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Abstract

Q-learning, which seeks to learn the optimal Q-function of a Markov decision process (MDP) in
a model-free fashion, lies at the heart of reinforcement learning. When it comes to the synchronous
setting (such that independent samples for all state-action pairs are drawn from a generative model
in each iteration), substantial progress has been made towards understanding the sample efficiency of
Q-learning. Consider a γ-discounted infinite-horizon MDP with state space S and action space A: to yield
an entrywise ε-approximation of the optimal Q-function, state-of-the-art theory for Q-learning requires a
sample size exceeding the order of |S||A|

(1−γ)5ε2 , which fails to match existing minimax lower bounds. This
gives rise to natural questions: what is the sharp sample complexity of Q-learning? Is Q-learning provably
sub-optimal? This paper addresses these questions for the synchronous setting: (1) when |A| = 1 (so
that Q-learning reduces to TD learning), we prove that the sample complexity of TD learning is minimax
optimal and scales as |S|

(1−γ)3ε2 (up to log factor); (2) when |A| ≥ 2, we settle the sample complexity of

Q-learning to be on the order of |S||A|
(1−γ)4ε2 (up to log factor). Our theory unveils the strict sub-optimality

of Q-learning when |A| ≥ 2, and rigorizes the negative impact of over-estimation in Q-learning. Finally,
we extend our analysis to accommodate asynchronous Q-learning (i.e., the case with Markovian samples),
sharpening the horizon dependency of its sample complexity to be 1

(1−γ)4 .

Keywords: Q-learning, temporal difference learning, effective horizon, sample complexity, minimax optimal-
ity, lower bound, over-estimation
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1 Introduction
Q-learning is arguably one of the most widely adopted model-free algorithms (Watkins and Dayan, 1992;
Watkins, 1989). Characterizing its sample efficiency lies at the core of the statistical foundation of reinforcement
learning (RL) (Sutton and Barto, 2018). While classical convergence analyses for Q-learning (Borkar and
Meyn, 2000; Jaakkola et al., 1994; Szepesvári, 1998; Tsitsiklis, 1994) focused primarily on the asymptotic
regime—in which the number of iterations tends to infinity with other problem parameters held fixed—
recent years have witnessed a paradigm shift from asymptotic analyses towards a finite-sample / finite-time
framework (Beck and Srikant, 2012; Chen et al., 2020, 2021; Even-Dar and Mansour, 2003; Kearns and
Singh, 1999; Lee and He, 2018; Li et al., 2022c; Qu and Wierman, 2020; Wainwright, 2019b; Weng et al.,
2020a; Xiong et al., 2020). Drawing insights from high-dimensional statistics (Wainwright, 2019a), a modern
non-asymptotic framework unveils more clear and informative impacts of salient problem parameters upon
the sample complexity, particularly for those applications with enormous state/action space and long horizon.
Motivated by its practical value, a suite of non-asymptotic theory has been recently developed for Q-learning
to accommodate multiple sampling mechanisms (Beck and Srikant, 2012; Even-Dar and Mansour, 2003; Jin
et al., 2018; Li et al., 2022c; Qu and Wierman, 2020; Wainwright, 2019b).

In this paper, we revisit the sample complexity of Q-learning for tabular Markov decision processes
(MDPs). For concreteness, let us consider the synchronous setting, which assumes access to a generative
model or a simulator that produces independent samples for all state-action pairs in each iteration (Kakade,
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paper learning rates sample complexity

Even-Dar and Mansour (2003) linear: 1
t 2

1
1−γ |S||A|

(1−γ)4ε2

Even-Dar and Mansour (2003) polynomial: 1
tω , ω ∈ (1/2, 1) |S||A|

{(
1

(1−γ)4ε2

)1/ω
+
(

1
1−γ

) 1
1−ω
}

Beck and Srikant (2012) constant: (1−γ)4ε2

|S||A|
|S|2|A|2
(1−γ)5ε2

Wainwright (2019b) rescaled linear: 1
1+(1−γ)t

|S||A|
(1−γ)5ε2

Wainwright (2019b) polynomial: 1
tω , ω ∈ (0, 1) |S||A|

{(
1

(1−γ)4ε2

)1/ω
+
(

1
1−γ

) 1
1−ω
}

Chen et al. (2020) rescaled linear: 1
1

(1−γ)2
+(1−γ)t

|S||A|
(1−γ)5ε2

Chen et al. (2020) constant: (1− γ)4ε2 |S||A|
(1−γ)5ε2

this work (Q-learning, |A| ≥ 2) rescaled linear: 1
1+(1−γ)t

|S||A|
(1−γ)4ε2

this work (Q-learning, |A| ≥ 2) constant: (1− γ)3ε2 |S||A|
(1−γ)4ε2

this work (TD learning, |A| = 1) rescaled linear: 1
1+(1−γ)t

|S|
(1−γ)3ε2

this work (TD learning, |A| = 1) constant: (1− γ)3ε2 |S|
(1−γ)3ε2

Table 1: Comparisons of existing sample complexity upper bounds of synchronous Q-learning and TD learning
for an infinite-horizon γ-discounted MDP with state space S and action space A, where 0 < ε < 1 is the
target accuracy level. Here, sample complexity refers to the total number of samples needed to yield either
maxs,a |Q̂(s, a) −Q?(s, a)| ≤ ε with high probability or E

[
maxs,a |Q̂(s, a) −Q?(s, a)|

]
≤ ε, where Q̂ is the

estimate returned by Q-learning. All logarithmic factors are omitted in the table to simplify the expressions.

2003; Kearns et al., 2002); this setting is termed “synchronous” as the estimates w.r.t. all state-action pairs
are updated at once. We investigate the `∞-based sample complexity, namely, the number of samples needed
for synchronous Q-learning to yield an entrywise ε-accurate estimate of the optimal Q-function. Despite a
number of prior works tackling this setting, the dependence of the sample complexity on the effective horizon

1
1−γ remains unsettled. Take γ-discounted infinite-horizon MDPs for instance: the state-of-the-art sample

complexity bounds (Chen et al., 2020; Wainwright, 2019b) scale on the order of |S||A|
(1−γ)5ε2 (up to some log

factor), where S and A represent the state space and the action space, respectively. However, it is unclear
whether this scaling is sharp for Q-learning, and whether it can be further improved via a more refined theory.
On the one hand, the minimax lower limit for this setting has been shown to be on the order of |S||A|

(1−γ)3ε2 (up
to some log factor) (Azar et al., 2013); this limit is achievable by model-based approaches (Agarwal et al.,
2020; Li et al., 2020) and apparently smaller than prior sample complexity bounds for Q-learning. On the
other hand, Wainwright (2019c) argued through numerical experiments that “the usual Q-learning suffers
from at least worst-case fourth-order scaling in the discount complexity 1

1−γ , as opposed to the third-order
scaling . . .”, although no rigorous justification was provided therein. Given the gap between the achievability
bounds and lower bounds in the status quo, it is natural to seek answers to the following questions:

What is the tight sample complexity characterization of Q-learning?
How does it compare to the minimax sample complexity limit?

1.1 Main contributions
Focusing on γ-discounted infinite-horizon MDPs with state space S and action space A, this paper settles
the `∞-based sample complexity of synchronous Q-learning. Here and throughout, the standard notation
f(·) = Õ(g(·)) (resp. f(·) = Ω̃(g(·))) means that f(·) is orderwise no larger than (resp. no smaller than) g(·)
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modulo some logarithmic factors. Our main contributions regarding synchronous Q-learning are summarized
below.

• When |A| = 1, Q-learning coincides with temporal difference (TD) learning in a Markov reward process.
For any 0 < ε < 1, we prove that a total sample size of

Õ
( |S|

(1− γ)3ε2

)
(1)

is sufficient for TD learning to guarantee ε-accuracy in an `∞ sense; see Theorem 1. This is sharp and
minimax optimal (up to some log factor).

• Moving on to the case with |A| ≥ 2, we demonstrate that a sample size of

Õ
( |S||A|

(1− γ)4ε2

)
(2)

suffices for Q-learning to yield ε-accuracy in an `∞ sense for any 0 < ε < 1; see Theorem 2. Conversely,
we construct a hard MDP instance with 4 states and 2 actions, for which Q-learning provably requires
at least

Ω̃
( 1

(1− γ)4ε2

)
(3)

iterations to achieve ε-accuracy in an `∞ sense; see Theorem 3. These two theorems taken collectively
lead to the first sharp characterization of the sample complexity of Q-learning, strengthening prior
theory (Chen et al., 2020; Wainwright, 2019b) by a factor of 1

1−γ . In addition, the discrepancy between
our sharp characterization and the minimax lower bound makes clear that Q-learning is not minimax
optimal when |A| ≥ 2, and is outperformed by, say, the model-based approaches (Agarwal et al., 2020;
Li et al., 2020) in terms of the sample efficiency.

Our results cover both rescaled linear and constant learning rates; see Table 1 for more detailed comparisons
with previous literature. On the technical side, (i) our analysis for the upper bound relies on a sort of crucial
error decompositions and variance control that are previously unexplored, which might shed light on how
to pin down the finite-sample efficacy of other variants of Q-learning such as double Q-learning; (ii) the
development of our lower bound, which is inspired by Azar et al. (2013); Wainwright (2019c), puts the
negative impact of over-estimation on sample efficiency on a rigorous footing.

Finally, we extend our analysis framework to accommodate the asynchronous setting, in which the samples
are non-i.i.d. and take the form of a single Markovian trajectory. We show for the first time that the sample
complexity of asynchronous Q-learning exhibits a 1

(1−γ)4 scaling w.r.t. the effective horizon, which is nearly
sharp and improves upon the prior state-of-the-art Li et al. (2022c).

1.2 Related works
There is a growing literature dedicated to analyzing the non-asymptotic behavior of value-based model-free
RL algorithms in a variety of scenarios. In the discussion below, we subsample the literature and discuss a
couple of papers that are the closest to ours.

Finite-sample `∞-based guarantees for synchronous Q-learning and TD learning. The sample
complexities derived in prior literature often rely crucially on the choices of learning rates. Even-Dar and
Mansour (2003) studied the sample complexity of Q-learning with linear learning rates 1/t or polynomial
learning rates 1/tω, which scales as Õ( |S||A|

(1−γ)5ε2.5 ) when optimized w.r.t. the effective horizon (attained when
ω = 4/5). The resulting sample complexity, however, is sub-optimal in terms of its dependency on not only

1
1−γ but also the target accuracy level ε. Beck and Srikant (2012) investigated the case of constant learning
rates; however, their result suffered from an additional factor of |S||A|, which could be prohibitively large in
practice. More recently, Chen et al. (2020); Wainwright (2019b) further analyzed the sample complexity of
Q-learning with either constant learning rates or linearly rescaled learning rates, leading to the state-of-the-art
bound Õ

( |S||A|
(1−γ)5ε2

)
. However, this result remains sub-optimal in terms of its scaling with 1

1−γ . See Table 1
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for details. In the special case with |A| = 1, the recent works Khamaru et al. (2021a); Mou et al. (2020)
developed instance-dependent results for TD learning with Polyak-Ruppert averaging, and studied the local
(sub)-optimality of TD learning in a different local minimax framework.

Finite-sample `∞-based guarantees for asynchronous Q-learning and TD learning. Moving
beyond the synchronous model, Beck and Srikant (2012); Chen et al. (2021); Even-Dar and Mansour (2003);
Li et al. (2022c); Qu and Wierman (2020); Shah and Xie (2018) developed non-asymptotic convergence
guarantees for the asynchronous setting, where the data samples take the form of a single Markovian trajectory
(following some behavior policy) and only a single state-action pair is updated in each iteration. A similar
scaling of Õ

(
1

(1−γ)5

)
also showed up in the state-of-the-art sample complexity bounds for asynchronous

Q-learning (Li et al., 2022c), and our theory is the first to sharpen it to Õ
(

1
(1−γ)4

)
. When it comes to the

special case with |A| = 1, the non-asymptotic performance guarantees TD learning with Markovian sample
trajectories (assuming that the behavior policy coincides with the target policy) have been recently derived
by Bhandari et al. (2021); Mou et al. (2020); Srikant and Ying (2019).

Finite-sample `∞-based guarantees of other Q-learning variants. With the aim of alleviating the
sub-optimal dependency on the effective horizon in vanilla Q-learning and improving sample efficiency, several
variants of Q-learning have been proposed and analyzed. Azar et al. (2011) proposed speedy Q-learning,
which achieves a sample complexity of Õ

( |S||A|
(1−γ)4ε2

)
at the expense of doubling the computation and storage

complexity. Our result on vanilla Q-learning matches that of speedy Q-learning in an order-wise sense. In
addition, Wainwright (2019c) proposed a variance-reduced Q-learning algorithm that is shown to be minimax
optimal in the range ε ∈ (0, 1) with a sample complexity Õ

( |S||A|
(1−γ)3ε2

)
, which was subsequently generalized to

the asynchronous setting by Li et al. (2022c). The `∞ statistical bounds for variance-reduced TD learning
have been investigated in Khamaru et al. (2021a) for the synchronous setting, and in Li et al. (2022c) for the
asynchronous setting. Last but not least, Xiong et al. (2020) established the finite-sample convergence of
double Q-learning following the framework of Even-Dar and Mansour (2003); however, it is unclear whether
double Q-learning can provably outperform vanilla Q-learning in terms of the sample efficiency.

Others. There are also several other strands of related papers that tackle model-free algorithms but do not
pursue `∞-based non-asymptotic guarantees. For instance, Bhandari et al. (2021); Chen et al. (2019); Doan
et al. (2019); Gupta et al. (2019); Lakshminarayanan and Szepesvari (2018); Srikant and Ying (2019); Wu
et al. (2020); Xu et al. (2019a,b) developed finite-sample (weighted) `2 convergence guarantees for several
model-free algorithms, which also allow one to accommodate linear function approximation as well as off-policy
evaluation. Another line of recent work (Bai et al., 2019; Jin et al., 2018; Li et al., 2021; Zhang et al., 2020)
considered the sample efficiency of Q-learning type algorithms paired with proper exploration strategies (e.g.,
upper confidence bounds) under the framework of regret analysis. The asymptotic behaviors of some variants
of Q-learning, e.g., double Q-learning (Weng et al., 2020b) and relative Q-learning (Devraj and Meyn, 2020)
are also studied. In addition, Q-learning in conjunction with the pessimism principle has proven effective in
dealing with offline data (Shi et al., 2022; Yan et al., 2022). The effect of more general function approximation
schemes (e.g., certain families of neural network approximations) has been studied in Cai et al. (2019); Fan
et al. (2019); Murphy (2005); Wai et al. (2019); Xu and Gu (2020), whereas the extension to multi-agent
scenarios has been looked at in Hu and Wellman (2003); Li et al. (2022a). These are beyond the scope of the
present paper.

2 Background and algorithms
This paper concentrates on discounted infinite-horizon MDPs (Bertsekas, 2017). We shall start by introducing
some basics of tabular MDPs, followed by a description of both Q-learning and TD learning. Throughout
this paper, we denote by S = {1, · · · , |S|} and A = {1, · · · , |A|} the state space and the action space of the
MDP, respectively, and let ∆(S) represent the probability simplex over the set S.
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Basics of discounted infinite-horizon MDPs. Consider an infinite-horizon MDP as represented by a
quintupleM = (S,A, P, r, γ), where γ ∈ (0, 1) indicates the discount factor, P : S ×A → ∆(S) represents
the probability transition kernel (i.e., P (s′ | s, a) is the probability of transiting to state s′ from a state-action
pair (s, a) ∈ S×A), and r : S ×A → [0, 1] stands for the reward function (i.e., r(s, a) is the immediate reward
collected in state s ∈ S when action a ∈ A is taken). Note that the immediate rewards are assumed to lie
within [0, 1] throughout this paper. Moreover, we let π : S → ∆(A) represent a policy, so that π(· | s) ∈ ∆(A)
specifies the (possibly randomized) action selection rule in state s. If π is a deterministic policy, then we
denote by π(s) the action selected by π in state s.

A common objective in RL is to maximize a sort of long-term rewards called value functions or Q-functions.
Specifically, given a policy π, the associated value function and Q-function of π are defined respectively by

V π(s) := E

[ ∞∑
k=0

γkr(sk, ak)
∣∣∣ s0 = s

]
for all s ∈ S, and

Qπ(s, a) := E

[ ∞∑
k=0

γkr(sk, ak)
∣∣∣ s0 = s, a0 = a

]
for all (s, a) ∈ S × A. Here, {(sk, ak)}k≥0 is a trajectory of the MDP induced by the policy π (except a0

when evaluating the Q-function), and the expectations are evaluated with respect to the randomness of the
MDP trajectory. Given that the immediate rewards fall within [0, 1], it can be straightforwardly verified
that 0 ≤ V π(s) ≤ 1

1−γ and 0 ≤ Qπ(s, a) ≤ 1
1−γ for any π and any state-action pair (s, a). The optimal value

function V ? and optimal Q-function Q? are defined respectively as

V ?(s) := max
π

V π(s), Q?(s, a) := max
π

Qπ(s, a)

for any state-action pair (s, a) ∈ S × A. It is well known that there exists a deterministic optimal policy,
denoted by π?, that attains V ?(s) and Q?(s, a) simultaneously for all (s, a) ∈ S × A (Sutton and Barto,
2018).

Algorithms: Q-learning and TD learning (the synchronous setting). The synchronous setting
assumes access to a generative model (Kearns and Singh, 1999; Sidford et al., 2018) such that: in each
iteration t, we collect an independent sample st(s, a) ∼ P (· | s, a) for every state-action pair (s, a) ∈ S ×A.

With this sampling model in place, the Q-learning algorithm (Watkins and Dayan, 1992) maintains a
Q-function estimate Qt : S ×A → R for all t ≥ 0; in each iteration t, the algorithm updates all entries of the
Q-function estimate at once via the following update rule

Qt = (1− ηt)Qt−1 + ηtTt(Qt−1). (4)

Here, ηt ∈ (0, 1] denotes the learning rate or the step size in the t-th iteration, and Tt denotes the empirical
Bellman operator constructed by samples collected in the t-th iteration, i.e.,

Tt(Q)(s, a) := r(s, a) + γ max
a′∈A

Q(st, a
′), st ≡ st(s, a) ∼ P (· | s, a) (5)

for each state-action pair (s, a) ∈ S × A. Obviously, Tt is an unbiased estimate of the celebrated Bellman
operator T given by

∀(s, a) ∈ S ×A : T (Q)(s, a) := r(s, a) + γ E
s′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)
]
.

Note that the optimal Q-function Q? is the unique fixed point of the Bellman operator (Bellman, 1952), that
is, T (Q?) = Q?. Viewed in this light, synchronous Q-learning can be interpreted as a stochastic approximation
scheme (Robbins and Monro, 1951) aimed at solving this fixed-point equation. Throughout this work, we
initialize the algorithm in a way that obeys 0 ≤ Q0(s, a) ≤ 1

1−γ for every state-action pair (s, a). In addition,
the corresponding value function estimate Vt : S → R in the t-th iteration is defined as

∀s ∈ S : Vt(s) := max
a∈A

Qt(s, a). (6)
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Algorithm 1 Synchronous Q-learning for infinite-horizon discounted MDPs.
1: inputs: learning rates {ηt}, number of iterations T , discount factor γ, initial estimate Q0.
2: for t = 1, 2, · · · , T do
3: Draw st(s, a) ∼ P (· | s, a) for each (s, a) ∈ S ×A.
4: Compute Qt according to (4) and (5).
5: end for

Algorithm 2 Synchronous TD learning for infinite-horizon discounted MRPs.
1: inputs: learning rates {ηt}, number of iterations T , discount factor γ, initial estimate V0.
2: for t = 1, 2, · · · , T do
3: Draw st(s) ∼ P (· | s) for each s ∈ S.
4: Compute Vt according to (7).
5: end for

The complete description of Q-learning is summarized in Algorithm 1.
As it turns out, TD learning (Bhandari et al., 2021; Sutton, 1988; Tsitsiklis and Van Roy, 1997) in the

synchronous setting can be viewed as a special instance of Q-learning when the action set A is a singleton
(i.e., |A| = 1). In such a case, the MDP reduces to a Markov reward process (MRP) (Bertsekas, 2017), and
we shall abuse the notation to use P : S → ∆(S) to describe the probability transition kernel, and employ
r : S → [0, 1] to represent the reward function (with r(s) indicating the immediate reward gained in state s).
The TD learning algorithm maintains an estimate Vt : S → R of the value function in each iteration t,1 and
carries out the following iterative update rule

Vt(s) = (1− ηt)Vt−1(s) + ηt
(
r(s) + γVt−1(st)

)
, st ≡ st(s) ∼ P (· | s) (7)

for each state s ∈ S. As before, ηt ∈ (0, 1] is the learning rate at time t, the initial estimate V0(s) is taken to
be within

[
0, 1

1−γ
]
, and in each iteration, the samples {st(s) | s ∈ S} are generated independently. The whole

algorithm of TD learning is summarized in Algorithm 2.
Finally, while synchronous Q-learning is the main focal point of this paper, we shall also discuss the

extension to asynchronous Q-learning, which we will elaborate on in Section 5.

3 Main results: sample complexity of synchronous Q-learning
With the above backgrounds in place, we are in a position to state formally our main findings in this section,
concentrating on the synchronous setting.

3.1 Minimax optimality of TD learning
We start with the special with |A| = 1 and characterize the `∞-based sample complexity of synchronous TD
learning.

Theorem 1. Consider any δ ∈ (0, 1), ε ∈ (0, 1], and γ ∈ [1/2, 1). Suppose that for any 0 ≤ t ≤ T , the
learning rates satisfy

1

1 + c1(1−γ)T
log2 T

≤ ηt ≤
1

1 + c2(1−γ)t
log2 T

(8a)

for some small enough universal constants c1 ≥ c2 > 0. Assume that the total number of iterations T obeys

T ≥ c3
(

log3 T
)(

log |S|Tδ
)

(1− γ)3ε2
(8b)

1There is no need to maintain additional Q-estimates, as the Q-function and the value function coincide when |A| = 1.
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for some sufficiently large universal constant c3 > 0. If the initialization obeys 0 ≤ V0(s) ≤ 1
1−γ for all s ∈ S,

then with probability at least 1− δ, Algorithm 2 achieves

max
s∈S

∣∣VT (s)− V ?(s)
∣∣ ≤ ε. (9)

Remark 1 (Mean estimation error). This high-probability bound immediately translates to a mean estimation
error guarantee. Recognizing the crude upper bound

∣∣VT (s)− V ?(s)
∣∣ ≤ 1

1−γ (see (104) in Section C.1) and
taking δ ≤ ε(1− γ), we reach

E
[

max
s

∣∣VT (s)− V ?(s)
∣∣] ≤ ε(1− δ) + δ

1

1− γ ≤ 2ε, (10)

provided that T ≥ c3(log3 T )
(

log
|S|T
ε(1−γ)

)
(1−γ)3ε2 .

Given that each iteration of synchronous TD learning makes use of |S| samples, Theorem 1 implies that
the sample complexity of TD learning is at most

Õ

( |S|
(1− γ)3ε2

)
(11)

for any target accuracy level ε ∈ (0, 1]. This non-asymptotic result is valid as long as the learning rates are
chosen to be either a proper constant or rescaled linear (see (8a)). Compared to a large number of prior works
studying the performance of TD learning (Bhandari et al., 2021; Borkar and Meyn, 2000; Chen et al., 2020;
Khamaru et al., 2021a; Lakshminarayanan and Szepesvari, 2018; Wainwright, 2019b), Theorem 1 strengthens
prior results by uncovering an improved scaling (i.e., 1

(1−γ)3 ) in the effective horizon. In fact, prior results on
plain TD learning were only able to obtain a scaling as 1

(1−γ)5 (Wainwright, 2019b).
To assess the tightness of the above result, we take a moment to compare it with the minimax lower bound

recently established in the context of value function estimation. Specifically, Pananjady and Wainwright
(2020, Theorem 2(b)) asserted that no algorithm whatsoever can obtain an entrywise ε approximation of the
value function—in a minimax sense—unless the total sample size exceeds

Ω̃

( |S|
(1− γ)3ε2

)
. (12)

In turn, this taken together with Theorem 1 unveils the minimax optimality of the sample complexity (modulo
some logarithmic factor) of TD learning for the synchronous setting. While prior works have demonstrated
how to attain the minimax limit (12) using model-based methods or variance-reduced model-free algorithms
(e.g., Azar et al. (2013); Khamaru et al. (2021a); Li et al. (2020); Pananjady and Wainwright (2020)), our
theory provides the first rigorous evidence that plain TD learning alone is already minimax optimal, without
the need of Polyak-Ruppert averaging or variance reduction.

Remark 2 (Runtime-oblivious learning rates). Careful readers might remark that the choice (8a) of the
learning rates might still rely on prior knowledge on T (or log T ). Fortunately, Theorem 1 immediately leads
to convergence guarantees for another choice of ηt selected completely independent of T . More specifically,
suppose that the learning rates obey

1

1 + c̃1(1−γ)t
log2(t+1)

≤ ηt ≤
1

1 + c̃2(1−γ)t
log2(t+1)

, ∀t ≥ 1 (13)

for some universal constants c̃1, c̃2 > 0. Then the claim (9) remains valid under this choice (13), provided that

T ≥ 2c3(log3 T )
(

log |S|Tδ
)

(1− γ)3ε2
. (14)

See Appendix C.3 for the proof.
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Remark 3 (Polyak-Ruppert averaging). The results claimed in Remark 2 further allow us to control the
estimation error of TD learning under Polyak-Ruppert averaging (Polyak and Juditsky, 1992). More precisely,
under the choice (13) of learning rates, the averaged iterates satisfy

max
s∈S

∣∣∣ 1

T

T∑
t=1

VT (s)− V ?(s)
∣∣∣ ≤ 4

√
c3(log3 T )

(
log |S|Tδ

)
(1− γ)3T

(15)

with probability exceeding 1− δ. See Appendix C.3 for the proof.
Remark 4. It is also noteworthy that: while the last iterate of plain TD learning is shown to be minimax
optimal (which concerns worst-case optimality), it might not necessarily enjoy local optimality. As recently
demonstrated by Khamaru et al. (2021b), additional algorithmic tricks like variance reduction might be
needed in order to ensure local optimality.

3.2 Tight sample complexity and sub-optimality of Q-learning
Next, we move on to the more general case with |A| ≥ 2 and study the performance of Q-learning. As it
turns out, Q-learning with |A| ≥ 2 is considerably more challenging to analyze than the TD learning case,
due to the presence of the nonsmooth max operator. Our `∞-based sample complexity bound for Q-learning
is summarized as follows, strengthening the state-of-the-art results.

Theorem 2. Consider any δ ∈ (0, 1), ε ∈ (0, 1], and γ ∈ [1/2, 1). Suppose that for any 0 ≤ t ≤ T , the
learning rates satisfy

1

1 + c1(1−γ)T
log3 T

≤ ηt ≤
1

1 + c2(1−γ)t
log3 T

(16a)

for some small enough universal constants c1 ≥ c2 > 0. Assume that the total number of iterations T obeys

T ≥ c3
(

log4 T
)(

log |S||A|Tδ

)
(1− γ)4ε2

(16b)

for some sufficiently large universal constant c3 > 0. If the initialization obeys 0 ≤ Q0(s, a) ≤ 1
1−γ for any

(s, a) ∈ S ×A, then Algorithm 1 achieves

max
(s,a)∈S×A

∣∣QT (s, a)−Q?(s, a)
∣∣ ≤ ε (17)

with probability at least 1− δ.
Remark 5 (Mean estimation error). Repeating exactly the same argument as in Remark 1, one can readily
translate this high-probability bound into the following mean estimation error guarantee:

E
[

max
s,a

∣∣QT (s, a)−Q?(s, a)
∣∣] ≤ ε(1− δ) + δ

1

1− γ ≤ 2ε, (18)

holds as long as T ≥ c3(log4 T )
(

log
|S||A|T
ε(1−γ)

)
(1−γ)4ε2 .

In a nutshell, Theorem 2 develops a non-asymptotic bound on the iteration complexity of Q-learning in
the presence of the synchronous model. A few remarks and implications are in order.

