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Abstract—We consider the problem of multi-class classification
when there are missing entries in both the training samples and
the test samples. A modified version of the nearest subspace
classifier is proposed and analyzed to handle missing data. We
show the performance of the nearest subspace classifier is close
to its counterpart when no missing data are present as long
as the probability of observing each entry in the training set
is δ & O((logM/ni)

1/2), where M is the sample dimension
and ni & O(logM) is the training size of the ith class. Finally,
numerical results are provided for digit recognition when only a
subset of the pixels are observed.

Index Terms—nearest subspace, missing data, multi-class clas-
sification

I. INTRODUCTION

Multi-class classification is one of the most important
research topics in machine learning, with applications ranging
from computer vision, microarray analysis, to signal process-
ing. Conventional algorithms such as the nearest subspace
classifier (NSC) [1] and the recently proposed sparse represen-
tation based classifier (SRC) [2] have proved to be successful
in many cases by assuming samples in the same class lie in a
low-dimensional subspace. Compressive Sensing (CS) [3], [4]
makes it possible to handle missing entries in the test samples
[2], [5], but in many cases it is still required that the training
samples are fully observed in order to faithfully extract low-
dimensional features.

However, the cost of obtaining complete data may become
prohibitively expensive, if not impossible, due to the increasing
dimensionality of the datasets of interest in the so-called data
deluge. For example, in computational biology, the assessment
of a protein or a DNA sequence requires experiments that
take a lot of time and resources. Another example is that
the privacy settings of users in social networks make certain
information unavailable. Therefore there is a demanding need
to develop multi-class classification algorithms that don’t
require complete information of both the training samples
and the test samples. Recent advances in low-dimensional
manifold modeling of high-dimensional data provide premise
for estimating and tracking the structure of the dataset from
incomplete observations, such as [6]–[10]. Besides the at-
tempts in estimating the data structure, it is shown that a
matched subspace detector can succeed with high probability
even with a small number of partial observations under some
mild conditions [11].

In this paper, we propose a modified version of the NSC,
dubbed the robust nearest subspace classifier (RNSC), to
handle missing entries in both test and training samples. The
proposed algorithm first infer the principal subspace of each

class from the partially observed training set, then projects the
partially observed testing sample onto the principal subspace
of each class, and identifies the class with the minimal residual.
When data is fully observed, the proposed RNSC algorithm
is the same as the original NSC algorithm. When the proba-
bility of observing each entry in the training set is assumed
known as δ, we show that the performance of the RNSC is
close to the original NSC without missing data as long as
δ & O((logM/ni)

1/2) under mild conditions, where M is the
sample dimension and ni & O(logM) is the training size of
each class. When δ is unknown, we simply assume δ = 1, and
this is equivalent to the original NSC by filling in all missing
entries as zero. It is empirically shown in numerical examples
there is only a very small degeneration in performance.

The rest of the paper is organized as follows. Section II for-
mulates the multi-class classification problem and presents the
RNSC algorithm. Section III provides theoretical performance
analysis. Numerical examples are provided in Section IV for
handwritten digit datasets. Finally we conclude in Section V.

Remark: Throughout the paper, we use upper case bold
letters for matrices, and lower case bold letters for vectors. Let
‖A‖, ‖A‖F denote the spectral norm and the Frobenius norm
of A respectively. Let � denote point-wise multiplication,
diag(A) denote the diagonal matrix of A, I denote the
identity matrix, and PB denote the orthogonal projection to
the subspace spanned by the columns of B.

II. ROBUST NEAREST SUBSPACE CLASSIFIER

A. Problem Formulation

Given a test sample y ∈ RM , the purpose of multi-class
classification is to assign y to one of the K classes. We assume
there are ni training samples from the ith class, and all training
samples are stacked into a matrix as

Xi = [xi,1, · · · ,xi,ni
] ∈ RM×ni ,

where xi,j ∈ RM is the jth training sample in the ith
class. Without loss of generality, we assume all samples are
normalized, i.e. ‖xi,j‖2 = 1 and ‖y‖2 = 1. The NSC [1]
first calculates the distance from the test sample y to the ith
class and measures the projection residual ri from y to the
orthogonal principal subspace Bi ∈ RM×k of the training
sets Xi, which is spanned by the principal eigenvectors of
Σi = XiX

T
i for the ith class, given as

ri = ‖(I−PBi) y‖2 =
∥∥(I−BiB

T
i

)
y
∥∥

2
. (1)



The test sample y is then assigned to the class with the
smallest residual among all classes, i.e.

i∗ = argmin
i

ri.

