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Super-Resolution Image Reconstruction for
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Abstract—Single-molecule localization based super-resolution
microscopy, by localizing a sparse subset of stochastically ac-
tivated emitters in each frame, achieves sub-diffraction-limit
spatial resolution. Its temporal resolution, however, is constrained
by the maximal density of activated emitters that can be
successfully reconstructed. The state-of-the-art three-dimensional
(3D) reconstruction algorithm based on compressed sensing
suffers from high computational complexity and gridding error
due to model mismatch. In this paper, we propose a novel
super-resolution algorithm for 3D image reconstruction, dubbed
TVSTORM, which promotes the sparsity of activated emitters
without discretizing their locations. Several strategies are pursued
to improve the reconstruction quality under the Poisson noise
model, and reduce the computational time by an order-of-
magnitude. Numerical results on both simulated and cell imaging
data are provided to validate the favorable performance of the
proposed algorithm.

Index Terms—Image reconstruction, super-resolution, sparse
inverse problems, total-variation norm.

I. INTRODUCTION

Illuminated by light of certain wavelength, fluorophores can
emit light of longer wavelength which can be captured by a
fluorescence microscope. Patterns of fluorescence in cells or
tissues thus can be visualized after separating the emitting light
from the illumination light. The fluorescence microscopy has
found numerous applications in the biological field, including
but not limited to, discovering patterns of certain proteins,
tracking the movement of molecules, studying intracellular
signaling, etc. However, due to the optical diffraction, the
resolution of a conventional fluorescence microscopy is limited
to the Rayleigh limit, 0.61λ/NA [2], where λ is the wavelength
of emission light, and NA is the numerical aperture of the
objective lens.

In the past few decades, several novel imaging techniques
have been developed to break the diffraction limit by over
an order-of-magnitude both in the lateral and axial directions
[3]–[6]. Among these techniques, single-molecule based super-
resolution techniques, such as stochastic optical reconstruction
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microscopy (STORM) [5] and photo-activated localization
microscopy (PALM) [6], improve the spatial resolution sig-
nificantly by activating and localizing a sparse subset of
emitters within the nanometer scale in each frame. The secret
behind the resolution enhancement is the precise localization
of sparsely activated emitters within each frame, and repeated
activation to allow different subsets of emitters turning on for
localization across frames. The final super-resolution image is
then constructed by superimposing the reconstructed emitter
locations from all frames.

To extend STORM/PALM to 3D imaging, several tech-
niques have been proposed to engineer the system’s point
spread function (PSF) in order to encode the axial location of
the emitters, including single-camera imaging with astigma-
tism [7], biplane imaging [8], multiple-camera imaging com-
bined with astigmatism [9], hybrid astigmatic/biplane imaging
[10], and double-helix PSF engineering [11]. In this paper, we
consider the most straightforward 3D system setup which is
single-camera imaging with astigmatism, which places a weak
cylindrical lens into the optical path to modify the ellipticity of
the emitter’s PSF along the axial direction, making it possible
to differentiate emitters at different axial locations. Extensions
to other 3D system setups are straightforward.

As the temporal resolution is limited by the number of
frames needed to acquire a super-resolution image, it is
desirable to develop image reconstruction algorithms that can
handle higher emitter density per frame. However, a high
density of activated emitters causes their PSFs to overlap
spatially, which invalidates the widely used single emitter
localization methods [5], [12], [13]. To overcome this, several
methods [14]–[17] have been proposed, among which DAOS-
TORM [17] achieves the best performance by simultaneously
fitting overlapping PSFs, while its extension to 3D image
reconstruction, 3D-DAOSTORM [18], was shortly developed
afterwards. However, it is demonstrated in [19] and [20]
that, DAOSTORM is outperformed by compressed sensing
based reconstruction algorithm (CSSTORM) [8], [9], [11],
[19], [21], [22], which has been shown as a robust and high
performance algorithm for high-density super-resolution image
reconstruction for both 2D and 3D imaging. For each frame,
CSSTORM first imposes a fine-grained grid to model the
locations of activated emitters as a sparse signal in a discrete
dictionary, of which the image on the camera becomes linear
measurements, then solves a sparse recovery problem based
on `1 minimization to invert the emitters’ locations. How-
ever, this introduces an inevitable mismatch between the true
continuous-valued location of the emitter, and its estimated
location on the discrete grid [23]. To reduce the artifact by
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the mismatch error, the grid needs to be fine enough, which
results in an extremely large dictionary, making the computa-
tion very expensive. Moreover, heuristic post-processing steps
are typically added to CSSTORM to enhance performance.
Another algorithm called 3B analysis [24] incorporates the
temporal information of STORM/PALM images and utilizes
the emitter blinking statistics to reconstruct a high-resolution
image using a Bayesian approach. However, it is still based on
a discrete grid and suffers from long computation time even
with parallel computing [25].