Sample complexity and sharpened dependency on 1
1−γ . Recognizing that |S||A| independent samples

are drawn in each iteration, we can see from Theorem 2 the following sample complexity bound

Õ
( |S||A|

(1− γ)4ε2

)
(19)

in order for Q-learning to attain ε-accuracy (0 < ε < 1) in an entrywise sense. To the best of our knowledge,
this is the first result that breaks the |S||A|

(1−γ)5ε2 barrier that is present in all state-of-the-art analyses for vanilla
Q-learning (Beck and Srikant, 2012; Chen et al., 2020; Li et al., 2022c; Qu and Wierman, 2020; Wainwright,
2019b).
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Learning rates. Akin to the TD learning case, our result accommodates two commonly adopted learning
rate schemes (cf. (16a)): (i) linearly rescaled learning rates 1

1+
c2(1−γ)
log2 T

t
, and (ii) iteration-invariant learning

rates 1

1+
c1(1−γ)T

log2 T

(which depend on the total number of iterations T but not the iteration number t). In

particular, when T =
c3(log4 T )

(
log
|S||A|T

δ

)
(1−γ)4ε2 , the constant learning rates can be taken to be on the order of

ηt ≡ Õ
(
(1− γ)3ε2

)
, 0 ≤ t ≤ T,

which depends almost solely on the discount factor γ and the target accuracy ε. Interestingly, both learning
rate schedules lead to the same `∞-based sample complexity bound (in an order-wise sense), making them
appealing for practical use.
Remark 6 (Runtime-oblivious learning rates and Polyak-Ruppert averaging). Akin to Remark 2, Theorem 2
can be easily extended to accommodate a family of learning rates chosen without prior knowledge of T . More
concretely, suppose that the learning rates obey

1

1 + c̃1(1−γ)t
log3(t+1)

≤ ηt ≤
1

1 + c̃2(1−γ)t
log3(t+1)

, ∀t ≥ 1 (20)

for some suitable constants c̃1, c̃2 > 0. Then the claim (17) continues to hold under this choice (20), provided

that T/2 ≥ c3(log4 T )
(

log
|S||A|T

δ

)
(1−γ)4ε2 . Additionally, similar to Remark 3, we can demonstrate that the averaged

Q-learning iterates under the choice (20) of learning rates obey

max
(s,a)∈S×A

∣∣∣ 1

T

T∑
t=1

QT (s, a)−Q?(s, a)
∣∣∣ ≤ 4

√
c3(log4 T )

(
log |S||A|Tδ

)
(1− γ)4T

(21)

with probability exceeding 1 − δ. The proofs of these results are identical to those of Remarks 2-3 (see
Appendix C.3), and are hence omitted.

A matching lower bound and sub-optimality. The careful reader might remark that there remains a
gap between our sample complexity bound for Q-learning and the minimax lower bound (Azar et al., 2013).
More specifically, the minimax lower bound scales on the order of |S||A|

(1−γ)3ε2 and is achievable—up to some
logarithmic factor—by the model-based approach and variance-reduced methods (Agarwal et al., 2020; Azar
et al., 2013; Li et al., 2020; Wainwright, 2019c). This raises natural questions regarding whether our sample
complexity bound can be further improved, and whether there is any intrinsic bottleneck that prevents
vanilla Q-learning from attaining optimal performance. To answer these questions, we develop the following
lower bound for plain Q-learning, with the aim of confirming the sharpness of Theorem 2 and revealing the
sub-optimality of Q-learning.

Theorem 3. Assume that 3/4 ≤ γ < 1 and that T ≥ c3
(1−γ)2 for some sufficiently large constant c3 > 0.

Suppose that the initialization is Q0 ≡ 0, and that the learning rates are taken to be either (i) ηt = 1
1+cη(1−γ)t

for all t ≥ 0, or (ii) ηt ≡ η for all t ≥ 0. There exists a γ-discounted MDP with |S| = 4 and |A| = 2 such
that Algorithm 1—with any cη > 0 and any η ∈ (0, 1)—obeys

max
s∈S

E
[∣∣VT (s)− V ?(s)

∣∣2] ≥ clb

(1− γ)4T log2 T
, (22)

where clb > 0 is some universal constant.

Remark 7. This theorem constructs a hard MDP instance with no more than 4 states and 2 actions, with
the emphasis of unveiling the sub-optimality of horizon dependency. It can be generalized to accommodate
larger state/action space, as we shall elucidate in Section 4.3.
Remark 8. Theorem 3 concentrates on two families of learning rates—rescaled linear, and constant learning
rates—that are most widely used in practice. Note, however, that our current analysis does not readily
generalize to arbitrary learning rates, which we leave for future investigation.
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Theorem 3 provides an algorithm-dependent lower bound for vanilla Q-learning. As asserted by this
theorem, it is impossible for Q-learning to attain ε-accuracy (in the sense that maxs E

[∣∣VT (s)−V ?(s)
∣∣2] ≤ ε2)

unless the number of iterations exceeds the order of
1

(1− γ)4ε2

up to some logarithmic factor. Consequently, the performance guarantees for Q-learning derived in Theorem 2
are sharp in terms of the dependency on the effective horizon 1

1−γ . On the other hand, it has been shown in
prior literature that the minimax sample complexity limit a generative model is on the order of (Azar et al.,
2013; Li et al., 2022c)

|S||A|
(1− γ)3ε2

(up to log factor); (23)

this in turn reveals the sub-optimality of plain Q-learning, whose horizon scaling is larger than the minimax
limit by a factor of 1

1−γ . Hence, more sophisticated algorithmic tricks are necessary in order to further
reduce the sample complexity. For instance, a variance-reduced variant of Q-learning—namely, leveraging
the idea of variance reduction originating from stochastic optimization (Johnson and Zhang, 2013) to
accelerate convergence of Q-learning—has been shown to attain minimax optimality (23) for any ε ∈ (0, 1];
see Wainwright (2019c) for more details.

4 Key analysis ideas (the synchronous case)
This section outlines the key ideas for the establishment of our main results of Q-learning for the synchronous
case, namely Theorem 2 and Theorem 3. The proof for TD learning is deferred to Appendix C. Before delving
into the proof details, we first introduce convenient vector and matrix notation that shall be used frequently.

4.1 Vector and matrix notation
To begin with, for any matrix M , the notation ‖M‖1 := maxi

∑
j |Mi,j | is defined as the largest row-wise

`1 norm of M . For any vector a = [ai]
n
i=1 ∈ Rn, we define

√· and | · | in a coordinate-wise manner,
i.e.
√
a := [

√
ai ]ni=1 ∈ Rn and |a| := [|ai|]ni=1 ∈ Rn. For a set of vectors a1, · · · ,am ∈ Rn with ak = [ak,j ]

n
j=1

(1 ≤ k ≤ m), we define the max operator in an entrywise fashion such that max1≤k≤m ak := [maxk ak,j ]
n
j=1.

For any vectors a = [ai]
n
i=1 ∈ Rn and b = [bi]

n
i=1 ∈ Rn, the notation a ≤ b (resp. a ≥ b) means ai ≤ bi

(resp. ai ≥ bi) for all 1 ≤ i ≤ n. We also let a ◦ b = [aibi]
n
i=1 denote the Hadamard product. In addition,

we denote by 1 (resp. ei) the all-one vector (resp. the i-th standard basis vector), and let I be the identity
matrix.

We shall also introduce the matrix P ∈ R|S||A|×|S| to represent the probability transition kernel P , whose
(s, a)-th row Ps,a is a probability vector representing P (· | s, a). Additionally, we define the square probability
transition matrix P π ∈ R|S||A|×|S||A| (resp. Pπ ∈ R|S|×|S|) induced by a deterministic policy π over the
state-action pairs (resp. states) as follows:

P π := PΠπ and Pπ := ΠπP , (24)

where Ππ ∈ {0, 1}|S|×|S||A| is a projection matrix associated with the deterministic policy π:

Ππ =


e>π(1)

e>π(2)

. . .
e>π(|S|)

 (25)

with ei the i-th standard basis vector. Moreover, for any vector V ∈ R|S|, we define VarP (V ) ∈ R|S||A| as
follows:

VarP (V ) = P (V ◦ V )− (PV ) ◦ (PV ). (26)
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In other words, the (s, a)-th entry of VarP (V ) corresponds to the variance Vars′∼P (·|s,a)(V (s′)) w.r.t. the
distribution P (· | s, a).

Moreover, we use the vector r ∈ R|S||A| to represent the reward function r, so that for any (s, a) ∈ S ×A,
the (s, a)-th entry of r is given by r(s, a). Analogously, we shall employ the vectors V π ∈ R|S|, V ? ∈ R|S|,
Vt ∈ R|S|, Qπ ∈ R|S||A|, Q? ∈ R|S||A| and Qt ∈ R|S||A| to represent V π, V ?, Vt, Qπ, Q? and Qt, respectively.
Additionally, we define πt to be the policy associated with Qt such that for any state-action pair (s, a),

πt(s) = min
{
a′
∣∣Qt(s, a′) = max

a′′
Qt(s, a

′′)
}
. (27)

In other words, for any s ∈ S, the policy πt picks out the smallest indexed action that attains the largest
Q-value in the estimate Qt(s, ·). As an immediate consequence, one can easily verify

Qt
(
s, πt(s)

)
= Vt(s) and PVt = P πtQt ≥ P πQt (28)

for any π, where P π is defined in (24). Further, we introduce a matrix Pt ∈ {0, 1}|S||A|×|S| such that

Pt
(
(s, a), s′

)
:=

{
1, if s′ = st(s, a)

0, otherwise
(29)

for any (s, a), which is an empirical transition matrix constructed using samples collected in the t-th iteration.
Finally, let X :=

(
|S|, |A|, 1

1−γ ,
1
ε

)
. The notation f(X ) = O(g(X )) or f(X ) . g(X ) (resp. f(X ) & g(X ))

means that there exists a universal constant C0 > 0 such that |f(X )| ≤ C0|g(X )| (resp. |f(X )| ≥ C0|g(X )|).
The notation f(X ) � g(X ) means f(X ) . g(X ) and f(X ) & g(X ) hold simultaneously. We define Õ(·) in
the same way as O(·) except that it hides logarithmic factors.

4.2 Proof outline for Theorem 2
We are now positioned to describe how to establish Theorem 2, towards which we first express the Q-learning
update rule (4) and (5) using the above matrix notation. As can be easily verified, Q-learning employs the
samples in Pt (cf. (29)) to perform the following update

Qt = (1− ηt)Qt−1 + ηt(r + γPtVt−1) (30)

in the t-th iteration. In the sequel, we denote by

∆t := Qt −Q? (31)

the error of the Q-function estimate in the t-th iteration.

4.2.1 Basic decomposition

We start by decomposing the estimation error term ∆t. In view of the update rule (30), we arrive at the
following elementary decomposition:

∆t = Qt −Q? = (1− ηt)Qt−1 + ηt
(
r + γPtVt−1

)
−Q?

= (1− ηt)
(
Qt−1 −Q?

)
+ ηt

(
r + γPtVt−1 −Q?

)
= (1− ηt)∆t−1 + ηtγ

(
PtVt−1 − PV ?

)
= (1− ηt)∆t−1 + ηtγ

{
P (Vt−1 − V ?) + (Pt − P )Vt−1

}
, (32)

where the third line exploits the Bellman equation Q? = r+ γPV ?. Further, the term P (Vt−1 −V ?) can be
linked with ∆t−1 using the definition (27) of πt as follows

P (Vt−1 − V ?) = P πt−1Qt−1 − P π?Q? ≤ P πt−1Qt−1 − P πt−1Q? = P πt−1∆t−1, (33a)

P (Vt−1 − V ?) = P πt−1Qt−1 − P π?Q? ≥ P π?Qt−1 − P π?Q? = P π?∆t−1, (33b)
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where we have made use of the relation (28). Substitute (33) into (32) to reach

∆t ≤ (1− ηt)∆t−1 + ηtγ
{
P πt−1∆t−1 + (Pt − P )Vt−1

}
;

∆t ≥ (1− ηt)∆t−1 + ηtγ
{
P π?∆t−1 + (Pt − P )Vt−1

}
.

(34)

Applying these relations recursively, we obtain

∆t ≤ η(t)
0 ∆0 +

t∑
i=1

η
(t)
i γ

{
P πi−1∆i−1 + (Pi − P )Vi−1

}
,

∆t ≥ η(t)
0 ∆0 +

t∑
i=1

η
(t)
i γ

{
P π?∆i−1 + (Pi − P )Vi−1

}
,

(35)

where we define

η
(t)
i :=


∏t
j=1(1− ηj), if i = 0,

ηi
∏t
j=i+1(1− ηj), if 0 < i < t,

ηt, if i = t.

(36)

Comparisons to prior approaches. We take a moment to discuss how prior analyses handle the above
elementary decomposition. Several prior works (e.g., Li et al. (2022c); Wainwright (2019b)) tackled the
second term on the right-hand side of the relation (34) via the following crude bounds:

P πi−1∆i−1 ≤
∥∥P πi−1

∥∥
1
‖∆i−1‖∞1 = ‖∆i−1‖∞1,

P π?∆i−1 ≥ −
∥∥P π?

∥∥
1
‖∆i−1‖∞1 = −‖∆i−1‖∞1,

which, however, are too loose when characterizing the dependency on 1
1−γ . By contrast, expanding terms

recursively without the above type of crude bounding and carefully analyzing the aggregate terms (e.g.,∑t
i=1 η

(t)
i P

πi−1∆i−1) play a major role in sharpening the dependence of sample complexity on the effective
horizon.

4.2.2 Key intertwined relations underlying {‖∆t‖∞}
By exploiting the crucial relations (35) derived above, we proceed to upper and lower bound ∆t separately.
To be more specific, defining

β :=
c4(1− γ)

log T
(37)

for some constant c4 > 0, one can further decompose the upper bound in (35) into several terms:

∆t ≤ η(t)
0 ∆0 +

(1−β)t∑
i=1

η
(t)
i γ

(
P πi−1∆i−1 + (Pi − P )Vi−1

)
︸ ︷︷ ︸

=: ζt

(38)

+

t∑
i=(1−β)t+1

η
(t)
i γ(Pi − P )Vi−1︸ ︷︷ ︸
=: ξt

+

t∑
i=(1−β)t+1

η
(t)
i γP πi−1∆i−1. (39)

Let us briefly remark on the effect of the first two terms:

• Each component in the first term ζt is fairly small, given that η(t)
i is sufficiently small for any i ≤ (1−β)t

(meaning that each component has undergone contraction—the ones taking the form of 1 − ηj—for
sufficiently many times). As a result, the influence of ζt becomes somewhat negligible.

• The second term ξt, which can be controlled via Freedman’s inequality (Freedman, 1975) due to its
martingale structure, contributes to the main variance term in the above recursion. Note, however, that
the resulting variance term also depends on {∆i}.
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In summary, the right-hand side of the above inequality can be further decomposed into some weighted
superposition of {∆i} in addition to some negligible effect. This is formalized in the following two lemmas,
which make apparent the key intertwined relations underlying {∆i}.
Lemma 1. Suppose that c1c2 ≤ c4/8. With probability at least 1− δ,

∆t ≤ 30

√√√√( log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

(
1 + max

t
2≤i<t

‖∆i‖∞
)

1

holds simultaneously for all t ≥ T
c2 log T .

Lemma 2. Suppose that c1c2 ≤ c4/8. With probability at least 1− δ,

∆t ≥ −30

√√√√( log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

(
1 + max

t
2≤i<t

‖∆i‖∞
)

1

holds simultaneously for all t ≥ T
c2 log T .

Proof. The proofs of Lemma 1 and Lemma 2 are deferred to Appendices B.2 and B.3, respectively. As a
remark, our analysis collects all the error terms accrued through the iterations—instead of bounding them
individually—by conducting a high-order nonlinear expansion of the estimation error through recursion,
followed by careful control of the main variance term leveraging the structure of the discounted MDP.

Putting the preceding bounds in Lemmas 1 and 2 together, we arrive at

‖∆t‖∞ ≤ 30

√√√√( log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

(
1 + max

t
2≤i<t

‖∆i‖∞
)

(40)

for all t ≥ T
c2 log T with probability exceeding 1 − 2δ, which forms the crux of our analysis. Employing

elementary analysis tailored to the above recursive relation, one can demonstrate that

‖∆T ‖∞ ≤ O
(√(

log4 T
)(

log |S||A|Tδ

)
(1− γ)4T

+

(
log4 T

)(
log |S||A|Tδ

)
(1− γ)4T

)
(41)

with probability at least 1− 2δ, which in turn allows us to establish the advertised result under the assumed
sample size condition. The details are deferred to Appendix B.4.

4.3 Proof outline for Theorem 3
Construction of a hard instance with 4 states and 2 actions. Let us construct an MDP Mhard

with state space S = {0, 1, 2, 3} (see a pictorial illustration in Figure 4.3). We shall denote by As the action
space associated with state s. The probability transition kernel and reward function ofMhard are specified as
follows

A0 = {1}, P (0 | 0, 1) = 1, r(0, 1) = 0, (42a)
A1 = {1, 2}, P (1 | 1, 1) = p, P (0 | 1, 1) = 1− p, r(1, 1) = 1, (42b)

P (1 | 1, 2) = p, P (0 | 1, 2) = 1− p, r(1, 2) = 1, (42c)
A2 = {1}, P (2 | 2, 1) = p, P (0 | 2, 1) = 1− p, r(2, 1) = 1, (42d)
A3 = {1}, P (3 | 3, 1) = 1, r(3, 1) = 1, (42e)

where the parameter p is taken to be

p =
4γ − 1

3γ
. (43)

Before moving forward to analyze the behavior of Q-learning, we first characterize the optimal value
function and Q-function of this MDP; the proof is postponed to Section D.4.
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Figure 1: The constructed hard MDP instance used in the analysis of Theorem 3, where p = 4γ−1
3γ and the

specifications are described in (42).

Lemma 3. Consider the MDPMhard constructed in (42). One has

V ?(0) = Q?(0, 1) = 0; (44a)

V ?(1) = Q?(1, 1) = Q?(1, 2) = V ?(2) = Q?(2, 1) =
1

1− γp =
3

4(1− γ)
; (44b)

V ?(3) = Q?(3, 1) =
1

1− γ . (44c)

Recognizing the elementary decomposition

E
[(
V ?(s)− VT (s)

)2]
=
(
E [V ?(s)− VT (s)]

)2
+ Var

(
VT (s)

)
(45)

for any state s, our proof consists of lower bounding either the squared bias term
(
E[V ?(s)− VT (s)]

)2 or the
variance term Var

(
VT (s)

)
. In short, we shall primarily analyze the dynamics w.r.t. state 2 to handle the case

when the learning rates are either too small or too large, and analyze the dynamics w.r.t. state 1 to cope
with the case with medium learning rates (with state 3 serving as a helper state to simplify the analysis).
The latter case—corresponding to the learning rates adopted in establishing the upper bounds—is the most
challenging: critically, from state 1 the agent can take one of two identical actions, whose value tends to be
estimated with a high positive bias due to maximizing over the empirical state-action values, highlighting
the well-recognized “over-estimation” issue of Q-learning in practice (Hasselt, 2010). The complete proof is
deferred to Appendix D.

Extension: lower bounds for larger |S| and |A|. For pedagogical reasons, the hard instance (42)
constructed above contains no more than 4 states and 2 actions (as the focus has been to unveil sub-optimal
dependency on the effective horizon). As it turns out, one can straightforwardly extend it to cover larger
state and action spaces, with a more general hard instance constructed as follows.

• We begin by generating the following sub-MDP, denoted byMsub, which comprises 4 states {1, 2, 3, 4}
and no more than |A| ≥ 2 actions:

A0 = {1}, P (0 | 0, 1) = 1, r(0, 1) = 0, (46a)
A1 = {1, . . . , |A|}, P (1 | 1, a) = p, P (0 | 1, a) = 1− p, r(1, a) = 1, ∀a ∈ A1 (46b)
A2 = {1}, P (2 | 2, 1) = p, P (0 | 2, 1) = 1− p, r(2, 1) = 1, (46c)
A3 = {1}, P (3 | 3, 1) = 1, r(3, 1) = 1, (46d)

where p is still set according to (43).

• The full MDPMfull is then constructed by generating |S|/4 independent copies ofMsub.

As can be easily verified (which we omit here for the sake of brevity), our analysis developed for the smaller
MDP (42) is directly applicable to studying the more general Mfull, revealing that the lower bound (55)
w.r.t. the iteration number T remains valid. Recognizing that the total sample size scales as |S||A|T , we have
established a general sample complexity lower bound |S||A|

(1−γ)4ε2 for synchronous Q-learning to yield ε-accuracy.
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5 Extension: sample complexity of asynchronous Q-learning
Moving beyond the synchronous setting, another scenario of practical importance is the case where the
acquired samples take the form of a single Markovian trajectory (Tsitsiklis, 1994). In this section, we extend
our analysis framework for synchronous Q-learning to accommodate Markovian non-i.i.d. samples.

5.1 Markovian samples and asynchronous Q-learning
Markovian sample trajectory. Suppose that we obtain a Markovian sample trajectory {(st, at, rt)}∞t=0,
which is generated by the MDP of interest when a stationary behavior policy πb is employed; in other words,

at ∼ πb(· | st), rt = r(st, at), st+1 ∼ P (· | st, at), t ≥ 0. (47)

When πb is stationary, the trajectory {(st, at)}∞t=0 can be viewed as a sample path of a time-homogeneous
Markov chain; in what follows, we shall denote by µπb

the stationary distribution of this Markov chain. Note
that the behavior policy πb can often be quite different from the target optimal policy π?.

Asynchronous Q-learning. In the presence of a single Markovian sample trajectory, the Q-learning
algorithm implements the following iterative update rule

Qt(st−1, at−1) = (1− ηt)Qt−1(st−1, at−1) + ηt

{
r(st−1, at−1) + γ max

a′∈A
Qt−1(st, a

′)
}
, (48a)

Qt(s, a) = Qt−1(s, a) for all (s, a) 6= (st−1, at−1) (48b)

for all t ≥ 1, where 0 < ηt ≤ 1 stands for the learning rate at time t. It is often referred to as asynchronous
Q-learning, as only a single state-action pair is updated in each iteration (in contrast, synchronous Q-learning
updates all state-action pairs simultaneously in each iteration). This also leads to the following estimate for
the value function at time t:

Vt(s) := max
a∈A

Qt(s, a) for all s ∈ S. (49)

As can be expected, the presence of Markovian non-i.i.d. data considerably complicates the analysis for
asynchronous Q-learning.

Assumptions. In order to ensure sufficient coverage of the sample trajectory over the state/action space,
we make the following assumption throughout this section, which is also commonly imposed in prior literature.

Assumption 1. The Markov chain induced by the behavior policy πb is uniformly ergodic.2

In addition, there are two crucial quantities concerning the sample trajectory that dictate the performance
of asynchronous Q-learning. The first one is the minimum state-action occupancy probability of the sample
trajectory, defined formally as

µmin := min
(s,a)∈S×A

µπb
(s, a). (50)

This metric captures the information bottleneck incurred by the least visited state-action pair. The second
key quantity is the mixing time associated with the sample trajectory, denoted by

tmix := min
{
t
∣∣∣ max

(s,a)∈S×A
dTV

(
P t(· | s, a), µπb

)
≤ 1

4

}
. (51)

Here, dTV(µ, ν) := 1
2

∑
x∈X |µ(x)− ν(x)| indicates the total variation distance between two measures µ and

ν over X (Tsybakov and Zaiats, 2009), whereas P t(· | s, a) stands for the distribution of (st, at) when the
sample trajectory is initialized at (s0, a0) = (s, a). In words, the mixing time reflects the time required for
the Markov chain to become nearly independent of the initial states. See Li et al. (2022c, Section 2) for a
more detailed account of these quantities and assumptions.

2See Paulin (2015, Section 1.2) for the definition of uniform ergodicity.
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5.2 Sample complexity of asynchronous Q-learning
While a number of previous works have been dedicated to understanding the performance of asynchronous
Q-learning, its sample complexity bound remains loose when it comes to the dependency on the effective
horizon 1

1−γ . Encouragingly, the analysis framework laid out in this paper allows us to tighten the dependency
on 1

1−γ , as stated below.

Theorem 4. Consider any δ ∈ (0, 1), ε ∈ (0, 1], and γ ∈ [1/2, 1). Suppose that for any 0 ≤ t ≤ T , the
learning rates satisfy

ηt ≡ η =
c1 log3 T

(1− γ)Tµmin
(52a)

for some universal constants 0 < c1 ≤ 1. Assume that the total number of iterations T obeys

T ≥ c2 log2 |S||A|T
δ

µmin
max

{
log3 T

(1− γ)4ε2
,
tmix

1− γ

}
(52b)

for some sufficiently large universal constant c2 > 0. If the initialization obeys 0 ≤ Q0(s, a) ≤ 1
1−γ for all

(s, a) ∈ S ×A, then asynchronous Q-learning (cf. (48)) satisfies

max
(s,a)∈S×A

∣∣QT (s, a)−Q?(s, a)
∣∣ ≤ ε

with probability at least 1− δ.
Remark 9. Similar to Remark 1 and Remark 5, one can immediately translate the above high-probability
result into the following mean estimation error bound:

E
[

max
s,a

∣∣QT (s, a)−Q?(s, a)
∣∣] ≤ ε(1− δ) + δ

1

1− γ ≤ 2ε, (53)

which holds as long as T ≥ c2 log2 |S||A|T
ε(1−γ)

µmin
max

{
log3 T

(1−γ)4ε2 ,
tmix

1−γ

}
for some large enough constant c2 > 0.

This theorem demonstrates that with high probability, the total sample size needed for asynchronous
Q-learning to yield entrywise ε accuracy is

Õ

(
1

µmin(1− γ)4ε2
+

tmix

µmin(1− γ)

)
, (54)

provided that the learning rates are taken to be some proper constant (see (52a)). The first term in (54)
resembles our sample complexity characterization of synchronous Q-learning (cf. (19)), except that we replace
the number |S||A| of state-action pairs in (19) with 1/µmin in order to account for non-uniformity across
state-action pairs. The second term in (54) is nearly independent of the target accuracy (except for some
logarithmic scaling), and can be viewed as the burn-in time taken for asynchronous Q-learning to mimic
synchronous Q-learning despite Markovian data.

We now pause to compare Theorem 4 with prior non-asymptotic theory for asynchronous Q-learning. As
far as we know, all existing sample complexity bounds (Beck and Srikant, 2012; Chen et al., 2021; Even-Dar
and Mansour, 2003; Li et al., 2022c; Qu and Wierman, 2020) scale at least as 1

(1−γ)5 in terms of the dependency
on the effective horizon, with Theorem 4 being the first result to sharpen this dependency to 1

(1−γ)4 . In
particular, our sample complexity bound strengthens the state-of-the-art result Li et al. (2022c) by a factor
up to 1

1−γ , while improving upon Qu and Wierman (2020) by a factor of at least |S||A|1−γ min
{
tmix,

1
(1−γ)3ε2

}
.3

Before concluding this section, we note that for a large enough sample size, the first term 1
µmin(1−γ)4ε2 in

(54) is essentially unimprovable (up to logarithmic factor). To make precise this statement, we develop a
matching algorithm-dependent lower bound as follows, which parallels Theorem 3 previously developed for
the synchronous case.

3The sample complexity of Li et al. (2022c) scales as Õ
(

1
µmin(1−γ)5ε2

+ tmix
µmin(1−γ)

)
, while the sample complexity of Qu and

Wierman (2020) scales as Õ
( tmix

µ2
min(1−γ)

5ε2

)
. It is worth noting that 1/µmin ≥ |S||A| and is therefore a large factor.
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Theorem 5. Consider any 0.95 ≤ γ < 1. Suppose that µmin ≤ 1
c3 log2 T

and T ≥ c3 log3 T
µmin(1−γ)7 for some

sufficiently large constant c3 > 0. Assume that the initialization is Q0 ≡ 0, and that the learning rates are
taken to be ηt ≡ η for all t ≥ 0. Then there exist a γ-discounted MDP with |S| = 4 and |A| = 3 and a
behavior policy such that (i) the minimum state-action occupancy probability of the sample trajectory is given
by µmin, and (ii) the asynchronous Q-learning update rule (48)—for any η ∈ (0, 1)—obeys

max
s,a

E
[∣∣QT (s, a)−Q?(s, a)

∣∣2] ≥ clb

µmin(1− γ)4T log3 T
, (55)

where clb > 0 is some universal constant.