In this paper, both the training samples and the test samples
suffer from the missing data problem, i.e. only a small fraction
of the entries of Xi’s and y are observed. We denote the
partially observed test sample as

yΩ = PΩy, (2)

where P = IΩ ∈ Rm×M is a partial identity matrix where m
rows are selected uniformly at random, denoted by the index
set Ω. We denote the partially observed training matrix as

Zi = [zi,1, · · · , zi,ni ] = Pi �Xi, i = 1, . . . ,K, (3)

where Pi = [pi(k, j)] ∈ {0, 1}M×ni is a binary matrix where
pi(k, j) = 1 if the kth entry of the jth training sample in the
ith class is observed, and pi(k, j) = 0 if that entry is missing.
We assume each entry is observed with probability δ ∈ [0, 1]
independently, and the goal is to design a robust version of
the NSC in order to handle missing entries in the data.

B. Algorithm Details

Our robust nearest subspace classifier (RNSC) is proposed
based on two modifications of the original NSC algorithm. The
first change handles missing data in the training sets, where
we use an unbiased estimator of Σi up to a scalar to calculate
the principal subspaces from the training sets with missing
entries, given as (5). The expectation of Σ̂i can be verified as
EΣ̂i = δ2Σi, however this estimator requires the knowledge
of δ. In practice, we could consider an alternative estimator as

Σ̃i = ZiZ
T
i (4)

which is biased but doesn’t require knowing δ. This is equiva-
lent to setting δ = 1 in (5), and equivalent to the original NSC
by filling all missing entries as zero. In the numerical examples
in Section 4, the performance of using Σ̃i only degenerates a
little compared with using Σ̂i.

The second modification handles missing data in the test
sample, where the residual to each class is calculated as (6), i.e.
the distance between the test sample on the observed entries
yΩ to the subspace spanned by B̂i,Ω = IΩB̂i, obtained by
restricting to the observed rows of the principal subspace B̂i

extracted from Σ̂i. Then the test sample is classified to the
class with the smallest residual r̂i,Ω. Algorithm 1 describes
the details of the proposed RNSC algorithm.

III. THEORETICAL ANALYSIS

In our theoretical analysis, we want to establish the relation-
ship between the performance of RNSC using the unbiased
estimator Σ̂i when missing data are present and the perfor-
mance of the NSC when full data are available, by showing
that with high probability, the residual r̂i,Ω computed from
the RNSC for each class will be very close to the residual ri
computed from the NSC up to a scalar.

Algorithm 1 Robust Nearest Subspace Classifier (RNSC)
Input: training samples of the ith class Zi, i = 1, · · · ,K, the
observation probability p, the test sample yΩ;
Output: the label of the test sample yΩ.

1: Compute the covariance matrix of each class using:

Σ̂i = (δ − 1) diag
(
ZiZ

T
i

)
+ ZiZ

T
i (5)

2: Compute the principal subspace of Σ̂i of rank k as B̂i;
3: Compute the distance from yΩ to each B̂i as

r̂i,Ω =
∥∥∥(I−PB̂i,Ω

)
yΩ

∥∥∥
2
, (6)

where PB̂i,Ω
is the orthogonal projection to the subspace

spanned by B̂i,Ω by restricting to the rows in Ω.
4: Claim the label of yΩ as

i∗ = argmin
1≤i≤K

r̂i,Ω. (7)

A. Missing data in the training sets

We first describe the noncommutative Bernstein’s inequality
[12] in order to establish that ‖Σ̂i− δ2Σi‖ is small with high
probability.

