
1

Stochastic Approximation and Memory-Limited
Subspace Tracking for Poisson Streaming Data

Liming Wang, Member, IEEE, and Yuejie Chi, Senior Member, IEEE

Abstract—Poisson count data is ubiquitously encountered in
applications such as optical imaging, social networks and traffic
monitoring, where the data is typically modeled after a Poisson
distribution and presented in a streaming fashion. Therefore it
calls for techniques to efficiently extract and track the useful
information embedded therein. We consider the problem of
recovering and tracking the underlying Poisson rate, where the
rate vectors are assumed to lie in an unknown low-dimensional
subspace, from streaming Poisson data with possibly missing
entries. The recovery of the underlying subspace is posed
as an expected loss minimization problem under nonnegative
constraints, where the loss function is a penalized Poisson log-
likelihood function. A stochastic approximation (SA) algorithm
is proposed and can be implemented in an online manner. Two
theoretical results are established regarding the convergence of
the SA algorithm. The SA algorithm is guaranteed almost surely
to converge to the same point as the original expected loss
minimization problem, and the estimate converges to a local
minimum. To further reduce the memory requirement and handle
missing data, the SA algorithm is modified via lower bounding
the log-likelihood function in a form that is decomposable and
can be implemented in a memory-limited manner without storing
history data. Numerical experiments are provided to demonstrate
the superior performance of the proposed algorithms, compared
to existing algorithms. The memory-limited SA algorithm is
shown to empirically yield similar performance as the original
SA algorithm at a much lower memory requirement.

Index Terms—Poisson data, Poisson noise, count data, stochas-
tic approximation, subspace estimation and tracking.

I. INTRODUCTION

There is an increasing interest in exploring and interpreting
high-dimensional streaming count data, which has appeared
ubiquitously in numerous areas such as social networks [1],
medical imaging [2], [3], photonics [4], traffic monitoring and
surveillance [5]. The characteristics of count data significantly
differ from traditional data defined in the continuous domain,
and call for new processing techniques. Consequently, as the
Gaussian model is generally inappropriate for count data, the
Poisson model starts to serve a pivotal role in modeling such
data.

Consider a high-dimensional count data stream, where the
data vector yn ∈ ZN+ at each time n is typically modeled as

L. Wang is with Department of Electrical and Computer Engineer-
ing, The Ohio State University, Columbus, OH 43210, USA. Email:
wang.8482@osu.edu.

Y. Chi is with Department of Electrical and Computer Engineering and
Department of Biomedical Informatics, The Ohio State University, Columbus,
OH 43210, USA. Email: chi.97@osu.edu.

This work is supported in part by AFOSR under the grant FA9550-15-1-
0205, by ONR under the grant N00014-15-1-2387, and by NSF under the
grants CAREER ECCS-1650449, ECCS-1462191 and CCF-1704245.

yn ∼ Pois(zn), where Pois(·) denotes the vector Poisson dis-
tribution, and zn ∈ RN+ is the rate vector. Moreover, in many
applications, the data vectors may not be fully observed due to
packet loss, privacy considerations or missing data. Therefore,
it is vital to propose online algorithms that can accurately
learn and track the underlying structure of the Poisson model,
e.g. changes in the rates, in both computational- and memory-
efficient manners, as well as being robust to missing data.

Efforts have been devoted to achieve the aforementioned
goals for the Gaussian model, where the data vectors yn’s
are assumed drawn from the Gaussian distribution, from two
perspectives. The first approach is to design memory-efficient
online algorithms tailored for streaming data, which do not
require storing all the previous data samples. These include
online versions of classical algorithms such as Principal Com-
ponent Analysis (PCA) [6] and dictionary learning [7]. The
other approach is to effectively reduce the data dimensionality
by exploring its hidden structure. To be more specific, data in
very high dimensional ambient space can often be effectively
represented by a much lower-dimensional structure, and pro-
cessing of the original data can be efficiently carried out on this
low-dimensional structure. Nonnegative matrix factorization
(NMF) is an eminent example along this direction [8], which
seeks to approximately decompose a nonnegative data matrix
into a product of two nonnegative matrices of smaller sizes.
This also makes it possible to recover the data even when it is
highly subsampled, for example completing a low-rank matrix
[9]. By assuming the data vectors lie approximately in a low-
dimensional subspace, a series of recent work [10]–[14] have
developed low-complexity subspace estimation and tracking
algorithms under the Gaussian model, using partially observed
or even corrupted streaming data. In [15], the authors proposed
a sequential optimization framework which extends the Gaus-
sian model to a binary model. Very recently, extensions of
the Gaussian model to categorical data via Probit, Tobit and
Logit models are considered in [16], and several algorithms
are proposed to accommodate large-scale categorical data that
are incomplete and online. However, these approaches do
not generalize straightforwardly to the Poisson model in a
memory-efficient manner.

Inverting a Poisson measurement model in a batch setting
has been studied from various perspectives. In the Poisson
compressed sensing (CS) framework [17], the rate vector
is modeled as zn = Axn, where the aim is to recover a
sparse vector xn whose dimension is much higher than that
of yn when the sensing matrix A is known a priori. When
A satisfies certain desirable properties such as the restricted
isometry property, performance bounds for sparse recovery are

2

developed in [18], [19] for the single measurement case. The
impact of a designed sensing matrix under the Poisson model
has been investigated in [20]. In [3], the Poisson CS framework
is extended to the multiple measurement setting, where it
proposes a batch algorithm to recover multiple sparse vectors
{xn}. Similarly, [21], [22] developed batch algorithms for the
Poisson matrix completion problem, which aims to recover
the rate vectors {zn}, assuming it lies in a low-dimensional
subspace. These batch algorithms become highly inefficient in
terms of computational cost and storage complexity for large-
scale data streams, and do not adapt to changes in an online
setting.

Motivated by [11], this paper assumes that the rate vectors
zn lie in a low-dimensional subspace that may change over
time. The goal is to develop efficient online algorithms for
estimating and tracking the low-dimensional subspace, and
recovering the rate vectors, from streaming observations in
a low-complexity manner. To begin with, we formulate the
subspace estimation problem as an expected loss minimization
problem with nonnegative constraints, which minimizes the
expectation of a Tikhonov-penalized negative Poisson log-
likelihood function. The stochastic approximation (SA) frame-
work [23] is invoked to develop the online algorithm, which
follows two steps at each time to solve the optimization prob-
lem. In the first non-negative encoding step, the nonnegative
coefficient of the rate vector in the subspace is estimated by us-
ing the previously learned subspace representation. During the
second step named subspace update, the subspace is updated
using the previously estimated coefficients under a nonnegative
constraint. Under a few mild assumptions, we establish the
convergence of the proposed SA algorithm. Namely, the SA
algorithm is guaranteed almost surely to converge to the same
point as the original expected loss minimization problem, and
the estimate converges to a local minimum.

However, distinct from the Gaussian model, the above
SA algorithm is not memory-efficient, namely, it requires a
memory space that grows with the size of the data stream,
due to the form of the Poisson model. Alternatively, we
derive lower bounds of the likelihood function (i.e., upper
bounds of the objective function) and optimize the obtained
bounds instead to mitigate the issue, so that the subspace
can be estimated by using some surrogates whose sizes do
not grow with time and can be updated efficiently in an
online manner. This is denoted as the memory-limited SA
algorithm. Moreover, we provide extensions even when the
data vectors are only partially observed. Numerical simulations
are provided to show that the memory-limited SA algorithm
empirically yields similar performance as the original SA
algorithm. Furthermore, we conduct experiments using both
synthetic and video data to demonstrate the performance of
the proposed algorithms, where they significantly outperform
state-of-the-art subspace tracking algorithms that naively apply
Gaussian models to count data.

It is worth noting that several other approaches exist in
the literature for tracking streaming data that can be applied
to count data, such as online convex optimization [5] and
nonparametric Bayesian factor analysis [24]. They can be
thought as complementary to ours, as they make different

assumptions about the underlying structures of the rate vectors,
as well as adopt different analytical frameworks. Our focus is
on estimating and tracking the (possibly abrupt) changes of
the underlying low-dimensional subspace, which can be used
to model many data types of interest. Numerical experiments
on real data are provided to compare our approach against
these alternatives.