In words, Theorem 5 asserts that, for large enough sample size T , in general one cannot hope to achieve
`∞-based ε-accuracy using fewer than Õ

(
1

µmin(1−γ)4ε2

)
samples, thus confirming the sharpness of our upper

bound. The proof of this theorem can be found in Appendix F.

6 Concluding remarks
In this paper, we have settled the sample complexity of synchronous Q-learning in γ-discounted infinite-horizon
MDPs, which is shown to be on the order of Õ

( |S|
(1−γ)3ε2

)
when |A| = 1 and Õ

( |S||A|
(1−γ)4ε2

)
when |A| ≥ 2. A

matching lower bound has been developed when |A| ≥ 2 through studying the dynamics of Q-learning on a
hard MDP instance, which unveils the negative impact of an inevitable over-estimation issue. Our theory
has been further extended to accommodate asynchronous Q-learning, resulting in tight dependency of the
sample complexity on the effective horizon. The analysis framework developed herein—which exploits novel
error decompositions and variance control that differ substantially from prior approaches—might suggest
a plausible path towards sharpening the sample complexity of, as well as understanding the algorithmic
bottlenecks for, other model-free algorithms (e.g., double Q-learning (Hasselt, 2010)).
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A Freedman’s inequality
The analysis of this work relies heavily on Freedman’s inequality (Freedman, 1975), which is an extension
of the Bernstein inequality and allows one to establish concentration results for martingales. For ease of
presentation, we include a user-friendly version of Freedman’s inequality as follows.

Theorem 6. Suppose that Yn =
∑n
k=1Xk ∈ R, where {Xk} is a real-valued scalar sequence obeying

|Xk| ≤ R and E
[
Xk | {Xj}j:j<k

]
= 0 for all k ≥ 1.

Define

Wn :=

n∑
k=1

Ek−1

[
X2
k

]
,
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where we write Ek−1 for the expectation conditional on {Xj}j:j<k. Then for any given σ2 ≥ 0, one has

P
{
|Yn| ≥ τ and Wn ≤ σ2

}
≤ 2 exp

(
− τ2/2

σ2 +Rτ/3

)
. (56)

In addition, suppose that Wn ≤ σ2 holds deterministically. For any positive integer K ≥ 1, with probability
at least 1− δ one has

|Yn| ≤
√

8 max
{
Wn,

σ2

2K

}
log

2K

δ
+

4

3
R log

2K

δ
. (57)

Proof. See Freedman (1975); Tropp (2011) for the proof of (56). As an immediate consequence of (56), one
has

P

{
|Yn| ≥

√
4σ2 log

2

δ
+

4

3
R log

2

δ
and Wn ≤ σ2

}
≤ δ. (58)

Next, we turn attention to (57). Consider any positive integer K. As can be easily seen, the event

HK :=

{
|Yn| ≥

√
8 max

{
Wn,

σ2

2K

}
log

2K

δ
+

4

3
R log

2K

δ

}
is contained within the union of the following K events

HK ⊆
⋃

0≤k<K

Bk,

where we define

Bk :=

{
|Yn| ≥

√
4σ2

2k−1
log

2K

δ
+

4

3
R log

2K

δ
and

σ2

2k
≤Wn ≤

σ2

2k−1

}
, 1 ≤ k ≤ K − 1,

B0 :=

{
|Yn| ≥

√
4σ2

2K−1
log

2K

δ
+

4

3
R log

2K

δ
and Wn ≤

σ2

2K−1

}
.

Invoking inequality (58) with σ2 set to be σ2

2k−1 and δ set to be δ
K , we arrive at P {Bk} ≤ δ/K. Taken this

fact together with the union bound gives

P {HK} ≤
K−1∑
k=0

P {Bk} ≤ δ.

This concludes the proof.

B Upper bounds for Q-learning (Theorem 2)
In this section, we fill in the details for the proof idea outlined in Section 4.2 for synchronous Q-learning. In
fact, our proof strategy leads to a more general version that accounts for the full ε-range ε ∈

(
0, 1

1−γ
]
, as

stated below.

Theorem 7. Consider any γ ∈ (0, 1) and any ε ∈
(
0, 1

1−γ
]
. Theorem 2 continues to hold if

T ≥ c3
(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4 min{ε2, ε} (59)

for some large enough universal constant c3 > 0.

Remark 10. Clearly, Theorem 7 subsumes Theorem 2 as a special case.
As one can anticipate, the proof of Theorem 7 for Q-learning includes many key ingredients for establishing

Theorem 1 for TD learning. We will elaborate on how to modify the proof argument to establish Theorem 1
in Section C.
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B.1 Preliminaries
To begin with, we gather a few elementary facts that shall be used multiple times in the proof.

Ranges of Qt and Vt. When properly initialized, the Q-function estimates and the value function estimates
always fall within a suitable range, as asserted by the following lemma.

Lemma 4. Suppose that 0 ≤ ηt ≤ 1 for all t ≥ 0. Assume that 0 ≤ Q0 ≤ 1
1−γ1. Then for any t ≥ 0,

0 ≤ Qt ≤
1

1− γ 1 and 0 ≤ Vt ≤
1

1− γ 1. (60)

Proof. We shall prove this by induction. First, our initialization trivially obeys (60) for t = 0. Next, suppose
that (60) is true for the (t− 1)-th iteration, namely,

0 ≤ Qt−1 ≤
1

1− γ 1 and 0 ≤ Vt−1 ≤
1

1− γ 1, (61)

and we intend to justify the claim for the t-th iteration. Recognizing that 0 ≤ r ≤ 1, Pt ≥ 0 and ‖Pt‖1 = 1,
one can straightforwardly see from the update rule (30) and the induction hypothesis (61) that

Qt = (1− ηt)Qt−1 + ηt(r + γPtVt−1) ≥ 0

and

Qt = (1− ηt)Qt−1 + ηt(r + γPtVt−1)

≤ (1− ηt) ‖Qt−1‖∞1 + ηt
(
‖r‖∞ + γ‖Pt‖1‖Vt−1‖∞

)
1

≤ (1− ηt)
1

1− γ 1 + ηt

(
1 +

γ

1− γ
)
1 =

1

1− γ 1.

In addition, from the definition Vt(s) := maxaQt(s, a) for all t ≥ 0 and all s ∈ S, it is easily seen that

0 ≤ Vt ≤
1

1− γ 1,

thus establishing (60) for the t-th iteration. Applying the induction argument then concludes the proof.

As a result of Lemma 4 and the fact 0 ≤ Q? ≤ 1
1−γ1, we have

‖Qt −Q?‖∞ ≤
1

1− γ for all t ≥ 0, (62)

which also confirms that 0 ≤ ε ≤ 1
1−γ is the full ε-range we need to consider. Further, we make note of a

direct consequence of the claimed iteration number (59) when ε ≤ 1
1−γ :

T =
c3
(

log4 T
)(

log |S||A|Tδ

)
(1− γ)4 min{ε, ε2} ≥ c3

(
log4 T

)(
log |S||A|Tδ

)
(1− γ)3

, (63)

which will be useful for subsequent analysis.

Several facts regarding the learning rates. Next, we gather a couple of useful bounds regarding the
learning rates {ηt}. To begin with, we find it helpful to introduce the following related quantities introduced
previously in (36):

η
(t)
i :=


∏t
j=1(1− ηj), if i = 0,

ηi
∏t
j=i+1(1− ηj), if 0 < i < t,

ηt, if i = t.

(64)
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We now take a moment to bound η(t)
i . From our assumption (16a) and the condition (63), we know that the

learning rate obeys

1

2c1(1− γ)T/ log3 T
≤ 1

1 + c1(1− γ)T/ log3 T
≤ ηt ≤

1

1 + c2(1− γ)t/ log3 T
≤ 1

c2(1− γ)t/ log3 T
(65)

for some constants c1, c2 > 0. Recalling that

β :=
c4(1− γ)

log T
(66)

for some universal constant c4 > 0 and considering any t obeying

t ≥ T

c2 log T
, (67)

we shall bound η(t)
i by looking at two cases separately.

• For any 0 ≤ i ≤ (1− β)t, we can use (65) to show that

η
(t)
i ≤

(
1− 1

2c1(1− γ)T/ log3 T

)βt
≤
(

1− 1

2c1(1− γ)T/ log3 T

) c4(1−γ)T
c2 log2 T

=

((
1− 1

2c1(1− γ)T/ log3 T

) 2c1(1−γ)T
log3 T

) c4 log T
2c1c2

<
1

2T 2
, (68a)

where the last inequality holds as long as c1c2 ≤ c4/8.

• When it comes to the case with i > (1− β)t ≥ t/2, one can upper bound

η
(t)
i ≤ ηi ≤

1

c2(1− γ)i/ log3 T
<

2

c2(1− γ)t/ log3 T
≤ 2 log4 T

(1− γ)T
, (68b)

where we have used the constraint (67).

Moreover, the sum of η(t)
i over i obeys

t∑
i=0

η
(t)
i =

t∏
j=1

(1− ηj) + η1

t∏
j=2

(1− ηj) + η2

t∏
j=3

(1− ηj) + · · ·+ ηt−1(1− ηt) + ηt

=

t∏
j=2

(1− ηj) + η2

t∏
j=3

(1− ηj) + · · ·+ ηt−1(1− ηt) + ηt = · · ·

= (1− ηt) + ηt = 1. (69)

Repeating the same argument further allows us to derive

t∑
i=τ

η
(t)
i = 1−

t∏
j=τ

(1− ηj) (70)

for any τ ≤ t.

B.2 Proof of Lemma 1
We shall exploit the relation (39) to prove this lemma. One of the key ingredients of our analysis lies in
controlling the terms ζt and ξt introduced in (39), which in turn enables us to apply (39) recursively to
control ∆t.
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Step 1: bounding ζt. We start by developing an upper bound on ζt (cf. (39)) for any t obeying
T

c2 log T ≤ t ≤ T . Invoking the preceding upper bounds (68) on η(t)
i implies that

‖ζt‖∞ ≤ η(t)
0 ‖∆0‖∞ + t max

i≤(1−β)t
η

(t)
i max

1≤i≤(1−β)t

(
‖P πi−1∆i−1‖∞ + ‖PiVi−1‖∞ + ‖PVi−1‖∞

)
≤ η(t)

0 ‖∆0‖∞ + t max
i≤(1−β)t

η
(t)
i max

1≤i≤(1−β)t

{
‖P πi−1‖1‖∆i−1‖∞ +

(
‖Pi‖1 + ‖P ‖1

)
‖Vi−1‖∞

}
(i)
= η

(t)
0 ‖∆0‖∞ + t max

i≤(1−β)t
η

(t)
i max

1≤i≤(1−β)t

(
‖∆i−1‖∞ + 2 ‖Vi−1‖∞

)
(ii)

≤ 1

2T 2
· 1

1− γ +
1

2T 2
· t · 3

1− γ
≤ 2

(1− γ)T
.

Here, (i) holds since ‖P πi−1‖1 = ‖Pi‖1 = ‖P ‖1 = 1 (as they are all probability transition matrices), whereas
(ii) arises from the previous bound (68a).

Step 2: bounding ξt. Moving on to the term ξt, let us express it as

ξt =

t∑
i=(1−β)t+1

zi with zi := η
(t)
i γ(Pi − P )Vi−1,

where the zi’s satisfy
E [zi |Vi−1, · · · ,V0] = 0.

This motivates us to invoke Freedman’s inequality (see Theorem 6) to control ξt for any t obeying T
c2 log T ≤

t ≤ T . Towards this, we need to calculate several quantities.

• First, it is seen that

B := max
(1−β)t<i≤t

‖zi‖∞ ≤ max
(1−β)t<i≤t

‖η(t)
i (Pi − P )Vi−1‖∞

≤ max
(1−β)t<i≤t

η
(t)
i

(
‖Pi‖1 + ‖P ‖1

)
‖Vi−1‖∞ ≤

4 log4 T

(1− γ)2T
,

where the last inequality is due to (68b), Lemma 4, and the fact ‖Pi‖1 = ‖P ‖1 = 1.

• Next, we turn to certain variance terms. For any vector a = [aj ], let us use Var
(
a |Vi−1, · · · ,V0

)
to

denote a vector whose j-th entry is given by Var
(
aj |Vi−1, · · · ,V0

)
. With this notation in place, and

recalling the notation VarP (z) in (26), we obtain

Wt :=

t∑
i=(1−β)t+1

Var
(
zi |Vi−1, · · · ,V0

)
= γ2

t∑
i=(1−β)t+1

(
η

(t)
i

)2
Var
(

(Pi − P )Vi−1 |Vi−1

)

= γ2
t∑

i=(1−β)t+1

(
η

(t)
i

)2
VarP

(
Vi−1

)
≤
(

max
(1−β)t≤i≤t

η
(t)
i

)( t∑
i=(1−β)t+1

η
(t)
i

)
max

(1−β)t≤i<t
VarP

(
Vi
)

≤ 2 log4 T

(1− γ)T
max

(1−β)t≤i<t
VarP (Vi), (71)

where the last inequality relies on the previous bounds (68b) and (69).
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• In the meantime, Theorem 4 leads us to the following trivial upper bound:∣∣Wt

∣∣ ≤ 2 log4 T

(1− γ)T
· 1

(1− γ)2
1 =

2 log4 T

(1− γ)3T
1 =: σ21.

By setting K =
⌈
2 log2

1
1−γ

⌉
, one has

σ2

2K
≤ 2 log4 T

(1− γ)T
. (72)

With the above bounds in place, applying the Freedman inequality in Theorem 6 and invoking the union
bound over all the |S||A| entries of ξt demonstrate that

|ξt| ≤

√
8
(
Wt +

σ2

2K
1
)

log
8|S||A|T log 1

1−γ

δ
+
(4

3
B log

8|S||A|T log 1
1−γ

δ

)
· 1

≤
√

16
(
Wt +

2 log4 T

(1− γ)T
1
)

log
|S||A|T

δ
+
(

3B log
|S||A|T

δ

)
· 1

≤

√
32
(

log4 T
)(

log |S||A|Tδ

)
(1− γ)T

(
max

(1−β)t≤i<t
VarP (Vi) + 1

)
+

12
(

log4 T
)(

log |S||A|Tδ

)
(1− γ)2T

1

with probability at least 1− δ/T. Here, the second line holds due to (72) and the fact log
8|S||A|T log 1

1−γ
δ ≤

2 log |S||A|Tδ (cf. (63)), whereas the last inequality makes use of the relation (71).

Step 3: using the bounds on ζt and ξt to control ∆t. Let us define

ϕt := 64
log4 T log |S||A|Tδ

(1− γ)T

(
max
t
2≤i≤t

VarP (Vi) + 1

)
(73)

In view of the upper bounds derived in Steps 1 and 2, and β defined in (66), we have—with probability
exceeding 1− δ—that

|ζk|+ |ξk| ≤
√
ϕt for all 2t/3 ≤ k ≤ t, (74)

provided that T ≥ c9(log4 T )
(

log
|S||A|T

δ

)
(1−γ)3 for some sufficiently large constant c9 > 0. Substituting (74) into

(39), we can upper bound ∆t as follows

∆k ≤
√
ϕt +

k∑
i=(1−β)k+1

η
(k)
i γP πi−1∆i−1 =

√
ϕt +

k−1∑
i=(1−β)k

η
(k)
i+1γP

πi∆i for all 2t/3 ≤ k ≤ t. (75)

Further, we find it convenient to define
{
α

(t)
i

}
as follows

α
(t)
i :=

η
(t)
i+1∑t−1

j=(1−β)t η
(t)
j+1

. (76)

Clearly, this sequence satisfies

α
(t)
i ≥ η

(t)
i+1 and

t−1∑
i=(1−β)t

α
(t)
i = 1 (77)

for any t, where the first inequality results from (69). With these in place, we can write (75) as

∆k ≤
√
ϕt +

k−1∑
i1=(1−β)k

η
(k)
i1+1γP

πi1 ∆i1 =

k−1∑
i1=(1−β)k

(
α

(k)
i1

√
ϕt + η

(k)
i1+1γP

πi1 ∆i1

)
for all 2t/3 ≤ k ≤ t.

(78)
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Given that (1− β)t ≥ 2t/3 (see (66)), we can invoke this relation recursively to yield

∆t ≤
t−1∑

i1=(1−β)t

(
α

(t)
i1

√
ϕt + η

(t)
i1+1γP

πi1 ∆i1

)

≤
t−1∑

i1=(1−β)t

[
α

(t)
i1

√
ϕt + η

(t)
i1+1γP

πi1

i1−1∑
i2=(1−β)i1

(
α

(i1)
i2

√
ϕt + η

(i1)
i2+1γP

πi2 ∆i2

)]

≤
t−1∑

i1=(1−β)t

α
(t)
i1

√
ϕt +

t−1∑
i1=(1−β)t

i1−1∑
i2=(1−β)i1

α
(t)
i1
α

(i1)
i2

(
γP πi1

)√
ϕt

+

t−1∑
i1=(1−β)t

i1−1∑
i2=(1−β)i1

η
(t)
i1+1η

(i1)
i2+1

2∏
k=1

(
γP πik

)
∆i2

=

t−1∑
i1=(1−β)t

i1−1∑
i2=(1−β)i1

α
(t)
i1
α

(i1)
i2
{I + γP πi1}√ϕt +

t−1∑
i1=(1−β)t

i1−1∑
i2=(1−β)i1

η
(t)
i1+1η

(i1)
i2+1

2∏
k=1

(
γP πik

)
∆i2 , (79)

where the second inequality relies on (78), the third line uses the inequality η(t)
i1+1 ≤ α

(t)
i1

in (77), and the
fourth line is valid since

∑i1−1
i2=(1−β)i1

α
(i1)
i2

= 1 (see (77)).
We intend to continue invoking (78) recursively—similar to how we derive (79)—in order to control ∆t.

To do so, we are in need of some preparation. First, let us define

H :=
log T

1− γ and α{ik}Hk=1
:= α

(t)
i1
α

(i1)
i2

. . . α
(iH−1)
iH

≥ 0 (80)

for any t > i1 > i2 > · · · > iH , which clearly satisfies (see (77))

α{ik}Hk=1
≥ η(t)

i1+1η
(i1)
i2+1 . . . η

(iH−1)
iH+1 . (81)

In addition, defining the index set

It :=
{

(i1, · · · , iH) | (1− β)t ≤ i1 ≤ t− 1, ∀1 ≤ j < H : (1− β)ij ≤ ij+1 ≤ ij − 1
}
, (82)

we have ∑
(i1,··· ,iH)∈It

α{ik}Hk=1
= 1. (83)

Additionally, recalling that β = c4(1− γ)/ log T , we see that this choice of H satisfies

(1− β)H =

(
1− c4(1− γ)

log T

) log T
1−γ

≥ 2

3

for c4 small enough, thus implying that

i1 > i2 > · · · > iH ≥ (1− β)Ht ≥ 2t/3 for all (i1, · · · , iH) ∈ It.
This is an important property that allows one to invoke the relation (78). With these in place, applying the
preceding relation (78) recursively—in a way similar to (79)—further leads to

∆t ≤
∑

(i1,··· ,iH)∈It

α{ik}Hk=1

{(
I +

H−1∑
h=1

γh
h∏
k=1

P πik

)√
ϕt + γH

H∏
k=1

P πik
∣∣∆iH

∣∣}

≤ max
(i1,··· ,iH)∈It

{(
I +

H−1∑
h=1

γh
h∏
k=1

P πik

)√
ϕt︸ ︷︷ ︸

=:β1

+ γH
H∏
k=1

P πik
∣∣∆iH

∣∣
︸ ︷︷ ︸

=:β2

}
(84)

for all t ≥ T
c2 log T , where we recall the definition of the entrywise max operator in Section 4.1. Here, the

last inequality relies on the fact that
∑

(i1,··· ,iH)∈It α{ik}Hk=1
= 1 (see (83)). It remains to control β1 and β2,

which we shall accomplish separately in the next two steps.
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Step 4: bounding β2. The term β2 defined in (84) is relatively easier to control. Observing that
∏H
k=1P

πik

is still a probability transition matrix, we can derive

|β2| = γH
∏

1≤k≤h

P πik
∣∣∆iH

∣∣ ≤ γH∥∥∥∥ ∏
1≤k≤h

P πik

∥∥∥∥
1

‖∆iH‖∞ = γH‖∆iH‖∞

(i)

≤ 1

1− γ γ
H

(ii)

≤ 1

(1− γ)T
,

where (i) results from the crude bound (62). To justify the inequality (ii), we recall the definition (80) of H
to see that

γH
(ii)
=
(
1− (1− γ)

) 1
1−γ log T ≤ e− log T =

1

T
,

where the inequality comes from the elementary fact that γ
1

1−γ ≤ e−1 for any 0 < γ < 1.

Step 5: bounding β1. When it comes to the term β1 defined in (84), we can upper bound the entrywise
square of β1—denoted by |β1|2—as follows

|β1|2 =

∣∣∣∣(H−1∑
h=0

γh
∏

1≤k≤h

P πik

)√
ϕt

∣∣∣∣2 (i)

≤
∣∣∣∣H−1∑
h=0

γh/2 · γh/2
√ ∏

1≤k≤h

P πikϕt

∣∣∣∣2
(ii)

≤
H−1∑
h=0

γh ·
H−1∑
h=0

γh
h∏
k=1

P πikϕt

(iii)

≤ 1

1− γ
H−1∑
h=0

γh
h∏
k=1

P πik
64
(

log4 T
)(

log |S||A|Tδ

)
(1− γ)T

(
max
t
2≤i<t

VarP (Vi) + 1

)
(iv)

≤ 64
(

log4 T
)(

log |S||A|Tδ

)
(1− γ)2T

H−1∑
h=0

γh
h∏
k=1

P πik max
t
2≤i<t

VarP (Vi) +
64
(

log4 T
)(

log |S||A|Tδ

)
(1− γ)3T

1.

Here, (i) follows from Jensen’s inequality and the fact that
∏h
k=1P

πik is a probability transition matrix;
(ii) holds due to the Cauchy-Schwarz inequality; (iii) utilizes the definition of ϕt in (73); (iv) follows since∏

1≤k≤hP
πik1 = 1 and

∑
0≤h<H γ

h ≤ 1
1−γ . To further control the right-hand side of the above inequality,

we resort to the following lemma.

Lemma 5. Suppose that t ≥ T
c2 log T . For any (i1, · · · , iH) ∈ It, the following holds:

H−1∑
h=0

γh
h∏
k=1

P πik max
t
2≤i<t

VarP (Vi) ≤
4

γ2(1− γ)2

(
1 + 2 max

t
2≤i<t

‖∆i‖∞
)
1. (85)

Proof. This lemma, which is inspired by but significantly more complicated than Azar et al. (2013, Lemma
8), plays a key role in shaving one 1

1−γ factor. See Section B.5 for the proof.

Therefore, the above result directly implies that

|β1|2 ≤
320
(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

(
1 + 2 max

t
2≤i<t

‖∆i‖∞
)
1. (86)

Step 6: putting all this together. Substituting the preceding bounds for β1 and β2 into (84), we can
demonstrate that: with probability at least 1− δ,

∆t ≤
1

(1− γ)T
1 +

√√√√320
(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

(
1 + 2 max

t
2≤i<t

‖∆i‖∞
)

1
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≤ 30

√√√√( log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

(
1 + max

t
2≤i<t

‖∆i‖∞
)

1 (87)

holds simultaneously for all t ≥ T
c2 log T , where the second line is valid since 1

(1−γ)T ≤
√

(log4 T )
(

log
|S||A|T

δ

)
(1−γ)4T

under our sample size condition (63).

B.3 Proof of Lemma 2
Next, we move forward to develop an lower bound on ∆t, which can be accomplished in an analogous manner
as for the above upper bound. Applying a similar argument for (84) (except that we need to replace πi with
π?), one can deduce that

∆t ≥ − max
(i1,··· ,iH)∈It

{
H−1∑
h=0

γh
h∏
k=1

P π?√ϕt + γH
H∏
k=1

P π?
∣∣∆iH

∣∣} (88)

for any t ≥ c2T
log 1

1−γ
. It is straightforward to bound the second term on the right-hand side of (88) as

γH
∏

1≤k≤H

P π?
∣∣∆iH

∣∣ ≤ γH∥∥∥∥ ∏
1≤k≤H

P π?
∥∥∥∥

1

‖∆iH‖∞1 ≤ 1

(1− γ)T
1,

where the second inequality makes use of (62) as well as the fact that
∏
k P

π? is a probability transition
matrix (so that ‖∏k P

π?
∥∥

1
= 1). As for the first term on the right-hand side of (88), we can invoke a similar

argument for (86) to obtain∣∣∣∣H−1∑
h=0

γh
h∏
k=1

P π?√ϕt
∣∣∣∣2 ≤ 320

(
log4 T

)(
log |S||A|Tδ

)
γ2(1− γ)4T

(
1 + 2 max

t
2≤i<t

‖∆i‖∞
)

1.

Taking these two bounds together, we see that with probability at least 1− δ,

∆t ≥ −30

√√√√( log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

(
1 + max

t
2≤i<t

‖∆i‖∞
)

1 (89)

holds simultaneously for all t ≥ T
c2 log T .

B.4 Solving the recurrence relation regarding ∆t

Recall from (40) that with probability exceeding 1− 2δ, the following recurrence relation

‖∆t‖∞ ≤ 30

√√√√( log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

(
1 + max

t
2≤i<t

‖∆i‖∞
)

for all t ≥ T

c2 log T
(90)

holds, which plays a crucial role in establishing the desired estimation error bound. Specifically, for any k ≥ 0,
let us define

uk := max

{
‖∆t‖∞

∣∣∣ 2k
T

c2 log T
≤ t ≤ T

}
. (91)

To bound this sequence, we first obtain a crude bound as a result of (62):

u0 ≤
1

1− γ . (92)
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Next, it is directly seen from (90) and the definition of uk that

uk ≤ c6

√(
log4 T

)(
log |S||A|Tδ

)
γ2(1− γ)4T

(1 + uk−1), k ≥ 1 (93)

for some constant c6 = 20/γ > 0. In order to analyze the size of uk, we divide into two cases.

• If uk ≤ 1 for some k ≥ 1, then (93) tells us that

uk+1 ≤ c6

√(
log4 T

)(
log |S||A|Tδ

)
γ2(1− γ)4T

(1 + uk) ≤ c6

√
2
(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

≤ 1,

as long as T ≥ 2c26 log4 T log
|S||A|T

δ

γ2(1−γ)4 . In other words, once uk−1 drops below 1, then all subsequent
quantities will remain bounded above by 1, namely, maxj:j≥k uj ≤ 1. As a result,

uj ≤ c6

√(
log4 T

)(
log |S||A|Tδ

)
γ2(1− γ)4T

(1 + uj−1) ≤ c6

√
2
(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

for all j > k.

• Instead, suppose that uj > 1 for all 0 ≤ j ≤ k. Then it is seen from (93) that

uj+1 ≤ c6

√(
log4 T

)(
log |S||A|Tδ

)
γ2(1− γ)4T

(1 + uj) ≤ c6

√
2
(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

uj for all j ≤ k.

This is equivalent to saying that

log uj+1 ≤ logαu +
1

2
log uj for all j ≤ k,

where αu = c6

√
2
(

log4 T
)(

log
|S||A|T

δ

)
γ2(1−γ)4T . Invoking a standard analysis strategy for this type of recursive

relations yields

log uj+1 − 2 logαu ≤
1

2
(log uj − 2 logαu) for all j ≤ k,

and hence

log uj+1 ≤ 2 logαu +

(
1

2

)j+1

(log u0 − 2 logαu) for all j ≤ k.

This is equivalent to saying that

uj ≤ α2
u

(
u0

α2
u

)1/2j

=
(
α2
u

)1−1/2j

(u0)
1/2j for all j ≤ k + 1.