To address the artifact introduced by discretization, Min
et al. proposes an algorithm called FALCON that combines
sparsity-promoting formulation with a Taylor series approxi-
mation of the PSF [26]. Its 3D extension for astigmatic and
biplane imaging, FALCON3D, is proposed later in [10]. Both
FALCON and FALCON3D are demonstrated to reduce the dis-
cretization artifact and computational cost by eliminating the
need of a fine-grained grid. However, the off-grid techniques
used in [10], [26] still suffer from approximation errors on a
pre-selected coarse grid.

For 2D super-resolution image reconstruction, another algo-
rithm called MempSTORM has been proposed [27] based on
2D spectrum estimation techniques in the signal processing
literature. MempSTORM directly estimates the continuous-
valued location of the activated emitters without any discretiza-
tion by transforming the image to the spectral domain. It is
demonstrated to handle the same level of emitter density as
CSSTORM with much faster computational speed. A similar
algorithm, ALOHA [28], is also proposed based on low-
rank Hankel structured matrix in the Fourier space with the
capability to infer the PSF. However, both MempSTORM and
ALOHA cannot be readily extended to 3D super-resolution
image reconstruction. Moreover, in all the above mentioned
works, the noise is modeled as an additive bounded or Gaus-
sian noise without considering its discrete characteristics of
photon counting.

In this paper, we propose a novel super-resolution frame-
work for 3D image reconstruction under the Poisson noise
model, which is more appropriate for photon count data.
Given the 3D PSF profile, the camera image is treated as
an observation drawn from a Poisson distribution whose
parameters are determined by a point source signal composed
of a sum of Dirac measures, each shifted and scaled by the
locations and intensities of the activated emitters. In [29], the
total-variation norm is used as a continuous analog of the `1
norm for finite-dimensional vectors to promote emitter sparsity
without discretizing their locations via convex optimization.
Recently, Rao et.al. [30] and Boyd et.al. [31] have developed
fast and efficient algorithms for solving generic total-variation
norm regularized sparse inverse problems respectively, using
conditional gradient with enhancement and truncation (Co-
GEnT) and alternating descent conditional gradient (ADCG)
via extending the classical conditional gradient descent method
[32]. In particular, it is demonstrated in [31] that the ADCG
framework can be implemented for 2D super-resolution imag-
ing. Built on these pioneering algorithmic advances, we aim
to reconstruct the point source signal by maximizing the
Poisson log-likelihood while keeping its cardinality small. We

propose a new algorithm, dubbed TVSTORM, that is close
in spirit to orthogonal matching pursuit [33] but operates
on an infinite-dimensional signal. Our algorithm falls into
the framework of ADCG [31] with carefully-designed mod-
ifications in order to handle the Poisson likelihood as well
as the 3D PSF profile for improving performance. Specifi-
cally, in each iteration, TVSTORM first selects a new point
source and adds it to the current estimate, whose location
is determined by a first-order linearization of the Poisson
log-likelihood function over a coarse grid, and then refines
the estimate of all the included point sources by gradient
descent using backtracking line search. Through numerical
experiments, TVSTORM demonstrates an order-of-magnitude
improvement on the computational cost over CSSTORM due
to the elimination of optimizing over a fine-grained grid. It also
shows significant improvement on the localization accuracy
over CSSTORM in terms of detection rate, false discovery
rate and precision, without adding post-processing steps.

Preliminary results of TVSTORM were reported in [1],
with the current paper significantly extending and refining the
details of the algorithm with extensive numerical simulations
for both synthetic and real data.

The rest of the paper is organized as follows. Section II
describes the problem formulation of super-resolution image
reconstruction. We present the proposed TVSTORM algorithm
in Section III. Numerical experiments on both synthetic and
real data are demonstrated in Section IV. Finally, we conclude
in Section V.

II. SUPER-RESOLUTION IMAGE RECONSTRUCTION

We begin by introducing the imaging system of 3D single-
molecule localization microscopy. In each frame, a sparse sub-
set of emitters are activated. Let θ(i) = [θ

(i)
x , θ

(i)
y , θ

(i)
z , θ

(i)
I ] =

[θ
(i)
L , θ

(i)
I ] be the parameters for the ith emitter, where θ(i)

L =

[θ
(i)
x , θ

(i)
y , θ

(i)
z ] ∈ S are the coordinates in x, y and z dimen-

sions, respectively,

S =
{
θL = [θx, θy, θz]