The paper is organized as follows. In Section II, we first
introduce our model and the problem formulation. In Section
III, we propose the stochastic approximation algorithms, and
develop memory-limited modifications to the SA algorithm,
which also allow for the missing data case. We present the
convergence analysis of the proposed SA algorithm in Section
IV. Several numerical experiments for synthetic and real
datasets are presented in Section V. We conclude the paper
in Section VI.

Notations: Bold upper and lower case letters are used to
denote matrices and vectors, respectively, e.g., D is a matrix
and x is a vector. ‖· ‖F and ‖· ‖2 denote the Frobenius
norm and `2 norm, respectively. Tr(·) denotes the trace of
an argument matrix, and � denotes the Hadamard product
(entry-wise product). In addition, we follow the convention
that log 0 = 0.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Consider the following Poisson streaming data model:

yn ∼ Pois(zn), n = 1, 2, . . . , (1)

where the observation at time n is given as yn =
[yn,1, . . . , yn,N]T ∈ ZN+ , zn = [zn,1, . . . , zn,N]T ∈ RN+ is the
Poisson rate vector, and Pois(·) denotes the vector-Poisson
distribution, i.e., Pois(zn) =

∏N
i=1 pois(zn,i), where pois(·)

is the common scalar Poisson distribution with parameter zn,i.
Moreover, we assume that the rate vector zn lies in an K-
dimensional subspace that possibly changes over time, given
as

zn = Dnan, (2)

where Dn ∈ RN×K+ , an ∈ RK+ and K is the dimension of the
subspace, K � N . For simplicity, we have assumed that the
subspace dimension K does not change with time, which can
be thought as an upper bound of all possible dimensions if it
indeed changes with time.

Moreover, in many applications, we may only observe a sub-
set of entries in the data vectors. Let pn = [pn,1, . . . , pn,N]T ∈
{0, 1}N denote a binary mask at time n, where pn,i = 1 if the
i-th entry of yn is observed, and pn,i = 0 otherwise. Clearly,
in the missing data case, it is possible that the subspace
may not be identifiable if the observation masks {pn} are
not well posed. For example, if all pn,l = 0, then it is not
possible to recover the lth row of the Poisson rate nor the
subspace. In [25], observation patterns that allow finite and
unique completion of a low-rank matrix are characterized, and
it is shown that a uniform random sampling scheme guarantees
uniqueness as long as each entry is observed with a sufficiently
large probability.

Given the sequential observations {yn}Mn=1 (in the full ob-
servation case) or {pn�yn,pn}Mn=1 (in the partial observation

3

case), the goal is to recover and track the unknown subspace
matrix {Dn}Mn=1, and corresponding rate vectors {zn}Mn=1

in an online fashion. Clearly, the problem is not uniquely
identifiable, due to the fact that we can always rewrite Dnan =
(kDnQ)(k−1QTan), where k is an arbitrary positive scalar
and Q ∈ RK×K is an orthonormal matrix. Hence, subspace
recovery should be interpreted in the sense that the subspace
spanned by the columns of Dn is accurately recovered. In
particular, we wish that the developed algorithms have small
computational and memory footage, whose complexities do
not grow with time.

III. PROPOSED ALGORITHMS BASED ON STOCHASTIC
APPROXIMATION

We start with the full observation case, and will develop
the extension to the partial observation case in Section III-C.
At each time n, given the Poisson model, we manifest a loss
function with respect to yn and D ∈ RN×K+ , defined as

`(yn,D) := min
an∈RK

+

− log Pois(yn; Dan)+λ‖D‖2F +µ‖an‖22,

(3)
where log Pois(yn; Dan) denotes the vector Poisson log-
likelihood function with the rate vector Dan, i.e.

log Pois(yn; Dan) =

N∑
i=1

log pois(yn,i; d
T
i an), (4)

and log pois(·) denotes the log-likelihood function of the
scalar Poisson distribution, dTi ∈ R1×K

+ is the ith row of D,
i = 1, . . . , N , λ, µ > 0 are preset regularization parameters,
and the terms ‖D‖2F and ‖an‖22 are Tikhonov regularization
terms that control the Frobenius norm of the subspace and
`2 norm of the associated coefficients. We note that these
Tikhonov regularization terms will help to fix the scaling
ambiguity in the model.

Motivated by the formulation in [23], let us first formulate
the expected loss minimization problem by assuming Dn = D
is fixed throughout time n. This will be used to motivate the
stochastic approximation algorithms below and to benchmark
performances. Define the expected loss defined as

f(D) := Eyn
[`(yn,D)], (5)

where the expectation is evaluated over the Poisson distri-
bution of yn. We then aim to recover D by the following
expected loss minimization problem under a nonnegative con-
straint:

D̂ = argmin
D∈RN×K

+

f(D). (6)

Once D̂ is obtained from (6), the coefficient ân can be derived
via

ân = argmin
an∈RK

+

− log Pois(yn; D̂an) + µ‖an‖22, (7)

and the rate vector can be estimated as ẑn = D̂ân.

A. A Stochastic Approximation Algorithm
The problem in (6) is a non-convex stochastic programming,

and we seek its solution via leveraging the stochastic approx-

imation (SA) framework [23]. We first define the empirical
loss at time t as

ft(D) :=
1

t

t∑
n=1

`(yn,D). (8)

By the strong law of large number, ft(D) → f(D) almost
surely (a.s.) as t→∞.

At each time t, we aim to approximate the problem (6) via
replacing the objective function f(D) by the empirical loss
ft(D). Hence, problem (6) can be approximated as

D̂t = argmin
D∈RN×K

+

1

t

t∑
n=1

min
an∈RK

+

[
− log Pois(yn; Dan) + µ‖an‖22

]
+ λ‖D‖2F . (9)

Invoking the stochastic approximation framework, we aim
to solve problem (9) by alternating between two steps, non-
negative encoding and subspace update. Specifically, at time
t, we first learn the coefficient vector ât, given the new data yt
and previously learned subspace D̂t−1. Namely, the estimate
ât is obtained by minimizing the loss function:

ât = argmin
a∈RK

+

− log Pois(yt; D̂t−1a) + µ‖a‖22. (10)

Once we obtain ât, the subspace D̂t is then updated
by minimizing, based on previous estimates {ân}tn=1 and
observations {yn}tn=1, the following:

D̂t = argmin
D∈RN×K

+

{
−1

t

t∑
n=1

log Pois(yn; Dân) + λ‖D‖2F

}
.

(11)

Owing to (4), (11) can be decomposed into a set of smaller
problems for each row of the subspace matrix. Specifically,
the ith row of D can be updated in parallel as

d̂t,i = argmin
di∈RK

+

−1

t

t∑
n=1

log pois(yn,i; d
T
i ân) + λ‖di‖22. (12)

We summarize the proposed stochastic approximate (SA)
algorithm in Algorithm 1. Both (10) and (12) can be solved
efficiently via projected gradient descent. Below we discuss
the details for solving (10), and (12) can be solved similarly.
Specifically, we find ât iteratively and at the (k + 1)-th
iteration, the update is calculated as

â
(k+1)
t = Proj

(
â
(k)
t − αk∇g(â

(k)
t)
)
,

where g(a) = − log Pois(yt; D̂t−1a)+µ‖a‖22 and Proj(a) :=
max{a, 0} is the projection operator, where max operator
denotes the entry-wise maximization. Moreover, αk is the step
size and can be set as [26]

αk =

(
â
(k)
t − â

(k−1)
t

)T [
∇g(â

(k)
t)−∇g(â

(k−1)
t)

]
∥∥∥∇g(â

(k)
t)−∇g(â

(k−1)
t)

∥∥∥2
2

,

and a random initial point â
(0)
t of the gradient descent is em-

ployed. The regularization parameters λ, µ can be empirically

4

Algorithm 1 Stochastic Approximation (SA) for Poisson
Streaming Data
Input: Data {yn}Mn=1, λ, µ, initialization D0

Output: Subspace estimates {D̂t}Mt=1 and {ât}Mt=1

1: for t = 1 to M do
2: Estimate the coefficient ât by the following optimiza-

tion via projected gradient descent:

ât = argmin
a∈RK

+

− log Pois(yt; D̂t−1a) + µ‖a‖22;

3: Update each row of the subspace D̂t by the following
optimization via projected gradient descent:

d̂t,i = argmin
di∈RK

+

−1

t

t∑
n=1

log pois(yn,i; d
T
i ân) + λ‖di‖22.