Putting the above two cases together and using (92), we conclude that

uk ≤

√
2c26
(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

+
(2c26

(
log4 T

)(
log |S||A|Tδ

)
γ2(1− γ)4T

)1−1/2k

u
1/2k

0

≤

√
2c26
(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

+
(2c26

(
log4 T

)(
log |S||A|Tδ

)
γ2(1− γ)4T

)1−1/2k
(

1

1− γ

)1/2k

, k ≥ 1.

In particular, as long as k ≥ c7 log log 1
1−γ for some constant c7 > 0, one has

(
1

1−γ
)1/2k ≤ O(1) and

(2c26
(

log4 T
)(

log |S||A|Tδ

)
(1− γ)4T

)1−1/2k

≤ max


√

2c26
(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

,
2c26
(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

 .
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As a result, the above bound simplifies to

uk ≤ c8
(√(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

+

(
log4 T

)(
log |S||A|Tδ

)
γ2(1− γ)4T

)
, k ≥ c7 log log

1

1− γ

for some constant c8 > 0.
Consequently, taking t = T and choosing k = c7 log log 1

1−γ for some appropriate constant c7 > 0 (so as
to ensure 2k T

c2 log T < T ), we immediately see from the definition (91) of uk that

‖∆T ‖∞ ≤ c8
(√(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

+

(
log4 T

)(
log |S||A|Tδ

)
γ2(1− γ)4T

)
. (94)

with probability at least 1− 2δ. To finish up, we note that the sample size assumption (59) is equivalent to(
log4 T

)(
log |S||A|Tδ

)
γ2(1− γ)4T

≤ min{ε2, ε}
c3

.

When c3 > 0 is sufficiently large, substituting this relation into (94) gives

‖∆T ‖∞ ≤
1

2

√
min{ε2, ε}+

1

2
min{ε2, ε} =

{
1
2ε+ 1

2ε
2 if ε ≤ 1

1
2

√
ε+ 1

2ε if ε > 1

≤ ε

as claimed in Theorem 7.

B.5 Proof of Lemma 5
We first claim that

max
t
2≤i<t

VarP (Vi)− VarP (V ?) ≤ 4

1− γ max
t
2≤i<t

‖∆i‖∞1. (95)

If this claim were valid (which we shall justify towards the end of this subsection), then it would lead to

H−1∑
h=0

γh
h∏
k=1

P πik max
t
2≤i<t

VarP (Vi) ≤
H−1∑
h=0

γh
h∏
k=1

P πikVarP (V ?) +
4

(1− γ)2
max
t
2≤i<t

‖∆i‖∞1. (96)

It then boils down to bounding the first term on the right-hand side of (96). Let us first upper bound the
variance term involving V ?. For any 0 ≤ h < H, one can express (see (26))

VarP (V ?) = P (V ? ◦ V ?)− (PV ?) ◦ (PV ?)

(i)
= P πih+1 (Q? ◦Q?) + P (V ? ◦ V ?)− P πih+1 (Q? ◦Q?)− 1

γ2
(Q? − r) ◦ (Q? − r)

= P πih+1 (Q? ◦Q?) + P π?(Q? ◦Q?)− P πih+1 (Q? ◦Q?)− 1

γ2
(Q? − r) ◦ (Q? − r)

≤ P πih+1 (Q? ◦Q?) +
∥∥P π?(Q? ◦Q?)− P πih+1 (Q? ◦Q?)

∥∥
∞1− 1

γ2
(Q? − r) ◦ (Q? − r)

(ii)

≤ P πih+1 (Q? ◦Q?) +
4

1− γ max
t
2≤i<t

‖∆i‖∞1− 1

γ2
(Q? − r) ◦ (Q? − r)

=
1

γ2

(
γ2P πih+1 (Q? ◦Q?)−Q? ◦Q?

)
+

4

1− γ max
t
2≤i<t

‖∆i‖∞1− 1

γ2
r ◦ r +

2

γ2
Q? ◦ r

(iii)

≤ 1

γ

(
γP πih+1 (Q? ◦Q?)−Q? ◦Q?

)
+

2

γ2
Q? ◦ r +

4

1− γ max
t
2≤i<t

‖∆i‖∞1, (97)
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where (i) relies on the identity Q? = r + γPV ?, and (iii) holds since 0 < γ < 1. To justify (ii), we make the
following observation:∥∥P πih+1

(
Q? ◦Q?

)
− P π?

(
Q? ◦Q?

)∥∥
∞ =

∥∥PΠπih+1
(
Q? ◦Q?

)
− PΠπ?

(
Q? ◦Q?

)∥∥
∞

(iv)

≤
∥∥Ππih+1

(
Q? ◦Q?

)
−Ππ?

(
Q? ◦Q?

)∥∥
∞

=
∥∥(Ππih+1Q? −Ππ?Q?

)
◦
(
Ππih+1Q? + Ππ?Q?

)∥∥
∞

(v)

≤ 2

1− γ
∥∥Ππih+1Q? −Ππ?Q?

∥∥
∞

≤ 2

1− γ
(∥∥Ππih+1Q? −Ππih+1Qih+1

∥∥
∞ +

∥∥Ππih+1Qih+1
− V ?

∥∥
∞

)
(vi)

≤ 2

1− γ
(∥∥Q? −Qih+1

∥∥
∞ +

∥∥Vih+1
− V ?

∥∥
∞

)
(vii)

≤ 4

1− γ max
t
2≤i<t

‖∆i‖∞,

where (iv) arises from the fact ‖Pz‖∞ ≤ ‖P ‖1‖z‖∞ = ‖z‖∞, (v) is valid because ‖Q?‖∞ ≤ 1/(1− γ), (vi)
follows from the fact that Vih+1

= Ππih+1Qih+1
, and (vi) holds since ‖Vih+1

− V ?‖∞ ≤ ‖Qih+1
−Q?‖∞.

As it turns out, the first term in (97) allows one to build a telescoping sum. Specifically, invoking (97)
allows one to bound
H−1∑
h=0

h∏
k=1

γP πikVarP (V ?) ≤ 1

γ

H−1∑
h=0

h∏
k=1

γP πik
(
γP πih+1 (Q? ◦Q?)−Q? ◦Q?

)
+

4

1− γ max
t
2≤i<t

‖∆i‖∞
H−1∑
h=0

γh
h∏
k=1

P πik1 +
2

γ2

H−1∑
h=0

γh
h∏
k=1

P πik (Q? ◦ r)

(i)
=

1

γ

(H−1∑
h=0

h+1∏
k=1

γP πik −
H−1∑
h=0

h∏
k=1

γP πik

)
(Q? ◦Q?)

+
4

1− γ max
t
2≤i<t

‖∆i‖∞
H−1∑
h=0

γh1 +
2

γ2

H−1∑
h=0

γh
h∏
k=1

P πik (Q? ◦ r)

≤ 1

γ

( H∏
k=1

γP πik − I
)

(Q? ◦Q?) +
4

(1− γ)2
max
t
2≤i<t

‖∆i‖∞1

+
2

γ2

H−1∑
h=0

γh
h∏
k=1

P πik (Q? ◦ r)

(ii)

≤
(

2

γ
‖Q?‖2∞ +

4

(1− γ)2
max
t
2≤i<t

‖∆i‖∞ +
2

γ2

1

1− γ ‖Q
?‖∞‖r‖∞

)
1

(iii)

≤ 1

(1− γ)2

(
2

γ
+ 4 max

t
2≤i<t

‖∆i‖∞ +
2

γ2

)
1

≤ 1

(1− γ)2

(
4

γ2
+ 4 max

t
2≤i<t

‖∆i‖∞
)

1. (98)

Here, (i) comes from the identity
∏h
k=1P

πik1 = 1; (ii) holds because each row of
∏h
k=1P

πik has unit ‖ · ‖1
norm for any h; (iii) arises from the bound ‖Q?‖∞ ≤ 1/(1 − γ). This completes the proof, as long as the
claim (95) can be justified.

Proof of the inequality (95). To validate this result, we make the observation that

VarP (Vi)− VarP (V ?) =
[
P (Vi ◦ Vi)− (PVi) ◦ (PVi)

]
−
[
P (V ? ◦ V ?)− (PV ?) ◦ (PV ?)

]
29



= P (Vi ◦ Vi − V ? ◦ V ?) + (PV ?) ◦ (PV ?)− (PVi) ◦ (PVi)

= P
(
(Vi − V ?) ◦ (Vi + V ?)

)
+ (PV ? − PVi) ◦ (PV ? + PVi)

≤
{∥∥P ((Vi − V ?) ◦ (Vi + V ?)

)∥∥
∞ +

∥∥(PV ? − PVi) ◦ (PV ? + PVi)
∥∥
∞

}
1

≤ 4

1− γ ‖∆i‖∞1.

Here, the last inequality follows since (by applying Lemma 4)∥∥P ((Vi − V ?) ◦ (Vi + V ?)
)∥∥
∞ ≤ ‖P ‖1‖Vi − V

?‖∞‖Vi + V ?‖∞ ≤
2

1− γ ‖∆i‖∞,

and
∥∥(PV ? − PVi) ◦ (PV ? + PVi)

∥∥
∞ ≤ ‖P ‖1‖Vi − V

?‖∞ · ‖P ‖1‖Vi + V ?‖∞ ≤
2

1− γ ‖∆i‖∞.

A useful extension of Lemma 5. Before concluding, we make note of the following extension that proves
useful for studying asynchronous Q-learning.

Lemma 6. Suppose that t ≥ T
c2 log T . Then one has

H−1∑
h=0

γh
h∏
k=1

P π̂k max
t
2≤i<t

VarP (Vi) ≤
4

γ2(1− γ)2

(
1 + 2 max

t
2≤i<t

‖∆i‖∞
)
1 (99)

for any set of policies {π̂k} obeying {π̂k} ⊆ Π. Here, we define

Π :=
{
π = [π(s)]s∈S

∣∣π(s) ∈ Πs,∀s ∈ S
}
, Πs :=

{
πi(s) | i ∈ [t/2, t)

}
. (100)

The key difference between Lemma 6 and Lemma 5 is that: the components of π̂k corresponding to
different states can be chosen in a separate manner. The proof follows from an identical argument as the
above proof of Lemma 5, and is hence omitted.

C Analysis for TD learning (Theorem 1)
As it turns out, if |A| = 1 (which reduces to the case of TD learning), we can further modify the previous
analysis in Section B to yield an improved 1

(1−γ)3 scaling. This forms the main content of this section, which
leads to the proof of Theorem 1 for TD learning. Akin to the Q-learning case, we proceed to establish a more
general version of Theorem 1 that covers the full ε-range. This is formally stated below, which subsumes
Theorem 1 as a special case.

Theorem 8. Consider any γ ∈ (0, 1) and any ε ∈
(
0, 1

1−γ
]
. Theorem 1 continues to hold if

T ≥ c3
(

log3 T
)(

log |S|Tδ
)

γ2(1− γ)3 min{ε, ε2} (101)

for some sufficiently large universal constant c3 > 0.

C.1 Preliminary facts
Before embarking on the analysis, we begin by presenting several useful preliminary facts. The first one is a
direct consequence of the claimed iteration complexity (101) when ε ≤ 1

1−γ :

T ≥ c3
(

log3 T
)(

log |S|Tδ
)

γ2(1− γ)3 min{ε, ε2} ≥
c3
(

log3 T
)(

log |S|Tδ
)

γ2(1− γ)2
, (102)
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a simple fact that will be used multiple times. In addition, the update rule (7) of TD learning can be expressed
using vector/matrix notation as follows

Vt = (1− ηt)Vt−1 + ηt(r + γPtVt−1) for all t ≥ 1, (103)

where the matrix Pt ∈ {0, 1}|S|×|S| obeys

Pt(s, s
′) :=

{
1, if s′ = st(s)

0, else

for any s, s′ ∈ S. In the sequel, we collect a few other facts concerning the range of Vt and learning rates.

Range of Vt. We claim that: when the initialization V0 obeys 0 ≤ V0 ≤ 1
1−γ1, the TD learning iterates

obey

0 ≤ Vt ≤
1

1− γ 1 and ‖Vt − V ?‖∞ ≤
1

1− γ for all t ≥ 0, (104)

provided that 0 ≤ ηt ≤ 1 for all t ≥ 0. The proof follows immediately by repeating the proof of Lemma 4 (see
Section B.1) with |A| = 1, and is hence omitted for brevity.

Learning rates. We shall also collect several useful results concerning the learning rates {ηt}. Let us abuse
the notation by defining the following crucial quantities:

η
(t)
k :=


∏t
i=1

(
1− ηi(1− γ)

)
, if k = 0,

ηk
∏t
i=k+1

(
1− ηi(1− γ)

)
, if 0 < k < t,

ηt, if k = t.

(105)

Note that this definition (105) differs from the one (64) used for Q-learning, and will only be employed in
this section. Consider any iteration number t satisfying

t ≥ T

c2 log T
. (106)

Clearly, the learning rate ηt under Assumption (8a) obeys

(1− γ)ηt ≥
1− γ

1 + c1(1−γ)T
log2 T

≥ 1− γ
2c1(1−γ)T

log2 T

=
log2 T

2c1T
. (107)

In what follows, we intend to bound η(t)
k for two cases separately.

• For any i obeying 0 ≤ i ≤ t/2, it is easily seen from (107) that

η
(t)
i ≤

(
1− ηt/2(1− γ)

)t/2 ≤ (1− log2 T

2c1T

)t/2
≤
(

1− log2 T

2c1T

) T
2c2 log T

=

{(
1− log2 T

2c1T

) 2c1T

log2 T

} log T
4c1c2

≤ 1

T 2
, (108a)

where the last inequality holds as long as c1c2 ≤ 1/8 and (102) holds.

• When it comes to the case with i > t/2, we can develop the following upper bound

η
(t)
i ≤ ηi ≤

1

c2(1− γ)i/ log2 T
<

2 log3 T

(1− γ)T
, (108b)

which relies on Assumption (8a).
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In addition, given that P k1 = 1 for any integer k > 0, it can be easily verified that

t∏
i=k+1

(
I − ηi(I − γP )

)
1 =

t∏
i=k+1

(
1− ηi(1− γ)

)
1,

and as a result, ∥∥∥∥∥
t∏

i=k+1

(
I − ηi(I − γP )

)∥∥∥∥∥
1

=

t∏
i=k+1

(
1− ηi(1− γ)

)
. (109)

C.2 Proof of Theorem 8
Step 1: decomposing the error Vt − V ?. Taking ∆t := Vt − V ?, via the basic relation (32), the TD
learning update rule can be written as

∆t = (1− ηt)∆t−1 + ηtγ
(
P∆t−1 + (Pt − P )Vt−1

)
=
(
I − ηt(I − γP )

)
∆t−1 + ηtγ(Pt − P )Vt−1. (110)

Invoking the above relation recursively then leads to

∆t =

t∏
i=1

(
I − ηi(I − γP )

)
∆0 +

t∑
k=1

ηk

t∏
i=k+1

(
I − ηi(I − γP )

)
γ(Pk − P )Vk−1︸ ︷︷ ︸

=: ξt

. (111)

Step 2: controlling the first term of (111). With regards to the first term of (111), we make the
observation that ∥∥∥ t∏

i=1

(
I − ηi(I − γP )

)
∆0

∥∥∥
∞
≤
∥∥∥ t∏
i=1

(
I − ηi(I − γP )

)∥∥∥
1
‖∆0‖∞

=

{
t∏
i=1

(
1− ηi(1− γ)

)}
‖∆0‖∞

≤ η(t)
0 ·

1

1− γ ≤
1

(1− γ)T 2
, (112)

where the second line arises from (109), and the last inequality holds true due to (108a) as long as t ≥ T
c2 log T .

Step 3: controlling the second term of (111). We then move on to the second term ξt in (111), which
admits the following expression

ξt =

t∑
k=1

zk with zk := ηk

t∏
i=k+1

(
I − ηi(I − γP )

)
γ(Pk − P )Vk−1. (113)

Here, the summands {zk} clearly satisfy

E
[
zk |Vk−1, · · · ,V0

]
= 0.

We then attempt to invoke the Freedman inequality (see Theorem 6) to control this term. Towards this end,
there are several quantities that need to be calculated.

• First of all, we observe that

B := max
1≤k≤t

‖zk‖∞ ≤ max
1≤k≤t

∥∥∥ηk t∏
i=k+1

(
I − ηi(I − γP )

)
γ(Pk − P )Vk−1

∥∥∥
∞
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≤ max
1≤k≤t

∥∥∥ηk t∏
i=k+1

(
I − ηi(I − γP )

)∥∥∥
1

∥∥(Pk − P )Vk−1

∥∥
∞

= max
1≤k≤t

{
ηk

t∏
i=k+1

(
1− ηi(1− γ)

)}∥∥(Pk − P )Vk−1

∥∥
∞

≤ max
1≤k≤t

η
(t)
k

(
‖Pk‖1 + ‖P ‖1

)
‖Vk−1‖∞ ≤

4 log3 T

(1− γ)2T
, (114)

where the third line again makes use of the relation (109) and the last line follows the facts ‖Pk‖1 =
‖P ‖1 = 1, ‖Vk−1‖∞ ≤ 1/(1− γ), as well as the properties (108).

• The next step is to control certain variance terms. Towards this, we first make note of a userful fact.
For any given non-negative vector u = [ui]1≤i≤|S| ≥ 0 and any vector v, it is easily seen that

Var
(
u>(Pk − P )v

)
=

|S|∑
i=1

u2
iVar

(
(Pk − P )i,·v

)
≤
{

max
i
|ui|
}[
u1, · · · , u|S|

]
VarP (v)

≤ ‖u‖1u>VarP (v) , (115)

where we remind the reader of the notation VarP (v) in (26). Additionally, for any vector a = [aj ],
let us employ the notation Var

(
a |Vk−1, · · · ,V0

)
to represent a vector whose j-th entry is given by

Var
(
aj |Vk−1, · · · ,V0

)
. Armed with this notation, we obtain

Var
(
zk |Vk−1, · · · ,V0

)
≤ γ2

∥∥∥ηk t∏
i=k+1

(
I − ηi(I − γP )

)∥∥∥
1

{
ηk

t∏
i=k+1

(
I − ηi(I − γP )

)}
VarP (Vk−1)

= γ2

{
ηk

t∏
i=k+1

(
1− ηi(1− γ)

)}{
ηk

t∏
i=k+1

(
I − ηi(I − γP )

)}
VarP (Vk−1)

≤ ηkη(t)
k

t∏
i=k+1

(
I − ηi(I − γP )

)
VarP (Vk−1) , (116)

where the first inequality is a consequence of (115) and the definition of zk (cf. (113)), the second line
arises from (109), and the last relation results from the definition of η(t)

k . This in turn allows us to
compute

Wt :=

t∑
k=1

Var
(
zk |Vk−1, · · · ,V0

)
≤

t∑
k=1

ηkη
(t)
k

t∏
i=k+1

(
I − ηi(I − γP )

)
VarP (Vk−1)

≤
t/2∑
k=1

η
(t)
k

∥∥∥ηk t∏
i=k+1

(
I − ηi(I − γP )

)∥∥∥
1
‖Vk−1‖2∞1 +

t∑
k=t/2+1

ηkη
(t)
k

t∏
i=k+1

(
I − ηi(I − γP )

)
VarP (Vk−1)

≤
t/2∑
k=1

(
η

(t)
k

)2 1

(1− γ)2
1 +

{
max

k: t/2<k≤t
η

(t)
k

} t∑
k=t/2+1

ηk

t∏
i=k+1

(
I − ηi(I − γP )

)
VarP (Vk−1)

≤ 1

2(1− γ)2T 3
1 +

2 log3 T

(1− γ)T

(
t∑

k=t/2+1

ηk

t∏
i=k+1

(
I − ηi(I − γP )

))
max

k: t/2≤k<t
VarP

(
Vk
)

≤ 1

2(1− γ)2T 3
1 +

2 log3 T

(1− γ)T
(I − γP )−1 max

k: t/2≤k<t
VarP

(
Vk
)
, (117)

where the penultimate inequality results from (108); to see why the last inequality holds, observe that
t∑

k=t/2+1

ηk

t∏
i=k+1

(
I − ηi(I − γP )

)
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= (I − γP )−1
t∑

k=t/2+1

ηk(I − γP )

t∏
i=k+1

(
I − ηi(I − γP )

)
= (I − γP )−1

t∑
k=t/2+1

[ t∏
i=k+1

(
I − ηi(I − γP )

)
−

t∏
i=k

(
I − ηi(I − γP )

)]

= (I − γP )−1 − (I − γP )−1
t∏

i=t/2+1

(
I − ηi(I − γP )

)
≤ (I − γP )−1,

where we have used the fact that all entries of (I − γP )−1 and I − ηi(I − γP ) are non-negative.

• In addition, we also derive the following trivial upper bound based on (117):

∣∣Wt

∣∣ ≤ 1

2(1− γ)2T 3
1 +

2 log3 T

(1− γ)T

∥∥(I − γP )−1
∥∥

1
max

k: t/2≤k<t

∥∥VarP (Vk)∥∥∞1

≤ 1

2(1− γ)2T 3
1 +

2 log3 T

(1− γ)4T
1 ≤ 3 log3 T

(1− γ)4T
1 =: σ21, (118)

where we have invoked the fact that ‖(I−γP )−1‖1 = 1/(1−γ). Therefore, by setting K =
⌈
2 log2

1
1−γ

⌉
,

one arrives at
σ2

2K
≤ 3 log3 T

(1− γ)2T
. (119)

Equipped with the preceding bounds, let us apply the Freedman inequality in Theorem 6 and invoke the
union bound over all entries of ξt to show that

|ξt| ≤

√
8
(
Wt +

σ2

2K
1
)

log
8|S|T log 1

1−γ

δ
+
(4

3
B log

8|S|T log 1
1−γ

δ

)
1

≤
√

16
(
Wt +

3 log3 T

(1− γ)2T
1
)

log
|S|T
δ

+
(

3B log
|S|T
δ

)
1

≤

√
32
(

log3 T
)(

log |S|Tδ
)

(1− γ)T

(
(I − γP )−1 max

k: t/2≤k<t
VarP

(
Vk
)

+
2

1− γ 1
)

+
12
(

log3 T
)(

log |S|Tδ
)

(1− γ)2T
1

with probability at least 1− δ/T. Here, the second line follows since

log
8|S|T log 1

1−γ

δ
≤ 2 log

|S|T
δ

as long as |S|Tδ ≥ 8 log 1
1−γ , whereas the last line holds by using (114), (117) and (119). Further, we make

the observation that

(I − γP )−1VarP
(
V ?
)

= (I − γP )−1
(
P (V ? ◦ V ?)− (PV ?) ◦ (PV ?)

)
= (I − γP )−1

(
P (V ? ◦ V ?)− 1

γ2
(V ? − r) ◦ (V ? − r)

)
≤ (I − γP )−1

(
P (V ? ◦ V ?)− 1

γ2
V ? ◦ V ? +

2

γ2
r ◦ V ?

)
≤ (I − γP )−1

(
P (V ? ◦ V ?)− 1

γ
V ? ◦ V ? +

2

γ2
r ◦ V ?

)
=

1

γ
(I − γP )−1 (γP − I) (V ? ◦ V ?) +

2

γ2
(I − γP )−1 (r ◦ V ?)

≤ 2

γ2
(I − γP )−1 (r ◦ V ?) ≤ 2

γ2(1− γ)2
1,

34



where the second line makes use of the basic relation V ? = r + γPV ?. As a consequence, we conclude

(I − γP )−1 max
k: t/2≤k<t

VarP
(
Vk
)
≤ (I − γP )−1

(
VarP

(
V ?
)

+
4

1− γ max
k: t/2≤k<t

‖∆k‖∞1
)

≤ 2

γ(1− γ)2

(
1 + 2 max

k: t/2≤k<t
‖∆k‖∞

)
1. (120)

Here, the first inequality arises from (95), while the second inequality holds due to the facts that
∥∥(I −

γP )−1
∥∥

1
= 1/(1− γ).

Step 4: putting everything together. Consequently, substituting the bounds in Steps 2-3 into (111)
yields

‖∆t‖∞ ≤ 30

√√√√( log3 T
)(

log |S|Tδ
)

γ2(1− γ)3T

(
1 + max

t
2≤i<t

‖∆i‖∞
)

for all t ≥ T

c2 log T
. (121)

Repeating the same argument as in Section B.4, we see that

‖∆T ‖∞ ≤ c9
(√(

log3 T
)(

log |S|Tδ
)

γ2(1− γ)3T
+

(
log3 T

)(
log |S|Tδ

)
γ2(1− γ)3T

)
(122)

holds with probability at least 1− δ, where c9 > 0 is some universal constant. As a result, one has

‖∆T ‖∞ ≤
1

2

(√
min{ε, ε2}+ min{ε, ε2}

)
=

1

2

(
ε+ ε2

)
1{ε ≤ 1}+

1

2

(
ε+ ε2

)
1{ε > 1} ≤ ε,

as long as the sample size satisfies the following(
log3 T

)(
log |S|Tδ

)
γ2(1− γ)3T

≤ min{ε, ε2}
c3

,

for some constant c3 ≥ max{1, 2c9}. This requirement is equivalent to condition (101) as claimed.

C.3 Proof for Remarks 2 and 3
Proof for Remark 2. Let us divide the dynamics of the algorithm into two parts.

• For any 1 ≤ t ≤ T/2, it follows from Lemma 4 that

0 ≤ VT/2 ≤
1

1− γ 1. (123)

• Next, let us consider any T/2 < t ≤ T , and set t̃ = t− T/2. It comes from the choice (13) that

1

1 + c̃1(1−γ)(t̃+T/2)

log2(t̃+T/2+1)

≤ ηt̃+T/2 = ηt ≤
1

1 + c̃2(1−γ)(t̃+T/2)

log2(t̃+T/2+1)

=⇒ 1

1 + c1(1−γ)(T/2)
log2(T/2)

≤ ηt̃+T/2 ≤
1

1 + c2(1−γ)t̃
log2(T/2)

,

provided that c̃1 and c̃2 are suitably chosen. By treating VT/2 as the initial point and invoking
Theorem 1, we immediately establish (9) under the choice (13) and the sample size condition (14).
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Proof for Remark 3. Let us define, for each 1 ≤ t ≤ T ,

εt := min

{√√√√2c3(log3 T )
(

log |S|Tδ/T

)
(1− γ)3t

,
1

1− γ

}
. (124)

Invoking the claim in Remark 2 in conjunction with Lemma 4 reveals that with probability at least 1− δ/T ,

max
s∈S

∣∣Vt(s)− V ?(s)∣∣ ≤ εt
for any given t ≤ T . Taking the union bound over all 1 ≤ t ≤ T implies that with probability exceeding 1− δ,

max
s∈S

∣∣∣ 1

T

T∑
t=1

Vt(s)− V ?(s)
∣∣∣ ≤ 1

T

T∑
t=1

max
s∈S

∣∣Vt(s)− V ?(s)∣∣ ≤ 1

T

T∑
t=1

εt

≤

√
2c3(log3 T )

(
log |S|T

2

δ

)
(1− γ)3

1

T

T∑
t=1

1√
t
≤ 4

√
c3(log3 T )

(
log |S|Tδ

)
(1− γ)3T

,

where the last inequality results from the elementary inequality
∑T
t=1 1/

√
t ≤ 2

√
T . This finishes the proof.

D Lower bound: sub-optimality of synchronous Q-learning (Theo-
rem 3)

In this section, a main focus is to establish the lower bound claimed in Theorem 3 by analyzing synchronous
Q-learning for the MDP instance constructed in Section 4.3. Without loss of generality, we assume

log T ≤ 1

1− γ (125)

throughout the proof; otherwise the lower bound in Theorem 3 is worse than the minimax lower bound
1

(1−γ)3T in Azar et al. (2013).
Throughout, we shall use Pt to represent the sample transitions such that for any triple (s, a, s′),

Pt(s
′ | s, a) :=

{
1, if st(s, a) = s′,

0, otherwise,
(126)

where st(s, a) stands for the sample collected in the t-th iteration (see (5)). Recognizing that state 2 is
associated with a singleton action space, we shall often write

Pt(s
′ | 2) := Pt(s

′ | 2, 1)

for notational simplicity.