∣∣∣θx ∈ (xmin, xmax), θy ∈ (ymin, ymax),

θz ∈ (zmin, zmax)
}
,

and θ
(i)
I > 0 denotes its intensity. Let Θ =

{θ(1), θ(2), ..., θ(P )} be the set of parameters, where P
is the total number of emitters. We can write the set of
activated emitters χ = χ(x, y, z|Θ) as a sparse superposition
of point sources, given as a point source signal:

χ = χ(x, y, z|Θ) =

P∑
i=1

θ
(i)
I δ(x−θ(i)

x , y − θ(i)
y , z − θ(i)

z ), (1)

where δ(x − x0, y − y0, z − z0) is a Dirac measure located
at (x0, y0, z0). For notational convenience, we also use χ(Θ)
to denote χ(x, y, z|Θ). We denote the admissible set of χ as
G = {χ = χ(Θ)|Θ = {θ(i)}Pi=1, P ∈ Z+, θ

(i)
L ∈ S, θ(i)

I ≥
0, 1 ≤ i ≤ P}.

Due to diffraction, the point source signal χ is low-pass
filtered by the PSF of the microscopy before forming the
image, whose shape is modeled as a 2D Gaussian function
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with the ellipticity determined by the location along the z
direction:

K(x, y|x0, y0, z0) =
1

2πσx(z0)σy(z0)
e
−
(

(x−x0)2

2σx(z0)2
+

(y−y0)2

2σy(z0)2

)
,

(2)
where σx(z0) and σy(z0) are the standard deviations in the x
and y directions, which are calibrated as [7]:

σx(z0) = σx,0

√√√√1 +

4∑
i=2

Ax,i

(
z0 − cx
dx

)i
,

σy(z0) = σy,0

√√√√1 +

4∑
i=2

Ay,i

(
z0 − cy
dy

)i
,

(3)

where σx,0, σy,0, Ax,i, Ay,i, i = 2, 3, 4, cx, cy , dx and dy are
known parameters of the defocusing function [9].

The expected photon rate received at the (u, v)th camera
pixel, denoted as µ(u, v), can be written as a convolution
between the PSF in (2) and the point source signal in (1),
integrated over the area of a pixel:

µ(u, v|χ) =

∫ u+ 1
2

u− 1
2

∫ v+ 1
2

v− 1
2

(K ∗ χ)(x, y) dxdy, (4)

where ∗ denotes convolution, and

(K ∗ χ)(x, y) =

P∑
i=1

θ
(i)
I K(x, y|θ(i)

x , θ(i)
y , θ(i)

z ). (5)

Therefore, (4) can be rewritten as

µ(u, v|χ)

=

P∑
i=1

θ
(i)
I

4

[
Q

(
u− θ(i)

x + 1
2√

2σx(θ
(i)
z )

)
−Q

(
u− θ(i)

x − 1
2√

2σx(θ
(i)
z )

)]

×

[
Q

(
v − θ(i)

y + 1
2√

2σy(θ
(i)
z )

)
−Q

(
v − θ(i)

y − 1
2√

2σy(θ
(i)
z )

)]

=

P∑
i=1

θ
(i)
I φ(u, v|θ(i)

L ), (6)

where Q(x) = 2√
π

∫ x
0
e−t

2

dt and φ(u, v|θ(i)
L ) is the image

contributed by a single emitter located at θ(i)
L .

The number of photons hitting the camera at the (u, v)th

pixel, denoted as y(u, v), follows an independent Poisson
distribution with the parameter µ(u, v|χ), given as

Pr(y(u, v) = z|χ) =
µ(u, v|χ)ze−µ(u,v|χ)

z!
, z ∈ Z+. (7)

Denote the camera image as y = {y(u, v)}. The objective
of super-resolution is to estimate the point source signal χ(Θ),
given the observed image y.

III. PROPOSED APPROACH

In this section, we describe the proposed TVSTORM algo-
rithm for high-density 3D super-resolution imaging under the
Poisson noise model explained in Section II.

A. Poisson Loss Function

We first define the loss function, `(y|χ), as the negative
Poisson log-likelihood of observing y given χ. According to
(7),

`(y|χ) = −log

(∏
u

∏
v

Pr(y(u, v)|χ)

)
=
∑
u

∑
v

(µ(u, v|χ)− y(u, v)log(µ(u, v|χ))) + C,

where C is a constant that does not depend on χ. As suggested
in [34], for Poisson log-likelihood, it is advantageous to
introduce a small offset 0 < β � 1 inside the logarithmic
term to improve stability, so that we modify `(y|χ) as

`(y|χ) =
∑
u

∑
v

[µ(u, v|χ)− y(u, v)log(µ(u, v|χ) + β)]

(8)
after dropping the constant term. Instead of discretizing χ over
a finite grid, we wish to minimize `(y|χ) while keeping the
cardinality of χ small.

