w + s, (3.10)

where A(X?) = {Ai(X?)}mi=1 is the measurement ensemble, w = {wi}mi=1 denotes the bounded

noise, and s = {si}mi=1 models arbitrary corruptions. The goal of low-rank matrix recovery is to

reconstruct X? from the noisy and corrupted observations y in a statistically and computationally

efficient manner.

3.2.2 Scaled subgradient method

Consider the following nonsmooth and nonconvex optimization problem over the factors

minimize
L∈Rn1×r,R∈Rn2×r

L(L,R) := f(LR>), (3.11)
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where f(·) is a nonsmooth surrogate of the observation residuals. Of particular interest is the

residual sum of absolute errors, defined as

f(X) := ‖A(X)− y‖1. (3.12)

Correspondingly, the minimizer is called the least absolute deviations (LAD) solution.

Let us denote the stacked factor matrix in the t-th iterate as Ft := [L>t ,R
>
t ]>. Given an

initialization F0 = [L>0 ,R
>
0 ]>, the proposed scaled subgradient method (ScaledSM) proceeds as

Lt+1 := Lt − ηtStRt(R
>
t Rt)

−1,

Rt+1 := Rt − ηtS>t Lt(L>t Lt)−1,

(3.13)

where St ∈ ∂f(LtR
>
t ) is a subgradient of f(·) at LtR

>
t (and hence StRt ∈ ∂LL(Lt,Rt) and

S>t Lt ∈ ∂RL(Lt,Rt)), and ηt > 0 is some properly selected stepsize, which we discuss next.

Stepsize schedules. We consider the following two choices of stepsize schedules:

• If we know the optimal value f(X?), we can invoke the following Polyak’s stepsize, given by

ηP
t :=

f(LtR
>
t )− f(X?)

‖StRt(R>t Rt)−1/2‖2F + ‖S>t Lt(L>t Lt)−1/2‖2F
, (3.14)

where the denominator is the squared norm of the subgradient under a scaled metric concerted

with the preconditioners. This schedule is implementable, for example, when the observations are

noise-free, leading to f(X?) = 0. However, when the observations are noisy and corrupted, it is

not viable to know f(X?) beforehand.

• In general, we can apply the geometrically decaying stepsize originally introduced in [Gof77],

given by

ηG
t :=

λqt√
‖StRt(R>t Rt)−1/2‖2F + ‖S>t Lt(L>t Lt)−1/2‖2F

, (3.15)
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where the denominator is similarly scaled as (3.14), and λ > 0 and q ∈ (0, 1) are some param-

eters to be specified. This choice is broadly applicable when dealing with noisy and corrupted

observations.

Compared with the vanilla subgradient method, which proceeds according to

Lt+1 := Lt − ηtStRt,

Rt+1 := Rt − ηtS>t Lt,
(3.16)

the update rule (3.13) scales the subgradient StRt and S>t Lt by (R>t Rt)
−1 and (L>t Lt)

−1, respec-

tively; see Chapter 2 for its counterpart in smooth problems. An important highlight of the scaled

subgradient method is that the update rule is covariant with respect to the ambiguity of low-rank

matrix factorization. To see this, imagine that we modify the t-th updates as

L̃t := LtQ, R̃t := RtQ
−> (3.17)

for some invertible matrix Q ∈ GL(r). It is easy to check:

(i) both the Polyak’s stepsize (3.14) and the geometrically decaying stepsize (3.15) do not change,

since

‖StRt(R
>
t Rt)

−1/2‖2F = 〈St,StRt(R
>
t Rt)

−1R>t 〉 = 〈St,StR̃t(R̃
>
t R̃t)

−1R̃>t 〉 = ‖StR̃t(R̃
>
t R̃t)

−1/2‖2F,

which holds similarly for ‖S>t Lt(L>t Lt)−1/2‖2F;

(ii) The next (t+ 1)-th iterate can be written as

L̃t+1 = L̃t − ηtStR̃t(R̃
>
t R̃t)

−1 =
[
Lt − ηtStRt(R

>
t Rt)

−1
]
Q = Lt+1Q,

and similarly R̃t+1 = Rt+1Q
−>. Therefore, all the iterates are covariant with respect to the

invertible transform (3.17).

Remark 3 (Comparison with ScaledGD). Although not our focus, it is instructive to consider the
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resulting update rule using the nonsmooth `2-loss function f(X) = ‖A(X)− y‖2 (which has been

studied in [CCD+21]), whose subgradient is given by

St =
A∗(rt)
‖rt‖2

,

where A∗(·) is the adjoint operator of A(·), and rt := A(LtR
>
t ) − y is the residual using the t-th

iterate. Consequently, the scaled subgradient method follows the update rule

Lt+1 = Lt −
ηt
‖rt‖2

A∗(rt)Rt(R
>
t Rt)

−1,

Rt+1 = Rt −
ηt
‖rt‖2

A∗(rt)>Lt(L>t Lt)−1,

for some stepsize ηt. Careful readers might realize that this coincides with the update rule of

ScaledGD in Chapter 2 when optimizing the smooth squared `2-loss function g(X) = 1
2‖A(X)−y‖22,

except with an adaptive stepsize ηt
‖rt‖2 . Under the same assumption on A(·) in Chapter 2, the

convergence behaviors of ScaledSM applied on f(X) match that of ScaledGD on g(X).

Remark 4 (ScaledSM for PSD matrices). When the low-rank matrix of interest is positive semi-

definite (PSD), we factorize the matrix X ∈ Rn×n as X = LL>, with L ∈ Rn×r. The update rule

of ScaledSM simplifies to

Lt+1 = Lt − ηtStLt(L>t Lt)−1,

where St ∈ ∂f(LtL
>
t ) is a subgradient of f(·) at LtL>t . Our theory applies to this PSD case in a

straightforward manner.

3.3 Theoretical Guarantees

In this section, we first provide the theoretical guarantees of the scaled subgradient method under

general geometric assumptions on f(·), and then instantiate them to concrete problems including

robust low-rank matrix sensing and quadratic sampling.
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3.3.1 Geometric assumptions

We start by introducing the following geometric properties of the loss function f(·), which play a

key role in the convergence analysis.

The first condition is similar to the usual Lipschitz property of a function.

Definition 5 (Restricted Lipschitz continuity). A function f : Rn1×n2 7→ R is said to be rank-r

restricted L-Lipschitz continuous for some quantity L > 0 if

|f(X1)− f(X2)| ≤ L‖X1 −X2‖F

holds for any X1,X2 ∈ Rn1×n2 such that X1 −X2 has rank at most 2r.

The second geometric condition is akin to the (one-point) strong convexity of a function, with

the key difference that strong convexity adopts the squared Euclidean norm whereas the following

one uses the plain Euclidean norm.

Definition 6 (Restricted sharpness). A function f : Rn1×n2 7→ R is said to be rank-r restricted

µ-sharp w.r.t. X? for some µ > 0 if

f(X)− f(X?) ≥ µ‖X −X?‖F

holds for any X ∈ Rn1×n2 with rank at most r.

For notational simplicity, if a function f(·) is both restricted L-Lipschitz continuous and

µ-sharp, we denote

χf := L/µ. (3.18)

In some cases, e.g. in the presence of noise, the loss function f(·) only satisfies an approximate

restricted sharpness property, which is detailed below.
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Definition 7 (Approximate restricted sharpness). A function f : Rn1×n2 7→ R is said to be ξ-

approximate rank-r restricted µ-sharp for some µ, ξ > 0 if

f(X)− f(X?) ≥ µ‖X −X?‖F − ξ

holds for any X ∈ Rn1×n2 with rank at most r.

As shall be seen in Section 3.3.3, these conditions can be ensured for proper choices of the

loss function as long as the observation operator A(·) satisfies certain mixed-norm RIP, which holds

for a wide number of practical problems.

3.3.2 Main results

Motivated by Chapter 2, we measure the performance of F = [L>,R>]> using the following error

metric

dist2(F ,F?) := inf
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥2

F
, (3.19)

which takes into consideration both the representational ambiguity of the factorization up to invert-

ible transforms and the scaling effect of preconditioners. In comparison, the more standard distance

metric [MLC21] in the analysis of vanilla gradient methods reads as follows

dist2
u(F ,F?) := inf

Q∈GL(r)
‖LQ−L?‖2F +

∥∥∥RQ−> −R?

∥∥∥2

F
,

which is inadequate to delineate the power of preconditioning. See Chapter 2 for more discussions.

We start with stating the linear convergence of the scaled subgradient method when f(·)

satisfies both the rank-r restricted L-Lipschitz continuity and µ-sharpness. The proof is deferred to

Appendix B.1.

Theorem 6 (Scaled subgradient method with exact convergence). Suppose that f(X) : Rn1×n2 7→ R

is convex in X, and satisfies rank-r restricted L-Lipschitz continuity and µ-sharpness (cf. Defini-
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tions 5 and 6). In addition, suppose that the initialization F0 satisfies

dist(F0,F?) ≤ 0.02σr(X?)/χf , (3.20)

and the scaled subgradient method in (3.13) adopts either Polyak’s stepsizes in (3.14) or geometrically

decaying stepsizes in (3.15) with λ =

√√
2−1
2 0.02σr(X?)/χ

2
f and q =

√
1− 0.16/χ2

f . Then for all

t ≥ 0, the iterates satisfy

dist(Ft,F?) ≤ (1− 0.16/χ2
f )t/20.02σr(X?)/χf , and∥∥∥LtR>t −X?

∥∥∥
F
≤ (1− 0.16/χ2

f )t/20.03σr(X?)/χf .

Theorem 6 shows that the iterates of the scaled subgradient method converges at a linear rate;

to reach ε-accuracy, i.e. ‖LtR>t −X?‖F ≤ εσr(X?), it takes at most O(χ2
f log 1

ε ) iterations, which,

importantly, is independent of the condition number κ of X?. In addition, it is still possible to

ensure approximate reconstruction when only the approximate restricted sharpness property holds,

as shown in the next theorem. Again, we postpone the proof to Appendix B.2.

Theorem 7 (Scaled subgradient method with approximate convergence). Suppose that f : Rn1×n2 7→

R is convex, and satisfies rank-r restricted L-Lipschitz continuity and ξ-approximate µ-sharpness

(cf. Definitions 5 and 7) for some ξ ≤ 10−3σr(X?)µ/χf . Suppose that the initialization F0 satis-

fies dist(F0,F?) ≤ 0.02σr(X?)/χf , and the scaled subgradient method adopts geometrically decaying

stepsizes (3.15) with λ =

√√
2−1
2 0.02σr(X?)/χ

2
f and q =

√
1− 0.13/χ2

f . Then for all t ≥ 0, the

iterates satisfy

dist(Ft,F?) ≤ max
{

(1− 0.13/χ2
f )t/20.02σr(X?)/χf , 20ξ/µ

}
, and∥∥∥LtR>t −X?

∥∥∥
F
≤ max

{
(1− 0.13/χ2

f )t/20.03σr(X?)/χf , 30ξ/µ
}
.

Theorem 7 shows that as long as the relaxation parameter ξ is sufficiently small, i.e. ξ .

σr(X?)µ/χf , then the scaled subgradient method with geometrically decaying stepsizes converges

at a linear rate until an error floor is hit. In particular, the iterates satisfy ‖LtR>t −X?‖F ≤ 30ξ/µ
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after at most O(χ2
f ) iterations up to logarithmic factors.

Remark 5. For simplicity of exposition, we have fixed the values of λ and q for the geometrically

decaying stepsizes in the above theorems. It is possible to allow a wider range of λ and q by slightly

modifying the arguments without sacrificing the linear convergence. In practice, these parameters

should be tuned in order to yield optimal performance.

3.3.3 A case study: robust low-rank matrix recovery

We now apply the above theorems to robust low-rank matrix recovery, which showcases the superior

performance of the scaled subgradient method.

Noise-free case. We start with the observation model (3.10) with clean measurements, i.e. w = 0

and s = 0. To proceed, we assume that the observation operator A(·) satisfies the following mixed-

norm RIP.

Definition 8 (mixed-norm RIP [RFP10,CCG15,CCD+21]). The linear map A(·) is said to obey

the rank-2r mixed-norm RIP with constants δ1, δ2 if for all matrices M ∈ Rn1×n2 of rank at most

2r, one has

δ1‖M‖F ≤ ‖A(M)‖1 ≤ δ2‖M‖F.

The next proposition verifies that the loss function (3.12) satisfies restricted Lipschitz conti-

nuity and sharpness properties under the mixed-norm RIP.

Proposition 3. If A(·) satisfies rank-2r mixed-norm RIP with constants (δ1, δ2), then f(X) =

‖A(X) − y‖1 = ‖A(X −X?)‖1 in (3.12) satisfies the rank-r restricted L-Lipschitz continuity and

µ-sharpness with

L = δ2, and µ = δ1.

Proof. See Appendix B.3.
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With the geometric characterization of f(·) in place, we immediately have the following corol-

lary that captures the performance of the scaled subgradient method when A(·) satisfies the mixed-

norm RIP.

Corollary 1. If A(·) satisfies rank-2r mixed-norm RIP with (δ1, δ2), then the scaled subgradient

method over the loss function f(X) = ‖A(X)−y‖1 using either Polyak’s or geometrically decaying

stepsizes achieves
∥∥LtR>t −X?

∥∥
F
≤ εσr(X?) in O

(
δ22
δ21

log 1
ε

)
iterations as long as the initialization

satisfies dist(F0,F?) ≤ 0.02δ1
δ2

σr(X?).

Noisy and corrupted case. We now consider the observation model (3.10) where the noise

w is bounded with ‖w‖1 ≤ σw and ‖s‖0 = psm, where ps ∈ [0, 1/2) is the fraction of outliers.

Following [CCD+21], we further introduce another important property of A(·).

Definition 9 (S-outlier bound [CCD+21]). The linear map A(·) is said to obey the rank-2r S-

outlier bound w.r.t. a set S with a constant δ3 if for all matrices M ∈ Rn1×n2 of rank at most 2r,

one has

δ3‖M‖F ≤ ‖ASc(M)‖1 − ‖AS(M)‖1,

where AS(M) = {Ai(M)}i∈S and ASc(M) = {Ai(M)}i∈Sc .

The next proposition verifies that the loss function in (3.12) satisfies restricted Lipschitz

continuity and approximate sharpness properties under the mixed-norm RIP (cf. Definition 8) and

the S-outlier bound (cf. Definition 9).

Proposition 4 (Matrix sensing with outliers). Denote the support of the outlier s as S. Suppose

that A(·) satisfies rank-2r mixed-norm RIP with (δ1, δ2) and S-outlier bound with δ3, then f(X) in

(3.12) satisfies rank-r restricted L-Lipschitz continuity and ξ-approximate µ-sharpness with

L = δ2, µ = δ3, and ξ = 2σw. (3.21)

Proof. See Appendix B.4.
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Similar to the previous noise-free case, this immediately leads to performance guarantees of

the scaled subgradient method when A(·) satisfies both the mixed-norm RIP and the S-outlier

bound.

Corollary 2. If A(·) satisfies rank-2r mixed-norm RIP with (δ1, δ2) and S-outlier bound with

δ3, and ‖w‖1 ≤ σw ≤ 10−3σr(X?)δ
2
3/δ2, then the scaled subgradient method over the loss func-

tion f(X) = ‖A(X) − y‖1 using the geometrically decaying stepsizes achieves
∥∥LtR>t −X?

∥∥
F
≤

max {εσr(X?), 60σw/δ3} in O
(
δ22
δ23

log 1
ε

)
iterations as long as the initialization satisfies dist(F0,F?) ≤

0.02δ3
δ2

σr(X?).

We now instantiate the above general guarantee to the following two types of observation

operators. For simplicity, we assume there is no dense noise, i.e. σw = 0; see Table 3.1 for a

summary of the comparisons.

• matrix sensing: the measurement operator Ai(·) is defined as Ai(X?) = 1
m〈Ai,X?〉, where the

matrix Ai is composed of i.i.d. Gaussian entries N (0, 1).2 It is shown in [CCD+21] (see also

[LZMCSV20]) that A(·) satisfies the mixed-norm RIP and S-outlier bound with

δ1 & 1, δ2 . 1, δ3 & 1− 2ps,

as long as m & (n1+n2)r
(1−2ps)2

log( 1
1−2ps

). Hence, the scaled subgradient method converges linearly to

ε-accuracy in O
(

1
(1−2ps)2

log 1
ε

)
iterations provided that it is initialized properly, making it robust

simultaneously to ill-conditioning of the matrix X? and the presence of the outliers.

• quadratic sampling: the measurement operator Ai(·) is defined as Ai(X?) = 1
m〈aia

>
i ,X?〉, where

X? ∈ Rn×n is PSD and the vector ai is composed of i.i.d. Gaussian entries N (0, 1). It is shown

in [CCD+21] that A(·) satisfies the mixed-norm RIP and S-outlier bound with

δ1 & 1, δ2 .
√
r, δ3 & 1− 2ps,

as long as m & nr2

(1−2ps)2
log(

√
r

1−2ps
). Hence, the scaled subgradient method converges linearly

2The same guarantee also holds for sub-Gaussian measurements.
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to ε-accuracy in O
(

r
(1−2ps)2

log 1
ε

)
iterations, as long as it is seeded with a good initialization.

In comparison, the iteration complexity of the scaled gradient descent method over the least-

squares loss function depends polynomially with respect to n, due to the heavy-tailed nature of

the observation operator, let alone its sensitivity to the outliers.

Remark 6 (Initialization). The above discussions are limited to the local iteration complexity,

assuming a good initialization satisfying (3.20) is available. In the absence of outliers, a standard

spectral method can be used, as shown in Chapter 2. In the presence of outliers, a truncated spectral

method could be used; see e.g. [ZCL16,LCZL20].

3.4 Numerical Experiments

In this section, we conduct numerical experiments to corroborate our theory.

Comparisons of ScaledSM and VanillaSM. Since the vanilla subgradient method (VanillaSM)

has been extensively benchmarked against other methods and established as state-of-the-art in

[CCD+21], we focus on comparing the proposed scaled subgradient method (ScaledSM) to VanillaSM

in the sequel. In general, the geometrically decaying stepsize (3.15) is a more practical choice than

the Polyak’s stepsize (3.14), especially in the presence of noise and outliers. Nonetheless, using prop-

erly tuned geometrically decaying stepsizes essentially matches the performance of using Polyak’s

stepsizes, for both VanillaSM [LZMCSV20] and ScaledSM, the latter of which we shall illustrate

in the ensuing experiments. As such, we adopt Polyak’s stepsizes in the comparisons below, to

emulate the scenario where both methods are tuned to operate under its largest allowable stepsizes

and achieve the fastest convergence. In addition, both algorithms start from the same initialization.

We consider two low-rank matrix estimation tasks discussed in Section 3.3.3. Recall the

observation model in (3.10) and its entrywise version in (3.9), which we repeat below for convenience:

yi = Ai(X?) + wi + si, 1 ≤ i ≤ m.

In both tasks, the noise entry wi is composed of i.i.d. entries uniformly drawn from [−σw
m , σwm ].
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The outlier si = s̄iΩi is a sparse vector where Ωi is a Bernoulli random variable with probability

ps ∈ [0, 1/2), and s̄i is drawn uniformly at random from [−10‖A(X?)‖∞, 10‖A(X?)‖∞]. For ease

of presentation, we assume that X? ∈ Rn×n is a square matrix with rank as r. We collect m = 8nr

measurements using the following respective measurement models. The signal-to-noise ratio is

defined as SNR := 20 log10
‖A(X?)‖1

σw
in dB.

• Matrix sensing. Here, the measurement operator Ai(·) is defined as Ai(X?) = 1
m〈Ai,X?〉, where

the matrix Ai is composed of i.i.d. Gaussian entries N (0, 1). The ground truth matrix X? is

generated via its compact SVDX? = U?Σ?V
>
? , whereU? ∈ Rn×r is generated as the orthonormal

basis vectors of an n× r matrix with i.i.d. Rademacher entries, Σ? is a diagonal matrix with the

diagonal entries linearly distributed from 1 to κ, and V? ∈ Rn×r is generated in a similar fashion

to U?.

• Quadratic sampling. Here, the measurement operator Ai(·) is defined as Ai(X?) = 1
m〈aia

>
i ,X?〉,

where ai is composed of i.i.d. Gaussian entries N (0, 1). The ground truth matrix X? is positive

semi-definite, and is generated via its compact SVD X? = U?Σ?U
>
? , where U? and Σ? are

generated in the same manner described above.
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Figure 3.1: Performance comparisons of ScaledSM and VanillaSM for matrix sensing without or with
outliers under different condition numbers κ = 1, 5, 10, 20, where n = 100, r = 10, and m = 8nr.
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Figure 3.2: Performance comparisons of ScaledSM and VanillaSM for quadratic sampling without
or with outliers under different condition numbers κ = 1, 5, 10, 20, where n = 100, r = 5, and
m = 8nr.

Denote the index set of the remaining measurements after discarding ps fraction with largest

amplitudes as I = {i : |yi| ≤ |y|(dpsme)}, where |y|(k) denotes the kth largest amplitude of y.

The truncated spectral method in [ZCL16, LCZL20] is used for initialization, where we apply the

standard spectral method only on the subset I of the measurements. For matrix sensing, it follows

the prescription in [LCZL20], and for quadratic sampling, it follows [LMCC21].

Fig. 3.1 shows the relative reconstruction error ‖Xt−X?‖F/‖X?‖F for matrix sensing without

outliers (in (a)) and with 20% outliers (i.e. ps = 0.2 in (b)) under different condition numbers

κ, where Xt is the estimated low-rank matrix at the t-th iteration. Fig. 3.2 shows the relative

reconstruction error for quadratic sampling under the same setting. It can be seen that ScaledSM

is insensitive to κ and converges as a fast rate that is independent with κ, while the convergence

of VanillaSM slows down dramatically with the increase of κ. In addition, both algorithms still

converge linearly in the presence of outliers, thanks to the robustness of the least absolute deviations.

Fig. 3.3 further examines the impact of the amount of outliers and noise on the convergence

speed in matrix sensing with a fixed condition number κ = 10, where Fig. 3.3 (a) illustrates the

convergence speed at varying amounts of outliers ps = 0.1, 0.2, 0.3 respectively, and Fig. 3.3 (b) illus-

trates the convergence with ps = 0.1 and additional bounded noise with varying SNR = 40, 60, 80dB.
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Figure 3.3: Performance comparisons of ScaledSM and VanillaSM for matrix sensing under different
noise and outlier models, where n = 100, r = 10, m = 8nr, and κ = 10.

Similarly, Fig. 3.4 shows the same plots for quadratic sampling under the same setting. It can be

seen that the convergence rate of ScaledSM slows down with the increase of outliers, which is again,

consistent with the theory. Furthermore, the reconstruction is robust in the presence of additional

bounded noise, where both ScaledSM and VanillaSM converge to the same accuracy that is propor-

tional to the noise level, with ScaledSM converging at a faster speed.
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Figure 3.4: Performance comparisons of ScaledSM and VanillaSM for quadratic sampling under
different noise and outlier models, where n = 100, r = 5, m = 8nr, and κ = 10.
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Comparisons of stepsize schedules. We now compare the geometrically decaying stepsize with

the Polyak’s stepsize for ScaledSM, which essentially mirrors similar experiments conducted in [LZM-

CSV20] for VanillaSM. We run ScaledSM for at most T = 1000 iterations, and stop early if the

relative error achieves 10−12. Fig. 3.5 and Fig. 3.6 show the performance comparisons of ScaledSM

under various stepsize schedules for matrix sensing and quadratic sampling, respectively. For both

figures, (a) shows the final relative error of ScaledSM using geometrically decaying stepsizes under

various (λ, q), where we see that ScaledSM converges as long as λ is not too large and q is not too

small. We further plot the relative error versus the iteration count for ScaledSM using geometrically

decaying stepsizes with a fixed q and various λ in (b), and with a fixed λ and various q in (c),

where the performance using Polyak’s stepsizes is plotted for comparison. It can be seen that using

Polyak’s stepsizes yields the fastest convergence. Indeed, if properly tuned, geometrically decay-

ing stepsizes match Polyak’s stepsizes, as shown in (d). In general, we find that there is a wide

range of parameters for geometrically decaying stepsizes where ScaledSM converges in a fast speed

comparable to that of using Polyak’s stepsizes, as long as λ is not too large and q is not too small.

3.5 Discussions

This chapter proposes scaled subgradient methods to minimize a family of nonsmooth and nonconvex

formulations for low-rank matrix recovery—in particular, the residual sum of absolute errors—and

guarantees its convergence at a rate that is almost dimension-free and independent of the condition

number, even in the presence of corruptions. We illustrate the effectiveness of our approach by

providing state-of-the-art performance guarantees for robust low-rank matrix sensing and quadratic

sampling. In the future, it is of interest to study the performance of scaled subgradient methods

for other signal estimation and statistical inference tasks, such as training student-teacher neural

networks [DDKL20], as well as using random initializations [CCFM19].
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Figure 3.5: Performance comparisons of ScaledSM for matrix sensing using geometrically decaying
stepsizes with parameters (λ, q) and Polyak’s stepsizes, where we fix n = 100, r = 10, m = 8nr,
κ = 10, and ps = 0.2: (a) the final relative error for various combinations of (λ, q), (b) the relative
error versus iteration count for fixed q = 0.91 and varying λ, (c) the relative error versus iteration
count for fixed λ = 5 and varying q, and (d) shows properly tuned geometrically decaying stepsizes
with λ = 1.85 and q = 0.91 essentially match Polyak’s stepsizes.
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Figure 3.6: Performance comparisons of ScaledSM for quadratic sampling using geometrically decay-
ing stepsizes with parameters (λ, q) and Polyak’s stepsizes, where we fix n = 100, r = 5, m = 8nr,
κ = 10, and ps = 0.2: (a) the final relative error for various combinations of (λ, q), (b) the relative
error versus iteration count for fixed q = 0.92 and varying λ, (c) the relative error versus iteration
count for fixed λ = 2 and varying q, and (d) shows properly tuned geometrically decaying stepsizes
with λ = 1.36 and q = 0.88 essentially match Polyak’s stepsizes.
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Chapter 4

Low-rank Tensor Estimation

4.1 Introduction

In this chapter, we generalize ScaledGD to low-rank tensor estimation. In many problems across

science and engineering, the central task can be regarded as tensor estimation from highly incom-

plete measurements, where the goal is to estimate an order-3 tensor1 X ? ∈ Rn1×n2×n3 from its

observations y ∈ Rm given by

y ≈ A(X ?).

Here, A : Rn1×n2×n3 7→ Rm represents a certain linear map modeling the data collection process.

Importantly, the number m of observations is often much smaller than the ambient dimension

n1n2n3 of the tensor due to resource or physical constraints, necessitating the need of exploiting

low-dimensional structures to allow for meaningful recovery.

One of the most widely adopted low-dimensional structures—which is the focus of this chapter—

is the low-rank structure under the Tucker decomposition [Tuc66]. Specifically, we assume that the

ground truth tensor X ? admits the following Tucker decomposition2

X ? = (U?,V?,W?) · S?,

where S? ∈ Rr1×r2×r3 is the core tensor, and U? ∈ Rn1×r1 , V? ∈ Rn2×r2 , W? ∈ Rn3×r3 are
1For ease of presentation, we focus on 3-way tensors; our algorithm and theory can be generalized to higher-order

tensors in a straightforward manner.
2Other popular notation for Tucker decomposition in the literature includes [[S?;U?,V?,W?]] and S? ×1 U? ×2

V?×3W?. In this work, we adopt the same notation (U?,V?,W?) · S? as in [XY19] for convenience of our theoretical
developments.
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orthonormal matrices corresponding to the factors of each mode. The tensor X ? is said to be low-

multilinear-rank, or simply low-rank, when its multilinear rank r = (r1, r2, r3) satisfies rk � nk, for

all k = 1, 2, 3. Compared with other tensor decompositions such as the CP decomposition [KB09]

and tensor-SVD [ZEA+14], the Tucker decomposition offers several advantages: it allows flexible

modeling of low-rank tensor factors with a small number of parameters, fully exploits the multi-

dimensional algebraic structure of a tensor, and admits efficient and stable computation without

suffering from degeneracy [Paa00].

Motivating examples. We point out two representative settings of tensor recovery that guide

our work.

• Tensor completion. A widely encountered problem is tensor completion, where one aims to

predict the entries in a tensor from only a small subset of its revealed entries. A celebrated

application is collaborative filtering, where one aims to predict the users’ evolving preferences from

partial observations of a tensor composed of ratings for any triplet of user, item, time [KABO10].

Mathematically, we are given entries

X ?(i1, i2, i3), (i1, i2, i3) ∈ Ω,

in some index set Ω, where (i1, i2, i3) ∈ Ω if and only if that entry is observed. The goal is then

to recover the low-rank tensor X ? from the observed entries in Ω.

• Tensor regression. In machine learning and signal processing, one is often concerned with deter-

mining how the covariates relate to the response—a task known as regression. Due to advances

in data acquisition, there is no shortage of scenarios where the covariates are available in the

form of tensors, for example in medical imaging [ZLZ13]. Mathematically, the i-th response or

observation is given as

yi = 〈Ai,X ?〉 =
∑
i1,i2,i3

Ai(i1, i2, i3)X ?(i1, i2, i3), i = 1, 2, . . . ,m,
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where Ai is the i-th covariate or measurement tensor. The goal is then to recover the low-rank

tensor X ? from the responses y = {yi}mi=1.

4.1.1 A gradient descent approach?

Recent years remarkable successes have emerged in developing a plethora of provably efficient al-

gorithms for low-rank matrix estimation (i.e. the special case of order-2 tensors) via both convex

and nonconvex optimization. However, unique challenges arise when dealing with tensors, since

tensors have more sophisticated algebraic structures [Hac12]. For instance, while nuclear norm min-

imization achieves near-optimal statistical guarantees for low-rank matrix estimation [CT10] within

a polynomial run time, computing the nuclear norm of a tensor turns out to be NP-hard [FL18].

Therefore, there have been a number of efforts to develop polynomial-time algorithms for tensor

recovery, including but not limited to the sum-of-squares hierarchy [BM16, PS17], nuclear norm

minimization with unfolding [GRY11,MHWG14], regularized gradient descent [HWZ20], to name a

few; see Section 4.1.3 for further discussions.

In view of the low-rank Tucker decomposition, a natural approach is to seek to recover the

factor quadruple F? := (U?,V?,W?,S?) directly by optimizing the unconstrained least-squares loss

function:

min
F

L(F ) :=
1

2
‖A ((U ,V ,W ) · S)− y‖22 , (4.1)

where F := (U ,V ,W ,S) consists of U ∈ Rn1×r1 , V ∈ Rn2×r2 , W ∈ Rn3×r3 , and S ∈ Rr1×r2×r3 .

Since the factors have a much lower complexity than the tensor itself due to the low-rank structure,

it is expected that manipulating the factors results in more scalable algorithms in terms of both

computation and storage. This optimization problem is however, highly nonconvex, since the factors

are not uniquely determined.3 Nonetheless, one might be tempted to solve the problem (4.1) via

gradient descent (GD), which updates the factors according to

Ft+1 = Ft − η∇L(Ft), t = 0, 1, . . . , (4.2)

3For any invertible matrices Qk ∈ Rrk×rk , k = 1, 2, 3, one has (U ,V ,W ) · S =
(UQ1,V Q2,WQ3) ·((Q−1

1 ,Q−1
2 ,Q−1

3 ) · S).
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where Ft is the estimate at the t-th iteration, η > 0 is the step size or learning rate, and ∇L(F )

is the gradient of L(F ) at F . Despite a flurry of activities for understanding factored gradient

descent in the matrix setting [CLC19], this line of algorithmic thinkings has been severely under-

explored for the tensor setting, especially when it comes to provable guarantees for both sample

and computational complexities.

The closest existing theory that one comes across is [HWZ20] for tensor regression, which

adds regularization terms to promote the orthogonality of the factors U ,V ,W :

Lreg(F ) := L(F ) +
α

4

(
‖U>U − βIr1‖2F + ‖V >V − βIr2‖2F + ‖W>W − βIr3‖2F

)
, (4.3)

and perform GD on the regularized loss. Here, α, β > 0 are two parameters to be specified. While

encouraging, theoretical guarantees of this regularized GD algorithm [HWZ20] still fall short of

achieving computational efficiency. In truth, its convergence speed is rather slow: it takes an

order of κ2 log(1/ε) iterations to attain an ε-accurate estimate of the ground truth tensor, where

κ is a sort of condition number of X ? to be defined momentarily. Therefore, the computational

efficacy of the regularized GD is severely hampered even when X ? is moderately ill-conditioned,

a situation frequently encountered in practice. In addition, the regularization term introduces

additional parameters that may be difficult to tune optimally in practice.

Turning to tensor completion, the situation is even worse: to the best of our knowledge, there

is no provably linearly-convergent algorithm that accommodates low-rank tensor completion under

the Tucker decomposition.

4.1.2 A new algorithm: scaled gradient descent

We propose a novel algorithm—dubbed scaled gradient descent (ScaledGD)—to solve the tensor

recovery problem. More specifically, at the core it performs the following iterative updates4 to
4The matrix inverses in ScaledGD always exist under the assumptions of our theory.
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minimize the loss function (4.1):

Ut+1 = Ut − η∇UL(Ft)
(
Ŭ>t Ŭt

)−1
,

Vt+1 = Vt − η∇V L(Ft)
(
V̆ >t V̆t

)−1
,

Wt+1 = Wt − η∇WL(Ft)
(
W̆>

t W̆t

)−1
,

St+1 = St − η
(

(U>t Ut)
−1, (V >t Vt)

−1, (W>
t Wt)

−1
)
·∇SL(Ft),

(4.4)

where ∇UL(F ), ∇V L(F ), ∇WL(F ), and ∇SL(F ) are the partial derivatives of L(F ) with respect

to the corresponding variables, and

Ŭt :=M1 ((Ir1 ,Vt,Wt) · St)> = (Wt ⊗ Vt)M1(St)>,

V̆t :=M2 ((Ut, Ir2 ,Wt) · St)> = (Wt ⊗Ut)M2(St)>,

W̆t :=M3 ((Ut,Vt, Ir3) · St)> = (Vt ⊗Ut)M3(St)>.

(4.5)

Here,Mk(S) is the matricization of the tensor S along the k-th mode (k = 1, 2, 3), and ⊗ denotes

the Kronecker product. Inspired by its variant in the matrix setting in Chapter 2, the ScaledGD

algorithm (4.4) exploits the structures of Tucker decomposition and possesses many desirable prop-

erties:

• Low per-iteration cost: as a preconditioned GD or quasi-Newton algorithm, ScaledGD updates

the factors along the descent direction of a scaled gradient, where the preconditioners can be

viewed as the inverse of the diagonal blocks of the Hessian for the population loss (i.e. tensor

factorization). As the sizes of the preconditioners are proportional to the multilinear rank, the

matrix inverses are cheap to compute with a minimal overhead and the overall per-iteration cost

is still low and linear in the time it takes to read the input data.

• Equivariance to parameterization: one crucial property of ScaledGD is that if we reparameterize

the factors by some invertible transforms (i.e. replacing (Ut,Vt,Wt,St) by

(UtQ1,VtQ2,WtQ3, (Q
−1
1 ,Q−1

2 ,Q−1
3 ) · St)
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Algorithms Sample complexity Iteration complexity Parameter space
Unfolding + nuclear norm min.

n2r log2 n polynomial tensor[HMGW15]
Tensor nuclear norm min.

n3/2r1/2 log3/2 n NP-hard tensor[YZ16]
Grassmannian GD

n3/2r7/2κ4 log7/2 n N/A factor[XY19]
ScaledGD

n3/2r5/2κ3 log3 n log 1
ε factor(this Chapter)

Table 4.1: Comparisons of ScaledGD with existing algorithms for tensor completion when the tensor
is incoherent and low-rank under the Tucker decomposition. Here, we say that the output X of an
algorithm reaches ε-accuracy, if it satisfies ‖X −X ?‖F ≤ εσmin(X ?). Here, κ and σmin(X ?) are the
condition number and the minimum singular value of X ? (defined in Section 4.2.1). For simplicity,
we let n = maxk=1,2,3 nk and r = maxk=1,2,3 rk, and assume r ∨ κ � nδ for some small constant δ
to keep only terms with dominating orders of n.

for some invertible matrices {Qk}3k=1), the entire trajectory will go through the same reparam-

eterization, leading to an invariant sequence of low-rank tensor updates X t = (Ut,Vt,Wt) · St

regardless of the parameterization being adopted.

• Implicit balancing: ScaledGD optimizes the natural loss function (4.1) in an unconstrained man-

ner without requiring additional regularizations or orthogonalizations used in prior literature

[HWZ20,FG20,KM16], and the factors stay balanced in an automatic manner—a feature some-

times referred to as implicit regularization [MLC21].

Theoretical guarantees. We investigate the theoretical properties of ScaledGD for both tensor

completion and tensor regression, which are notably more challenging than the matrix counterpart.

It is demonstrated that ScaledGD—when initialized properly using appropriate spectral methods —

achieves linear convergence at a rate independent of the condition number of the ground truth tensor

with near-optimal sample complexities. In other words, ScaledGD needs no more than O(log(1/ε))

iterations to reach ε-accuracy; together with its low computational and memory costs by operating

in the factor space, this makes ScaledGD a highly scalable method for a wide range of low-rank tensor
5 [LZ21, Theorem 3] states the sample complexity n3/2√rκ2‖X ?‖2F/σ2

min(X ?), where ‖X ?‖2F/σ2
min(X ?) has an

order of rκ2.
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Algorithms Sample complexity Iteration complexity Parameter space
Unfolding + nuclear norm min.

n2r polynomial tensor[MHWG14]
Projected GD

n2r κ2 log 1
ε tensor[CRY19]

Regularized GD
n3/2rκ4 κ2 log 1

ε factor[HWZ20]
Riemannian Gauss-Newton

n3/2r3/2κ4 log log 1
ε tensor[LZ21] (concurrent)5

ScaledGD
n3/2r3/2κ2 log 1

ε factor(this Chapter)

Table 4.2: Comparisons of ScaledGD with existing algorithms for tensor regression when the tensor is
low-rank under the Tucker decomposition. Here, we say that the outputX of an algorithm reaches ε-
accuracy, if it satisfies ‖X−X ?‖F ≤ εσmin(X ?). Here, κ and σmin(X ?) are the condition number and
minimum singular value of X ? (defined in Section 4.2.1). For simplicity, we let n = maxk=1,2,3 nk,
and r = maxk=1,2,3 rk, and assume r ∨ κ � nδ for some small constant δ to keep only terms with
dominating orders of n.

estimation tasks. More specifically, we have the following guarantees (assume n = maxk=1,2,3 nk

and r = maxk=1,2,3 rk):

• Tensor completion. Under the Bernoulli sampling model, ScaledGD (with an additional scaled

projection step) succeeds with high probability as long as the sample complexity is above the order

of n3/2r5/2κ3 log3 n. Connected to some well-reckoned conjecture on computational barriers, it is

widely believed that no polynomial-time algorithm will be successful if the sample complexity is

less than the order of n3/2 for tensor completion [BM16], which suggests the near-optimality of the

sample complexity of ScaledGD. Compared with existing approaches (cf. Table 4.1), ScaledGD

provides the first computationally efficient algorithm with a near-linear run time at the near-

optimal sample complexity.

• Tensor regression. Under the Gaussian design, ScaledGD succeeds with high probability as long

as the sample complexity is above the order of n3/2r3/2κ2. Our analysis of local convergence is

more general, based on the tensor restricted isometry property (TRIP) [RSS17], and is there-

fore applicable to various measurement ensembles that satisfy TRIP. Compared with existing

approaches (cf. Table 4.2), ScaledGD achieves competitive performance guarantees in terms of

sample and iteration complexities with a low per-iteration cost in the factor space.

67



1 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Figure 4.1: The iteration complexities of ScaledGD (this thesis) and regularized GD to achieve
‖X−X ?‖F ≤ 10−3‖X ?‖F with respect to different condition numbers for low-rank tensor completion
with n1 = n2 = n3 = 100, r1 = r2 = r3 = 5, and the probability of observation p = 0.1.

Figure 4.1 illustrates the number of iterations needed to achieve a relative error ‖X −X ?‖F ≤

10−3‖X ?‖F for ScaledGD and regularized GD [HWZ20] under different condition numbers for tensor

completion under the Bernoulli sampling model (see Section 4.4 for experimental settings). Clearly,

the iteration complexity of GD deteriorates at a super linear rate with respect to the condition

number κ, while ScaledGD enjoys an iteration complexity that is independent of κ as predicted by

our theory. Indeed, with a seemingly small modification, ScaledGD takes merely 17 iterations to

achieve the desired accuracy over the entire range of κ, while GD takes thousands of iterations even

with a moderate condition number!

4.1.3 Additional related works

Comparison with Chapter 2. While the proposed ScaledGD algorithm is inspired by its matrix

variant in Chapter 2 by utilizing the same principle of preconditioning, the exact form of precondi-

tioning for tensor factorization needs to be designed carefully and is not trivially obtainable. There

are many technical novelty in our analysis compared to Chapter 2. In the matrix case, the low-rank

matrix is factorized as LR>, and only two factors are needed to be estimated. In contrast, in

the tensor case, the low-rank tensor is factorized as (U ,V ,W ) · S, and four factors are needed

to be estimated, leading to a much more complicated nonconvex landscape than the matrix case.
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In fact, when specialized to matrix completion, our ScaledGD algorithm does not degenerate to

the same matrix variant in Chapter 2, due to overparamterization and estimating four factors at

once, but still maintains the near-optimal performance guarantees. In addition, the tensor algebra

possesses unique algebraic properties that requires much more delicate treatments in the analysis.

For the local convergence, we establish new concentration properties regarding tensors, which are

more challenging compared to the matrix counterparts; for spectral initialization, we establish the

effectiveness of a second-order spectral method in the Tucker setting for the first time.

Low-rank tensor estimation with Tucker decomposition. [FG20] analyzed the landscape of

Tucker decomposition for tensor factorization, and showed benign landscape properties with suitable

regularizations. [GRY11,MHWG14] developed convex relaxation algorithms based on minimizing

the nuclear norms of unfolded tensors for tensor regression, and similar approaches were developed

in [HMGW15] for robust tensor completion. However, unfolding-based approaches typically result

in sub-optimal sample complexities since they do not fully exploit the tensor structure. [YZ16]

studied directly minimizing the nuclear norm of the tensor, which regrettably is not computa-

tionally tractable. [XY19] proposed a Grassmannian gradient descent algorithm over the factors

other than the core tensor for exact tensor completion, whose iteration complexity is not character-

ized. The statistical rates of tensor completion, together with a spectral method, were investigated

in [ZX18, XYZ21], and uncertainty quantifications were recently dealt with in [XZZ20]. Besides

the entrywise i.i.d. observation models for tensor completion, [Zha19,KS13] considered tailored or

adaptive observation patterns to improve the sample complexity. In addition, for low-rank ten-

sor regression, [RYC19] proposed a general convex optimization approach based on decomposable

regularizers, and [RSS17] developed an iterative hard thresholding algorithm. [CRY19] proposed

projected gradient descent algorithms with respect to the tensors, which have larger computation

and memory footprints than the factored gradient descent approaches taken in this thesis. [ARB20]

proposed a tensor regression model where the tensor is simultaneously low-rank and sparse in the

Tucker decomposition. A concurrent work [LZ21] proposed a Riemannian Gauss-Newton algo-

rithm, and obtained an impressive quadratic convergence rate for tensor regression (see Table 4.2).

Compared with ScaledGD, this algorithm runs in the tensor space, and the update rule is more
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sophisticated with higher per-iteration cost by solving a least-squares problem and performing a

truncated HOSVD every iteration.

Last but not least, many scalable algorithms for low-rank tensor estimation have been pro-

posed in the literature of numerical optimization [XY13, GQ14], where preconditioning has long

been recognized as a key idea to accelerate convergence [KM16,KSV14]. In particular, if we con-

strain U ,V ,W to be orthonormal, i.e. on the Grassmanian manifold, the preconditioners used

in ScaledGD degenerate to the ones investigated in [KM16], which was a Riemannian manifold

gradient algorithm under a scaled metric. On the other hand, ScaledGD does not assume or-

thonormality of the factors, therefore is conceptually simpler to understand and avoids complicated

manifold operations (e.g. geodesics, retraction). Furthermore, none of the prior algorithmic devel-

opments [KM16,KSV14] are endowed with the type of global performance guarantees with linear

convergence rate as developed herein.

Provable low-rank tensor estimation with other decompositions. Complementary to ours,

there have also been a growing number of algorithms proposed for estimating a low-rank ten-

sor adopting the CP decomposition. Examples include sum-of-squares hierarchy [BM16, PS17],

gradient descent [CLPC19,CPC20,HZC20], alternating minimization [JO14,LM20], spectral meth-

ods [MS18,CCFM21,CLC+21], atomic norm minimization [LPST15,GPY19], to name a few. [GM20]

studied the optimization landscape of overcomplete CP tensor decomposition. Beyond the CP

decomposition, [ZA16] developed exact tensor completion algorithms under the so-called tensor-

SVD [ZEA+14], and [LAAW19,LFLY18] studied low-tubal-rank tensor recovery. We will not elab-

orate further since these algorithms are not directly comparable to ours due to the difference in

models.

Nonconvex optimization for statistical estimation. Our work contributes to the recent

strand of works that develop provable nonconvex methods for statistical estimation, including

but not limited to low-rank matrix estimation [SL16,CW15,MWCC19,CCD+21,MLC21,PKCS17,

CLL20], phase retrieval [CLS15, WGE18, CC17, ZZLC17, ZCL16, CCFM19], quadratic sampling

[LMCC19], dictionary learning [SQW17a,SQW17b,BJS18], neural network training [BGW20,FCL20,
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HV19], and blind deconvolution [LLSW19,MWCC19,SC21]; the readers are referred to the overviews

[CLC19,CC18,ZQW20] for further references.

4.1.4 A primer on tensor algebra and notation

We end this section with a primer on some useful tensor algebra; for a more detailed exposition,

see [KB09, SDLF+17]. We define the unfolding (i.e. flattening) operations of tensors and matrices

as following.

• The mode-1 matricizationM1(X ) ∈ Rn1×(n2n3) of a tensorX ∈ Rn1×n2×n3 is given by [M1(X )]
(
i1, i2+

(i3 − 1)n2

)
= X (i1, i2, i3), for 1 ≤ ik ≤ nk, k = 1, 2, 3; M2(X ) andM3(X ) can be defined in a

similar manner.

• The vectorization vec(X ) ∈ Rn1n2n3 of a tensor X ∈ Rn1×n2×n3 is given by [vec(X )]
(
i1 + (i2 −

1)n1 + (i3 − 1)n1n2

)
= X (i1, i2, i3) for 1 ≤ ik ≤ nk, k = 1, 2, 3.

• The vectorization vec(M) ∈ Rn1n2 of a matrixM ∈ Rn1×n2 is given by [vec(M)]
(
i1+(i2−1)n1

)
=

M(i1, i2) for 1 ≤ ik ≤ nk, k = 1, 2.

The vectorization of a tensor is related to the Kronecker product as

vec((U ,V ,W ) · S) = vec
(
UM1(S)(W ⊗ V )>

)
= (W ⊗ V ⊗U) vec(S). (4.6a)

The inner product between two tensors is defined as

〈X 1,X 2〉 =
∑
i1,i2,i3

X 1(i1, i2, i3)X 2(i1, i2, i3).