D.1 Key quantities related to learning rates
We find it convenient to define the following quantities (by abuse of notation)

η
(t)
k := ηk

t∏
i=k+1

(
1− ηi(1− γp)

)
for any 1 ≤ k < t, (127a)

η
(t)
0 :=

t∏
i=1

(
1− ηi(1− γp)

)
, (127b)

η
(t)
t := ηt. (127c)
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It is helpful to establish several basic properties about these quantities. As can be easily verified,

η
(t)
0 + (1− γp)

t∑
k=1

η
(t)
k =

t∏
i=1

(1− η̂i) + η̂1

t∏
i=2

(1− η̂i) + η̂2

t∏
i=3

(1− η̂i) + · · ·+ η̂t−1(1− η̂t) + η̂t = 1, (128)

where we denote η̂i := ηi(1− γp) to simplify notation. Similarly, for any given integer 0 ≤ τ < t one has

t∏
i=τ+1

(
1− ηi(1− γp)

)
+ (1− γp)

t∑
k=τ+1

η
(t)
k = 1. (129)

D.2 Preliminary calculations
Before moving forward, we record several basic relations as a result of the Q-learning update rule.

D.2.1 Basic update rules and expansion

Given that Q0 = V0 = 0 and that state 0 is absorbing, the update rule (4) gives

Vt(0) = Qt(0, 1) =
(
1− ηt(1− γ)

)
Qt−1(0, 1) =

t∏
i=1

(
1− ηi(1− γ)

)
Q0(0, 1) = 0 (130)

for all t ≥ 1. Regarding state 2, the update rule (4) taken together with (130) leads to

Vt(2) = Qt(2, 1) =
(
1− ηt

)
Qt−1(2, 1) + ηt

{
r(2, 1) + γPt(2 | 2)Vt−1(2) + γPt(0 | 2)Vt−1(0)

}
=
(
1− ηt

)
Vt−1(2) + ηt

{
1 + γPt(2 | 2)Vt−1(2)

}
, (131)

and for state 3,

Vt(3) = Qt(3, 1) =
(
1− ηt

)
Qt−1(3, 1) + ηt

{
r(3, 1) + γVt−1(3)

}
=
(
1− ηt(1− γ)

)
Vt−1(3) + ηt. (132)

Similarly, one also has

Qt(1, 1) = (1− ηt)Qt−1(1, 1) + ηt
{

1 + γPt(1 | 1, 1)Vt−1(1)
}
, (133a)

Qt(1, 2) = (1− ηt)Qt−1(1, 2) + ηt
{

1 + γPt(1 | 1, 2)Vt−1(1)
}
. (133b)

In what follows, we shall first determine a crude range for certain quantities relates to the learning rates ηt,
and then combine this with the above relations to establish the desired result.

Next, we record some elementary decomposition of Vt(2). For any iteration t and τ < t, one can continue
the derivation in (131) to obtain

Vt(2) =
(
1− ηt(1− γp)

)
Vt−1(2) + ηt

{
1 + γ

(
Pt(2 | 2)− p

)
Vt−1(2)

}
=

t∏
i=τ+1

(
1− ηi(1− γp)

)
Vτ (2) +

t∑
k=τ+1

ηk

t∏
i=k+1

(
1− ηi(1− γp)

){
1 + γ

(
Pk(2 | 2)− p

)
Vk−1(2)

}
=

t∏
i=τ+1

(
1− ηi(1− γp)

)
Vτ (2) +

t∑
k=τ+1

η
(t)
k +

t∑
k=τ+1

η
(t)
k γ

(
Pk(2 | 2)− p

)
Vk−1(2)

=

t∏
i=τ+1

(
1− ηi(1− γp)

)
Vτ (2) +

1−∏t
i=τ+1

(
1− ηi(1− γp)

)
1− γp +

t∑
k=τ+1

η
(t)
k γ

(
Pk(2 | 2)− p

)
Vk−1(2)

=
1

1− γp −
t∏

i=τ+1

(
1− ηi(1− γp)

) [ 1

1− γp − Vτ (2)

]
+

t∑
k=τ+1

η
(t)
k γ

(
Pk(2 | 2)− p

)
Vk−1(2), (134)
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where the penultimate line arises from (129). In particular, in the special case where τ = 0 (so that
Vτ (2) = V0(2) = 0), this simplifies to

Vt(2) =
1− η(t)

0

1− γp +

t∑
k=1

η
(t)
k γ

(
Pk(2 | 2)− p

)
Vk−1(2), (135)

which relies on the definition of η(t)
0 in (127). With similar derivation, (132) leads to

Vt(3) =
1

1− γ
[
1−

T∏
i=1

(
1− ηi(1− γ)

)]
= V ?(3)− 1

1− γ
T∏
i=1

(
1− ηi(1− γ)

)
. (136)

D.2.2 Mean and variance of V ?(2)− VT (2)

We start by computing the mean V ?(2) − E[Vt(2)]. From the construction (42), it is easily seen that
E[Pk(2 | 2)] = p, which together with the identity (135) leads to

E
[
VT (2)

]
=

1− η(T )
0

1− γp and V ?(2)− E
[
VT (2)

]
=

η
(T )
0

1− γp . (137)

Similarly, applying the above argument to (134) and rearranging terms, we immediately arrive at

V ?(2)− E
[
VT (2)

]
=

T∏
i=τ+1

(
1− ηi(1− γp)

) [ 1

1− γp − E
[
Vτ (2)

]]
(138)

for any integer 0 ≤ τ < T .
Next, we develop a lower bound on the variance Var

(
VT (2)

)
. Towards this end, consider first a martingale

sequence {Zk}0≤k≤T adapted to a filtration F0 ⊆ F1 ⊆ · · · ⊆ FT , namely, E[Zk+1 | Fk] = 0 and E[Zk | Fk] =
Zk for all 0 ≤ k ≤ T . In addition, consider any 0 ≤ τ < T , and let W0 be a random variable such that
E[W0 | Fτ ] = W0. Then the law of total variance together with basic martingale properties tells us that

Var

(
W0 +

T∑
k=τ+1

Zk

)
= E

[
Var

(
W0 +

T∑
k=τ+1

Zk | FT−1

)]
+ Var

(
E

[
W0 +

T∑
k=τ+1

Zk | FT−1

])

= E
[
Var (ZT | FT−1)

]
+ Var

(
W0 +

T−1∑
k=τ+1

Zk

)
= · · ·

=

T∑
k=τ+1

E
[
Var (Zk | Fk−1)

]
+ Var (W0) ≥

T∑
k=τ+1

E
[
Var (Zk | Fk−1)

]
. (139)

Consequently, for any 0 ≤ τ < T − 1, it follows from the decomposition (134) (with τ replaced by τ + 1) that

Var
(
VT (2)

)
≥ E

[
T∑

k=τ+2

Var
(
η

(T )
k γ

(
Pk(2 | 2)− p

)
Vk−1(2) |Vk−1(2)

)]

=

T∑
k=τ+2

(
η

(T )
k γ

)2
p(1− p)E

[(
Vk−1(2)

)2]
≥ (1− γ) (4γ − 1)

9
· 1

4(1− γ)2

T∑
k=τ+2

(
η

(T )
k

)2
=

4γ − 1

36 (1− γ)

T∑
k=τ+2

(
η

(T )
k

)2
, (140)

where the first identity relies on the fact that Pk(2 | 2) is a Bernoulli random variable with mean p, and the
inequality comes from the definition of τ (see (146)) and the choice of p (see (43)). As an implication, the
sum of squares of η(T )

k plays a crucial role in determining the variance of VT (2).
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D.3 Lower bounds for three cases
D.3.1 Case 1: small learning rates (cη ≥ log T or 0 ≤ η ≤ 1

(1−γ)T )

In this case, we focus on lower bounding V ?(2)− E
[
VT (2)

]
. In view of this identity (137), this boils down to

controlling η(T )
0 .

Suppose that cη > log T (for rescaled linear learning rates) or 0 ≤ η < 1
(1−γ)T (for constant learning rates).

A little algebra then gives

ηt(1− γp) ≤
{

1−γp
(1−γ)t log T = 4

3t log T ≤ 1
2 , if ηt = 1

1+cη(1−γ)t
1−γp

(1−γ)T = 4
3T ≤ 1

2 , if ηt = η
(141)

for any t ≥ 1, provided that T ≥ 15. Consequently, one can derive

log η
(T )
0 =

T∑
i=1

log
(
1− ηi(1− γp)

)
≥ −1.5

T∑
i=1

ηi(1− γp) ≥ −2, (142)

where the first inequality holds due to the elementary fact log(1− x) ≥ −1.5x for all 0 ≤ x ≤ 0.5, and the
last inequality follows from the following bound (which makes use of (141))

T∑
i=1

ηi(1− γp) ≤
{

3
4 log T

∑T
i=1

1
i ≤ 1, if ηt = 1

1+cη(1−γ)t
4

3T

∑T
i=1 1 = 4

3 , if ηt = η.

Combining the above result with the properties (137) and (142) then yields

V ?(2)− E
[
VT (2)

]
=

η
(T )
0

1− γp ≥
e−2

1− γp =
3

4e2(1− γ)
. (143)

This taken together with (45) gives

E
[(
V ?(2)− VT (2)

)2] ≥ (V ?(2)− E
[
VT (2)

])2 ≥ 9

16e4(1− γ)2
. (144)

D.3.2 Case 2: large learning rates (cη ≤ 1− γ or η ≥ 1
(1−γ)2T )

By virtue of (138), the mean gap V ?(2)−E
[
VT (2)

]
depends on two factors: (i) the choice of the learning rates,

and (ii) the gap between 1
1−γp and E

[
Vτ (2)

]
, where τ is an integer obeying 0 ≤ τ < T . To control the factor

(ii), we need to choose τ properly. Let us start by considering the simple scenario with E
[(
VT (2)

)2]
< 1

4(1−γ)2 ,
for which we have

V ?(2)− E
[
VT (2)

]
≥ 3

4(1− γ)
−
√
E
[(
VT (2)

)2] ≥ 1

4(1− γ)
. (145)

Here, we have used (44) and the elementary fact E[X] ≤
√
E[X2]. Consequently, it remains to look at the

scenario obeying E
[(
VT (2)

)2] ≥ 1
4(1−γ)2 , towards which we propose to set τ as follows

τ := min

{
0 ≤ τ ′ ≤ T − 1

∣∣∣ E[(Vt(2)
)2] ≥ 1

4(1− γ)2
for all τ ′ + 1 ≤ t ≤ T

}
. (146)

Clearly, τ is well-defined in this scenario and obeys (in view of both (146) and the initialization V0 = 0)

E
[(
Vτ (2)

)2]
<

1

4(1− γ)2
. (147)

Our analysis for this scenario is divided into three subcases based on the size of the learning rates.
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Case 2.1. Consider the case where

T∏
i=τ+1

(
1− ηi(1− γp)

)
≥ 1

2
. (148)

Invoke (138) to deduce that

V ?(2)− E
[
VT (2)

]
=

T∏
i=τ+1

(
1− ηi(1− γp)

)[ 1

1− γp − E
[
Vτ (2)

]]

≥
T∏

i=τ+1

(
1− ηi(1− γp)

)[ 3

4(1− γ)
−
√

E
[(
Vτ (2)

)2]]

≥
T∏

i=τ+1

(
1− ηi(1− γp)

) 1

4(1− γ)
≥ 1

8(1− γ)
,

where the second line makes use of the definition (43) and the elementary fact E[X] ≤
√

E[X2], and the last
line relies on the inequalities (147) and (148).

Case 2.2. We now move on to the case where

0 ≤
T∏

i=τ+1

(
1− ηi(1− γp)

)
≤ 1

2
. (149)

We intend to demonstrate that the variance of VT (2)—and hence the typical size of its fluctuation—is too
large. In view of the observation (140), it boils down to lower bounding

∑T
k=τ+2

(
η

(T )
k

)2, which we accomplish
as follows.

• Consider constant learning rates ηk = η, and suppose that η obeys 1
(1−γ)2T < η ≤ 1 < 1

1−γp . It is

readily seen that η(T )
k = η

(
1− η(1− γp)

)T−k for any k ≥ 1. We claim that it suffices to focus on the
scenario where

τ ≤ T − 2. (150)

In fact, if τ ≥ T − 1, then the definition (146) of τ necessarily requires that

E
[
VT−1(2)

]
≤
√

E
[(
VT−1(2)

)2]
<

1

2(1− γ)
.

In view of (137) (with T replaced by T − 1), a little algebra shows that this is equivalent to
(
1− η(1−

γp)
)T−1 ≥ 1/3, and hence

(
1− η(1− γp)

)T ≥ 1/9. In turn, this combined with (137) leads to

V ?(2)− E
[
VT (2)

]
=

(
1− η(1− γp)

)T
1− γp =

3
(
1− η(1− γp)

)T
4(1− γ)

≥ 1

12(1− γ)
, (151)

which already suffices for our purpose.

Next, assuming that (150) holds, one can derive

T∑
k=τ+2

(
η

(T )
k

)2
=

T∑
k=τ+2

η2
(
1− η(1− γp)

)2(T−k)
=
η2
[
1−

(
1− η(1− γp)

)2(T−τ−1)]
1−

(
1− η(1− γp)

)2
≥ η2/2

1−
(
1− η(1− γp)

)2 ≥ 3η

16(1− γ)
, (152)
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where the first inequality holds since (from the assumptions (149) and τ ≤ T − 2)

0 ≤
(
1− η(1− γp)

)2(T−τ−1) ≤
(
1− η(1− γp)

)T−τ
=

T∏
i=τ+1

(
1− ηi(1− γp)

)
≤ 1

2
,

and the last inequality follows since

0 ≤ 1−
(
1− η(1− γp)

)2
= 1−

(
1− 4η(1− γ)

3

)2

≤ 8η(1− γ)

3
.

Substituting (152) into (140), we obtain

Var
(
VT (2)

)
≥ 4γ − 1

36(1− γ)

T∑
k=τ+1

(
η

(T )
k

)2 ≥ 2

36(1− γ)
· 3η

16(1− γ)

=
η

96(1− γ)2
≥ 1

96(1− γ)4T
, (153)

provided that γ ≥ 3/4 (so that 4γ − 1 ≥ 2). Here, the last inequality is valid since either η ≥ 1
(1−γ)2T .

• We then move on to linearly rescaled learning rates with ηt = 1
1+cη(1−γ)t for some 0 ≤ cη < 1 − γ.

Towards this, we first make the observation that

η
(T )
k−1

η
(T )
k

=
ηk−1

(
1− ηk(1− γp)

)
ηk

=
1− 4

3 (1− γ)ηk

1−
(

1
ηk
− 1

ηk−1

)
ηk

=
1− 4

3 (1− γ)ηk

1− cη(1− γ)ηk
= 1−

(
4
3 − cη

)
(1− γ)ηk

1− cη(1− γ)ηk

≤ 1− (1− γ)ηk ≤ 1− (1− γ)ηT , (154)

with the proviso that cη < 1− γ ≤ 1/3 (as long as γ ≥ 2/3). By defining τ ′ := T − 1
(1−γ)ηT

, one can
deduce that

T∑
k=τ+2

(
η

(T )
k

)2 ≥ T∑
k=max{τ+2,τ ′+1}

(
η

(T )
k

)2 ≥ 1

T −max{τ + 1, τ ′}

 T∑
k=max{τ+2,τ ′+1}

η
(T )
k

2

≥ (1− γ)ηT

 T∑
k=max{τ+2,τ ′+1}

η
(T )
k

2

, (155)

where the penultimate inequality comes from the Cauchy-Schwarz inequality. In addition, recognizing
that η(T )

k1
≤
(
1− (1− γ)ηT

)k2−k1
η

(T )
k2

for any k2 ≥ k1 (see (154)), one has

T∑
k=τ ′+1

η
(T )
k =

T∑
k=τ ′+1

η
(T )
k ,

τ ′∑
k=max{2τ ′−T+1,1}

η
(T )
k ≤

(
1− (1− γ)ηT

)T−τ ′ T∑
k=τ ′+1

η
(T )
k ,

2τ ′−T∑
k=max{3τ ′−2T+1,1}

η
(T )
k ≤

(
1− (1− γ)ηT

)2(T−τ ′)
T∑

k=τ ′+1

η
(T )
k ,

· · ·

Summing these inequalities up and rearranging terms, we reach

T∑
k=τ ′+1

η
(T )
k ≥

∑T
k=1 η

(T )
k

1 +
(
1− (1− γ)ηT

)T−τ ′
+
(
1− (1− γ)ηT

)2(T−τ ′)
+ . . .

≥
∑T
k=1 η

(T )
k

1

1−
(

1−(1−γ)ηT

)T−τ′
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=
(

1−
(
1− (1− γ)ηT

)T−τ ′) T∑
k=1

η
(T )
k ≥ (1− e−1)

T∑
k=1

η
(T )
k ,

which relies on the fact
(
1− (1− γ)ηT

)T−τ ′
=
(
1− 1/(T − τ ′)

)T−τ ′ ≤ e−1 (using the definition of τ ′).
Consequently, it is easily seen that

T∑
k=max{τ+2,τ ′+1}

η
(T )
k = min

{
T∑

k=τ+2

η
(T )
k ,

T∑
k=τ ′+1

η
(T )
k

}
≥ (1− e−1)

T∑
k=τ+2

η
(T )
k

(i)
= (1− e−1)

[
1−

t∏
i=τ+2

(
1− ηi(1− γp)

)] 1

1− γp
(ii)
≥
[

1− 1

2
(
1− ητ+1(1− γp)

)] 1− e−1

1− γp
(iii)
≥ 1− e−1

4(1− γp) ≥
3

32(1− γ)
.

Here, (i) and (ii) follow from (129) and (149), respectively, while (iii) holds since

ητ+1(1− γp) ≤ 1− γp =
4(1− γ)

3
≤ 1

3

as long as γ ≥ 3/4. Substitution into (155) yields

T∑
k=τ+2

(
η

(T )
k

)2 ≥ 9ηT
1024(1− γ)

. (156)

Substituting the above bound into (140), we obtain

Var
(
VT (2)

)
≥ 4γ − 1

36(1− γ)

T∑
k=τ+1

(
η

(T )
k

)2 ≥ 2

36(1− γ)
· 9ηT

1024(1− γ)

=
ηT

2048(1− γ)2
≥ 1

4096(1− γ)4T
, (157)

provided that γ ≥ 3/4 (so that 4γ − 1 ≥ 2). Here, the last inequality is valid since ηT = 1
1+cη(1−γ)T ≥

1
1+(1−γ)2T ≥ 1

2(1−γ)2T as long as T ≥ 1
(1−γ)2 .

Putting all this together. With the above bounds in place, it is readily seen that either the bias is too
large (see (151)) or the variance is too large (see (153) and (157)). These bounds taken collectively with (45)
yield

E
[(
V ?(2)− VT (2)

)2] ≥ (V ?(2)− E
[
VT (2)

])2
+ Var

(
VT (2)

)
≥ min

{
1

144(1− γ)2
,

1

96(1− γ)4T
,

1

4096(1− γ)4T

}
=

1

4096(1− γ)4T
, (158)

provided T ≥ 1
(1−γ)2 .

D.3.3 Case 3: medium learning rates (1− γ < cη < log T or 1
(1−γ)T ≤ η ≤ 1

(1−γ)2T )

Throughout this case, we assume that

η
(T )
0 ≤ 1

75
. (159)

In fact, if η(T )
0 > 1/75, then the scenario becomes much easier to cope with. To see this, applying the previous

result (143) and recalling the choice (43) of p immediately yield

V ?(2)− E
[
VT (2)

]
≥ η

(T )
0

1− γp >
1

100(1− γ)
, (160)
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which together with (45) and the assumption T ≥ 1
(1−γ)2 yields

E
[(
V ?(2)− VT (2)

)2] ≥ (V ?(2)− E
[
VT (2)

])2 ≥ 1

10000(1− γ)2
≥ 1

10000(1− γ)4T
. (161)

We now turn our attention to the dynamics w.r.t. state 1 and its associated value function Vt(1) under
the condition (159).

Two auxiliary sequences. Towards this, we first eliminate the effect of initialization on Qt(1, a) by
introducing the following auxiliary sequence

Q̂t(a) = (1− ηt)Q̂t−1(a) + ηt
{

1 + γPt(1 | 1, a)V̂t−1

}
, (162)

with

V̂t−1 := max
a

Q̂t−1(a) and Q̂0(a) := Q?(1, a) =
1

1− γp ,

where we recall the value of Q?(1, a) from Lemma 3. In other words, {Q̂t(a)} is essentially a Q-learning
sequence when initialized at the ground truth. Despite the difference in initialization, we claim that the
discrepancy between Q̂t(a) and Qt(1, a) can be well controlled in the following sense:

Qt(1, a) ≥ Q̂t(a)− 1

1− γ
t∏
i=1

(
1− ηi(1− γ)

)
, a ∈ {1, 2}, (163)

which shall be justified in Section D.3.4. As we shall discuss momentarily, the gap 1
1−γ

∏t
i=1

(
1− ηi(1− γ)

)
is sufficiently small for this case.

Further, in order to control Q̂t(a), we find it convenient to introduce another auxiliary sequence as follows

Qt = (1− ηt)Qt−1 + ηt
{

1 + γPt(1 | 1, 1)Qt−1

}
and Q0 = V ?(1) =

1

1− γp , (164)

which can be interpreted as a Q-learning sequence when there is only a single action (so that there is no max
operator involved). In view of the basic fact that V̂t = maxa Q̂t(a) ≥ Q̂t(1), we can easily verify that

Q̂t(1) ≥ (1− ηt)Q̂t−1(1) + ηt
{

1 + γPt(1 | 1, 1)Q̂t−1(1)
}
≥ Qt, (165)

allowing one to lower bound V̂t by controlling Qt.

A useful lower bound on the auxiliary sequence (162). In what follows, let us establish a useful lower
bound on the sequence (162) introduced above. Then we claim that there exists some τ ≤ T (see (179) and
(181)) such that

P
{
V̂t ≥

1

4(1− γ)

}
≥ 1

2
, for t ≥ τ. (166)

The auxiliary sequence constructed in (164) plays a crucial role in establishing this claim.

Proof of the claim (166). We intend to employ the sequence Qt (cf. (164)) to help control V̂t. It is first
observed that the sequence Qt admits the following decomposition (akin to the derivation in (135))

Qt =
(
1− ηt(1− γp)

)
Qt−1 + ηt

{
1 + γ

(
Pt(1 | 1, 1)− p

)
Qt−1

}
=

t∏
i=1

(
1− ηi(1− γp)

)
Q0 +

t∑
k=1

ηk

t∏
i=k+1

(
1− ηi(1− γp)

){
1 + γ

(
Pk(1 | 1, 1)− p

)
Qk−1

}
= η

(t)
0

1

1− γp +

t∑
k=1

η
(t)
k +

t∑
k=1

η
(t)
k γ

(
Pk(1 | 1, 1)− p

)
Qk−1
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=
1

1− γp +

t∑
k=1

η
(t)
k γ

(
Pk(1 | 1, 1)− p

)
Qk−1︸ ︷︷ ︸

=: zk

, (167)

where the last line results from (128). In order to lower bound Qt, it boils down to controlling
∑
k zk.

Note that the sequence {zk} defined above is a martingale satisfying

E
[
zk |Pk−1(1 | 1, 1), . . . , P1(1 | 1, 1)

]
= 0

and |zk| ≤ max
1≤k≤t

η
(t)
k ·

γp

1− γ ,

where the last inequality follows from the basic property 0 ≤ Qk−1 ≤ 1
1−γ (akin to Lemma 4) and the fact that∣∣Pk(1 | 1, 1)− p

∣∣ ≤ max{p, 1− p} = p since p = (4γ − 1)/(3γ) and γ ≥ 3/4. We intend to invoke Freedman’s
inequality to control (167). Armed with these properties and the fact that Pk(1 | 1, 1) is a Bernoulli random
variable with mean p, we obtain

t∑
k=1

Var
(
zk |Pk−1(1 | 1, 1), . . . , P1(1 | 1, 1)

)
=

t∑
k=1

(
η

(t)
k

)2
p(1− p)

(
γQk−1

)2
≤ max

1≤k≤t
η

(t)
k ·

t∑
k=1

η
(t)
k ·

1

3(1− γ)
≤ max1≤k≤t η

(t)
k

4(1− γ)2
.

Here, the penultimate inequality relies on the fact 0 ≤ Qk−1 ≤ 1
1−γ (akin to Lemma 4) and the choice of p

(see definition (43)), whereas the last inequality results from the following condition (derived through (128))

t∑
k=1

η
(t)
k =

(
1− η(t)

0

) 1

1− γp ≤
1

1− γp =
3

4(1− γ)
.

Applying Freedman’s inequality (see (58)) then yields

P


∣∣∣∣ t∑
k=1

zk

∣∣∣∣ ≥
√

4 max1≤k≤t η
(t)
k

(1− γ)2
log

2

δ
+

4 max1≤k≤t η
(t)
k

3(1− γ)
log

2

δ

 ≤ δ. (168)

As an implication of the preceding result, a key ingredient towards bounding
∑t
k=1 zk lies in controlling

the quantity max1≤k≤t η
(t)
k . To do so, we claim for the moment that there exists some τ ≤ T such that

max
1≤k≤t

η
(t)
k ≤

1

50
, for t ≥ τ, (169)

whose proof is postponed to Section D.3.4. In light of this claim, setting δ = 1/2 in the expression (168)
yields

t∑
k=1

zk ≥ −
1

2(1− γ)

with probably at least 1/2. Combining this with the decomposition (167) and the property (165), we arrive at

V̂t ≥ Q̂t(1) ≥ Qt ≥
1

1− γp −
1

2(1− γ)
=

1

4(1− γ)

with probability at least 1/2, where the last identity relies on the choice of p (see the definition (43)). This
establishes the advertised claim (166).
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Main proof. With the property (166) in place, we are positioned to prove our main result. Towards this,
we find it convenient to define

∆t(a) := Q̂t(a)−Q?(1, a), a = 1, 2; (170a)
∆t,max := max

a
∆t(a). (170b)

The goal is thus to control ∆T,max; in fact, we intend to show that ∆T,max is in expectation excessively large,
resulting in an “over-estimation” issue that hinders convergence. Towards this, it follows from the iterative
update rule (162) that

∆t(a) = (1− ηt)∆t−1(a) + ηt
(
1 + γPt(1 | 1, a)V̂t−1 −Q?(1, a)

)
= (1− ηt)∆t−1(a) + ηtγ

(
Pt(1 | 1, a)V̂t−1 − pV ?(1)

)
= (1− ηt)∆t−1(a) + ηtγ

(
p
(
V̂t−1 − V ?(1)

)
+
(
Pt(1 | 1, a)− p

)
V̂t−1

)
= (1− ηt)∆t−1(a) + ηtγ

(
p∆t−1,max +

(
Pt(1 | 1, a)− p

)
V̂t−1

)
.

Here, the second line comes from the Bellman equation Q?(1, a) = 1 + γpV ?(1), whereas the last line holds
since V̂t−1 − V ?(1) = maxa

(
Q̂t−1(a) − V ?(1)

)
= maxa ∆t−1(a) (as a consequence of the relation (44)).

Applying the above relation recursively leads to

∆t(a) =

t∑
k=1

ηk

t∏
i=k+1

(
1− ηi

)
γ
(
p∆k−1,max +

(
Pk(1 | 1, a)− p

)
V̂k−1

)
, (171)

where we have used the initialization ∆0(a) = 0. Letting

ξt(a) :=

t∑
k=1

ηk

t∏
i=k+1

(
1− ηi

)
γ
(
Pk(1 | 1, a)− p

)
V̂k−1, (172a)

ξt,max := max
a

ξt(a), (172b)

one can express the above relation as follows

∆t,max =

t∑
k=1

ηk

t∏
i=k+1

(
1− ηi

)
γp∆k−1,max + ξt,max.