Lemma 1: [12] Let X1, · · · , XL be independent zero-mean
symmetric random matrices of dimension M ×M . Suppose
σ2 =

∑L
k=1

∥∥E[XkX
T
k ]
∥∥ and ‖Xk‖ ≤ B almost surely for

all k. Then for any 0 < τ < σ2/B,

Pr

[∥∥∥∥∥
L∑
k=1

Xk

∥∥∥∥∥ > τ

]
≤ 2M exp

(
−3τ2

8σ2

)
. (8)

We next define the coherence of a subspace [13] as follows.
Definition 1: (Coherence of a subspace) Let V be a sub-

space of RM of dimension k and PV be the orthogonal
projection onto V. Then the coherence of V is defined as

µ(V) =
M

k
max

1≤i≤M
‖PVei‖22 (9)

where {ei}Mi=1 are standard basis vectors.
Note that for any subspace 1 ≤ µ(V) ≤M/k. We have the

following theorem.
Theorem 1: Let 0 < η < 1. Suppose

δ >

√
8

3‖Σi‖
log

(
2M

η

)
, (10)

then with probability at least 1− η,∥∥∥Σ̂i − δ2Σi

∥∥∥ ≤ δ√8‖Σi‖
3

log

(
2M

η

)
. (11)

Proof: Define the matrix Zi,j = zi,jz
T
i,j , Di,j =

diag
(
zi,jz

T
i,j

)
and Xij = xi,jx

T
i,j , then

Σ̂i − δ2Σi =

ni∑
j=1

((δ − 1)Di,j + Zi,j − δ2Xi,j) ,
ni∑
j=1

Vi,j .



where Vi,j = (δ−1)Di,j+Zi,j−δ2Xi,j . It is straightforward
that

‖Vij‖ ≤ (1− δ) ‖Di,j‖+ ‖Zi,j‖+ δ2‖Xi,j‖
≤ (1− δ) + 1 + δ2 ≤ 2, (12)

where (12) follows from ‖Xi,j‖2 = ‖xi,j‖ = 1, ‖Zi,j‖2 =
‖zi,j‖ ≤ 1. Now define the matrix Wi,j as

Wi,j = Vi,jVi,j

= (δ − 1)2D2
i,j + (δ − 1)Di,j(Zi,j − δ2Xi,j)

+ (δ − 1)(Zi,j − δ2Xi,j)Di,j + (Zi,j − δ2Xi,j)
2,

where the diagonal entries of E[Wi,j ] is given by

E[wi,j(k, k)] = (δ3 − δ2)xi,j(k)4 + (δ2 − δ4)xi,j(k)2, (13)

and the off-diagonal entries of E[Wi,j ] is given by

E[wi,j(k, `)] = (δ3 − δ4)xi,j(k)xi,j(`), (14)

where xi,j(k) and zi,j(k) denotes the kth entry of xi,j and zi,j
respectively. Combining (13) and (14), we can rewrite E[Wij ]
as

E[Wij ] = (δ2−δ3)
[
diag(Xi,j)− diag(Xi,j)

2
]
+(δ3−δ4)Xij .

We could bound σ2 =
∥∥∥∑ni

j=1 E[Wi,j ]
∥∥∥ as

σ2 ≤ (δ2 − δ3)

∥∥∥∥∥∥
ni∑
j=1

[
diag(Xi,j)− diag(Xi,j)

2
]∥∥∥∥∥∥

+ (δ3 − δ4)

∥∥∥∥∥
ni∑
i=1

Xi,j

∥∥∥∥∥ (15)

≤ (δ2 − δ3)

∥∥∥∥∥∥
ni∑
j=1

diag(Xi,j)

∥∥∥∥∥∥+ (δ3 − δ4)

∥∥∥∥∥
ni∑
i=1

Xi,j

∥∥∥∥∥ (16)

≤ (δ2 − δ3) ‖diag (Σi)‖+ (δ3 − δ4) ‖Σi‖ (17)