4: end for

determined via cross-validation and a random initialization D0

can be utilized.

B. Memory-Limited Stochastic Approximation

The SA algorithm in Algorithm 1 allows us to update the
subspace in an online fashion as new data arrives. However,
a closer examination suggests that its implementation requires
storing all previous {ân}tn=1 and {yn}tn=1 in order to perform
the subspace update (12), yielding a significant memory over-
head that grows linearly as t increases. This is in sharp contrast
to the Gaussian case [11], [12], where the log-likelihood is a
quadratic term that can be efficiently implemented by only
storing sufficient statistics of previous data whose size does
not grow with time.

Our goal in this section is to derive a memory-limited
SA algorithm for Poisson data that only demands storing
sufficient statistics of previous data, which is more appealing
for streaming applications. Unfortunately, the Poisson log-
likelihood function prohibits such an easy adaptation. Rather
than dealing with the original Poisson log-likelihood function,
we will establish its upper bound which is more amenable
for memory-limited implementations. In order to facilitate the
derivation, we make the following two technical assumptions:
A1) D ∈ C2 where C2 ⊂ RN×K+ is a compact set.
A2) There exist positive constants a and b such that 0 < a ≤

dTi an ≤ b, for all n and i. In other words, we assume
that entries of the rate vector zn = Dan are bounded.

The first one essentially assumes that D has bounded entries
and this is a very mild assumption and almost always valid for
real applications. The second assumption is used to exclude
the singular case, where some Poisson rates approach zero.
Similar assumptions have also been utilized in [3], [18] under
the Poisson CS framework. Note that by our assumptions, the
minimization in (3) is only obtained on a compact domain of
an. Therefore, we can further restrict an to be supported on
the compact set C3, which will not alter the solution to the
minimization.

We can now upper bound the Poisson log-likelihood func-
tion in the following proposition whose proof is presented in

Algorithm 2 Memory-Limited Stochastic Approximation for
Poisson Streaming Data
Input: Data {yn}Mn=1, λ, µ, initialization D0, s0 = 0, β0,i =

0 and r0,i = 0 for all 1 ≤ i ≤ N .
Output: Subspace estimates {D̂t}Mt=1 and {ât}Mt=1

1: for t = 1 to M do
2: Estimate the coefficient ât by the following optimiza-

tion via projected gradient descent

ât = argmin
a∈RK

+

− log Pois(yt; D̂t−1a) + µ‖a‖22.

3: Update the sufficient statistics, for 1 ≤ i ≤ N , as

st =
t− 1

t
st−1 +

1

t
ât, (15)

βt,i =
t− 1

t
βt,i +

1

t
yt,i, (16)

rt,i = rt−1,i + âtyt,i; (17)

4: Update each row of the subspace D̂t by the following
optimization via projected gradient descent

d̂t,i = argmin
di∈RK

+

dTi st − βt,i log(dTi rt,i) + λ‖di‖22.

5: end for

Appendix A.

Proposition 1. Under assumptions A1) and A2), we have the
following bound for every 1 ≤ i ≤ N and t:

−
t∑

n=1

log pois(yn,i; d
T
i an) ≤ dTi

(
t∑

n=1

an

)

−

(
t∑

n=1

yn,i

)
log

[
dTi

(
t∑

n=1

anyn,i

)]
+

t∑
n=1

log(yn,i!)

+

(
t∑

n=1

yn,i

)
·

[
log

(
t∑

n=1

yn,i

)
+ T

]
, (13)

where T is a constant only depending on a and b, as assumed
in A2.

Replacing the log-likelihood term by the above upper
bound, at each time t, we propose to update the ith row of D
via the following optimization problem:

d̂t,i = argmin
di∈RK

+

dTi st − βt,i log(dTi rt,i) + λ‖di‖22. (14)

where st = 1
t

∑t
n=1 ân, βt,i = 1

t

∑t
n=1 yn,i, and rt,i =∑t

n=1 ânyn,i. To implement (14), it is sufficient to update st,
βt,i and rt,i as new data arrives in a low-complexity fashion
as done in (15), (16), therefore it can be implemented in a
memory-limited manner. Putting everything together, we ob-
tain the memory-limited SA algorithm for Poisson streaming
data, summarized in Algorithm 2.

Remark: If we apply the Jensen’s inequality to∑t
n=1 log pois(yn,i; d

T
i an), we obtain a lower bound of

5

the Poisson log-likelihood function:

−1

t

t∑
n=1

log pois(yn,i; d
T
i an) ≥ 1

t
Gt − T

(
1

t

t∑
n=1

yn,i

)
,

where Gt is a short-hand notation for the right-hand side of
(13). Putting the above lower bound and the upper bound (13)
in Proposition 1 together, it is straightforward to observe that
the gap of the bounds is T

(
1
t

∑t
n=1 yn,i

)
, which approaches

to a constant when t goes to infinity. As we present in
Section V, it is observed that the performance of the memory-
limited SA algorithm is close to the original SA algorithm,
suggesting that these bounds are empirically tight for most
numerical experiments.

C. Extension to Handle Missing Data

In this section, we discuss how to extend the proposed
SA algorithms to handle missing data, when the data stream
is only partially observed. To begin with, we modify the
empirical loss minimization problem in (9) as

D̂t = argmin
D∈RN×K

+

1

t

t∑
n=1

min
an

[
−

N∑
i=1

pn,i log pois(yn,i; d
T
i an)

+ µ‖an‖22
]

+ λ‖D‖2F . (18)

The above can be solved in a similar fashion as described in
Algorithm 1, where the coefficient ât is estimated via

ât = argmin
a∈RK

+

−
N∑
i=1

pt,i log Pois(yt,i; d
T
i a) + µ‖a‖22, (19)

i.e. only the observed entries contribute to the loss function.
To obtain the memory-limited SA algorithm, we still take the
two assumptions as in previous section and have the following
upper bound.

Proposition 2. With previous assumptions, we have the fol-
lowing bound for every 1 ≤ i ≤ N and t:

−
t∑

n=1

pn,i log pois(yn,i; d
T
i an) ≤ dTi

(
t∑

n=1

pn,ian

)

−

(
t∑

n=1

pn,iyn,i

)
log

[
dTi

(
t∑

n=1

pn,iyn,ian

)]

+

t∑
n=1

pn,i log(yn,i!)

+

(
t∑

n=1

pn,iyn,i

)[
log

(
t∑

n=1

pn,iyn,i

)
+ T

]
, (20)

where T is a constant depending on a and b, as assumed in
A2.

Replacing the log-likelihood function by the above upper
bound, then the rows of the subspace D can be similarly
updated in parallel as

d̂t,i = argmin
di∈RK

+

dTi s̃t,i − β̃t,i log(dTi r̃t,i) + λ‖di‖22. (21)

where s̃t,i = 1
t

∑t
n=1 pn,iân, β̃t,i = 1

t

∑t
n=1 pn,iyn,i, and

r̃t,i =
∑t
n=1 ânpn,iyn,i. Hence, we can formulate a memory-

limited SA algorithm with missing data that alternates between
estimating ât and updating D̂t, which is summarized in
Algorithm 3.

Algorithm 3 Memory-Limited Stochastic Approximation for
Poisson Streaming Data with Missing Data

Input: Data {yn}Mn=1, λ, µ, initialization D0, s̃0,i = 0, β̃0,i =
0 and r̃0,i = 0 for all 1 ≤ i ≤ N .