B. Description of TVSTORM

Since the point source signal χ is defined over an infinite-
dimensional space, it is challenging to optimize. Nonethe-
less, recent pioneering work in [31] has developed ADCG
for solving total-variation norm regularized sparse inverse
problems that are defined over infinite-dimensional measures,
which can be regarded as a continuous analog of conjugate
gradient descent for solving `1-norm minimization. Inspired
by [31], we develop an iterative algorithm tailored to our
setting, denoted as TVSTORM, that is close in spirit to
orthogonal matching pursuit but operates over the continuous-
valued parameter space.

The description of TVSTORM is given in Algorithm 1.
TVSTORM is an iterative algorithm, where in each iteration,
a new point source is first selected and added to the current
estimate of χ, and then the estimate of χ is refined by gradient
descent using backtracking line search for all the parameters
fixing the number of point sources. The algorithm stops when
the intensity of the most recently added point source falls
below a given threshold.

Let χ̂(t) = χ(x, y, z|Θ̂(t)) be the estimate of the emitter
object at the tth iteration, where Θ̂(t) represents the parameters
of the point sources in χ̂(t). Let µ(χ̂(t)) = {µ(u, v|χ̂(t))}
denote the noise-free image generated from χ̂(t) according
to (4). At the (t+ 1)

th iteration, the SELECT step aims to
add one point source (with parameter θ̂(t+1)) to χ̂(t), which
we wish to find by minimizing a first-order Taylor series
approximation of `(y|χ). Following [31], this can be done by
first calculating the partial derivative of `(y|χ̂(t)) with respect
to µ(χ̂(t)), given as ∂`(y|χ̂(t))

∂µ(χ̂(t))
, and then picking the source

location θ(t+1)
L that maximizes

argminθL∈S

〈
∂`(y|χ̂(t))

∂µ(χ̂(t))
, φ(θL)

〉
, (9)
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Algorithm 1 TVSTORM
1: Input Parameter: threshold γ
2: t← 0
3: Θ̂(0) ← ∅
4: χ̂(0) ← χ(x, y, z|Θ̂(0))
5: repeat
6: . SELECT
7: Find the emitter location θ̂(t+1)

L using (10);
8: Find the emitter intensity θ̂(t+1)

I using (11);
9: Update: Θ̂(t+1) ← Θ̂(t) ∪ {[θ̂(t+1)

L , θ̂
(t+1)
I ]}

10: . REFINE
11: Θ̂(t+1) ← REFINE(y, Θ̂(t+1))
12: χ̂(t+1) ← χ(x, y, z|Θ̂(t+1))
13: t← t+ 1
14: until θ̂(t)

I < γ

where 〈·, ·〉 denotes the inner product. Instead of optimizing
over the continuous regime S, we select the location of the
new point source as

θ̂
(t+1)
L = argmin

θL∈Scoarse

〈
∂`(y|χ̂(t))

∂µ(χ̂(t))
, φ(θL)

〉
, (10)

where Scoarse is a coarse grid over S. We only require a
coarse grid since the locations will be refined afterwards. The
intensity of the added emitter is chosen as the solution to

θ̂
(t+1)
I = argmin

θI>0

∥∥∥y − µ(χ(t))− θI · φ(θ̂
(t+1)
L )

∥∥∥2

2
. (11)

Again we adopt the simple least-squares criteria rather than
the likelihood since it will be refined later.

The REFINE step aims to find the maximum likelihood
estimate of χ(t+1) with the number of point sources fixed by
minimizing the loss function using iterative gradient descent
by using the emitter set Θ̂(t+1) obtained at the SELECT step
as initialization. For each parameter θ ∈ Θ̂(t+1), we first find
the direction that decreases the loss function by calculating
the partial derivative of the loss function with respect to θ,
whose expressions are given in Appendix A. The step size
is then determined using backtracking line search to speed
up convergence. The details of this step are described in
Algorithm 2, where PG(θj) is a projection to the constrained
parameter space. Algorithm 2 is also known as coordinate
descent.

C. Discussions

Since a coarse grid is used in the SELECT step to find the
starting locations of emitters, the main computation is com-
mitted in the REFINE step, specifically, in the re-evaluation
of `(y|χ(Θ̃)) each time Θ̃ is altered (line 10 in Algorithm 2).
Assume the image size is n × n. According to (6), the re-
evaluation of `(y|χ(Θ̃)) requires O(|Θ̃| · n2) calculations.
Since each time the re-evaluation only requires changing the
parameters of one emitter (line 8 in Algorithm 2), efficient
implementation of this step requires only O(n2) calculations
by maintaining χ(Θ̃ \ {θ̃(i)}) when refining the parameters of
the ith emitter.