A useful relation is that

〈X 1,X 2〉 = 〈Mk(X 1),Mk(X 2)〉, k = 1, 2, 3, (4.6b)

which allows one to move between the tensor representation and the unfolded matrix representation.

The Frobenius norm of a tensor is defined as ‖X‖F =
√
〈X ,X 〉. In addition, the following basic
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relations, which follow straightforwardly from analogous matrix relations after applying matriciza-

tions, will be proven useful:

(U ,V ,W ) ·
(
(Q1,Q2,Q3) · S

)
= (UQ1,V Q2,WQ3) · S, (4.6c)

〈(U ,V ,W ) · S,X 〉 =
〈
S, (U>,V >,W>) ·X

〉
, (4.6d)

‖(Q1,Q2,Q3) · S‖F ≤ ‖Q1‖‖Q2‖‖Q3‖‖S‖F, (4.6e)

where Qk ∈ Rrk×rk , k = 1, 2, 3. Define the `∞ norm of X as ‖X‖∞ = maxi1,i2,i3 |X (i1, i2, i3)|.

With slight abuse of terminology, denote

σmax(X ) = max
k=1,2,3

σmax(Mk(X )), and σmin(X ) = min
k=1,2,3

σmin(Mk(X ))

as the maximum and minimum nonzero singular values of X . In addition, define the spectral norm

of a tensor X as

‖X‖ = sup
uk∈Rnk : ‖uk‖2≤1

|〈X , (u1,u2,u3) · 1〉| .

Note that ‖X‖ 6= σmax(X ) in general. For a tensor X of multilinear rank at most r = (r1, r2, r3),

its spectral norm is related to the Frobenius norm as [JYZ17,LNSU18]

‖X‖F ≤
√
r1r2r3

r
‖X‖, where r = max

k=1,2,3
rk. (4.7)

Higher-order SVD. For a general tensor X , define Hr(X ) as the top-r higher-order SVD

(HOSVD) of X with r = (r1, r2, r3), given by

Hr(X ) = (U ,V ,W ) · S, (4.8a)

where U is the top-r1 left singular vectors ofM1(X ), V is the top-r2 left singular vectors ofM2(X ),

W is the top-r3 left singular vectors of M3(X ), and S = (U>,V >,W>) ·X is the core tensor.
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Equivalently, we denote

(U ,V ,W ,S) = HOSVDr(X ) (4.8b)

as the output to the HOSVD procedure described above with the multilinear rank r. In contrast to

the matrix case, HOSVD is not guaranteed to yield the optimal rank-r approximation of X (which

is NP-hard [HL13] to find). Nevertheless, it yields a quasi-optimal approximation [Hac12] in the

sense that

‖X −Hr(X )‖F ≤
√

3 inf
X̃ : rank(Mk(X̃ ))≤rk

‖X − X̃‖F. (4.9)

There are many variants or alternatives of HOSVD in the literature, e.g. successive HOSVD, alter-

nating least squares (ALS), higher-order orthogonal iteration (HOOI) [DLDMV00a,DLDMV00b],

etc. These methods compute truncated singular value decompositions in successive or alternat-

ing manners, to either reduce the computational costs or pursue a better (but still quasi-optimal)

approximation. We will not delve into the details of these variants; interested readers can con-

sult [Hac12].

4.2 Main Results

4.2.1 Models and assumptions

We assume the ground truth tensor X ? = [X ?(i1, i2, i3)] ∈ Rn1×n2×n3 admits the following Tucker

decomposition

X ?(i1, i2, i3) =

r1∑
j1=1

r2∑
j2=1

r3∑
j3=1

U?(i1, j1)V?(i2, j2)W?(i3, j3)S?(j1, j2, j3), 1 ≤ ik ≤ nk, (4.10)

or more compactly,

X ? = (U?,V?,W?) · S?, (4.11)
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where S? = [S?(j1, j2, j3)] ∈ Rr1×r2×r3 is the core tensor of multilinear rank r = (r1, r2, r3), and

U? = [U?(i1, j1)] ∈ Rn1×r1 , V? = [V?(i2, j2)] ∈ Rn2×r2 , W? = [W?(i3, j3)] ∈ Rn3×r3 are the factor

matrices of each mode. LetMk(X ?) be the mode-k matricization of X ?, we have

M1(X ?) = U?M1(S?)(W? ⊗ V?)
>, (4.12a)

M2(X ?) = V?M2(S?)(W? ⊗U?)
>, (4.12b)

M3(X ?) = W?M3(S?)(V? ⊗U?)
>. (4.12c)

It is straightforward to see that the Tucker decomposition is not uniquely specified: for any invertible

matrices Qk ∈ Rrk×rk , k = 1, 2, 3, one has

(U?,V?,W?) · S? = (U?Q1,V?Q2,W?Q3) ·((Q−1
1 ,Q−1

2 ,Q−1
3 ) · S?).

We shall fix the ground truth factors such that U?, V? and W? are orthonormal matrices consisting

of left singular vectors in each mode. Furthermore, the core tensor S? is related to the singular

values in each mode as

Mk(S?)Mk(S?)> = Σ2
?,k, k = 1, 2, 3, (4.13)

where Σ?,k := diag[σ1(Mk(X ?)), . . . , σrk(Mk(X ?))] is a diagonal matrix where the diagonal el-

ements are composed of the nonzero singular values of Mk(X ?) and rk = rank(Mk(X ?)) for

k = 1, 2, 3.

Key parameters. Of particular interest is a sort of condition number of X ?, which plays an

important role in governing the computational efficiency of first-order algorithms.

Definition 10 (Condition number). The condition number of X ? is defined as

κ :=
σmax(X ?)

σmin(X ?)
=

maxk=1,2,3 σmax(Mk(X ?))

mink=1,2,3 σmin(Mk(X ?))
. (4.14)

Another parameter is the incoherence parameter, which plays an important role in governing
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the well-posedness of low-rank tensor completion.

Definition 11 (Incoherence). The incoherence parameter of X ? is defined as

µ := max

{
n1

r1
‖U?‖22,∞,

n2

r2
‖V?‖22,∞,

n3

r3
‖W?‖22,∞

}
. (4.15)

Roughly speaking, a small incoherence parameter ensures that the energy of the tensor is

evenly distributed across its entries, so that a small random subset of its elements still reveals

substantial information about the latent structure of the entire tensor.

4.2.2 ScaledGD for tensor completion

Assume that we have observed a subset of entries in X ?, given as Y = PΩ(X ?), where PΩ :

Rn1×n2×n3 7→ Rn1×n2×n3 is a projection such that

[PΩ(X ?)](i1, i2, i3) =


X ?(i1, i2, i3), if (i1, i2, i3) ∈ Ω,

0, otherwise.
(4.16)

Here, Ω is generated according to the Bernoulli observation model in the sense that

(i1, i2, i3) ∈ Ω independently with probability p ∈ (0, 1]. (4.17)

The goal of tensor completion is to recover the tensor X ? from its partial observation PΩ(X ?),

which can be achieved by minimizing the loss function

min
F=(U ,V ,W ,S)

L(F ) :=
1

2p

∥∥PΩ

(
(U ,V ,W ) · S

)
−Y

∥∥2

F
. (4.18)

Preparation: a scaled projection operator. To guarantee faithful recovery from partial ob-

servations, the underlying low-rank tensor X ? needs to be incoherent (cf. Definition 11) to avoid

ill-posedness. One typical strategy, frequently employed in the matrix setting, to ensure the inco-

herence condition is to trim the rows of the factors [CW15] after the gradient update. For ScaledGD,

this needs to be done in a careful manner to preserve the equivariance with respect to invertible
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transforms. Motivated by Chapter 2, we introduce the scaled projection as follows,

(U ,V ,W ,S) = PB(U+,V+,W+,S+), (4.19)

where B > 0 is the projection radius, and

U(i1, :) =

(
1 ∧ B
√
n1‖U+(i1, :)Ŭ>+ ‖2

)
U+(i1, :), 1 ≤ i1 ≤ n1;

V (i2, :) =

(
1 ∧ B
√
n2‖V+(i2, :)V̆ >+ ‖2

)
V+(i2, :), 1 ≤ i2 ≤ n2;

W (i3, :) =

(
1 ∧ B
√
n3‖W+(i3, :)W̆>

+ ‖2

)
W+(i3, :), 1 ≤ i3 ≤ n3;

S = S+.

Here, we recall Ŭ+, V̆+, W̆+ are analogously defined in (4.5) using (U+,V+,W+,S+). As can be

seen, each row of U+ (resp. V+ and W+) is scaled by a scalar based on the row `2 norms of U+Ŭ
>
+

(resp. V+V̆
>

+ and W+W̆
>
+ ), which is the mode-1 (resp. mode-2 and mode-3) matricization of the

tensor (U+,V+,W+) · S+. It is a straightforward observation that the projection can be computed

efficiently.

Algorithm description. With the scaled projection PB(·) defined in hand, we are in a position

to describe the details of the proposed ScaledGD algorithm, summarized in Algorithm 4. It consists

of two stages: spectral initialization followed by iterative refinements using the scaled projected

gradient updates in (4.20). It is worth emphasizing that all the factors are updated simultaneously,

which can be achieved in a parallel manner to accelerate computation run time.

For the spectral initialization, we take advantage of the subspace estimators proposed in

[CLC+21,XYZ21] for highly unbalanced matrices. Specifically, we estimate the subspace spanned by

U? by that spanned by top-r1 eigenvectors U+ of the diagonally-deleted Gram matrix of p−1M1(Y),

denoted as

Poff-diag(p−2M1(Y)M1(Y)>),
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Algorithm 4 ScaledGD for low-rank tensor completion
Input parameters: step size η, multilinear rank r = (r1, r2, r3), probability of observation p,
projection radius B.
Spectral initialization: Let U+ be the top-r1 eigenvectors of Poff-diag(p−2M1(Y)M1(Y)>),
and similarly for V+,W+, and S+ = p−1(U>+ ,V

>
+ ,W>

+ ) · Y . Set (U0,V0,W0,S0) =
PB
(
U+,V+,W+,S+

)
.

Scaled projected gradient updates: for t = 0, 1, 2, . . . , T − 1 do

Ut+ = Ut − ηM1(Gt)Ŭt

(
Ŭ>t Ŭt

)−1
,

Vt+ = Vt − ηM2(Gt)V̆t
(
V̆ >t V̆t

)−1
,

Wt+ = Wt − ηM3(Gt)W̆t

(
W̆>

t W̆t

)−1
,

St+ = St − η
(

(U>t Ut)
−1U>t , (V

>
t Vt)

−1V >t , (W
>
t Wt)

−1W>
t

)
· Gt,

(4.20)

where Gt := 1
p (PΩ ((Ut,Vt,Wt) · St)−Y), Ŭt, V̆t, and W̆t are defined in (4.5). Set

(Ut+1,Vt+1,Wt+1,St+1) = PB(Ut+,Vt+,Wt+,St+).

and the other two factors V+ and W+ are estimated similarly. The core tensor is then estimated as

S+ = p−1(U>+ ,V
>

+ ,W>
+ ) · Y ,

which is consistent with its estimation in the HOSVD procedure. To ensure the initialization is

incoherent, we pass it through the scaled projection operator to obtain the final initial estimate:

(U0,V0,W0,S0) = PB
(
U+,V+,W+,S+

)
.

Theoretical guarantees. The following theorem establishes the performance guarantee of ScaledGD

for tensor completion, as soon as the sample size is sufficiently large.

Theorem 8 (ScaledGD for tensor completion). Suppose that X ? is µ-incoherent, nk & ε−1
0 µr

3/2
k κ2

for k = 1, 2, 3, and that p satisfies

pn1n2n3 & ε−1
0

√
n1n2n3µ

3/2r5/2κ3 log3 n+ ε−2
0 nµ3r4κ6 log5 n

for some small constant ε0 > 0. Set the projection radius as B = CB
√
µrσmax(X ?) for some
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constant CB ≥ (1 + ε0)3. If the step size obeys 0 < η ≤ 2/5, then with probability at least 1− c1n
−c2

for universal constants c1, c2 > 0, for all t ≥ 0, the iterates of Algorithm 4 satisfy

‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3ε0(1− 0.6η)tσmin(X ?).

Theorem 8 ensures that ScaledGD finds an ε-accurate estimate, i.e. ‖(Ut,Vt,Wt) · St −X ?‖F ≤

εσmin(X ?), in at most O(log(1/ε)) iterations, which is independent of the condition number of X ?,

as long as the sample complexity is large enough. Assuming that µ = O(1) and r∨κ� nδ for some

small constant δ to keep only terms with dominating orders of n, the sample complexity simplifies

to

pn1n2n3 & n3/2r5/2κ3 log3 n,

which is near-optimal in view of the conjecture that no polynomial-time algorithm will be successful

if the sample complexity is less than the order of n3/2 for tensor completion [BM16]. Compared

with existing algorithms collected in Table 4.1, ScaledGD is the first algorithm that simultaneously

achieves a near-optimal sample complexity and a near-linear run time complexity in a provable

manner. In particular, while [YZ16, XY19] achieve a sample complexity comparable to ours, the

tensor nuclear norm minimization algorithm in [YZ16] is NP-hard to compute, and the Grassman-

nian GD in [XY19] does not offer an explicit iteration complexity, except that each iteration can be

computed in a polynomial time.

4.2.3 ScaledGD for tensor regression

Now we move on to another tensor recovery problem—tensor regression with Gaussian design.

Assume that we have access to a set of observations given as

yi = 〈Ai,X ?〉, i = 1, . . . ,m, or concisely, y = A(X ?), (4.21)
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Algorithm 5 ScaledGD for low-rank tensor regression
Input parameters: step size η, multilinear rank r = (r1, r2, r3).
Spectral initialization: Let (U0,V0,W0,S0) = HOSVDr(A∗(y)) defined in (4.8b).
Scaled gradient updates: for t = 0, 1, 2, . . . , T − 1

Ut+1 = Ut − ηM1(Gt)Ŭ>t
(
Ŭ>t Ŭt

)−1
,

Vt+1 = Vt − ηM2(Gt)V̆ >t
(
V̆ >t V̆t

)−1
,

Wt+1 = Wt − ηM3(Gt)W̆>
t

(
W̆>

t W̆t

)−1
,

St+1 = St − η
(

(U>t Ut)
−1U>t , (V

>
t Vt)

−1V >t , (W
>
t Wt)

−1W>
t

)
· Gt,

(4.23)

where Gt := A∗(A((Ut,Vt,Wt) · St)− y), Ŭt, V̆t, and W̆t are defined in (4.5).

where Ai ∈ Rn1×n2×n3 is the i-th measurement tensor composed of i.i.d. Gaussian entries drawn

from N (0, 1/m), and A(X ) = {〈Ai,X 〉}mi=1 is a linear map from Rn1×n2×n3 to Rm, whose adjoint

operator is given by A∗(y) =
∑m

i=1 yiAi. The goal of tensor regression is to recover X ? from y,

by leveraging the low-rank structure of X ?. This can be achieved by minimizing the following loss

function

min
F=(U ,V ,W ,S)

L(F ) :=
1

2
‖A((U ,V ,W ) · S)− y‖22 . (4.22)

The proposed ScaledGD algorithm to minimize (4.22) is described in Algorithm 5, where the

algorithm is initialized by applying HOSVD to A∗(y), followed by scaled gradient updates given in

(4.23).

Theoretical guarantees. Encouragingly, we can guarantee that ScaledGD provably recovers the

ground truth tensor as long as the sample size is sufficiently large, which is given in the following

theorem.

Theorem 9 (ScaledGD for tensor regression). For tensor regression with Gaussian design, suppose

that m satisfies

m & ε−1
0

√
n1n2n3r

3/2κ2 + ε−2
0 (nr2κ4 log n+ r4κ2)
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for some small constant ε0 > 0. If the step size obeys 0 < η ≤ 2/5, then with probability at least

1− c1n
−c2 for universal constants c1, c2 > 0, for all t ≥ 0, the iterates of Algorithm 5 satisfy

‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3ε0(1− 0.6η)tσmin(X ?).

Theorem 9 ensures that ScaledGD finds an ε-accurate estimate, i.e. ‖(Ut,Vt,Wt) · St −X ?‖F ≤

εσmin(X ?), in at most O(log(1/ε)) iterations, which is independent of the condition number of X ?,

as long as the sample complexity satisfies

m & n3/2r3/2κ2,

where again we keep only terms with dominating orders of n. Compared with the regularized

GD [HWZ20], ScaledGD achieves a low computation complexity with robustness to ill-conditioning,

improving its iteration complexity by a factor of κ2, and does not require any explicit regularization.

4.3 Analysis

In this section, we provide some intuitions and sketch the proof of our main theorems. Before

continuing, we highlight an important property of ScaledGD: if starting from an equivalent estimate

Ũt = UtQ1, Ṽt = VtQ2, W̃t = WtQ3, S̃t = (Q−1
1 ,Q−1

2 ,Q−1
3 ) · St

for some invertible matrices Qk ∈ GL(rk) (i.e. replacing Ut by UtQ1, and so on), by plugging the

above estimate in (4.4) it is easy to check that the next iterate of ScaledGD is covariant with respect

to invertible transforms, meaning

Ũt+1 = Ut+1Q1, Ṽt+1 = Vt+1Q2, W̃t+1 = Wt+1Q3, S̃t+1 = (Q−1
1 ,Q−1

2 ,Q−1
3 ) · St+1.

80



In other words, ScaledGD produces an invariant sequence of low-rank tensor estimates

X t = (Ut,Vt,Wt) · St = (Ũt, Ṽt, W̃t) · S̃t

regardless of the representation of the tensor factors with respect to the underlying symmetry group.

This is one of the key reasons behind the insensitivity of ScaledGD to ill-conditioning and factor

imbalance.

A key scaled distance metric. To track the progress of ScaledGD throughout the entire tra-

jectory, one needs a distance metric that properly takes account of the factor ambiguity due to

invertible transforms, as well as the effect of scaling. To that end, we define the scaled distance

between factor quadruples F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?) as

dist2(F ,F?) := inf
Qk∈GL(rk)

‖(UQ1 −U?)Σ?,1‖2F + ‖(V Q2 − V?)Σ?,2‖2F + ‖(WQ3 −W?)Σ?,3‖2F

+
∥∥(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
∥∥2

F
. (4.24)

The distance is closely related to the `2 distances between the corresponding tensors. In fact, it can

be shown that as long as F and F? are not too far apart, i.e. dist(F ,F?) ≤ 0.2σmin(X ?), it holds

that dist(F ,F?) � ‖(U ,V ,W ) · S −X ?‖F in the sense that (see Appendix C.1.1 for proofs):

1
3 ‖(U ,V ,W ) · S −X ?‖F ≤ dist(F ,F?) ≤ (

√
2 + 1)3/2 ‖(U ,V ,W ) · S −X ?‖F .

4.3.1 A warm-up case: ScaledGD for tensor factorization

To shed light on the design insights as well as the proof techniques, we now introduce the ScaledGD

algorithm for the tensor factorization problem, which aims to minimize the following loss function:

L(F ) :=
1

2
‖(U ,V ,W ) · S −X ?‖2F =

1

2
‖Mk ((U ,V ,W ) · S −X ?) ‖2F, k = 1, 2, 3, (4.25)
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where the last equality follows from (4.6b). Recalling the update rule (4.4), ScaledGD proceeds as

Ut+1 = Ut − ηM1 (X t −X ?) Ŭ
>
t

(
Ŭ>t Ŭt

)−1
,

Vt+1 = Vt − ηM2 (X t −X ?) V̆
>
t

(
V̆ >t V̆t

)−1
,

Wt+1 = Wt − ηM3 (X t −X ?) W̆
>
t

(
W̆>

t W̆t

)−1
,

St+1 = St − η
(

(U>t Ut)
−1U>t , (V

>
t Vt)

−1V >t , (W
>
t Wt)

−1W>
t

)
· (X t −X ?) ,

(4.26)

where X t = (Ut,Vt,Wt) · St, with Ŭt, V̆t, and W̆t defined in (4.5).

ScaledGD as a quasi-Newton algorithm. One way to think of ScaledGD is through the lens of

quasi-Newton methods, by equivalently rewriting the ScaledGD update (4.26) as

vec(Ft+1) = vec(Ft)− ηH−1
t ∇vec(F )L(Ft), (4.27)

whereHt := diag
[
∇2

vec(U),vec(U)L(Ft), ∇2
vec(V ),vec(V )L(Ft), ∇2

vec(W ),vec(W )L(Ft), ∇2
vec(S),vec(S)L(Ft)

]
.

To see this, it is straightforward to check that the diagonal blocks of the Hessian of the loss function

(4.25) are given precisely as

∇2
vec(U),vec(U)L(Ft) = (Ŭ>t Ŭt)⊗ In1 ,

∇2
vec(V ),vec(V )L(Ft) = (V̆ >t V̆t)⊗ In2 ,

∇2
vec(W ),vec(W )L(Ft) = (W̆>

t W̆t)⊗ In3 ,

∇2
vec(S),vec(S)L(Ft) = (W>

t Wt)⊗ (V >t Vt)⊗ (U>t Ut).

(4.28)

Therefore, by vectorization of (4.26), ScaledGD can be regarded as a quasi-Newton method where

the preconditioner is designed as the inverse of the diagonal approximation of the Hessian.

Guarantees for tensor factorization. Fortunately, ScaledGD admits a κ-independent conver-

gence rate for tensor factorization, as long as the initialization is not too far from the ground truth.

This is summarized in Theorem 10, whose proof can be found in Appendix C.2.

Theorem 10. For tensor factorization (4.25), suppose that the initialization satisfies dist(F0,F?) ≤
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ε0σmin(X ?) for some small constant ε0 > 0, then for all t ≥ 0, the iterates of ScaledGD in (4.26)

satisfy

dist(Ft,F?) ≤ (1− 0.7η)tε0σmin(X ?), and ‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3ε0(1− 0.7η)tσmin(X ?),

as long as the step size satisfies 0 < η ≤ 2/5.

Intuition of the proof. Let us provide some intuitions to facilitate understanding by examining

a toy case, where all factors become scalars, and the loss function with respect to the factor f =

[u, v, w, s]> becomes

L(f) =
1

2
(uvws− u?v?w?s?)2 =

1

2
(uvws− s?)2,

where u? = v? = w? = 1, and the ground truth is f? = [1, 1, 1, s?]
>. The gradient and the diagonal

entries of the Hessian are given respectively as

∇L(f) = (uvws− s?)[vws, uws, uvs, uvw]>,

Pdiag(∇2L(f)) = diag[(vws)2, (uws)2, (uvs)2, (uvw)2].

Moreover, the Hessian matrix at the ground truth is given by

∇2L(f?) = [s?, s?, s?, 1]>[s?, s?, s?, 1].

With these in mind, the ScaledGD update rule in (4.26) and the scaled distance in (4.24) reduce

respectively to

ft+1 = ft − ηPdiag
−1(∇2L(ft))∇L(ft),

dist(f ,f?) = inf
Q=diag[q1,q2,q3,(q1q2q3)−1]

∥∥∥Pdiag
1/2(∇2L(f?))(Qf − f?)

∥∥∥
2
.
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Consequently, we can bound the distance between ft+1 and f? as

dist(ft+1,f?)
(i)

≤
∥∥∥Pdiag

1/2(∇2L(f?))
(
Qt

(
ft − ηPdiag

−1(∇2L(ft))∇L(ft)
)
− f?

)∥∥∥
2

(ii)
=
∥∥∥Pdiag

1/2(∇2L(f?))
(
Qtft − ηPdiag

−1(∇2L(Qtft))∇L(Qtft)− f?
)∥∥∥

2

(iii)
≈
∥∥∥(I − ηPdiag

−1/2(∇2L(f?))∇2L(f?)Pdiag
−1/2(∇2L(f?))

)
Pdiag

1/2(∇2L(f?))(Qtft − f?)
∥∥∥

2

(iv)
=
∥∥∥(I − η11>)Pdiag

1/2(∇2L(f?))(Qtft − f?)
∥∥∥

2

where (i) follows from replacing Q by the optimal alignment matrix Qt between ft and f?, (ii)

follows from the scaling invariance of the iterates, and (iii) holds approximately as long as Qtft is

sufficiently close to f?, which is made precise in the formal proof. The last line (iv) follows from

that the scaled Hessian matrix obeys

Pdiag
−1/2(∇2L(f?))∇2L(f?)Pdiag

−1/2(∇2L(f?)) = 11>.

By the optimality condition for Qt (see Lemma 32), it follows that Pdiag
1/2(∇2L(f?))(Qtft − f?)

is approximately parallel to 1. Thus, dist(ft+1,f?) contracts at a constant rate as long as the step

size η is set as a small constant obeying 0 < η ≤ 2/5.

4.3.2 Proof outline for tensor completion (Theorem 8)

Armed with the insights from the tensor factorization case, we now provide a proof outline of

our main theorems on tensor completion and tensor regression, both of which can be viewed as

perturbations of tensor factorization with incomplete measurements, combined with properly de-

signed initialization schemes. We start with the guarantee for the spectral initialization for tensor

completion.

Lemma 9 (Initialization for tensor completion). Suppose that X ? is µ-incoherent, nk & ε−1
0 µr

3/2
k κ2

for k = 1, 2, 3, and that p satisfies

pn1n2n3 & ε−1
0

√
n1n2n3µ

3/2r5/2κ2 log3 n+ ε−2
0 nµ2r4κ4 log5 n
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for some small constant ε0 > 0. Then with overwhelming probability (i.e. at least 1 − c1n
−c2), the

spectral initialization before projection F+ = (U+,V+,W+,S+) for low-rank tensor completion in

Algorithm 4 satisfies

dist(F+,F?) ≤ ε0σmin(X ?).

Under a suitable sample size condition, Lemma 9 guarantees that dist(F+,F?) ≤ ε0σmin(X ?)

for some small constant ε0. To proceed, we need to know what would happen for the spectral

estimate F0 = PB
(
F+

)
after projection. In fact, the scaled projection is non-expansive w.r.t. the

scaled distance. More importantly, the output is guaranteed to be incoherent. Both properties are

stated in the following lemma.

Lemma 10 (Properties of scaled projection). Suppose that X ? is µ-incoherent, and dist(F+,F?) ≤

εσmin(X ?) for some ε < 1. Set B = CB
√
µrσmax(X ?) for some constant CB ≥ (1 + ε)3, then

F = (U ,V ,W ,S) := PB(F+) satisfies the non-expansiveness property

dist(F ,F?) ≤ dist(F+,F?),

and the incoherence condition

√
n1‖UŬ>‖2,∞ ∨

√
n2‖V V̆ >‖2,∞ ∨

√
n3‖WW̆>‖2,∞ ≤ B. (4.29)

Now we are ready to state the following lemma that ensures the linear contraction of the

iterative refinements given by the ScaledGD updates.

Lemma 11 (Local refinements for tensor completion). Suppose that X ? is µ-incoherent, and that

p satisfies

pn1n2n3 &
√
n1n2n3µ

3/2r2κ3 log3 n+ nµ3r4κ6 log5 n.

Under an event E which happens with overwhelming probability, if the t-th iterate satisfies dist(Ft,F?) ≤
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εσmin(X ?) for some small constant ε, then ‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3 dist(Ft,F?). In addition,

if the t-th iterate satisfies the incoherence condition

√
n1‖UtŬ

>
t ‖2,∞ ∨

√
n2‖VtV̆ >t ‖2,∞ ∨

√
n3‖WtW̆

>
t ‖2,∞ ≤ B,

with B = CB
√
µrσmax(X ?) for some constant CB ≥ (1+ε)3, then the (t+1)-th iterate of Algorithm 4

satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?),

and the incoherence condition

√
n1‖Ut+1Ŭ

>
t+1‖2,∞ ∨

√
n2‖Vt+1V̆

>
t+1‖2,∞ ∨

√
n3‖Wt+1W̆

>
t+1‖2,∞ ≤ B.

By combining Lemma 9 and Lemma 10, we can ensure that the spectral initialization F0 =

PB(F+) satisfies the conditions required in Lemma 11, which further enables us to repetitively apply

Lemma 11 to finish the proof of Theorem 8. The proofs of the above three lemmas are provided in

Appendix C.3.

4.3.3 Proof outline for tensor regression (Theorem 9)

Now we turn to the proof outline for tensor regression (cf. Theorem 9). To begin with, we show

that the local linear convergence of ScaledGD can be guaranteed more generally, as long as the

measurement operator A(·) satisfies the so-called tensor restricted isometry property (TRIP), which

is formally defined as follows.

Definition 12 (TRIP [RSS17]). The linear map A : Rn1×n2×n3 7→ Rm is said to obey the rank-r

TRIP with δr ∈ (0, 1), if for all tensor X ∈ Rn1×n2×n3 of multilinear rank at most r = (r1, r2, r3),

one has

(1− δr)‖X‖2F ≤ ‖A(X )‖2F ≤ (1 + δr)‖X‖2F.
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If A(·) satisfies rank-2r TRIP with δ2r ∈ (0, 1), then for any two tensors X 1,X 2 ∈ Rn1×n2×n3

of multilinear rank at most r = (r1, r2, r3), we have

(1− δ2r)‖X 1 −X 2‖2F ≤ ‖A(X 1 −X 2)‖2F ≤ (1 + δ2r)‖X 1 −X 2‖2F.

In other words, the distance between any pair of rank-r tensors X 1 and X 2 is approximately

preserved after the linear map A(·). The TRIP has been investigated extensively, where [RSS17,

Theorem 2] stated that if Ai’s are composed of i.i.d. sub-Gaussian entries, TRIP holds with high

probability provided that m & δ−2
r (nr + r3). TRIP also holds for more structured measurement

ensembles such as the random Fourier mapping [RSS17]. With the TRIP of A(·) in hand, we have

the following theorem regarding the local linear convergence of ScaledGD as long as the iterates are

close to the ground truth.

Lemma 12 (Local refinements for tensor regression). Suppose that A(·) obeys the 2r-TRIP with a

small constant δ2r . 1. If the t-th iterate satisfies dist(Ft,F?) ≤ εσmin(X ?) for some small constant

ε, then ‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3 dist(Ft,F?). In addition, if the step size obeys 0 < η < 2/5,

then the (t+ 1)-th iterate of Algorithm 5 satisfies

dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?).

Therefore, ScaledGD converges linearly as long as the sample size m & nr + r3 under the

Gaussian design, when initialized properly. Unfortunately, obtaining a desired initialization turns

out to be a major roadblock and requires a substantially higher sample size, which has been studied

extensively for tensor regression [LZ21,HWZ20,ZLRY20]. Under the Gaussian design, we have the

following guarantee for the spectral initialization scheme that invokes HOSVD in Algorithm 5.

Lemma 13 (Initialization for tensor regression). Suppose that {Ai}mi=1 are composed of i.i.d. N (0, 1/m)

entries, and that m satisfies

m & ε−1
0

√
n1n2n3r

3/2κ2 + ε−2
0 (nr2κ4 log n+ r4κ2)
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for some small constant ε0 > 0. Then with overwhelming probability, the spectral initialization for

low-rank tensor regression in Algorithm 5 satisfies

dist(F0,F?) ≤ ε0σmin(X ?).

Combining Lemma 12 and Lemma 13 finishes the proof of Theorem 9. Their proofs can be

found in Appendix C.4.

4.4 Numerical Experiments

We illustrate the numerical performance of ScaledGD for tensor completion to corroborate our

findings, especially its computational advantage over the regularized GD algorithm [HWZ20] that is

closest to our design. Their algorithm was originally proposed for tenser regression, nevertheless, it

naturally applies to tensor completion and exhibits similar results. Since the scaled projection does

not visibly impact the performance, we implement ScaledGD without performing the projection.

Also, we empirically find that the regularization used in [HWZ20] has no visible benefits, hence

we implement GD without the regularization. For simplicity, we set n1 = n2 = n3 = n, and

r1 = r2 = r3 = r. Each entry of the tensor is observed i.i.d. with probability p ∈ (0, 1].

Phase transition of ScaledGD. We construct the ground truth tensor X ? = (U?,V?,W?) · S?

by generating U?, V? and W? as random orthonormal matrices, and the core tensor S? composed of

i.i.d. standard Gaussian entries, i.e. S?(j1, j2, j3) ∼ N (0, 1) for 1 ≤ jk ≤ r, k = 1, 2, 3. For each set

of parameters, we run 100 random tests and count the success rate, where the recovery is regarded

as successful if the recovered tensor has a relative error ‖X T − X ?‖F/‖X ?‖F ≤ 10−3. Figure 4.2

illustrates the success rate with respect to the (scaled) sample size for different tensor sizes n, which

implies that the recovery is successful when the sample size is moderately large.

Comparison with GD. We next compare the performance of ScaledGD with GD. For a fair

comparison, both ScaledGD and GD start from the same spectral initialization, and we use the
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Figure 4.2: The success rate of ScaledGD with respect to the scaled sample size for tensor completion
with r = 5, when the core tensor is composed of i.i.d. standard Gaussian entries, for various tensor
size n.

following update rule of GD as

Ut+1 = Ut − ησ−2
max(X ?)∇UL(Ft),

Vt+1 = Vt − ησ−2
max(X ?)∇V L(Ft),

Wt+1 = Wt − ησ−2
max(X ?)∇WL(Ft),

St+1 = St − η∇SL(Ft).

(4.30)

Throughout the experiments, we used the ground truth value σmax(X ?) in running (4.30), while

in practice, this parameter needs to estimated; to put it differently, the step size of GD is not

scale-invariant, whereas the step size of ScaledGD is.

To ensure the ground truth tensor X ? = (U?,V?,W?) · S? has a prescribed condition number

κ, we generate the core tensor S? ∈ Rr×r×r according to S?(j1, j2, j3) = σj1/
√
r if j1 + j2 + j3 ≡ 0

(mod r) and 0 otherwise, where {σj1}1≤j1≤r take values spaced equally from 1 to 1/κ. It then

follows that σmax(X ?) = 1, σmin(X ?) = 1/κ, and the condition number of X ? is exactly κ.

Figure 4.3 illustrates the convergence speed of ScaledGD and GD under different step sizes,

where we plot the relative error after at most 80 iterations (the algorithm is terminated if the relative

error exceeds 102 following an excessive step size). It can be seen that ScaledGD outperforms GD
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Figure 4.3: The relative errors of ScaledGD and GD after 80 iterations with respect to different step
sizes η from 0.1 to 0.9 for tensor completion with n = 100, r = 5, p = 0.1.

quite significantly even when the step size of GD is optimized for its performance. Hence, we will fix

η = 0.3 for the rest of the comparisons for both ScaledGD and GD without hurting the conclusions.
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Figure 4.4: The relative errors of ScaledGD and GD with respect to (a) the iteration count and (b)
run time (in seconds) under different condition numbers κ = 1, 2, 5, 10 for tensor completion with
n = 100, r = 5, and p = 0.1.

Figure 4.4 compares the relative errors of ScaledGD and GD for tensor completion with respect

to the iteration count and run time (in seconds) under different condition numbers κ = 1, 2, 5, 10.

This experiment verifies that ScaledGD converges rapidly at a rate independent of the condition
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number, and matches the fastest rate of GD with perfect conditioning κ = 1. In contrast, the

convergence rate of GD deteriorates quickly with the increase of κ even at a moderate level. The

advantage of ScaledGD carries over to the run time as well, since the scaled gradient only adds a

negligible overhead to the gradient computation.
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Figure 4.5: The relative errors of random-initialized ScaledGD and GD with respect to the iteration
count under different condition numbers κ = 1, 2, 5, 10 for tensor completion with n = 100, r = 5,
p = 0.1.

We next examine the performance of ScaledGD and GD when randomly initialized. Here,

we initialize U0,V0,W0 composed of i.i.d. entries sampled from N (0, 1/n), and S0 composed of

i.i.d. entries sampled from N (0, ‖Y‖2F/(pr3)). Figure 4.5 plots the relative errors of ScaledGD

and GD under different condition numbers κ = 1, 2, 5, 10, using the same random initialization.

Surprisingly, while GD gets stuck in a flat region before entering the phase of linear convergence,

ScaledGD seems to be quite insensitive to the choice of initialization, and converges almost in the

same fashion as the case with spectral initialization.

Finally, we examine the performance of ScaledGD when the observations are corrupted by

additive noise, where we assume the noisy observations are given by Y = PΩ(X ? +W), with

W(i1, i2, i3) ∼ N (0, σ2
w) composed of i.i.d. Gaussian entries. Denote the signal-to-noise ratio as

SNR := 10 log10
‖X ?‖2F
n3σ2

w
in dB. Figure 4.6 demonstrates the robustness of ScaledGD, by plotting the

relative errors with respect to the iteration count under SNR = 40, 60, 80dB. Here, the ground

truth tensor X ? is constructed in the same manner as Figure 4.2, where its condition number is
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Figure 4.6: The relative errors of ScaledGD and GD with respect to the iteration count under
signal-to-noise ratios SNR = 40, 60, 80dB for tensor completion with n = 100, r = 5, and p = 0.1.

approximately κ ≈ 2.6. It can been seen that ScaledGD reaches the same statistical error as GD,

but at a much faster rate. In addition, the convergence speeds are not impacted by the noise levels.

4.5 Discussions

This chapter develops ScaledGD algorithm over the factor space for low-rank tensor estimation

(i.e. completion and regression) with provable sample and computational guarantees, leading to

a highly scalable approach especially when the ground truth tensor is ill-conditioned and high-

dimensional. There are several future directions that are worth exploring, which we briefly discuss

below.

• Preconditioning for other tensor decompositions. The use of preconditioning will likely also accel-

erate vanilla gradient descent for low-rank tensor estimation using other decomposition models,

such as CP decomposition [CLPC19], which is worth investigating.

• Entrywise error control for tensor completion. In this chapter, we focused on controlling the `2

error of the reconstructed tensor in tensor completion, whereas another strong form of statistical

guarantees deals with the `∞ error, as done in [MWCC19] for matrix completion and in [CLPC19]

for tensor completion with CP decomposition. It is hence of interest to develop similar strong
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entrywise error guarantees of ScaledGD for tensor completion with Tucker decomposition.

• Random initialization? As evident from the numerical experiment in Figure 4.5, ScaledGD works

remarkably well even from a random initialization, which requires us to go beyond the local ge-

ometry and pursue a further understanding of the global landscape of the optimization geometry.
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Chapter 5

Robust Low-rank Tensor Estimation

5.1 Introduction

The modern data deluge has created a growing number of applications involving multi-dimensional

or multi-attribute datasets, examples including video surveillance, hyperspectral imaging, neu-

roimaging, social network analysis, and so on. Tensors arise naturally as a suitable data structure

that captures the underlying multi-way interactions, offering advantages over the matrix counter-

part [KB09, SDLF+17]. An important problem, known as tensor regression, that arises frequently

across different applications is to recover a tensor from a small number of its linear measurements,

given by

y ≈ A(X ?),

where X ? ∈ Rn1×n2×···×nK is a K-way tensor, y ∈ Rm is the collected measurements, and A(·) is a

linear map that models the data collection process. For ease of presentation, we consider the case

K = 3 throughout the paper, while our results hold for the general case without difficulty.

In practice, due to sensor failures and malicious attacks, it is common that the collected

measurements may suffer from undesirable and unknown corruptions, which are possibly adversarial.

Consequently, there is an imminent need to develop low-rank tensor recovery algorithms that are

provably robust and efficient, which are still lacking. To fill the gap, instead of minimizing the

smooth loss function in (5.3), which is known to be vulnerable to outliers, we resort to the least

absolute deviations (LAD) loss, which measures the residual sum of absolute errors:

min
F=(U ,V ,W ,C)

‖A((U ,V ,W ) · C)− y‖1 . (5.1)
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Leveraging recent insights in preconditioning for ill-conditioned low-rank matrix and tensor estima-

tion [TMC21a,TMC21b,TMPB+21], we propose an efficient algorithm for solving the nonconvex

composite optimization problem in (5.3), namely the scaled subgradient method (ScaledSM), which

incorporates carefully-designed preconditioners in the local updates to preserve the equivariance of

the low-rank parameterization. Under the Gaussian design, the proposed method provably finds

the ground truth at a constant linear rate that is independent of the condition number even under

a constant fraction of outliers, as long as it is initialized properly. The algorithm is much more

scalable than its counterpart without the preconditioners, especially when the ground truth tensor

is ill-conditioned. To the best of our knowledge, our work provides the first provable algorithm that

achieves robust low-rank tensor regression from corrupted measurements, together with a fast rate

of convergence independent of the condition number of the ground truth tensor.

5.1.1 Related works

Low-rank tensor recovery has attracted significant research interest in recent years, where many

algorithms have been developed with provable performance guarantees, e.g. [RYC19, HMGW15,

BM16,RSS17,CRY19, ZLRY20,HWZ20,TMPB+21, CLPC19, LM20]. Moreover, spectral methods

[MS18,CLC+21,CCFM21] are often applied to provide a smart initialization from which iterative

algorithms refine locally to enable global convergence despite the presence of nonconvexity. However,

a majority of these algorithms are designed with respect to the smooth least-squares loss and

therefore their performance is very sensitive to the existence of outliers.

Motivated by the success of robust principal component analysis for the matrix setting

[CLMW11], convex relaxation approaches are proposed in [GQ14,HMGW15,LFC+16] via unfold-

ing the tensor of interest and invoking matrix-based algorithms. However, their computational

complexity is often prohibitive for large-scale problems. On the other end, the LAD loss is not

new to handle outliers, and has been adopted for high-dimensional signal recovery [LSC17,DR19,

CDDD19,LZMCSV20,TMC21b,CCD+21,MF21], where the subgradient method has been analyzed

in [DR19,CCD+21,MF21]. Another popular strategy is to adaptively truncate or prune outliers in

an iterative manner guided by quantile statistics, as done in [ZCL16,LCZL20,ZCL18,YPCC16].
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The preconditioner design in our approach is directly inspired by ScaledGDmethod to optimize

the smooth loss function (5.3) for low-rank tensor regression. In particular, the proposed subgradient

method can be viewed as the tensor counterpart of Chapter 3, which generalizes the preconditioner

designs to the nonsmooth setting.

5.1.2 Chapter organization

The rest of this chapter is organized as follows. Section 5.2 describes the problem formulation as

well as the proposed algorithms. Section 5.3 provides the theoretical guarantees in terms of both

statistical and computational complexities. Section 5.4 illustrates the performance of the proposed

algorithms through numerical examples. Finally, we conclude in Section 5.5.

5.2 Formulation and Proposed Algorithms

Let X ? := [X ?(i1, i2, i3)] ∈ Rn1×n2×n3 be the ground truth tensor that satisfies the Tucker decompo-

sition in (4.10). Consider the robust low-rank tensor regression problem, in which the measurements

are corrupted by sparse outliers. Specifically, assume that we have access to a set of linear observa-

tions of X ?, where the measurement vector y = {yi}mi=1 is given as

y = A(X ?) + s, (5.2)

where A(X ?) = {〈Ai,X ?〉}mi=1 is the measurement operator, with Ai ∈ Rn1×n2×n3 denoting the

i-th sensing tensor, and s = {si}mi=1 corresponds to the outlier vector. We assume the outlier s is

a sparse vector obeying ‖s‖0 = psm for some 0 ≤ ps ≤ 1, which means that ‖s‖0 is much smaller

than its ambient dimension m, so that only a small fraction ps of the measurements are corrupted.

However, the corrupted entries can take arbitrary or adversarial magnitudes. The goal is to recover

the low-rank tensor X ? from y in a robust and scalable manner.

To cope with the outliers, it is natural to minimize the least absolute deviation (LAD) loss of
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the measurements, given by

f(X ) := ‖A(X )− y‖1 =
m∑
i=1

|〈Ai,X 〉 − yi| . (5.3)

In addition, to take advantage of the low-rank structure and minimize complexity, we factorize the

tensor X = (U ,V ,W ) · C with U ∈ Rn1×r1 , V ∈ Rn2×r2 , W ∈ Rn3×r3 and C ∈ Rr1×r2×r3 , and

optimize the factors directly via the following unconstrained composite optimization problem:

min
F=(U ,V ,W ,C)

L(F ) := f
(
(U ,V ,W ) · C

)
, (5.4)

which is nonconvex and nonsmooth.

A natural idea to optimize (5.4) is via subgradient descent, which updates the factor quadruple

iteratively according to

Ut+1 = Ut − ηtM1(Gt)Ŭt,

Vt+1 = Vt − ηtM2(Gt)V̆t,

Wt+1 = Wt − ηtM3(Gt)W̆t,

Ct+1 = Ct − ηt
(
U>t ,V

>
t ,W

>
t

)
· Gt.

(5.5)

where ηt > 0 is the step size, Gt = A∗(sgn(A(X t))− y) ∈ ∂X f(X t) is a subgradient of f(X ) with

respect to X at X t = (Ut,Vt,Wt) · Ct, and A∗(·) is the adjoint operator of A(·). Furthermore, the

following short-hand notation is introduced:

Ŭt := (Wt ⊗ Vt)M1(Ct)>, (5.6a)

V̆t := (Wt ⊗Ut)M2(Ct)>, (5.6b)

W̆t := (Vt ⊗Ut)M3(Ct)>. (5.6c)

While simple and straightforward, this approach tends to converge very slowly when the tensor is

ill-conditioned. Inspired by Chapter 4, we propose to update the iterate along a preconditioned or
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scaled direction of the subgradient, leading to the following scaled subgradient method (ScaledSM):

Ut+1 = Ut − ηtM1(Gt)Ŭt(Ŭ
>
t Ŭt)

−1,

Vt+1 = Vt − ηtM2(Gt)V̆t(V̆ >t V̆t)
−1,

Wt+1 = Wt − ηtM3(Gt)W̆t(W̆
>
t W̆t)

−1,

Ct+1 = Ct − ηt
(

(U>t Ut)
−1U>t , (V

>
t Vt)

−1V >t , (W
>
t Wt)

−1W>
t

)
· Gt.

(5.7)

Step size schedules. We still need to specify the choice of the step size ηt > 0, which needs to

be carefully scheduled in accordance with the scaled update. Specifically, we apply a geometrically

decaying learning rate schedule [Gof77] with proper scaling,

ηt :=
λqt

Nt
, (5.8)

where q ∈ (0, 1), λ > 0 and

N2
t :=

∥∥∥M1(Gt)Ŭt(Ŭ
>
t Ŭt)

−1/2
∥∥∥2

F
+
∥∥∥M2(Gt)V̆t(V̆ >t V̆t)

−1/2
∥∥∥2

F
+
∥∥∥M3(Gt)W̆t(W̆

>
t W̆t)

−1/2
∥∥∥2

F

+
∥∥∥((U>t Ut)

−1/2U>t , (V
>
t Vt)

−1/2V >t , (W
>
t Wt)

−1/2W>
t

)
· Gt
∥∥∥2

F
. (5.9)

In fact, Nt can be viewed as the norm of the subgradient under a scaled metric compatible with our

preconditioners. This choice is informed by our theory.

Remark 7. Ideally, one might be tempted to apply the Polyak’s step size, given by ηt := f(X t)−f(X ?)
N2
t

.

However, it is impractical due to the unknown optimal function value f(X ?). As illustrated in Chap-

ter 3, geometric step size achieves the same performance as Polyak’s step size when parameters λ, q

are tuned appropriately.