Output: Subspace estimates {D̂t}Mt=1 and {ât}Mt=1

1: for t = 1 to M do
2: Estimate the coefficient ât by the following optimiza-

tion via projected gradient descent

ât = argmin
a∈RK

+

−
N∑
i=1

pt,i log pois(yt,i; d
T
i a) + µ‖a‖22;

3: Update the sufficient statistics, for 1 ≤ i ≤ N , as

s̃t,i =
t− 1

t
s̃t−1,i +

1

t
pt,iât, (22)

β̃t,i =
t− 1

t
βt,i +

1

t
pt,iyt,i, (23)

r̃t,i = r̃t−1,i + âtpt,iyt,i; (24)

4: Update each row of the subspace D̂t by the following
optimization via projected gradient descent,

d̂t,i = argmin
di∈RK

+

dTi s̃t,i − β̃t,i log(dTi r̃t,i) + λ‖di‖22.

5: end for

IV. CONVERGENCE ANALYSIS

In this section, we provide a convergence analysis for the
proposed SA algorithm in Algorithm 1 assuming Dt = D is
fixed. We first define

`′(yn,D,a) := − log Pois(yn; Da)+λ‖D‖2F +µ‖a‖22, (25)

and

f ′t(D) :=
1

t

t∑
n=1

`′(yn,D, ân), (26)

where ân is the output of Algorithm 1. Note that f ′t(D)
captures the empirical loss of the SA algorithm.

In order to facilitate the convergence analysis, in addition
to the assumptions A1) and A2) made in Section III-B, we
make an additional assumption:
A3) The observations {yn} are supported on a compact set

C1.
The assumption A3) essentially assumes that the observed

data is bounded. Since Dan is bounded above by A1), it is
straightforward to check that a realization of {yn} are upper
bounded with a probability controlled by the bound. When
the upper bound is set large enough, A3) holds with a high
probability. Therefore, one can apply a hard-threshold on the
data {yn} with a preset large upper bound. In addition, such
a bounded assumption is naturally satisfied for real data.

6

Our first theorem states the almost sure convergence of
the empirical loss {f ′t(D̂t)} of Algorithm 1, the objective
function {ft(D̂t)} of Algorithm 1, and the expected loss
{f(D̂t)} in (5) converge to the same limit, where {D̂t} is the
sequence output of Algorithm 1. All the proofs are presented
in Appendix B.

Theorem 1. With all previous assumptions, the stochastic
processes {ft(D̂t)},{f ′t(D̂t)} and {f(D̂t)} converge a.s. to
the same limit.

In addition, our second theorem states that the estimated
subspace D̂t also almost surely converges to a local minimum
of f(D).

Theorem 2. With all previous assumptions, consider a se-
quence {D̂t} such that Theorem 1 holds. Then with probability
1, D̂t converges to a local minimum of the expected loss f(D).

Different from previous works [12], [27] where the proof
directly aims for the stochastic sequence {D̂t}, inspired by
[28], we show the convergence of {D̂t} by charactering all
convergent subsequences of {D̂t}.

Unfortunately, the proof techniques for Theorem 1 and 2 can
only be applied to Algorithm 1, and cannot be easily adapted
to the memory-limited versions. However, Theorem 1 and 2
still serve as a convergence indicator of the memory-limited
versions, provided that they yield similar performance in the
numerical experiments in Section V.

V. NUMERICAL EXPERIMENTS

In this section, we showcase the performance of the pro-
posed two algorithms, i.e., SA and the memory-limited SA
algorithms, for both the full observation and partial observa-
tion cases. We conduct experiments on both synthetic and real
video data, as well as document analysis.

A. Experiments with Synthetic Data

Let N = 100 and K = 10. We generate synthetic data
yn ∼ Pois(Dan) i.i.d., where the entries of D and {an} are
randomly drawn from the uniform distribution on [0, 1]. Fur-
thermore, assume the entries of the partial observation mask
pn are also generated i.i.d. using the Bernoulli distribution
with the parameter 0 < p ≤ 1. The normalized subspace
reconstruction error is used to measure the performance, and it
is calculated as ‖PD̂⊥t

D‖F /‖D‖F where PD̂⊥t
is the projec-

tion operator onto the orthogonal complement of the subspace
estimate D̂t at time t. We randomly pick the initialization and
set the regularization parameters λ = 0.2, µ = 0.1 and the
length of the data stream M = 800.

We compare our results with the state-of-the-art subspace
tracking algorithm in [13], referred as recursive projected com-
pressive sensing (ReProCS) algorithm, that does not assume
any Poisson noise for incoming data. Furthermore, we also
compare our results to a Bayesian Poisson factor analysis
(BPFA) algorithm [24], which assumes the data is of the form
Pois(ΦΘ) where Φ is the factor loading matrix and Θ is the
factor score matrix. A Bayesian model is considered in [24]
for inference of Φ and Θ. In addition, we also compare our

algorithms to the batch Poisson matrix completion algorithm
in [22] that adopts a similar low-rank assumption on the rate
vectors. Since BPFA [24] and the batch algorithm in [22]
are not online algorithms, we only present their performance
using the entire data stream as the input. We treat the Poisson
observations as the input to all algorithms.

Fig. 1 shows the normalized subspace reconstruction error
with respect to the data stream index of the proposed SA,
memory-limited SA, ReProCS, BPFA and batch algorithms
when the data stream is fully observed. Fig. 2 shows the
normalized subspace reconstruction error with respect to the
data stream index for various algorithms when the data is par-
tially observable with different probabilities of observations.
Note that BPFA cannot handle missing data and is omitted in
this case. It can be seen that for both cases, the subspace
estimates of both SA and memory-limited SA algorithms
improve with the increase of time index, and provides much
better estimates than the ReProCS algorithm, which produces
very poor results. Moreover, the memory-limited SA algorithm
yields a very similar performance towards the SA algorithm
with a smaller complexity. The proposed algorithms also
achieves better performance than the BPFA algorithm and
yields similar performances of the batch algorithm when the
data index is large enough. Furthermore, the running time is
plotted against the normalized subspace error in Fig. 3. It can
be found that the proposed algorithms are at least competitive,
compared to other algorithms under considerations.

0 100 200 300 400 500 600 700 800
10

−4

10
−3

10
−2

10
−1

10
0

data stream index

ReProCS
SA algorithm
Memory−limited SA
BPFA
Batch

Figure 1. The normalized subspace reconstruction errors for SA, memory-
limited SA, ReProCS, BPFA and batch algorithms when N = 100, K = 10
and data is fully-observable.

We further examine the performance of the proposed al-
gorithms when the rank of the subspace K is over-specified.
This is common since the subspace rank might not be perfectly
known. In practice, it is common to have an over-estimation
of the rank. Fig. 4 shows the normalized subspace errors with
respect to the data stream index for the SA algorithm when the
subspace rank is over-estimated, under the same setup of the
previous experiments. Similarly, Fig. 5 shows the performance
of the memory-limited SA algorithm. It can be found that both
of the proposed algorithms still converge nicely even when the

7

0 100 200 300 400 500 600 700 800
10

−4

10
−3

10
−2

10
−1

10
0

data stream index

no
rm

al
iz

ed
 s

ub
sp

ac
e

er
ro

r

ReProCS
Memory−Limited SA
SA algorithm
Batch

0 100 200 300 400 500 600 700 800
10

−3

10
−2

10
−1

10
0

data stream index

no
rm

al
iz

ed
 s

ub
sp

ac
e

er
ro

r

ReProCS
Memory−limited SA
SA algorithm
Batch

(a) p = 0.5 (b) p = 0.1

Figure 2. The normalized subspace reconstruction errors for SA, memory-limited SA, ReProCS and batch algorithms when N = 100, K = 10, and the
probability of observing each entry is (a) p = 0.5, and (b) p = 0.1.

0 100 200 300 400 500 600 700 800
10

−4

10
−3

10
−2

10
−1

10
0

data stream index

no
rm

al
iz

ed
 s

ub
sp

ac
e

er
ro

r

rank=10
rank=12
rank=14
rank=16

0 100 200 300 400 500 600 700 800
10

−3

10
−2

10
−1

10
0

data stream index

no
rm

al
iz

ed
 s

ub
sp

ac
e

er
ro

r

rank=10
rank=12
rank=14
rank=16

(a) p = 1 (b) p = 0.5

Figure 4. The normalized subspace reconstruction errors for the SA algorithm under various settings of input rank, where N = 100 and the true rank
K = 10, for (a) fully observed data with p = 1 and (b) partially observed data with p = 0.5.

rank is not perfectly known, and the error increases gracefully
as we increase the rank.