Algorithm 2 REFINE(y,Θ)

1: Input Parameters: α0, τ ∈ (0, 1), c ∈ (0, 1)
2: repeat
3: for every θ(i) in Θ do
4: for every parameter θ(i)

j in θ(i) do
5: α← α0

6: Θ̃← Θ
7: repeat

8: θ
(i)
j ← PG

(
θ

(i)
j − α

∂`(y|χ(Θ))

∂θ
(i)
j

)
9: α← α× τ

10: until `(y|χ(Θ̃)) ≤ `(y|χ(Θ))− αc
∥∥∥∥∂`(y|χ(Θ))

∂θ
(i)
j

∥∥∥∥2

2

11: Θ← Θ̃
12: end for
13: end for
14: until convergence

The stopping criteria of TVSTORM is determined by
threshold γ in Algorithm 1. Fortunately, we find the perfor-
mance of TVSTORM relatively insensitive to the selection of
γ. In our implementation, we set γ to half of the expected
emitter intensity. In the REFINE step, the selection of α0

determines the maximum step size, while τ regulates the
shrinking factor of the step size and c involves the Armijo-
Goldstein condition [35] (line 10 in Algorithm 2). To avoid
evaluating χ(Θ̃) at too many points, we set α0 = 103,
τ = 10−1 and c = 10−6.

Our algorithm can be viewed as an instance of ADCG [31],
which provides a general framework for measure optimiza-
tion. TVSTORM does not assume the total-variation norm
of the reconstruction is bounded; rather, it pursues a greedy
strategy to add new emitters and stops when the intensity
of the new emitter is small enough judged by the stopping
criteria. Moreover, the REFINE step does not prune the set
of included emitters and applies line search to optimize the
emitter parameters.

D. Handling background noise

Since typically the image is not homogenous in certain
areas, e.g., center regions of the cell, a background term
is added in our model (6) to take this inhomogeneity into
account, i.e.,

µ(u, v|χ)

=

P∑
i=1

θ
(i)
I

4

[
Q

(
u− θ(i)

x + 1
2√

2σx(θ
(i)
z )

)
−Q

(
u− θ(i)

x − 1
2√

2σx(θ
(i)
z )

)]

×

[
Q

(
v − θ(i)

y + 1
2√

2σy(θ
(i)
z )

)
−Q

(
v − θ(i)

y − 1
2√

2σy(θ
(i)
z )

)]
+ θb, (12)

where θb is an extra parameter to be estimated. This change
accounts for various background across different blocks. It is
straightforward to modify the REFINE step in Algorithm 2,
where we apply gradient descent using backtracking line
search to refine θb.
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(a) Original image (b) CSSTORM before de-biasing

(c) CSSTORM after de-biasing (d) TVSTORM
Fig. 1. Emitter localization using CSSTORM and TVSTORM. (a) Original
image; (b) CSSTORM before debiasing; (c) CSSTORM after debiasing; and
(d) TVSTORM. We use an ellipsoid to represent the x, y and z locations of
an emitter. The center of ellipsoid is determined by the x and y positions and
the shape is determined by the z position. Red represents the results from our
calculation and white represents the actual location from the simulation.

IV. NUMERICAL EXPERIMENTS

We conduct numerical simulations and real experiments
to demonstrate the preferable performance of TVSTORM.
The images used for numerical simulations are generated by
randomly distributing certain amount of emitters in a 3D or 2D
space. The number of emitters is determined by the required
density of each simulation; the volume of 3D space is 0.8
µm × 0.8 µm × 0.8 µm and the volume of 2D space is
0.8 µm × 0.8 µm unless otherwise stated. The pixel size of
the generated images is 75 nm × 75 nm, which matches
our real system setting. Equations (2) and (3) are used to
generate the PSF model for simulation whose parameters are
calibrated in [9]. The simulated images are then corrupted with
Poisson noise with the means of the detected photon number
determined by the expected number of photons of each pixel,
as described in Section II.

A. Comparisons with CSSTORM on 3D Image Reconstruction

We first examine the reconstruction quality using
CSSTORM and TVSTORM on a single frame. We generate
an image with four emitters that are randomly distributed in
a 3D space, with intensity of 300 photons each, as shown
in Fig. 1 (a). For CSSTORM, an up-sampling factor of 8
in lateral direction and 9 in axial direction is used in the
discretization. The output from CSSTORM typically requires
post-processing such as de-biasing [9] in order to mitigate
the gridding error, while TVSTORM does not include
post-processing steps. Fig. 1 (b) and (c) show the image
reconstruction from CSSTORM before and after de-biasing,

where we use an ellipsoid to represent the spatial locations of
an emitter with the center representing its lateral position and
the shape representing its axial position. The reconstruction
is shown in red, while the ground truth is shown in white.
As seen from Fig. 1 (b), the reconstruction from CSSTORM
before de-biasing contains many false positives. After de-
biasing, nearby output emitters are clustered together but
one emitter is missing, as shown in Fig. 1 (c). Contrarily,
the reconstruction from TVSTORM, as shown in Fig. 1 (d),
identifies all emitters correctly with high precision.