Equivariance to low-rank parameterization. A crucial property of ScaledSM is that the update

of the low-rank tensor X t is invariant w.r.t. the low-rank parameterization. Suppose that at the

t-th iteration, we reparameterize the factor Ft = (Ut,Vt,Wt,Ct) by

F̃t = (UtQ1,VtQ2,WtQ3, (Q
−1
1 ,Q−1

2 ,Q−1
3 ) · Ct)
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via any invertible matrices Qk ∈ GL(rk), k = 1, 2, 3, where both Ft and F̃t correspond to the same

low-rank tensor X t = (Ut,Vt,Wt) · Ct. By checking (5.7) and (5.8), it is straightforward to verify

that the next iterate from F̃t follow the same change of parameterization, i.e.

F̃t+1 = (Ut+1Q1,Vt+1Q2,Wt+1Q3, (Q
−1
1 ,Q−1

2 ,Q−1
3 ) · Ct+1),

which ensures the update rule of ScaledSM is insensitive to the imbalance of the factors in the

low-rank parameterization—a key property that is absent in the vanilla subgradient method and

contributes to the performance gain.

5.2.1 Truncated spectral initialization

Inspired by the median-truncated spectral initialization in [ZCL16,LCZL20,ZCL18], we propose a

tensor counterpart that is tailored to our problem to initialize ScaledSM. Denote ytrunc as the vector

after discarding ps fraction of measurements with largest magnitudes:

[ytrunc]i =


yi

1−ps , if |yi| ≤ |y|(dpsme)

0, otherwise
, (5.10)

where |y|(k) denotes the k-th largest amplitude of y. Let A∗(·) be the adjoint operator of A(·). The

truncated spectral initialization F0 = (U0,V0,W0,C0) is then given by

(U0,V0,W0) · C0 = Hr(A∗(ytrunc)), (5.11)

i.e. the top-r higher-order SVD (HOSVD) of A∗(ytrunc). More specifically, U0 (resp. V0 and W0)

is the top-r1 (resp. r2 and r3) left singular vectors of M1(A∗(ytrunc)) (resp. M2(A∗(ytrunc)) and

M3(A∗(ytrunc))), and C0 = (U>0 ,V
>

0 ,W>
0 ) ·A∗(ytrunc) is the core tensor. The full algorithm is

stated in Algorithm 6.
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Algorithm 6 ScaledSM for low-rank tensor recovery
Input parameters: parameters λ, q, multilinear rank r = (r1, r2, r3), fraction of outlier ps.
Truncated spectral initialization: Let (U0,V0,W0) · C0 = Hr(A∗(ytrunc)), with ytrunc defined
in (5.10).
Scaled subgradient updates: for t = 0, 1, 2, . . . , T − 1 do

Ut+1 := Ut − ηtM1(Gt)Ŭt(Ŭ
>
t Ŭt)

−1,

Vt+1 := Vt − ηtM2(Gt)V̆t(V̆ >t V̆t)
−1,

Wt+1 := Wt − ηtM3(Gt)W̆t(W̆
>
t W̆t)

−1,

Ct+1 := Ct − ηt
(

(U>t Ut)
−1U>t , (V

>
t Vt)

−1V >t , (W
>
t Wt)

−1W>
t

)
· Gt,

(5.12)

where Gt := A∗(sgn(A((Ut,Vt,Wt) · Ct)− y)), Ŭt, V̆t, W̆t are defined in (5.6), and ηt = λqt/Nt

is defined in (5.8).

5.3 Theoretical Guarantees

We focus on presenting the local linear convergence of the proposed scaled subgradient method

while leaving a complete account of global convergence to the future work.

5.3.1 A general theory of local linear convergence

Our convergence guarantees are built on standard geometric assumptions [DR19,CCD+21,TMC21b]

on the loss function f(·) for the analysis of subgradient-type algorithms, which are defined as follows.

Definition 13 (Restricted Lipschitz continuity). A function f : Rn1×n2×n3 7→ R is said to be rank-r

restricted L-Lipschitz continuous for some quantity L > 0 if

|f(X 1)− f(X 2)| ≤ L‖X 1 −X 2‖F

holds for any X 1,X 2 ∈ Rn1×n2×n3 such that X 1 −X 2 has multilinear rank at most 2r.

Definition 14 (Restricted sharpness). A function f : Rn1×n2×n3 7→ R is said to be rank-r restricted

µ-sharp w.r.t. X ? for some µ > 0 if

f(X )− f(X ?) ≥ µ‖X −X ?‖F
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holds for any X ∈ Rn1×n2×n3 with multilinear rank at most r.

The condition number of a function f(·) that is both restricted L-Lipschitz continuous and

µ-sharp is then denoted by

χf := L/µ. (5.13)

To fully capture the performance progress of ScaledSM, we measure the performance of factor

quadruple F = (U ,V ,W ,C) using the following error metric (4.24), which takes into consideration

both the representation ambiguity of the factorization up to invertible transforms and the scaling

of different factors due to the presence of preconditioners. With this metric in place, we state the

linear convergence of the scaled subgradient method when f(·) satisfies both the rank-r restricted

L-Lipschitz continuity and µ-sharpness, as follows.

Theorem 11 (Scaled subgradient method with exact convergence). Suppose that f(X ) : Rn1×n2×n3 7→

R is convex in X , and satisfies rank-r restricted L-Lipschitz continuity and µ-sharpness (cf. Defi-

nitions 13 and 14). In addition, suppose that the initialization F0 satisfies

dist(F0,F?) ≤ 10−3σmin(X ?)/χf , (5.14)

and the scaled subgradient method adopts the geometrically decaying step sizes in (5.8) with λ =

(
√

2−1)3/2

2 10−3σmin(X ?)/χ
2
f and q = (1− 0.016/χ2

f )1/2. Then for all t ≥ 0, the iterates satisfy

dist(Ft,F?) ≤ (1− 0.016/χ2
f )t/210−3σmin(X ?)/χf , and ‖X t −X ?‖F ≤ 3 dist(Ft,F?).

Theorem 11 shows that the iterates of the scaled subgradient method converges at a linear

rate; to reach ε-accuracy, i.e. ‖X t−X ?‖F ≤ εσr(X ?), it takes at most O(χ2
f log 1

ε ) iterations, which,

importantly, is independent of the condition number κ of X ?. Finally, it is worth noting that the

choices of constants in Theorem 11 are pessimistic to simplify analysis.
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5.3.2 Case study: Gaussian design

It turns out that under the Gaussian design, where all the sensing tensors are composed of i.i.d. Gaus-

sian entries, the resulting loss function obeys the rank-r restricted L-Lipschitz continuity and µ-

sharpness with high probability.

Proposition 5 (Gaussian designs). Let n := max{n1, n2, n3} and r := max{r1, r2, r3}. Suppose

that [A(X )]i = 1
m〈Ai,X 〉 with tensors A1, . . . ,Am composed of i.i.d. standard Gaussian entries.

Then with probability exceeding 1− c1n
−c2, the loss function f(X ) = ‖A(X )−y‖1 in (5.3) satisfies

the rank-r restricted L-Lipschitz continuity and µ-sharpness with

L = 0.8, µ = 0.79(1− 2ps), (5.15)

as long as m ≥ C(nr+r3)
(1−2ps)2

log
(

1
1−2ps

)
. Here, C, c1, c2 are some universal constants.

Combining Theorem 11 and Proposition 5, it is guaranteed that ScaledSM reaches ε-accuracy

in at most O
(

1
(1−2ps)2

log 1
ε

)
iterations, as long as the sample size is sufficiently large. This amounts

to a near-optimal sample complexity O(nr + r3) and dimension-free iteration complexity O(log 1
ε )

even with a constant fraction of outliers.

Beyond the Gaussian design, similar guarantees can be established when the observation

operator satisfies the mixed-norm restricted isometry property; see Chapter 3.

5.4 Numerical Experiments

In this section, we provide numerical experiments to illustrate the performance of ScaledSM for

robust tensor regression, and highlight its advantage compared to the vanilla subgradient method

(SM). For simplicity, we set n1 = n2 = n3 = 30, and r1 = r2 = r3 = 3, and collect m = 5000 mea-

surements according to (5.2). The ground truth tensor X ? is generated as described in Section 4.4.

Each outlier is independently generated as si = s̄iΩi, with Ωi drawn from a Bernoulli distribution

with parameter ps, and s̄i drawn from a uniform distribution in [−10‖A(X ?)‖∞, 10‖A(X ?)‖∞].

Both ScaledSM and SM start from the same truncated spectral initialization (5.11), and for sim-
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Figure 5.1: Performance comparisons of ScaledSM and the vanilla subgradient method (SM). (a)
The reconstruction errors ‖X t − X ?‖F/‖X ?‖F w.r.t. the iteration count under different condition
numbers κ = 1, 2, 5, 10 with ps = 0.2. (b) The iteration complexities w.r.t. the condition number for
achieving ‖X t−X ?‖F ≤ 10−3‖X ?‖F with ps = 0.2. (c) The reconstruction errors w.r.t. the iteration
count under different amounts of outliers ps = 0.1, 0.2, 0.3, 0.4 with κ = 5. (d) The reconstruction
errors w.r.t. the iteration count under different signal-to-noise ratios SNR = 40, 60, 80dB with
ps = 0.2.

plicity use the Polyak’s step size (which amounts to using optimally tuned geometrically decaying

step sizes).

Fig. 5.1 shows the detailed performance comparison of ScaledSM and SM under various set-

tings. Thanks to the robustness of the least absolute deviation loss, both algorithms converge

linearly in the presence of outliers. Noteworthily, ScaledSM converges as a fast rate that is indepen-
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dent with κ, while SM slows down dramatically as κ increases. Indeed, the iteration complexity of

SM grows super linearly with respect to condition number κ, while ScaledSM takes a much smaller

number of iterations and therefore accelerates the convergence for ill-conditioned instances.

5.5 Conclusions

This chapter develops a scaled subgradient method for robust low-rank tensor regression from cor-

rupted measurements, by minimizing the a natural nonsmooth and nonconvex loss function based on

least absolute deviation. In addition, it is of interest to examine if it is possible to develop provably

efficient algorithms for the related problem called robust low-rank tensor completion [LFC+16].
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Appendix A

Proofs for Low-rank Matrix Estimation

A.1 Technical Lemmas

This section gathers several useful lemmas that will be used in the appendix. Throughout all lemmas,

we use X? to denote the ground truth low-rank matrix, with its compact SVD as X? = U?Σ?V
>
? ,

and the stacked factor matrix is defined as F? =

L?
R?

 =

U?Σ
1/2
?

V?Σ
1/2
?

.

A.1.1 New distance metric

We begin with the investigation of the new distance metric (2.8), where the matrix Q that attains

the infimum, if exists, is called the optimal alignment matrix between F and F?; see (2.9). Notice

that (2.8) involves a minimization problem over an open set (the set of invertible matrices). Hence

the minimizer, i.e. the optimal alignment matrix between F and F? is not guaranteed to be attained.

Fortunately, a simple sufficient condition guarantees the existence of the minimizer; see the lemma

below.

Lemma 14. Fix any factor matrix F =

L
R

 ∈ R(n1+n2)×r. Suppose that

dist(F ,F?) =

√
inf

Q∈GL(r)

∥∥∥(LQ−L?) Σ
1/2
?

∥∥∥2

F
+
∥∥∥(RQ−> −R?) Σ

1/2
?

∥∥∥2

F
< σr(X?), (A.1)

then the minimizer of the above minimization problem is attained at some Q ∈ GL(r), i.e. the

optimal alignment matrix Q between F and F? exists.

Proof. In view of the condition (A.1) and the definition of infimum, one knows that there must exist
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a matrix Q̄ ∈ GL(r) such that

√∥∥∥(LQ̄−L?
)
Σ

1/2
?

∥∥∥2

F
+
∥∥∥(RQ̄−> −R?

)
Σ

1/2
?

∥∥∥2

F
≤ εσr(X?),

for some ε obeying 0 < ε < 1. It further implies that

∥∥∥(LQ̄−L?
)
Σ
−1/2
?

∥∥∥ ∨ ∥∥∥(RQ̄−> −R?

)
Σ
−1/2
?

∥∥∥ ≤ ε.
Invoke Weyl’s inequality |σr(A)− σr(B)| ≤ ‖A−B‖, and use that σr(L?Σ

−1/2
? ) = σr(U?) = 1 to

obtain

σr(LQ̄Σ
−1/2
? ) ≥ σr(L?Σ−1/2

? )−
∥∥∥(LQ̄−L?

)
Σ
−1/2
?

∥∥∥ ≥ 1− ε. (A.2)

In addition, it is straightforward to verify that

inf
Q∈GL(r)

∥∥∥(LQ−L?) Σ
1/2
?

∥∥∥2

F
+
∥∥∥(RQ−> −R?

)
Σ

1/2
?

∥∥∥2

F
(A.3)

= inf
H∈GL(r)

∥∥∥(LQ̄H −L?
)
Σ

1/2
?

∥∥∥2

F
+
∥∥∥(RQ̄−>H−> −R?

)
Σ

1/2
?

∥∥∥2

F
. (A.4)

Indeed, if the minimizer of the second optimization problem (cf. (A.4)) is attained at some H, then

Q̄H must be the minimizer of the first problem (A.3). Therefore, from now on, we focus on proving

that the minimizer of the second problem (A.4) is attained at some H. In view of (A.3) and (A.4),

one has

inf
H∈GL(r)

∥∥∥(LQ̄H −L?
)
Σ

1/2
?

∥∥∥2

F
+
∥∥∥(RQ̄−>H−> −R?

)
Σ

1/2
?

∥∥∥2

F

≤
∥∥∥(LQ̄−L?

)
Σ

1/2
?

∥∥∥2

F
+
∥∥∥(RQ̄−> −R?

)
Σ

1/2
?

∥∥∥2

F
,

Clearly, for any Q̄H to yield a smaller distance than Q̄, H must obey

√∥∥∥(LQ̄H −L?
)
Σ

1/2
?

∥∥∥2

F
+
∥∥∥(RQ̄−>H−> −R?

)
Σ

1/2
?

∥∥∥2

F
≤ εσr(X?).
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It further implies that

∥∥∥(LQ̄H −L?
)
Σ
−1/2
?

∥∥∥ ∨ ∥∥∥(RQ̄−>H−> −R?

)
Σ
−1/2
?

∥∥∥ ≤ ε.
Invoke Weyl’s inequality |σ1(A)− σ1(B)| ≤ ‖A−B‖, and use that σ1(L?Σ

−1/2
? ) = σ1(U?) = 1 to

obtain

σ1(LQ̄HΣ
−1/2
? ) ≤ σ1(L?Σ

−1/2
? ) +

∥∥∥(LQ̄H −L?
)
Σ
−1/2
?

∥∥∥ ≤ 1 + ε. (A.5)

Combine (A.2) and (A.5), and use the relation σr(A)σ1(B) ≤ σ1(AB) to obtain

σr(LQ̄Σ
−1/2
? )σ1(Σ

1/2
? HΣ

−1/2
? ) ≤ σ1(LQ̄HΣ

−1/2
? ) ≤ 1 + ε

1− ε
σr(LQ̄Σ

−1/2
? ).

As a result, one has σ1(Σ
1/2
? HΣ

−1/2
? ) ≤ 1+ε

1−ε .

Similarly, one can show that σ1(Σ
1/2
? H−>Σ

−1/2
? ) ≤ 1+ε

1−ε , equivalently, σr(Σ
1/2
? HΣ

−1/2
? ) ≥

1−ε
1+ε . Combining the above two arguments reveals that the minimization problem (A.4) is equivalent

to the constrained problem:

minimize
H∈GL(r)

∥∥∥(LQ̄H −L?
)
Σ

1/2
?

∥∥∥2

F
+
∥∥∥(RQ̄−>H−> −R?

)
Σ

1/2
?

∥∥∥2

F

s.t.
1− ε
1 + ε

≤ σr(Σ1/2
? HΣ

−1/2
? ) ≤ σ1(Σ

1/2
? HΣ

−1/2
? ) ≤ 1 + ε

1− ε
.

Notice that this is a continuous optimization problem over a compact set. Apply the Weierstrass

extreme value theorem to finish the proof.

With the existence of the optimal alignment matrix in place, the following lemma provides

the first-order necessary condition for the minimizer.

Lemma 15. For any factor matrix F =

L
R

 ∈ R(n1+n2)×r, suppose that the optimal alignment
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matrix

Q = argmin
Q∈GL(r)

∥∥∥(LQ−L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(RQ−> −R?)Σ

1/2
?

∥∥∥2

F

between F and F? exists, then Q obeys

(LQ)>(LQ−L?)Σ? = Σ?(RQ−> −R?)
>RQ−>. (A.6)

Proof. Expand the squares in the definition of Q to obtain

Q = argmin
Q∈GL(r)

tr
(

(LQ−L?)
>(LQ−L?)Σ?

)
+ tr

(
(RQ−> −R?)

>(RQ−> −R?)Σ?

)
.

Clearly, the first order necessary condition (i.e. the gradient is zero) yields

2L>(LQ−L?)Σ? − 2Q−>Σ?(RQ−> −R?)
>RQ−> = 0,

which implies the optimal alignment criterion (A.6).

Last but not least, we connect the newly proposed distance to the usual Frobenius norm

in Lemma 16, the proof of which is a slight modification to [TBS+16, Lemma 5.4] and [GJZ17,

Lemma 41].

Lemma 16. For any factor matrix F =

L
R

 ∈ R(n1+n2)×r, the distance between F and F? satisfies

dist(F ,F?) ≤
(√

2 + 1
)1/2
‖LR> −X?‖F.

Proof. Suppose that X := LR> has compact SVD as X = UΣV >. Without loss of generality, we

can assume that F =

UΣ1/2

V Σ1/2

, since any factorization of LR> yields the same distance. Introduce
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two auxiliary matrices F̄ :=

 UΣ1/2

−V Σ1/2

 and F̄? :=

 U?Σ
1/2
?

−V?Σ1/2
?

. Apply the dilation trick to obtain

2

 0 X

X> 0

 = FF> − F̄ F̄>, 2

 0 X?

X>? 0

 = F?F
>
? − F̄?F̄

>
? .

As a result, the squared Frobenius norm of X −X? is given by

8‖X −X?‖2F =
∥∥∥FF> − F̄ F̄> − F?F

>
? + F̄?F̄

>
?

∥∥∥2

F

=
∥∥∥FF> − F?F

>
?

∥∥∥2

F
+
∥∥∥F̄ F̄> − F̄?F̄

>
?

∥∥∥2

F
− 2 tr

(
(FF> − F?F

>
? )(F̄ F̄> − F̄?F̄

>
? )
)

= 2
∥∥∥FF> − F?F

>
?

∥∥∥2

F
+ 2‖F>F̄?‖2F + 2‖F>? F̄ ‖2F

≥ 2
∥∥∥FF> − F?F

>
?

∥∥∥2

F
,

where we use the facts that
∥∥FF> − F?F

>
?

∥∥2

F
=
∥∥F̄ F̄> − F̄?F̄

>
?

∥∥2

F
and F>F̄ = F>? F̄? = 0.

Let O := sgn(F>F?)
1 be the optimal orthonormal alignment matrix between F and F?.

Denote ∆ := FO−F?. Follow the same argument as [TBS+16, Lemma 5.14] and [GJZ17, Lemma 41]

to obtain

4‖X −X?‖2F ≥
∥∥∥F?∆> + ∆F>? + ∆∆>

∥∥∥2

F

= tr
(

2F>? F?∆
>∆ + (∆>∆)2 + 2(F>? ∆)2 + 4F>? ∆∆>∆

)
= tr

(
2F>? F?∆

>∆ + (∆>∆ +
√

2F>? ∆)2 + (4− 2
√

2)F>? ∆∆>∆
)

= tr
(

2(
√

2− 1)F>? F?∆
>∆ + (∆>∆ +

√
2F>? ∆)2 + (4− 2

√
2)F>? FO∆>∆

)
≥ tr

(
4(
√

2− 1)Σ?∆
>∆

)
= 4(
√

2− 1)
∥∥∥(FO − F?)Σ

1/2
?

∥∥∥2

F
,

where the last inequality follows from the facts that F>? F? = 2Σ? and that F>? FO is positive
1Let ASB> be the SVD of F>F?, then the matrix sign is sgn(F>F?) := AB>.
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semi-definite. Therefore we obtain

∥∥∥(FO − F?)Σ
1/2
?

∥∥∥
F
≤
(√

2 + 1
)1/2
‖X −X?‖F.

This in conjunction with dist(F ,F?) ≤ ‖(FO − F?)Σ
1/2
? ‖F yields the claimed result.

A.1.2 Matrix perturbation bounds

Lemma 17. For any L ∈ Rn1×r,R ∈ Rn2×r, denote ∆L := L− L? and ∆R := R −R?. Suppose

that ‖∆LΣ
−1/2
? ‖ ∨ ‖∆RΣ

−1/2
? ‖ < 1, then one has

∥∥∥L(L>L)−1Σ
1/2
?

∥∥∥ ≤ 1

1− ‖∆LΣ
−1/2
? ‖

; (A.7a)∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥ ≤ 1

1− ‖∆RΣ
−1/2
? ‖

; (A.7b)

∥∥∥L(L>L)−1Σ
1/2
? −U?

∥∥∥ ≤ √2‖∆LΣ
−1/2
? ‖

1− ‖∆LΣ
−1/2
? ‖

; (A.7c)

∥∥∥R(R>R)−1Σ
1/2
? − V?

∥∥∥ ≤ √2‖∆RΣ
−1/2
? ‖

1− ‖∆RΣ
−1/2
? ‖

. (A.7d)

Proof. We only prove claims (A.7a) and (A.7c) on the factor L, while the claims on the factor R

follow from a similar argument. We start to prove (A.7a). Notice that

∥∥∥L(L>L)−1Σ
1/2
?

∥∥∥ =
1

σr(LΣ
−1/2
? )

.

In addition, invoke Weyl’s inequality to obtain

σr(LΣ
−1/2
? ) ≥ σr(L?Σ−1/2

? )− ‖∆LΣ
−1/2
? ‖ = 1− ‖∆LΣ

−1/2
? ‖,

where we have used the fact that U? = L?Σ
−1/2
? satisfies σr(U?) = 1. Combine the preceding two

relations to prove (A.7a).

We proceed to prove (A.7c). Combine L>? U? = Σ
1/2
? and (In1 − L(L>L)−1L>)L = 0 to
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obtain the decomposition

L(L>L)−1Σ
1/2
? −U? = −L(L>L)−1∆>LU? + (In1 −L(L>L)−1L>)∆LΣ

−1/2
? .

The fact that L(L>L)−1∆>LU? and (In1 −L(L>L)−1L>)∆LΣ
−1/2
? are orthogonal implies

∥∥∥L(L>L)−1Σ
1/2
? −U?

∥∥∥2
≤
∥∥∥L(L>L)−1∆>LU?

∥∥∥2
+
∥∥∥(In1 −L(L>L)−1L>)∆LΣ

−1/2
?

∥∥∥2

≤
∥∥∥L(L>L)−1Σ

1/2
?

∥∥∥2
‖∆LΣ

−1/2
? ‖2 +

∥∥∥In1 −L(L>L)−1L>
∥∥∥2
‖∆LΣ

−1/2
? ‖2

≤ ‖∆LΣ
−1/2
? ‖2

(1− ‖∆LΣ
−1/2
? ‖)2

+ ‖∆LΣ
−1/2
? ‖2

≤ 2‖∆LΣ
−1/2
? ‖2

(1− ‖∆LΣ
−1/2
? ‖)2

,

where we have used (A.7a) and the fact that ‖In1 −L(L>L)−1L>‖ ≤ 1 in the third line.

Lemma 18. For any L ∈ Rn1×r,R ∈ Rn2×r, denote ∆L := L− L? and ∆R := R−R?, then one

has

‖LR> −X?‖F ≤ ‖∆LR
>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

≤
(

1 +
1

2
(‖∆LΣ

−1/2
? ‖ ∨ ‖∆RΣ

−1/2
? ‖)

)(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

Proof. In light of the decomposition LR> − X? = ∆LR
>
? + L?∆

>
R + ∆L∆>R and the triangle

inequality, one has

‖LR> −X?‖F ≤ ‖∆LR
>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

= ‖∆LΣ
1/2
? ‖F + ‖∆RΣ

1/2
? ‖F + ‖∆L∆>R‖F,

where we have used the facts that

‖∆LR
>
? ‖F = ‖∆LΣ

1/2
? V >? ‖F = ‖∆LΣ

1/2
? ‖F, and ‖L?∆>R‖F = ‖U?Σ

1/2
? ∆>R‖F = ‖∆RΣ

1/2
? ‖F.
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This together with the simple upper bound

‖∆L∆>R‖F =
1

2
‖∆LΣ

1/2
? (∆RΣ

−1/2
? )>‖F +

1

2
‖∆LΣ

−1/2
? (∆RΣ

1/2
? )>‖F

≤ 1

2
‖∆LΣ

1/2
? ‖F‖∆RΣ

−1/2
? ‖ +

1

2
‖∆LΣ

−1/2
? ‖‖∆RΣ

1/2
? ‖F

≤ 1

2
(‖∆LΣ

−1/2
? ‖ ∨ ‖∆RΣ

−1/2
? ‖)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)

finishes the proof.

Lemma 19. For any L ∈ Rn1×r,R ∈ Rn2×r and any invertible matrices Q, Q̄ ∈ GL(r), suppose

that ‖(LQ−L?)Σ
−1/2
? ‖ ∨ ‖(RQ−> −R?)Σ

−1/2
? ‖ < 1, then one has

∥∥∥Σ1/2
? Q̄−1QΣ

1/2
? −Σ?

∥∥∥ ≤ ‖R(Q̄−> −Q−>)Σ
1/2
? ‖

1− ‖(RQ−> −R?)Σ
−1/2
? ‖

;

∥∥∥Σ1/2
? Q̄>Q−>Σ

1/2
? −Σ?

∥∥∥ ≤ ‖L(Q̄−Q)Σ
1/2
? ‖

1− ‖(LQ−L?)Σ
−1/2
? ‖

.

Proof. Insert R>R(R>R)−1, and use the relation ‖AB‖ ≤ ‖A‖‖B‖ to obtain

∥∥∥Σ1/2
? Q̄−1QΣ

1/2
? −Σ?

∥∥∥ =
∥∥∥Σ1/2

? (Q̄−1 −Q−1)R>R(R>R)−1QΣ
1/2
?

∥∥∥
≤
∥∥∥R(Q̄−> −Q−>)Σ

1/2
?

∥∥∥ ∥∥∥R(R>R)−1QΣ
1/2
?

∥∥∥
=
∥∥∥R(Q̄−> −Q−>)Σ

1/2
?

∥∥∥ ∥∥∥RQ−>((RQ−>)>RQ−>)−1Σ
1/2
?

∥∥∥
≤ ‖R(Q̄−> −Q−>)Σ

1/2
? ‖

1− ‖(RQ−> −R?)Σ
−1/2
? ‖

,

where the last line uses Lemma 17.

Similarly, insert L>L(L>L)−1, and use the relation ‖AB‖ ≤ ‖A‖‖B‖ to obtain

∥∥∥Σ1/2
? Q̄>Q−>Σ

1/2
? −Σ?

∥∥∥ =
∥∥∥Σ1/2

? (Q̄> −Q>)L>L(L>L)−1Q−>Σ
1/2
?

∥∥∥
≤
∥∥∥L(Q̄−Q)Σ

1/2
?

∥∥∥ ∥∥∥L(L>L)−1Q−>Σ
1/2
?

∥∥∥
=
∥∥∥L(Q̄−Q)Σ

1/2
?

∥∥∥ ∥∥∥LQ((LQ)>LQ)−1Σ
1/2
?

∥∥∥
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≤ ‖L(Q̄−Q)Σ
1/2
? ‖

1− ‖(LQ−L?)Σ
−1/2
? ‖

,

where the last line uses Lemma 17.

A.1.3 Partial Frobenius norm

We introduce the partial Frobenius norm

‖X‖F,r :=

√√√√ r∑
i=1

σ2
i (X) = ‖Pr(X)‖F (A.8)

as the `2 norm of the vector composed of the top-r singular values of the matrix X, or equivalently

as the Frobenius norm of the rank-r approximation Pr(X) defined in (1.3). It is straightforward to

verify that ‖ · ‖F,r is a norm; see also [Maz16]. The following lemma provides several equivalent and

useful characterizations of this partial Frobenius norm.

Lemma 20. For any X ∈ Rn1×n2 , one has

‖X‖F,r = max
Ṽ ∈Rn2×r:Ṽ >Ṽ =Ir

‖XṼ ‖F (A.9a)

= max
X̃∈Rn1×n2 :‖X̃‖F≤1,rank(X̃)≤r

|〈X, X̃〉| (A.9b)

= max
R̃∈Rn2×r:‖R̃‖≤1

‖XR̃‖F. (A.9c)

Proof. The first representation (A.9a) follows immediately from the extremal partial trace identity;

see [Maz16, Proposition 4.4], by noticing the following relation

r∑
i=1

σ2
i (X) = max

V⊆Rn2 :dim(V)=r
tr
(
X>X | V

)
= max

Ṽ ∈Rn2×r:Ṽ >Ṽ =Ir

‖XṼ ‖2F.

Here the partial trace over a vector space V is defined as

tr(X>X | V) :=
r∑
i=1

ṽ>i X
>Xṽi,
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where {ṽi}1≤i≤r is any orthonormal basis of V. The partial trace is invariant to the choice of

orthonormal basis and therefore well-defined.

To prove the second representation (A.9b), for any X̃ ∈ Rn1×n2 obeying rank(X̃) ≤ r and

‖X̃‖F ≤ 1, denoting X̃ = ŨΣ̃Ṽ > as its compact SVD, one has

|〈X, X̃〉| = |〈X, ŨΣ̃Ṽ >〉| = |〈XṼ , ŨΣ̃〉| ≤ ‖XṼ ‖F‖ŨΣ̃‖F ≤ ‖X‖F,r,

where the last inequality follows from (A.9a). In addition, the maximum in (A.9b) is attained at

X̃ = Pr(X)/‖Pr(X)‖F.

To prove the third representation (A.9c), for any R̃ ∈ Rn2×r obeying ‖R̃‖ ≤ 1, combine the

variational representation of the Frobenius norm and (A.9b) to obtain

‖XR̃‖F = max
L̃∈Rn1×n2 :‖L̃‖F≤1

|〈XR̃, L̃〉|

= max
L̃∈Rn1×n2 :‖L̃‖F≤1

|〈X, L̃R̃>〉| ≤ ‖X‖F,r,

where the last inequality follows from (A.9b). In addition, the maximum in (A.9c) is attained at

R̃ = V , where V denotes the top-r right singular vectors of X.

Remark 8. For self-completeness, we also provide a detailed proof of the first representation (A.9a).

This proof is inductive on r. When r = 1, we have

σ1(X) = ‖Xv1‖2 = max
ṽ∈Rn2 :‖ṽ‖2=1

‖Xṽ‖2,

where v1 denotes the top right singular vector of X. Assume that the statement holds for ‖ · ‖F,r−1.

Now consider ‖ · ‖F,r. For any Ṽ ∈ Rn2×r such that Ṽ >Ṽ = Ir, we can first pick ṽ2, . . . , ṽr as a

set of orthonormal vectors in the column space of Ṽ that are orthogonal to v1, and then pick ṽ1

via the Gram-Schmidt process, so that {ṽi}ri=1 provides an orthonormal basis of the column space

of Ṽ . Further, by the orthogonality of Ṽ , there exists an orthonormal matrix O such that

Ṽ = [ṽ1, . . . , ṽr]O.
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Combining this formula with the induction hypothesis yields

‖XṼ ‖2F = ‖X[ṽ1, . . . , ṽr]‖2F

= ‖Xṽ1‖22 + ‖X[ṽ2, . . . , ṽr]‖2F

= ‖Xṽ1‖22 + ‖(X − P1(X))[ṽ2, . . . , ṽr]‖2F

≤ σ2
1(X) + ‖X − P1(X)‖2F,r−1

=

r∑
i=1

σ2
i (X) = ‖X‖2F,r,

where the first line holds since O is orthonormal, the third line holds since P1(X)[ṽ2, . . . , ṽr] = 0,

the fourth line follows from the induction hypothesis, and the last line follows from the definition

(A.8). In addition, the maximum in (A.9a) is attained at Ṽ = V , where V denotes the top-r right

singular vectors of X. This finishes the proof.

Recall that Pr(X) denotes the best rank-r approximation of X under the Frobenius norm.

It turns out that Pr(X) is also the best rank-r approximation of X under the partial Frobenius

norm ‖ · ‖F,r. This claim is formally stated below; see also [Maz16, Theorem 4.21].

Lemma 21. Fix any X ∈ Rn1×n2 and recall the definition of Pr(X) in (1.3). One has

Pr(X) = argmin
X̃∈Rn1×n2 :rank(X̃)≤r

‖X − X̃‖F,r.

Proof. For any X̃ of rank at most r, invoke Weyl’s inequality to obtain σr+i(X) ≤ σi(X − X̃) +

σr+1(X̃) = σi(X − X̃), for i = 1, . . . , r. Thus one has

‖X − Pr(X)‖2F,r =
r∑
i=1

σ2
r+i(X) ≤

r∑
i=1

σ2
i (X − X̃) = ‖X − X̃‖2F,r.

The proof is finished by observing that the rank of Pr(X) is at most r.
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A.2 Proof for Low-Rank Matrix Factorization

A.2.1 Proof of Proposition 2

The gradients of L(F ) in (2.27) with respect to L and R are given as

∇LL(F ) = (LR> −X?)R, ∇RL(F ) = (LR> −X?)
>L,

which can be used to compute the Hessian with respect to L and R. Writing for the vectorized

variables, the Hessians are given as

∇2
L,LL(F ) = (R>R)⊗ In1 , ∇2

R,RL(F ) = (L>L)⊗ In2 .

Viewed in the vectorized form, the ScaledGD update in (2.2) can be rewritten as

vec(Lt+1) = vec(Lt)− η((R>t Rt)
−1 ⊗ In1) vec((LtR

>
t −X?)Rt)

= vec(Lt)− η(∇2
L,LL(Ft))

−1 vec(∇LL(Ft)),

vec(Rt+1) = vec(Rt)− η((L>t Lt)
−1 ⊗ In2) vec((LtR

>
t −X?)

>Lt)

= vec(Rt)− η(∇2
R,RL(Ft))

−1 vec(∇RL(Ft)).

A.2.2 Proof of Theorem 5

The proof is inductive in nature. More specifically, we intend to show that for all t ≥ 0,

1. dist(Ft,F?) ≤ (1− 0.7η)t dist(F0,F?) ≤ 0.1(1− 0.7η)tσr(X?), and

2. the optimal alignment matrix Qt between Ft and F? exists.

For the base case, i.e. t = 0, the first induction hypothesis trivially holds, while the second also

holds true in view of Lemma 14 and the assumption that dist(F0,F?) ≤ 0.1σr(X?). We therefore

concentrate on the induction step. Suppose that the t-th iterate Ft obeys the aforementioned

induction hypotheses. Our goal is to show that Ft+1 continues to satisfy those.
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For notational convenience, denote L := LtQt, R := RtQ
−>
t , ∆L := L−L?, ∆R := R−R?,

and ε := 0.1. By the definition of dist(Ft+1,F?), one has

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
, (A.10)

where we recall that Qt is the optimal alignment matrix between Ft and F?. Utilize the ScaledGD

update rule (2.28) and the decomposition LR> −X? = ∆LR
> + L?∆

>
R to obtain

(Lt+1Qt −L?)Σ
1/2
? =

(
L− η(LR> −X?)R(R>R)−1 −L?

)
Σ

1/2
?

=
(
∆L − η(∆LR

> + L?∆
>
R)R(R>R)−1

)
Σ

1/2
?

= (1− η)∆LΣ
1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
? .

As a result, one can expand the first square in (A.10) as

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
= (1− η)2 tr

(
∆LΣ?∆

>
L

)
− 2η(1− η) tr

(
L?∆

>
RR(R>R)−1Σ?∆

>
L

)
︸ ︷︷ ︸

M1

+ η2
∥∥∥L?∆>RR(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
M2

. (A.11)

The first term tr(∆LΣ?∆
>
L ) is closely related to dist(Ft,F?), and hence our focus will be on relating

M1 and M2 to dist(Ft,F?). We start with the term M1. Since L and R are aligned with L? and

R?, Lemma 15 tells that Σ?∆
>
LL = R>∆RΣ?. This together with L? = L −∆L allows us to

rewrite M1 as

M1 = tr
(
R(R>R)−1Σ?∆

>
LL?∆

>
R

)
= tr

(
R(R>R)−1Σ?∆

>
LL∆>R

)
− tr

(
R(R>R)−1Σ?∆

>
L∆L∆>R

)
= tr

(
R(R>R)−1R>∆RΣ?∆

>
R

)
− tr

(
R(R>R)−1Σ?∆

>
L∆L∆>R

)
.

Moving on to M2, we can utilize the fact L>? L? = Σ? and the decomposition Σ? = R>R−(R>R−
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Σ?) to obtain

M2 = tr
(
R(R>R)−1Σ?(R

>R)−1R>∆RΣ?∆
>
R

)
= tr

(
R(R>R)−1R>∆RΣ?∆

>
R

)
− tr

(
R(R>R)−1(R>R−Σ?)(R

>R)−1R>∆RΣ?∆
>
R

)
.

Putting M1 and M2 back to (A.11) yields

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
= (1− η)2 tr

(
∆LΣ?∆

>
L

)
− η(2− 3η) tr

(
R(R>R)−1R>∆RΣ?∆

>
R

)
︸ ︷︷ ︸

F1

+ 2η(1− η) tr
(
R(R>R)−1Σ?∆

>
L∆L∆>R

)
︸ ︷︷ ︸

F2

− η2 tr
(
R(R>R)−1(R>R−Σ?)(R

>R)−1R>∆RΣ?∆
>
R

)
︸ ︷︷ ︸

F3

.

In what follows, we will control the three terms F1,F2 and F3 separately.

1. Notice that F1 is the inner product of two positive semi-definite matrices R(R>R)−1R> and

∆RΣ?∆
>
R. Consequently we have F1 ≥ 0.

2. To control F2, we need certain control on ‖∆LΣ
−1/2
? ‖ and ‖∆RΣ

−1/2
? ‖. The first induction

hypothesis

dist(Ft,F?) =

√
‖∆LΣ

−1/2
? Σ?‖2F + ‖∆RΣ

−1/2
? Σ?‖2F ≤ εσr(X?)

together with the relation ‖AB‖F ≥ ‖A‖Fσr(B) tells that

√
‖∆LΣ

−1/2
? ‖2F + ‖∆RΣ

−1/2
? ‖2F σr(X?) ≤ εσr(X?).

In light of the relation ‖A‖ ≤ ‖A‖F, this further implies

‖∆LΣ
−1/2
? ‖ ∨ ‖∆RΣ

−1/2
? ‖ ≤ ε. (A.12)
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Invoke Lemma 17 to see

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥ ≤ 1

1− ε
.

With these consequences, one can bound |F2| by

|F2| =
∣∣∣ tr(Σ

−1/2
? ∆>RR(R>R)−1Σ?∆

>
L∆LΣ

1/2
?

) ∣∣∣
≤
∥∥∥Σ−1/2

? ∆>RR(R>R)−1Σ
1/2
?

∥∥∥ tr
(
Σ

1/2
? ∆>L∆LΣ

1/2
?

)
≤ ‖∆RΣ

−1/2
? ‖

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥ tr
(
∆LΣ?∆

>
L

)
≤ ε

1− ε
tr
(
∆LΣ?∆

>
L

)
.

3. Similarly, one can bound |F3| by

|F3| ≤
∥∥∥R(R>R)−1(R>R−Σ?)(R

>R)−1R>
∥∥∥ tr

(
∆RΣ?∆

>
R

)
≤
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥2 ∥∥∥Σ−1/2
? (R>R−Σ?)Σ

−1/2
?

∥∥∥ tr
(
∆RΣ?∆

>
R

)
≤ 1

(1− ε)2

∥∥∥Σ−1/2
? (R>R−Σ?)Σ

−1/2
?

∥∥∥ tr
(
∆RΣ?∆

>
R

)
.

Further notice that

∥∥∥Σ−1/2
? (R>R−Σ?)Σ

−1/2
?

∥∥∥ =
∥∥∥Σ−1/2

? (R>? ∆R + ∆>RR? + ∆>R∆R)Σ
−1/2
?

∥∥∥
≤ 2‖∆RΣ

−1/2
? ‖ + ‖∆RΣ

−1/2
? ‖2

≤ 2ε+ ε2.

Take the preceding two bounds together to arrive at

|F3| ≤
2ε+ ε2

(1− ε)2
tr
(
∆RΣ?∆

>
R

)
.
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Combining the bounds for F1,F2,F3, one has

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
=
∥∥∥(1− η)∆LΣ

1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
?

∥∥∥2

F

≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
tr
(
∆LΣ?∆

>
L

)
+

2ε+ ε2

(1− ε)2
η2 tr

(
∆RΣ?∆

>
R

)
. (A.13)

A similarly bound holds for the second square ‖(Rt+1Qt − R?)Σ
1/2
? ‖2F in (A.10). Therefore we

obtain

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
≤ ρ2(η; ε) dist2(Ft,F?),

where we identify

dist2(Ft,F?) = tr(∆LΣ?∆
>
L ) + tr(∆RΣ?∆

>
R) (A.14)

and the contraction rate ρ2(η; ε) is given by

ρ2(η; ε) := (1− η)2 +
2ε

1− ε
η(1− η) +

2ε+ ε2

(1− ε)2
η2.

With ε = 0.1 and 0 < η ≤ 2/3, one has ρ(η; ε) ≤ 1− 0.7η. Thus we conclude that

dist(Ft+1,F?) ≤
√∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F

≤ (1− 0.7η) dist(Ft,F?)

≤ (1− 0.7η)t+1 dist(F0,F?) ≤ (1− 0.7η)t+10.1σr(X?).

This proves the first induction hypothesis. The existence of the optimal alignment matrix Qt+1

between Ft+1 and F? is assured by Lemma 14, which finishes the proof for the second hypothesis.

So far, we have demonstrated the first conclusion in the theorem. The second conclusion is
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an easy consequence of Lemma 18 as

∥∥∥LtR>t −X?

∥∥∥
F
≤
(

1 +
ε

2

)(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
≤
(

1 +
ε

2

)√
2 dist(Ft,F?)

≤ 1.5 dist(Ft,F?).

(A.15)

Here, the second line follows from the elementary inequality a+b ≤
√

2(a2 + b2) and the expression

of dist(Ft,F?) in (A.14). The proof is now completed.

A.3 Proof for Low-Rank Matrix Sensing

We start by recording a useful lemma.

Lemma 22 ( [CP11]). Suppose that A(·) obeys the 2r-RIP with a constant δ2r. Then for any

X1,X2 ∈ Rn1×n2 of rank at most r, one has

|〈A(X1),A(X2)〉 − 〈X1,X2〉| ≤ δ2r‖X1‖F‖X2‖F,

which can be stated equivalently as

∣∣∣tr((A∗A− I)(X1)X>2

)∣∣∣ ≤ δ2r‖X1‖F‖X2‖F. (A.16)

As a simple corollary, one has that for any matrix R ∈ Rn2×r:

‖(A∗A− I)(X1)R‖F ≤ δ2r‖X1‖F‖R‖. (A.17)

This is due to the fact that

‖(A∗A− I)(X1)R‖F = max
L̃:‖L̃‖F≤1

tr
(

(A∗A− I)(X1)RL̃>
)

≤ max
L̃:‖L̃‖F≤1

δ2r‖X1‖F‖L̃R>‖F
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≤ δ2r‖X1‖F‖R‖.

Here, the first line follows from the variational representation of the Frobenius norm, the second

line follows from (A.16), and the last line follows from the relation ‖AB‖F ≤ ‖A‖F‖B‖.

A.3.1 Proof of Lemma 1

The proof mostly mirrors that in Section A.2.2. First, in view of the condition dist(Ft,F?) ≤

0.1σr(X?) and Lemma 14, one knows that Qt, the optimal alignment matrix between Ft and F?

exists. Therefore, for notational convenience, denote L := LtQt, R := RtQ
−>
t , ∆L := L − L?,

∆R := R−R?, and ε := 0.1. Similar to the derivation in (A.12), we have

‖∆LΣ
−1/2
? ‖ ∨ ‖∆RΣ

−1/2
? ‖ ≤ ε. (A.18)

The conclusion ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?) is a simple consequence of Lemma 18; see (A.15)

for a detailed argument. From now on, we focus on proving the distance contraction.

With these notations in place, we have by the definition of dist(Ft+1,F?) that

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
. (A.19)

Apply the update rule (2.13) and the decomposition LR> −X? = ∆LR
> + L?∆

>
R to obtain

(Lt+1Qt −L?)Σ
1/2
? =

(
L− ηA∗A(LR> −X?)R(R>R)−1 −L?

)
Σ

1/2
?

=
(
∆L − η(LR> −X?)R(R>R)−1 − η(A∗A− I)(LR> −X?)R(R>R)−1

)
Σ

1/2
?

= (1− η)∆LΣ
1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
? − η(A∗A− I)(LR> −X?)R(R>R)−1Σ

1/2
? .

This allows us to expand the first square in (A.19) as

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
=
∥∥∥(1− η)∆LΣ

1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
S1

122



− 2η(1− η) tr
(

(A∗A− I)(LR> −X?)R(R>R)−1Σ?∆
>
L

)
︸ ︷︷ ︸

S2

+ 2η2 tr
(

(A∗A− I)(LR> −X?)R(R>R)−1Σ?(R
>R)−1R>∆RL

>
?

)
︸ ︷︷ ︸

S3

+ η2
∥∥∥(A∗A− I)(LR> −X?)R(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
S4

.

In what follows, we shall control the four terms separately, of which S1 is the main term, and S2,S3

and S4 are perturbation terms.

1. Notice that the main term S1 has already been controlled in (A.13) under the condition (A.18).

It obeys

S1 ≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F.

2. For the second term S2, decompose LR> − X? = ∆LR
>
? + L?∆

>
R + ∆L∆>R and apply the

triangle inequality to obtain

|S2| =
∣∣∣ tr((A∗A− I)(∆LR

>
? + L?∆

>
R + ∆L∆>R)R(R>R)−1Σ?∆

>
L

) ∣∣∣
≤
∣∣∣ tr((A∗A− I)(∆LR

>
? )R(R>R)−1Σ?∆

>
L

) ∣∣∣
+
∣∣∣ tr((A∗A− I)(L?∆

>
R)R(R>R)−1Σ?∆

>
L

) ∣∣∣
+
∣∣∣ tr((A∗A− I)(∆L∆>R)R(R>R)−1Σ?∆

>
L

) ∣∣∣.
Invoke Lemma 22 to further obtain

|S2| ≤ δ2r

(
‖∆LR

>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

)∥∥∥R(R>R)−1Σ?∆
>
L

∥∥∥
F

≤ δ2r

(
‖∆LR

>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

)∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥ ‖∆LΣ
1/2
? ‖F,

where the second line follows from the relation ‖AB‖F ≤ ‖A‖‖B‖F. Take the condition (A.18)
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and Lemmas 17 and 18 together to obtain

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥ ≤ 1

1− ε
;

‖∆LR
>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F ≤ (1 +

ε

2
)
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

These consequences further imply that

|S2| ≤
δ2r(2 + ε)

2(1− ε)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆LΣ

1/2
? ‖F

=
δ2r(2 + ε)

2(1− ε)

(
‖∆LΣ

1/2
? ‖2F + ‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

)
.