We also present the performance of the proposed algo-
rithms when the underlying subspace changes abruptly. Let
N = 100, K = 10 and M = 2600. We generate the data
yn ∼ Pois(Dan) similarly as earlier. From time index 1
to 700, a realization of D is used first, and we constitute
new realizations of D at time steps 701, 1201 and 1801,
representing sudden changes of the underlying subspace. Fig. 6
demonstrates the normalized subspace error with respect to
the data stream index for both the SA and memory-limited
SA algorithms. It can be seen that both algorithms have
successfully tracked the subspace when changes occur.

In order to examine the effect of random initialization to
the proposed algorithms, we showcase the performance of the
proposed algorithms where N = 200, K = 20, M = 800 and
50 Monte-Carlo simulations are manifested. Fig. 7 presents
the mean and variance of the normalized subspace error under

the Monte-Carlo simulations. It can be seen that the overall
performance is not very sensitive to the random initialization.

B. Experiments with Real Video Data

We apply the proposed algorithms on real video sequences
under Poisson noise. The gray-scale video is of a resolution
50 × 50 with total 250 frames and the nth frame is regarded
as a 2500-dimensional vector zn of its gray scale. In order to
determine the rank of the data [z1, . . . , z250], we use SVD to
calculate the approximate rank. Hence, we set N = 2500,
rank K = 40, M = 250, µ = 0.1 and λ = 0.2. The
observations are the Poisson counts yn ∼ Pois(zn), where
each entry of yn is observed independently with probability
0 < p ≤ 1. We compute the relative video reconstruction
error at the nth frame as ‖D̂nân − zn‖2/‖zn‖2. In addition
to the aforementioned ReProCS [13], BPFA [24] and batch
[22] algorithms, we compare our results to a Poisson dynamic

8

0 100 200 300 400 500 600 700 800
10

−4

10
−3

10
−2

10
−1

10
0

data stream index

no
rm

al
iz

ed
 s

ub
sp

ac
e

er
ro

r

rank=10
rank=12
rank=14
rank=16

0 100 200 300 400 500 600 700 800
10−3

10−2

10−1

100

data stream index

no
rm

al
iz

ed
 s

ub
sp

ac
e

er
ro

r

rank=10
rank=12
rank=14
rank=16

(a) p = 1 (b) p = 0.5

Figure 5. The normalized subspace reconstruction errors for the memory-limited SA algorithm under various settings of input rank, where N = 100 and the
true rank K = 10, for (a) fully observed data with p = 1 and (b) partially observed data with p = 0.5

0 100 200 300 400 500 600 700 800
10

−3

10
−2

10
−1

10
0

data stream index

no
rm

al
iz

ed
 s

ub
sp

ac
e

er
ro

r

SA algorithm
Memory−limited SA

0 100 200 300 400 500 600 700 800
10

−3

10
−2

10
−1

10
0

data stream index

no
rm

al
iz

ed
 s

ub
sp

ac
e

er
ro

r

Memory−limited SA
SA algorithm

(a) p = 1 (b) p = 0.5

Figure 7. The mean and variance of normalized subspace reconstruction errors for the SA and Memory-limited SA algorithms with 50 Monte-Carlo simulation,
where N = 200 and the true rank K = 20, for (a) fully observed data with p = 1 and (b) partially observed data with p = 0.5.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Poisson video reconstruction. (a) original video frame. (b) Poisson observation when p = 1. (c) Poisson observation when p = 0.5. (d) SA
algorithm recovered video when p = 1. (e) Memory-limited SA algorithm recovered video frame when p = 0.5. (f) Batch algorithm recovered video when
p = 1. (g) Batch algorithm recovered video when p = 0.5. (h) BPFA recovered video. (i) DMD recovered video. (j) Online RPCA recovered video.

9

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data stream index

re
la

tiv
e

er
ro

r

Memory−limited SA
SA algorithm
DMD
Online RPCA
BPFA
Batch

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

data stream index

re
la

tiv
e

er
ro

r

Memory−limited SA
SA algorithm
Batch

(a) (b)
Figure 9. Relative reconstruction error of various algorithms. (a) The relative reconstruction errors for SA, memory-limited SA, DMD, BPFA, Online RPCA
and batch algorithms when p = 1. (b) The relative reconstruction errors for SA, memory-limited SA and batch algorithms when p = 0.5.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Time

N
or

m
al

iz
ed

 s
ub

sp
ac

e
er

ro
r

ReProCS
BPFA
Batch
SA algorithm
Memory−limited SA

Figure 3. The running time versus the normalized subspace reconstruction
errors for SA, memory-limited SA, ReProCS, BPFA and batch algorithms
when N = 100, K = 10 and the data stream is fully observed.

model referred as dynamic mirror descent (DMD) in [5] and
the online Robust PCA (RPCA) algorithm in [12].

In Fig. 8, we illustrate the original video frame, its obser-
vation and recovery by various algorithms. Fig. 9 presents the
relative errors of the recovered video frames via the SA, the
memory-limited SA, DMD, online RPCA, BPFA and batch
algorithms when p = 1 and p = 0.5, respectively. We
note that BPFA, online RPCA, and DMD algorithms cannot
directly handle the missing data scenarios and are omitted
for the case with missing data. It is demonstrated that the
performance improves with the increase of the data stream
index, and approaches the performance of the batch algorithm
by only processing each data vector once. We do not show
the performance of the ReProCS algorithm here, since its
performance is so poor that the relative error is significantly

0 500 1000 1500 2000 2500
10−4

10−3

10−2

10−1

100

data stream index

no
rm

al
iz

ed
 s

ub
sp

ac
e

er
ro

r

Memory−limited SA
SA algorithm

Figure 6. The normalized subspace reconstruction errors of the proposed SA
and memory-limited algorithms when abrupt changes of the subspace occur.
The 3 red vertical lines mark the time steps when the underlying subspace
changes.

larger and does not improve with the increase of the time
index.

C. Application on Document Analysis

In addition to previous experiments on imagery application,
we apply the proposed SA algorithms to document analysis.
Specifically, we consider the State of the Union addresses from
year 1790 to 2014, total M = 225 transcripts. For each address
of year n, we first convert it to a vector yn with each entry
representing the counts of words, from a vocabulary V . Akin
to [29], we pre-process the data by removing stop words and
terms which appear less than 20 times in the address, yielding
a V of size N = 2216. Hence, each address yn is represented
by Poisson counts via a linear combination of columns of
the underlying topics D, i.e., yn ∼ Pois(Dan). We wish to
infer the underlying topic matrix D as well as the associated

10

topic weight an. Throughout this experiment, we set K = 50,
µ = 0.1 and λ = 0.15.

In Table I, we list 4 examples of inferred topics, and their
associated top words. For each topic i, represented by the i-th
column of D, its presence is reflected via the intensity an,i∑

i an,i
.

In Fig. 10, we plot how the intensities of these 4 topics change
over time. We can see that topic 1 seems to associate with the
Afghanistan and Iraq wars and its intensity strongly presents
after year 2001. Topic 2 is related to two world wars and
its intensity reaches the highest point accordingly. Topic 3 is
with the National Energy Program and topic 4 focuses on the
Philippine-American war. It is straightforward to find that the
inferred intensity dynamically tracks the topics mentioned in
these addresses.

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Year

In
te

ns
ity

Topic 1
Topic 2
Topic 3
Topic 4

Figure 10. The intensities of associated topics inferred by SA algorithm.

Table I
4 EXAMPLES OF INFERRED TOPICS AND THEIR ASSOCIATED TOP WORDS

Topic 1 Topic 2 Topic 3 Topic 4
Iraq war energy island

terrorists enemy nuclear islands
terror Japanese development Philippine

Afghanistan German policy military

VI. CONCLUSION

We have considered the problem of recovering and tracking
the underlying Poisson rate from streaming count data, where
the rate vectors have been posed to lie in a low-dimensional
subspace. A stochastic programming approach has been pro-
posed to recover the underlying subspace as well as the rate
vectors. A stochastic approximation algorithm has first been
derived. The SA algorithm has been decomposed into two
steps where the subspace and its coefficients are iteratively up-
dated as new data arrives. Theoretical convergence guarantees
have been established for the SA algorithm under certain mild
assumptions. The SA algorithm has been proved to converge
to the same point as the original expected loss minimization
problem. In addition, the estimated subspace has been shown

to converge to a local minimum of the original expected
loss minimization problem. In order to reduce the memory
requirement and handle missing data, the SA algorithm has
been modified to allow a memory-limited implementation. We
have demonstrated that the memory-limited SA algorithms
yield similar performance to the SA algorithm. All algorithms
have been showcased to achieve promising performances over
both synthetic and real data.