Next, to evaluate the average performance of TVSTORM,
we generate a series of STORM images under different
densities (0.75 emitter/µm3 to 11.25 emitters/µm3). The
emitters are randomly distributed in a 3D volume with the
intensity set as 500. The images are then corrupted with
Poisson noise. Fig. 2 compares the performance of TVSTORM
with CSSTORM in terms of identified density, false discovery
rate, precision and execution time with respect to the emitter
density. The identified density is defined as the number of
correctly detected emitters per area. The false discovery rate
is defined as the ratio of incorrectly detected emitters in all
detected emitters. The precision is defined as the standard
deviation of localization errors. Indeed, TVSTORM is able
to detect more emitters with an improved precision while
maintaining a lower false discovery rate than CSSTORM.
Additionally, the execution time of TVSTORM is much faster
than that of CSSTORM due to the elimination of a fine-grained
grid during optimization.
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Fig. 2. 3D image reconstruction performance comparisons between TVS-
TORM and CSSTORM: (a) identified density, (b) false discovery rate, (c)
precision and (d) execution time with respect to the emitter density.
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B. Examining Different Photon and Background Levels

We then evaluate the performance of TVSTORM as signal-
to-noise ratio (SNR) varies. We generate a series of STORM
images with emitters randomly distributed in a 3D volume
under different SNR levels by varying the emitter photon
numbers from 100 to 1000, covering the photon levels of
normal fluorescent proteins and fluorescent dyes. Fig. 3 shows
that the performance of TVSTORM deteriorates with the
decrease of the SNR. However, even with an emitter photon
number as low as 100, TVSTORM is still able to detect a
large portion of emitters with small false discovery rate at
an acceptable precision, as shown by the identified density,
false discovery rate, and precision with respect to the emitter
density at different photon numbers in Fig. 3 (a), (b) and (c),
respectively. By explicitly considering Poisson noise model,
TVSTORM is relatively insensitive to the SNR and allows
the use of fluorophores with lower photon yield.
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Fig. 3. Performance of 3D image reconstruction across different photon levels:
(a) identified density, (b) false discovery rate, (c) precision and (d) execution
time with respect to the emitter density.

We also evaluate the performance of TVSTORM under
different background noise levels. A series of STORM images
with background level from 0 to 400 photons are generated
and analyzed using TVSTORM. The emitter photon level is
set to 1500. As Fig. 4 (a) shows, TVSTORM is still able to
capture a substantial amount of emitters when the background
is as high as 400 photons, with a relatively low false discovery
rate and acceptable precision, shown in Fig. 4 (b) and (c).

C. Block Width Selection

The image acquired at the camera is very large and
cannot be handled as a whole. It is typically divided into
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Fig. 4. Performance of 3D image reconstruction across different background
levels: (a) identified density, (b) false discovery rate, (c) precision and (d)
execution time with respect to the emitter density.

small overlapping blocks which are analyzed independently
to improve the computation time. To avoid compromising the
performance, blocks are overlapped and the block width is set
to be larger than the PSF width. Here we study the effect of
block width on the performance of TVSTORM by simulating
an image of size 45 µm × 45 µm and analyzing the image
under different block widths. The photon number is set to
500 and the density is 6 emitters/µm3. In our simulation, we
first divide the total image into non-overlapping blocks of size
w×w, where w is the block width. For each block, a margin
of 3 pixels in each direction is added, creating an extended
block of size (w + 6)× (w + 6). Then we apply TVSTORM
on the extended block and only emitters within the central
w × w region are kept to avoid edge effects. Fig. 5 (a), (b)
and (c) show that the identified density, false discovery rate
and precision maintains stable as the block width changes.
However, the execution time per pixel decreases first and then
increases with the block width, as shown in Fig. 5 (d). The
lowest execution time per pixel occurs when the block width
is 8.

D. Model Mismatch

In practice, due to the misalignment and lens imperfection,
the center coordinate of the emitter’s PSF suffers from small
drifts as the emitter moves along the axial direction [36]. In
specific, (6) becomes

µ(u, v|χ) =

P∑
i=1

θ
(i)
I

4

[
Q

(
u− θ(i)

x −∆x(θ
(i)
z ) + 1

2√
2σx(θ

(i)
z )

)
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Fig. 5. Performance of 3D image reconstruction across different block widths:
(a) identified density, (b) false discovery rate, (c) precision and (d) execution
time per pixel.