For the term ‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F, we can apply the elementary inequality 2ab ≤ a2 + b2 to

see

‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F ≤

1

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆RΣ

1/2
? ‖2F.

The preceding two bounds taken collectively yield

|S2| ≤
δ2r(2 + ε)

2 (1− ε)

(
3

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆LΣ

1/2
? ‖2F

)
.

3. The third term S3 can be similarly bounded as

|S3| ≤ δ2r

(
‖∆LR

>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

)∥∥∥R(R>R)−1Σ?(R
>R)−1R>∆RL

>
?

∥∥∥
F

≤ δ2r

(
‖∆LR

>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

)∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥2
‖∆RL

>
? ‖F

≤ δ2r(2 + ε)

2(1− ε)2

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆RΣ

1/2
? ‖F

≤ δ2r(2 + ε)

2(1− ε)2

(
1

2
‖∆LΣ

1/2
? ‖2F +

3

2
‖∆RΣ

1/2
? ‖2F

)
.
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4. We are then left with the last term S4, for which we have

√
S4 =

∥∥∥(A∗A− I)(LR> −X?)R(R>R)−1Σ
1/2
?

∥∥∥
F

≤
∥∥∥(A∗A− I)(∆LR

>
? )R(R>R)−1Σ

1/2
?

∥∥∥
F

+
∥∥∥(A∗A− I)(L?∆

>
R)R(R>R)−1Σ

1/2
?

∥∥∥
F

+
∥∥∥(A∗A− I)(∆L∆>R)R(R>R)−1Σ

1/2
?

∥∥∥
F
,

where once again we use the decomposition LR>−X? = ∆LR
>
? +L?∆

>
R + ∆L∆>R. Use (A.17)

to see that

√
S4 ≤ δ2r

(
‖∆LR

>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

)∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥ .
Repeating the same argument in bounding S2 yields

√
S4 ≤

δ2r (2 + ε)

2 (1− ε)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

We can then take the squares of both sides and use (a+ b)2 ≤ 2a2 + 2b2 to reach

S4 ≤
δ2

2r(2 + ε)2

2(1− ε)2

(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
.

Taking the bounds for S1,S2,S3,S4 collectively yields

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F

+
δ2r(2 + ε)

1− ε
η(1− η)

(
3

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆RΣ

1/2
? ‖2F

)
+
δ2r(2 + ε)

(1− ε)2
η2

(
1

2
‖∆LΣ

1/2
? ‖2F +

3

2
‖∆RΣ

1/2
? ‖2F

)
+
δ2

2r(2 + ε)2

2(1− ε)2
η2
(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
.

Similarly, we can expand the second square in (A.19) and obtain a similar bound. Combine both
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to obtain

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
≤ ρ2(η; ε, δ2r) dist2(Ft,F?),

where the contraction rate is given by

ρ2(η; ε, δ2r) := (1− η)2 +
2ε+ δ2r(4 + 2ε)

1− ε
η(1− η) +

2ε+ ε2 + δ2r(4 + 2ε) + δ2
2r(2 + ε)2

(1− ε)2
η2.

With ε = 0.1, δ2r ≤ 0.02, and 0 < η ≤ 2/3, one has ρ(η; ε, δ2r) ≤ 1− 0.6η. Thus we conclude that

dist(Ft+1,F?) ≤
√∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F

≤ (1− 0.6η) dist(Ft,F?).

A.3.2 Proof of Lemma 2

With the knowledge of partial Frobenius norm ‖ · ‖F,r, we are ready to establish the claimed result.

Invoke Lemma 16 to relate dist(F0,F?) to ‖L0R
>
0 −X?‖F, and use that L0R

>
0 −X? has rank at

most 2r to obtain

dist(F0,F?) ≤
√√

2 + 1
∥∥∥L0R

>
0 −X?

∥∥∥
F
≤
√

2(
√

2 + 1)
∥∥∥L0R

>
0 −X?

∥∥∥
F,r
.

Note that L0R
>
0 is the best rank-r approximation of A∗A(X?), and apply the triangle inequality

combined with Lemma 21 to obtain

∥∥∥L0R
>
0 −X?

∥∥∥
F,r
≤
∥∥∥A∗A(X?)−L0R

>
0

∥∥∥
F,r

+ ‖A∗A(X?)−X?‖F,r

≤ 2 ‖(A∗A− I)(X?)‖F,r ≤ 2δ2r‖X?‖F.

Here, the last inequality follows from combining Lemma 20 and (A.17) as

‖(A∗A− I)(X?)‖F,r = max
R̃∈Rn2×r:‖R̃‖≤1

∥∥∥(A∗A− I)(X?)R̃
∥∥∥

F
≤ δ2r‖X?‖F.
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As a result, one has

dist(F0,F?) ≤ 2

√
2(
√

2 + 1)δ2r‖X?‖F ≤ 5δ2r

√
rκσr(X?).

A.4 Proof for Robust PCA

We first establish a useful property regarding the truncation operator T2α[·].

Lemma 23. Given S? ∈ Sα and S = T2α[X? + S? −LR>], one has

‖S − S?‖∞ ≤ 2‖LR> −X?‖∞. (A.20)

In addition, for any low-rank matrix M = LMR>M ∈ Rn1×n2 with LM ∈ Rn1×r,RM ∈ Rn2×r, one

has

|〈S − S?,M〉| ≤
√

3αν
(
‖(L−L?)Σ

1/2
? ‖F + ‖(R−R?)Σ

1/2
? ‖F

)
‖M‖F

+ 2
√
α (
√
n1‖LM‖2,∞‖RM‖F ∧

√
n2‖LM‖F‖RM‖2,∞) ‖LR> −X?‖F,

(A.21)

where ν obeys

ν ≥
√
n1

2

(
‖LΣ

−1/2
? ‖2,∞ + ‖L?Σ−1/2

? ‖2,∞
)
∨
√
n2

2

(
‖RΣ

−1/2
? ‖2,∞ + ‖R?Σ

−1/2
? ‖2,∞

)
.

Proof. Denote ∆L := L−L?, ∆R := R−R?, and ∆X := LR>−X?. Let Ω,Ω? be the support of

S and S?, respectively. As a result, S − S? is supported on Ω ∪ Ω?.

We start with proving the first claim, i.e. (A.20). For (i, j) ∈ Ω, by the definition of T2α[·],

we have (S − S?)i,j = (−∆X)i,j . For (i, j) ∈ Ω? \ Ω, one necessarily has Si,j = 0 and therefore

(S − S?)i,j = (−S?)i,j . Again by the definition of the operator T2α[·], we know |S? −∆X |i,j is

either smaller than |S? −∆X |i,(2αn2) or |S? −∆X |(2αn1),j . Furthermore, we know that S? contains

at most α-fraction nonzero entries per row and column. Consequently, one has |S? − ∆X |i,j ≤
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|∆X |i,(αn2) ∨ |∆X |(αn1),j . Combining the two cases above, we conclude that

|S − S?|i,j ≤


|∆X |i,j , (i, j) ∈ Ω

|∆X |i,j +
(
|∆X |i,(αn2) ∨ |∆X |(αn1),j

)
, (i, j) ∈ Ω? \ Ω

. (A.22)

This immediately implies the `∞ norm bound (A.20).

Next, we prove the second claim (A.21). Recall that S−S? is supported on Ω∪Ω?. We then

have

|〈S − S?,M〉| ≤
∑

(i,j)∈Ω

|S − S?|i,j |M |i,j +
∑

(i,j)∈Ω?\Ω

|S − S?|i,j |M |i,j

≤
∑

(i,j)∈Ω∪Ω?

|∆X |i,j |M |i,j +
∑

(i,j)∈Ω?\Ω

(
|∆X |i,(αn2) + |∆X |(αn1),j

)
|M |i,j ,

where the second line follows from (A.22). Let β > 0 be some positive number, whose value will be

determined later. Use 2ab ≤ β−1a2 + βb2 to further obtain

|〈S − S?,M〉| ≤
∑

(i,j)∈Ω∪Ω?

|∆X |i,j |M |i,j︸ ︷︷ ︸
A1

+
1

2β

∑
(i,j)∈Ω?\Ω

(
|∆X |2i,(αn2) + |∆X |2(αn1),j

)
︸ ︷︷ ︸

A2

+β
∑

(i,j)∈Ω?\Ω

|M |2i,j︸ ︷︷ ︸
A3

.

In regard to the three terms A1,A2 and A3, we have the following claims, whose proofs are deferred

to the end.

Claim 1. The first term A1 satisfies

A1 ≤
√

3αν
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖M‖F.

Claim 2. The second term A2 satisfies

A2 ≤ 2‖∆X‖2F.
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Claim 3. The third term A3 satisfies

A3 ≤ α
(
n1‖LM‖22,∞‖RM‖2F ∧ n2‖LM‖2F‖RM‖22,∞

)
.

Combine the pieces to reach

|〈S − S?,M〉| ≤
√

3αν
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖M‖F

+
‖∆X‖2F
β

+ βα
(
n1‖LM‖22,∞‖RM‖2F ∧ n2‖LM‖2F‖RM‖22,∞

)
.

One can then choose β optimally to yield

|〈S − S?,M〉| ≤
√

3αν
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖M‖F

+ 2
√
α (
√
n1‖LM‖2,∞‖RM‖F ∧

√
n2‖LM‖F‖RM‖2,∞) ‖∆X‖F.

This finishes the proof.

Proof of Claim 1. Use the decomposition ∆X = ∆LR
> + L?∆

>
R = ∆LR

>
? + L∆>R to obtain

|∆X |i,j ≤ ‖(∆LΣ
1/2
? )i,·‖2‖RΣ

−1/2
? ‖2,∞ + ‖L?Σ−1/2

? ‖2,∞‖(∆RΣ
1/2
? )j,·‖2, and

|∆X |i,j ≤ ‖(∆LΣ
1/2
? )i,·‖2‖R?Σ

−1/2
? ‖2,∞ + ‖LΣ

−1/2
? ‖2,∞‖(∆RΣ

1/2
? )j,·‖2.

Take the average to yield

|∆X |i,j ≤
ν
√
n2
‖(∆LΣ

1/2
? )i,·‖2 +

ν
√
n1
‖(∆RΣ

1/2
? )j,·‖2,

where we have used the assumption on ν. With this upper bound on |∆X |i,j in place, we can further

control A1 as

A1 ≤
∑

(i,j)∈Ω∪Ω?

ν
√
n2
‖(∆LΣ

1/2
? )i,·‖2|M |i,j +

∑
(i,j)∈Ω∪Ω?

ν
√
n1
‖(∆RΣ

1/2
? )j,·‖2|M |i,j
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≤

√ ∑
(i,j)∈Ω∪Ω?

‖(∆LΣ
1/2
? )i,·‖22/n2 +

√ ∑
(i,j)∈Ω∪Ω?

‖(∆RΣ
1/2
? )j,·‖22/n1

 ν‖M‖F.

Regarding the first term, one has

∑
(i,j)∈Ω∪Ω?

‖(∆LΣ
1/2
? )i,·‖22 =

n1∑
i=1

∑
j:(i,j)∈Ω∪Ω?

‖(∆LΣ
1/2
? )i,·‖22

≤ 3αn2

n1∑
i=1

‖(∆LΣ
1/2
? )i,·‖22

= 3αn2‖∆LΣ
1/2
? ‖2F,

where the second line follows from the fact that Ω ∪ Ω? contains at most 3αn2 non-zero entries in

each row. Similarly, we can show that

∑
(i,j)∈Ω∪Ω?

‖(∆RΣ
1/2
? )j,·‖22 ≤ 3αn1‖∆RΣ

1/2
? ‖2F.

In all, we arrive at

A1 ≤
√

3αν
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖M‖F,

which is the desired claim.

Proof of Claim 2. Recall that (∆X)i,(αn2) denotes the (αn2)-th largest entry in the i-th row of ∆X .

One necessarily has

αn2|∆X |2i,(αn2) ≤ ‖(∆X)i,·‖22.

As a result, we obtain

∑
(i,j)∈Ω?\Ω

|∆X |2i,(αn2) ≤
∑

(i,j)∈Ω?

|∆X |2i,(αn2)
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≤
n1∑
i=1

∑
j:(i,j)∈Ω?

‖(∆X)i,·‖22
αn2

≤
n1∑
i=1

‖(∆X)i,·‖22 = ‖∆X‖2F,

where the last line follows from the fact that Ω? contains at most αn2 nonzero entries in each row.

Similarly one can show that

∑
(i,j)∈Ω?\Ω

|∆X |2(αn1),j ≤ ‖∆X‖2F.

Combining the above two bounds with the definition of A2 completes the proof.

Proof of Claim 3. By definition, M = LMR>M , and hence one has

A3 =
∑

(i,j)∈Ω?\Ω

|(LM )i,·(RM )>j,·|2 ≤
∑

(i,j)∈Ω?

|(LM )i,·(RM )>j,·|2.

We can further upper bound A3 as

A3 ≤
∑

(i,j)∈Ω?

‖(LM )i,·‖22‖(RM )j,·‖22

≤
n1∑
i=1

∑
j:(i,j)∈Ω?

‖(LM )i,·‖22‖RM‖22,∞

≤
n1∑
i=1

αn2‖(LM )i,·‖22‖RM‖22,∞ = αn2‖LM‖2F‖RM‖22,∞,

where the last line follows from the fact that Ω? contains at most αn2 non-zero entries in each row.

Similarly, one can obtain

A3 ≤ αn1‖LM‖22,∞‖RM‖2F,

which completes the proof.
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A.4.1 Proof of Lemma 3

We begin with introducing several useful notations and facts. In view of the condition dist(Ft,F?) ≤

0.02σr(X?) and Lemma 14, one knows that Qt, the optimal alignment matrix between Ft and F?

exists. Therefore, for notational convenience, denote L := LtQt, R := RtQ
−>
t , ∆L := L − L?,

∆R := R−R?, S := St = T2α[X? +S?−LR>], and ε := 0.02. Similar to the derivation in (A.12),

we have

‖∆LΣ
−1/2
? ‖ ∨ ‖∆RΣ

−1/2
? ‖ ≤ ε. (A.23)

Moreover, the incoherence condition

√
n1‖∆LΣ

1/2
? ‖2,∞ ∨

√
n2‖∆RΣ

1/2
? ‖2,∞ ≤

√
µrσr(X?) (A.24)

implies

√
n1‖∆LΣ

−1/2
? ‖2,∞ ∨

√
n2‖∆RΣ

−1/2
? ‖2,∞ ≤

√
µr, (A.25)

which combined with the triangle inequality further implies

√
n1‖LΣ

−1/2
? ‖2,∞ ∨

√
n2‖RΣ

−1/2
? ‖2,∞ ≤ 2

√
µr. (A.26)

The conclusion ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?) is a simple consequence of Lemma 18; see (A.15)

for a detailed argument. In what follows, we shall prove the distance contraction and the incoherence

condition separately.

Distance contraction

By the definition of dist2(Ft+1,F?), one has

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
. (A.27)
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From now on, we focus on controlling the first square ‖(Lt+1Qt−L?)Σ
1/2
? ‖2F. In view of the update

rule (2.18), one has

(Lt+1Qt −L?)Σ
1/2
? =

(
L− η(LR> + S −X? − S?)R(R>R)−1 −L?

)
Σ

1/2
?

=
(
∆L − η(LR> −X?)R(R>R)−1 − η(S − S?)R(R>R)−1

)
Σ

1/2
?

= (1− η)∆LΣ
1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
? − η(S − S?)R(R>R)−1Σ

1/2
? .

(A.28)

Here, we use the notation introduced above and the decomposition LR> −X? = ∆LR
> + L?∆

>
R.

Take the squared Frobenius norm of both sides of (A.28) to obtain

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
=
∥∥∥(1− η)∆LΣ

1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
R1

− 2η(1− η) tr
(

(S − S?)R(R>R)−1Σ?∆
>
L

)
︸ ︷︷ ︸

R2

+ 2η2 tr
(

(S − S?)R(R>R)−1Σ?(R
>R)−1R>∆RL

>
?

)
︸ ︷︷ ︸

R3

+ η2
∥∥∥(S − S?)R(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
R4

.

In the sequel, we shall bound the four terms separately, of which R1 is the main term, and R2,R3

and R4 are perturbation terms.

1. Notice that the main term R1 has already been controlled in (A.13) under the condition (A.23).

It obeys

R1 ≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F.

2. For the second term R2, set M := ∆LΣ?(R
>R)−1R> with LM := ∆LΣ?(R

>R)−1Σ
1/2
? , RM :=
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RΣ
−1/2
? , and then invoke Lemma 23 with ν := 3

√
µr/2 to see

|R2| ≤
3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)∥∥∥∆LΣ?(R
>R)−1R>

∥∥∥
F

+ 2
√
αn2

∥∥∥∆LΣ?(R
>R)−1Σ

1/2
?

∥∥∥
F
‖RΣ

−1/2
? ‖2,∞‖LR> −X?‖F

≤ 3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆LΣ

1/2
? ‖F

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
+ 2
√
αn2‖∆LΣ

1/2
? ‖F

∥∥∥Σ1/2
? (R>R)−1Σ

1/2
?

∥∥∥ ‖RΣ
−1/2
? ‖2,∞‖LR> −X?‖F.

Take the condition (A.23) and Lemmas 17 and 18 together to obtain

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥ ≤ 1

1− ε
;∥∥∥Σ1/2

? (R>R)−1Σ
1/2
?

∥∥∥ =
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥2
≤ 1

(1− ε)2
;

‖LR> −X?‖F ≤ (1 +
ε

2
)
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

(A.29)

These consequences combined with the condition (A.26) yield

|R2| ≤
3
√

3αµr

2(1− ε)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆LΣ

1/2
? ‖F

+
4
√
αµr

(1− ε)2
‖∆LΣ

1/2
? ‖F(1 +

ε

2
)
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
≤ √αµr

3
√

3 + 4(2+ε)
1−ε

2(1− ε)

(
‖∆LΣ

1/2
? ‖2F + ‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

)
≤ √αµr

3
√

3 + 4(2+ε)
1−ε

2(1− ε)

(
3

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆RΣ

1/2
? ‖2F

)
,

where the last inequality holds since 2ab ≤ a2 + b2.

3. The third term R3 can be controlled similarly. Set M := L?∆
>
RR(R>R)−1Σ?(R

>R)−1R> with

LM := L?Σ
−1/2
? and RM := R(R>R)−1Σ?(R

>R)−1R>∆RΣ
1/2
? , and invoke Lemma 23 with

ν := 3
√
µr/2 to arrive at

|R3| ≤
3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)∥∥∥L?∆>RR(R>R)−1Σ?(R
>R)−1R>

∥∥∥
F
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+ 2
√
αn1‖L?Σ−1/2

? ‖2,∞
∥∥∥R(R>R)−1Σ?(R

>R)−1R>∆RΣ
1/2
?

∥∥∥
F
‖LR> −X?‖F

≤ 3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆RΣ

1/2
? ‖F

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥2

+ 2
√
αn1‖L?Σ−1/2

? ‖2,∞
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥2
‖∆RΣ

1/2
? ‖F‖LR> −X?‖F.

Use the consequences (A.29) again to obtain

|R3| ≤
3
√

3αµr

2(1− ε)2

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
‖∆RΣ

1/2
? ‖F

+
2
√
αµr

(1− ε)2
‖∆RΣ

1/2
? ‖F(1 +

ε

2
)
(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
≤ √αµr3

√
3 + 2(2 + ε)

2(1− ε)2

(
‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖2F

)
≤ √αµr3

√
3 + 2(2 + ε)

2(1− ε)2

(
1

2
‖∆LΣ

1/2
? ‖2F +

3

2
‖∆RΣ

1/2
? ‖2F

)
.

4. For the last term R4, utilize the variational representation of the Frobenius norm to see

√
R4 = tr

(
(S − S?)R(R>R)−1Σ

1/2
? L̃>

)

for some L̃ ∈ Rn1×r obeying ‖L̃‖F = 1. Setting M := L̃Σ
1/2
? (R>R)−1R> = LMR>M with

LM := L̃Σ
1/2
? (R>R)−1Σ

1/2
? and RM := RΣ

−1/2
? , we are ready to apply Lemma 23 again with

ν := 3
√
µr/2 to see

√
R4 ≤

3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)∥∥∥L̃Σ
1/2
? (R>R)−1R>

∥∥∥
F

+ 2
√
αn2

∥∥∥L̃Σ
1/2
? (R>R)−1Σ

1/2
?

∥∥∥
F
‖RΣ

−1/2
? ‖2,∞‖LR> −X?‖F

≤ 3

2

√
3αµr

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
+ 2
√
αn2

∥∥∥Σ1/2
? (R>R)−1Σ

1/2
?

∥∥∥ ‖RΣ
−1/2
? ‖2,∞‖LR> −X?‖F.

This combined with the consequences (A.29) and condition (A.26) yields

√
R4 ≤

√
αµr

3
√

3 + 4(2+ε)
1−ε

2(1− ε)

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.
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Take the square, and use the elementary inequality (a+ b)2 ≤ 2a2 + 2b2 to reach

R4 ≤ αµr
(3
√

3 + 4(2+ε)
1−ε )2

2(1− ε)2

(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
.

Taking collectively the bounds for R1,R2,R3 and R4 yields the control of ‖(Lt+1Qt − L?)Σ
1/2
? ‖2F

as

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F

+
√
αµr

3
√

3 + 4(2+ε)
1−ε

1− ε
η(1− η)

(
3

2
‖∆LΣ

1/2
? ‖2F +

1

2
‖∆RΣ

1/2
? ‖2F

)
+
√
αµr

3
√

3 + 2(2 + ε)

(1− ε)2
η2

(
1

2
‖∆LΣ

1/2
? ‖2F +

3

2
‖∆RΣ

1/2
? ‖2F

)
+ αµr

(3
√

3 + 4(2+ε)
1−ε )2

2(1− ε)2
η2
(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
.

Similarly, we can obtain the control of ‖(Rt+1Q
−>
t − R?)Σ

1/2
? ‖2F. Combine them together and

identify dist2(Ft,F?) = ‖∆LΣ
1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F to reach

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
≤ ρ2(η; ε, αµr) dist2(Ft,F?),

where the contraction rate ρ2(η; ε, αµr) is given by

ρ2(η; ε, αµr) := (1− η)2 +
2ε+

√
αµr(6

√
3 + 8(2+ε)

1−ε )

1− ε
η(1− η)

+
2ε+ ε2 +

√
αµr(6

√
3 + 4(2 + ε)) + αµr(3

√
3 + 4(2+ε)

1−ε )2

(1− ε)2
η2.

With ε = 0.02, αµr ≤ 10−4, and 0 < η ≤ 2/3, one has ρ(η; ε, αµr) ≤ 1 − 0.6η. Thus we conclude

that

dist(Ft+1,F?) ≤
√∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F

≤ (1− 0.6η) dist(Ft,F?). (A.30)
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Incoherence condition

We start by controlling the term ‖(Lt+1Qt −L?)Σ
1/2
? ‖2,∞. We know from (A.28) that

(Lt+1Qt −L?)Σ
1/2
? = (1− η)∆LΣ

1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
? − η(S − S?)R(R>R)−1Σ

1/2
? .

Apply the triangle inequality to obtain

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2,∞
≤ (1− η)‖∆LΣ

1/2
? ‖2,∞ + η

∥∥∥L?∆>RR(R>R)−1Σ
1/2
?

∥∥∥
2,∞︸ ︷︷ ︸

T1

+ η
∥∥∥(S − S?)R(R>R)−1Σ

1/2
?

∥∥∥
2,∞︸ ︷︷ ︸

T2

.

The first term ‖∆LΣ
1/2
? ‖2,∞ follows from the incoherence condition (A.24) as

‖∆LΣ
1/2
? ‖2,∞ ≤

√
µr

n1
σr(X?).

In the sequel, we shall bound the terms T1 and T2.

1. For the term T1, use the relation ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖, and combine the condition (A.23)

with the consequences (A.29) to obtain

T1 ≤ ‖L?Σ−1/2
? ‖2,∞

∥∥∥Σ1/2
? ∆>RR(R>R)−1Σ

1/2
?

∥∥∥
≤ ‖L?Σ−1/2

? ‖2,∞‖∆RΣ
1/2
? ‖

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥
≤ ε

1− ε

√
µr

n1
σr(X?),

2. For the term T2, use the relation ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖ to obtain

T2 ≤ ‖S − S?‖2,∞
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥ .
We know from Lemma 23 that S − S? has at most 3αn2 non-zero entries in each row, and
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‖S − S?‖∞ ≤ 2‖LR> −X?‖∞. Upper bound the `2,∞ norm by the `∞ norm as

‖S − S?‖2,∞ ≤
√

3αn2‖S − S?‖∞ ≤ 2
√

3αn2‖LR> −X?‖∞.

Split LR> −X? = ∆LR
> + L?∆

>
R, and take the conditions (A.24) and (A.26) to obtain

‖LR> −X?‖∞ ≤ ‖∆LR
>‖∞ + ‖L?∆>R‖∞

≤ ‖∆LΣ
1/2
? ‖2,∞‖RΣ

−1/2
? ‖2,∞ + ‖L?Σ−1/2

? ‖2,∞‖∆RΣ
1/2
? ‖2,∞

≤
√
µr

n1
σr(X?)2

√
µr

n2
+

√
µr

n1

√
µr

n2
σr(X?)

=
3µr
√
n1n2

σr(X?).

This combined with the consequences (A.29) yields

T2 ≤
6
√

3αµr

1− ε

√
µr

n1
σr(X?).

Taking collectively the bounds for T1,T2 yields the control

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥
2,∞
≤
(

1− η +
ε+ 6

√
3αµr

1− ε
η

)√
µr

n1
σr(X?). (A.31)

The last step is to switch the alignment matrix from Qt to Qt+1. (A.30) together with

Lemma 14 demonstrates the existence of Qt+1. Apply the triangle inequality to obtain

∥∥∥(Lt+1Qt+1 −L?)Σ
1/2
?

∥∥∥
2,∞
≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2,∞

+
∥∥∥Lt+1(Qt+1 −Qt)Σ

1/2
?

∥∥∥
2,∞

≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥
2,∞

+ ‖Lt+1QtΣ
−1/2
? ‖2,∞

∥∥∥Σ1/2
? Q−1

t Qt+1Σ
1/2
? −Σ?

∥∥∥ .
We deduct from (A.31) that

‖Lt+1QtΣ
−1/2
? ‖2,∞ ≤ ‖L?Σ−1/2

? ‖2,∞ +
∥∥∥(Lt+1Qt −L?)Σ

−1/2
?

∥∥∥
2,∞
≤
(

2− η +
ε+ 6

√
3αµr

1− ε
η

)√
µr

n1
.

138



Regarding the alignment matrix term, invoke Lemma 19 to obtain

∥∥∥Σ1/2
? Q−1

t Qt+1Σ
1/2
? −Σ?

∥∥∥ ≤ ‖(Rt+1(Q−>t −Q−>t+1)Σ
1/2
? ‖

1− ‖(Rt+1Q
−>
t+1 −R?)Σ

−1/2
? ‖

≤
‖(Rt+1Q

−>
t −R?)Σ

1/2
? ‖ + ‖(Rt+1Q

−>
t+1 −R?)Σ

1/2
? ‖

1− ‖(Rt+1Q
−>
t+1 −R?)Σ

−1/2
? ‖

≤ 2ε

1− ε
σr(X?),

where we deduct from (A.30) that the distances using either Qt or Qt+1 are bounded by

‖(Rt+1Q
−>
t −R?)Σ

1/2
? ‖ ≤ εσr(X?);

‖(Rt+1Q
−>
t+1 −R?)Σ

1/2
? ‖ ≤ εσr(X?);

‖(Rt+1Q
−>
t+1 −R?)Σ

−1/2
? ‖ ≤ ε.

Combine all pieces to reach

∥∥∥(Lt+1Qt+1 −L?)Σ
1/2
?

∥∥∥
2,∞
≤
(

1 + ε

1− ε

(
1− η +

ε+ 6
√

3αµr

1− ε
η

)
+

2ε

1− ε

)√
µr

n1
σr(X?).

With ε = 0.02, αµr ≤ 10−4, and 0.1 ≤ η ≤ 2/3, we get the desired incoherence condition

∥∥∥(Lt+1Qt+1 −L?)Σ
1/2
?

∥∥∥
2,∞
≤
√
µr

n1
σr(X?).

Similarly, we can prove the other part

∥∥∥(Rt+1Q
−>
t+1 −R?)Σ

1/2
?

∥∥∥
2,∞
≤
√
µr

n2
σr(X?).

A.4.2 Proof of Lemma 4

We first record two lemmas from [YPCC16], which are useful for studying the properties of the

initialization.

Lemma 24 ( [YPCC16, Section 6.1]). Given S? ∈ Sα, one has ‖S? − Tα[X? + S?]‖∞ ≤ 2‖X?‖∞.
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Lemma 25 ( [YPCC16, Lemma 1]). For any matrix M ∈ Sα, one has ‖M‖ ≤ α√n1n2‖M‖∞.

With these two lemmas in place, we are ready to establish the claimed result. Invoke Lemma 16

to obtain

dist(F0,F?) ≤
√√

2 + 1
∥∥∥L0R

>
0 −X?

∥∥∥
F
≤
√

(
√

2 + 1)2r
∥∥∥L0R

>
0 −X?

∥∥∥ ,
where the last relation uses the fact that L0R

>
0 −X? has rank at most 2r. We can further apply

the triangle inequality to see

∥∥∥L0R
>
0 −X?

∥∥∥ ≤ ∥∥∥Y − Tα[Y ]−L0R
>
0

∥∥∥ + ‖Y − Tα[Y ]−X?‖

≤ 2 ‖Y − Tα[Y ]−X?‖ = 2 ‖S? − Tα[X? + S?]‖ .

Here the second inequality hinges on the fact that L0R
>
0 is the best rank-r approximation of

Y −Tα[Y ], and the last identity arises from Y = X?+S?. Follow the same argument as [YPCC16,

Section 6.1], combining Lemmas 24 and 25 to reach

‖S? − Tα[X? + S?]‖ ≤ 2α
√
n1n2 ‖S? − Tα[X? + S?]‖∞

≤ 4α
√
n1n2‖X?‖∞ ≤ 4αµrκσr(X?),

where the last inequality follows from the incoherence assumption

‖X?‖∞ ≤ ‖U?‖2,∞‖Σ?‖‖V?‖2,∞ ≤
µr
√
n1n2

κσr(X?). (A.32)

Take the above inequalities together to arrive at

dist(F0,F?) ≤ 8

√
2(
√

2 + 1)αµr3/2κσr(X?) ≤ 20αµr3/2κσr(X?).
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A.4.3 Proof of Lemma 5

In view of the condition dist(F0,F?) ≤ 0.02σr(X?) and Lemma 14, one knows that Q0, the optimal

alignment matrix between F0 and F? exists. Therefore, for notational convenience, denote L :=

L0Q0, R := R0Q
−>
0 , ∆L := L−L?, ∆R := R−R?, and ε := 0.02. Our objective is then translated

to demonstrate

√
n1‖∆LΣ

1/2
? ‖2,∞ ∨

√
n2‖∆RΣ

1/2
? ‖2,∞ ≤

√
µrσr(X?).

From now on, we focus on bounding ‖∆LΣ
1/2
? ‖2,∞. Since U0Σ0V

>
0 is the top-r SVD of Y −Tα[Y ],

and recall that Y = X? + S?, we have the relation

(X? + S? − Tα[X? + S?])V0 = U0Σ0,

which further implies the following decomposition of ∆LΣ
1/2
? .

Claim 4. One has

∆LΣ
1/2
? = (S? − Tα[X? + S?])R(R>R)−1Σ

1/2
? −L?∆

>
RR(R>R)−1Σ

1/2
? .

Combining Claim 4 with the triangle inequality yields

‖∆LΣ
1/2
? ‖2,∞ ≤

∥∥∥L?∆>RR(R>R)−1Σ
1/2
?

∥∥∥
2,∞︸ ︷︷ ︸

I1

+
∥∥∥(S? − Tα[X? + S?])R(R>R)−1Σ

1/2
?

∥∥∥
2,∞︸ ︷︷ ︸

I2

.

In what follows, we shall control I1 and I2 in turn.

1. For the term I1, use the relation ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖ to obtain

I1 ≤ ‖L?Σ−1/2
? ‖2,∞‖∆RΣ

1/2
? ‖

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥ .
The incoherence assumption tells ‖L?Σ−1/2

? ‖2,∞ = ‖U?‖2,∞ ≤
√
µr/n1. In addition, the as-

sumption dist(F0,F?) ≤ εσr(X?) entails the bound ‖∆RΣ
1/2
? ‖ ≤ εσr(X?). Finally, repeating the
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argument for obtaining (A.23) yields ‖∆RΣ
−1/2
? ‖ ≤ ε, which together with Lemma 17 reveals

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥ ≤ 1

1− ε
.

In all, we arrive at

I1 ≤
ε

1− ε

√
µr

n1
σr(X?).

2. Proceeding to the term I2, use the relations ‖AB‖2,∞ ≤ ‖A‖1,∞‖B‖2,∞ and ‖AB‖2,∞ ≤

‖A‖2,∞‖B‖ to obtain

I2 ≤ ‖S? − Tα[X? + S?]‖1,∞
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥
2,∞

≤ ‖S? − Tα[X? + S?]‖1,∞ ‖RΣ
−1/2
? ‖2,∞

∥∥∥Σ1/2
? (R>R)−1Σ

1/2
?

∥∥∥ .
Regarding S? − Tα[X? + S?], Lemma 24 tells that S? − Tα[X? + S?] has at most 2αn2 non-zero

entries in each row, and ‖S? − Tα[X? + S?]‖∞ ≤ 2‖X?‖∞. Consequently, we can upper bound

the `1,∞ norm by the `∞ norm as

‖S? − Tα[X? + S?]‖1,∞ ≤ 2αn2 ‖S? − Tα[X? + S?]‖∞

≤ 4αn2‖X?‖∞

≤ 4αn2
µr
√
n1n2

κσr(X?).

Here the last inequality follows from the incoherence assumption (A.32). For the term ‖RΣ
−1/2
? ‖2,∞,

one can apply the triangle inequality to see

‖RΣ
−1/2
? ‖2,∞ ≤ ‖R?Σ

−1/2
? ‖2,∞ + ‖∆RΣ

−1/2
? ‖2,∞ ≤

√
µr

n2
+
‖∆RΣ

1/2
? ‖2,∞

σr(X?)
.
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Last but not least, repeat the argument for (A.29) to obtain

∥∥∥Σ1/2
? (R>R)−1Σ

1/2
?

∥∥∥ =
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥2
≤ 1

(1− ε)2
.

Taking together the above bounds yields

I2 ≤
4αµrκ

(1− ε)2

√
µr

n1
σr(X?) +

4αµrκ

(1− ε)2

√
n2

n1
‖∆RΣ

1/2
? ‖2,∞.

Combine the bounds on I1 and I2 to reach

√
n1‖∆LΣ

1/2
? ‖2,∞ ≤

(
ε

1− ε
+

4αµrκ

(1− ε)2

)
√
µrσr(X?) +

4αµrκ

(1− ε)2

√
n2‖∆RΣ

1/2
? ‖2,∞.

Similarly, we have

√
n2‖∆RΣ

1/2
? ‖2,∞ ≤

(
ε

1− ε
+

4αµrκ

(1− ε)2

)
√
µrσr(X?) +

4αµrκ

(1− ε)2

√
n1‖∆LΣ

1/2
? ‖2,∞.

Taking the maximum and solving for
√
n1‖∆LΣ

1/2
? ‖2,∞ ∨

√
n2‖∆LΣ

1/2
? ‖2,∞ yield the relation

√
n1‖∆LΣ

1/2
? ‖2,∞ ∨

√
n2‖∆LΣ

1/2
? ‖2,∞ ≤

ε(1− ε) + 4αµrκ

(1− ε)2 − 4αµrκ

√
µrσr(X?).

With ε = 0.02 and αµrκ ≤ 0.1, we get the desired conclusion

√
n1‖∆LΣ

1/2
? ‖2,∞ ∨

√
n2‖∆LΣ

1/2
? ‖2,∞ ≤

√
µrσr(X?).

Proof of Claim 4. Identify U0 (resp. V0) with L0Σ
−1/2
0 (resp. R0Σ

−1/2
0 ) to yield

(X? + S? − Tα[X? + S?])R0Σ
−1
0 = L0,

which is equivalent to (X? + S? − Tα[X? + S?])R0(R>0 R0)−1 = L0 since Σ0 = R>0 R0. Multiply
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both sides by Q0Σ
1/2
? to obtain

(X? + S? − Tα[X? + S?])R(R>R)−1Σ
1/2
? = LΣ

1/2
? ,

where we recall that L = L0Q0 and R = R0Q
−>
0 . In the end, subtract X?R(R>R)−1Σ

1/2
? from

both sides to reach

(S? − Tα[X? + S?])R(R>R)−1Σ
1/2
? = LΣ

1/2
? −L?R

>
? R(R>R)−1Σ

1/2
?

= (L−L?)Σ
1/2
? + L?(R−R?)

>R(R>R)−1Σ
1/2
?

= ∆LΣ
1/2
? + L?∆

>
RR(R>R)−1Σ

1/2
? .

This finishes the proof.

A.5 Proof for Matrix Completion

A.5.1 New projection operator

Proof of Proposition 1

First, notice that the optimization of L and R in (2.21) can be decomposed and done in parallel,

hence we focus on the optimization of L below:

L = argmin
L∈Rn1×r

∥∥∥(L− L̃)(R̃>R̃)1/2
∥∥∥2

F
s.t.

√
n1

∥∥∥L(R̃>R̃)1/2
∥∥∥

2,∞
≤ B.

By a change of variables as G := L(R̃>R̃)1/2 and G̃ := L̃(R̃>R̃)1/2, we rewrite the above problem

equivalently as

G = argmin
G∈Rn1×r

‖G− G̃‖2F s.t.
√
n1 ‖G‖2,∞ ≤ B,
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whose solution is given as [CW15]

Gi,· =

(
1 ∧ B
√
n1‖G̃i,·‖2

)
G̃i,·, 1 ≤ i ≤ n1.

By applying again the change of variable L = G(R̃>R̃)−1/2 and L̃ = G̃(R̃>R̃)−1/2, we obtain the

claimed solution.

Proof of Lemma 6

We begin with proving the non-expansiveness property. Denote the optimal alignment matrix be-

tween F̃ and F? as Q̃, whose existence is guaranteed by Lemma 14. Denoting PB(F̃ ) = [L>,R>]>,

by the definition of dist(PB(F̃ ),F?), we know that

dist2(PB(F̃ ),F?) ≤
n1∑
i=1

∥∥∥Li,·Q̃Σ
1/2
? − (L?Σ

1/2
? )i,·

∥∥∥2

2
+

n2∑
j=1

∥∥∥Rj,·Q̃
−>Σ

1/2
? − (R?Σ

1/2
? )j,·

∥∥∥2

2
. (A.33)

Recall that the condition dist(F̃ ,F?) ≤ εσr(X?) implies

∥∥∥(L̃Q̃−L?)Σ
−1/2
?

∥∥∥ ∨ ∥∥∥(R̃Q̃−> −R?)Σ
−1/2
?

∥∥∥ ≤ ε,
which, together with R?Σ

−1/2
? = V?, further implies that

∥∥∥L̃i,·R̃>∥∥∥
2
≤
∥∥∥L̃i,·Q̃Σ

1/2
?

∥∥∥
2

∥∥∥R̃Q̃−>Σ
−1/2
?

∥∥∥
≤
∥∥∥L̃i,·Q̃Σ

1/2
?

∥∥∥
2

(
‖V?‖ +

∥∥∥(R̃Q̃−> −R?)Σ
−1/2
?

∥∥∥) ≤ (1 + ε)
∥∥∥L̃i,·Q̃Σ

1/2
?

∥∥∥
2
.

In addition, the µ-incoherence of X? yields

√
n1

∥∥∥(L?Σ
1/2
? )i,·

∥∥∥
2
≤
√
n1‖U?‖2,∞‖Σ?‖ ≤

√
µrσ1(X?) ≤

B

1 + ε
,
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where the last inequality follows from the choice of B. Take the above two relations collectively to

reach

B
√
n1‖L̃i,·R̃>‖2

≥

∥∥∥(L?Σ
1/2
? )i,·

∥∥∥
2∥∥∥L̃i,·Q̃Σ

1/2
?

∥∥∥
2

.

We claim that performing the following projection yields a contraction on each row; see also [ZL16,

Lemma 11].

Claim 5. For vectors u,u? ∈ Rn and λ ≥ ‖u?‖2/‖u‖2, it holds that

‖(1 ∧ λ)u− u?‖2 ≤ ‖u− u?‖2.

Apply Claim 5 with u := L̃i,·Q̃Σ
1/2
? , u? := (L?Σ

1/2
? )i,·, and λ := B/(

√
n1‖L̃i,·R̃>‖2) to

obtain

∥∥∥Li,·Q̃Σ
1/2
? − (L?Σ

1/2
? )i,·

∥∥∥2

2
=

∥∥∥∥∥
(

1 ∧ B
√
n1‖L̃i,·R̃>‖2

)
L̃i,·Q̃Σ

1/2
? − (L?Σ

1/2
? )i,·

∥∥∥∥∥
2

2

≤
∥∥∥L̃i,·Q̃Σ

1/2
? − (L?Σ

1/2
? )i,·

∥∥∥2

2
.

Following a similar argument for R, and plugging them back to (A.33), we conclude that

dist2(PB(F̃ ),F?) ≤
n1∑
i=1

∥∥∥L̃i,·Q̃Σ
1/2
? − (L?Σ

1/2
? )i,·

∥∥∥2

2
+

n2∑
j=1

∥∥∥R̃j,·Q̃
−>Σ

1/2
? − (R?Σ

1/2
? )j,·

∥∥∥2

2
= dist2(F̃ ,F?).

We move on to the incoherence condition. For any 1 ≤ i ≤ n1, one has

‖Li,·R>‖22 =

n2∑
j=1

〈Li,·,Rj,·〉2 =

n2∑
j=1

(
1 ∧ B
√
n1‖L̃i,·R̃>‖2

)2

〈L̃i,·, R̃j,·〉2
(

1 ∧ B
√
n2‖R̃j,·L̃>‖2

)2

(i)

≤

(
1 ∧ B
√
n1‖L̃i,·R̃>‖2

)2 n2∑
j=1

〈L̃i,·, R̃j,·〉2 =

(
1 ∧ B
√
n1‖L̃i,·R̃>‖2

)2

‖L̃i,·R̃>‖22

(ii)

≤ B2

n1
.
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where (i) follows from 1 ∧ B√
n2‖R̃j,·L̃>‖2

≤ 1, and (ii) follows from 1 ∧ B√
n1‖L̃i,·R̃>‖2

≤ B√
n1‖L̃i,·R̃>‖2

.

Similarly, one has ‖Rj,·L
>‖22 ≤ B2/n2. Combining these two bounds completes the proof.

Proof of Claim 5. When λ > 1, the claim holds as an identity. Otherwise λ ≤ 1. Denote h(λ̄) :=

‖λ̄u − u?‖22. Calculate its derivative to conclude that h(λ̄) is monotonically increasing when λ̄ ≥

λ? := 〈u,u?〉/‖u‖22. Note that λ ≥ ‖u?‖2/‖u‖2 ≥ λ?, thus h(λ) ≤ h(1), i.e. the claim holds.

A.5.2 Proof of Lemma 7

We first record two useful lemmas regarding the projector PΩ(·).

Lemma 26 ( [ZL16, Lemma 10]). Suppose that X? is µ-incoherent, and p & µr log(n1 ∨ n2)/(n1 ∧

n2). With overwhelming probability, one has

∣∣∣〈(p−1PΩ − I)(L?R
>
A + LAR

>
? ),L?R

>
B + LBR

>
?

〉∣∣∣
≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖L?R>A + LAR

>
? ‖F‖L?R>B + LBR

>
? ‖F,

simultaneously for all LA,LB ∈ Rn1×r and RA,RB ∈ Rn2×r, where C1 > 0 is some universal

constant.

Lemma 27 ( [CL19, Lemma 8], [CLL20, Lemma 12]). Suppose that p & log(n1 ∨ n2)/(n1 ∧ n2).

With overwhelming probability, one has

∣∣∣〈(p−1PΩ − I)(LAR
>
A),LBR

>
B

〉∣∣∣
≤ C2

√
n1 ∨ n2

p
(‖LA‖F‖LB‖2,∞ ∧ ‖LA‖2,∞‖LB‖F) (‖RA‖F‖RB‖2,∞ ∧ ‖RA‖2,∞‖RB‖F) ,

simultaneously for all LA,LB ∈ Rn1×r and RA,RB ∈ Rn2×r, where C2 > 0 is some universal

constant.

In view of the above two lemmas, define the event E as the intersection of the events that the

bounds in Lemmas 26 and 27 hold, which happens with overwhelming probability. The rest of the

proof is then performed under the event that E holds.

147



By the condition dist(Ft,F?) ≤ 0.02σr(X?) and Lemma 14, one knows that Qt, the optimal

alignment matrix between Ft and F? exists. Therefore, for notational convenience, we denote

L := LtQt, R := RtQ
−>
t , ∆L := L− L?, ∆R := R −R?, and ε := 0.02. In addition, denote F̃t+1

as the update before projection as

F̃t+1 :=

L̃t+1

R̃t+1

 =

Lt − ηp−1PΩ(LtR
>
t −X?)Rt(R

>
t Rt)

−1

Rt − ηp−1PΩ(LtR
>
t −X?)

>Lt(L
>
t Lt)

−1

 ,
and therefore Ft+1 = PB(F̃t+1). Note that in view of Lemma 6, it suffices to prove the following

relation

dist(F̃t+1,F?) ≤ (1− 0.6η) dist(Ft,F?). (A.34)

The conclusion ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?) is a simple consequence of Lemma 18; see (A.15)

for a detailed argument. In what follows, we concentrate on proving (A.34).

To begin with, we list a few easy consequences under the assumed conditions.

Claim 6. Under conditions dist(Ft,F?) ≤ εσr(X?) and
√
n1‖LR>‖2,∞∨

√
n2‖RL>‖2,∞ ≤ CB

√
µrσ1(X?),

one has

‖∆LΣ
−1/2
? ‖ ∨ ‖∆RΣ

−1/2
? ‖ ≤ ε; (A.35a)∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥ ≤ 1

1− ε
; (A.35b)∥∥∥Σ1/2

? (R>R)−1Σ
1/2
?

∥∥∥ ≤ 1

(1− ε)2
; (A.35c)

√
n1‖LΣ

1/2
? ‖2,∞ ∨

√
n2‖RΣ

1/2
? ‖2,∞ ≤

CB
1− ε

√
µrσ1(X?); (A.35d)

√
n1‖LΣ

−1/2
? ‖2,∞ ∨

√
n2‖RΣ

−1/2
? ‖2,∞ ≤

CBκ

1− ε
√
µr; (A.35e)

√
n1‖∆LΣ

1/2
? ‖2,∞ ∨

√
n2‖∆RΣ

1/2
? ‖2,∞ ≤

(
1 +

CB
1− ε

)
√
µrσ1(X?). (A.35f)

Now we are ready to embark on the proof of (A.34). By the definition of dist(F̃t+1,F?), one

148



has

dist2(F̃t+1,F?) ≤
∥∥∥(L̃t+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(R̃t+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
, (A.36)

where we recall that Qt is the optimal alignment matrix between Ft and F?. Plug in the update

rule (2.24) and the decomposition LR> −X? = ∆LR
> + L?∆

>
R to obtain

(L̃t+1Qt −L?)Σ
1/2
? =

(
L− ηp−1PΩ(LR> −X?)R(R>R)−1 −L?