APPENDIX A
PROOFS OF PROPOSITIONS 1 AND 2

We first introduce a lemma [30] which is useful later.

Lemma 1. Let f : R→ R be a concave function on interval
[a, b]. Let {xi} and {pi} be collections of finite points such
that xi ∈ [a, b], for all i and

∑
i pi = 1 with all pi > 0.

Assuming c, d > 0 with c+ d = 1, we have∑
pif(xi) ≥ f

(∑
pixi

)
−max

c
[f(ca+db)−cf(a)−df(b)]

It is easy to check that [f(ca + db) − cf(a)) − df(b)] is a
concave function, and a unique maximization depending only
on a and b exists. Denote 0 ≤ T[a,b] = maxc[f(ca + db) −
cf(a)− df(b)].

Proof of Proposition 1. First we write the log-likelihood func-
tion as

t∑
n=1

log pois(yn,i; d
T
i an)

=

t∑
n=1

log
e−(d

T
i an)(dTi an)yn,i

yn,i!

=

t∑
n=1

[
−dTi an + yn,i log(dTi an)− log(yn,i!)

]
= −dTi

(
t∑

n=1

an

)
+

t∑
n=1

yn,i log(dTi an)−
t∑

n=1

log(yn,i!).

(27)

The second term in (27) can be bounded as follows:
t∑

n=1

yn,i log(dTi an)

=

(
t∑

n=1

yn,i

)
·

[
t∑

n=1

(
yn,i∑t
n=1 yn,i

)
log(dTi an)

]

≥

(
t∑

n=1

yn,i

)
·

{
log

[
t∑

n=1

yn,i(d
T
i an)∑t

n=1 yn,i

]
− T

}
, (28)

where we have applied Lemma 1. By our assumptions, the
minimization is only obtained in a compact domain of D and
an. Therefore, (dTi an)i < b for some constant b for all i and
n, and above inequality follows from Lemma 1 where f(x) =
log x. Denote the constant T[a,b] in Lemma 1 as T := T[a,b].
Therefore, (13) follows by rearranging the terms in (28).

Proof of Proposition 2. Similar to (27), we have
t∑

n=1

pn,i log pois(yn,i; d
T
i an)

11

=

t∑
n=1

pn,i log
e−(d

T
i an)(dTi an)yn,i

yn,i!

=

t∑
n=1

pn,i
[
−dTi an + yn,i log(dTi an)− log(yn,i!)

]
= −dTi

(
t∑

n=1

pn,ian

)
+

t∑
n=1

pn,iyn,i log(dTi an)

−
t∑

n=1

pn,i log(yn,i!) (29)

Akin to the derivation of (28), the second term in (29) can be
bounded as follows:

t∑
n=1

pn,iyn,i log(dTi an)

=

(
t∑

n=1

pn,iyn,i

)
·

[
t∑

n=1

(
pn,iyn,i∑t
n=1 pn,iyn,i

)
log(dTi an)

]

≥

(
t∑

n=1

pn,iyn,i

)
·

{
log

[
t∑

n=1

pn,iyn,i(d
T
i an)∑t

n=1 pn,iyn,i

]
− T

}
.

(30)

Equation (20) then follows by rearranging terms.

APPENDIX B
PROOFS OF THEOREMS 1 AND 2

We first introduce several theorems in the forms which are
useful later.

Theorem 3 ([31]). Let {ut} be a nonnegative discrete-time
stochastic process on a probability space (Ω,A,P). Let Ft be
a filtration adapted to {ut}. Define a binary process δt such
that δt = 1 if E[ut+1 − ut|Ft] > 0 and δt = 0 otherwise. If∑∞
t=1 E[δt(ut+1 − ut)] < ∞, then ut → u a.s., where u is

integrable on (Ω,A,P).

Theorem 4 (Donsker’s Theorem and Glivenko-Cantelli Theo-
rem [32]). Let X1, . . . , Xn be i.i.d. from a distribution P. De-
fine the empirical distribution Pn = 1

n

∑n
i=1 δXi

. For a mea-
surable function f , define Pf and Pnf as the expectations of f
under P and Pn, respectively. Define Gn(f) =

√
n(Pnf−Pf),

where f ∈ F and F is a collection of measurable functions.
We call F is P-Donsker if {Gn} converges in distribution to
a zero-mean Gaussian process G. Moreover, in that case, we
have E‖Gn‖∞ → E‖G‖∞, where ‖ · ‖∞ denotes the sup-
norm on F . Additionally, F is called P-Glivenko-Cantelli if
‖Pnf − Pf‖∞ → 0 a.s..

In particular, the following theorem provides a sufficient
condition to verify F is both P-Donsker and P-Glivenko-
Cantelli.

Theorem 5 ([32]). Define a probability space (X ,A,P). Let
F = {fθ : X → R|θ ∈ Θ}, where Θ ⊂ Rd is bounded. If
there exists a constant K such that

|fθ1(x)− fθ2(x)| ≤ ‖θ1 − θ2‖,∀θ1, θ2 ∈ Θ,∀x ∈ X , (31)

where ‖· ‖ denotes arbitrary vector norm in Rd, then F is
both P-Donsker and P-Glivenko-Cantelli.

We now establish the following lemmas.

Lemma 2. There exists a unique minimizer a of `′(yn,D,a),
for any (yn,D) ∈ C1 × C2.

Proof. It is enough to show that `′(yn,D,a) is a strictly
convex function of a, for any (yn,D) ∈ C1 × C2. Since
− log Pois(yn; Da) is a convex function of a and ∇2

aµ‖a‖22 �
2µIK×K , where IK×K denotes the identity matrix of size
K × K. Hence, `′(yn,D,a) is a strictly convex function of
a, for any (yn,D) ∈ C1 × C2.

Lemma 3. f ′t(·), ft(·) and `(yn, ·) are Lipschitz on C2.

Proof. It is straightforward to check f ′t is continuously differ-
entiable on the compact set C2. Therefore, f ′t is Lipschitz on
C2. By the definition of f ′t , it is enough to show `(yn, ·) is
Lipschitz. It is easy to check `′(yn,D,an) is continuously dif-
ferentiable on C1×C2. Via Danskin’s theorem [32], along with
Lemma 2, we conclude `(yn, ·) is continuously differentiable
on C2. Hence, `(yn, ·) and ft(·) are Lipschitz on C2.

Lemma 4. For all t ≥ 1, f ′t(D) is strongly-convex on C2, for
any (yn,an) ∈ C1 × C3.

Proof. By the definiton of f ′t(D), it is enough to check
whether `′(yn,D,an) is strongly convex. Let’s check the
Hessian of `′(yn,D,an). Since − log Pois(yn; Dan) is a
convex function of D and ∇2

Dλ‖D‖2F � 2λINK×NK , where
INK×NK denotes the identity matrix of size NK × NK.
We have ∇2

D`
′(yn,D,an) � 2λINK×NK . Hence, f ′t(D) is

strongly-convex on C2.

Lemma 5. For Algorithm 1, we have ‖D̂t+1 − D̂t‖F ≤ c/t
for all sufficient large t, where c is a constant.