−Q

(
u− θ(i)

x −∆x(θ
(i)
z )− 1

2√
2σx(θ

(i)
z )

)]

×

[
Q

(
v − θ(i)

y −∆y(θ
(i)
z ) + 1

2√
2σy(θ

(i)
z )

)

−Q

(
v − θ(i)

y −∆y(θ
(i)
z )− 1

2√
2σy(θ

(i)
z )

)]
,

where ∆x(θ
(i)
z ) and ∆y(θ

(i)
z ) are not known. To study the

effect of this model mismatch on TVSTORM, we generate
images under different mismatch level and analyze them using
TVSTORM. The deviation of the emitter lateral coordinate
is generated as ∆x(z) = I sin(5z) and ∆y(z) = I cos(5z),
where we vary I as different mismatch level. As shown
in Fig. 6, as I increases, the performance of TVSTORM
decreases within a tolerable range until I reaches about 75
nm. This indicates that calibration of the deviation along
the axial direction is essential for accurate performance of
super-resolution algorithms, which can be performed using
techniques for example in [36], and extra care should be taken
when a large deviation is expected.

E. Performance Comparisons of 2D Image Reconstruction

Although TVSTORM is designed for 3D image reconstruc-
tion, it can be easily modified for 2D setting. Here we study the
performance of TVSTORM for 2D image reconstruction. We
generate a series of simulated STORM images across a range
of emitter densities (1 emitter/µm2 to 9 emitters/µm2). The
average number of photons for each emitter is 500. We also
apply CSSTORM [19] and MempSTORM [27] on the same

images for comparison. An up-sampling factor of 8 is used in
CSSTORM.

Fig. 7 compares the performance of TVSTORM with
CSSTORM and MempSTORM in terms of identified density,
false discovery rate, precision and execution time with respect
to the emitter density. TVSTORM demonstrates the best
performance in terms of identified density, false discovery
rate and precision. It is also an order-of-magnitude faster than
CSSTORM but is slower than MempSTORM, which is known
for its extreme fast execution time.

F. Real Experiments

To demonstrate the practical applicability of TVSTORM,
both 2D and 3D STORM images of microtubules stained with
Alexa 647 in Hela cells are acquired with the same system
setup and imaging condition described in [9] and analyzed
with TVSTORM. In addition, Gaussian rendering is used to
generate the final super-resolution image [26], where every
emitter location is convolved with a Gaussian kernel scaled
with its estimated intensity.

Fig. 8 (a) shows the averaged image from 10000 frames
of STORM images and Fig. 8 (b) is the 3D super-resolution
image reconstructed using TVSTORM, where the structure of
3D microtubule can be well resolved with the axial coordinate
represented in different colors. Fig. 8 (c) and (d) show the com-
parison of reconstruction results of a zoom-in region between
TVSTORM and CSSTORM. It can be seen that TVSTORM
provides a visually more continuous reconstruction of the line
structure in microtubules, because it can detect more emitters
and have lower false discovery rate than CSSTORM. Similarly,
the averaged image and reconstructed super-resolution image
for 2D STORM imaging are shown in Fig. 9 (a) and (b),
respectively, and demonstrate high quality reconstruction and
fine details that can not be resolved in averaged low-resolution
image.

V. CONCLUSION

In this paper, TVSTORM is proposed for 3D super-
resolution image reconstruction, which aims to maximize the
likelihood under the Poisson noise using a small number
of activated emitters. TVSTORM avoids the intrinsic bias
of CSSTORM due to gridding, and is computationally more
efficient, with better detection rate, false discovery rate, and
precision. Furthermore, TVSTORM can be easily adapted
to 2D super-resolution image reconstruction or other single-
molecule microscopy with different PSF configurations. Ex-
tensive simulation results are provided to demonstrate the
superior performance of TVSTORM. Experimental results are
also present to show its practical applicability. In the future,
we aim to incorporate the temporal information of STORM
images across neighboring frames to further improve the image
reconstruction quality.

APPENDIX

In this appendix, we derive the partial derivatives of
`(y|χ(Θ)) over every parameter θ(i)

j , which is required for
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Fig. 6. 3D image reconstruction performance comparisons across different mismatch level: (a) identified density, (b) false discovery rate, (c) precision.
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Fig. 7. 2D image reconstruction performance comparisons between TVS-
TORM, CSSTORM and MempSTORM: (a) identified density, (b) false
discovery rate, (c) precision and (d) execution time with respect to the emitter
density.

the REFINE procedure as described in Algorithm 2. To begin
with, we have

∂`(y|χ(Θ))

∂θ
(i)
j

=
∑
u

∑
v

(
µ(u, v|Θ)− y(u, v)

µ(u, v|Θ)

∂µ(u, v|Θ)

∂θ
(i)
j

)
.