)
Σ

1/2
?

= ∆LΣ
1/2
? − η(LR> −X?)R(R>R)−1Σ

1/2
? − η(p−1PΩ − I)(LR> −X?)R(R>R)−1Σ

1/2
?

= (1− η)∆LΣ
1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
? − η(p−1PΩ − I)(LR> −X?)R(R>R)−1Σ

1/2
? .

This allows us to expand the first square in (A.36) as

∥∥∥(L̃t+1Qt −L?)Σ
1/2
?

∥∥∥2

F
=
∥∥∥(1− η)∆LΣ

1/2
? − ηL?∆>RR(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
P1

− 2η(1− η) tr
(

(p−1PΩ − I)(LR> −X?)R(R>R)−1Σ?∆
>
L

)
︸ ︷︷ ︸

P2

+ 2η2 tr
(

(p−1PΩ − I)(LR> −X?)R(R>R)−1Σ?(R
>R)−1R>∆RL

>
?

)
︸ ︷︷ ︸

P3

+ η2
∥∥∥(p−1PΩ − I)(LR> −X?)R(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
P4

.

In the sequel, we shall control the four terms separately, of which P1 is the main term, and P2,P3

and P4 are perturbation terms.

1. Notice that the main term P1 has already been controlled in (A.13) under the condition (A.35a).

It obeys

P1 ≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F.

2. For the second term P2, decompose LR>−X? = ∆LR
>
? +L∆>R and apply the triangle inequality
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to obtain

|P2| =
∣∣∣ tr((p−1PΩ − I)(∆LR

>
? + L∆>R)R(R>R)−1Σ?∆

>
L

) ∣∣∣
≤
∣∣∣ tr((p−1PΩ − I)(∆LR

>
? )R?(R

>R)−1Σ?∆
>
L

) ∣∣∣︸ ︷︷ ︸
P2,1

+
∣∣∣ tr((p−1PΩ − I)(∆LR

>
? )∆R(R>R)−1Σ?∆

>
L

) ∣∣∣︸ ︷︷ ︸
P2,2

+
∣∣∣ tr((p−1PΩ − I)(L∆>R)R(R>R)−1Σ?∆

>
L

) ∣∣∣︸ ︷︷ ︸
P2,3

.

For the first term P2,1, under the event E , we can invoke Lemma 26 to obtain

P2,1 ≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆LR

>
? ‖F

∥∥∥∆LΣ?(R
>R)−1R>?

∥∥∥
F

≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖2F

∥∥∥Σ1/2
? (R>R)−1Σ

1/2
?

∥∥∥ ,
where the second line follows from the relation ‖AB‖F ≤ ‖A‖‖B‖F. Use the condition (A.35c)

to obtain

P2,1 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖2F.

Regarding the remaining termsP2,2 andP2,3, our main hammer is Lemma 27. Invoking Lemma 27

under the event E withLA := ∆LΣ
1/2
? ,RA := R?Σ

−1/2
? , LB := ∆LΣ

1/2
? , andRB := ∆R(R>R)−1Σ

1/2
? ,

we arrive at

P2,2 ≤ C2

√
n1 ∨ n2

p
‖∆LΣ

1/2
? ‖2,∞‖∆LΣ

1/2
? ‖F‖R?Σ

−1/2
? ‖2,∞

∥∥∥∆R(R>R)−1Σ
1/2
?

∥∥∥
F

≤ C2

√
n1 ∨ n2

p
‖∆LΣ

1/2
? ‖2,∞‖∆LΣ

1/2
? ‖F‖R?Σ

−1/2
? ‖2,∞‖∆RΣ

−1/2
? ‖F

∥∥∥Σ1/2
? (R>R)−1Σ

1/2
?

∥∥∥ .
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Similarly, with the help of Lemma 27, one has

P2,3 ≤ C2

√
n1 ∨ n2

p
‖LΣ

−1/2
? ‖2,∞‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F‖RΣ

−1/2
? ‖2,∞

∥∥∥Σ1/2
? (R>R)−1Σ

1/2
?

∥∥∥ .
Utilizing the consequences in Claim 6, we arrive at

P2,2 ≤
C2κ

(1− ε)2

(
1 +

CB
1− ε

)
µr√

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F;

P2,3 ≤
C2C

2
Bκ

2

(1− ε)4

µr√
p(n1 ∧ n2)

‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F.

We then combine the bounds for P2,1,P2,2 and P2,3 to see

P2 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖2F

+
C2κ

(1− ε)2

(
1 +

CB
1− ε

+
C2
Bκ

(1− ε)2

)
µr√

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

= δ1‖∆LΣ
1/2
? ‖2F + δ2‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

≤ (δ1 +
δ2

2
)‖∆LΣ

1/2
? ‖2F +

δ2

2
‖∆RΣ

1/2
? ‖2F,

where we denote

δ1 :=
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
, and δ2 :=

C2κ

(1− ε)2

(
1 +

CB
1− ε

+
C2
Bκ

(1− ε)2

)
µr√

p(n1 ∧ n2)
.

3. Following a similar argument for controlling P2 (i.e. repeatedly using Lemmas 26 and 27), we can

obtain the following bounds for P3 and P4, whose proof are deferred to the end of this section.

Claim 7. Under the event E, one has

P3 ≤
δ2

2
‖∆LΣ

1/2
? ‖2F + (δ1 +

δ2

2
)‖∆RΣ

1/2
? ‖2F;

P4 ≤ δ1(δ1 + δ2)‖∆LΣ
1/2
? ‖2F + δ2(δ1 + δ2)‖∆RΣ

1/2
? ‖2F.
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Taking the bounds for P1,P2,P3 and P4 collectively yields

∥∥∥(L̃t+1Qt −L?)Σ
1/2
?

∥∥∥2

F
≤
(

(1− η)2 +
2ε

1− ε
η(1− η)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2‖∆RΣ

1/2
? ‖2F

+ η(1− η)
(

(2δ1 + δ2)‖∆LΣ
1/2
? ‖2F + δ2‖∆RΣ

1/2
? ‖2F

)
+ η2

(
δ2‖∆LΣ

1/2
? ‖2F + (2δ1 + δ2)‖∆RΣ

1/2
? ‖2F

)
+ η2

(
δ1(δ1 + δ2)‖∆LΣ

1/2
? ‖2F + δ2(δ1 + δ2)‖∆RΣ

1/2
? ‖2F

)
.

A similar upper bound holds for the second square in (A.36). As a result, we reach the conclusion

that

∥∥∥(L̃t+1Qt −L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(R̃t+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
≤ ρ2(η; ε, δ1, δ2) dist2(Ft,F?),

where the contraction rate ρ2(η; ε, δ1, δ2) is given by

ρ2(η; ε, δ1, δ2) := (1− η)2 +

(
2ε

1− ε
+ 2(δ1 + δ2)

)
η(1− η) +

(
2ε+ ε2

(1− ε)2
+ 2(δ1 + δ2) + (δ1 + δ2)2

)
η2.

As long as p ≥ C(µrκ4 ∨ log(n1 ∨ n2))µr/(n1 ∧ n2) for some sufficiently large constant C, one has

δ1 +δ2 ≤ 0.1 under the setting ε = 0.02. When 0 < η ≤ 2/3, one further has ρ(η; ε, δ1, δ2) ≤ 1−0.6η.

Thus we conclude that

dist(F̃t+1,F?) ≤
√∥∥∥(L̃t+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(R̃t+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F

≤ (1− 0.6η) dist(Ft,F?),

which is exactly the upper bound we are after; see (A.34). This finishes the proof.

Proof of Claim 6. First, repeating the derivation for (A.12) obtains (A.35a). Second, take the con-

dition (A.35a) and Lemma 17 together to obtain (A.35b) and (A.35c). Third, take the incoherence
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condition
√
n1‖LR>‖2,∞ ∨

√
n2‖RL>‖2,∞ ≤ CB

√
µrσ1(X?) together with the relations

‖LR>‖2,∞ ≥ σr(RΣ
−1/2
? )‖LΣ

1/2
? ‖2,∞

≥
(
σr(R?Σ

−1/2
? )− ‖∆RΣ

−1/2
? ‖

)
‖LΣ

1/2
? ‖2,∞

≥ (1− ε)‖LΣ
1/2
? ‖2,∞;

‖RL>‖2,∞ ≥ σr(LΣ
−1/2
? )‖RΣ

1/2
? ‖2,∞

≥
(
σr(L?Σ

−1/2
? )− ‖∆LΣ

−1/2
? ‖

)
‖RΣ

1/2
? ‖2,∞

≥ (1− ε)‖RΣ
1/2
? ‖2,∞

to obtain (A.35d) and (A.35e). Finally, apply the triangle inequality together with incoherence

assumption to obtain (A.35f).

Proof of Claim 7. We start with the term P3, for which we have

|P3| ≤
∣∣∣ tr((p−1PΩ − I)(L?∆

>
R)R(R>R)−1Σ?(R

>R)−1R>∆RL
>
?

) ∣∣∣︸ ︷︷ ︸
P3,1

+
∣∣∣ tr((p−1PΩ − I)(∆LR

>)R(R>R)−1Σ?(R
>R)−1R>∆RL

>
?

) ∣∣∣︸ ︷︷ ︸
P3,2

.

Invoke Lemma 26 to bound P3,1 as

P3,1 ≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖L?∆>R‖F

∥∥∥L?∆>RR(R>R)−1Σ?(R
>R)−1R>

∥∥∥
F

≤ C1

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆RΣ

1/2
? ‖2F

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥2
.

The condition (A.35b) allows us to obtain a simplified bound

P3,1 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆RΣ

1/2
? ‖2F.

In regard to P3,2, we apply Lemma 27 with LA := ∆LΣ
1/2
? , RA := RΣ

−1/2
? , LB := L?Σ

−1/2
? , and
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RB := R(R>R)−1Σ?(R
>R)−1R>∆RΣ

1/2
? to see

P3,2 ≤ C2

√
n1 ∨ n2

p
‖∆LΣ

1/2
? ‖F‖L?Σ

−1/2
? ‖2,∞‖RΣ

−1/2
? ‖2,∞

∥∥∥R(R>R)−1Σ?(R
>R)−1R>∆RΣ

1/2
?

∥∥∥
F

≤ C2

√
n1 ∨ n2

p
‖∆LΣ

1/2
? ‖F‖L?Σ

−1/2
? ‖2,∞‖RΣ

−1/2
? ‖2,∞

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥2
‖∆RΣ

1/2
? ‖F.

Again, use the consequences in Claim 6 to reach

P3,2 ≤ C2

√
n1 ∨ n2

p
‖∆LΣ

1/2
? ‖F

√
µr

n1

CBκ

1− ε

√
µr

n2

1

(1− ε)2
‖∆RΣ

1/2
? ‖F

=
C2CBκ

(1− ε)3

µr√
p(n1 ∧ n2)

‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F.

Combine the bounds of P3,1 and P3,2 to reach

P3 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆RΣ

1/2
? ‖2F

+
C2CBκ

(1− ε)3

µr√
p(n1 ∧ n2)

‖∆LΣ
1/2
? ‖F‖∆RΣ

1/2
? ‖F

≤ δ1‖∆RΣ
1/2
? ‖2F + δ2‖∆LΣ

1/2
? ‖F‖∆RΣ

1/2
? ‖F

≤ δ2

2
‖∆LΣ

1/2
? ‖2F + (δ1 +

δ2

2
)‖∆RΣ

1/2
? ‖2F.

Moving on to the term P4, we have

√
P4 =

∥∥∥(p−1PΩ − I)(LR> −X?)R(R>R)−1Σ
1/2
?

∥∥∥
F

≤
∣∣∣ tr((p−1PΩ − I)(∆LR

>
? )R?(R

>R)−1Σ
1/2
? L̃>

) ∣∣∣︸ ︷︷ ︸
P4,1

+
∣∣∣ tr((p−1PΩ − I)(∆LR

>
? )∆R(R>R)−1Σ

1/2
? L̃>

) ∣∣∣︸ ︷︷ ︸
P4,2

+
∣∣∣ tr((p−1PΩ − I)(L∆>R)R(R>R)−1Σ

1/2
? L̃>

) ∣∣∣︸ ︷︷ ︸
P4,3

,

where we have used the variational representation of the Frobenius norm for some L̃ ∈ Rn1×r obeying
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‖L̃‖F = 1. Note that the decomposition of
√
P4 is extremely similar to that of P2. Therefore we

can follow a similar argument (i.e. applying Lemmas 26 and 27) to control these terms as

P4,1 ≤
C1

(1− ε)2

√
µr log(n1 ∨ n2)

p(n1 ∧ n2)
‖∆LΣ

1/2
? ‖F;

P4,2 ≤
C2κ

(1− ε)2

(
1 +

CB
1− ε

)
µr√

p(n1 ∧ n2)
‖∆RΣ

1/2
? ‖F;

P4,3 ≤
C2C

2
Bκ

2

(1− ε)4

µr√
p(n1 ∧ n2)

‖∆RΣ
1/2
? ‖F.

For conciseness, we omit the details for bounding each term. Combine them to reach

√
P4 ≤ δ1‖∆LΣ

1/2
? ‖F + δ2‖∆RΣ

1/2
? ‖F.

Finally take the square on both sides and use 2ab ≤ a2 + b2 to obtain the upper bound

P4 ≤ δ1(δ1 + δ2)‖∆LΣ
1/2
? ‖2F + δ2(δ1 + δ2)‖∆RΣ

1/2
? ‖2F.

A.5.3 Proof of Lemma 8

We start by recording a useful lemma below.

Lemma 28 ( [Che15, Lemma 2], [CLL20, Lemma 4]). For any fixed X ∈ Rn1×n2, with overwhelming

probability, one has

∥∥(p−1PΩ − I)(X)
∥∥ ≤ C0

log(n1 ∨ n2)

p
‖X‖∞ + C0

√
log(n1 ∨ n2)

p
(‖X‖2,∞ ∨ ‖X>‖2,∞),

where C0 > 0 is some universal constant that does not depend on X.

In view of Lemma 16, one has

dist(F̃0,F?) ≤
√√

2 + 1
∥∥∥U0Σ0V

>
0 −X?

∥∥∥
F
≤
√

(
√

2 + 1)2r
∥∥∥U0Σ0V

>
0 −X?

∥∥∥ , (A.37)
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where the last relation uses the fact that U0Σ0V
>

0 −X? has rank at most 2r. Applying the triangle

inequality, we obtain

∥∥∥U0Σ0V
>

0 −X?

∥∥∥ ≤ ∥∥∥p−1PΩ(X?)−U0Σ0V
>

0

∥∥∥ +
∥∥p−1PΩ(X?)−X?

∥∥
≤ 2

∥∥(p−1PΩ − I)(X?)
∥∥ . (A.38)

Here the second inequality hinges on the fact that U0Σ0V
>

0 is the best rank-r approximation to

p−1PΩ(X?), i.e.

∥∥∥p−1PΩ(X?)−U0Σ0V
>

0

∥∥∥ ≤ ∥∥p−1PΩ(X?)−X?

∥∥ .
Combining (A.37) and (A.38) yields

dist(F̃0,F?) ≤ 2

√
(
√

2 + 1)2r
∥∥(p−1PΩ − I)(X?)

∥∥ ≤ 5
√
r
∥∥(p−1PΩ − I)(X?)

∥∥ .
It then boils down to controlling

∥∥p−1PΩ(X?)−X?

∥∥, which is readily supplied by Lemma 28 as

∥∥(p−1PΩ − I)(X?)
∥∥ ≤ C0

log(n1 ∨ n2)

p
‖X?‖∞ + C0

√
log(n1 ∨ n2)

p
(‖X?‖2,∞ ∨ ‖X>? ‖2,∞),

which holds with overwhelming probability. The proof is finished by plugging the following bounds

from incoherence assumption of X?:

‖X?‖∞ ≤ ‖U?‖2,∞‖Σ?‖‖V?‖2,∞ ≤
µr
√
n1n2

κσr(X?);

‖X?‖2,∞ ≤ ‖U?‖2,∞‖Σ?‖‖V?‖ ≤
√
µr

n1
κσr(X?);

‖X>? ‖2,∞ ≤ ‖U?‖‖Σ?‖‖V?‖2,∞ ≤
√
µr

n2
κσr(X?).

A.6 Proof for General Loss Functions

We first present a useful property of restricted smooth and convex functions.
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Lemma 29. Suppose that f : Rn1×n2 7→ R is rank-2r restricted L-smooth and rank-2r restricted

convex. Then for any X1,X2 ∈ Rn1×n2 of rank at most r, one has

〈∇f(X1)−∇f(X2),X1 −X2〉 ≥
1

L
‖∇f(X1)−∇f(X2)‖2F,r.

Proof. Since f(·) is rank-2r restricted L-smooth and convex, it holds for any X̄ ∈ Rn1×n2 with rank

at most 2r that

f(X1) + 〈∇f(X1), X̄ −X1〉 ≤ f(X̄) ≤ f(X2) + 〈∇f(X2), X̄ −X2〉+
L

2
‖X̄ −X2‖2F.

Reorganize the terms to yield

f(X1) + 〈∇f(X1),X2 −X1〉 ≤ f(X2) + 〈∇f(X2)−∇f(X1), X̄ −X2〉+
L

2
‖X̄ −X2‖2F.

Take X̄ = X2 − 1
LPr(∇f(X2)−∇f(X1)), whose rank is at most 2r, to see

f(X1) + 〈∇f(X1),X2 −X1〉+
1

2L
‖∇f(X2)−∇f(X1)‖2F,r ≤ f(X2).

We can further switch the roles of X1 and X2 to obtain

f(X2) + 〈∇f(X2),X1 −X2〉+
1

2L
‖∇f(X2)−∇f(X1)‖2F,r ≤ f(X1).

Adding the above two inequalities yields the desired bound.

A.6.1 Proof of Theorem 4

Suppose that the t-th iterate Ft obeys the condition dist(Ft,F?) ≤ 0.1σr(X?)/
√
κf . In view of

Lemma 14, one knows that Qt, the optimal alignment matrix between Ft and F? exists. Therefore,

for notational convenience, denote L := LtQt, R := RtQ
−>
t , ∆L := L − L?, ∆R := R −R?, and
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ε := 0.1/
√
κf . Similar to the derivation in (A.12), we have

‖∆LΣ
−1/2
? ‖ ∨ ‖∆RΣ

−1/2
? ‖ ≤ ε. (A.39)

The conclusion ‖LtR>t −X?‖F ≤ 1.5 dist(Ft,F?) is a simple consequence of Lemma 18; see (A.15)

for a detailed argument. From now on, we focus on proving the distance contraction.

By the definition of dist(Ft+1,F?), one has

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
. (A.40)

Introduce an auxiliary function

fµ(X) = f(X)− µ

2
‖X −X?‖2F,

which is rank-2r restricted (L − µ)-smooth and rank-2r restricted convex. Using the ScaledGD

update rule (2.25) and the decomposition LR> −X? = ∆LR
> + L?∆

>
R, we obtain

(Lt+1Qt −L?)Σ
1/2
? =

(
L− η∇f(LR>)R(R>R)−1 −L?

)
Σ

1/2
?

=
(
L− ηµ(LR> −X?)R(R>R)−1 − η∇fµ(LR>)R(R>R)−1 −L?

)
Σ

1/2
?

= (1− ηµ)∆LΣ
1/2
? − ηµL?∆>RR(R>R)−1Σ

1/2
? − η∇fµ(LR>)R(R>R)−1Σ

1/2
? .

As a result, one can expand the first square in (A.40) as

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
=
∥∥∥(1− ηµ)∆LΣ

1/2
? − ηµL?∆>RR(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
G1

− 2η(1− ηµ)

〈
∇fµ(LR>),∆LΣ?(R

>R)−1R> −∆LR
>
? −

1

2
∆L∆>R

〉
︸ ︷︷ ︸

G2

− 2η(1− ηµ)

〈
∇fµ(LR>),∆LR

>
? +

1

2
∆L∆>R

〉
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+ 2η2µ
〈
∇fµ(LR>),L?∆

>
RR(R>R)−1Σ?(R

>R)−1R>
〉

︸ ︷︷ ︸
G3

+ η2
∥∥∥∇fµ(LR>)R(R>R)−1Σ

1/2
?

∥∥∥2

F︸ ︷︷ ︸
G4

.

In the sequel, we shall bound the four terms separately.

1. Notice that the main term G1 has already been controlled in (A.13) under the condition (A.39).

It obeys

G1 ≤
(

(1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2µ2‖∆RΣ

1/2
? ‖2F,

as long as ηµ ≤ 2/3.

2. For the second term G2, note that ∆LΣ?(R
>R)−1R> −∆LR

>
? − 1

2∆L∆>R has rank at most r.

Hence we can invoke Lemma 20 to obtain

|G2| ≤ ‖∇fµ(LR>)‖F,r

∥∥∥∥∆LΣ?(R
>R)−1R> −∆LR

>
? −

1

2
∆L∆>R

∥∥∥∥
F

≤ ‖∇fµ(LR>)‖F,r‖∆LΣ
1/2
? ‖F

(∥∥∥R(R>R)−1Σ
1/2
? − V?

∥∥∥ +
1

2
‖∆RΣ

−1/2
? ‖

)
,

where the second line uses R? = V?Σ
1/2
? . Take the condition (A.39) and Lemma 17 together to

obtain

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥ ≤ 1

1− ε
;∥∥∥R(R>R)−1Σ

1/2
? − V?

∥∥∥ ≤ √2ε

1− ε
.

These consequences further imply that

|G2| ≤ (

√
2ε

1− ε
+
ε

2
)‖∇fµ(LR>)‖F,r‖∆LΣ

1/2
? ‖F.
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3. As above, the third term G3 can be similarly bounded as

|G3| ≤ ‖∇fµ(LR>)‖F,r

∥∥∥L?∆>RR(R>R)−1Σ?(R
>R)−1R>

∥∥∥
F

≤ ‖∇fµ(LR>)‖F,r‖∆RΣ
1/2
? ‖F

∥∥∥R(R>R)−1Σ
1/2
?

∥∥∥2

≤ 1

(1− ε)2
‖∇fµ(LR>)‖F,r‖∆RΣ

1/2
? ‖F.

4. For the last term G4, invoke Lemma 20 to obtain

G4 ≤ ‖∇fµ(LR>)‖2F,r
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥2
≤ 1

(1− ε)2
‖∇fµ(LR>)‖2F,r.

Taking collectively the bounds for G1,G2,G3 and G4 yields

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
≤
(

(1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ)

)
‖∆LΣ

1/2
? ‖2F +

2ε+ ε2

(1− ε)2
η2µ2‖∆RΣ

1/2
? ‖2F

+ 2η(

√
2ε

1− ε
+
ε

2
)(1− ηµ)‖∇fµ(LR>)‖F,r‖∆LΣ

1/2
? ‖F

− 2η(1− ηµ)

〈
∇fµ(LR>),∆LR

>
? +

1

2
∆L∆>R

〉
+

2η2µ

(1− ε)2
‖∇fµ(LR>)‖F,r‖∆RΣ

1/2
? ‖F +

η2

(1− ε)2
‖∇fµ(LR>)‖2F,r.

Similarly, we can obtain the control of ‖(Rt+1Q
−>
t −R?)Σ

1/2
? ‖2F. Combine them together to reach

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F

≤
(

(1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ) +

2ε+ ε2

(1− ε)2
η2µ2

)(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
+ 2η

(
(

√
2ε

1− ε
+
ε

2
)(1− ηµ) +

ηµ

(1− ε)2

)
‖∇fµ(LR>)‖F,r

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
− 2η(1− ηµ)

〈
∇fµ(LR>),∆LR

>
? + L?∆

>
R + ∆L∆>R

〉
+

2η2

(1− ε)2
‖∇fµ(LR>)‖2F,r

≤
(

(1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ) +

2ε+ ε2

(1− ε)2
η2µ2

)(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)

160



+ 2η

(
(

√
2ε

1− ε
+
ε

2
)(1− ηµ) +

ηµ

(1− ε)2

)
︸ ︷︷ ︸

C1

‖∇fµ(LR>)‖F,r

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)

− 2η

(
1− ηµ
L− µ

− η

(1− ε)2

)
︸ ︷︷ ︸

C2

‖∇fµ(LR>)‖2F,r,

where the last line follows from Lemma 29 (notice that ∇fµ(X?) = 0) as

〈∇fµ(LR>),∆LR
>
? + L?∆

>
R + ∆L∆>R〉 = 〈∇fµ(LR>),LR> −X?〉 ≥

1

L− µ
‖∇fµ(LR>)‖2F,r.

Notice that C2 > 0 as long as η ≤ (1−ε)2/L. Maximizing the quadratic function of ‖∇fµ(LR>)‖F,r

yields

C1‖∇fµ(LR>)‖F,r

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
− C2‖∇fµ(LR>)‖2F,r ≤

C2
1

4C2

(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)2

≤ C2
1

2C2

(
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F

)
,

where the last inequality holds since (a + b)2 ≤ 2(a2 + b2). Identify dist2(Ft,F?) = ‖∆LΣ
1/2
? ‖2F +

‖∆RΣ
1/2
? ‖2F to obtain

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
≤ ρ2(η; ε, µ, L) dist2(Ft,F?),

where the contraction rate is given by

ρ2(η; ε, µ, L) := (1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ) +

2ε+ ε2

(1− ε)2
η2µ2 +

(
(
√

2ε
1−ε + ε

2)(1− ηµ) + ηµ
(1−ε)2

)2

1− ηµ− η(L−µ)
(1−ε)2

η(L− µ).

With ε = 0.1/
√
κf and 0 < η ≤ 0.4/L, one has ρ(η; ε, µ, L) ≤ 1− 0.7ηµ. Thus we conclude that

dist(Ft+1,F?) ≤
√∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F

≤ (1− 0.7ηµ) dist(Ft,F?),
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which is the desired claim.

Remark 9. We provide numerical details for the contraction rate. For simplicity, we shall prove

ρ(η; ε, µ, L) ≤ 1 − 0.7ηµ under a stricter condition ε = 0.02/
√
κf . The stronger result under the

condition ε = 0.1/
√
κf can be verified through a subtler analysis.

With ε = 0.02/
√
κf and 0 < η ≤ 0.4/L, one can bound the terms in ρ2(η; ε, µ, L) as

(1− ηµ)2 +
2ε

1− ε
ηµ(1− ηµ) +

2ε+ ε2

(1− ε)2
η2µ2 ≤ 1− 1.959ηµ+ 1.002η2µ2; (A.41)(

(
√

2ε
1−ε + ε

2)(1− ηµ) + ηµ
(1−ε)2

)2

1− ηµ− η(L−µ)
(1−ε)2

η(L− µ) ≤
0.0016
κf

+ 0.078ηµ+ 1.005η2µ2

1− 1.042ηL
ηL

≤
0.0016η L

κf
+ 0.4× (0.078ηµ+ 1.005η2µ2)

1− 0.4× 1.042

≤ 0.057ηµ+ 0.69η2µ2, (A.42)

where the last line uses the definition (2.26) of κf . Putting (A.41) and (A.42) together further

implies

ρ2(η; ε, µ, L) ≤ 1− 1.9ηµ+ 1.7η2µ2 ≤ (1− 0.7ηµ)2,

as long as 0 < ηµ ≤ 0.4.
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Appendix B

Proofs for Robust Low-rank Matrix

Estimation

Lemma 30. Suppose that f(·) : Rn1×n2 7→ R is convex and rank-r restricted L-Lipschitz continuous

(cf. Definition 5). Then for any subgradient S ∈ ∂f(X), one has ‖S‖F,r ≤ L.

Proof. Fix any subgradient S ∈ ∂f(X). By the definition of a subgradient, for any X̃ ∈ Rn1×n2 ,

one has

f(X̃) ≥ f(X) + 〈S, X̃ −X〉.

In particular, taking X̃ = X + Pr(S) arrives at

f(X + Pr(S)) ≥ f(X) + 〈S,Pr(S)〉 = f(X) + ‖S‖2F,r, (B.1)

where the last equality follows from the definition (A.8). Note that Pr(S) has rank at most r. By

the rank-r restricted L-Lipschitz continuity of f(·), we have

f(X + Pr(S))− f(X) ≤ L‖Pr(S)‖F = L‖S‖F,r.

Combining the above inequality with (B.1), we conclude ‖S‖F,r ≤ L.
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B.1 Proof of Theorem 6

Suppose that the t-th iterate Ft obeys the condition

dist(Ft,F?) ≤ 0.02σr(X?)/χf . (B.2)

Lemma 14 ensures that Qt, the optimal alignment matrix between Ft and F? exists. For notational

convenience, we denote L := LtQt, R := RtQ
−>
t , ∆L := L − L?, ∆R := R −R?, S := St, and

ε := 0.02/χf . By the definition

dist(Ft,F?) =

√
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F (B.3)

and the relation ‖AB‖F ≥ ‖A‖Fσr(B) ≥ ‖A‖σr(B), we have

max{‖∆LΣ
−1/2
? ‖, ‖∆RΣ

−1/2
? ‖} ≤ ε. (B.4)

We start by relating ‖LR> −X?‖F to dist(Ft,F?) given (B.4). Applying the triangle inequality to

the basic relation LR> −X? = LtR
>
t −X? = ∆LR

>
? + L?∆

>
R + ∆L∆>R, we have

‖LR> −X?‖F ≤ ‖∆LR
>
? ‖F + ‖L?∆>R‖F + ‖∆L∆>R‖F

≤ ‖∆LR
>
? ‖F + ‖L?∆>R‖F +

1

2
‖∆LΣ

−1/2
? ‖‖∆RΣ

1/2
? ‖F +

1

2
‖∆LΣ

1/2
? ‖F‖∆RΣ

−1/2
? ‖

≤
(

1 +
1

2
max{‖∆LΣ

−1/2
? ‖, ‖∆RΣ

−1/2
? ‖}

)(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
≤
(

1 +
ε

2

)√
2

√
‖∆LΣ

1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F ≤ 1.5 dist(Ft,F?), (B.5)

where the last line uses the basic inequality ‖∆LΣ
1/2
? ‖F + ‖∆RΣ

1/2
? ‖F ≤

√
2 dist(Ft,F?) and (B.4).

From now on, we focus on proving the distance contraction. By the definition of dist(Ft+1,F?),

one has

dist2(Ft+1,F?) ≤
∥∥∥(Lt+1Qt −L?)Σ

1/2
?

∥∥∥2

F
+
∥∥∥(Rt+1Q

−>
t −R?)Σ

1/2
?

∥∥∥2

F
. (B.6)

164



We expand the first square in (B.6) as

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
=
∥∥∥(L− ηtSR(R>R)−1 −L?

)
Σ

1/2
?

∥∥∥2

F

= ‖∆LΣ
1/2
? ‖2F − 2ηt

〈
S,∆LΣ?(R

>R)−1R>
〉

+ η2
t

∥∥∥SR(R>R)−1Σ
1/2
?

∥∥∥2

F

= ‖∆LΣ
1/2
? ‖2F − 2ηt

〈
S,∆LR

>
? +

1

2
∆L∆>R

〉
+ η2

t

∥∥∥SR(R>R)−1Σ
1/2
?

∥∥∥2

F︸ ︷︷ ︸
S1

− 2ηt

〈
S,∆LΣ?(R

>R)−1R> −∆LR
>
? −

1

2
∆L∆>R

〉
︸ ︷︷ ︸

S2

, (B.7)

where in the first line, we used the fact that the update rule (3.13) is covariant with respect to Qt,

implying that

Lt+1Qt = L− ηtSR(R>R)−1.

We proceed to bound S1 and S2. The term S1 can be bounded by

S1 ≤
∥∥∥SR(R>R)−1/2

∥∥∥2

F

∥∥∥(R>R)−1/2Σ
1/2
?

∥∥∥2

≤
∥∥∥SR(R>R)−1/2

∥∥∥2

F

1

(1− ε)2
,

where the second line follows from the condition (B.4) and Lemma 17 (cf. (A.7b)):

∥∥∥(R>R)−1/2Σ
1/2
?

∥∥∥ =
∥∥∥R(R>R)−1Σ

1/2
?

∥∥∥ ≤ 1

1− ε
.

For the term S2, note that

∆LΣ?(R
>R)−1R> −∆LR

>
? −

1

2
∆L∆>R = ∆LΣ

1/2
?

(
R(R>R)−1Σ

1/2
? − V? −

1

2
∆RΣ

−1/2
?

)>

has rank at most r. Hence we can invoke Lemma 20 (cf. (A.9b)) to obtain

|S2| ≤ ‖S‖F,r

∥∥∥∥∆LΣ?(R
>R)−1R> −∆LR

>
? −

1

2
∆L∆>R

∥∥∥∥
F
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≤ ‖S‖F,r‖∆LΣ
1/2
? ‖F

(∥∥∥R(R>R)−1Σ
1/2
? − V?

∥∥∥ +
1

2
‖∆RΣ

−1/2
? ‖

)
≤ L

( √
2ε

1− ε
+
ε

2

)
‖∆LΣ

1/2
? ‖F,

where the second line follows from the triangle inequality, and the third line follows from ‖S‖F,r ≤ L

(cf. Lemma 30), (B.4), and

∥∥∥R(R>R)−1Σ
1/2
? − V?

∥∥∥ ≤ √2ε

1− ε

from Lemma 17 (cf. (A.7d)).

Plugging collectively the bounds for S1 and S2 into (B.7) yields

∥∥∥(Lt+1Qt −L?)Σ
1/2
?

∥∥∥2

F
≤ ‖∆LΣ

1/2
? ‖2F − 2ηt

〈
S,∆LR

>
? +

1

2
∆L∆>R

〉
+

η2
t

(1− ε)2

∥∥∥SR(R>R)−1/2
∥∥∥2

F

+ ηtL

(
2
√

2ε

1− ε
+ ε

)
‖∆LΣ

1/2
? ‖F.

Similarly, we can obtain the control of ‖(Rt+1Q
−>
t −R?)Σ

1/2
? ‖2F. Combine them together to reach

dist2(Ft+1,F?) ≤ ‖∆LΣ
1/2
? ‖2F + ‖∆RΣ

1/2
? ‖2F − 2ηt

〈
S,∆LR

>
? + L?∆

>
R + ∆L∆>R

〉
+

η2
t

(1− ε)2

(∥∥∥SR(R>R)−1/2
∥∥∥2

F
+
∥∥∥S>L(L>L)−1/2

∥∥∥2

F

)
+ ηtL

(
2
√

2ε

1− ε
+ ε

)(
‖∆LΣ

1/2
? ‖F + ‖∆RΣ

1/2
? ‖F

)
.

Using the subgradient optimality of S, we obtain

〈S,∆LR
>
? + L?∆

>
R + ∆L∆>R〉 = 〈S,LR> −X?〉 ≥ f(LR>)− f(X?),

together with (B.3), which further implies that

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− 2ηt

(
f(LR>)− f(X?)

)
+

η2
t

(1− ε)2

(∥∥∥SR(R>R)−1/2
∥∥∥2

F
+
∥∥∥S>L(L>L)−1/2

∥∥∥2

F

)
+ ηtL

(
4ε

1− ε
+
√

2ε

)
dist(Ft,F?), (B.8)
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where the last term uses the basic inequality ‖∆LΣ
1/2
? ‖F + ‖∆RΣ

1/2
? ‖F ≤

√
2 dist(Ft,F?).

Before proceeding to different cases of stepsize schedules, we record two useful properties.

First, by the restricted µ-sharpness of f(·) together with Lemma 16, we have

f(LR>)− f(X?) ≥ µ‖LR> −X?‖F ≥ µ
√√

2− 1 dist(Ft,F?). (B.9)

On the other end, by Lemma 20 (cf. (A.9c)), we have

‖SR(R>R)−1/2‖2F + ‖S>L(L>L)−1/2‖2F ≤ ‖S‖2F,r
(
‖R(R>R)−1/2‖2 + ‖L(L>L)−1/2‖2

)
≤ 2L2, (B.10)

where the second line follows from ‖S‖F,r ≤ L (cf. Lemma 30) and

‖R(R>R)−1/2‖2 = ‖R(R>R)−1R>‖ = 1, ‖L(L>L)−1/2‖2 = ‖L(L>L)−1L>‖ = 1.

B.1.1 Convergence with Polyak’s stepsizes

Let ηt = ηP
t be the Polyak’s stepsize in (3.14), which is

ηt =
f(LtR

>
t )− f(X?)

‖StRt(R>t Rt)−1/2‖2F + ‖S>t Lt(L>t Lt)−1/2‖2F

=
f(LR>)− f(X?)

‖SR(R>R)−1/2‖2F + ‖S>L(L>L)−1/2‖2F
, (B.11)

where the second line follows sinceLtR>t = LR>, Lt(L>t Lt)−1L>t = L(L>L)−1L> andRt(R
>
t Rt)

−1R>t =

R(R>R)−1R>. Plugging (B.11) into (B.8), we have

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− ηt
(

2− 1

(1− ε)2

)(
f(LR>)− f(X?)

)
+ ηtL

(
4ε

1− ε
+
√

2ε

)
dist(Ft,F?)

≤ dist2(Ft,F?)− ηtµ
(√√

2− 1

(
2− 1

(1− ε)2

)
− χf

(
4ε

1− ε
+
√

2ε

))
dist(Ft,F?),

(B.12)

where the second line follows from (B.9) and χf = L/µ.
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To continue, combining (B.9) and (B.10), we can lower bound the Polyak’s stepsize (B.11) as

ηt ≥
√√

2− 1µ dist(Ft,F?)

2L2
.

This, combined with (B.12), leads to

dist2(Ft+1,F?) ≤ ρ(ε, χf ) dist2(Ft,F?),

where the contraction rate ρ(ε, χf ) is

ρ(ε, χf ) := 1−
√√

2− 1

2χ2
f

(√√
2− 1

(
2− 1

(1− ε)2

)
− χf

(
4ε

1− ε
+
√

2ε

))
. (B.13)

Under the condition ε = 0.02/χf , we calculate (1− ρ(ε, χf ))χ2
f as

√√
2− 1

2

(√√
2− 1

(
2− 1

(1− ε)2

)
− χf

(
4ε

1− ε
+
√

2ε

))
≥ 0.32

(
0.64×

(
2− 1

0.982

)
− 0.02

(
4

0.98
+
√

2

))
≥ 0.16,

thus ρ(ε, χf ) ≤ 1− 0.16/χ2
f . We conclude that

dist2(Ft+1,F?) ≤ (1− 0.16/χ2
f ) dist2(Ft,F?),

which is the desired claim.

B.1.2 Convergence with geometrically decaying stepsizes

Let ηt = ηG
t be the geometrically decaying stepsize in (3.15), which is

ηt =
λqt√∥∥SR(R>R)−1/2
∥∥2

F
+
∥∥S>L(L>L)−1/2

∥∥2

F

.

168



Plugging the above into (B.8), we have

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− ηtµ
(

2

√√
2− 1− χf

(
4ε

1− ε
+
√

2ε

))
dist(Ft,F?) +

λ2q2t

(1− ε)2

≤ dist2(Ft,F?)−
λqt√
2χf

(
2

√√
2− 1− χf

(
4ε

1− ε
+
√

2ε

))
dist(Ft,F?) +

λ2q2t

(1− ε)2
,

where the first line follows from (B.9) and χf = L/µ, and the second line follows from ηt ≥ λqt√
2L

due to (B.10). We now aim to show that

dist(Ft,F?) ≤ (1− 0.16/χ2
f )t/20.02σr(X?)/χf

in an inductive manner. Assume the above induction hypothesis holds at the t-iteration. By the

setting of parameters, i.e.

λqt =

√√
2− 1

2
(1− 0.16/χ2

f )t/20.02σr(X?)/χ
2
f ,

we have

dist2(Ft+1,F?) ≤ ρ(ε, χf )(1− 0.16/χ2
f )t(0.02σr(X?)/χf )2,

where the contraction rate ρ(ε, χf ) matches exactly (B.13). Therefore, under the condition ε =

0.02/χf , we have ρ(ε, χf ) ≤ 1− 0.16/χ2
f , thus we conclude that

dist(Ft+1,F?) ≤ (1− 0.16/χ2
f )

t+1
2 0.02σr(X?)/χf ,

which is the desired claim.
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B.2 Proof of Theorem 7

We start by introducing the short-hand notation dt := (1− 0.13/χ2
f )t/20.02σr(X?)/χf . The param-

eters are set as

λqt =

√√
2− 1

2
(1− 0.13/χ2

f )t/20.02σr(X?)/χ
2
f =

√√
2− 1

2

dt
χf
.

Therefore, the geometric stepsize

ηt =
λqt√∥∥SR(R>R)−1/2
∥∥2

F
+
∥∥S>L(L>L)−1/2

∥∥2

F

,

in view of (B.10), satisfies

ηt ≥
λqt√
2L

=

√√
2− 1

2

dt
χ2
fµ
. (B.14)

Follow the same derivations as the proof of Theorem 6 until (B.8). Plugging the stepsize

(B.14) into (B.8), together with the approximate restricted sharpness property

f(LR>)− f(X?) ≥ µ‖LR> −X?‖F − ξ ≥
√√

2− 1µdist(Ft,F?)− ξ,

we have

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− ηtµ
(

2

√√
2− 1−

(
4

1− ε
+
√

2

)
εχf

)
dist(Ft,F?) +

λ2q2t

(1− ε)2
+ 2ηtξ.

Under the conditions χf ≥ 1 and ε = 0.02/χf ≤ 0.02, the above relation can be simplified to

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− 1.177ηtµdist(Ft,F?) +
0.216

χ2
f

d2
t + 2ηtξ. (B.15)

We next prove the theorem by induction, where the base case is established trivially by the initial
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condition. By the induction hypothesis, the distance at the t-th iterate is bounded by

dist(Ft,F?) ≤ max {dt, 20ξ/µ} .

To obtain the control of dist(Ft+1,F?), we split the discussion in two cases.

1. If dt ≥ 20ξ/µ, or equivalently, ξ ≤ 0.05µdt, in view of (B.15), we have

dist2(Ft+1,F?)
(i)

≤ d2
t − 1.177ηtµdt +

0.216

χ2
f

d2
t + 0.1ηtµdt

= d2
t − 1.077ηtµdt +

0.216

χ2
f

d2
t

(ii)

≤ d2
t −

0.346

χ2
f

d2
t +

0.216

χ2
f

d2
t

= (1− 0.13/χ2
f )d2

t ,

where (i) uses ξ ≤ 0.05µdt, and (ii) uses the condition (B.14). We conclude that dist(Ft+1,F?) ≤

(1− 0.13/χ2
f )1/2dt.

2. If 0 ≤ dt < 20ξ/µ, we have

dist2(Ft+1,F?) ≤
(

20ξ

µ

)2

− 1.177ηtµ
20ξ

µ
+

0.216

χ2
f

d2
t + 2ηtξ

=

(
20ξ

µ

)2

− 1.077ηtµ
20ξ

µ
+

0.216

χ2
f

d2
t

≤
(

20ξ

µ

)2

− 1.077
√√

2− 1

2χ2
f

dt
20ξ

µ
+

0.216

χ2
f

d2
t

≤
(

20ξ

µ

)2

− 0.13dt
20ξ

µ

≤
(

20ξ

µ

)2

,

where the third line uses the condition (B.14), and the last line holds since dt ≥ 0.
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In sum, we conclude

dist(Ft+1,F?) ≤ max
{

(1− 0.13/χ2
f )

t+1
2 0.02σr(X?)/χf , 20ξ/µ

}
,

which is the desired claim.

B.3 Proof of Proposition 3

For X1 and X2 where X1 −X2 has rank at most 2r, we have

|f(X1)− f(X2)| =
∣∣∣‖A(X1 −X?)‖1 − ‖A(X2 −X?)‖1

∣∣∣
≤ ‖A(X1 −X2)‖1 ≤ δ2‖X1 −X2‖F,

where the second line follows from the inverse triangle inequality and the assumed rank-2r mixed-

norm RIP (cf. Definition 8) of A(·). As a result, we have L = δ2. On the other end, we note

f(X)− f(X?) = ‖A(X −X?)‖1 ≥ δ1‖X −X?‖F,

where the first equality uses f(X?) = 0 and the second inequality follows from the rank-2r mixed-

norm RIP; thus µ = δ1.

B.4 Proof of Proposition 4

For X1 and X2 with rank(X1 −X2) ≤ 2r, we have

|f(X1)− f(X2)| =
∣∣∣‖A(X1 −X?)−w − s‖1 − ‖A(X2 −X?)−w − s‖1

∣∣∣
≤ ‖A(X1 −X2)‖1 ≤ δ2‖X1 −X2‖F,
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where the second line follows from the inverse triangle inequality and the rank-2r mixed-norm RIP;

hence L = δ2. For approximate restricted sharpness, note that

f(X)− f(X?) = ‖A(X −X?)−w − s‖1 − ‖w + s‖1

≥ ‖A(X −X?)− s‖1 − ‖w‖1 − ‖s‖1 − ‖w‖1

= ‖ASc(X −X?)‖1 + ‖AS(X −X?)− s‖1 − ‖s‖1 − 2‖w‖1

≥ ‖ASc(X −X?)‖1 − ‖AS(X −X?)‖1 − 2‖w‖1

≥ δ3‖X −X?‖F − 2‖w‖1

≥ δ3‖X −X?‖F − 2σw,

where the second and the fourth lines follow from the triangle inequality, the third line follows from

the definition of S, and the last line follows from the definition of the S-outlier bound and the noise

upper bound ‖w‖1 ≤ σw. Therefore, we have µ = δ3 and ξ = 2σw.
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Appendix C

Proofs for Low-rank Tensor Estimation

C.1 Preliminaries

This section gathers several technical lemmas that will be used later in the proof. More specifically,

Section C.1.1 is devoted to understanding the scaled distance defined in the equation (4.24), and

in Section C.1.2, we derive several useful perturbation bounds related to the tensor factors and the

tensor itself. All the proofs are collected in the end of each subsection.

C.1.1 Understanding the scaled distance

To begin, recall the scaled distance between F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?):

dist2(F ,F?) := inf
Qk∈GL(rk)

‖(UQ1 −U?)Σ?,1‖2F + ‖(V Q2 − V?)Σ?,2‖2F + ‖(WQ3 −W?)Σ?,3‖2F

+
∥∥(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
∥∥2

F
, (C.1)

where we call the matrices {Qk}k=1,2,3 (if exist) that attain the infimum the optimal alignment

matrices between F and F?; in particular, F and F? are said to be aligned if the optimal alignment

matrices are identity matrices.

In what follows, we provide several useful lemmas whose proof can be found at the end

of this subsection. We start with a lemma that ensures the attainability of the infimum in the

definition (C.1) as long as dist(F ,F?) is sufficiently small.

Lemma 31. Fix any factor quadruple F = (U ,V ,W ,S). Suppose that dist(F ,F?) < σmin(X ?),

then the infimum of (C.1) is attained at some Qk ∈ GL(rk), i.e. the alignment matrices between F

and F? exist.
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Proof. This proof mimics that of Lemma 14 in Chapter 2. The high level idea is to translate the

optimization problem (C.1) into an equivalent continuous optimization problem over a compact

set. Then an application of the Weierstrass extreme value theorem ensures the existence of the

minimizer.