Proof. By Lemma 4 and the property of strong convexity, we
have

f ′t(D̂t+1)− f ′t(D̂t) ≥
c′

2
‖D̂t+1 − D̂t‖2F , (32)

where c′ is a constant. We also have

f ′t(D̂t+1)− f ′t(D̂t)

= f ′t(D̂t+1)− f ′t+1(D̂t+1) + f ′t+1(D̂t+1)− f ′t+1(D̂t)

+ f ′t+1(D̂t)− f ′t(D̂t) (33)

≤ gt(D̂t+1)− gt(D̂t), (34)

where gt := f ′t − f ′t+1 and (34) follows since D̂t+1 is the
minimizer of f ′t+1. Note that gt(D) can be expressed as

gt(D) =
1

t

t∑
n=1

`′(yn,D, ân)− 1

t+ 1

t+1∑
n=1

`′(yn,D, ân)

=
(t+ 1)

∑t
n=1 `

′(yn,D, ân)− t
∑t+1
n=1 `

′(yn,D, ân)

t(t+ 1)

=

(∑t
n=1 `

′(yn,D, ân)− t`′(yt+1,D, ât+1)
)

t(t+ 1)

=
1

t(t+ 1)

t∑
n=1

[`′(yn,D, ân)− `′(yt+1,D, ât+1)] . (35)

12

Let h(y,y′,D,a,a′) := `′(y,D,a)− `′(y′,D,a′). It is easy
to check that h is continuously differentiable and ‖∇h‖2 is
bounded on the compact domain C1 × C1 × C2 × C3 × C3. By
the properties of Lipschitz function, h is Lipschitz and thus
gt is also Lipschitz. Hence, we have that there exists some
constant c′′ such that

gt(D̂t+1)− gt(D̂t) ≤
1

t(t+ 1)
tc′′‖D̂t+1 − D̂t‖F

=
c′′

(t+ 1)
‖D̂t+1 − D̂t‖F . (36)

Combing (36) with (32), we prove that

‖D̂t+1 − D̂t‖F ≤
c

t+ 1
≤ c

t
. (37)

where c is a constant.

Proof of Theorem 1. The proof is established in the following
manner. We first show the a.s. convergence of {f ′t(D̂t)} via
Theorem 3 by proving the convergence of the expected positive
variation series of ut := f ′t(D̂t), in which Theorem 4 is
employed to bound each term in the aforementioned series. Via
Lemma 3 and Theorem 4, we prove that ft(D̂t)−f(D̂t)→ 0
a.s.. We then show that ft(D̂t)− f ′t(D̂t)→ 0 a.s. by proving∑∞
t=1

f ′t(D̂t)−ft(D̂t)
t+1 < ∞. Finally, the proof is concluded by

combining these convergence results.
Define ut := f ′t(D̂t) and binary δt such that δt = 1 if

E[ut+1 − ut|Ft] > 0 and δt = 0 otherwise. We have

ut+1 − ut
= f ′t+1(D̂t+1)− f ′t+1(D̂t) + f ′t+1(D̂t)− f ′t(D̂t) (38)

= f ′t+1(D̂t+1)− f ′t+1(D̂t)

+
1

t+ 1
`′(yt+1, D̂t, ât+1) +

t

t+ 1
f ′t(D̂t)− f ′t(D̂t). (39)

Note that `′(yt+1, D̂t, ât+1) = `(yt+1, D̂t), which is followed
from the definition. We obtain

ut+1 − ut

= f ′t+1(D̂t+1)− f ′t+1(D̂t) +
`(yt+1, D̂t)− f ′t(D̂t)

t+ 1
(40)

= f ′t+1(D̂t+1)− f ′t+1(D̂t)

+
`(yt+1, D̂t)− ft(D̂t)

t+ 1
+
ft(D̂t)− f ′t(D̂t)

t+ 1
. (41)

By the definitions of f ′t and ft, it is straightforward to see that
f ′t+1(D̂t+1) − f ′t+1(D̂t) ≤ 0 and ft(D̂t) − f ′t(D̂t) ≤ 0. We
will employ the Donsker’s theorem to prove the convergence.
Let us define a filtration {Ft} where Ft is the minimal σ-
algebra such that (yt, D̂t, ât) are measurable for all t. Hence,
we have

E[ut+1 − ut|Ft] ≤
E[`(yt+1, D̂t)− ft(D̂t)|Ft]

t+ 1

=
f(D̂t)− ft(D̂t)

t+ 1
. (42)

By the definition of δt, we obtain

E[δtE[ut+1 − ut|Ft]] ≤
E[|f(D̂t)− ft(D̂t)|]

t+ 1
(43)

≤ E[‖f − ft‖∞]

t+ 1
(44)

By Lemma 3, `(y, ·) is Lipschitz on C2. Hence, via Theorem
5, {`(· ,D)}D∈C2 is P-Donsker and E[‖

√
t(f − ft)‖∞] < Q

for all sufficiently large t and Q is a constant. Therefore,

E[‖f − ft‖∞]

t+ 1
=

E[
√
t‖f − ft‖∞]√
t(t+ 1)

≤ Q√
t(t+ 1)

. (45)

Combining (44) and (45), we have
∞∑
i=1

E[δt[ut+1 − ut]] =

∞∑
i=1

E[δtE[ut+1 − ut|Ft]] (46)

≤
∞∑
t=1

M√
t(t+ 1)

<∞. (47)

By Theorem 3, we have {f ′t(D̂t)} converges a.s..
Next we show that {f(D̂t)} converges a.s.. By Lemma

3 and Theorem 4, ft is Lipschitz and hence P-Glivenko-
Cantelli. Therefore we have that ft(D̂t) − f(D̂t) → 0 a.s..
In order to show the convergence of f(D̂t), it is enough to
show that {ft(D̂t)} converges a.s.. Via (41) and the fact that
f ′t+1(D̂t+1)− f ′t+1(D̂t) ≤ 0, we have

f ′t(D̂t)− ft(D̂t)

t+ 1
= E

[
f ′t(D̂t)− ft(D̂t)

t+ 1
|Ft

]
(48)

= E[f ′t+1(D̂t+1)− f ′t+1(D̂t)|Ft]

+ E

[
`(yt+1, D̂t)− ft(D̂t)

t+ 1
|Ft

]
− E[ut+1 − ut|Ft] (49)

≤ f(D̂t)− ft(D̂t)

t+ 1
− E[ut+1 − ut|Ft] (50)

≤ ‖f − ft‖∞
t+ 1

− E[ut+1 − ut|Ft]. (51)

Via the previous arguments, we know that
∑∞
t=1 |E[ut+1−

ut|Ft]| < ∞. Furthermore, we have shown that E[‖
√
t(f −

ft)‖∞] is bounded. Therefore, we have ‖
√
t(f − ft)‖∞ is

bounded a.s. for sufficiently large t and
∑∞
t=1

‖f−ft‖∞
t+1 ≤∑∞

t=1

√
t‖f−ft‖∞√
t(t+1)

< ∞. Hence,
∑∞
t=1

f ′t(D̂t)−ft(D̂t)
t+1 < ∞

a.s.. Via the result in [27, Lemma 8], in order to show f ′t(D̂t)−
ft(D̂t) converges, it is enough to show |(f ′t+1(D̂t+1) −
ft+1(D̂t+1))− (f ′t(D̂t)− ft(D̂t))| ≤ R

t for all t sufficiently
large where R is a constant. We have

|(f ′t+1(D̂t+1)− ft+1(D̂t+1))− (f ′t(D̂t)− ft(D̂t))|
≤ |f ′t+1(D̂t+1)− f ′t(D̂t)|+ |ft+1(D̂t+1)− ft(D̂t)|, (52)

and via (40),

|f ′t+1(D̂t+1)− f ′t(D̂t)|

≤ |f ′t+1(D̂t+1)− f ′t+1(D̂t)|+

∣∣∣∣∣`(yt+1, D̂t)− f ′t(D̂t)

t+ 1

∣∣∣∣∣ .
By Lemmas 3 and 5, f ′t is Lipschitz and ‖D̂t+1−D̂t‖F ≤ c

t ;
moreover, ` and f ′t are bounded on compact domains C1×C2

13

and C2 respectively, we have

|f ′t+1(D̂t+1)− f ′t(D̂t)|

≤ |f ′t+1(D̂t+1)− f ′t+1(D̂t)|+

∣∣∣∣∣`(yt+1, D̂t)− f ′t(D̂t)

t+ 1

∣∣∣∣∣
≤ c1‖D̂t+1 − D̂t‖F +

|`(yt+1, D̂t)|+ |f ′t(D̂t)|
t+ 1

≤ c1c

t
+

c3
t+ 1

≤ M ′

t
,

where M ′, c1, c2 and c3 are constants. Similarly, we can also
show

|ft+1(D̂t+1)− ft(D̂t)| ≤
M ′′

t
(53)

for some constant M ′′. Therefore, we have shown that
f ′t(D̂t) − ft(D̂t) → 0 a.s.. Hence {ft(D̂t)}, {f ′t(D̂t)} and
{f(D̂t)} converge a.s. to the same limit.