≤ (δ2 − δ3)‖Σi‖+ (δ3 − δ4) ‖Σi‖ (18)

≤ δ2‖Σi‖. (19)

where (16) follows from the fact the diagonal entries of Xi,j

is not greater than 1, and (17) follows by writing Σ =∑ni

j=1 Xi,j , (18) follows from the eigenvalue majorization.
Let 0 < τ < δ2‖Σi‖, then following Lemma 1 we have

Pr
[∥∥∥Σ̂i − δ2Σi

∥∥∥ > τ
]
≤ 2M exp

(
− 3τ2

8δ2‖Σi‖

)
. (20)

By letting τ = δ

√
8‖Σi‖

3 log
(

2M
η

)
, we obtain (11). Since

τ < δ2‖Σi‖, we have

δ

√
8‖Σi‖

3
log

(
2M

η

)
< δ2‖Σi‖,

which gives (10).
Theorem 1 does not make any assumptions on the training

sets such as low rankness or incoherence conditions of the
sample covariance matrix Σi, which makes it highly versatile.

Since ‖Σi‖ ≤ ni, we have the following corollary which
provides an explicit bound on the number of training samples
in each class.

Corollary 2: Let 0 < η < 1. Suppose

δ >

√
8

3ni
log

(
2M

η

)
, (21)

then with probability at least 1− η,

∥∥∥Σ̂i − δ2Σi

∥∥∥ ≤ δ√8ni
3

log

(
2M

η

)
. (22)

Denote the event that (11) happens by G. Let PB̂i
be the

orthogonal projection to B̂i, which is the principal subspace
extracted from Σ̂i, and define

r̂i =
∥∥∥(I−PB̂i

)
y
∥∥∥

2
. (23)

Our next step is to use the sin Θ Theorem of Davis and Kahan
[14] in Lemma 2 to bound the distance between ri and r̂i under
event G.

Lemma 2: (Davis-Kahan) Let A, Ã be n × n symmetric
matrices, where Ã is a perturbed version of A. Denote by
λk the kth largest eigenvalue of A and V the eigenspace
corresponding to the first k eigenvalues of A. Denote by σ̃k
and Ṽ the analogous quantities for Ã. If the kth eigengap
λk − λk+1 ≥ α, then the distance between the two subspaces
V and Ṽ is bounded by

‖sin Θ‖ ≤ ‖Ã−A‖
α

, (24)

where Θ = [θ1, · · · , θk] is the canonical angles between the
column space of V and Ṽ.

Denote the normalized kth eigengap of Σi = XiX
T
i as

αi =
λk(Σi)− λk+1(Σi)

ni
. (25)

Using the relationship in [14] that∥∥∥PBi
−PB̂i

∥∥∥
F

=
√

2 ‖sin Θi‖ , (26)

we have under the event G,∣∣ri − r̂i∣∣ ≤ ‖(PBi −PB̂i
)y‖2

≤ ‖PBi
−PB̂i

‖F ‖y‖2 =
√

2‖ sin Θi‖ (27)

≤
√

2

niδ2αi
‖Σ̂i − δ2Σi‖ (28)

≤ 4

δαi

√
2

3ni
log

(
2M

η

)
, (29)

where (27) follows from ‖y‖2 = 1 and (26), (29) follows
from Lemma 2. It shows that given δ & O((logM/ni)

1/2),
as long as ni & O(logM), the bound |r̂i − ri| is small with
high probability.



B. Missing data in the test sample

Next we use the matched subspace detector developed in
[11] to show the distance between r̂i and r̂i,Ω is small as long
as the number of observed entries in the test sample is about
m & O(kµ(B̂i) log k). We first present the following lemma
that slightly improves the lower bound in [11].

Lemma 3: ([11]) Let 0 < ε < 1 and m = |Ω| ≥
8k
3 µ(B̂i) log( 2k

ε ). Then with probability at least 1− 4ε,

(1− β)r̂2
i ≤

M

m
r̂2
i,Ω ≤ (1 + γ)r̂2

i , (30)

where

γ = µ
(

(I−PB̂i
)y
)√ 2

m
log

(
1

ε

)
and

β =

√
8

3m

(
kµ(B̂i) + µ

(
(I−PB̂i

)y
))

log

(
2(k + 1)

ε

)
.