Under the condition dist(F ,F?) < σmin(X ?), one knows that there exist matrices Q̄k ∈

GL(rk) such that

(∥∥(UQ̄1 −U?)Σ?,1

∥∥2

F
+
∥∥(V Q̄2 − V?)Σ?,2

∥∥2

F
+
∥∥(WQ̄3 −W?)Σ?,3

∥∥2

F

+
∥∥(Q̄−1

1 , Q̄−1
2 , Q̄−1

3 ) · S − S?
∥∥2

F

)1/2
≤ εσmin(X ?),

for some ε obeying 0 < ε < 1. The above relation further implies that

∥∥UQ̄1 −U?

∥∥ ∨ ∥∥V Q̄2 − V?
∥∥ ∨ ∥∥WQ̄3 −W?

∥∥ ∨ ∥∥∥(Q̄−1
3 ⊗ Q̄−1

2 )M1(S)>Q̄−>1 Σ−1
?,1 −M1(S?)>Σ−1

?,1

∥∥∥ ≤ ε.
Invoke Weyl’s inequality, and use the fact that U?,V?,W?,M1(S?)>Σ−1

?,1 have orthonormal columns

to obtain

σmin(UQ̄1) ∧ σmin(V Q̄2) ∧ σmin(WQ̄3) ∧ σmin

(
(Q̄−1

3 ⊗ Q̄−1
2 )M1(S)>Q̄−>1 Σ−1

?,1

)
≥ 1− ε. (C.2)

In addition, it is straightforward to see that the minimization problem on the right hand side of

(C.1) is equivalent to

inf
Hk∈GL(rk)

∥∥(UQ̄1H1 −U?)Σ?,1

∥∥2

F
+
∥∥(V Q̄2H2 − V?)Σ?,2

∥∥2

F
+
∥∥(WQ̄3H3 −W?)Σ?,3

∥∥2

F

+
∥∥(H−1

1 Q̄−1
1 ,H−1

2 Q̄−1
2 ,H−1

3 Q̄−1
3

)
· S − S?

∥∥2

F
. (C.3)

Therefore, it suffices to establish the infimum is attainable for the above problem instead. By the

optimality of Q̄kHk over Q̄k, to yield a smaller distance than Q̄k, Hk must obey

(∥∥(UQ̄1H1 −U?)Σ?,1

∥∥2

F
+
∥∥(V Q̄2H2 − V?)Σ?,2

∥∥2

F
+
∥∥(WQ̄3H3 −W?)Σ?,3

∥∥2

F
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+
∥∥(H−1

1 Q̄−1
1 ,H−1

2 Q̄−1
2 ,H−1

3 Q̄−1
3

)
· S − S?

∥∥2

F

)1/2
≤ εσmin(X ?).

Follow similar reasoning and invoke Weyl’s inequality again to obtain

σmax(UQ̄1H1) ∨ σmax(V Q̄2H2) ∨ σmax(WQ̄3H3)

∨ σmax

(
(H−1

3 ⊗H−1
2 )(Q̄−1

3 ⊗ Q̄−1
2 )M1(S)>Q̄−>1 H−>1 Σ−1

?,1

)
≤ 1 + ε.

Use the relation σmin(A)σmax(B) ≤ σmax(AB), combined with (C.2), to further obtain

σmax(Hk) ≤
1 + ε

1− ε
, k = 1, 2, 3,

σmax

(
Σ?,1H

−>
1 Σ−1

?,1

)
σmax(H−1

2 )σmax(H−1
3 ) ≤ 1 + ε

1− ε

=⇒ σmin

(
Σ?,1H1Σ

−1
?,1

)
σmin(H2)σmin(H3) ≥ 1− ε

1 + ε
.

As a result, the minimization problem (C.3) is equivalent to the constrained problem:

min
Hk∈GL(rk)

∥∥(UQ̄1H1 −U?)Σ?,1

∥∥2

F
+
∥∥(V Q̄2H2 − V?)Σ?,2

∥∥2

F
+
∥∥(WQ̄3H3 −W?)Σ?,3

∥∥2

F

+
∥∥(H−1

1 Q̄−1
1 ,H−1

2 Q̄−1
2 ,H−1

3 Q̄−1
3

)
· S − S?

∥∥2

F

s.t. σmax(Hk) ≤
1 + ε

1− ε
, σmin

(
Σ?,1H1Σ

−1
?,1

)
σmin(H2)σmin(H3) ≥ 1− ε

1 + ε
, k = 1, 2, 3.

Since this is a continuous optimization problem over a compact set, applying the Weierstrass extreme

value theorem finishes the proof.

With the existence of the optimal alignment matrices in place, the following lemma delineates

the optimality conditions they need to satisfy.

Lemma 32. The optimal alignment matrices {Qk}k=1,2,3 between F and F?, if exist, must satisfy

(UQ1)>(UQ1 −U?)Σ
2
?,1 =M1

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
)
M1

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S
)>
,

(V Q2)>(V Q2 − V?)Σ
2
?,2 =M2

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
)
M2

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S
)>
,
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(WQ3)>(WQ3 −W?)Σ
2
?,3 =M3

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
)
M3

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S
)>
.

Proof. Set the gradient of the expression on the right hand side of (C.1) with respect to Q1 as zero

to see

U>(UQ1 −U?)Σ
2
?,1 −Q−>1 M1

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
)
M1

(
(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S
)>

= 0.

We conclude the proof by similarly setting the gradient with respect to Q2 or Q3 to zero.

The next lemma relates the scaled distance between the factors to the Euclidean distance

between the tensors.

Lemma 33. For any factor quadruple F = (U ,V ,W ,S), the scaled distance (C.1) satisfies

dist(F ,F?) ≤ (
√

2 + 1)3/2 ‖(U ,V ,W ) · S −X ?‖F .

Proof. We begin by applying the mode-1 matricization (see (4.12)), and invoking Lemma 16 with

L := U , R := (W ⊗ V )M1(S)>, X? := U?M1(S?)(W? ⊗ V?)
> to arrive at

‖(U ,V ,W ) · S −X ?‖2F =
∥∥∥UM1(S)(W ⊗ V )> −U?M1(S?)(W? ⊗ V?)

>
∥∥∥2

F

≥ (
√

2− 1) inf
Q∈GL(r1)

∥∥∥UQΣ
1/2
?,1 −U?Σ?,1

∥∥∥2

F
+
∥∥∥(W ⊗ V )M1(S)>Q−>Σ

1/2
?,1 − (W? ⊗ V?)M1(S?)>

∥∥∥2

F

= (
√

2− 1) inf
Q1∈GL(r1)

‖(UQ1 −U?)Σ?,1‖2F +
∥∥∥(W ⊗ V )M1(S)>Q−>1 − (W? ⊗ V?)M1(S?)>

∥∥∥2

F

= (
√

2− 1) inf
Q1∈GL(r1)

‖(UQ1 −U?)Σ?,1‖2F +
∥∥(Q−1

1 ,V ,W ) · S − (Ir1 ,V?,W?) · S?
∥∥2

F
,

where we have applied a change-of-variable as Q1 = QΣ
−1/2
?,1 in the third line, and converted back to

the tensor space in the last line. Continue in a similar manner, by applying the mode-2 matricization

to the second term (see (4.12)), and invoke Lemma 16 with L := V , R := (W ⊗ Q−1
1 )M2(S)>,

X? := V?M2(S?)(W? ⊗ Ir1)> to arrive at

∥∥(Q−1
1 ,V ,W ) · S − (Ir1 ,V?,W?) · S?

∥∥2

F
=
∥∥∥VM2(S)(W ⊗Q−1

1 )> − V?M2(S?)(W? ⊗ Ir1)>
∥∥∥2

F
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≥ (
√

2− 1) inf
Q∈GL(r2)

∥∥∥V QΣ
1/2
?,2 − V?Σ?,2

∥∥∥2

F
+
∥∥∥(W ⊗Q−1

1 )M2(S)>Q−>Σ
1/2
?,2 − (W? ⊗ Ir1)M2(S?)>

∥∥∥2

F

= (
√

2− 1) inf
Q2∈GL(r2)

‖(V Q2 − V?)Σ?,2‖2F +
∥∥(Q−1

1 ,Q−1
2 ,W ) · S − (Ir1 , Ir2 ,W?) · S?

∥∥2

F
.

where we have applied a change-of-variable as Q2 = QΣ
−1/2
?,2 as well as tensorization in the last

line. Repeating the same argument by applying the mode-3 matricization to the second term, we

obtain

∥∥(Q−1
1 ,Q−1

2 ,W ) · S − (Ir1 , Ir2 ,W?) · S?
∥∥2

F
=
∥∥∥WM3(S)(Q−1

2 ⊗Q−1
1 )> −W?M3(S?)

∥∥∥2

F

≥ (
√

2− 1) inf
Q3∈GL(r3)

‖(WQ3 −W?)Σ?,3‖2F +
∥∥(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
∥∥2

F
.

Finally, combine these results to conclude

‖(U ,V ,W ) · S −X ?‖2F ≥ inf
Qk∈GL(rk)

(
√

2− 1) ‖(UQ1 −U?)Σ?,1‖2F + (
√

2− 1)2 ‖(V Q2 − V?)Σ?,2‖2F

+ (
√

2− 1)3 ‖(WQ3 −W?)Σ?,3‖2F + (
√

2− 1)3
∥∥(Q−1

1 ,Q−1
2 ,Q−1

3 ) · S − S?
∥∥2

F

≥ (
√

2− 1)3 dist2(F ,F?),

where the last relation uses the definition of dist2(F ,F?).

C.1.2 Several perturbation bounds

We now collect several perturbation bounds that will be used repeatedly in the proof. Without loss

of generality, assume that F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?) are aligned, and introduce

the following notation that will be used repeatedly:

∆U := U −U?, ∆V := V − V?, ∆W := W −W?, ∆S := S − S?,

Ŭ := (W ⊗ V )M1(S)>, V̆ := (W ⊗U)M2(S)>, W̆ := (V ⊗U)M3(S)>,

Ŭ? := (W? ⊗ V?)M1(S?)>, V̆? := (W? ⊗U?)M2(S?)>, W̆? := (V? ⊗U?)M3(S?)>,

(C.4)

T U := (U>? ∆U , Ir2 , Ir3) · S?, T V := (Ir1 ,V
>
? ∆V , Ir3) · S?, T W := (Ir1 , Ir2 ,W

>
? ∆W ) · S?,
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DU := (U>U)−1/2U>∆UΣ?,1, DV := (V >V )−1/2V >∆V Σ?,2, DW := (W>W )−1/2W>∆WΣ?,3.

Now we are ready to state the lemma on perturbation bounds.

Lemma 34. Suppose F = (U ,V ,W ,S) and F? = (U?,V?,W?,S?) are aligned and satisfy

dist(F ,F?) ≤ εσmin(X ?) for some ε < 1. Then the following bounds hold regarding the spectral

norm:

‖∆U‖ ∨ ‖∆V ‖ ∨ ‖∆W ‖ ∨ ‖Mk(∆S)>Σ−1
?,k‖ ≤ ε, k = 1, 2, 3; (C.5a)

‖U(U>U)−1‖ ≤ (1− ε)−1; (C.5b)∥∥∥U(U>U)−1 −U?

∥∥∥ ≤ √2ε

1− ε
; (C.5c)∥∥∥(U>U)−1

∥∥∥ ≤ (1− ε)−2; (C.5d)∥∥∥(Ŭ − Ŭ?)Σ
−1
?,1

∥∥∥ ≤ 3ε+ 3ε2 + ε3; (C.5e)∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥ ≤ (1− ε)−3; (C.5f)∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1

∥∥∥ ≤ √2(3ε+ 3ε2 + ε3)

(1− ε)3
; (C.5g)∥∥∥Σ?,1(Ŭ>Ŭ)−1Σ?,1

∥∥∥ ≤ (1− ε)−6; (C.5h)∥∥∥Σ?,1(Ŭ>Ŭ)−1M1(S)
∥∥∥ ≤ (1− ε)−5. (C.5i)

By symmetry, a corresponding set of bounds holds for V , V̆ and W , W̆ .

In addition, the following bounds hold regarding the Frobenius norm:

‖(U ,V ,W ) · S −X ?‖F ≤ (1 +
3

2
ε+ ε2 +

ε3

4
) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ;

(C.6a)

‖(U ,V ,W ) · S? −X ?‖F ≤ (1 + ε+
ε2

3
) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) ; (C.6b)∥∥∥Ŭ − Ŭ?

∥∥∥
F
≤ (1 + ε+

ε2

3
) (‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) . (C.6c)
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As a straightforward consequence of (C.6a), the following important relation holds when ε ≤ 0.2:

‖(U ,V ,W ) · S −X ?‖F ≤ 2(1 +
3

2
ε+ ε2 +

ε3

4
) dist(F ,F?) ≤ 3 dist(F ,F?). (C.7)

Hence, the scaled distance serves as a metric to gauge the quality of the tensor recovery.

Proof of spectral norm perturbation bounds. To begin, recalling the notation in (C.4),

(C.5a) follows directly from the definition

dist(Ft,F?) =
√
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆S‖2F ≤ εσmin(X ?)

together with the relation ‖AB‖F ≥ ‖A‖Fσmin(B).

For (C.5b), Weyl’s inequality tells σmin(U) ≥ σmin(U?)− ‖∆U‖ ≥ 1− ε, and use that

∥∥∥U(U>U)−1
∥∥∥ =

1

σmin(U)
≤ 1

1− ε
.

For (C.5c), decompose

U(U>U)−1 −U? = −U(U>U)−1∆>UU? +
(
In1 −U(U>U)−1U>

)
∆U ,

and use that the two terms are orthogonal to obtain

∥∥∥U(U>U)−1 −U?

∥∥∥2
≤
∥∥∥U(U>U)−1∆>UU?

∥∥∥2
+
∥∥∥(In1 −U(U>U)−1U>

)
∆U

∥∥∥2

≤ ‖U(U>U)−1‖2‖∆U‖2 + ‖∆U‖2

≤
(
(1− ε)−2 + 1

)
ε2.

It follows from ε < 1 that

∥∥∥U(U>U)−1 −U?

∥∥∥ ≤ √2ε

1− ε
.
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For (C.5d), recognizing that

(U>U)−1 = (U(U>U)−1)>U(U>U)−1 =⇒ ‖(U>U)−1‖ = ‖U(U>U)−1‖2 ≤ 1

(1− ε)2
,

where the last inequality follows from (C.5b).

For (C.5e), we first expand the expression as

Ŭ − Ŭ? = (W ⊗ V )M1(S)> − (W? ⊗ V?)M1(S?)>

= (W ⊗ V −W? ⊗ V?)M1(S?)> + (W ⊗ V )M1(S)> − (W ⊗ V )M1(S?)>

= (W ⊗∆V + ∆W ⊗ V?)M1(S?)> + (W ⊗ V )M1(∆S)>. (C.8)

Apply the triangle inequality to obtain

‖(Ŭ − Ŭ?)Σ
−1
?,1‖ ≤

∥∥∥(W ⊗∆V + ∆W ⊗ V?)M1(S?)>Σ−1
?,1

∥∥∥ +
∥∥∥(W ⊗ V )M1(∆S)>Σ−1

?,1

∥∥∥
≤ (‖W ‖‖∆V ‖ + ‖∆W ‖‖V?‖) ‖M1(S?)>Σ−1

?,1‖ + ‖W ‖‖V ‖‖M1(∆S)>Σ−1
?,1‖

≤ (1 + ε)ε+ ε+ (1 + ε)2ε = 3ε+ 3ε2 + ε3,

where we have used (C.5a) and the fact ‖M1(S?)>Σ−1
?,1‖ = 1 (see (4.13)) in the last line.

(C.5f) follows from combining

σmin

(
ŬΣ−1

?,1

)
≥ σmin(V )σmin(W )σmin

(
M1(S)Σ−1

?,1

)
≥ (1− ε)3,

and
∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥ =
1

σmin

(
ŬΣ−1

?,1

) ≤ 1

(1− ε)3
.

With regard to (C.5g), repeat the same proof as (C.5c), decompose

Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1 = −Ŭ(Ŭ>Ŭ)−1(Ŭ − Ŭ?)

>Ŭ?Σ
−1
?,1 +

(
In2n3 − Ŭ(Ŭ>Ŭ)−1Ŭ>

)
(Ŭ − Ŭ?)Σ

−1
?,1,
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and use that the two terms are orthogonal to obtain

∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1

∥∥∥2
≤
∥∥∥Ŭ(Ŭ>Ŭ)−1(Ŭ − Ŭ?)

>Ŭ?Σ
−1
?,1

∥∥∥2
+
∥∥∥(In2n3 − Ŭ(Ŭ>Ŭ)−1Ŭ>

)
(Ŭ − Ŭ?)Σ

−1
?,1

∥∥∥2

≤ ‖Ŭ(Ŭ>Ŭ)−1Σ?,1‖2‖(Ŭ − Ŭ?)Σ
−1
?,1‖

2 + ‖(Ŭ − Ŭ?)Σ
−1
?,1‖

2

≤
(
(1− ε)−6 + 1

)
(3ε+ 3ε2 + ε3)2.

It follows from ε < 1 that

∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1

∥∥∥ ≤ √2(3ε+ 3ε2 + ε3)

(1− ε)3
.

The relation (C.5h) follows from (C.5f) and the relation:

∥∥∥Σ?,1(Ŭ>Ŭ)−1Σ?,1

∥∥∥ =
∥∥∥Σ?,1(Ŭ>Ŭ)−1Ŭ>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥ =
∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2
.

With regard to (C.5i), we have

∥∥∥Σ?,1(Ŭ>Ŭ)−1M1(S)
∥∥∥ =

∥∥∥Σ?,1(Ŭ>Ŭ)−1Ŭ>
(
W (W>W )−1 ⊗ V (V >V )−1

)∥∥∥
≤
∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥ ∥∥∥W (W>W )−1
∥∥∥ ∥∥∥V (V >V )−1

∥∥∥
≤ (1− ε)−5,

where the first line follows from

Ŭ> =M1(S)(W ⊗ V )> =⇒ M1(S) = Ŭ>
(
W (W>W )−1 ⊗ V (V >V )−1

)
, (C.9)

and the last inequality uses (C.5c) and (C.5f).

Proof of Frobenius norm perturbation bounds. We proceed to prove the perturbation

bounds regarding the Frobenius norm. For (C.6a), we begin with the following decomposition

(U ,V ,W ) · S −X ? = (U ,V ,W ) · S − (U?,V?,W?) · S?
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= (U ,V ,W ) ·∆S + (∆U ,V ,W ) · S? + (U?,∆V ,W ) · S? + (U?,V?,∆W ) · S?.

(C.10)

Apply the triangle inequality, together with the invariance of the Frobenius norm to matricization,

to obtain

‖(U ,V ,W ) · S −X ?‖F ≤ ‖(U ,V ,W ) ·∆S‖F +
∥∥∥∆UM1(S?)(W ⊗ V )>

∥∥∥
F

+
∥∥∥∆VM2(S?)(W ⊗U?)

>
∥∥∥

F
+
∥∥∥∆WM3(S?)(V? ⊗U?)

>
∥∥∥

F

≤ ‖U‖‖V ‖‖W ‖‖∆S‖F + ‖∆UM1(S?)‖F‖W ‖‖V ‖

+ ‖∆VM2(S?)‖F‖W ‖‖U?‖ + ‖∆WM3(S?)‖F‖V?‖‖U?‖

≤ (1 + ε)3‖∆S‖F + (1 + ε)2‖∆UΣ?,1‖F + (1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F,

where the second inequality follows from (4.6e), and the last inequality follows from (4.13) and

(C.5a). By symmetry, one can permute the occurrence of ∆U ,∆V ,∆W ,∆S in the decomposition

(C.10). For example, invoking another viable decomposition of (U ,V ,W ) · S −X ? as

(U ,V ,W ) · S −X ? = (U ,∆V ,W ) · S + (U ,V?,∆W ) · S + (U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?

leads to the perturbation bound

‖(U ,V ,W ) · S −X ?‖F ≤ (1 + ε)3‖∆V Σ?,2‖F + (1 + ε)2‖∆WΣ?,3‖F + (1 + ε)‖∆S‖F + ‖∆UΣ?,1‖F.

To complete the proof of (C.6a), we take an average of all viable bounds from 4! = 24 permutations

to balance their coefficients as

1

4

(
(1 + ε)3 + (1 + ε)2 + (1 + ε) + 1

)
= 1 +

3

2
ε+ ε2 +

1

4
ε3,
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thus we obtain

‖(U ,V ,W ) · S −X ?‖F ≤ (1 +
3

2
ε+ ε2 +

1

4
ε3)
(
‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F

)
.

The relation (C.6b) can be proved in a similar fashion; for the sake of brevity, we omit its proof.

Turning to (C.6c), apply the triangle inequality to (C.8) to obtain

‖Ŭ − Ŭ?‖F ≤
∥∥∥(W ⊗∆V )M1(S?)>

∥∥∥
F

+
∥∥∥(∆W ⊗ V?)M1(S?)>

∥∥∥
F

+ ‖(W ⊗ V )M1(∆S)‖F .

(C.11)

To bound the first term, change the mode of matricization (see (4.12)) to arrive at

∥∥∥(W ⊗∆V )M1(S?)>
∥∥∥

F
= ‖(Ir1 ,∆V ,W ) · S?‖F =

∥∥∥∆VM2(S?)(W ⊗ Ir1)>
∥∥∥

F

≤ ‖∆VM2(S?)‖F‖W ‖ ≤ (1 + ε)‖∆VM2(S?)‖F,

where the last inequality uses (C.5a). Similarly, the last two terms in (C.11) can be bounded as

∥∥∥(∆W ⊗ V?)M1(S?)>
∥∥∥

F
≤ ‖∆WM3(S?)‖F, and ‖(W ⊗ V )M1(∆S)‖F ≤ (1 + ε)2‖∆S‖F.

Plugging the above bounds back to (C.11), we have

‖Ŭ − Ŭ?‖F ≤ (1 + ε)‖∆VM2(S?)‖F + ‖∆WM3(S?)‖F + (1 + ε)2‖∆S‖F.

Using a similar symmetrization trick as earlier, by permuting the occurrences of ∆V ,∆W ,∆S in

the decomposition (C.8), we arrive at the final advertised bound (C.6c).

C.2 Proof for Tensor Factorization (Theorem 10)

We prove Theorem 10 via induction. Suppose that for some t ≥ 0, one has dist(Ft,F?) ≤ εσmin(X ?)

for some sufficiently small ε whose size will be specified later in the proof. Our goal is to bound the

scaled distance from the ground truth to the next iterate, i.e. dist(Ft+1,F?).
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Since dist(Ft,F?) ≤ εσmin(X ?), Lemma 31 ensures that the optimal alignment matrices

{Qt,k}k=1,2,3 between Ft and F? exist. Therefore, in view of the definition of dist(Ft+1,F?), one

has

dist2(Ft+1,F?) ≤ ‖(Ut+1Qt,1 −U?)Σ?,1‖2F + ‖(Vt+1Qt,2 − V?)Σ?,2‖2F + ‖(Wt+1Qt,3 −W?)Σ?,3‖2F

+
∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥2

F
. (C.12)

To avoid notational clutter, we denote F := (U ,V ,W ,S) with

U := UtQt,1, V := VtQt,2, W := WtQt,3, S := (Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St, (C.13)

and adopt the set of notation defined in (C.4) for the rest of the proof. Clearly, F is aligned with

F?. With these notation, we can rephrase the consequences of Lemma 32 as:

U>∆UΣ2
?,1 =M1(∆S)M1(S)>,

V >∆V Σ2
?,2 =M2(∆S)M2(S)>,

W>∆WΣ2
?,3 =M3(∆S)M3(S)>.

(C.14)

We aim to establish the following bounds for the four terms in (C.12) as long as η < 1:

‖(Ut+1Qt,1 −U?)Σ?,1‖2F ≤ (1− η)2‖∆UΣ?,1‖2F

− 2η(1− η) 〈T U ,T U + T V + T W 〉+ η2 ‖T U + T V + T W ‖2F

+ 2η(1− η)C1εdist2(Ft,F?) + η2C2εdist2(Ft,F?); (C.15a)

‖(Vt+1Qt,2 − V?)Σ?,2‖2F ≤ (1− η)2‖∆V Σ?,2‖2F

− 2η(1− η) 〈T V ,T U + T V + T W 〉+ η2 ‖T U + T V + T W ‖2F

+ 2η(1− η)C1εdist2(Ft,F?) + η2C2εdist2(Ft,F?); (C.15b)

‖(Wt+1Qt,3 −W?)Σ?,3‖2F ≤ (1− η)2‖∆WΣ?,3‖2F

− 2η(1− η) 〈T W ,T U + T V + T W 〉+ η2 ‖T U + T V + T W ‖2F
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+ 2η(1− η)C1εdist2(Ft,F?) + η2C2εdist2(Ft,F?); (C.15c)∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥2

F
≤ (1− η)2‖∆S‖2F − η(2− 5η)

(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ 2η(1− η)C1εdist2(Ft,F?) + η2C2εdist2(Ft,F?), (C.15d)

where C1, C2 > 1 are two universal constants. Suppose for the moment that the four bounds (C.15)

hold. We can then combine them all to deduce

dist2(Ft+1,F?) ≤ (1− η)2
(
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆S‖2F

)
− η(2− 5η) ‖T U + T V + T W ‖2F − η(2− 5η)

(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ 2η(1− η)Cεdist2(Ft,F?) + η2Cεdist2(Ft,F?). (C.16)

Here C := 4(C1 ∨ C2). As long as η ≤ 2/5 and ε ≤ 0.2/C, one has

dist2(Ft+1,F?) ≤
(
(1− η)2 + 2η(1− η)Cε+ η2Cε

)
dist2(Ft,F?) ≤ (1− 0.7η)2 dist2(Ft,F?),

and therefore we arrive at the conclusion that dist(Ft+1,F?) ≤ (1− 0.7η) dist(Ft,F?). In addition,

the relation (C.7) in Lemma 34 guarantees that ‖(Ut,Vt,Wt) · St −X ?‖F ≤ 3 dist(Ft,F?).

It then boils down to demonstrating the four bounds (C.15). Due to the symmetry among

U ,V and W , we will focus on proving the bounds (C.15a) and (C.15d), omitting the proofs for the

other two.

Proof of (C.15a). Utilize the ScaledGD update rule (4.26) to write

(Ut+1Qt,1 −U?)Σ?,1 =
(
U − ηM1 ((U ,V ,W ) · S −X ?) Ŭ(Ŭ>Ŭ)−1 −U?

)
Σ?,1

= (1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ?,1, (C.17)

where we use the decomposition of the mode-1 matricization

M1 ((U ,V ,W ) · S −X ?) = UM1(S)(W ⊗ V )> −U?M1(S?)(W? ⊗ V?)
>
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= ∆UM1(S)(W ⊗ V )> + U?

(
M1(S)(W ⊗ V )> −M1(S?)(W? ⊗ V?)

>
)

= ∆U Ŭ
> + U?(Ŭ − Ŭ?)

>.

Take the squared norm of both sides of the identity (C.17) to obtain

‖(Ut+1Qt,1 −U?)Σ?,1‖2F = (1− η)2‖∆UΣ?,1‖2F − 2η(1− η)
〈
∆UΣ?,1,U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

〉︸ ︷︷ ︸
=:U1

+ η2
∥∥U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥2

F︸ ︷︷ ︸
=:U2

.

The following two claims bound the two terms U1 and U2, whose proofs can be found in

Appendix C.2.1 and Appendix C.2.2, respectively.

Claim 8. U1 ≥ 〈T U ,T U + T V + T W 〉 − C1εdist2(Ft,F?).

Claim 9. U2 ≤ ‖T U + T V + T W ‖2F + C2εdist2(Ft,F?).

We can combine the above two claims to obtain that

‖(Ut+1Qt,1 −U?)Σ?,1‖2F ≤ (1− η)2‖∆UΣ?,1‖2F − 2η(1− η) 〈T U ,T U + T V + T W 〉

+ η2 ‖T U + T V + T W ‖2F + 2η(1− η)C1εdist2(Ft,F?) + η2C2εdist2(Ft,F?),

as long as η < 1. This proves the bound (C.15a).

Proof of (C.15d). Again, we use the ScaledGD update rule (4.26) and the decomposition S =

∆S + S? to obtain

(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

= S − η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·
(
(U ,V ,W ) · S −X ?

)
− S?

= (1− η)∆S − η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·
(
(U ,V ,W ) · S? −X ?

)
,

(C.18)
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where we used (4.6c) in the last line. Expand the squared norm of both sides to reach

∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥2

F
= (1− η)2‖∆S‖2F

− 2η(1− η)
〈
∆S ,

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

〉
︸ ︷︷ ︸

=:S1

+ η2
∥∥∥((U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

∥∥∥2

F︸ ︷︷ ︸
=:S2

.

We collect the bounds of the two relevant terms S1 and S2 in the following two claims, whose

proofs can be found in Appendix C.2.3 and Appendix C.2.4, respectively.

Claim 10. S1 ≥ ‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F − C1εdist2(Ft,F?).

Claim 11. S2 ≤ 3
(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ C2εdist2(Ft,F?).

Take the bounds on S1 and S2 collectively to reach

∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥2

F
≤ (1− η)2‖∆S‖2F − η(2− 5η)

(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ 2η(1− η)C1ε dist2(Ft,F?) + η2C2εdist2(Ft,F?)

as long as η < 1. This recovers the bound (C.15d).

C.2.1 Proof of Claim 8

Use the relation (C.8) to decompose U1 as

U1 =
〈
U>? ∆UΣ?,1, (Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
=
〈
U>? ∆UΣ?,1,M1(S?)(W ⊗∆V + ∆W ⊗ V?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

〉︸ ︷︷ ︸
=:U1,1

+
〈
U>? ∆UΣ?,1,M1(∆S)(W ⊗ V )>Ŭ(Ŭ>Ŭ)−1Σ?,1

〉︸ ︷︷ ︸
=:U1,2

.

In what follows, we bound U1,1 and U1,2 separately.
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Step 1: tackling U1,1. We can further decompose U1,1 into the following four terms

U1,1 =
〈
U>? ∆UΣ?,1,M1(S?)(W? ⊗∆V + ∆W ⊗ V?)

>Ŭ?Σ
−1
?,1

〉
︸ ︷︷ ︸

=:Um
1,1

+
〈
U>? ∆UΣ?,1,M1(S?)(W? ⊗∆V )>

(
Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ

−1
?,1

)〉
︸ ︷︷ ︸

=:Up,1
1,1

+
〈
U>? ∆UΣ?,1,M1(S?)(∆W ⊗ V?)

>
(
Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ

−1
?,1

)〉
︸ ︷︷ ︸

=:Up,2
1,1

+
〈
U>? ∆UΣ?,1,M1(S?)(∆W ⊗∆V )>Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
︸ ︷︷ ︸

=:Up,3
1,1

,

where Um
1,1 denotes the main term and the remaining ones are perturbation terms.

Utilizing the definition of Ŭ? in (C.4) and the relation (4.12), the main term Um
1,1 can be

rewritten as an inner product in the tensor space:

Um
1,1 =

〈
U>? ∆UM1(S?),M1(S?)(Ir3 ⊗∆>V V? + ∆>WW? ⊗ Ir2)

〉
= 〈T U ,T V + T W 〉 .

To control the other three perturbation terms, Lemma 34 turns out to be extremely useful. For

instance, the perturbation term Up,1
1,1 is bounded by

|Up,1
1,1 | ≤

∥∥∥U>? ∆UΣ?,1

∥∥∥
F

∥∥∥M1(S?)(W? ⊗∆V )>
∥∥∥

F

∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1

∥∥∥
≤
√

2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆UΣ?,1‖F‖∆V Σ?,2‖F.

Here in the last inequality, we used the upper bound (C.5g) and changed the matricization mode

to obtain

∥∥∥M1(S?)(W? ⊗∆V )>
∥∥∥

F
= ‖(Ir1 ,∆V ,W?) · S?‖F =

∥∥∥∆VM2(S?)(W? ⊗ Ir1)>
∥∥∥

F
≤ ‖∆V Σ?,2‖F.
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Similarly, the remaining two perturbation terms Up,2
1,1 and Up,3

1,1 obey

|Up,2
1,1 | ≤

√
2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆UΣ?,1‖F‖∆WΣ?,3‖F,

|Up,3
1,1 | ≤

ε

(1− ε)3
‖∆UΣ?,1‖F‖∆V Σ?,2‖F.

Step 2: tackling U1,2. Now we move on to U1,2, which can be decomposed as

U1,2 =
〈
U>? ∆UΣ?,1,M1(∆S)M1(S?)>Σ−1

?,1

〉
+
〈
U>? ∆UΣ?,1,M1(∆S)(W? ⊗ V?)

>
(
Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ

−1
?,1

)〉
︸ ︷︷ ︸

=:Up,1
1,2

+
〈
U>? ∆UΣ?,1,M1(∆S)(W ⊗ V −W? ⊗ V?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
︸ ︷︷ ︸

=:Up,2
1,2

=
〈
U>? ∆UΣ?,1,M1(∆S)M1(S)>Σ−1

?,1

〉
−
〈
U>? ∆UΣ?,1,M1(∆S)M1(∆S)>Σ−1

?,1

〉
︸ ︷︷ ︸

=:Up,3
1,2

+Up,1
1,2 + Up,2

1,2

=
〈
U>? ∆UΣ?,1,U

>∆UΣ?,1

〉
+ Up,1

1,2 + Up,2
1,2 + Up,3

1,2

= ‖T U‖2F + Up,1
1,2 + Up,2

1,2 + Up,3
1,2 +

〈
U>? ∆UΣ?,1,∆

>
U∆UΣ?,1

〉
︸ ︷︷ ︸

=:Up,4
1,2

,

where in the penultimate identity we have applied the identity (C.14) to replaceM1(∆S)M1(S)>.

Again, by Lemma 34, the perturbation term Up,1
1,2 is bounded by

|Up,1
1,2 | ≤

∥∥∥U>? ∆UΣ?,1

∥∥∥
F

∥∥∥M1(∆S)(W? ⊗ V?)
>
∥∥∥

F

∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1

∥∥
≤
√

2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆UΣ?,1‖F‖∆S‖F.

In addition, Up,2
1,2 is bounded by

|Up,2
1,2 | ≤

∥∥∥U>? ∆UΣ?,1

∥∥∥
F
‖M1(∆S)‖F ‖W ⊗ V −W? ⊗ V?‖

∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥
≤ 2ε+ ε2

(1− ε)3
‖∆UΣ?,1‖F‖∆S‖F,

190



where we have used

‖W ⊗ V −W? ⊗ V?‖ ≤ ‖∆W ⊗ V?‖ + ‖W? ⊗∆V ‖ + ‖∆W ⊗∆V ‖

≤ ‖∆W ‖ + ‖∆V ‖ + ‖∆V ‖‖∆W ‖ ≤ 2ε+ ε2.

Following similar arguments (i.e. repeatedly using Lemma 34), we can bound Up,3
1,2 and Up,4

1,2 as

|Up,3
1,2 | ≤

∥∥∥U>? ∆UΣ?,1

∥∥∥
F
‖M1(∆S)‖F

∥∥∥M1(∆S)>Σ−1
?,1

∥∥∥ ≤ ε‖∆UΣ?,1‖F‖∆S‖F;

|Up,4
1,2 | ≤

∥∥∥U>? ∆UΣ?,1

∥∥∥
F
‖∆U‖‖∆UΣ?,1‖F ≤ ε‖∆UΣ?,1‖2F.

Step 3: putting the bound together. Combine these results on U1,1 and U1,2 to see

U1 = 〈T U ,T U + T V + T W 〉+ Up
1 ,

where the perturbation term Up
1 :=

∑3
i=1 U

p,i
1,1 +

∑4
i=1 U

p,i
1,2 obeys

|Up
1 | ≤ ε‖∆UΣ?,1‖F

(
‖∆UΣ?,1‖F +

1 +
√

2(3 + 3ε+ ε2)

(1− ε)3
‖∆V Σ?,2‖F +

√
2(3 + 3ε+ ε2)

(1− ε)3
‖∆WΣ?,3‖F

+ (1 +
2 + ε+

√
2(3 + 3ε+ ε2)

(1− ε)3
)‖∆S‖F

)
.

Using the Cauchy–Schwarz inequality, we can further simplify it as |Up1| ≤ C1εdist2(Ft,F?) for some

universal constant C1 > 1.

C.2.2 Proof of Claim 9

Note that

U2 =
∥∥(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥2

F

≤
∥∥(Ŭ − Ŭ?)

>ŬΣ−1
?,1

∥∥2

F

∥∥Σ?,1(Ŭ>Ŭ)−1Σ?,1

∥∥2

≤
∥∥(Ŭ − Ŭ?)

>ŬΣ−1
?,1

∥∥2

F
(1− ε)−12, (C.19)
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where the last relation arises from the bound (C.5h) in Lemma 34. We can then use the decompo-

sition (C.8) to obtain

∥∥(Ŭ − Ŭ?)
>ŬΣ−1

?,1

∥∥
F

=
∥∥∥(M1(S?)(W ⊗∆V + ∆W ⊗ V?)

> +M1(∆S)(W ⊗ V )>
)

(W ⊗ V )M1(S)>Σ−1
?,1

∥∥∥
F

≤
∥∥∥M1(S?)

(
Ir3 ⊗∆>V V? + ∆>WW? ⊗ Ir2

)
M1(S?)>Σ−1

?,1 +M1(∆S)M1(S)>Σ−1
?,1

∥∥∥
F︸ ︷︷ ︸

=:Um
2

+
∥∥∥M1(S?)

(
W>W ⊗∆>V V − Ir3 ⊗∆>V V?

)
M1(S?)>Σ−1

?,1

∥∥∥
F︸ ︷︷ ︸

=:Up,1
2

+
∥∥∥M1(S?)

(
∆>WW ⊗ V >? V −∆>WW? ⊗ Ir2

)
M1(S?)>Σ−1

?,1

∥∥∥
F︸ ︷︷ ︸

=:Up,2
2

+
∥∥∥M1(S?)

(
W>W ⊗∆>V V + ∆>WW ⊗ V >? V

)
M1(∆S)>Σ−1

?,1

∥∥∥
F︸ ︷︷ ︸

=:Up,3
2

+
∥∥∥M1(∆S)

(
W>W ⊗ V >V − Ir3 ⊗ Ir2

)
M1(S)>Σ−1

?,1

∥∥∥
F︸ ︷︷ ︸

=:Up,4
2

.

Here, Um
2 is the main term while the remaining four are perturbation terms. Use the relation (C.14)

again to replaceM1(∆S)M1(S)> in the main term Um
2 and see

Um
2 =

∥∥∥(M1(S?)(Ir3 ⊗∆>V V? + ∆>WW? ⊗ Ir2) + U>? ∆UM1(S?)
)
M1(S?)>Σ−1

?,1

∥∥∥
F

≤
∥∥∥M1(S?)(Ir3 ⊗∆>V V? + ∆>WW? ⊗ Ir2) + U>? ∆UM1(S?)

∥∥∥
F
‖M1(S?)>Σ−1

?,1‖

= ‖T U + T V + T W ‖F ,

where the last equality uses ‖M1(S?)>Σ−1
?,1‖ = 1. The perturbation terms are bounded by

Up,1
2 ≤ ((1 + ε)3 − 1)‖∆V Σ?,2‖F;

Up,2
2 ≤ ((1 + ε)2 − 1)‖∆WΣ?,3‖F;

Up,3
2 ≤ ε(1 + ε)3‖∆V Σ?,2‖F + ε(1 + ε)2‖∆WΣ?,3‖F;

Up,4
2 ≤ ((1 + ε)4 − 1)(1 + ε)‖∆S‖F.
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They follow from similar calculations as those in bounding U1 with the aid of Lemma 34; hence we

omit the details for brevity. Combine these results to see

∥∥(Ŭ − Ŭ?)
>ŬΣ−1

?,1

∥∥
F
≤ ‖T U + T V + T W ‖F + Up

2 ,

with Up
2 :=

∑4
i=1 U

p,i
2 obeying

Up
2 ≤ ((1 + ε)4 − 1)‖∆V Σ?,2‖F + ((1 + ε)3 − 1)‖∆WΣ?,3‖F + ((1 + ε)4 − 1)(1 + ε)‖∆S‖F

. ε
(
‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F

)
. ε dist(Ft,F?).

Next take the square to obtain

∥∥(Ŭ − Ŭ?)
>ŬΣ−1

?,1

∥∥2

F
≤ ‖T U + T V + T W ‖2F + 2Up

2 ‖T U + T V + T W ‖F + (Up
2)2.

Finally plug this back into (C.19) to conclude

U2 ≤ (1− ε)−12 ‖T U + T V + T W ‖2F + 2(1− ε)−12Up
2 ‖T U + T V + T W ‖F + (1− ε)−12(Up

2)2

≤ ‖T U + T V + T W ‖2F +
(
(1− ε)−12 − 1

)
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)2

+ 2(1− ε)−12Up
2 (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) + (1− ε)−12(Up

2)2

≤ ‖T U + T V + T W ‖2F + C2εdist2(Ft,F?),

for some universal constant C2 > 1. Here in the second inequality, we use the fact that ‖T U‖F ≤

‖∆UΣ?,1‖F, ‖T V ‖F ≤ ‖∆V Σ?,2‖F, and ‖T W ‖F ≤ ‖∆WΣ?,3‖F. This finishes the proof of the claim.

C.2.3 Proof of Claim 10

Use the decomposition

(U ,V ,W ) · S? −X ? = (∆U ,V ,W ) · S? + (U?,∆V ,W ) · S? + (U?,V?,∆W ) · S? (C.20)
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to rewrite S1 as

S1 =
〈
∆S , ((U

>U)−1U>∆U , Ir2 , Ir3) · S?
〉

︸ ︷︷ ︸
=:S1,1

+
〈
∆S , ((U

>U)−1U>U?, (V
>V )−1V >∆V , Ir3) · S?

〉
︸ ︷︷ ︸

=:S1,2

+
〈
∆S , ((U

>U)−1U>U?, (V
>V )−1V >V?, (W

>W )−1W>∆W ) · S?
〉

︸ ︷︷ ︸
=:S1,3

.

Step 1: tackling S1,1. Translating the inner product from the tensor space to the matrix space

via the mode-1 matricization yields

S1,1 =
〈
M1(∆S), (U>U)−1U>∆UM1(S?)

〉
=
〈
M1(∆S), (U>U)−1U>∆UM1(S)

〉
︸ ︷︷ ︸

=:Sm
1,1

−
〈
M1(∆S), (U>U)−1U>∆UM1(∆S)

〉
︸ ︷︷ ︸

=:Sp
1,1

.

Again, the identity (C.14) is helpful in characterizing the main term Sm
1,1:

Sm
1,1 =

〈
U>∆UΣ2

?,1, (U
>U)−1U>∆U

〉
=
∥∥(U>U)−1/2U>∆UΣ?,1

∥∥2

F
.

The perturbation term Sp
1,1 is bounded by

|Sp
1,1| ≤ ‖M1(∆S)‖F

∥∥∥U(U>U)−1
∥∥∥ ‖∆U‖‖M1(∆S)‖F ≤ ε(1− ε)−1‖∆S‖2F,

which follows directly from Lemma 34.

Step 2: tackling S1,2. Following the same recipe as above, we can apply the mode-2 matricization

to S1,2 to see

S1,2 =
〈
M2(∆S), (V >V )−1V >∆VM2(S?)

(
Ir3 ⊗U>? U(U>U)−1

)〉
=
〈
M2(∆S), (V >V )−1V >∆VM2(S)

〉
︸ ︷︷ ︸

=:Sm
1,2

−
〈
M2(∆S), (V >V )−1V >∆VM2(∆S)

〉
︸ ︷︷ ︸

=:Sp,1
1,2
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+
〈
M2(∆S), (V >V )−1V >∆VM2(S?)

(
Ir3 ⊗ (U>? U(U>U)−1 − Ir1)

)〉
︸ ︷︷ ︸

=:Sp,2
1,2

.

In view of the relation (C.14), we can rewrite the main term Sm
1,2 as

Sm
1,2 =

∥∥∥(V >V )−1/2V >∆V Σ?,2

∥∥∥2

F
.

In addition, for the perturbation terms, Lemma 34 allows us to obtain

|Sp,1
1,2 | ≤ ‖M2(∆S)‖F

∥∥∥V (V >V )−1
∥∥∥ ‖∆V ‖‖M2(∆S)‖F ≤ ε(1− ε)−1‖∆S‖2F.

Moreover, we can write U>? U(U>U)−1 − Ir1 = −∆>UU(U>U)−1, and bound Sp,2
1,2 as

|Sp,2
1,2 | ≤ ‖M2(∆S)‖F‖V (V >V )−1‖‖∆VM2(S?)‖F‖∆U‖‖U(U>U)−1‖

≤ ε(1− ε)−2‖∆S‖F‖∆V Σ?,2‖F.

Step 3: tackling S1,3. Similar to before, we rewrite S1,3 by applying the mode-3 matricization

as

S1,3 =
〈
M3(∆S), (W>W )−1W>∆WM3(S?)

(
V >? V (V >V )−1 ⊗U>? U(U>U)−1

)〉
=
〈
M3(∆S), (W>W )−1W>∆WM3(S)

〉
︸ ︷︷ ︸

=:Sm
1,3

−
〈
M3(∆S), (W>W )−1W>∆WM3(∆S)

〉
︸ ︷︷ ︸

=:Sp,1
1,3

+
〈
M3(∆S), (W>W )−1W>∆WM3(S?)

(
V >? V (V >V )−1 ⊗U>? U(U>U)−1 − Ir2 ⊗ Ir1

)〉
︸ ︷︷ ︸

=:Sp,2
1,3

.

The main term obeys (thanks again to the identity (C.14))

Sm
1,3 =

∥∥(W>W )−1/2W>∆WΣ?,3

∥∥2

F
.
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As the same time, the perturbation term Sp,1
1,3 can be bounded by

|Sp,1
1,3 | ≤ ‖M3(∆S)‖F

∥∥∥W (W>W )−1
∥∥∥ ‖∆W ‖‖M3(∆S)‖F ≤ ε(1− ε)−1‖∆S‖2F.

Similarly, we have

|Sp,2
1,3 | ≤ ‖M3(∆S)‖F‖W (W>W )−1‖‖∆WM3(S?)‖F

∥∥∥V >? V (V >V )−1 ⊗U>? U(U>U)−1 − Ir2 ⊗ Ir1

∥∥∥
≤ 2ε+ ε2

(1− ε)3
‖∆S‖F‖∆WΣ?,3‖F,

where we use the decomposition

V >? V (V >V )−1 ⊗U>? U(U>U)−1 − Ir2 ⊗ Ir1 = (V? ⊗U? − V ⊗U)>
(
V (V >V )−1 ⊗U(U>U)−1

)

and its immediate consequence

∥∥∥V >? V (V >V )−1 ⊗U>? U(U>U)−1 − Ir2 ⊗ Ir1

∥∥∥ ≤ ‖V? ⊗U? − V ⊗U‖
∥∥∥V (V >V )−1

∥∥∥ ∥∥∥U(U>U)−1
∥∥∥

≤ 2ε+ ε2

(1− ε)2
.