Next, we claim that E[ξt,max] satisfies the following property

E[ξt,max] ≥
c√

(1− γ)2T log T
for all t ≥ τ̂ (173)

for some universal constant c > 0, where

τ̂ := max

{
τ ′
∣∣∣ T∏
i=τ ′

(
1− ηi(1− γp)

)
≤ 6

7

}
, (174)

whose existence is ensured under the condition (159). Given the validity of this claim (which we shall justify
in Section D.3.4), we immediately arrive at

E[∆t,max] ≥
t∑

k=1

ηk

t∏
i=k+1

(
1− ηi

)
γpE[∆k−1,max] +

c√
(1− γ)2T log T

for all t ≥ τ̂ . (175)

In order to study the above recursion, it is helpful to look at the following sequence

xt = (1− ηt)xt−1 + ηt

(
γpxt−1 +

c√
(1− γ)2T log T

)
(176)
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with xτ̂ = 0, where we recall the definition of τ̂ in (174). In comparison to the iterative relation (175) which
starts from E[∆0,max] = 0 (and hence E[∆t,max] ≥ 0), we let the sequence xt start from xτ̂ = 0, where τ̂ is
defined in (174). It is straightforward to verify that

E
[
∆T,max

]
≥ xT , (177)

recognizing that

xt =

t∑
k=τ̂

ηk

t∏
i=k+1

(
1− ηi

)
γpxk−1 +

T∑
k=τ̂

ηk

T∏
i=k+1

(
1− ηi)

c√
(1− γ)2T log T

.

A little algebra reveals that the sequence (176) obeys

xT =
c√

(1− γ)2T log T

T∑
k=τ̂

ηk

T∏
i=k+1

(
1− ηi(1− γp)

)
=

c√
(1− γ)2T log T

1

1− γp

[
1−

T∏
i=τ̂

(
1− ηi(1− γp)

)]

=
3c

4
√

(1− γ)4T log T

[
1−

T∏
i=τ̂

(
1− ηi(1− γp)

)]
≥ 3c

28
√

(1− γ)4T log T
,

where the second equality arises from (129), and the last inequality holds as long as
∏T
i=τ̂

(
1−ηi(1−γp)

)
≤ 6/7

(see (189)). This taken together with (177) leads to

E
[
∆T,max

]
≥ xT ≥

3c

28
√

(1− γ)4T log T
.

Combining the above bound with (163) leads to

E
[
VT (1)− V ?(1)

]
≥ E

[
∆T,max −

1

1− γ
T∏
i=1

(
1− ηi(1− γ)

)]
≥ 3c

28
√

(1− γ)4T log T
− 1

1− γ
T∏
i=1

(
1− ηi(1− γ)

)
.

Taking this together with (136), we arrive at

max
{
E
[∣∣VT (3)− V ?(3)

∣∣], E[∣∣VT (1)− V ?(1)
∣∣]}

≥ max

{
1

1− γ
T∏
i=1

(
1− ηi(1− γ)

)
,

3c

28
√

(1− γ)4T log T
− 1

1− γ
T∏
i=1

(
1− ηi(1− γ)

)}

≥ 1

2
· 1

1− γ
T∏
i=1

(
1− ηi(1− γ)

)
+

1

2

[
3c

28
√

(1− γ)4T log T
− 1

1− γ
T∏
i=1

(
1− ηi(1− γ)

)]

=
3c

56
√

(1− γ)4T log T
.

This combined with (45) establishes the following desired lower bound:

max
s

E
[∣∣VT (s)− V ?(s)

∣∣2] ≥ ( 3c

56
√

(1− γ)4T log T

)2

=
9c2

562(1− γ)4T log2 T
.

D.3.4 Proofs of auxiliary results

Proof of the inequality (163). We shall establish this claim by induction. To begin with, the inequality
(163) holds trivially for the base case with t = 0. Now, let us assume that the claim holds up to the (t− 1)-th
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iteration, and we would like to justify it for the t-th iteration. As an immediate consequence of the claim
(163) for the (t− 1)-th iteration and the definitions of Vt−1 and V̂t−1, we have

Vt−1(1) = max
a

Qt−1(1, a) ≥ max
a

Q̂t−1(a)− 1

1− γ
t−1∏
i=1

(
1− ηi(1− γ)

)
= V̂t−1 −

1

1− γ
t−1∏
i=1

(
1− ηi(1− γ)

)
.

By virtue of the respective update rules of Qt(1, a) and Q̂t(a), we can express their difference as follows:

Qt(1, a)− Q̂t(a) = (1− ηt)
(
Qt−1(1, a)− Q̂t−1(a)

)
+ ηtγPt(1 | 1, a)

(
Vt−1(1)− V̂t−1

)
≥ −(1− ηt)

1

1− γ
t−1∏
i=1

(
1− ηi(1− γ)

)
− ηtγPt(1 | 1, a)

1

1− γ
t−1∏
i=1

(
1− ηi(1− γ)

)
≥ −(1− ηt)

1

1− γ
t−1∏
i=1

(
1− ηi(1− γ)

)
− ηtγ

1

1− γ
t−1∏
i=1

(
1− ηi(1− γ)

)
= − 1

1− γ
t∏
i=1

(
1− ηi(1− γ)

)
,

where the first inequality invokes the induction hypothesis for the (t− 1)-th iteration. This establishes (163)
for the t-th iteration, and hence the proof is complete via an induction argument.

Proof of the claim (169). When taking the constant learning rates ηt ≡ η ≤ 1
(1−γ)2T ≤ 1

50 (under the
condition T ≥ 50

(1−γ)2 ), one has

max
1≤k≤t

η
(t)
k ≤ ηt = η ≤ 1

50
,

thus allowing us to take τ = 1 for this case.
It then suffices to look at rescaled linear learning rates (i.e., ηt = 1

1+cη(1−γ)t ). As already calculated in
the expression (154), the ratio of two consecutive quantities obeys

η
(t)
k−1

η
(t)
k

=
1− 4

3 (1− γ)ηk

1− cη(1− γ)ηk
. (178)

In what follows, we divide into two cases, depending on whether this sequence is decreasing or increasing.

• The case with 4/3 ≤ cη < log T . In this scenario, the ratio in (178) is larger than 1, and hence the
sequence {η(t)

k } decreases with k. Let us define

τ := min

{
τ ′
∣∣∣ τ ′∏
i=1

(
1− ηi(1− γp)

)
≤ 1

50

}
, (179)

which clearly satisfies τ ≤ T (in view of (159)). For all t ≥ τ , one has

max
1≤k≤t

η
(t)
k ≤

τ∏
i=1

(
1− ηi(1− γp)

)
≤ 1

50
.

At the same time, we claim that one must have

T∏
i=τ

(
1− ηi(1− γp)

)
≤ 2

3
. (180)
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Otherwise, recalling η(T )
0 =

∏T
i=1

(
1− ηi(1− γp)

)
, we have

η
(T )
0 =

{
τ−1∏
i=1

(
1− ηi(1− γp)

)}{ T∏
i=τ

(
1− ηi(1− γp)

)}
>

1

50
· 2

3
=

1

75
,

which contradicts our assumption that η(T )
0 > 1/75 (cf. (159)).

• The case with 1− γ < cη < 4/3. In this case, the sequence η(t)
k increases with k. If we set

τ :=
⌈ 49

cη(1− γ)

⌉
<

50

(1− γ)2
< T, (181)

then for all t ≥ τ we have

max
1≤k≤t

η
(t)
k = η

(t)
t = ηt ≤ ητ ≤

1

1 + cη(1− γ) 49
cη(1−γ)

=
1

50
.

Under the condition T ≥ 150
(1−γ)2 ≥ 150

cη(1−γ) (so that T − τ + 1 ≥ 100
cη(1−γ) ≥ 100

(1−γ)4/3 ), one can show that

T∏
i=τ

(
1− ηi(1− γp)

)
≤
(

1− 1− γ
100

)T−τ+1

≤
(

1− 1− γ
100

) 100
(1−γ)4/3 ≤ 3

4
. (182)

• Putting these two cases together (with τ specified in (179) and (181)), we obtain

max
1≤k≤t

η
(t)
k ≤

1

50
(183)

for all t ≥ τ , thus establishing the desired inequality (169).

Proof of the inequality (173). For every t, recalling the definition (172), it is convenient to write

E[ξt,max] = E
[
ξt(1) + ξt(2) + |ξt(1)− ξt(2)|

2

]
= E

[ |ξt(1)− ξt(2)|
2

]
=

1

2
E

[ ∣∣∣∣∣
t∑

k=1

ηk

t∏
i=k+1

(
1− ηi

)
γ
(
Pk(1 | 1, 1)− Pk(1 | 1, 2)

)
V̂k−1)

∣∣∣∣∣
]
,

where we have used the fact that E[ξt(a)] = 0. To control the right-hand side of the above equation, let us
define

ζt :=

t∑
k=1

zk, zk := ηk

t∏
i=k+1

(
1− ηi

)
γ
(
Pk(1 | 1, 1)− Pk(1 | 1, 2)

)
V̂k−1

for any k ≥ 1, where {zk} also forms a martingale sequence since

E
[
zk |
{
Pj(1 | 1, 1), Pj(1 | 1, 2)

}
1≤j<k

]
= 0.

As a consequence of Freedman’s inequality, we claim that ζt satisfies

P

∣∣ζt∣∣ ≥
√√√√ 8 log 2

δ

3(1− γ)

t∑
k=1

η2
k

[ t∏
i=k+1

(
1− ηi

)]2
+

4ηt log 2
δ

3(1− γ)

 ≤ δ. (184)

To verify this relation, we first notice that

|zk| ≤ max
1≤k≤t

ηk

t∏
i=k+1

(
1− ηi

)
· 1

1− γ ≤
ηt

1− γ , (185)
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provided that maxk ηk
∏t
i=k+1

(
1− ηi

)
≤ ηt. To verify the condition maxk ηk

∏t
i=k+1

(
1− ηi

)
≤ ηt, one can

check—similar to (154)—that

ηk−1

∏t
i=k

(
1− ηi

)
ηk
∏t
i=k+1

(
1− ηi

) = 1−
(
1− cη(1− γ)

)
ηk

1− cη(1− γ)ηk
≤ 1, (186)

which indicates that ηk
∏t
i=k+1

(
1− ηi

)
is an increasing sequence as long as cη ≤ log T ≤ 1

1−γ (see (125)). In
addition to the boundedness condition (185), we can further calculate

t∑
k=1

Var
(
zk |Pk−1(1 | 1, 1), Pk−1(1 | 1, 2), . . . , P1(1 | 1, 1), P1(1 | 1, 2)

)
=

t∑
k=1

η2
k

[
t∏

i=k+1

(
1− ηi

)]2

· 2p(1− p) ·
(
γV̂k−1

)2 ≤ t∑
k=1

η2
k

[
t∏

i=k+1

(
1− ηi

)]2

· 2

3(1− γ)
,

where the last inequality comes from the facts that V̂k−1 ≤ 1
1−γ and the choice p = 4γ−1

3γ . These bounds
taken together with Freedman’s inequality (see (58)) validate (184).

By virtue of (184), setting δ = (1−γ)2

2 E
[
|ζt|2

]
yields that with probability at least 1− δ,

|ζt| ≤ B :=

√√√√ 8 log 2
δ

3(1− γ)

t∑
k=1

η2
k

[ t∏
i=k+1

(
1− ηi

)]2
+

4ηt log 2
δ

3(1− γ)
with δ =

(1− γ)2

2
E
[
|ζt|2

]
. (187)

When T ≥ 1
(1−γ)2 , one can ensure that

E[ξt,max] =
1

2
E
[
|ζt|
]
≥ 1

2
E
[
|ζt|1

(
|ζt| ≤ B

)]
≥ 1

2B
E
[
|ζt|21

(
|ζt| ≤ B

)]
=

1

2B

{
E[|ζt|2]− E

[
|ζt|21

(
|ζt| > B

)]}
(i)

≥ 1

2B

{
E[|ζt|2]− 1

(1− γ)2
P
{
|ζt| > B

}}
≥ 1

2B

{
E[|ζt|2]− δ

(1− γ)2

} (ii)

≥ 1

4B
E[|ζt|2]. (188)

Here, (i) holds since

∣∣ζt∣∣ ≤ t∑
k=1

|zk| ≤
[

t∑
k=1

ηk

t∏
i=k+1

(
1− ηi

)]
· 1

1− γ ≤
1

1− γ

as a consequence of (185) and (69); (ii) holds by the choice of δ. It is thus sufficient to lower bound E[|ζt|2].
Towards this, let us define

τ̂ := max

{
τ ′
∣∣∣ T∏
i=τ ′

(
1− ηi(1− γp)

)
≤ 6

7

}
, (189)

which clearly satisfies τ ≤ τ̂ ≤ T (in view of (180) and (182)). Then, for all t ≥ τ̂ one has (which shall be
proved towards the end of this subsection)

t∑
k=τ

η2
k

[ t∏
i=k+1

(
1− ηi

)]2
≥ 1

8

t∑
k=1

η2
k

[ t∏
i=k+1

(
1− ηi

)]2
. (190)

We now proceed to lower bound E[|ζt|2] for t ≥ τ̂ . We first observe that for any t ≥ τ̂ ,

E
[
|ζt|2

]
≥

t∑
k=1

E

[
Var
(
ηk

t∏
i=k+1

(
1− ηi

)
γ
(
Pk(1 | 1, 1)− Pk(1 | 1, 2)

)
V̂k−1 | V̂k−1

)]
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≥ 1

2

t∑
k=τ

E

[
Var
(
ηk

t∏
i=k+1

(
1− ηi

)
γ
(
Pk(1 | 1, 1)− Pk(1 | 1, 2)

)
V̂k−1 | V̂k−1 ≥

1

4(1− γ)

)]
,

where the first line relies on (139), and the last step makes use of the fact (166). To further control the
right-hand side of the above inequality, we take τ ′ := max

{
t− 1

ηt/2
, 1
}

and show that

E
[
|ζt|2

] (i)
≥ 1

2

t∑
k=τ

η2
k

[ t∏
i=k+1

(
1− ηi

)]2
γ2 · 2p(1− p) 1

16(1− γ)2

≥ 1

48(1− γ)

t∑
k=τ

η2
k

[ t∏
i=k+1

(
1− ηi

)]2 (ii)
≥ 1

400(1− γ)

t∑
k=1

η2
k

[ t∏
i=k+1

(
1− ηi

)]2
≥ 1

400(1− γ)

t∑
k=τ ′

η2
k

[ t∏
i=k+1

(
1− ηi

)]2 (iii)
≥ ηt

9600(1− γ)
. (191)

Here, (i) makes use of the constraint V̂k−1 ≥ 1
4(1−γ) , while (ii) makes use of (190), and (iii) are valid if the

following property holds (which shall be proved towards the end of this subsection)

t∑
k=τ ′

η2
k

[ t∏
i=k+1

(
1− ηi

)]2
≥ 1

24
ηt. (192)

We are now well-equipped to control E[ξt,max] using the property (188). Recall the expression of B in
(187), we know that bounding E[|ζt|2]/B boils down to controlling

E[|ζt|2]
ηt

1−γ log 2
δ

and
E[|ζt|2]√

log 2
δ

1−γ
∑t
k=1 η

2
k

[∏t
i=k+1

(
1− ηi

)]2 . (193)

• For the first term in (193), recalling that δ = (1−γ)2

2 E
[
|ζt|2

]
, we can demonstrate that

log
1

δ
= − log

(1− γ)2

2
E
[
|ζt|2

]
≤ − log

(1− γ)ηt
19200

≤ log
19200(1 + (1− γ)T log T )

1− γ . log T, (194)

where the first inequality makes use of the bound (191), and the second inequality arises from the fact
ηt ≥ 1

1+(1−γ)T log T (given the range of the learning rates in this case). Combining this with (191), we
can guarantee that

E[|ζt|2]
ηt

1−γ log 2
δ

&
1

log T
.

• Moving to the second term in (193), one can ensure that

E
[
|ζt|2

]√
log 2

δ

1−γ
∑t
k=1 η

2
k

[∏t
i=k+1

(
1− ηi

)]2 (i)

&

√√√√ 1

(1− γ) log T

t∑
k=1

η2
k

[ t∏
i=k+1

(
1− ηi

)]2
(ii)

&
√

ηt
(1− γ) log T

(iii)

&
1√

(1− γ)2T log T
.

Here, (i) follows from (191) and (194) since

E
[
|ζt|2

]
&

1

1− γ
t∑

k=1

η2
k

[ t∏
i=k+1

(
1− ηi

)]2
and log

2

δ
. log T ;

(ii) arises from (192); and (iii) relies on the fact ηt & 1
(1−γ)T log T (given the range of the learning rates

in this case).
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Substituting the above relations into (188) and using the expression of B in (187), we reach at

E[ξt,max] ≥
1

4B
E
[
|ζt|2

]
≥ c√

(1− γ)2T log T
,

for some constant c > 0. Thus, this validates the inequality (173).

Proof of the claim (190). By the definition of τ̂ in (189), we have
∏T
i=τ̂

(
1−ηi(1−γp)

)
≤ 6/7. An important

observation is that
t∑

k=τ

ηk

[
t∏

i=k+1

(
1− ηi

)] (i)
= 1−

t∏
i=τ

(
1− ηi

) (ii)

≥ 1

8

(iii)

≥ 1

8

t∑
k=1

ηk

[
t∏

i=k+1

(
1− ηi

)]
. (195)

Here, the relations (i) and (iii) arise from (70), and the inequality (ii) follows since

t∏
i=τ

(
1− ηi

)
≤

τ̂∏
i=τ

(
1− ηi

)
≤

τ̂∏
i=τ

(
1− ηi(1− γp)

)
=

∏T
i=τ

(
1− ηi(1− γp)

)∏T
i=τ̂+1

(
1− ηi(1− γp)

) ≤ 3/4

6/7
≤ 7

8
, (196)

where τ is defined in (179) and (181) for linearly rescaled learning rates and τ = 1 for constant learning rates,
and we have also made use of (159), (180) and (182) in the penultimate inequality in (196).

With (195) in place, we can continue to prove the claim (190). Recognizing that ηk
[∏t

i=k+1

(
1− ηi

)]
is

increasing in k (see (186)), we can obtain

τ−1∑
k=1

η2
k

[ t∏
i=k+1

(
1− ηi

)]2
≤ max

1≤k<τ

{
ηk

[ t∏
i=k+1

(
1− ηi

)]} τ−1∑
k=1

ηk

[ t∏
i=k+1

(
1− ηi

)]

≤ ητ
[ t∏
i=τ+1

(
1− ηi

)] τ−1∑
k=1

ηk

[ t∏
i=k+1

(
1− ηi

)]

≤ 7ητ

[ t∏
i=τ+1

(
1− ηi

)] t∑
k=τ

ηk

[ t∏
i=k+1

(
1− ηi

)]
, (197)

where the last inequality comes from (195). With the preceding inequality in place, the claim (190) then
follows by observing that

t∑
k=τ

η2
k

[ t∏
i=k+1

(
1− ηi

)]2
≥ min
τ≤k≤t

{
ηk

[ t∏
i=k+1

(
1− ηi

)]} t∑
k=τ

ηk

[ t∏
i=k+1

(
1− ηi

)]

≥ ητ
[ t∏
i=τ+1

(
1− ηi

)] t∑
k=τ

ηk

[ t∏
i=k+1

(
1− ηi

)]
,

where we make use of the monotonicity of ηk
[∏t

i=k+1

(
1− ηi

)]
again.

Proof of the claim (192). Note that for τ ′ := max
{
t− 1

ηt/2
, 1
}
, one has

ηk

[ t∏
i=k+1

(
1− ηi

)]
≥ ηt

(
1− ηt/2

)t−τ ′ ≥ ηt(1− ηt/2)1/ηt/2 ≥ 1

3
ηt, for all τ ′ ≤ k ≤ t,

as long as the following condition holds (recalling the definition of τ̂ in (189))

ηt/2 ≤ 2ηt ≤ 2ητ̂ ≤ 1/10. (198)

In addition, similar to (129), we can derive

t∑
k=τ ′

ηk

t∏
i=k+1

(
1− ηi

)
= 1−

t∏
i=τ ′

(
1− ηi

)
≥ 1−max

{(
1− ηt

)1/ηt/2+1
,

t∏
i=1

(
1− ηi

)}
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≥ 1−max

{
e−1/2,

τ̂∏
i=1

(
1− ηi

)}
≥ 1

8
,

where we once again use the condition (198), and the last inequality comes from the derivation in (196).
Putting these two bounds together yields

t∑
k=τ ′

η2
k

[ t∏
i=k+1

(
1− ηi

)]2
≥ min
k: τ ′≤k≤t

{
ηk

[ t∏
i=k+1

(
1− ηi

)]} t∑
k=τ ′

ηk

[ t∏
i=k+1

(
1− ηi

)]
≥ 1

3
ηt ·

1

8
≥ 1

24
ηt.

To finish up, it remains to justify (198). This condition is obvious for constant learning rates. As for
rescaled learning rates, one can see that

ηi =
1

1 + (1− γ)cηi
≥ 19

20cη(1− γ)i
for all i ≥ τ ,

where τ := d 19
cη(1−γ)e. This allows one to obtain

log
[ T∏
i=τ

(
1− ηi(1− γp)

)]
≤ −

T∑
i=τ

ηi(1− γp) ≤ −
T∑
i=τ

19

15cηi
≤ −19 log T

τ

15cη
≤ −19 log

cη(1−γ)T
20

15cη
≤ −1

5
,

provided that T ≥ c1
(1−γ)2 for some sufficiently large constant c1 > 0 and 1 − γ < cη < log T . Taking this

together with (189) implies that τ̂ ≥ τ and hence ητ̂ ≤ ητ = 1
1+(1−γ)cητ

= 1/20.

D.4 Proof of Lemma 3
Given that state 0 is an absorbing state with zero immediate reward, it is easily seen that

V π(0) = 0 for all π =⇒ V ?(0) = Q?(0, 1) = 0.

Moreover, by construction, taking action 1 and taking action 2 in state 1 result in the same behavior (in
terms of both the reward function and the associated transition probability), and as a consequence,

Q?(1, 1) = Q?(1, 2) = V ?(1). (199)

From Bellman’s equation, we can thus deduce that

Q?(1, 1) = r(1, 1) + γP (0 | 1, 1)V ?(0) + γP (1 | 1, 1)V ?(1),

which in conjunction with (199) and a little algebra leads to

V ?(1) =
r(1, 1) + γP (0 | 1, 1)V ?(0)

1− γP (1 | 1, 1)
=

1

1− γp =
3

4(1− γ)
.

Here, the second identity follows since V ?(0) = 0, and the third identity makes use of (43). The calculation
for V ?(2) and Q?(2, 1) follows from an identical argument and is hence omitted.

Turning to state 3, by Bellman’s equation, we have

V ?(3) = Q?(3, 1) = r(3, 1) + γP (3 | 3, 1)V ?(3) = 1 + γV ?(3),

which leads to V ?(3) = 1
1−γ .
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E Analysis for asynchronous Q-learning (Theorem 4)

E.1 Notation and preliminary facts
Vector and matrix notation. We shall adopt the vector notation Qt ∈ R|S||A|, Vt ∈ R|S|, r ∈ R|S||A| in
the same way as in Section 4.1. The sample transition matrix Pt ∈ R|S||A|×|S| in the asynchronous case is
defined such that

Pt
(
(s, a), s′

)
=

{
1, if (s, a, s′) = (st−1, at−1, st);

0, else.
(200)

It is also handy to introduce the diagonal matrix Λt ∈ R|S||A|×|S||A| such that

Λt

(
(s, a), (s, a)

)
=

{
η, if (s, a) = (st−1, at−1);

0, otherwise.
(201)

Armed with the above notation, the asynchronous Q-learning update rule (48) can be conveniently expressed
as follows:

Qt =
(
I −Λt

)
Qt−1 + Λt

(
r + γPtVt−1

)
. (202)

Range of Vt and Qt. Similar to the synchronous counterpart, we have the following elementary properties.

Lemma 7. Suppose that 0 < ηt ≤ 1 for all t ≥ 0. Assume that 0 ≤ Q0 ≤ 1
1−γ1. Then for any t ≥ 0, one has

0 ≤ Qt ≤
1

1− γ 1 and 0 ≤ Vt ≤
1

1− γ 1. (203)

Proof. The proof is the same as that of Lemma 4, and is hence omitted for brevity.

E.2 Main steps for proving Theorem 4
We are now in a position to outline the main steps for the proof of Theorem 4.

Step 1: deriving basic recursions. According to the update rule (202), we can derive the following
elementary decomposition

∆t := Qt −Q? =
(
I −Λt

)
Qt−1 + Λt

(
r + γPtVt−1

)
−Q?

=
(
I −Λt

)(
Qt−1 −Q?

)
+ Λt

(
r + γPtVt−1 −Q?

)
=
(
I −Λt

)(
Qt−1 −Q?

)
+ γΛt

(
PtVt−1 − PV ?

)
=
(
I −Λt

)
∆t−1 + γΛt

(
Pt − P

)
Vt−1 + γΛtP

(
Vt−1 − V ?

)
, (204)

where the penultimate identity follows from the Bellman optimality equation Q? = r + PV ?. Combining
(204) with the inequalities (33) and using the definition (27) of πt result in

∆t ≤
(
I −Λt

)
∆t−1 + γΛt

(
Pt − P

)
Vt−1 + γΛtP

πt−1∆t−1, (205a)

∆t ≥
(
I −Λt

)
∆t−1 + γΛt

(
Pt − P

)
Vt−1 + γΛtP

π?∆t−1. (205b)

Apply the above two relations recursively to obtain

∆t ≤ γ
t∑
i=1

t∏
j=i+1

(
I −Λj

)
Λi

(
Pi − P

)
Vi−1 + γ

t∑
i=1

t∏
j=i+1

(
I −Λj

)
ΛiP

πi−1∆i−1 +

t∏
j=1

(
I −Λj

)
∆0, (206a)

∆t ≥ γ
t∑
i=1

t∏
j=i+1

(
I −Λj

)
Λi

(
Pi − P

)
Vi−1 + γ

t∑
i=1

t∏
j=i+1

(
I −Λj

)
ΛiP

π?∆i−1 +

t∏
j=1

(
I −Λj

)
∆0. (206b)
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By defining the following diagonal matrices

Λ
(t)
i :=


∏t
j=1(I −Λj), if i = 0,

Λi

∏t
j=i+1(I −Λj), if 0 < i < t,

Λt, if i = t,

(207)

and setting

β =
c3(1− γ)

log T
(208)

for some constant c3 > 0, we can rearrange terms in the upper bound (206a) to reach

∆t ≤ Λ
(t)
0 ∆0 + γ

(1−β)t∑
i=1

Λ
(t)
i

[(
Pi − P

)
Vi−1 + P πi−1∆i−1

]
︸ ︷︷ ︸

=: ζt

+ γ

t∑
i=(1−β)t+1

Λ
(t)
i

(
Pi − P

)
Vi−1︸ ︷︷ ︸

=: ξt

+ γ

t∑
i=(1−β)t+1

Λ
(t)
i P

πi−1∆i−1. (209)

In the subsequent steps, we shall first develop bounds on the sizes of the terms ζt and ξt in (209) separately,
and then combine these bounds with (209) recursively in order to derive the advertised upper bound on ∆t.

Step 2: bounding the terms ζt and ξt. The terms ζt and ξt defined in (209) can be bounded with high
probability by the following lemmas.

Lemma 8. With probability at least 1− δ, we have

‖ζt‖∞ ≤
4

(1− γ)T
(210)

for all t obeying T
c4 log T ≤ t ≤ T . Here, c4 > 0 is some constant obeying c4 ≤ c1c3/4, where the constants c1

and c3 appear in (52a) and (208), respectively.

Proof. See Section E.3.1.

Lemma 9. Suppose that 0 < η ≤ log3 T
(1−γ)Tµmin

. With probability at least 1− δ, one has

|ξt| ≤

√
16
(

log3 T
)(

log |S||A|Tδ

)
(1− γ)Tµmin

(
max

(1−β)t≤i<t
VarP (Vi) + 1

)
+

6
(

log3 T
)(

log |S||A|Tδ

)
(1− γ)2Tµmin

1 (211)

for all t obeying T
c4 log T ≤ t ≤ T for some constant c4 > 0.

Proof. See Section E.3.2.