Proof: The RHS of (30) is the same as [11, Theorem 1].
For the lower bound, let V = [B̂i,y], and VΩ = [B̂i,Ω,yΩ]
be the subsampled matrix of V on the rows indexed by Ω.
From [15, Lemma 5], we have that

r̂2
i,Ω ≥ λmin(VT

ΩVΩ). (31)

Furthermore, define the matrix Q as

Q =

[
I − 1

r̂i
B̂T
i y

0 1
r̂i

]
, (32)

then we have QTVTVQ = I. Define

Ṽ = VQ =
[
B̂i

1
r̂i

(I−PB̂i
)y
]
.

The coherence of Ṽ satisfies

µ(Ṽ) ≤
kµ(B̂i) + µ

(
(I−PB̂i

)y
)

k + 1
.

Using similar arguments as [11, Lemma 3], we have∥∥∥QTVT
ΩVΩQ− m

M
I
∥∥∥ ≤ m

M
β (33)

Therefore, λmin(VT
ΩVΩ) ≥ m

M (1 − β)λmax(QTQ)−1 =
m
M (1− β)r̂2

i . Plugging this in (31) yields (30).
Denote the event that (30) happens by H. It is worth noting

that we can bound the number of observed entries m using
µ(Bi) based on the following bound between the coherence
of B̂i and Bi under event G:

µ(B̂i)
1
2 ≤

√
M

k

∥∥∥PB̂i
−PBi

∥∥∥
F
‖ei‖2 + µ(Bi)

1
2

≤ 4

δαi

√
2M

3nik
log

(
2M

η

)
+ µ(Bi)

1
2 , (34)

Similarly, we can lower bound µ(B̂i) as

µ(B̂i)
1
2 ≥ µ(Bi)

1
2 − 4

δαi

√
2M

3nik
log

(
2M

η

)
. (35)

C. Connecting the Pieces

The main theorem is to connect the residual ri when no
missing data are present for each class is close to r̂i,Ω when
missing data are present by combining (29) and (30) under the
event G ∩ H. We have the following theorem.

Theorem 3: Let 0 < η, ε < 1. Given δ satisfies (10) and
m ≥ 8k

3 µ(B̂i) log(2k
ε ), with probability at least 1− η − 4ε,√

M

m
r̂i,Ω ≤

√
1 + γ

[
ri +

4

δαi

√
2

3ni
log

(
2M

η

)]
,√

M

m
r̂i,Ω ≥

√
1− β

[
ri −

4

δαi

√
2

3ni
log

(
2M

η

)]
.

Our theorem indicates that as long as the percentage of
observed entries in the training set is δ & O((logM/ni)

1/2),
and the number of observed entries in the test sample is m &
O(kµ(Bi) log k) for all classes, the performance of the RNSC
is close to the performance of the original NSC when full data
is available.

IV. NUMERICAL EXAMPLES

In this section, we examined the proposed RNSC algorithms
for digit recognition, when both the training samples and test-
ing samples have a significant percentage of missing entries.
We use the MNIST Handwritten Digits database [16], which
include about 6000 training samples and 1000 test samples per
digit in the data set. Each sample is an 8-bit gray-scale image
of “0” through “9” with dimension M = 28× 28 = 784.

We randomly choose ntr = 1000 samples for training and
nte = 500 samples for testing per digit. We assume each
pixel in both the training and the testing sample images is
observed with the same probability δ ∈ (0, 1] because they
may experience the same impairments in the system. Fig. 2
shows the recognition rate versus δ, when a principal subspace
of rank k = 30 is extracted using the unbiased estimator Σ̂i

and the biased estimator Σ̃i for each class from the training
data. With observing only 20% of the whole data, it still
achieves a recognition rate of 77% for both estimators. With
50% of the data, the recognition rate is within 2% degradation
of the case when full data is available. It is also worth noting
that the performance of using the biased estimator is only
slightly worse (within 1% percent) than that of using the
unbiased estimator, but does not require the knowledge of δ.