(13)

We then derive the partial derivative of µ(u, v|Θ) over θ(i)
x ,

θ
(i)
y , θ(i)

z , and θ(i)
I . Let

ũ
(i)
+ =

u− θ(i)
x + 1

2√
2σx(θ

(i)
z )

, ũ
(i)
− =

u− θ(i)
x − 1

2√
2σx(θ

(i)
z )

,

ṽ
(i)
+ =

v − θ(i)
y + 1

2√
2σy(θ

(i)
z )

, ṽ
(i)
− =

v − θ(i)
y − 1

2√
2σy(θ

(i)
z )

.

Then according to (6) and following simple calculus, we have

∂µ(u, v|Θ)

∂θ
(i)
x

=
θ

(i)
I

2
√

2πσx(θ
(i)
z )

[
e
−
(
ũ
(i)
−

)2

− e−
(
ũ
(i)
+

)2
]

×
[
Q
(
ṽ

(i)
+

)
−Q

(
ṽ

(i)
−

)]
(14)

and

∂µ(u, v|Θ)

∂θ
(i)
y

=
θ

(i)
I

2
√

2πσy(θ
(i)
z )

[
Q
(
ũ

(i)
+

)
−Q

(
ũ

(i)
−

)]
×
[
e
−
(
ṽ
(i)
−

)2

− e−
(
ṽ
(i)
+

)2
]
. (15)

Additionally, using the chain rule, ∂µ(u,v|Θ)

∂θ
(i)
z

can be written
as:

∂µ(u, v|Θ)

∂θ
(i)
z

=
∂µ(u, v|Θ)

∂σx(θ
(i)
z )

∂σx(θ
(i)
z )

∂θ
(i)
z

+
∂µ(u, v|Θ)

∂σy(θ
(i)
z )

∂σy(θ
(i)
z )

∂θ
(i)
z

,

(16)
where

∂σx(θ
(i)
z )

∂θ
(i)
z

=

σx,0

(∑4
i=2 i ·Ax,i

(
z0−cx
dx

)i−1
)

2

√
1 +

∑4
i=2Ax,i

(
z0−cx
dx

)i ,

∂σy(θ
(i)
z )

∂θ
(i)
z

=

σy,0

(∑4
i=2 i ·Ay,i

(
z0−cy
dy

)i−1
)

2

√
1 +

∑4
i=2Ay,i

(
z0−cy
dy

)i .

(17)

From (6), ∂µ(u,v|Θ)

∂σx(θ
(i)
z )

and ∂µ(u,v|Θ)

∂σy(θ
(i)
z )

can be calculated as:

∂µ(u, v|Θ)

∂σx(θ
(i)
z )

=
θ

(i)
I

2
√
πσx(θ

(i)
z )

[
e−(ũ

(i)
− )2 · ũ(i)

− − e−(ũ
(i)
+ )2 · ũ(i)

+

]
×
[
Q
(
ṽ

(i)
+

)
−Q

(
ṽ

(i)
−

)]
, (18)

∂µ(u, v|Θ)

∂σy(θ
(i)
z )

=
θ

(i)
I

2
√
πσx(θ

(i)
z )

[
Q
(
ũ

(i)
+

)
−Q

(
ũ

(i)
−

)]
×
[
e−(ṽ

(i)
− )2 · ṽ(i)

− − e−(ṽ
(i)
+ )2 · ṽ(i)

+

]
. (19)



9

0

100

200

300

400

500

600

700

800
(a)

nm

(b)

(c) (d)

Fig. 8. (a) Averaged image from 10000 frames and (b) 3D image reconstruction result of microtubules stained with Alexa 647 using TVSTORM. Comparison
of reconstruction quality between (c) TVSTORM and (d) CSSTORM. (bar: 1.5 µm)

Lastly, it is easy to derive ∂µ(u,v|Θ)

∂θ
(i)
I

as:

∂µ(u, v|Θ)

∂θ
(i)
I

=
1

4

[
Q
(
ũ

(i)
+

)
−Q

(
ũ

(i)
−

)] [
Q
(
ṽ

(i)
+

)
−Q

(
ṽ

(i)
−

)]
.

(20)

Plugging (14), (15), (16) and (20) into (13), we obtain the
partial derivative of the loss function `(y|χ(Θ)) over θ(i)

x , θ(i)
y ,

θ
(i)
z , and θ(i)

I as in (22), (23), (24) and (25), respectively.
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