Step 3: controlling ∆t. Consider any t obeying T
c4 log T ≤ t ≤ T and any k obeying 2t/3 ≤ k ≤ t. Under

the sample size condition (52b), Lemmas 8-9 together with a little algebra lead to

|ζk|+ |ξk| ≤

√
32
(

log3 T
)(

log |S||A|Tδ

)
(1− γ)Tµmin

(
max

(1−β)k≤i≤k
VarP (Vi) + 1

)
≤ √ϕt,

where we define

ϕt :=
32
(

log3 T
)(

log |S||A|Tδ

)
(1− γ)Tµmin

(
max
t
2≤i≤t

VarP (Vi) + 1

)
. (212)
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Combining this inequality with (209) allows us to obtain

∆k ≤
√
ϕt +

k∑
i=(1−β)k+1

Λ
(k)
i γP πi−1∆i−1 =

√
ϕt +

k−1∑
i=(1−β)k

Λ
(k)
i+1γP

πi∆i for all 2t/3 ≤ k ≤ t. (213)

Similar to the quantity α(t)
i defined in (76), let us define

D
(t)
i :=

( t−1∑
j=(1−β)t

Λ
(t)
j+1

)−1

Λ
(t)
i+1, (214)

which, according to (69) and the definition (201), clearly satisfies

D
(t)
i ≥ Λ

(t)
i+1 ≥ 0 and

t−1∑
i=(1−β)t

D
(t)
i = I. (215)

Set i0 = t for notational convenience. With this set of notation and the property (215) in mind, we can derive
the following bound

∆t ≤
t−1∑

i1=(1−β)t

(
D

(t)
i1

√
ϕt + Λ

(t)
i1+1γP

πi1 ∆i1

)

≤
t−1∑

i1=(1−β)t

[
D

(t)
i1

√
ϕt + Λ

(t)
i1+1γP

πi1

i1−1∑
i2=(1−β)i1

(
D

(i1)
i2

√
ϕt + Λ

(i1)
i2+1γP

πi2 ∆i2

)]

≤
t−1∑

i1=(1−β)t

D
(t)
i1

√
ϕt +

t−1∑
i1=(1−β)t

D
(t)
i1

i1−1∑
i2=(1−β)i1

(
γP πi1D

(i1)
i2

)√
ϕt

+

t−1∑
i1=(1−β)t

i1−1∑
i2=(1−β)i1

2∏
k=1

(
Λ

(ik−1)
ik+1 γP πik

)
∆i2

=

t−1∑
i1=(1−β)t

D
(t)
i1

{
I +

i1−1∑
i2=(1−β)i1

γP πi1D
(i1)
i2

}
√
ϕt +

t−1∑
i1=(1−β)t

i1−1∑
i2=(1−β)i1

2∏
k=1

(
Λ

(ik−1)
ik+1 γP πik

)
∆i2 . (216)

Here, the first relation makes use of the second property in (215), the second relation further expands ∆i1 in
the same way as in the first line of (216), whereas the third inequality relies on the first property in (215).

Next, we intend to invoke the above relation multiple times to reach a simpler relation. Set

H :=
log T

1− γ . (217)

Similar to the way we derive (84), we can apply the relation (216) recursively and use the basic relation
|∆k| ≤ 1

1−γ1 for any k to show that

∆t ≤
∑

(i1,··· ,iH)∈It

{
D

(t)
i1

(
I +

H−1∑
h=1

γh
h∏
k=1

(
P πikD

(ik)
ik+1

))√
ϕt + γH

H∏
k=1

(
Λ

(ik−1)
ik+1 P

πik
)∣∣∆iH

∣∣}, (218)

where It has been defined in (82). To further simplify (218), we need to control the two terms on the
right-hand side of (218) separately.

• We shall begin with the first term on the right-hand side of (218). Towards this end, let us define a
collection of policies {π̂k} recursively and backward as follows:

π̂k :=

{
arg maxπ∈Π Ππ√ϕt, if k = H − 1,

arg maxπ∈Π Ππ
(
I +

∑H−1
h=k+1 γ

h
∏h
j=1P

π̂j
)√
ϕt, if k = H − 2, · · · , 1, (219)
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or alternatively (in view of the definition (24) of P π),

π̂k :=

{
arg maxπ∈ΠP

π√ϕt, if k = H − 1;

arg maxπ∈ΠP
π
(
I +

∑H−1
h=k+1 γ

h
∏h
j=1P

π̂j
)√
ϕt, if k = H − 2, · · · , 1. (220)

Here, Π is a policy set satisfying

Π :=
{
π = [π(s)]s∈S

∣∣π(s) ∈ Πs,∀s ∈ S
}
, Πs :=

{
πi(s) | i ∈ [t/2, t)

}
; (221)

in words, for any policy π belonging to Π, each π(s) coincides with one of the policy iterates πi(s) during
the latest βt iterations, although we do not require all {π(s)} across different states to be associated
with the same time stamp i. With this collection of policies in place, we can deduce that

∑
i1,··· ,iH

D
(t)
i1

(
I +

H−1∑
h=1

h∏
k=1

(
γP πikD

(ik)
ik+1

))√
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D
(t)
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h∏
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γP πikD

(ik)
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)
+
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)(
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))√
ϕt

=
∑
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D
(t)
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(
I +

H−2∑
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h∏
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(
γP πikD

(ik)
ik+1

)
+

H−2∏
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(
γP πikD

(ik)
ik+1

)(
γP πiH−1

∑
iH

D
(iH−1)
iH

))√
ϕt

(i)
=

∑
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D
(t)
i1

(
I +
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h=1

h∏
k=1

(
γP πikD

(ik)
ik+1

)
+

H−2∏
k=1

(
γP πikD

(ik)
ik+1

)
γP πiH−1

)√
ϕt

(ii)

≤
∑

i1,··· ,iH−1

D
(t)
i1

(
I +

H−2∑
h=1

h∏
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(
γP πikD

(ik)
ik+1

)
+
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(
γP πikD

(ik)
ik+1

)
γP π̂H−1

)√
ϕt

=
∑
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D
(t)
i1

(
I +

H−3∑
h=1

h∏
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(
γP πikD

(ik)
ik+1

)
+

H−3∏
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(
γP πikD

(ik)
ik+1

)
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( ∑
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D
(iH−2)
iH−1

)(
I + γP π̂H−1

))√
ϕt

(iii)
=

∑
i1,··· ,iH−2

D
(t)
i1

(
I +

H−3∑
h=1

h∏
k=1

(
γP πikD

(ik)
ik+1

)
+
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(
γP πikD

(ik)
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)
γP πiH−2

(
I + γP π̂H−1
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ϕt

(iv)

≤
∑
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D
(t)
i1

(
I +

H−3∑
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h∏
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(
γP πikD

(ik)
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+
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(
γP πikD

(ik)
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)
γP π̂H−2

(
I + γP π̂H−1

))√
ϕt,

where we abbreviate
∑

(i1,··· ,iH)∈It as
∑
i1,··· ,iH as long as it is clear from the context. Here, (i) and (iii)

arise from the second property in (215), while (ii) and (iv) are due to the construction (220). Continuing
the derivation of the above inequality recursively, we arrive at

∑
i1,··· ,iH

D
(t)
i1

(
I +

H−1∑
h=1

h∏
k=1

(
γP πikD

(ik)
ik+1

))√
ϕt ≤

(
I +

H−1∑
h=1

γh
h∏
k=1

P π̂k

)√
ϕt.

• We now turn attention to the second term on the right-hand side of (218). It is seen that

∑
i1,··· ,iH

H∏
k=1

γH
(
Λ

(ik−1)
ik+1 P

πik
)∣∣∆iH

∣∣ ≤ γH

1− γ
∑
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H∏
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(
D

(ik−1)
ik

P πik
)
1

=
γH
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H−1∏
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(
D
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ik

P πik
)(∑
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D
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(
P πiH 1

))

=
γH
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(
D
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ik

P πik
)(∑
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D
(iH−1)
iH

)
1
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=
γH

1− γ
∑

i1,··· ,iH−1

H−1∏
k=1

(
D

(ik−1)
ik

P πik
)
1

= · · · = γH

1− γ 1 =
γ

log T
1−γ

1− γ 1

≤ 1

(1− γ)T
1,

where the first line follows from the first property in (215), the third line is due to the fact P π1 = 1 for
any π, and the fourth line arises from the second property in (215).

Substituting the above two bounds into (218) yields

∆t ≤
(
I +

H−1∑
h=1

γh
h∏
k=1

P π̂k

)√
ϕt︸ ︷︷ ︸

=:β

+
1

(1− γ)T
1. (222)

Step 4: putting all pieces together. Repeating our analysis for the term β1 in Section B.2 (i.e., Step 5
of Section B.2 with Lemma 5 replaced by Lemma 6), we arrive at

|β|2 ≤ 320
(

log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4T

(
1 + 2 max

t
2≤i<t

‖∆i‖∞
)
1

with probability at least 1− δ. Substitution into (222) then yields

∆t ≤

√√√√320
(

log3 T
)(

log |S||A|Tδ

)
γ2(1− γ)4Tµmin

(
1 + max

t
2≤i<t

‖∆i‖∞
)

1 +
1

(1− γ)T
1

≤ 30

√√√√( log3 T
)(

log |S||A|Tδ

)
γ2(1− γ)4Tµmin

(
1 + max

t
2≤i<t

‖∆i‖∞
)

1 (223)

holds simultaneously for all t ≥ T
c4 log T , provided that the sample size condition (52b) is satisfied. Similarly,

we can also establish the following lower bound on ∆t (which we omit the details for the sake of brevity)

∆t ≥ −30

√√√√( log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4Tµmin

(
1 + max

t
2≤i<t

‖∆i‖∞
)

1

with probability at least 1− δ. To summarize, it is seen that with probability exceeding 1− 2δ,

‖∆t‖∞ ≤ 30

√√√√( log4 T
)(

log |S||A|Tδ

)
γ2(1− γ)4Tµmin

(
1 + max

t
2≤i<t

‖∆i‖∞
)
. (224)

This resembles the relation (40) derived for the synchronous case, except that T in the denominator is replaced
with µminT . As a result, we can readily repeat the argument in Appendix B.4 to reach

‖∆T ‖∞ ≤ O
(√(

log4 T
)(

log |S||A|Tδ

)
(1− γ)4Tµmin

+

(
log4 T

)(
log |S||A|Tδ

)
(1− γ)4Tµmin

)
, (225)

which in turn establishes the claimed result in Theorem 4.
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E.3 Proofs of technical lemmas
E.3.1 Proof of Lemma 8

In view of the definition of ζt in (209) and the fact that Λ
(t)
0 is a diagonal matrix, we can deduce that

‖ζt‖∞ ≤ ‖Λ(t)
0 ‖‖∆0‖∞ + t max

1≤i≤(1−β)t
‖Λ(t)

i ‖ max
1≤i≤(1−β)t

(
‖P πi−1∆i−1‖∞ + ‖PiVi−1‖∞ + ‖PVi−1‖∞

)
≤ ‖Λ(t)

0 ‖‖∆0‖∞ + t max
1≤i≤(1−β)t

‖Λ(t)
i ‖ max

1≤i≤(1−β)t

{
‖P πi−1‖1‖∆i−1‖∞ +

(
‖Pi‖1 + ‖P ‖1

)
‖Vi−1‖∞

}
(i)
= ‖Λ(t)

0 ‖‖∆0‖∞ + t max
1≤i≤(1−β)t

‖Λ(t)
i ‖ max

1≤i≤(1−β)t

(
‖∆i−1‖∞ + 2 ‖Vi−1‖∞

)
(ii)

≤ 1

T 2
· 1

1− γ +
1

T 2
· t · 3

1− γ
≤ 4

(1− γ)T
.

Here, (i) holds true since ‖P πi−1‖1 = ‖Pi‖1 = ‖P ‖1 = 1. To verify (ii), we first define

tk(s, a) := the time stamp when the trajectory visits (s, a) for the k-th time (226)

and
Kt(s, a) :=

∣∣∣{k ≥ 1 | tk(s, a) < t
}∣∣∣, (227)

namely, the total number of times — before the t-th iteration — that the sample trajectory visits (s, a).
Then Li et al. (2022c, Lemma 8) tells us that with probability at least 1− δ,

Kt1(s, a)−Kt2(s, a) ≥ 1

2
(t1 − t2)µmin, (228)

holds uniformly for all (s, a) ∈ S ×A and 0 ≤ t2 ≤ t1 ≤ T obeying

t1 − t2 ≥
886tmix

µmin
log
|S||A|T

δ
.

This in turn implies that: if βt ≥ 886tmix

µmin
log |S||A|Tδ and i ≤ (1− β)t, then one has

‖Λ(t)
0 ‖ =

∥∥∥∥ t∏
j=1

(
I −Λj

)∥∥∥∥ = max
(s,a)∈S×A

(1− η)Kt(s,a) ≤ (1− η)
1
2 tµmin ≤ 1

T 2
(229a)

‖Λ(t)
i ‖ =

∥∥∥∥Λi

t∏
j=i+1

(I −Λj)

∥∥∥∥ ≤ max
(s,a)

(1− η)Kt(s,a)−Ki(s,a) ≤ (1− η)
1
2βtµmin ≤ 1

T 2
(229b)

with probability at least 1− δ, provided that ηβtµmin > 4 log T . In other words, (229) holds with probability
at least 1− δ, as long as

t > max

{
4 log T

ηβµmin
,

886tmix

βµmin
log
|S||A|T

δ

}
= max

{
4T

c1c3 log T
,

886tmix

c3(1− γ)µmin
log
|S||A|T

δ
log T

}
.

This taken together with the sample size assumption (52b) concludes the proof of Lemma 8.

E.3.2 Proof of Lemma 9

Fix any state-action pair (s, a) ∈ S × A, and let us look at the (s, a)-th entry of ξt, i.e., ξt(s, a). For
notational simplicity, let Λj(s, a) denote the (s, a)-th diagonal entry of the diagonal matrix Λj , and Pt(s, a)
(resp. P (s, a)) the (s, a)-th row of Pt (resp. P ).
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Using the definition of ξt in (209) and the above notation, we can derive

ξt(s, a) = γ

t∑
i=(1−β)t+1

t∏
j=i+1

(
1−Λj(s, a)

)
Λi(s, a)

(
Pi(s, a)− P (s, a)

)
Vi−1. (230)

Equipped with the definitions of tk(s, a) (cf. (226)) and Kt(s, a) (cf. (227)), we can further rewrite (230) as

ξt(s, a) = γ

Kt(s,a)∑
k=K(1−β)t+1

(1− η)Kt(s,a)−kη
(
Ptk+1(s, a)− P (s, a)

)
Vtk . (231)

In what follows, we shall suppress the notation and write tk = tk(s, a) and Kt = Kt(s, a) to streamline
notation.

The main step thus boils down to controlling (231). Towards this, we claim that: with probability at
least 1− δ,∣∣∣∣∣

K∑
k=Kβ

(1− η)K−kη
(
Ptk+1(s, a)− P (s, a)

)
Vtk

∣∣∣∣∣
≤

√√√√16
(

log3 T
)(

log |S||A|Tδ

)
(1− γ)Tµmin

(
max

tKβ≤i≤tK
VarP (s,a)(Vi) + 1

)
+

6
(

log3 T
)(

log |S||A|Tδ

)
(1− γ)2Tµmin

(232)

holds simultaneously for all (s, a) ∈ S × A and all 1 ≤ Kβ ≤ K ≤ T , provided that 0 < η ≤ log3 T
(1−γ)Tµmin

. If
this claim were true, then taking Kβ = K(1−β)t+1 and K = Kt and substituting the bound (232) into the
expression (231) would lead to

|ξt| ≤

√
16
(

log3 T
)(

log |S||A|Tδ

)
(1− γ)Tµmin

(
max

(1−β)t≤i<t
VarP (Vi) + 1

)
+

6
(

log3 T
)(

log |S||A|Tδ

)
(1− γ)2Tµmin

1, (233)

thus concluding the proof of this lemma. To finish up, it is sufficient to justify the claim (232), which forms
the content of the remainder of this proof.

Proof of the claim (232). Let us use the notation in (64) to express η(K)
k = (1−η)K−kη. For any fixed integer

K > 0, the following vectors
{Ptk+1(s, a) | 1 ≤ k ≤ K}

are identically and independently distributed; see Li et al. (2022c, Section B.1). We can then express the term

XK :=

K∑
k=Kβ

(1− η)K−kη
(
Ptk+1(s, a)− P (s, a)

)
Vtk ,

as follows:

XK =

K∑
k=Kβ

zk with zk := η
(K)
k

(
Ptk+1(s, a)− P (s, a)

)
Vtk ,

where the zk’s satisfy
E [zk | tk, · · · , t1,Vtk , · · · ,Vt1 ] = 0.

We intend to invoke the Freedman inequality to control XK for any K obeying K ≤ T . Similar to the
synchronous counterpart, we can see that

B := max
1<k≤K

‖zk‖∞ ≤ ηKk
(∥∥Ptk+1‖1 + ‖P ‖1

)∥∥Vtk‖∞ ≤ 2ηKk
1− γ ≤

2η

1− γ ,
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W :=

K∑
k=Kβ

Var
(
zk | tk, · · · , t1,Vtk , · · · ,Vt1

)
= γ2

K∑
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(
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(Ptk+1 − P )Vtk | Vtk

)
≤
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≤ η max
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(
Vtk
)
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tKβ≤i≤tK
VarP (s,a)

(
Vi
)
,

where we have made use of (69). In addition, we make note of a trivial upper bound on W as follows

σ2 :=
η

(1− γ)2
≥ η max

tKβ≤i≤tK
VarP (s,a)

(
Vi
)
≥Wt.

With the preceding bounds in place, applying the Freedman inequality in Theorem 6 and taking L = log2
1

1−γ
imply that

|XK | ≤
√
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σ2

2L

}
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1
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δ
+
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+

8η
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1
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≤

√√√√16
(

log3 T
)(

log |S||A|Tδ
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(1− γ)Tµmin

(
max

tKβ≤i≤tK
VarP (s,a)(Vi) + 1

)
+

6
(

log3 T
)(

log |S||A|Tδ

)
(1− γ)2Tµmin

with probability at least 1− δ
|S||A|T 2 , provided that η ≤ log3 T

(1−γ)Tµmin
. We can thus conclude the proof by taking

the union bound over all (s, a) ∈ S ×A and all 1 ≤ Kβ ≤ K ≤ T .

F Lower bound for asynchronous Q-learning (Theorem 5)
This section establishes Theorem 5 by identifying a hard MDP instance satisfying the assumed conditions.

F.1 Construction of a hard instance and its values
Let us construct an MDPMhard with state space S = {0, 1, 2, 3} as follows, which is partly inspired by the
idea from Li et al. (2022b). We shall denote by As the action space associated with state s. The probability
transition kernel and the reward function ofMhard are specified as follows:

A0 = {1, 2}, P (· | 0, 1) = [1, 0, 0, 0], r(0, 1) =
2

3
, (234a)

P (· | 0, 2) =
[
1− 2(1− γ)(1− µ0), 2(1− γ)µ1, 2(1− γ)µ2, 2(1− γ)µ3

]
, r(0, 2) = 0, (234b)

A1 = {1, 2, 3}, P (· | 1, 1) =

[
3

2
(1− γ)µ0, 1−

3

2
(1− γ)µ0, 0, 0

]
, r(1, 1) = 1, (234c)

P (· | 1, 2) =

[
3

2
(1− γ)µ0, 1−

3

2
(1− γ)µ0, 0, 0

]
, r(1, 2) = 1, (234d)

P (· | 1, 3) =
[
0, 1− 3(1− γ)(µ2 + µ3), 3(1− γ)µ2, 3(1− γ)µ3

]
, r(1, 3) = 0, (234e)

A2 = {1, 2}, P (· | 2, 1) =
[
2(1− γ)µ0, 0, 1− 2(1− γ)µ0, 0

]
, r(2, 1) = 1, (234f)

P (· | 2, 2) =
[
0, 2(1− γ)µ1, 1− 2(1− γ)(µ1 + µ3), 2(1− γ)µ3

]
, r(2, 2) = 0, (234g)

A3 = {1, 2}, P (· | 3, 1) = [0, 0, 0, 1], r(3, 1) =
3

4
, (234h)
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P (· | 3, 2) =
[
2(1− γ)µ0, 2(1− γ)µ1, 2(1− γ)µ2, 1− 2(1− γ)(1− µ3)

]
, r(3, 2) = 0, (234i)

where the parameter µ = [µ0, µ1, µ2, µ3] ∈ ∆(S) is set as

µ =
[2

5
,

2

5
− cµ

log2 T
,

1

5
,

cµ

log2 T

]
, (235)

for some sufficiently small quantity 0 < cµ = O(1). In particular, actions 1 and 2 from state 1 are identical,
which will play a similar critical role as the case of synchronous Q-learning in pinpointing the “over-estimation”
issue.

In addition, let the behavior policy πb be uniform distributions such that

πb(a | s) =
1

|As|
, for all s ∈ S and all a ∈ As.

Then the transition probability from state s to state s′ under the behavior policy πb is given by

Pπb(s′ | s) =
∑
a∈As

πb(a | s)P (s′ | s, a) = γ1(s′ = s) + (1− γ)µ(s′).

With this in mind, it can be easily verified that the stationary distribution under πb is given by

µb(s, a) =
1

|As|
µ(s), for all s ∈ S and all a ∈ As.

This together with (235) implies that

µmin =
cµ

3 log2 T
. (236)

Moreover, if the sample trajectory is initialized with an initial state distribution µ0, then the marginal state
distribution at time t can be calculated as

µt = (Pπb)tµ0 = (γI + (1− γ)µ1>)tµ0 = γtµ0 + (1− γt)µ,

thus indicating that the total variation distance dTV between µt and µ obeys

dTV(µt, µ) =
1

2
‖µt − µ‖1 =

1

2
γt‖µ0 − µ‖1.

Consequently, the mixing time of the sample trajectory (Paulin, 2015) obeys

tmix ∈
[ cmix,1

1− γ ,
cmix,2

1− γ
]

(237)

for some universal constants cmix,1, cmix,2 > 0.
Before embarking on the analysis of the behavior of asynchronous Q-learning, let us first look at the

optimal value function and Q-function of the constructed MDP.

Lemma 10. Consider the MDPMhard as constructed in (234). It holds that

V ?(0) = Q?(0, 1) =
2

3(1− γ)
; (238a)

Q?(0, 2) < V ?(0)− 4

15
; (238b)

V ?(1) = Q?(1, 1) = Q?(1, 2) =
5 + 2γ

(5 + 3γ)(1− γ)
; (238c)

Q?(1, 3) < V ?(1)− 7

8
; (238d)
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V ?(2) = Q?(2, 1) =
15 + 8γ

3(5 + 4γ)(1− γ)
; (238e)

Q?(2, 2) < V ?(2)− 7

9
; (238f)

V ?(3) = Q?(3, 1) =
3

4(1− γ)
; (238g)

Q?(3, 2) < V ?(3)− 1

4
. (238h)

Proof. In order to justify (238), let us begin by defining two vectors V and Q as follows:

V =
[ 2

3(1− γ)
,

5 + 2γ

(5 + 3γ)(1− γ)
,

15 + 8γ

3(5 + 4γ)(1− γ)
,

3

4(1− γ)

]>
,

Q = r + γPV ,

where r = [r(s, a)] denotes the reward vector. Then the claimed expressions of the value function in (238)
are valid as long as we can validate V (s) = maxaQ(s, a) (namely, they satisfy the Bellman equation). These
are elementary calculations, which we omit for brevity. Once the expressions of both the value function and
the Q-function are settled, the remaining set of advertised inequalities can be validated straightforwardly,
which is omitted as well for conciseness.

F.2 Analysis for the constructed MDP
We now proceed to analyze the dynamics of asynchronous Q-learning when applied to the above MDP
instance, for which we divide into three cases based on the magnitudes of the learning rates. Throughout
the proof, we denote by tk(s, a) the iteration number corresponding to the k-th time the state-action pair
(s, a) is visited, and let NT (s, a) represent the total number of visits to (s, a) up to time T . We shall also
reuse the notation of the sample transition matrix Pt defined in (200), as well as the value estimate vector
Vt = [Vt(s)]s∈S as in Appendix E.1.

F.2.1 Case 1: small learning rates (η < 1
µmin(1−γ)T )

In this case, we focus attention on analyzing state 3. To begin with, we claim that if η ≤ c8 (1−γ)2

log T for some
sufficiently small constant c8 > 0, then one has, for all t ≤ T ,

Qt(3, 1) ≤ V ?(3) and Qt(3, 2) < V ?(3)− 1

6
. (239)

Given the assumption µminT ≥ c3 log T
(1−γ)4 , the regime η < 1

µmin(1−γ)T clearly satisfies η ≤ c8 (1−γ)2

log T .

Proof of Claim (239). We would like to prove the second inequality in (239) by induction. Clearly, it suffices
to look at those iterations where the value of Qt(3, 2) changes, namely, {tk(3, 2)}k≥1. Assume for the moment
that (239) holds for all t < tk(3, 2). Taking V :=

[
1

1−γ ,
1

1−γ ,
1

1−γ , V
?(3)

]>, we can invoke the asynchronous
Q-learning update rule iteratively to deduce that

Qtk(3,2)(3, 2) = (1− η)kQ0(3, 2) +

k∑
i=1

γη(1− η)k−iPti(3,2)

(
(3, 2), ·

)
Vti−1

≤
k∑
i=1

γη(1− η)k−iPti(3,2)

(
(3, 2), ·

)
V

≤ γP (· | 3, 2)V +

k∑
i=1

γη(1− η)k−i
[
Pti(3,2)

(
(3, 2), ·

)
− P (· | 3, 2)

]
V

< γP (· | 3, 2)V +
1

12
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≤ V ?(3)− 1

6
. (240)

Here, the second line holds since V serves as an entrywise upper bound on Vt; the third line follows since∑k
i=1 η(1− η)k−i ≤ 1; the fourth line in (240) is valid since, according to the Bernstein inequality (see Li

et al. (2022c, Lemma 1)), ∣∣∣∣ k∑
i=1

η(1− η)k−i
[
Pti(3,2)

(
(3, 2), ·

)
− P (· | 3, 2)

]
V

∣∣∣∣ < 1

12

holds with probability at least 1− 1/T ; and the validity of the last inequality can be shown by observing that

γP (· | 3, 2)V = γP (3 | 3, 2)V (3) +
γ

1− γ
(
1− P (3 | 3, 2)

)
= γ

(
1− 2(1− γ)

)
V (3) + γ

(
2(1− γ)µ3

)
V (3) +

γ

1− γ
(
2(1− γ)µ3

)
= γ

(
1− 2(1− γ)

)
V (3) + 3.5γµ3 ≤ γ

(
1− 2(1− γ)

)
V (3) + 2γ

= V (3)− 3

4
(2γ + 1) + 2γ ≤ V (3)− 1

4
,

where we have used the facts that V (3) = V ?(3) = 3
4(1−γ) , P (3 | 3, 2) = 1− 2(1− γ)(1− µ3) and γ < 1. Thus,

standard induction arguments immediately validate the second inequality in the claim (239) for all t ≤ T .
Regarding the first inequality of (239), it is seen that for any k ≥ 1,

Qtk(3,1)(3, 1) = (1− η)kQ0(3, 1) +

k∑
i=1

η(1− η)k−i
(
r(3, 1) + γPti(3,1)

(
(3, 1), ·

)
Vti(3,1)−1

)
≤

k∑
i=1

η(1− η)k−i
(
r(3, 1) + γV (3)

)
≤ V ?(3),

where we have used the facts that Q0 ≡ 0 and V (3) = V ?(3) = 3
4(1−γ) and the elementary inequality∑k

i=1 η(1− η)k−i ≤ 1. Given that the above bound holds for all k ≥ 1 (and {tk(3, 1)}k≥1 correspond to all
iterations when the value of Qt(3, 1) changes), we have established the first advertised inequality in (239).

Next, let us define

s := max
{
k : Qtk(3,1)(3, 1) < V ?(3)− 1

8

}
. (241)

From this definition and Claim (239), we know that for any k > s, it holds that

Qtk(3,1)(3, 1) ≥ V ?(3)− 1

8
.