Fig. 1 (a) shows the recognition rate with respect to δ for
the unbiased estimator with different training size per digit
when the rank of the principal subspace is fixed as k = 30.
The recognition rate increases as the training size increases
as the estimator is expected to perform better. Fig. 1 (b)
shows the recognition rate with respect to δ for varied rank
of the principal subspace k = 20, 30, 50 when the training
size is ntr = 500 per digit. When δ is relatively small, the
difference between recognition rates for various ranks is bigger
compared when δ is large, and rank k = 20 performs best. This
may indicate that more gain can be achieved by selecting the
optimal subspace rank when there are missing data.
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Fig. 1. Recognition rate with respect to probability of observation, for the unbiased covariance estimator with (a) different training size per class for r = 30;
(b) different principal subspace rank with ntr = 500 per class.
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Fig. 2. Recognition rate with respect to probability of observation of the
proposed RNSC, for the unbiased and biased estimators with r = 30.

V. CONCLUSIONS

In this paper, we proposed and analyzed a robust version of
the nearest subspace classifier, dubbed robust nearest subspace
classifier (RNSC), when only a small amount of entries are
observed in both the training samples and testing samples. We
show the scaling between the number of training samples, the
amount of missing data when its performance is comparable
to the nearest subspace classifier when no missing data are
present if the corresponding spectral gap is not too small. We
show that our algorithm achieves performance close to the
scenario when no missing data are present on real-world data
sets.

ACKNOWLEDGEMENTS

This work was partially supported by a grant from the
Simons Foundation.

REFERENCES

[1] K. Lee, J. Ho, and D. Kriegman, “Acquiring linear subspaces for face
recognition under variable lighting,” IEEE Trans. on PAMI, vol. 27,
no. 5, pp. 684–698, 2005.

[2] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. on PAMI, vol. 31,
no. 2, 2009.

[3] E. J. Candés, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489–509, Feb.
2006.

[4] D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52,
no. 2, pp. 1289–1306, Feb. 2006.

[5] Y. Chi and F. Porikli, “Connecting the dots: From nearest subspace to
collaborative representation,” in CVPR, 2012.

[6] K. Lounici, “High-dimensional covariance matrix estimation with miss-
ing observations,” Arxiv, May 2012.

[7] Y. Chi, Y. C. Eldar, and R. Calderbank, “Petrels: Subspace estimation
and tracking from partial observations,” in Acoustics, Speech and Signal
Processing (ICASSP), 2012 IEEE International Conference on. IEEE,
2012, pp. 3301–3304.

[8] ——, “Petrels: Parallel subspace estimation and tracking by recursive
least squares from partial observations,” IEEE Trans. on Signal Process-
ing, vol. 61, pp. 5947 – 5959, 2013.

[9] L. Balzano, R. Nowak, and B. Recht, “Online identification and tracking
of subspaces from highly incomplete information,” Proc. Allerton, 2010.

[10] Y. Xie, J. Huang, and R. Willett, “Multiscale online tracking of man-
ifolds,” in Statistical Signal Processing Workshop (SSP), 2012 IEEE.
IEEE, 2012, pp. 620–623.

[11] L. Balzano, B. Recht, and R. Nowak, “High-dimensional matched
subspace detection when data are missing,” in Proc. ISIT, June 2010.

[12] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,”
Found. Comput. Math., vol. 12, no. 4, pp. 389–434, 2012.

[13] E. J. Candès and T. Tao, “The power of convex relaxation: Near-optimal
matrix completion,” IEEE Trans. Inform. Theory, vol. 56, no. 5, pp.
2053–2080, 2009.

[14] G. W. Stewart and J. Sun, Matrix Perturbation Theory. Academic Press,
1990.

[15] T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse signal
recovery with noise,” Information Theory, IEEE Transactions on, vol. 57,
no. 7, pp. 4680–4688, 2011.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.