Step 4: putting all pieces together. Combine results of S1,1,S1,2,S1,3 to see

S1 =
∥∥(U>U)−1/2U>∆UΣ?,1

∥∥2

F
+
∥∥(V >V )−1/2V >∆V Σ?,2

∥∥2

F
+
∥∥(W>W )−1/2W>∆WΣ?,3

∥∥2

F
+ S1,p,

where the aggregated perturbation term Sp
1 obeys

|Sp
1 | ≤ ε‖∆S‖F

(
(1− ε)−2‖∆V Σ?,2‖F + (2 + ε)(1− ε)−3‖∆WΣ?,3‖F + 3(1− ε)−1‖∆S‖F

)
.

It is straightforward to check that |Sp
1 | ≤ C1εdist2(Ft,F?) for some absolute constant C1 > 1.
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C.2.4 Proof of Claim 11

Reuse the decomposition (C.20) and the elementary inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) to

obtain

S2 ≤ 3
∥∥∥((U>U)−1U>∆U , Ir2 , Ir3) · S?

∥∥∥2

F︸ ︷︷ ︸
=:S2,1

+3
∥∥∥((U>U)−1U>U?, (V

>V )−1V >∆V , Ir3) · S?
∥∥∥2

F︸ ︷︷ ︸
=:S2,2

+ 3
∥∥∥((U>U)−1U>U?, (V

>V )−1V >V?, (W
>W )−1W>∆W ) · S?

∥∥∥2

F︸ ︷︷ ︸
=:S2,3

.

Apply the mode-1 matricization and Lemma 34 to S2,1 to see

S2,1 =
∥∥∥(U>U)−1U>∆UM1(S?)

∥∥∥2

F

≤ ‖(U>U)−1‖
∥∥(U>U)−1/2U>∆UM1(S?)

∥∥2

F

≤ (1− ε)−2
∥∥(U>U)−1/2U>∆UΣ?,1

∥∥2

F
.

Similarly, apply the mode-2 (resp. mode-3) matricization to S2,2 (resp. S2,3) to see

S2,2 =
∥∥∥(V >V )−1V >∆VM2(S?)

(
Ir3 ⊗U>? U(U>U)−1

)∥∥∥2

F

≤ ‖(V >V )−1‖
∥∥(V >V )−1/2V >∆VM2(S?)

∥∥2

F
‖U(U>U)−1‖2

≤ (1− ε)−4
∥∥(V >V )−1/2V >∆V Σ?,2

∥∥2

F
,

and

S2,3 =
∥∥∥(W>W )−1W>∆WM3(S?)

(
V >? V (V >V )−1 ⊗U>? U(U>U)−1

)∥∥∥2

F

≤ ‖(W>W )−1‖
∥∥(W>W )−1/2W>∆WM3(S?)

∥∥2

F
‖U(U>U)−1‖2‖V (V >V )−1‖2

≤ (1− ε)−6
∥∥(W>W )−1/2W>∆WΣ?,3

∥∥2

F
.
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Combine the bounds on S2,1,S2,2,S2,3 to write S2 as

S2 ≤ 3(1− ε)−2
∥∥(U>U)−1/2U>∆UΣ?,1

∥∥2

F
+ 3(1− ε)−4

∥∥(V >V )−1/2V >∆V Σ?,2

∥∥2

F

+ 3(1− ε)−6
∥∥(W>W )−1/2W>∆WΣ?,3

∥∥2

F
.

By symmetry, one can permute ∆U ,∆V ,∆W , and take the average to balance their coefficients

and reach the conclusion that

S2 ≤ 3
(∥∥(U>U)−1/2U>∆UΣ?,1

∥∥2

F
+
∥∥(V >V )−1/2V >∆V Σ?,2

∥∥2

F
+
∥∥(W>W )−1/2W>∆WΣ?,3

∥∥2

F

)
+ Sp

2 ,

where the perturbation term Sp
2 obeys

Sp
2 ≤

(
(1− ε)−2 + (1− ε)−4 + (1− ε)−6 − 3

) (
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F

)
.

A bit simplification yields Sp
2 ≤ C2εdist2(Ft,F?).

C.3 Proof for Tensor Completion

This section is devoted to the proofs of claims related to tensor completion. To begin with, we state

several bounds regarding the `2,∞ norm that will be repeatedly used throughout this section.

Lemma 35. Suppose that X ? is µ-incoherent, and that F = (U ,V ,W ,S) satisfies dist(F ,F?) ≤

εσmin(X ?) for ε < 1 and the incoherence condition (4.29). Then one has the following bounds

regarding the `2,∞ norm:

√
n1‖UM1(S)‖2,∞ ≤ (1− ε)−2CB

√
µrσmax(X ?); (C.21a)

√
n1‖UM1(S?)‖2,∞ =

√
n1‖UΣ?,1‖2,∞ ≤ (1− ε)−3CB

√
µrσmax(X ?); (C.21b)

√
n1‖U‖2,∞ ≤ (1− ε)−3CBκ

√
µr. (C.21c)

By symmetry, a corresponding set of bounds hold for V , V̆ and W , W̆ .
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Proof. For (C.21a), we have

‖UM1(S)‖2,∞ =
∥∥UŬ>

(
W (W>W )−1 ⊗ V (V >V )−1

)∥∥
2,∞

≤ ‖UŬ>‖2,∞
∥∥∥W (W>W )−1

∥∥∥ ∥∥∥V (V >V )−1
∥∥∥

≤ ‖UŬ>‖2,∞(1− ε)−2,

where the first line uses (C.9), the second line follows from ‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖, and the last

inequality uses (C.5c). This combined with condition (4.29) leads to the declared bound.

Similarly for (C.21b), we have

‖UΣ?,1‖2,∞ =
∥∥UŬ>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥
2,∞

≤ ‖UŬ>‖2,∞
∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥
≤ ‖UŬ>‖2,∞(1− ε)−3,

where the last line follows from (C.5f).

Finally, observe that

‖UΣ?,1‖2,∞ ≥ ‖U‖2,∞σmin(Σ?,1) ≥ ‖U‖2,∞σmin(X ?).

Combining the above inequality with (C.21b), we reach the bound (C.21c).

C.3.1 Proof of Lemma 10

A crucial operation, which aims to preserve the desirable incoherence property with respect to

the scaled distance, is the scaled projection F = PB(F+) defined in (4.19). For the purpose of
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understanding, it is instructive to view F as the solution to the following optimization problems:

U = argmin
U

∥∥(U −U+)Ŭ>+
∥∥2

F
s.t.

√
n1‖UŬ>+ ‖2,∞ ≤ B,

V = argmin
V

∥∥(V − V+)V̆ >+
∥∥2

F
s.t.

√
n2‖V V̆ >+ ‖2,∞ ≤ B,

W = argmin
W

∥∥(W −W+)W̆>
+

∥∥2

F
s.t.

√
n3‖WW̆>

+ ‖2,∞ ≤ B.

(C.22)

The remaining proof follows similar arguments as Chapter 2. To begin, we collect a useful

claim as follows.

Claim 12 (Claim 5 in Chapter 2). For vectors u,u? ∈ Rn and λ ≥ ‖u?‖2/‖u‖2, it holds that

‖(1 ∧ λ)u− u?‖2 ≤ ‖u− u?‖2.

Proof of the non-expansive property. We begin with proving the non-expansive property.

Denote the optimal alignment matrices between F+ and F? as {Q+,k}k=1,2,3, whose existence is

guaranteed by Lemma 31. Assume for now (which shall be established at the end of the proof) that

for any 1 ≤ i1 ≤ n1, we have

B
√
n1

∥∥U+(i1, :)Ŭ>+
∥∥

2

≥
∥∥U?(i1, :)Σ?,1

∥∥
2∥∥U+(i1, :)Q+,1Σ?,1

∥∥
2

. (C.23)

This taken together with Claim 12 immediately implies

∥∥U(i1, :)Q+,1Σ?,1 −U?(i1, :)Σ?,1

∥∥
2
≤
∥∥U+(i1, :)Q+,1Σ?,1 −U?(i1, :)Σ?,1

∥∥
2
, 1 ≤ i1 ≤ n1,

=⇒
∥∥(UQ+,1 −U?)Σ?,1

∥∥
F
≤
∥∥(U+Q+,1 −U?)Σ?,1

∥∥
F
.

Repeating similar arguments for the other two factors, we obtain

∥∥(V Q+,2 − V?)Σ?,2

∥∥
F
≤
∥∥(V+Q+,2 − V?)Σ?,2

∥∥
F
,
∥∥(WQ+,3 −W?)Σ?,3

∥∥
F
≤
∥∥(W+Q+,3 −W?)Σ?,3

∥∥
F
.
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Combining the above bounds, we have

dist2(F ,F?) ≤ ‖(UQ+,1 −U?)Σ?,1‖2F + ‖(V Q+,2 − V?)Σ?,2‖2F

+ ‖(WQ+,3 −W?)Σ?,3‖2F +
∥∥∥(Q−1

+,1,Q
−1
+,2,Q

−1
+,3) · S − S?

∥∥∥2

F
= dist2(F+,F?).

Proof of the incoherence condition. Turning to the incoherence condition, it follows that for

any 1 ≤ i1 ≤ n1,

∥∥U(i1, :)Ŭ
>∥∥2

2
=

n2∑
i2=1

n3∑
i3=1

〈
U(i1, :)M1(S),W (i3, :)⊗ V (i2, :)

〉2

(i)
=

n2∑
i2=1

n3∑
i3=1

〈
U(i1, :)M1(S),W+(i3, :)⊗ V+(i2, :)

〉2

(
1 ∧ B
√
n3‖W+(i3, :)W̆>

+ ‖2

)2(
1 ∧ B
√
n2‖V+(i2, :)V̆ >+ ‖2

)2

(ii)
≤

n2∑
i2=1

n3∑
i3=1

〈
U(i1, :)M1(S),W+(i3, :)⊗ V+(i2, :)

〉2

(iii)
=

n2∑
i2=1

n3∑
i3=1

(
1 ∧ B
√
n1‖U+(i1, :)Ŭ>+ ‖2

)2 〈
U+(i1, :)M1(S+),W+(i3, :)⊗ V+(i2, :)

〉2

=

(
1 ∧ B
√
n1‖U+(i1, :)Ŭ>+ ‖2

)2 ∥∥U+(i1, :)Ŭ
>
+

∥∥2

2

(iv)
≤ B2

n1
.

Here, (i) and (iii) follow from the definition of the scaled projection (4.19), (ii) and (iv) follow from

the basic relations a ∧ b ≤ a and a ∧ b ≤ b. By symmetry, one has

√
n1‖UŬ>‖2,∞ ∨

√
n2‖V V̆ >‖2,∞ ∨

√
n3‖WW̆>‖2,∞ ≤ B.

The proof is then finished once we prove inequality (C.23).

Proof of (C.23). Under the condition dist(F+,F?) ≤ εσmin(X ?), invoke (C.5a) in Lemma 34 on

the factor quadruple
(
U+Q+,1,V+Q+,2,W+Q+,3, (Q

−1
+,1,Q

−1
+,2,Q

−1
+,3) · S+

)
to see

‖V+Q+,2‖ ∨ ‖W+Q+,3‖ ∨
∥∥∥∥M1

(
(Q−1

+,1,Q
−1
+,2,Q

−1
+,3) · S+

)>
Σ−1
?,1

∥∥∥∥ ≤ 1 + ε,
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which further implies that

∥∥Ŭ+Q
−>
+,1Σ

−1
?,1

∥∥ ≤ ‖V+Q+,2‖‖W+Q+,3‖
∥∥∥∥M1

(
(Q−1

+,1,Q
−1
+,2,Q

−1
+,3) · S+

)>
Σ−1
?,1

∥∥∥∥ ≤ (1 + ε)3.

(C.24)

For any 1 ≤ i1 ≤ n1, one has

∥∥U+(i1, :)Ŭ
>
+

∥∥
2
≤ ‖U+(i1, :)Q+,1Σ?,1‖2

∥∥Ŭ+Q
−>
+,1Σ

−1
?,1

∥∥
≤ ‖U+(i1, :)Q+,1Σ?,1‖2 (1 + ε)3,

where the second line follows from the bound (C.24). In addition, the incoherence assumption of

X ? (4.15) implies that

√
n1

∥∥U?(i1, :)Σ?,1

∥∥
2
≤
√
n1

∥∥U?(i1, :)
∥∥

2

∥∥Σ?,1

∥∥ ≤ √µrσmax(X ?) ≤ B(1 + ε)−3,

where the last inequality follows from the choice of B. Take the above two relations collectively to

reach the advertised bound (C.23).

C.3.2 Concentration inequalities

We gather several useful concentration inequalities regarding the partial observation operator PΩ(·)

for the Bernoulli observation model (4.17).

Lemma 36. Suppose that X ? is µ-incoherent, and that pn1n2n3 & nµ2r2 log n. With overwhelming

probability, one has

∣∣〈(p−1PΩ − I)(XA),XB

〉∣∣ ≤ CT
√
nµ2r2 log n

pn1n2n3
‖XA‖F‖XB‖F

simultaneously for all tensors XA,XB ∈ Rn1×n2×n3 in the form of

XA = (UA,V?,W?) · SA,1 + (U?,VA,W?) · SA,2 + (U?,V?,WA) · SA,3,
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XB = (UB,V?,W?) · SB,1 + (U?,VB,W?) · SB,2 + (U?,V?,WB) · SB,3,

where UA,UB ∈ Rn1×r1, VA,VB ∈ Rn2×r2, WA,WB ∈ Rn3×r3, and SA,k,SB,k ∈ Rr1×r2×r3 are

arbitrary factors, and CT > 0 is some universal constant.

Lemma 37 ( [CLPC19, Lemma D.2]). For any fixed X ∈ Rn1×n2×n3, with overwhelming probability,

one has

∥∥(p−1PΩ − I)(X )
∥∥ ≤ CY (p−1 log3 n‖X‖∞ +

√
p−1 log5 n max

k=1,2,3
‖Mk(X )>‖2,∞

)
,

where CY > 0 is some universal constant.

Lemma 38. With overwhelming probability, one has

∣∣〈(p−1PΩ − I)((UA,VA,WA) · SA), (UB,VB,WB) · SB
〉∣∣ ≤ CY (p−1 log3 n+

√
p−1n log5 n

)
N,

simultaneously for all tensors (UA,VA,WA) · SA and (UB,VB,WB) · SB, where the quantity N

obeys

N ≤
(
‖UAM1(SA)‖2,∞‖UBM1(SB)‖F ∧ ‖UAM1(SA)‖F‖UBM1(SB)‖2,∞

)
(
‖VA‖2,∞‖VB‖F ∧ ‖VA‖F‖VB‖2,∞

)(
‖WA‖2,∞‖WB‖F ∧ ‖WA‖F‖WB‖2,∞

)
.

By symmetry, the above bound continues to hold if permuting the occurrences of U , V , and W .

Lemma 39 ( [CCFM21, Lemma 3.24], [CLC+21, Lemma 1]). For any fixed X ∈ Rn1×n2×n3,

k = 1, 2, 3, with overwhelming probability, one has

∥∥∥Poff-diag

(
p−2Mk(PΩ(X ))Mk(PΩ(X ))>

)
−Mk(X )Mk(X )>

∥∥∥
≤ CM

(
p−1
√

log n‖Mk(X )‖2,∞‖Mk(X )>‖2,∞ +
√
p−1 log n σmax(Mk(X ))‖Mk(X )>‖2,∞

)
+ CM

(
p−1 log n‖X‖∞ +

√
p−1 log n‖Mk(X )>‖2,∞

)2
log n+ ‖Mk(X )‖22,∞,

where CM > 0 is some universal constant.
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Proof of Lemma 36

This lemma is essentially [YZ16, Lemma 5] under the Bernoulli observation model. Here, we provide

a simpler proof based on the matrix Bernstein inequality. Let E i1,i2,i3 be the tensor with only

the (i1, i2, i3)-th entry as 1 and all the other entries as 0, and let δi1,i2,i3 ∼ Bernoulli(p) be an

i.i.d. Bernoulli random variable for 1 ≤ ik ≤ nk, k = 1, 2, 3. Define an operator PT : Rn1×n2×n3 7→

Rn1×n2×n3 as

PT (X ) = (In1 ,V?V
>
? ,W?W

>
? ) ·X + (U?U

>
? ,V?⊥V

>
?⊥,W?W

>
? ) ·X + (U?U

>
? ,V?V

>
? ,W?⊥W

>
?⊥) ·X ,

where V?⊥,W?⊥ denote the orthogonal complements of V?,W?. It is straightforward to verify that

PT (·) defines a projection, and that

XA = (UA,V?,W?) · SA,1 + (U?,VA,W?) · SA,2 + (U?,V?,WA) · SA,3

= PT ((UA,V?,W?) · SA,1) + PT ((U?,VA,W?) · SA,2) + PT ((U?,V?,WA) · SA,3)

= PT (XA) =
∑
i1,i2,i3

〈PT (XA),E i1,i2,i3〉E i1,i2,i3 =
∑
i1,i2,i3

〈XA,PT (E i1,i2,i3)〉E i1,i2,i3 .

A similar expression holds for XB. Hence, we have

∣∣〈(p−1PΩ − I)(XA),XB

〉∣∣ =

∣∣∣∣∣∣
∑
i1,i2,i3

(
p−1δi1,i2,i3 − 1

)
〈XA,PT (E i1,i2,i3)〉 〈XB,PT (E i1,i2,i3)〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
〈

vec(XA),
∑
i1,i2,i3

(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))> vec(XB)
〉∣∣∣∣∣∣

≤ ‖XA‖F‖XB‖F

∥∥∥∥∥∥
∑
i1,i2,i3

(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>

∥∥∥∥∥∥ .
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Therefore it suffices to bound the last term in the above inequality, which we resort to the matrix

Bernstein inequality: with overwhelming probability, one has

∥∥∥∥∥∥
∑
i1,i2,i3

(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>

∥∥∥∥∥∥ .

(
nµ2r2 log n

pn1n2n3
+

√
nµ2r2 log n

pn1n2n3

)

(C.25)

.

√
nµ2r2 log n

pn1n2n3
,

where the second line holds as long as pn1n2n3 & nµ2r2 log n. Plugging the above bound (which

will be proved at the end) in the previous one, we immediately arrive at the desired result:

∣∣〈(p−1PΩ − I)(XA),XB

〉∣∣ .√nµ2r2 log n

pn1n2n3
‖XA‖F‖XB‖F.

Proof of (C.25). By standard matrix Bernstein inequality, we have

∥∥∥∥∥∥
∑
i1,i2,i3

(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>

∥∥∥∥∥∥ . L log n+ σ
√

log n,

where

L = max
i1,i2,i3

∥∥∥(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>
∥∥∥ ,

σ2 =

∥∥∥∥∥∥
∑
i1,i2,i3

E(p−1δi1,i2,i3 − 1)2 vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))> vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>

∥∥∥∥∥∥ .
• Here, L obeys

L = max
i1,i2,i3

∥∥∥(p−1δi1,i2,i3 − 1) vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>
∥∥∥ ≤ p−1 max

i1,i2,i3
‖PT (E i1,i2,i3)‖2F ,

where the last inequality uses |(p−1δi1,i2,i3 − 1)| ≤ p−1. To proceed, first notice that the three
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terms in PT (E i1,i2,i3) are mutually orthogonal, which allows

‖PT (E i1,i2,i3)‖2F =
∥∥∥(In1 ,V?V

>
? ,W?W

>
? ) · E i1,i2,i3

∥∥∥2

F
+
∥∥∥(U?U

>
? ,V?⊥V

>
?⊥,W?W

>
? ) · E i1,i2,i3

∥∥∥2

F

+
∥∥∥(U?U

>
? ,V?V

>
? ,W?⊥W

>
?⊥) · E i1,i2,i3

∥∥∥2

F
.

Since U?,V?,W? have orthonormal columns, it is straightforward to see

∥∥∥(In1 ,V?V
>
? ,W?W

>
? ) · E i1,i2,i3

∥∥∥2

F
= ‖In1(i1, :)‖22

∥∥∥V?(i2, :)V >? ∥∥∥2

2

∥∥∥W?(i3, :)W
>
?

∥∥∥2

2

≤ ‖V?‖22,∞‖W?‖22,∞;∥∥∥(U?U
>
? ,V?⊥V

>
?⊥,W?W

>
? ) · E i1,i2,i3

∥∥∥2

F
=
∥∥∥U?(i1, :)U

>
?

∥∥∥2

2

∥∥∥V?⊥(i2, :)V
>
?⊥

∥∥∥2

2

∥∥∥W?(i3, :)W
>
?

∥∥∥2

2

≤ ‖U?‖22,∞‖W?‖22,∞;∥∥∥(U?U
>
? ,V?V

>
? ,W?⊥W

>
?⊥) · E i1,i2,i3

∥∥∥2

F
=
∥∥∥U?(i1, :)U

>
?

∥∥∥2

2

∥∥∥V?(i2, :)V >? ∥∥∥2

2

∥∥∥W?⊥(i3, :)W
>
?⊥

∥∥∥2

2

≤ ‖U?‖22,∞‖V?‖22,∞.

Finally use the definition of incoherence (cf. Definition 11) to conclude

L ≤ p−1
(
‖V?‖22,∞‖W?‖22,∞ + ‖U?‖22,∞‖W?‖22,∞ + ‖U?‖22,∞‖V?‖22,∞

)
≤ 3nµ2r2

pn1n2n3
.

• In addition, σ2 obeys

σ2 ≤ p−1 max
i1,i2,i3

‖PT (E i1,i2,i3)‖2F

∥∥∥∥∥∥
∑
i1,i2,i3

vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>

∥∥∥∥∥∥ ≤ 3nµ2r2

pn1n2n3
,

where we have used the variational representation to conclude

∥∥∥∥∥∥
∑
i1,i2,i3

vec (PT (E i1,i2,i3)) vec (PT (E i1,i2,i3))>

∥∥∥∥∥∥ = sup
X̃ :‖X̃‖F≤1

∑
i1,i2,i3

〈X̃ ,PT (E i1,i2,i3)〉2

= sup
X̃ :‖X̃‖F≤1

‖PT (X̃ )‖2F ≤ 1.
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Plugging the expressions of L and σ leads to the advertised bound (C.25).

Proof of Lemma 38

This lemma generalizes [CL19, Lemma 8] to the tensor setting, which is a powerful tool in the

analysis of matrix completion [CLL20, TMC21a]. We begin by decomposing (UA,VA,WA) · SA

into a sum of r2r3 rank-1 tensors:

(UA,VA,WA) · SA =

r2∑
a2=1

r3∑
a3=1

(ua2,a3 ,va2 ,wa3) · 1,

where we denote the column vectors ua2,a3 := [UAM1(SA)](:, (r3−1)a2 +a3), va2 := VA(:, a2), and

wa3 := WA(:, a3) for notational convenience. Similarly, we can decompose (UB,VB,WB) · SB as

(UB,VB,WB) · SB =

r2∑
b2=1

r3∑
b3=1

(ub2,b3 ,vb2 ,wb3) · 1,

with ub2,b3 , vb2 and wb3 defined analogously. We further denote J ∈ Rn1×n2×n3 as the tensor with

all-one entries, i.e. J (i1, i2, i3) = 1 for all 1 ≤ ik ≤ nk, k = 1, 2, 3. With these preparation in hand,

by the triangle inequality we have

∣∣〈(p−1PΩ − I)((UA,VA,WA) · SA), (UB,VB,WB) · SB
〉∣∣

≤
r2∑

a2,b2=1

r3∑
a3,b3=1

∣∣〈(p−1PΩ − I)((ua2,a3 ,va2 ,wa3) · 1), (ub2,b3 ,vb2 ,wb3) · 1
〉∣∣

=

r2∑
a2,b2=1

r3∑
a3,b3=1

∣∣〈(p−1PΩ − I)(J ), (ua2,a3 � ub2,b3 ,va2 � vb2 ,wa3 �wb3) · 1
〉∣∣

≤
r2∑

a2,b2=1

r3∑
a3,b3=1

‖(p−1PΩ − I)(J )‖‖ua2,a3 � ub2,b3‖2‖va2 � vb2‖2‖wa3 �wb3‖2

= ‖(p−1PΩ − I)(J )‖N,
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where � denotes the Hadamard (entrywise) product, and

N :=

r2∑
a2,b2=1

r3∑
a3,b3=1

‖ua2,a3 � ub2,b3‖2‖va2 � vb2‖2‖wa3 �wb3‖2.

Therefore, it boils down to controlling ‖(p−1PΩ − I)(J )‖ and N.

• Regarding ‖(p−1PΩ−I)(J )‖, Lemma 37 tells that, with overwhelming probability, it is bounded

by

‖(p−1PΩ − I)(J )‖ ≤ CY
(
p−1 log3 n+

√
p−1n log5 n

)
,

where we use the fact ‖J ‖∞ = 1 and maxk=1,2,3 ‖Mk(J )>‖2,∞ ≤
√
n.

• Turning to N, applying the Cauchy-Schwarz inequality we have

N ≤

√√√√ r2∑
a2,b2=1

r3∑
a3,b3=1

‖ua2,a3 � ub2,b3‖22

√√√√ r2∑
a2,b2=1

‖va2 � vb2‖22
r3∑

a3,b3=1

‖wa3 �wb3‖22

=

√√√√ n1∑
i1=1

‖UA(i1, :)M1(SA)‖22‖UB(i1, :)M1(SB)‖22√√√√ n2∑
i2=1

‖VA(i2, :)‖22‖VB(i2, :)‖22

√√√√ n3∑
i3=1

‖WA(i3, :)‖22‖WB(i3, :)‖22

≤
(
‖UAM1(SA)‖2,∞‖UBM1(SB)‖F ∧ ‖UAM1(SA)‖F‖UBM1(SB)‖2,∞

)
(
‖VA‖2,∞‖VB‖F ∧ ‖VA‖F‖VB‖2,∞

)(
‖WA‖2,∞‖WB‖F ∧ ‖WA‖F‖WB‖2,∞

)
.

The proof is complete by combining the above two bounds.

C.3.3 Proof of spectral initialization (Lemma 9)

In view of Lemma 33, we start by relating dist(F+,F?) to ‖(U+,V+,W+) · S+ −X ?‖F as

dist(F+,F?) ≤ (
√

2 + 1)3/2 ‖(U+,V+,W+) · S+ −X ?‖F .
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With this bound in mind, it suffices to control ‖(U+,V+,W+) · S+ −X ?‖F. To proceed, define

PU := U+U
>
+ as the projection matrix onto the column space of U+, PU⊥ := In1 − PU as its

orthogonal complement, and define PV ,PV⊥ ,PW ,PW⊥ analogously. We have the decomposition

X ? = (PU ,PV ,PW ) ·X ? + (PU⊥ ,PV ,PW ) ·X ? + (In1 ,PV⊥ ,PW ) ·X ? + (In1 , In2 ,PW⊥) ·X ?.

Expand the following squared norm and use that the four terms are mutually orthogonal to see

‖(U+,V+,W+) · S+ −X ?‖2F =
∥∥(PU ,PV ,PW ) ·(p−1Y)−X ?

∥∥2

F

=
∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)− (PU⊥ ,PV ,PW ) ·X ? − (In1 ,PV⊥ ,PW ) ·X ? − (In1 , In2 ,PW⊥) ·X ?

∥∥2

F

=
∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)

∥∥2

F
+ ‖(PU⊥ ,PV ,PW ) ·X ?‖2F + ‖(In1 ,PV⊥ ,PW ) ·X ?‖2F

+ ‖(In1 , In2 ,PW⊥) ·X ?‖2F

≤
∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)

∥∥2

F
+ ‖PU⊥M1(X ?)‖2F + ‖PV⊥M2(X ?)‖2F + ‖PW⊥M3(X ?)‖2F .

(C.26)

We next control the terms in (C.26) one by one.

Bounding ‖(PU ,PV ,PW ) ·(Y −X ?)‖F. For the first term in (C.26), since (PU ,PV ,PW ) ·(p−1Y−

X ?) has a multilinear rank of at most r, applying the relation (4.7) leads to

∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)
∥∥

F
≤ r

∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)
∥∥ ≤ r ∥∥(p−1PΩ − I)(X ?)

∥∥ .
Therefore, it comes down to control

∥∥(p−1PΩ − I)(X ?)
∥∥. Lemma 37 tells with overwhelming prob-

ability that

∥∥(p−1PΩ − I)(X ?)
∥∥ .

(
p−1 log3 n‖X ?‖∞ +

√
p−1 log5 n max

k=1,2,3
‖Mk(X ?)

>‖2,∞
)

.

µ3/2r3/2 log3 n

p
√
n1n2n3

+

√
nµ2r2 log5 n

pn1n2n3

σmax(X?),
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where the second line follows from the following relations in view of the incoherence property of X ?

(cf. Definition 11):

‖X ?‖∞ ≤ σmax(X ?)‖U?‖2,∞‖V?‖2,∞‖W?‖2,∞ ≤ σmax(X ?)

√
µ3r3

n1n2n3
;

‖M1(X ?)
>‖2,∞ ≤ ‖U?M1(S?)‖‖W?‖2,∞‖V?‖2,∞ ≤ σmax(X ?)

√
µ2r2

n2n3
;

‖M2(X ?)
>‖2,∞ ≤ ‖V?M2(S?)‖‖W?‖2,∞‖U?‖2,∞ ≤ σmax(X ?)

√
µ2r2

n1n3
;

‖M3(X ?)
>‖2,∞ ≤ ‖W?M3(S?)‖‖V?‖2,∞‖U?‖2,∞ ≤ σmax(X ?)

√
µ2r2

n1n2
.

(C.27)

In total, the first term in (C.26) is bounded by

∥∥(PU ,PV ,PW ) ·(p−1Y −X ?)
∥∥

F
.

µ3/2r3/2 log3 n

p
√
n1n2n3

+

√
nµ2r2 log5 n

pn1n2n3

 rκσmin(X?).

Bounding ‖PU⊥M1(X ?)‖F. For the second term in (C.26), first bound it by

‖PU⊥M1(X ?)‖F ≤
√
r1

σmin(X ?)

∥∥∥PU⊥M1(X ?)M1(X ?)
>
∥∥∥ ,

where we use the facts that PU⊥M1(X ?) has rank at most r1 and ‖AB‖ ≥ ‖A‖σmin(B). For

notation simplicity, we abbreviate

G := Poff-diag(p−2M1(Y)M1(Y)>), and G? :=M1(X ?)M1(X ?)
>.

Invoke Lemma 39 together with incoherence conditions (C.27) as well as

‖M1(X ?)‖2,∞ ≤ ‖U?‖2,∞
∥∥∥M1(S?)(W? ⊗ V?)

>
∥∥∥ ≤ σmax(X ?)

√
µr1

n1
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to conclude with overwhelming probability that

‖G−G?‖ .

(
µ3/2r3/2

√
log n

p
√
n1n2n3

+

√
nµ2r2 log n

pn1n2n3
+
µ3r3 log3 n

p2n1n2n3
+
nµ2r2 log2 n

pn1n2n3
+
µr1

n1

)
σ2

max(X ?).

Under the conditions n1 & ε−1
0 µr

3/2
1 κ2 and

pn1n2n3 & ε−1
0

√
n1n2n3µ

3/2r5/2κ2 log3 n+ ε−2
0 nµ2r4κ4 log5 n

for some small constant ε0 > 0, we have ‖G−G?‖ ≤ ε0σ2
min(X ?), which implies that G is positive

semi-definite, and therefore ‖PU⊥G‖ = σr1+1(G). By the triangle inequality, we obtain

‖PU⊥G?‖ ≤ ‖PU⊥ (G−G?)‖ + ‖PU⊥G‖ ≤ ‖G−G?‖ + σr1+1 (G)

≤ ‖G−G?‖ + σr1+1 (G?) + ‖G−G?‖ = 2 ‖G−G?‖ ,

where the second line follows from Weyl’s inequality and that G? has rank r1. In total, the second

term of (C.26) is bounded by

‖PU⊥M1(X ?)‖F ≤
2
√
r1

σmin(X ?)
‖G−G?‖

.

(
µ3/2r2

√
log n

p
√
n1n2n3

+

√
nµ2r3 log n

pn1n2n3
+
µ3r7/2 log3 n

p2n1n2n3
+
nµ2r5/2 log2 n

pn1n2n3
+
µr

3/2
1

n1

)
κ2σmin(X ?).

Completing the proof. The third and fourth terms in (C.26) can be bounded similarly. In all,

we conclude that

dist(F+,F?) ≤ (
√

2 + 1)3/2 ‖(U+,V+,W+) · S+ −X ?‖F ≤ ε0σmin(X ?).

C.3.4 Proof of local convergence (Lemma 11)

Define the event E as the intersection of the events that Lemmas 36 and 38 hold, which happens

with overwhelming probability. The rest of the proof is then performed under the event that E

holds.

211



Given that dist(Ft,F?) ≤ εσmin(X ?), the conclusion ‖(Ut,Vt,Wt) · St−X ?‖F ≤ 3 dist(Ft,F?)

follows from the relation (C.7) in Lemma 34. As in the proof of Theorem 10, we reuse the notations

in (C.4) and (C.13). By the definition of dist(Ft+,F?), where Ft+ is the update before projection,

one has

dist2(Ft+,F?) ≤ ‖(Ut+Qt,1 −U?)Σ?,1‖2F + ‖(Vt+Qt,2 − V?)Σ?,2‖2F + ‖(Wt+Qt,3 −W?)Σ?,3‖2F

+
∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · St+ − S?

∥∥∥2

F
. (C.28)

In the sequel, we shall bound each square on the right hand side of equation (C.28) separately. After

a long journey of computation, the final result is

dist2(Ft+,F?) ≤ (1− η)2
(
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆S‖2F

)
− η(2− 5η) ‖T U + T V + T W ‖2F − η(2− 5η)

(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ 2η(1− η)C(ε+ δ + δ2) dist2(Ft,F?) + η2C(ε+ δ + δ2) dist2(Ft,F?), (C.29)

where C > 1 is some universal constant, and δ is defined as

δ := CT

√
nµ2r2 log n

pn1n2n3
+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3
C3
Bκ

3. (C.30)

Under the condition

pn1n2n3 &
√
n1n2n3µ

3/2r2κ3 log3 n+ nµ3r4κ6 log5 n,

δ is a sufficiently small constant. As long as η ≤ 2/5 and ε is small, one has dist(Ft+,F?) ≤ (1 −

0.6η) dist(Ft,F?). Finally Lemma 10 implies dist(Ft+1,F?) ≤ dist(Ft+,F?) ≤ (1−0.6η) dist(Ft,F?)

and the incoherence condition.

It then boils down to expanding and bounding the four terms in (C.28). As before, we omit

the control of the terms pertaining to V and W .
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Bounding the term related to U

The first term in (C.28) is related to

(Ut+Qt,1 −U?)Σ?,1 =
(
U − ηM1

(
p−1PΩ((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1 −U?

)
Σ?,1

= (1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ?,1

− ηM1

(
(p−1PΩ − I)((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1Σ?,1.

Take the squared norm of both sides to reach

‖(Ut+Qt,1 −U?)Σ?,1‖2F =
∥∥∥(1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2

F︸ ︷︷ ︸
=:Pm

U

− 2η(1− η)
〈
∆UΣ?,1,M1

(
(p−1PΩ − I)((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
︸ ︷︷ ︸

=:Pp,1
U

+ 2η2
〈
U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1,M1

(
(p−1PΩ − I)((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
︸ ︷︷ ︸

=:Pp,2
U

+ η2
∥∥∥M1

(
(p−1PΩ − I)((U ,V ,W ) · S −X ?)

)
Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2

F︸ ︷︷ ︸
=:Pp,3

U

.

As before, the main term Pm
U has been handled in the tensor factorization problem in Section C.2;

see (C.17) and the bound (C.15a). Hence we shall focus on the perturbation terms.

Step 1: bounding Pp,1
U . First, rewrite Pp,1

U as the inner product in the tensor space:

Pp,1
U =

〈(
∆UΣ2

?,1(Ŭ>Ŭ)−1,V ,W
)
· S, (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉
.

Apply the decomposition

(U ,V ,W ) · S −X ? = (U ,∆V ,W ) · S + (U ,V?,∆W ) · S + (U ,V?,W?) · S − (U?,V?,W?) · S?
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= (U ,∆V ,W ) · S + (U ,V?,∆W ) · S + (U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?

(C.31)

to further expand Pp,1
U as

Pp,1
U =

〈(
∆UΣ2

?,1(Ŭ>Ŭ)−1,V?,W?

)
· S, (p−1PΩ − I) ((U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?)

〉
︸ ︷︷ ︸

=:Pp,1,1
U

+

〈(
∆UΣ2

?,1(Ŭ>Ŭ)−1,∆V ,W
)
· S +

(
∆UΣ2

?,1(Ŭ>Ŭ)−1,V?,∆W

)
· S,

(p−1PΩ − I) ((U ,V?,W?) · S − (U?,V?,W?) · S?)
〉

︸ ︷︷ ︸
=:Pp,1,2

U

+
〈(

∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (p−1PΩ − I) ((U ,∆V ,W ) · S + (U ,V?,∆W ) · S)

〉
︸ ︷︷ ︸

=:Pp,1,3
U

.

We shall bound each term in the sequel.

• For the first term Pp,1,1
U , we resort to Lemma 36, which leads to

|Pp,1,1
U | ≤ CT

√
nµ2r2 log n

pn1n2n3

∥∥∥(∆UΣ2
?,1(Ŭ>Ŭ)−1,V?,W?

)
· S
∥∥∥

F
‖(U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?‖F .

Further use (C.5i) to bound that

∥∥∥(∆UΣ2
?,1(Ŭ>Ŭ)−1,V?,W?

)
· S
∥∥∥

F
=
∥∥∥∆UΣ2

?,1(Ŭ>Ŭ)−1M1(S)(W? ⊗ V?)
>
∥∥∥

F

≤ ‖∆UΣ?,1‖F

∥∥∥Σ?,1(Ŭ>Ŭ)−1M1(S)
∥∥∥

≤ ‖∆UΣ?,1‖F(1− ε)−5,

and that

‖(U ,V?,W?) ·∆S‖F ≤ ‖UM1(∆S)‖F ≤ (1 + ε)‖∆S‖F;

‖(∆U ,V?,W?) · S?‖F ≤ ‖∆UΣ?,1‖F.
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Combine the preceding bounds to see

|Pp,1,1
U | ≤ CT

√
nµ2r2 log n

pn1n2n3

‖∆UΣ?,1‖F

(1− ε)5
(‖∆UΣ?,1‖F + (1 + ε)‖∆S‖F) .

• For the second term Pp,1,2
U , our main hammer is Lemma 38, which implies

|Pp,1,2
U | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)∥∥∥∆UΣ2
?,1(Ŭ>Ŭ)−1M1(S)

∥∥∥
F(

‖UM1(S)‖2,∞ + ‖U?M1(S?)‖2,∞
)

(‖∆V ‖F‖W ‖F + ‖V?‖F‖∆W ‖F) ‖V?‖2,∞‖W?‖2,∞.

Use results in Lemma 35, together with the bounds

‖∆V ‖F ≤
‖∆V Σ?,2‖F

σmin(Σ?,2)
≤ ‖∆V Σ?,2‖F

σmin(X ?)
; ‖∆W ‖F ≤

‖∆WΣ?,3‖F

σmin(X ?)
;

‖W ‖F ≤
√
r3‖W ‖ ≤

√
r3(1 + ε); ‖V?‖F =

√
r2;

‖U?M1(S?)‖2,∞ ≤ ‖U?‖2,∞‖M1(S?)‖ ≤
√
µr

n1
σmax(X ?); ‖V?‖2,∞ ≤

√
µr

n2
; ‖W?‖2,∞ ≤

√
µr

n3
,

to arrive at the conclusion that

|Pp,1,2
U | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)
‖∆UΣ?,1‖F

(1− ε)5

(
(1− ε)−2CB + 1

)√µr

n1
σmax(X ?)(

‖∆V Σ?,2‖F

σmin(X ?)

√
r(1 + ε) +

√
r
‖∆WΣ?,3‖F

σmin(X ?)

)√
µr

n2

√
µr

n3

= CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1− ε)−2CB + 1

(1− ε)5
κ

‖∆UΣ?,1‖F ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

• Repeat similar arguments, we can obtain the bound on Pp,1,3
U :

|Pp,1,3
U | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)∥∥∥∆UΣ2
?,1(Ŭ>Ŭ)−1M1(S)

∥∥∥
F
‖UM1(S)‖2,∞

‖V ‖2,∞‖W ‖2,∞(‖∆V ‖F‖W ‖F + ‖V?‖F‖∆W ‖F)
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≤ CY
(
p−1 log3 n+

√
p−1n log5 n

)
‖∆UΣ?,1‖F

(1− ε)5

CB
(1− ε)2

√
µr

n1
σmax(X ?)

CBκ

(1− ε)3

√
µr

n2

CBκ

(1− ε)3

√
µr

n3

(
‖∆V Σ?,2‖F

σmin(X ?)

√
r(1 + ε) +

√
r
‖∆WΣ?,3‖F

σmin(X ?)

)

≤ CY
(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

C3
Bκ

3

(1− ε)13

‖∆UΣ?,1‖F ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

In total, we have

|Pp,1
U | ≤ |P

p,1,1
U |+ |Pp,1,2

U |+ |Pp,1,3
U | . δ dist2(Ft,F?),

where we recall the definition of δ in (C.30).

Step 2: bounding Pp,2
U . We begin by rewriting Pp,2

U as

Pp,2
U =

〈(
U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉
.

Compared to Pp,1
U , the only difference is that the leading term ∆UΣ?,1 in the first argument of the

inner product is replaced by U?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ?,1. Note that

∥∥∥U?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥
F
≤
∥∥∥Ŭ − Ŭ?

∥∥∥
F

∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥
F

≤
1 + ε+ 1

3ε
2

(1− ε)3
(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

Omitting the somewhat tedious details, we can go through the same argument as bounding Pp,1
U

and arrive at

|Pp,2
U | ≤ CT

√
nµ2r2 log n

pn1n2n3

1 + ε+ 1
3ε

2

(1− ε)8
(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) (‖∆UΣ?,1‖F + (1 + ε)‖∆S‖F)

+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1 + ε+ 1
3ε

2)((1− ε)−2CB + 1)

(1− ε)8
κ

(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)
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+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1 + ε+ 1
3ε

2)C3
Bκ

3

(1− ε)16

(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

. δ dist2(Ft,F?).

Step 3: bounding Pp,3
U . Use the variational representation of the Frobenius norm to write

√
Pp,3
U =

〈(
ŨΣ?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉

for some Ũ ∈ Rn1×r1 obeying ‖Ũ‖F = 1. Repeat the same argument as bounding Pp,1
U with proper

modifications to yield

√
Pp,3
U ≤ CT

√
nµ2r2 log n

pn1n2n3
(1− ε)−5 (‖∆UΣ?,1‖F + (1 + ε)‖∆S‖F)

+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1− ε)−2CB + 1

(1− ε)5
κ ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

+ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

C3
Bκ

3

(1− ε)13
((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

. δ dist(Ft,F?).

Then take the square of both sides to see

Pp,3
U . δ2 dist2(Ft,F?).

Bounding the term related to S

The last term of (C.28) is related to

(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+ − S?

= S − η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
· p−1PΩ ((U ,V ,W ) · S −X ?)− S?

= (1− η)∆S − η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
· ((U ,V ,W ) · S? −X ?)
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− η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·(p−1PΩ − I)((U ,V ,W ) · S −X ?).

Expand its squared norm to obtain

∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+ − S?

∥∥∥2

F

=
∥∥∥(1− η)∆S − η

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

∥∥∥2

F︸ ︷︷ ︸
=:Pm

S

− 2η(1− η)
〈
∆S ,

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉
︸ ︷︷ ︸

=:Pp,1
S

+ 2η2

〈(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?) ,(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·(p−1PΩ − I)((U ,V ,W ) · S −X ?

〉
︸ ︷︷ ︸

=:Pp,2
S

+ η2
∥∥∥((U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(p−1PΩ − I)((U ,V ,W ) · S −X ?)

∥∥∥2

F︸ ︷︷ ︸
=:Pp,3

S

.

Recall that the main term Pm
S has been controlled in Section C.2; see (C.18) and the bound (C.15d).

We therefore concentrate on the remaining perturbation terms.

Step 1: bounding Pp,1
S . Write Pp,1

S as

Pp,1
S =

〈(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
·∆S , (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉
.

Use the decomposition (C.31) to further obtain

Pp,1
S =

〈(
U(U>U)−1,V?(V

>V )−1,W?(W
>W )−1

)
·∆S , (p−1PΩ − I) ((U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?)

〉
︸ ︷︷ ︸

=:Pp,1,1
S

+

〈(
U(U>U)−1,∆V (V >V )−1,W (W>W )−1

)
·∆S +

(
U(U>U)−1,V?(V

>V )−1,∆W (W>W )−1
)
·∆S ,

(p−1PΩ − I) ((U ,V?,W?) · S − (U?,V?,W?) · S?)
〉

︸ ︷︷ ︸
=:Pp,1,2

S
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+
〈(

U(U>U)−1,V (V >V )−1,W (W>W )−1
)
·∆S , (p−1PΩ − I) ((U ,∆V ,W ) · S + (U ,V?,∆W ) · S)

〉
︸ ︷︷ ︸

=:Pp,1,3
S

.

We then bound each term in sequel.

• Regarding the first term Pp,1,1
S , we can apply Lemma 36 to see

|Pp,1,1
S | ≤ CT

√
nµ2r2 log n

pn1n2n3

∥∥∥(U(U>U)−1,V?(V
>V )−1,W?(W

>W )−1
)
·∆S

∥∥∥
F

‖(U ,V?,W?) ·∆S + (∆U ,V?,W?) · S?‖F .

In addition, notice that

∥∥∥(U(U>U)−1,V?(V
>V )−1,W?(W

>W )−1
)
·∆S

∥∥∥
F
≤
∥∥∥U(U>U)−1

∥∥∥ ∥∥∥(V >V )−1
∥∥∥ ∥∥∥(W>W )−1

∥∥∥ ‖∆S‖F

≤ (1− ε)−5‖∆S‖F,

which further implies

|Pp,1,1
S | ≤ CT

√
nµ2r2 log n

pn1n2n3
(1− ε)−5‖∆S‖F (‖∆UΣ?,1‖F + (1 + ε)‖∆S‖F) .

• Now we turn to the second term Pp,1,2
S , for which Lemma 38 yields

|Pp,1,2
S | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)∥∥∥U(U>U)−1M1(∆S)
∥∥∥

F

(
‖UM1(S)‖2,∞ + ‖U?M1(S?)‖2,∞

)
(∥∥∥∆V (V >V )−1

∥∥∥
F

∥∥∥W (W>W )−1
∥∥∥

F
+
∥∥∥V?(V >V )−1

∥∥∥
F

∥∥∥∆W (W>W )−1
∥∥∥

F

)
‖V?‖2,∞‖W?‖2,∞.