Recognizing that∣∣Qtk(s,a)(s, a)−Qtk−1(s,a)(s, a)
∣∣ = η

∣∣Qtk(s,a)(s, a)− r(s, a)− γPtk(s,a)

(
(s, a), ·

)
Vtk−1(s,a)

∣∣ ≤ η

1− γ <
1

24
,

we can readily obtain

Qtk−1(3,1)(3, 1) ≥ Qtk(3,1)(3, 1)− 1

24
≥ V ?(3)− 1

6
> Qtk−1(3,1)(3, 2),

=⇒ Vtk−1(3,1)(3) = Qtk−1(3,1)(3, 1), ∀k > s.

Combine this with the Q-learning update rule to arrive at

Qtk(3,1)(3, 1) = (1− η)Qtk−1(3,1)(3, 1) + η
(
r(3, 1) + γQtk−1(3,1)(3, 1)

)
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=
(
1− η(1− γ)

)
Qtk−1(3,1)(3, 1) +

3

4
η

= · · · =
(
1− η(1− γ)

)k−s
Qts(3,1)(3, 1) +

3

4
η

k−s−1∑
i=0

(
1− η(1− γ)

)i
= V ?(3)−

(
1− η(1− γ)

)k−s[
V ?(3)−Qts(3,1)(3, 1)

]
,

where the last inequality holds since V ?(3) = 3
4(1−γ) . This taken together with (241) (so that V ?(3) −

Qts(3,1)(3, 1) ≥ 1/8) leads to

V ?(3)−QT (3, 1) = Q?(3, 1)−QT (3, 1) ≥ 1

8

(
1− η(1− γ)

)NT (3,1) ≥ c9 (242)

for some constant c9 > 0; here, the last inequality holds since, according to Li et al. (2022c, Lemma 8),

NT (3, 1) ≤ 3

2
µb(3, 1)T =

9

4
µminT ≤ O

( 1

η(1− γ)

)
occurs with probability at least 1− 1/T , provided that T ≥ 443tmix log(10T )

µmin
. Note that according to (236) and

(237), tmix

µmin
is on the order of log2 T

cµ(1−γ) .
Putting (239) and (242) together then reveals that with probability at least 1− 2/T ,

max
a

∣∣Q?(3, a)−QT (3, a)
∣∣ ≥ V ?(3)− VT (3) = V ?(3)−max

{
QT (3, 1), QT (3, 2)

}
≥ min

{1

6
, c9

}
. (243)

F.2.2 Case 2: large learning rates (η > log T
µmin(1−γ)2T )

Case 2.1: η ≥ c8(1−γ)2

log T for some small enough constant c8 > 0. Under the condition that η ≥ c8(1−γ)2

log T ,
we claim that with probability at least 1−γ

50 ,

∃(s, a) s.t.
∣∣QT (s, a)−Q?(s, a)

∣∣ ≥ c10
1− γ
log T

(244)

for some universal constant c10 > 0. We shall first prove this claim.

Proof of Claim (244). We shall focus attention on the case where (sT−1, aT−1) = (2, 1). Given that the
stationary distribution obeys µb(2, 1) = 1/10 and that T is sufficiently large (so that the empirical distribution
approaches the stationary distribution), we know that

P
(
(sT−1, aT−1) = (2, 1)

)
≥ µb(2, 1)/2 = 1/20.

Let us first look at the case where
∣∣VT−1(0)− V ?(0)

∣∣ > 1
27(1−γ) . It follows from P (· | 0, 1) = [1, 0, 0, 0] that

∣∣QT (0, 1)−Q?(0, 1)
∣∣ =

∣∣r(0, 1) + γVT−1(0)− V ?(0)
∣∣ = γ

∣∣VT−1(0)− V ?(0)
∣∣ > 0.03

1− γ

as long as γ ≥ 0.95, which clearly satisfies (244). When it comes to the complement case where
∣∣VT−1(0)−

V ?(0)
∣∣ ≤ 1

27(1−γ) , either of the following two scenarios will happen:

• If |VT−1(2)− VT−1(0)| ≤ 1
27(1−γ) , then the assumption

∣∣VT−1(0)− V ?(0)
∣∣ ≤ 1

27(1−γ) yields

QT (2, 2) ≤ VT−1(2) ≤ VT−1(0) +
1

27(1− γ)
≤ V ?(0) +

2

27(1− γ)

≤ γ
[
1− 2(1− γ)(µ1 + µ3)

]
V ?(2)− 1

27(1− γ)
< Q?(2, 2)− 1

27(1− γ)
, (245)
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where the second line holds since, for γ ≥ 0.95,

γ
[
1− 2(1− γ)(µ1 + µ3)

]
V ?(2) = γ

[
1− 4

5
(1− γ)

] 15 + 8γ

3(5 + 4γ)(1− γ)

≥ 7

9(1− γ)
= V ?(0) +

1

9(1− γ)
,

and the last inequality holds since Q?(2, 2) > r(2, 2) + γP (2 | 2, 2)V ?(2) (from the Bellman equation).

• Consider instead the scenario with |VT−1(2)− VT−1(0)| > 1
27(1−γ) . For notational convenience, define

QsT (2, 1) := (1− η)QT−1(2, 1) + η
(
r(2, 1) + γVT−1(s)

)
, ∀s ∈ S.

Recognizing that min
{
P (0 | 2, 1), P (2 | 2, 1)

}
≥ 2(1− γ)µ0, we can show that with probability at least

(1− γ)µ0 = 2(1−γ)
5 ,∣∣QT (2, 1)−Q?(2, 1)

∣∣ = max
{∣∣Q0

T (2, 1)−Q?(2, 1)
∣∣, ∣∣Q2

T (2, 1)−Q?(2, 1)
∣∣}

≥ 1

2

∣∣Q0
T (2, 1)−Q2

T (2, 1)
∣∣ =

1

2
ηγ
∣∣VT−1(0)− VT−1(2)

∣∣
>

ηγ

54(1− γ)
≥ 0.95c8(1− γ)

54 log T
,

where the last inequality holds since η ≥ c8(1−γ)2

log T and γ ≥ 0.95.

We can thus conclude that for all the above scenarios, the claim (244) holds with probability at least 1−γ
50 .

Case 2.2: log T
µmin(1−γ)2T < η ≤ c8(1−γ)2

log T . Recall from Claim (239) that: when η ≤ c8(1−γ)2

log T , one has

Qt(3, 1) ≤ V ?(3) and Qt(3, 2) ≤ V ?(3)− 1

6
, ∀t ≤ T. (246)

In addition, for any k ≥ log T
η(1−γ) , we can use P (· | 3, 1) = [0, 0, 0, 1] and the Bellman equation to derive

Qtk(3,1)(3, 1) = (1− η)Qtk−1(3,1)(3, 1) + η
(
r(3, 1) + γVtk(3,1)−1(3)

)
≥ (1− η)Qtk−1(3,1)(3, 1) + η

(3

4
+ γQtk−1(3,1)(3, 1)

)
=
(
1− η(1− γ)

)
Qtk−1

(3, 1) +
3

4
η

=
(
1− η(1− γ)

)k
Q0(3, 1) +

3

4

k∑
i=1

η
(
1− η(1− γ)

)k−i
=
[
1−

(
1− η(1− γ)

)k]
V ?(3) ≥ V ?(3)− 1

T (1− γ)
,

where the last line is valid since V ?(3) = 3
4(1−γ) and Q0(3, 1) = 0. It is also seen from Li et al. (2022c, Lemma

8) that, with probability at least 1− 1/T ,

NT/3(3, 1) ≥ 1

2
µb(3, 1)T =

3

4
µminT ≥

log T

η(1− γ)

as long as η ≥ log T
µmin(1−γ)T . The above two results taken collectively yield

0 ≤ V ?(3)− Vt(3) ≤ V ?(3)−Qt(3, 1) ≤ 1

T (1− γ)
, for all

T

3
≤ t ≤ T. (247)
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Next, we move on to analyze state 2. Towards this end, let us define

s := max
{
k : Qtk(2,1)(2, 2) > Qtk(2,1)(2, 1)− 1

2
or
∣∣Qtk(2,1)(2, 1)− V ?(2)

∣∣ > 1

4

}
. (248)

Note that when η ≤ c8(1−γ)2

log T , one has

∣∣Qtk(s,a)(s, a)−Qtk−1(s,a)(s, a)
∣∣ = η

∣∣Qtk(s,a)(s, a)− r(s, a)− γPtk(s,a)

(
(s, a), ·

)
Vtk(s,a)−1

∣∣ ≤ η

1− γ <
1

4
,

which combined with (248) implies that Qtk−1(2,1)(2, 2) < Qtk−1(2,1)(2, 1) for any k > s and hence

Vtk−1(2,1)(2) = Qtk−1(2,1)(2, 1) for k > s. (249)

This crucial identity together with the construction of P (· | 2, 1) in turn allows one to derive, for any k > s,

Qtk(2,1)(2, 1) = (1− η)Qtk−1(2,1)(2, 1) + η
(
r(2, 1) + γPtk(2,1)

(
(2, 1), ·

)
Vtk(2,1)−1

)
=
(
1− η(1− γ)(1 + 2γµ0)

)
Qtk−1(2,1)(2, 1)

+ η
(

1 + 2γ(1− γ)µ0Vtk(2,1)−1(0) + γ
(
Ptk(2,1)

(
(2, 1), ·

)
− P (· | 2, 1)

)
Vtk(2,1)−1

)
=
(
1− η(1− γ)(1 + 2γµ0)

)k−s
Qts(2,1)(2, 1) + η

k∑
i=s+1

(
1− η(1− γ)(1 + 2γµ0)

)k−i
·
(

1 + 2γ(1− γ)µ0Vti(2,1)−1(0) + γ
(
Pti(2,1)

(
(2, 1), ·

)
− P (· | 2, 1)

)
Vti(2,1)−1

)
, (250)

thus leading to

E
[
Qtk(2,1)(2, 1) | Qts(2,1)(2, 1)

]
≤
(
1− η(1− γ)(1 + 2γµ0)

)k−s
Qts(2,1)(2, 1)

+ η

k∑
i=s+1

(
1− η(1− γ)(1 + 2γµ0)

)k−i(
1 + 2γ(1− γ)µ0V

?(0)
)

≤
(
1− η(1− γ)(1 + 2γµ0)

)k−s
Qts(2,1)(2, 1)

+ η

k∑
i=s+1

(
1− η(1− γ)(1 + 2γµ0)

)k−i
V ?(2)

= V ?(2)−
(
1− η(1− γ)(1 + 2γµ0)

)k−s(
V ?(2)−Qts(2,1)(2, 1)

)
≤ V ?(2)− 1

4

(
1− η(1− γ)(1 + 2γµ0)

)k−s
,

where the second inequality arises from the Bellman equation (so that V ?(2) ≥ 1 + 2γ(1− γ)µ0V
?(0)).

• If
(
1− η(1− γ)(1 + 2γµ0)

)k−s ≥ 1
2 , then we can readily see that

E
[∣∣QT (2, 1)−Q?(2, 1)

∣∣2] ≥ (E[Qtk(2,1)(2, 1)− V ?(2) | Qts(2,1)(2, 1)
])2

≥ 1

64
. (251)

• Otherwise, consider the case where
(
1− η(1− γ)(1 + 2γµ0)

)k−s
< 1

2 . The expression (250) allows one
to control the variance as follows:

Var
(
Qtk(2,1)(2, 1) | Qts(2,1)(2, 1)

)
= η2γ2

k∑
i=s+1

(
1− η(1− γ)(1 + 2γµ0)

)2(k−i)

· E
[
E
[((

Pti(2,1)

(
(2, 1), ·

)
− P (· | 2, 1)

)
Vti(2,1)−1

)2

| Vti(2,1)−1

]]
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= η2γ2
k∑

i=s+1

(
1− η(1− γ)(1 + 2γµ0)

)2(k−i)

· E
[
E
[
2(1− γ)µ0

(
1− 2(1− γ)µ0

){
Vti(2,1)−1(2)− Vti(2,1)−1(0)

}2

| Vti(2,1)−1

]]
≥ η2γ2

k∑
i=s+1

(
1− η(1− γ)(1 + 2γµ0)

)2(k−i)
{

(1− γ)µ0 ·
1

36(1− γ)2

}

=
η2γ2µ0

36(1− γ)

1−
(
1− η(1− γ)(1 + 2γµ0)

)k−s
η(1− γ)(1 + 2γµ0)

≥ η

200(1 + 2γµ0)(1− γ)2
≥ η

400(1− γ)2
,

where the third inequality holds since Vti(2,1)−1(2)−Vti(2,1)−1(0) ≥ V ?(2)− 1
4 −V ?(0) > 5

27(1−γ) (using
the definition of s in (248)), and the last line uses γ ≥ 0.95 and µ0 = 2/5. As a result,

E
[∣∣QT (2, 1)−Q?(2, 1)

∣∣2] ≥ E
[
Var
(
Qtk(2,1)(2, 1) | Qts(2,1)(2, 1)

)]
≥ η

400(1− γ)2
. (252)

Taking the above two results together reveals that

E
[∣∣QT (2, 1)−Q?(2, 1)

∣∣2] ≥ min

{
η

400(1− γ)2
,

1

64

}
≥ min

{
log T

400µmin(1− γ)4T
,

1

64

}
. (253)

Combining Case 2.1 and Case 2.2. Putting together (244) and (253) together leads to

max
s,a

E
[∣∣QT (s, a)−Q?(s, a)

∣∣2] ≥ min

{
log T

400µmin(1− γ)4T
,

1

64
,
c210(1− γ)3

50 log2 T

}
, (254)

provided that η > log T
µmin(1−γ)2T .

F.2.3 Case 3: medium learning rates ( 1
µmin(1−γ)T ≤ η ≤

log T
µmin(1−γ)2T )

We now shift attention to the dynamics underlying state 1, and look at its associated value function Vt(1).

Two auxiliary sequences. Before proceeding, we abuse notation by defining

ti := min
{
t > ti−1 : both pairs (1, 1) and (1, 2) have been visited during (ti−1, t]

}
,

and letting N(tk−1,tk](1, a, 1) (resp. N(tk−1,tk](1, a)) denote the number of times the sample trajectory visits
(s, a, s′) = (1, a, 1) (resp. (s, a) = (1, a)) within the time interval (tk−1, tk]. From standard Bernstein’s
inequality (see Li et al. (2022c, Lemma 8)) and the definition of ti, one can easily see that with probability at
least 1− 1/T ,

1 ≤ N(ti−1,ti](1, a) ≤ c11 log T (255)

holds simultaneously for all ti ≤ T , where c11 > 0 is some suitable constant. In turn, this bound (255) also
implies that

K := max
{
k : tk ≤ T

}
≥ c12

T

log T
(256)

for some constant c12 > 0. These follow from fairly standard concentration arguments and are hence omitted.
Under our assumption on T , the sample trajectory mixes well after T/3 iterations. In order to further

remove the effect of QT/3(1, a), let us introduce the following auxiliary sequence

Q̂k(a) = (1− η)Q̂k−1(a) + η
{1

3
+ γPk(a)V̂k−1

}
, (257)
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where V̂k−1 := maxa Q̂k−1(a),

Q̂0(a) := Q?(1, a)− V ?(0) =
5

3(5 + 3γ)(1− γ)
, a = 1, 2

Pk(a) :=
N(tk−1,tk](1, a, 1)

N(tk−1,tk](1, a)
.

Repeating the proof of (163) (which we omit here for brevity), we arrive at the following relation:

Qtk(1,a)(1, a)− V ?(0) ≥ Q̂k(a)− 1

1− γ
(
1− η(1− γ)

)k − 1

T (1− γ)2
, a ∈ {1, 2}. (258)

Furthermore, in order to control Q̂k(a), we construct an additional auxiliary sequence as follows

Qk = (1− η)Qk−1 + η
{1

3
+ γPk(1)Qk−1

}
and Q0 = V ?(1)− V ?(0) =

5

3(5 + 3γ)(1− γ)
. (259)

From the basic fact that V̂k = maxa Q̂k(a) ≥ Q̂k(1), it can be easily verified that

Q̂k(1) ≥ (1− η)Q̂k−1(1) + η
{1

3
+ γPk(1)Q̂k−1(1)

}
≥ Qk, (260)

which in turn motivates us to lower bound V̂k by controlling Qk. Using similar analysis for (166), we reach

P
{
V̂k ≥

1

5(1− γ)

}
≥ 1

2
, for any k with tk ≥

2T

3
. (261)

Main proof. With the preceding auxiliary sequences in place, let us define (akin to the synchronous case)

∆k(a) := Q̂k(a) + V ?(0)−Q?(1, a), a = 1, 2; (262a)
∆k,max := max

a
∆k(a). (262b)

Based on the iterative update rule (257), we can once again derive

∆k(a) =

k∑
i=1

η
(
1− η

)k−i
γ
(
p∆k−1,max +

(
Pk(a)− p

)
V̂k−1

)
, a = 1, 2, (263)

where p = 1− 3
2 (1− γ)µ0. Then adopting the same analysis as for the synchronous case, we arrive at

E
[

max
a

∣∣QT (1, a)−Q?(1, a)
∣∣] ≥ E

[∣∣VT (1)− V ?(1)
∣∣] ≥ c13√

µmin(1− γ)4T log3 T
, (264)

for some constant c13 > 0. Here, we have made use of the fact that

(
1− η(1− γ)

)K ≤ (1− 3 log2 T

cµT

) c12T
log T

≤ 1

T
,

an immediate consequence of (256) and the assumption that η(1− γ) ≥ 1
µminT

= 3 log2 T
cµT

.

F.2.4 Putting all this together

Combining (243), (254), and (264) leads to

max
s,a

E
[∣∣QT (s, a)−Q?(s, a)

∣∣2] ≥ min

{
c29,

log T

400µmin(1− γ)4T
,

1

64
,
c210(1− γ)3

log2 T
,

c213

µmin(1− γ)4T log3 T

}
, (265)

for any 0 < η < 1. Then the conclusion is handy under the proviso that T ≥ c3
µmin(1−γ)7 log T .

68



References
Agarwal, A., Kakade, S., and Yang, L. F. (2020). Model-based reinforcement learning with a generative
model is minimax optimal. Conference on Learning Theory, pages 67–83.

Azar, M. G., Munos, R., Ghavamzadeh, M., and Kappen, H. (2011). Reinforcement learning with a near
optimal rate of convergence. Technical report, INRIA.

Azar, M. G., Munos, R., and Kappen, H. J. (2013). Minimax PAC bounds on the sample complexity of
reinforcement learning with a generative model. Machine learning, 91(3):325–349.

Bai, Y., Xie, T., Jiang, N., and Wang, Y.-X. (2019). Provably efficient Q-learning with low switching cost. In
Advances in Neural Information Processing Systems, pages 8002–8011.

Beck, C. L. and Srikant, R. (2012). Error bounds for constant step-size Q-learning. Systems & control letters,
61(12):1203–1208.

Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the National Academy of Sciences
of the United States of America, 38(8):716.

Bertsekas, D. P. (2017). Dynamic programming and optimal control (4th edition). Athena Scientific.

Bhandari, J., Russo, D., and Singal, R. (2021). A finite time analysis of temporal difference learning with
linear function approximation. Operations Research.

Borkar, V. S. and Meyn, S. P. (2000). The ODE method for convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447–469.

Cai, Q., Yang, Z., Lee, J. D., and Wang, Z. (2019). Neural temporal-difference and Q-learning converges to
global optima. In Advances in Neural Information Processing Systems, pages 11312–11322.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shanmugam, K. (2020). Finite-sample analysis of stochastic
approximation using smooth convex envelopes. arXiv preprint arXiv:2002.00874.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shanmugam, K. (2021). A Lyapunov theory for finite-sample
guarantees of asynchronous Q-learning and TD-learning variants. arXiv preprint arXiv:2102.01567.

Chen, Z., Zhang, S., Doan, T. T., Maguluri, S. T., and Clarke, J.-P. (2019). Performance of Q-learning with
linear function approximation: Stability and finite-time analysis. arXiv preprint arXiv:1905.11425.

Devraj, A. M. and Meyn, S. P. (2020). Q-learning with uniformly bounded variance: Large discounting is not
a barrier to fast learning. arXiv preprint arXiv:2002.10301.

Doan, T., Maguluri, S., and Romberg, J. (2019). Finite-time analysis of distributed TD(0) with linear function
approximation on multi-agent reinforcement learning. In International Conference on Machine Learning,
pages 1626–1635. PMLR.

Even-Dar, E. and Mansour, Y. (2003). Learning rates for Q-learning. Journal of machine learning Research,
5(Dec):1–25.

Fan, J., Wang, Z., Xie, Y., and Yang, Z. (2019). A theoretical analysis of deep Q-learning. arXiv preprint
arXiv:1901.00137.

Freedman, D. A. (1975). On tail probabilities for martingales. the Annals of Probability, pages 100–118.

Gupta, H., Srikant, R., and Ying, L. (2019). Finite-time performance bounds and adaptive learning rate
selection for two time-scale reinforcement learning. In Advances in Neural Information Processing Systems,
pages 4706–4715.

Hasselt, H. (2010). Double Q-learning. Advances in neural information processing systems, 23:2613–2621.

69



Hu, J. and Wellman, M. P. (2003). Nash Q-learning for general-sum stochastic games. Journal of machine
learning research, 4(Nov):1039–1069.

Jaakkola, T., Jordan, M. I., and Singh, S. P. (1994). Convergence of stochastic iterative dynamic programming
algorithms. In Advances in neural information processing systems, pages 703–710.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. (2018). Is Q-learning provably efficient? In Advances in
Neural Information Processing Systems, pages 4863–4873.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance reduction.
In Advances in neural information processing systems, pages 315–323.

Kakade, S. (2003). On the sample complexity of reinforcement learning. PhD thesis, University of London.

Kearns, M., Mansour, Y., and Ng, A. Y. (2002). A sparse sampling algorithm for near-optimal planning in
large Markov decision processes. Machine learning, 49(2-3):193–208.

Kearns, M. J. and Singh, S. P. (1999). Finite-sample convergence rates for Q-learning and indirect algorithms.
In Advances in neural information processing systems, pages 996–1002.

Khamaru, K., Pananjady, A., Ruan, F., Wainwright, M. J., and Jordan, M. I. (2021a). Is temporal difference
learning optimal? an instance-dependent analysis. SIAM Journal on Mathematics of Data Science,
3(4):1013–1040.

Khamaru, K., Xia, E., Wainwright, M. J., and Jordan, M. I. (2021b). Instance-optimality in optimal value
estimation: Adaptivity via variance-reduced Q-learning. arXiv preprint arXiv:2106.14352.

Lakshminarayanan, C. and Szepesvari, C. (2018). Linear stochastic approximation: How far does constant
step-size and iterate averaging go? In International Conference on Artificial Intelligence and Statistics,
pages 1347–1355.

Lee, D. and He, N. (2018). Stochastic primal-dual Q-learning. arXiv preprint arXiv:1810.08298.

Li, G., Chi, Y., Wei, Y., and Chen, Y. (2022a). Minimax-optimal multi-agent RL in Markov games with a
generative model. Neural Information Processing Systems (NeurIPS).

Li, G., Shi, L., Chen, Y., and Chi, Y. (2021). Breaking the sample complexity barrier to regret-optimal
model-free reinforcement learning. accepted to Information and Inference: A Journal of the IMA.

Li, G., Shi, L., Chen, Y., Chi, Y., and Wei, Y. (2022b). Settling the sample complexity of model-based offline
reinforcement learning. arXiv preprint arXiv:2204.05275.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. (2020). Breaking the sample size barrier in model-based
reinforcement learning with a generative model. Advances in Neural Information Processing Systems, 33.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. (2022c). Sample complexity of asynchronous Q-learning:
Sharper analysis and variance reduction. IEEE Transactions on Information Theory, 68(1):448–473.

Mou, W., Li, C. J., Wainwright, M. J., Bartlett, P. L., and Jordan, M. I. (2020). On linear stochastic approxi-
mation: Fine-grained Polyak-Ruppert and non-asymptotic concentration. arXiv preprint arXiv:2004.04719.

Murphy, S. (2005). A generalization error for Q-learning. Journal of Machine Learning Research, 6:1073–1097.

Pananjady, A. and Wainwright, M. J. (2020). Instance-dependent `∞-bounds for policy evaluation in tabular
reinforcement learning. IEEE Transactions on Information Theory, 67(1):566–585.

Paulin, D. (2015). Concentration inequalities for Markov chains by Marton couplings and spectral methods.
Electronic Journal of Probability, 20.

Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging. SIAM
journal on control and optimization, 30(4):838–855.

70



Qu, G. and Wierman, A. (2020). Finite-time analysis of asynchronous stochastic approximation and Q-learning.
Conference on Learning Theory, pages 3185–3205.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics,
pages 400–407.

Shah, D. and Xie, Q. (2018). Q-learning with nearest neighbors. In Advances in Neural Information Processing
Systems, pages 3111–3121.

Shi, L., Li, G., Wei, Y., Chen, Y., and Chi, Y. (2022). Pessimistic Q-learning for offline reinforcement learning:
Towards optimal sample complexity. International Conference on Machine Learning.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. (2018). Near-optimal time and sample complexities for
solving Markov decision processes with a generative model. In Advances in Neural Information Processing
Systems, pages 5186–5196.

Srikant, R. and Ying, L. (2019). Finite-time error bounds for linear stochastic approximation and TD learning.
In Conference on Learning Theory, pages 2803–2830.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine learning, 3(1):9–44.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Szepesvári, C. (1998). The asymptotic convergence-rate of Q-learning. In Advances in Neural Information
Processing Systems, pages 1064–1070.

Tropp, J. (2011). Freedman’s inequality for matrix martingales. Electronic Communications in Probability,
16:262–270.

Tsitsiklis, J. and Van Roy, B. (1997). An analysis of temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control, 42(5):674–690.

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning. Machine learning, 16(3):185–
202.

Tsybakov, A. B. and Zaiats, V. (2009). Introduction to nonparametric estimation, volume 11. Springer.

Wai, H.-T., Hong, M., Yang, Z., Wang, Z., and Tang, K. (2019). Variance reduced policy evaluation with
smooth function approximation. Advances in Neural Information Processing Systems, 32:5784–5795.

Wainwright, M. (2019a). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press.

Wainwright, M. J. (2019b). Stochastic approximation with cone-contractive operators: Sharp `∞-bounds for
Q-learning. arXiv preprint arXiv:1905.06265.

Wainwright, M. J. (2019c). Variance-reduced Q-learning is minimax optimal. arXiv preprint arXiv:1906.04697.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

Watkins, C. J. C. H. (1989). Learning from delayed rewards.

Weng, B., Xiong, H., Zhao, L., Liang, Y., and Zhang, W. (2020a). Momentum Q-learning with finite-sample
convergence guarantee. arXiv preprint arXiv:2007.15418.

Weng, W., Gupta, H., He, N., Ying, L., and Srikant, R. (2020b). The mean-squared error of double Q-learning.
Advances in Neural Information Processing Systems, 33.

Wu, Y., Zhang, W., Xu, P., and Gu, Q. (2020). A finite time analysis of two time-scale actor critic methods.
arXiv preprint arXiv:2005.01350.

71



Xiong, H., Zhao, L., Liang, Y., and Zhang, W. (2020). Finite-time analysis for double Q-learning. Advances
in Neural Information Processing Systems, 33.

Xu, P. and Gu, Q. (2020). A finite-time analysis of Q-learning with neural network function approximation.
In International Conference on Machine Learning, pages 10555–10565. PMLR.

Xu, T., Wang, Z., Zhou, Y., and Liang, Y. (2019a). Reanalysis of variance reduced temporal difference
learning. In International Conference on Learning Representations.

Xu, T., Zou, S., and Liang, Y. (2019b). Two time-scale off-policy TD learning: Non-asymptotic analysis over
Markovian samples. In Advances in Neural Information Processing Systems, pages 10633–10643.

Yan, Y., Li, G., Chen, Y., and Fan, J. (2022). The efficacy of pessimism in asynchronous Q-learning. arXiv
preprint arXiv:2203.07368.

Zhang, Z., Zhou, Y., and Ji, X. (2020). Almost optimal model-free reinforcement learningvia reference-
advantage decomposition. Advances in Neural Information Processing Systems, 33.

72