The results in Lemma 35 together with the bounds

∥∥∥∆V (V >V )−1
∥∥∥

F
≤ ‖∆V ‖F

∥∥∥(V >V )−1
∥∥∥ ≤ (1− ε)−2‖∆V ‖F ≤

‖∆V Σ?,2‖F

(1− ε)2σmin(X ?)
;∥∥∥W (W>W )−1

∥∥∥
F
≤
√
r3

∥∥∥W (W>W )−1
∥∥∥ ≤ √r3(1− ε)−1;∥∥∥V?(V >V )−1

∥∥∥
F
≤ ‖V?‖F

∥∥∥(V >V )−1
∥∥∥ ≤ √r2(1− ε)−2;

219



∥∥∥∆W (W>W )−1
∥∥∥

F
≤ ‖∆W ‖F

∥∥∥(W>W )−1
∥∥∥ ≤ ‖∆W ‖F(1− ε)−2 ≤ ‖∆WΣ?,3‖F

(1− ε)2σmin(X ?)
,

allow us to continue the bound

|Pp,1,2
S | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

(1− ε)−2CB + 1

(1− ε)5
κ‖∆S‖F

((1− ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

• A similar strategy bounds Pp,1,3
S as

|Pp,1,3
S | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)∥∥∥U(U>U)−1M1(∆S)
∥∥∥

F
‖UM1(S)‖2,∞∥∥∥V (V >V )−1

∥∥∥
2,∞

∥∥∥W (W>W )−1
∥∥∥

2,∞
(‖∆V ‖F‖W ‖F + ‖V?‖F‖∆W ‖F) .

Further combine (C.21c) and (C.5d) to see

∥∥∥V (V >V )−1
∥∥∥

2,∞
≤ ‖V ‖2,∞

∥∥∥(V >V )−1
∥∥∥ ≤ (1− ε)−5CB

√
µr

n2
κ;∥∥∥W (W>W )−1

∥∥∥
2,∞
≤ ‖W ‖2,∞

∥∥∥(W>W )−1
∥∥∥ ≤ (1− ε)−5CB

√
µr

n3
κ.

These taken collectively with the results in Lemma 35 yield

|Pp,1,3
S | ≤ CY

(
p−1 log3 n+

√
p−1n log5 n

)√
µ3r4

n1n2n3

C3
Bκ

3

(1− ε)13
‖∆S‖F ((1 + ε)‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

In the end, we conclude that

|Pp,1
S | ≤ |P

p,1,1
S |+ |Pp,1,2

S |+ |Pp,1,3
S | . δ dist2(Ft,F?),

where we recall the definition of δ in (C.30).

Step 2: bounding Pp,2
S . Write Pp,2

S as
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Pp,2
S =

〈(
U(U>U)−2U>,V (V >V )−2V >,W (W>W )−2W>

)
· ((U ,V ,W ) · S? −X ?) ,

(p−1PΩ − I)((U ,V ,W ) · S −X ?)
〉
.

Compared to Pp,1
S , the only difference is that the quantity ∆S in the first argument of the inner

product is replaced by

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?) ,

whose Frobenius norm can be bounded by

∥∥∥((U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
· ((U ,V ,W ) · S? −X ?)

∥∥∥
F

≤
∥∥∥U(U>U)−1

∥∥∥
F

∥∥∥V (V >V )−1
∥∥∥

F

∥∥∥W (W>W )−1
∥∥∥

F
‖(U ,V ,W ) · S? −X ?‖F

≤
1 + ε+ 1

3ε
2

(1− ε)3
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F) .

We can then repeat the same argument as bounding Pp,1
S to obtain

|Pp,2
S | . δ dist2(Ft,F?).

For the sake of space, we omit the details.

Step 3: bounding Pp,3
S . Use the variational representation of the Frobenius norm to write

√
Pp,3
S =

〈(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
· S̃, (p−1PΩ − I)((U ,V ,W ) · S −X ?)

〉

for some S̃ ∈ Rn1×n2×n3 obeying ‖S̃‖F = 1. Repeating the same argument as bounding Pp,1
S with

proper modifications to yield the bound

Pp,3
S . δ2 dist2(Ft,F?)

then complete the proof.
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C.4 Proof for Tensor Regression

Before embarking on the proof, we state a useful lemma regarding TRIP (cf. Definition 12).

Lemma 40 ( [HWZ20, Lemma E.7]). Suppose that A(·) obeys the 2r-TRIP with a constant δ2r.

Then for all X 1,X 2 ∈ Rn1×n2×n3 of multilinear rank at most r, one has

∣∣〈A(X 1),A(X 2)〉 − 〈X 1,X 2〉
∣∣ ≤ δ2r‖X 1‖F‖X 2‖F,

or equivalently,

∣∣〈(A∗A− I)(X 1),X 2〉
∣∣ ≤ δ2r‖X 1‖F‖X 2‖F.

C.4.1 Proof of local convergence (Lemma 12)

Given that dist(Ft,F?) ≤ εσmin(X ?), the conclusion ‖(Ut,Vt,Wt) · St − X ?‖F ≤ 3 dist(Ft,F?)

directly follows from the relation (C.7) in Lemma 34. Hence we will focus on controlling dist(Ft,F?).

As in the proof of Theorem 10, we reuse the notations in (C.4) and (C.13), and the definition

of dist(Ft+1,F?) to obtain

dist2(Ft+1,F?) ≤ ‖(Ut+1Qt,1 −U?)Σ?,1‖2F + ‖(Vt+1Qt,2 − V?)Σ?,2‖2F + ‖(Wt+1Qt,3 −W?)Σ?,3‖2F

+
∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥2

F
. (C.32)

We shall bound each square in the right hand side of the bound (C.32) separately. The final result

is

dist2(Ft+1,F?) ≤ (1− η)2
(
‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆S‖2F

)
− η(2− 5η) ‖T U + T V + T W ‖2F − η(2− 5η)

(
‖DU‖2F + ‖DV ‖2F + ‖DW ‖2F

)
+ 2η(1− η)C(ε+ δ2r + δ2

2r) dist2(Ft,F?) + η2C(ε+ δ2r + δ2
2r) dist2(Ft,F?),

(C.33)
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where C > 1 is some universal constant. As long as η ≤ 2/5, and ε, δ2r are sufficiently small

constants, one reaches the desired conclusion dist(Ft+1,F?) ≤ (1− 0.6η) dist(Ft,F?).

In the following subsections, we provide bounds on the four terms in the right hand side of

(C.32). In a nutshell, the bounds that are sought after are reminiscent of those established in (C.15),

with additional perturbation terms introduced due to incomplete measurements, manifested via the

TRIP parameter δ2r. Once established, the claimed bound (C.33) easily follows. In light of the

symmetry among U ,V , and W , we omit the control of the terms pertaining to V and W .

Bounding the term pertaining to U

The first term in (C.32) is given by

(Ut+1Qt,1 −U?)Σ?,1 =
(
U − ηM1 (A∗A((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1 −U?

)
Σ?,1

= (1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ?,1

− ηM1 ((A∗A− I)((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1Σ?,1,

where we separate the population term from the perturbation term. Take the squared norm of both

sides to see

‖(Ut+1Qt,1 −U?)Σ?,1‖2F =
∥∥∥(1− η)∆UΣ?,1 − ηU?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2

F︸ ︷︷ ︸
=:Rm

U

− 2η(1− η)
〈
∆UΣ?,1,M1 ((A∗A− I)((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
︸ ︷︷ ︸

=:Rp,1
U

+ 2η2
〈
U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ?,1,M1 ((A∗A− I)((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1Σ?,1

〉
︸ ︷︷ ︸

=:Rp,2
U

+ η2
∥∥∥M1 ((A∗A− I)((U ,V ,W ) · S −X ?)) Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2

F︸ ︷︷ ︸
=:Rp,3

U

.

The main term Rm
U has been handled in Section C.2; see (C.17) and the bound (C.15a). In the

sequel, we shall bound the three perturbation terms.
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Step 1: bounding Rp,1
U . Use the definition of Ŭ , we can translate the inner product in the

matrix space to that in the tensor space

Rp,1
U =

〈(
∆UΣ2

?,1(Ŭ>Ŭ)−1,V ,W
)
· S, (A∗A− I)((U ,V ,W ) · S −X ?)

〉
=
〈(

∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (A∗A− I)((U ,V ,W ) ·∆S)

〉
+
〈(

∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (A∗A− I)((∆U ,V ,W ) · S?)

〉
+
〈(

∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (A∗A− I)((U?,∆V ,W ) · S?)

〉
+
〈(

∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (A∗A− I)((U?,V?,∆W ) · S?)

〉
,

where the second relation uses the decomposition (C.10). Apply Lemma 40 to each of the four

terms to obtain

|Rp,1
U | ≤ δ2r

∥∥∥(∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S
∥∥∥

F

(‖(U ,V ,W ) ·∆S)‖F + ‖(∆U ,V ,W ) · S?)‖F + ‖(U?,∆V ,W ) · S?)‖F + ‖(U?,V?,∆W ) · S?)‖F) .

For the prefactor, we have

∥∥∥(∆UΣ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S
∥∥∥

F
=
∥∥∥∆UΣ2

?,1(Ŭ>Ŭ)−1Ŭ>
∥∥∥

F

≤ ‖∆UΣ?,1‖F

∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥
≤ ‖∆UΣ?,1‖F(1− ε)−3,

where the last step arises from Lemma 34. In addition, the same argument as in (C.6a) yields

‖(U ,V ,W ) ·∆S)‖F + ‖(∆U ,V ,W ) · S?)‖F + ‖(U?,∆V ,W ) · S?)‖F + ‖(U?,V?,∆W ) · S?)‖F

≤ (1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .
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Take the previous two bounds collectively to arrive at

|RU,p1| ≤ δ2r
1 + 3

2ε+ ε2 + 1
4ε

3

(1− ε)3
‖∆UΣ?,1‖F (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

. δ2r dist2(Ft,F?),

with the proviso that ε is small enough.

Step 2: bounding Rp,2
U . Rewrite the inner product in the tensor space to see

Rp,2
U =

〈(
U?(Ŭ − Ŭ?)

>Ŭ(Ŭ>Ŭ)−1Σ2
?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (A∗A− I)((U ,V ,W ) · S −X ?)

〉
.

Similar to the control of Rp,1
U , we have

|Rp,2
U | ≤ δ2r

∥∥∥U?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ2

?,1(Ŭ>Ŭ)−1Ŭ>
∥∥∥

F

(1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

For the prefactor, we can use (C.5f) and (C.6c) to obtain

∥∥∥U?(Ŭ − Ŭ?)
>Ŭ(Ŭ>Ŭ)−1Σ2

?,1(Ŭ>Ŭ)−1Ŭ>
∥∥∥

F
≤ ‖Ŭ − Ŭ?‖F

∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2

≤
1 + ε+ 1

3ε
2

(1− ε)6
(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ,

which further implies

|Rp,2
U | ≤ δ2r

(1 + 3
2ε+ ε2 + 1

4ε
3)(1 + ε+ 1

3ε
2)

(1− ε)6
(‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

. δ2r dist2(Ft,F?),

as long as ε is sufficiently small.

225



Step 3: bounding Rp,3
U . The last perturbation term needs special care. We first use the varia-

tional representation of the Frobenius norm to write

√
Rp,3
U =

〈(
ŨΣ?,1(Ŭ>Ŭ)−1,V ,W

)
· S, (A∗A− I)((U ,V ,W ) · S −X ?)

〉

for some Ũ ∈ Rn1×r1 obeying ‖Ũ‖F = 1. Repeat the same argument as used in controlling Rp,1
U to

see

√
Rp,3
U ≤ δ2r

∥∥∥ŨΣ?,1(Ŭ>Ŭ)−1Ŭ>
∥∥∥

F
(1 +

3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

≤ δ2r
1 + 3

2ε+ ε2 + 1
4ε

3

(1− ε)3
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) ,

where the last line uses the bound (C.5f) in Lemma 34. Then take the square on both sides to

conclude

Rp,3
U ≤ δ

2
2r

(1 + 3
2ε+ ε2 + 1

4ε
3)2

(1− ε)6
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)2

. δ2
2r dist2(Ft,F?)

as long as ε is sufficiently small.

Bounding the term pertaining to S

The last term of (C.32) can be rewritten as

(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

= S − η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·A∗A ((U ,V ,W ) · S −X ?)− S?

= (1− η)∆S − η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
· ((U ,V ,W ) · S? −X ?)

− η
(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·(A∗A− I)((U ,V ,W ) · S −X ?),
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which further gives

∥∥∥(Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · St+1 − S?

∥∥∥2

F

=
∥∥∥(1− η)∆S − η

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?)

∥∥∥2

F︸ ︷︷ ︸
=:Rm

S

− 2η(1− η)
〈
∆S ,

(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(A∗A− I)((U ,V ,W ) · S −X ?)

〉
︸ ︷︷ ︸

=:Rp,1
S

+ 2η2

〈(
(U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
· ((U ,V ,W ) · S? −X ?) ,(

(U>U)−1U>, (V >V )−1V >, (W>W )−1W>
)
·(A∗A− I)((U ,V ,W ) · S −X ?)

〉
︸ ︷︷ ︸

=:Rp,2
S

+ η2
∥∥∥((U>U)−1U>, (V >V )−1V >, (W>W )−1W>

)
·(A∗A− I)((U ,V ,W ) · S −X ?)

∥∥∥2

F︸ ︷︷ ︸
=:Rp,3

S

.

Note that the main term Rm
S has already been characterized in Section C.2; see (C.18) and the

bound (C.15d). Therefore we concentrate on the remaining perturbation terms.

Step 1: bounding Rp,1
S . Use the property (4.6d) to write Rp,1

S as

Rp,1
S =

〈(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
·∆S , (A∗A− I)((U ,V ,W ) · S −X ?)

〉
.

We can use the decomposition (C.10) and Lemma 40 to derive

|Rp,1
S | ≤ δ2r

∥∥∥(U(U>U)−1,V (V >V )−1,W (W>W )−1
)
·∆S

∥∥∥
F

(1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

In addition, Lemma 34 tells us that

∥∥∥(U(U>U)−1,V (V >V )−1,W (W>W )−1
)
·∆S

∥∥∥
F

≤
∥∥∥U(U>U)−1

∥∥∥ ∥∥∥V (V >V )−1
∥∥∥ ∥∥∥W (W>W )−1

∥∥∥ ‖∆S‖F ≤ (1− ε)−3‖∆S‖F.
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Combine the above two bounds to reach

|Rp,1
S | ≤ δ2r

1 + 3
2ε+ ε2 + 1

4ε
3

(1− ε)3
‖∆S‖F (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

. δ2r dist2(Ft,F?)

as long as ε is a sufficiently small constant.

Step 2: bounding Rp,2
S . Similarly, we can bound Rp,2

S by

|Rp,2
S | ≤ δ2r

∥∥∥(U(U>U)−2U>,V (V >V )−2V >,W (W>W )−2W>
)
· ((U ,V ,W ) · S? −X ?)

∥∥∥
F

(1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

≤ δ2r
(1 + ε+ 1

3ε
2)(1 + 3

2ε+ ε2 + 1
4ε

3)

(1− ε)6
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F)

(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

. δ2r dist2(Ft,F?).

Step 3: bounding Rp,3
S . Apply the variational representation of the Frobenius norm to write

√
Rp,3
S =

〈(
U(U>U)−1,V (V >V )−1,W (W>W )−1

)
· S̃, (A∗A− I)((U ,V ,W ) · S −X ?)

〉

for some S̃ ∈ Rr1×r2×r3 obeying ‖S̃‖F = 1. Repeat the same argument as in bounding Rp,3
U to see

√
Rp,3
S ≤ δ2r

∥∥∥(U(U>U)−1,V (V >V )−1,W (W>W )−1
)
· S̃
∥∥∥

F

(1 +
3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)

≤ δ2r
1 + 3

2ε+ ε2 + 1
4ε

3

(1− ε)3
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F) .

Then take the square on both sides to conclude

Rp,3
S ≤ δ

2
2r

(1 + 3
2ε+ ε2 + 1

4ε
3)2

(1− ε)6
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆S‖F)2
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. δ2
2r dist2(Ft,F?).

C.4.2 Proof of spectral initialization (Lemma 13)

In view of Lemma 33, we can relate dist(F0,F?) to ‖(U0,V0,W0) · S0 −X ?‖F as

dist(F0,F?) ≤ (
√

2 + 1)3/2 ‖(U0,V0,W0) · S0 −X ?‖F .

To proceed, we need to control ‖(U0,V0,W0) · S0 −X ?‖F, where (U0,V0,W0) · S0 is the output of

HOSVD. Similar results have been established in [LZ21,HWZ20,ZLRY20], which involve sophisti-

cated subspace perturbation bounds. For conciseness and completeness, we provide an alternative

proof directly tackling the distance.

Define PU := U0U
>
0 as the projection matrix onto the column space of U0, PU⊥ := In1−PU as

the projection onto its orthogonal complement, and define PV ,PV⊥ ,PW ,PW⊥ analogously. Similar

to (C.26), we have the decomposition

‖(U0,V0,W0) · S0 −X ?‖2F

≤ ‖(PU ,PV ,PW ) ·(Y −X ?)‖2F + ‖PU⊥M1(X ?)‖2F + ‖PV⊥M2(X ?)‖2F + ‖PW⊥M3(X ?)‖2F .

(C.34)

Below we bound the terms on the right hand side of (C.34) in order.

Bounding ‖(PU ,PV ,PW ) ·(Y −X ?)‖F. For the first term in the upper bound (C.34), apply the

variational representation of the Frobenius norm to write

‖(PU ,PV ,PW ) ·(Y −X ?)‖F =
〈

(PU ,PV ,PW ) ·(Y −X ?), T̃
〉

=
〈

(A∗A− I)X ?, (PU ,PV ,PW ) · T̃
〉
,

for some T̃ ∈ Rn1×n3×n3 obeying
∥∥T̃ ∥∥

F
= 1, where the last equality follows from (4.6d). Under

the Gaussian design, we know from [RSS17, Theorem 2] that A(·) obeys 2r-TRIP with a constant
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δ2r �
√

nr+r3

m . Therefore we can apply Lemma 40 to obtain

‖(PU ,PV ,PW ) ·(Y −X ?)‖F ≤ δ2r‖X ?‖F

∥∥(PU ,PV ,PW ) · T̃
∥∥

F
≤ δ2r‖X ?‖F

.

√
nr + r3

m
‖X ?‖F ≤

√
nr2 + r4

m
κσmin(X ?).

Bounding ‖PU⊥M1(X ?)‖F. For the second term in (C.34), first bound it by

‖PU⊥M1(X ?)‖F ≤
√
r1

σmin(X ?)

∥∥∥PU⊥M1(X ?)M1(X ?)
>
∥∥∥ ,

where we use the facts that PU⊥M1(X ?) has rank at most r1 and ‖AB‖ ≥ ‖A‖σmin(B). For

notation simplicity, we abbreviate

G :=M1(A∗(y))M1(A∗(y))> − ‖y‖
2
2

m
(n2n3 − r1)In1 , and G? :=M1(X ?)M1(X ?)

>.

We claim for the moment that with overwhelming probability that

‖G−G?‖ .
√
n1n2n3 + n log n

m
‖X ?‖2F +

√
n log n

m
‖X ?‖Fσmax(X ?), (C.35)

whose proof is deferred to Appendix C.4.2. Under the sample size condition

m & ε−1
0

√
n1n2n3r

3/2κ2 + ε−2
0 (nr2κ4 log n+ r4κ2)

for some small constant ε0, we have ‖G − G?‖ ≤ ε0σ
2
min(X ?), which implies that G is positive

semi-definite. Therefore, the top-r1 eigenvectors of G coincide with U0, the top-r1 left singular

vectors ofM1(A∗(y)), which implies ‖PU⊥G‖ = σr1+1(G). By the triangle inequality, we obtain

‖PU⊥G?‖ ≤ ‖PU⊥ (G−G?)‖ + ‖PU⊥G‖ ≤ ‖G−G?‖ + σr1+1(G)

≤ ‖G−G?‖ + σr1+1(G?) + ‖G−G?‖ = 2 ‖G−G?‖ ,
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where the second line follows from Weyl’s inequality and that G? has rank r1. In total, the second

term of (C.34) is bounded by

‖PU⊥M1(X ?)‖F ≤
2
√
r1

σmin(X ?)
‖G−G?‖ .

(
(
√
n1n2n3 + n log n)r3/2

m
+

√
nr2 log n

m

)
κ2σmin(X ?).

Completing the proof. The third and fourth terms of (C.34) can be bounded similarly. In all,

we conclude that

dist(F0,F?) ≤ (
√

2 + 1)3/2 ‖(U0,V0,W0) · S0 −X ?‖F ≤ ε0σmin(X ?)

under the assumed sample size.

Proof of (C.35)

We start with stating a few useful concentration inequalities.

Lemma 41. Suppose that Ai ∈ Rn1×n2 has i.i.d. N (0, 1/m) entries, and yi = 〈Ai,X〉 for a fixed

X ∈ Rn1×n2, i = 1, . . . ,m. Further suppose that B ∈ Rn1×n2 has i.i.d. N (0, σ2) entries. Then there

exists a universal constant C > 0 such that for any t > 0, the following concentration inequalities

hold:

1. Gaussian ensemble [ZLRY20, Lemma 4]:

P

(∥∥∥ m∑
i=1

yiAi −X
∥∥∥ ≥ C‖X‖F

√
n1 + n2

(√
log(n1 + n2) + t

m
+

log(n1 + n2) + t

m

))
≤ exp(−t).

(C.36)

2. Chi-square upper tail [LM00, Lemma 1]:

P
(
‖y‖22 ≥ ‖X‖2F

m+ 2
√
mt+ 2t

m

)
≤ exp(−t). (C.37)
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3. Gaussian covariance [CHZ20, Theorem 5]:

P
(∥∥∥BB> − E[BB>]

∥∥∥ ≥ Cσ2
(

(
√
n1 +

√
n2 +

√
log(n1 ∧ n2) +

√
t)2 − n2

))
≤ exp(−t).

(C.38)

We now proceed to prove (C.35). In what follows, we take t � log n, and assume m & log n

to keep only the dominant terms when invoking the concentration inequalities in Lemma 41.

LetM1(X ?) = U?Σ?,1R
>
? be its rank-r1 SVD, with R? ∈ Rn2n3×r1 containing right singular

vectors. Denote R?⊥ as the orthogonal complement of R?. We have the following decomposition

M1(A∗(y))M1(A∗(y))> =M1(A∗(y))R?R
>
?M1(A∗(y))> +M1(A∗(y))R?⊥R

>
?⊥M1(A∗(y))>.

By the triangle inequality, we bound

‖G−G?‖ ≤
∥∥∥M1(A∗(y))R?R

>
?M1(A∗(y))> −M1(X ?)M1(X ?)

>
∥∥∥

+

∥∥∥∥M1(A∗(y))R?⊥R
>
?⊥M1(A∗(y))> − ‖y‖

2
2

m
(n2n3 − r1)In1

∥∥∥∥︸ ︷︷ ︸
=:A2

≤ ‖M1(A∗(y))R? −U?Σ?,1‖2︸ ︷︷ ︸
=(A1)2

+2 ‖M1(A∗(y))R? −U?Σ?,1‖︸ ︷︷ ︸
=:A1

σmax(X ?) + A2. (C.39)

Here, the second line follows by applying the triangle inequality to the relation

M1(A∗(y))R?R
>
?M1(A∗(y))> −M1(X ?)M1(X ?)

> =M1(A∗(y))R?R
>
?M1(A∗(y))> −U?Σ

2
?,1U

>
?

= (M1(A∗(y))R? −U?Σ?,1) (M1(A∗(y))R? −U?Σ?,1)> + U?Σ?,1 (M1(A∗(y))R? −U?Σ?,1)>

+ (M1(A∗(y))R? −U?Σ?,1) (U?Σ?,1)> .

We proceed to bound the terms in (C.39) separately.
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• For the first term A1, we can expand

M1(A∗(y))R? =
m∑
i=1

yiM1(Ai)R?,

whereM1(Ai)R? ∈ Rn1×r1 has i.i.d. N (0, 1/m) entries, and

yi = 〈M1(Ai)R?,U?Σ?,1〉 ∼ N (0, ‖X ?‖2F/m).

Apply inequality (C.36) in Lemma 41 to obtain with overwhelming probability that

A1 =

∥∥∥∥∥
m∑
i=1

yiM1(Ai)R? −U?Σ?,1

∥∥∥∥∥ .

√
n log n

m
‖X ?‖F. (C.40)

• Regarding the second term A2, one has

M1(A∗(y))R?⊥ =

m∑
i=1

yiM1(Ai)R?⊥.

By construction, yi is independent ofM1(Ai)R?⊥. Therefore, conditioned on y,M1(A∗(y))R?⊥ ∈

Rn1×(n2n3−r1) is a random matrix with i.i.d.N (0, ‖y‖22/m) entries. We can apply inequality (C.38)

in Lemma 41 to obtain with overwhelming probability that

A2 .
‖y‖22
m

(
(
√
n1 +

√
n2n3 − r1 + c

√
log n)2 − (n2n3 − r1)

)
.
‖y‖22
m

(√
n1n2n3 + n

√
log n

)
.

Inequality (C.37) in Lemma 41 tells that ‖y‖22 . ‖X ?‖2F with overwhelming probability, which

implies

A2 .
√
n1n2n3 + n

√
log n

m
‖X ?‖2F. (C.41)
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Finally, plug the bounds (C.40) and (C.41) into (C.39) to conclude

‖G−G?‖ .
√
n1n2n3 + n log n

m
‖X ?‖2F +

√
n log n

m
‖X ?‖Fσmax(X ?).
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Appendix D

Proofs for Robust Low-rank Tensor

Estimation

Lemma 42. Suppose that f : Rn1×n2×n3 7→ R is convex and rank-r restricted L-Lipschitz continuous

(cf. Definition 13). Then for any subgradient G ∈ ∂f(X ) and any X̃ ∈ Rn1×n2×n3 with multilinear

rank at most 2r, one has

|〈G, X̃ 〉| ≤ L‖X̃‖F.

Remark 10. When f(·) satisfies the usual L-Lipschitz continuity, i.e. without the rank restriction,

the statement degenerates into ‖G‖F ≤ L.

Proof. Fix any subgradient G ∈ ∂f(X ). By the definition of a subgradient, for any X̃ ∈ Rn1×n2×n3 ,

one has

f(X + X̃ ) ≥ f(X ) + 〈G, X̃ 〉, (D.1)

By the rank-r restricted L-Lipschitz continuity of f(·), when X̃ has multilinear rank at most 2r,

one has

f(X + X̃ )− f(X ) ≤ L‖X̃‖F.

This proof is complete by combining the above inequality with (D.1).
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D.1 Proof of Theorem 11

We prove the theorem by induction, where the base case is established trivially by the initial

condition. Suppose that the t-th iterate Ft obeys the condition

dist(Ft,F?) ≤ (1− 0.016/χ2
f )t/210−3σmin(X ?)/χf ≤ 10−3σmin(X ?)/χf . (D.2)

Lemma 31 ensures that the optimal alignment matrices {Qt,k}k=1,2,3 between Ft and F? exists. For

notational convenience, we denote ε := 10−3/χf ,

U := UtQt,1, V := VtQt,2, W := WtQt,3, C := (Q−1
t,1 ,Q

−1
t,2 ,Q

−1
t,3 ) · Ct, G := Gt,

and adopt the notations in (C.4). The relation ‖X t − X ?‖F ≤ 3 dist(Ft,F?) follows from (C.7).

From now on, we focus on proving the distance contraction. By the definition of dist(Ft+1,F?), one

has

dist2(Ft+1,F?) ≤ ‖(Ut+1Qt,1 −U?)Σ?,1‖2F + ‖(Vt+1Qt,2 − V?)Σ?,2‖2F + ‖(Wt+1Qt,3 −W?)Σ?,3‖2F

+
∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · Ct+1 − C?

∥∥∥2

F
. (D.3)

We expand the first square in (D.3) as

‖(Ut+1Qt,1 −U?)Σ?,1‖2F =
∥∥∥(U − ηtM1(G)Ŭ(Ŭ>Ŭ)−1 −U?

)
Σ?,1

∥∥∥2

F

= ‖∆UΣ?,1‖2F − 2ηt

〈
∆U ,M1(G)Ŭ?

〉
+ η2

t

∥∥∥M1(G)Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2

F︸ ︷︷ ︸
U1

− 2ηt

〈
∆UΣ?,1,M1(G)

(
Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ

−1
?,1

)〉
︸ ︷︷ ︸

U2

, (D.4)
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where in the first line, we used the fact that the update rule (5.7) is covariant with respect to {Qt,k},

implying that

Ut+1Qt,1 = U − ηtM1(G)Ŭ(Ŭ>Ŭ)−1.

We proceed to bound U1 and U2. For U1, use Lemma 34 (C.5f) to obtain

U1 ≤
∥∥∥M1(G)Ŭ(Ŭ>Ŭ)−1/2

∥∥∥2

F

∥∥∥(Ŭ>Ŭ)−1/2Σ?,1

∥∥∥2

=
∥∥∥M1(G)Ŭ(Ŭ>Ŭ)−1/2

∥∥∥2

F

∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1

∥∥∥2

≤
∥∥∥M1(G)Ŭ(Ŭ>Ŭ)−1/2

∥∥∥2

F

1

(1− ε)6
.

For U2, note that

U2 =
〈
G, (∆UΣ2

?,1Ŭ(Ŭ>Ŭ)−1,V ,W ) · C − (∆U ,V?,W?) · C?
〉
,

is the inner product of the subgradient G and a tensor with multiliear rank at most 2r, thus

combining Lemmas 34 (C.5g) and 42 one has

|U2| ≤ L
∥∥∥(∆UΣ2

?,1Ŭ(Ŭ>Ŭ)−1,V ,W ) · C − (∆U ,V?,W?) · C?
∥∥∥

F

≤ L‖∆UΣ?,1‖F

∥∥∥Ŭ(Ŭ>Ŭ)−1Σ?,1 − Ŭ?Σ
−1
?,1

∥∥∥
≤ L‖∆UΣ?,1‖F

√
2(3ε+ 3ε2 + ε3)

(1− ε)3
.

Plugging collectively the bounds for U1 and U2 into (D.4) yields

‖(Ut+1Qt,1 −U?)Σ?,1‖2F ≤ ‖∆UΣ?,1‖2F − 2ηt 〈G, (∆U ,V?,W?) · C?〉+
η2
t

(1− ε)6

∥∥∥M1(G)Ŭ(Ŭ>Ŭ)−1/2
∥∥∥2

F

+ 2ηtL

√
2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆UΣ?,1‖F.
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Similarly, other terms in (D.3) can be expanded and bounded as

‖(Vt+1Qt,2 − V?)Σ?,2‖2F ≤ ‖∆V Σ?,2‖2F − 2ηt 〈G, (U?,∆V ,W?) · C?〉

+
η2
t

(1− ε)6

∥∥∥M2(G)V̆ (V̆ >V̆ )−1/2
∥∥∥2

F
+ 2ηtL

√
2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆V Σ?,2‖F;

‖(Wt+1Qt,3 −W?)Σ?,3‖2F ≤ ‖∆WΣ?,3‖2F − 2ηt 〈G, (U?,V?,∆W ) · C?〉

+
η2
t

(1− ε)6

∥∥∥M3(G)W̆ (W̆>W̆ )−1/2
∥∥∥2

F
+ 2ηtL

√
2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆WΣ?,3‖F;∥∥∥(Q−1

t,1 ,Q
−1
t,2 ,Q

−1
t,3 ) · Ct+1 − C?

∥∥∥2

F
≤ ‖∆C‖2F − 2ηt 〈G, (U?,V?,W?) ·∆C〉

+
η2
t

(1− ε)6

∥∥∥((U>t Ut)
−1/2U>t , (V

>
t Vt)

−1/2V >t , (W
>
t Wt)

−1/2W>
t

)
· Gt
∥∥∥2

F

+ 2ηtL

√
2(3ε+ 3ε2 + ε3)

(1− ε)3
‖∆C‖F.

In addition, we claim that

〈
G, (∆U ,V?,W?) · C? + (U?,∆V ,W?) · C? + (U?,V?,∆W ) · C? + (U?,V?,W?) ·∆C

〉
≥ 〈G,X t −X ?〉 − L(

3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆C‖F) . (D.5)

Combine them together to reach that

dist2(Ft+1,F?) ≤ ‖∆UΣ?,1‖2F + ‖∆V Σ?,2‖2F + ‖∆WΣ?,3‖2F + ‖∆C‖2F − 2ηt 〈G,X t −X ?〉+
η2
tN

2
t

(1− ε)6

+ ηtL

(
2
√

2(3ε+ 3ε2 + ε3)

(1− ε)3
+ 3ε+ 2ε2 +

1

2
ε3

)
(‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆C‖F) ,

in which N2
t is defined in (5.9). Using the subgradient optimality of G, we obtain

〈G,X t −X ?〉 ≥ f(X t)− f(X ?),

which further implies that

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− 2ηt (f(X t)− f(X ?)) +
η2
tN

2
t

(1− ε)6
+ ηtLc(ε) dist(Ft,F?), (D.6)
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where the last term uses the basic inequality

‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆C‖F ≤ 2 dist(Ft,F?),

and for conciseness we abbreviate

c(ε) :=
4
√

2(3ε+ 3ε2 + ε3)

(1− ε)3
+ 6ε+ 4ε2 + ε3. (D.7)

Also, we claim that

Nt ≤ 2L. (D.8)

Convergence with Polyak’s stepsizes. Let ηt = (f(X t)−f(X ?))/N
2
t be the Polyak’s stepsize.

Plugging it into (D.6), we have

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− ηt
(

2− 1

(1− ε)6

)
(f(X t)− f(X ?)) + ηtLc(ε) dist(Ft,F?)

≤ dist2(Ft,F?)− ηtµ
(

(
√

2− 1)3/2

(
2− 1

(1− ε)6

)
− χfc(ε)

)
dist(Ft,F?), (D.9)

where the second inequality follows from (D.10) and χf = L/µ.

The restricted µ-sharpness of f(·) together with Lemma 33 yields

f(X t)− f(X ?) ≥ µ‖X t −X ?‖F ≥ µ(
√

2− 1)3/2 dist(Ft,F?). (D.10)

To continue, combining (D.10) and (D.8), we can lower bound the Polyak’s stepsize as

ηt ≥
(
√

2− 1)3/2µ dist(Ft,F?)

4L2
.

This, combined with (D.9), leads to

dist2(Ft+1,F?) ≤

(
1− (

√
2− 1)3/2

4χ2
f

(
(
√

2− 1)3/2

(
2− 1

(1− ε)6

)
− χfc(ε)

))
dist2(Ft,F?),
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Under the condition ε = 10−3/χf , we calculate that

(
√

2− 1)3/2

4

(
(
√

2− 1)3/2

(
2− 1

(1− ε)6

)
− χfc(ε)

)
≥ (
√

2− 1)3/2

4

(
(
√

2− 1)3/2

(
2− 1

(1− 10−3)6

)
− c(10−3)

)
≥ 0.016,

thus we conclude that

dist2(Ft+1,F?) ≤ (1− 0.016/χ2
f ) dist2(Ft,F?),

which is the desired claim.

Convergence with geometrically decaying stepsizes. Let ηt = λqt/Nt be the geometrically

decaying stepsize in (5.8). Plugging it into (D.6), we have

dist2(Ft+1,F?) ≤ dist2(Ft,F?)− ηtµ
(

2(
√

2− 1)3/2 − χfc(ε)
)

dist(Ft,F?) +
λ2q2t

(1− ε)6

≤ dist2(Ft,F?)−
λqt

2χf

(
2(
√

2− 1)3/2 − χfc(ε)
)

dist(Ft,F?) +
λ2q2t

(1− ε)6
,

where the first line follows from (D.10) and χf = L/µ, and the second line follows from ηt ≥ λqt

2L

due to (D.8). The induction hypothesis at the t-iteration

dist(Ft,F?) ≤ (1− 0.016/χ2
f )t/210−3σmin(X ?)/χf ,

combined with the setting of parameters, i.e.

λqt =
(
√

2− 1)3/2

2
(1− 0.016/χ2

f )t/210−3σmin(X ?)/χ
2
f ,

implies that

dist2(Ft+1,F?) ≤

(
1− (

√
2− 1)3/2

4χ2
f

(
(
√

2− 1)3/2

(
2− 1

(1− ε)6

)
− χfc(ε)

))
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(1− 0.016/χ2
f )t(10−3σmin(X ?)/χf )2,

where the contraction rate matches exactly as that using Polyak’s stepsize. Therefore, under the

condition ε = 10−3/χf , we conclude that

dist(Ft+1,F?) ≤ (1− 0.016/χ2
f )

t+1
2 10−3σmin(X ?)/χf ,

which is the desired claim.

Proof of (D.5). To prove (D.5), we use the decomposition

(U ,V ,W ) · C −X ? = (∆U ,V?,W?) · C? + (U?,∆V ,W?) · C? + (U?,V?,∆W ) · C? + (U?,V?,W?) ·∆C

+ (∆U ,∆V ,W?) · C? + (∆U ,V?,∆W ) · C? + (U ,∆V ,∆W ) · C?

+ (∆U ,V?,W?) ·∆C + (U ,∆V ,W?) ·∆C + (U ,V ,∆W ) ·∆C , (D.11)

and then invoke Lemma 42 to see

〈
Gt,X t −X ? − (∆U ,V?,W?) · C? − (U?,∆V ,W?) · C? − (U?,V?,∆W ) · C? − (U?,V?,W?) ·∆C

〉
≤ L

(
‖(∆U ,∆V ,W?) · C?‖F + ‖(∆U ,V?,∆W ) · C?‖F + ‖(U ,∆V ,∆W ) · C?‖F

‖(∆U ,V?,W?) ·∆C‖F + ‖(U ,∆V ,W?) ·∆C‖F + ‖(U ,V ,∆W ) ·∆C‖F

)
≤ L

(
ε ‖∆V Σ?,2‖F + (2ε+ ε2) ‖∆WΣ?,3‖F + (3ε+ 3ε2 + ε3)‖∆C‖F

)
,

where the details in the last inequality are:

‖(∆U ,∆V ,W?) · C?‖F ≤ ‖∆VM2(C?)‖F‖W?‖‖∆U‖ ≤ ε‖∆V Σ?,2‖F;

‖(∆U ,V?,∆W ) · C?‖F ≤ ‖∆WM3(C?)‖F‖V?‖‖∆U‖ ≤ ε‖∆WΣ?,3‖F;

‖(U ,∆V ,∆W ) · C?‖F ≤ ‖∆WM3(C?)‖F‖∆V ‖‖U‖ ≤ (1 + ε)ε‖∆WΣ?,3‖F;

‖(∆U ,V?,W?) ·∆C‖F ≤ ‖∆U‖‖V?‖‖W?‖‖∆C‖F ≤ ε‖∆C‖F;

241



‖(U ,∆V ,W?) ·∆C‖F ≤ ‖U‖‖∆V ‖‖W?‖‖∆C‖F ≤ (1 + ε)ε‖∆C‖F;

‖(U ,V ,∆W ) ·∆C‖F ≤ ‖U‖‖V ‖‖∆W ‖‖∆C‖F ≤ (1 + ε)2ε‖∆C‖F.

Finally use decomposition other than (D.11), and take an average to balance the coefficients of

factors ∆UΣ?,1,∆V Σ?,2,∆WΣ?,3 and ∆C as

〈
Gt,X t −X ? − (∆U ,V?,W?) · C? − (U?,∆V ,W?) · C? − (U?,V?,∆W ) · C? − (U?,V?,W?) ·∆C

〉
≤ L(

3

2
ε+ ε2 +

1

4
ε3) (‖∆UΣ?,1‖F + ‖∆V Σ?,2‖F + ‖∆WΣ?,3‖F + ‖∆C‖F) .

Proof of (D.8). The proof is established by repeatedly applying Lemma 42 to each term in (5.9).

For example, the first term in (5.9) can be written in the variational form as

∥∥∥M1(G)Ŭ(Ŭ>Ŭ)−1/2
∥∥∥

F
=
〈
G, (Ũ(Ŭ>Ŭ)−1/2,V ,W ) · C

〉
,

for some Ũ ∈ Rn1×r with ‖Ũ‖F = 1. Since (Ũ(Ŭ>Ŭ)−1/2,V ,W ) · C has multilinear rank at most

r, Lemma 42 tells that

∥∥∥M1(G)Ŭ(Ŭ>Ŭ)−1/2
∥∥∥

F
≤ L

∥∥∥(Ũ(Ŭ>Ŭ)−1/2,V ,W ) · C
∥∥∥

F

≤ L
∥∥∥Ŭ(Ŭ>Ŭ)−1/2

∥∥∥ = L,

where the last equality follows from

‖Ŭ(Ŭ>Ŭ)−1/2‖2 = ‖Ŭ(Ŭ>Ŭ)−1Ŭ>‖ = 1.
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D.2 Proof of Proposition 5

We shall prove a more detailed statement: for all tensor X ∈ Rn1×n2×n3 with multilinear rank at

most r, with probability exceeding 1− ρ, one has:

(√
2

π
− δ

)
‖X‖F ≤ ‖A(X )‖1 ≤

(√
2

π
+ δ

)
‖X‖F, for any 0 < δ <

√
2

π
; (D.12)

‖ASc(X )‖1 − ‖AS(X )‖1 ≥

(
(1− 2ps)

√
2

π
− δ

)
‖X‖F, for any 0 < δ < (1− 2ps)

√
2

π
, (D.13)

as long as

m ≥ (3nr + r3) log(120/δ) + log(2/ρ)

cδ2
,

where c > 0 is some constant. A key ingredient is the following result on covering number of the

set of unit Frobenius norm low-rank tensors.

Lemma 43 ( [RSS17, Lemma 2]). Denote the set of unit Frobenius norm rank-r tensors as

Sr = {X ∈ Rn1×n3×n3 : rank(X ) ≤ r, ‖X‖F = 1}.

The ε-covering number of Sr with respect to the Frobenius norm is bounded by

|Sr,ε| ≤
(

12

ε

)n1r1+n2r2+n3r3+r1r2r3

,

where Sr,ε denotes the ε-net of Sr.

The proof to (D.12) essentially repeats [LZMCSV20, Proposition 1]. First fix any X ∈ Sr.

Since Ai has i.i.d. standard Gaussian entries, 〈Ai,X 〉 obeys standard Gaussian. E|〈Ai,X 〉| =
√

2
π ,

and |〈Ai,X 〉| −
√

2
π is sub-Gaussian. Hoeffding inequality for sub-Gaussian random variables tells

that

P

(∣∣∣∣∣ 1

m

m∑
i=1

|〈Ai,X 〉| −
√

2

π

∣∣∣∣∣ ≤ δ

2

)
≥ 1− 2 exp(−cmδ2),
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for some constant c > 0.

Next apply the covering argument. For any X ∈ Sr, there exists a X̄ ∈ Sr,ε such that

‖X − X̄‖F ≤ ε. Invoke the triangle inequality to see

∣∣∣∣∣‖A(X )‖1 −
√

2

π

∣∣∣∣∣ ≤
∣∣∣∣∣‖A(X̄ )‖1 −

√
2

π

∣∣∣∣∣+ ‖A(X − X̄ )‖1.

SinceX−X̄ has multilinear rank at most 2r, we can split it into 8 rank-r tensors: X−X̄ =
∑8

i=1Di

with each Di orthogonal to each other.1 We can further require that ‖Di‖F ≤ ε/
√

8. It holds that

∣∣∣∣∣‖A(X )‖1 −
√

2

π

∣∣∣∣∣ ≤
∣∣∣∣∣‖A(X̄ )‖1 −

√
2

π

∣∣∣∣∣+

8∑
i=1

‖A(Di)‖1 ≤

∣∣∣∣∣‖A(X̄ )‖1 −
√

2

π

∣∣∣∣∣+
√

8ε sup
X∈Sr

‖A(X )‖1.

Take supreme on both sides to see

sup
X∈Sr

∣∣∣∣∣‖A(X )‖1 −
√

2

π

∣∣∣∣∣ ≤ sup
X̄∈Sr,ε

∣∣∣∣∣‖A(X̄ )‖1 −
√

2

π

∣∣∣∣∣+
√

8ε sup
X∈Sr

‖A(X )‖1

=⇒ sup
X∈Sr

∣∣∣∣∣‖A(X )‖1 −
√

2

π

∣∣∣∣∣ ≤ supX̄∈Sr,ε

∣∣∣‖A(X̄ )‖1 −
√

2
π

∣∣∣+ 4ε/
√
π

1−
√

8ε
.

Take the union bound over Sr,ε to conclude

P

(
sup
X∈Sr

∣∣∣∣∣‖A(X )‖1 −
√

2

π

∣∣∣∣∣ ≤ δ/2 + 4ε/
√
π

1−
√

8ε

)
≥ 1−

(
12

ε

)3nr+r3

2 exp(−cmδ2). (D.14)

Set ε = 0.1δ to achieve

δ/2 + 4ε/
√
π

1−
√

8ε
≤ δ, and

(
12

ε

)3nr+r3

2 exp(−c1mδ
2) ≤ ρ, if m ≥ (3nr + r3) log(120/δ) + log(2/ρ)

cδ2
.

The proof of (D.12) is then finished.
1Write the rank-2r HOSVD as X − X̄ = (U ,V ,W ) · C, and split U = [U1,U2], V = [V1,V2],W = [W1,W2],

then D1 = (U1U
>
1 ,V1V

>
1 ,W1W

>
1 ) ·(X − X̄ ), . . . ,D8 = (U2U

>
2 ,V2V

>
2 ,W2W

>
2 ) ·(X − X̄ ).
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To prove (D.13), introduce independent sub-Gaussian random variables

Xi =


−|〈Ai,X 〉|+

√
2
π , i ∈ S

|〈Ai,X 〉| −
√

2
π , i /∈ S

.

Hoeffding inequality for sub-Gaussian random variables tells that

P

(
1

m

m∑
i=1

Xi = ‖ASc(X )‖1 − ‖AS(X )‖1 − (1− 2ps)

√
2

π
≥ −δ

2

)
≥ 1− exp(−cmδ2).

Next apply the covering argument. For any X ∈ Sr, there exists a X̄ ∈ Sr,ε such that ‖X−X̄‖F ≤ ε.

Invoke the triangle inequality to see

‖ASc(X )‖1 ≥ ‖ASc(X̄ )‖1 − ‖ASc(X − X̄ )‖1, ‖AS(X )‖1 ≤ ‖AS(X̄ )‖1 + ‖AS(X − X̄ )‖1

=⇒ ‖ASc(X )‖1 − ‖AS(X )‖1 ≥ ‖ASc(X̄ )‖1 − ‖AS(X̄ )‖1 − ‖A(X − X̄ )‖1.

Follow the same argument above to split X − X̄ into 8 rank-r tensors and obtain

inf
X∈Sr

(‖ASc(X )‖1 − ‖AS(X )‖1) ≥ inf
X̄∈Sr,ε

(‖ASc(X̄ )‖1 − ‖AS(X̄ )‖1)−
√

8ε sup
X∈Sr

‖A(X )‖1.

Take the union bound over Sr,ε together with (D.14) to conclude

P

(
inf

X∈Sr
(‖ASc(X )‖1 − ‖AS(X )‖1) ≥ (1− 2ps)

√
2

π
− δ

2
−
√

8ε

(√
2

π
+
δ/2 + 4ε/

√
π

1−
√

8ε

))

≥ 1−
(

12

ε

)3nr+r3

2 exp(−cmδ2).

Set ε = 0.1δ again to achieve

√
8ε

(√
2

π
+
δ/2 + 4ε/

√
π

1−
√

8ε

)
≤ δ

2
, and

(
12

ε

)3nr+r3

2 exp(−cmδ2) ≤ ρ.

The proof of (D.13) is then finished.
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