Proof of Theorem 2. The proof is established in the following
steps. We first utilize the compactness to ensure the existence
of convergent subsequences and show the uniform conver-
gence of f ′t → f ′∞. We then define a function ht := f ′t − ft.
By taking limits on both side of this equation, we derive that
f = f ′∞ − h∞. In order to show D̂∞ is a local minimum
of f , we establish that 〈∇f ′∞(D̂∞),D − D̂∞〉 ≥ 0 and
∇h∞(D̂∞) = 0 for any D ∈ C2. Based on these results,
we show that 〈∇f(D̂∞),D − D̂∞〉 ≥ 0 for any D ∈ C2,
which concludes the proof.

By Theorem 1, we can almost surely find a realization
{yt} such that f ′t(D̂t) → ft(D̂t). Note that now {D̂t}
is a deterministic sequence and it is enough to show that
any convergent subsequence of {D̂t} converges to a local
minimum of f . The existence of convergent subsequence of
{D̂t} is guaranteed by the compactness assumption on D. In
order to ease the notation, we assume that {D̂t} converges
without loss of generality and denote the limit as D̂∞.

We first show that {f ′t} converges uniformly to a differ-
entiable function f ′∞. Since f ′t(D) := 1

t

∑t
n=1 `

′(yn,D, ân),
and we have
1

t
|`′(yn,D, ân)| = 1

t

∣∣log Pois(yn; Dân) + λ‖D‖2F + µ‖ân‖2
∣∣

≤ 1

t

N∑
i=1

[
|dTi ân|+ |yn,i log(dTi ân)|+ | log yn,i!|

]
+
λ

t
‖D‖2F

+
µ

t
‖ân‖2 (54)

≤ NU + λU ′ + µU ′′

t
, (55)

where U , U ′ and U ′′ are positive constants and the last
inequality follows from the fact that all variables are supported
on compact domains. Since limt→∞

∑t
n=1

NU+λU ′

t = NU+
λU ′ + µU ′′ < ∞, by the Weierstrass M-test [33], f ′t(D)
converges uniformly.

Define ht = f ′t − ft and note that ht → h∞ := f ′∞ − f
and ∇f = ∇f ′∞ − ∇h∞. We aim to show that D̂∞ is
a local minimum of f , and it is equivalent to show that
〈∇f∞(D̂∞),D − D̂∞〉 ≥ 0 for any D ∈ C2, i.e., direc-
tional derivative is non-negative. It is enough to show that

〈∇f ′∞(D̂∞),D − D̂∞〉 ≥ 0 and ∇h∞(D̂∞) = 0 for any
D ∈ C2. We have

|f ′t(D̂t)− f ′∞(D̂∞)|
= |f ′t(D̂t)− f ′∞(D̂t) + f ′∞(D̂t)− f ′∞(D̂∞)|
≤ |f ′t(D̂t)− f ′∞(D̂t)|+ |f ′∞(D̂t)− f ′∞(D̂∞)|. (56)

Since f ′t → f ′∞ uniformly and f ′∞ is continuous, we have
|f ′t(D̂t) − f ′∞(D̂t)| → 0 and |f ′∞(D̂t) − f ′∞(D̂∞)| → 0.
Hence we show f ′t(D̂t)→ f ′∞(D̂∞). By definition, f ′t(D̂t) ≤
f ′∞(D) for any D ∈ C2 and take the limit on both side, we
show that

f ′∞(D̂∞) ≤ f ′∞(D) (57)

and this implies 〈∇f ′∞(D̂∞),D − D̂∞〉 ≥ 0. Similarly, we
have

|ft(D̂t)− f(D̂∞)|
= |ft(D̂t)− f(D̂t) + f(D̂t)− f(D̂∞)| (58)

≤ |ft(D̂t)− f(D̂t)|+ |f(D̂t)− f(D̂∞)|. (59)

Since ft → f uniformly and f is continuous, we derive
ft(D̂t)→ f(D̂∞).

By Lemma 3, f ′t and ft are Lipschitz functions. Denote the
Lipschitz constant as L and ht is a 2L-Lipschitz function, we
have

1

2L
‖∇ht(D̂t)‖2 ≤ 1. (60)

By definition, ht(D) ≥ 0 for any D ∈ C2. Multiplying both
sides of (60) by ht(D̂t), we have

ht(D̂t)

2L
‖∇ht(D̂t)‖2 ≤ ht(D̂t)

= f ′t(D̂t)− ft(D̂t). (61)

Since f ′t(D̂t) − ft(D̂t) → 0, we conclude that at least
either ht(D̂t) → 0 or ∇ht(D̂t) → 0. If ht(D̂t) → 0,
then h∞(D̂∞) → 0 and D̂∞ is a minimum of h∞. Hence
∇h∞(D̂∞) = 0 and 〈∇h∞(D̂∞),D − D̂∞〉 ≥ 0 for any
D ∈ C2. The proof is concluded.

Otherwise, if ∇ht(D̂t)→ 0, consider the Taylor expansion
of ht at D̂t

ht(D) = ht(D̂t) + 〈∇ht(D̂t),D− D̂t〉+ o(‖D− D̂t‖2).

Take limits on both sides of above equation and together with
∇ht(D̂t)→ 0, we end up with

h∞(D) = h∞(D̂∞) + o(‖D− D̂∞‖2).

If we compare this expansion to the Taylor expansion of
h∞(D), we conclude

∇h∞(D̂∞) = 0.

Thus for both cases, we prove that 〈∇h∞(D̂∞),D−D̂∞〉 = 0
for any D ∈ C2 and the proof is concluded.

REFERENCES

[1] T. Zheng, M. J. Salganik, and A. Gelman, “How many people do you
know in prison? using overdispersion in count data to estimate social

14

structure in networks,” Journal of the American Statistical Association,
vol. 101, no. 474, pp. 409–423, 2006.

[2] M. Seeger, H. Nickisch, R. Pohmann, and B. Schölkopf, “Optimization
of k-space trajectories for compressed sensing by bayesian experimental
design,” Magnetic resonance in medicine, vol. 63, no. 1, pp. 116–126,
2010.

[3] L. Wang, J. Huang, X. Yuan, K. Krishnamurthy, J. Greenberg, V. Cevher,
M. R. Rodrigues, D. Brady, R. Calderbank, and L. Carin, “Signal
recovery and system calibration from multiple compressive poisson
measurements,” SIAM Journal on Imaging Sciences, vol. 8, no. 3, pp.
1923–1954, 2015.

[4] D. J. Brady, Optical imaging and spectroscopy. John Wiley & Sons,
2009.

[5] E. C. Hall and R. Willett, “Dynamical models and tracking regret in
online convex programming.” in ICML, 2013, pp. 579–587.

[6] E. Oja, “Simplified neuron model as a principal component analyzer,”
Journal of mathematical biology, vol. 15, no. 3, pp. 267–273, 1982.

[7] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in Proceedings of the 26th annual international
conference on machine learning. ACM, 2009, pp. 689–696.

[8] S. Tsuge, M. Shishibori, S. Kuroiwa, and K. Kita, “Dimensionality
reduction using non-negative matrix factorization for information re-
trieval,” in Systems, Man, and Cybernetics, 2001 IEEE International
Conference on, vol. 2. IEEE, 2001, pp. 960–965.

[9] E. J. Candes and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational Mathematics, vol. 9, no. 6,
pp. 717–772, April 2009.

[10] L. Balzano, R. Nowak, and B. Recht, “Online identification and tracking
of subspaces from highly incomplete information,” in Communication,
Control, and Computing (Allerton), 2010 48th Annual Allerton Confer-
ence on. IEEE, 2010, pp. 704–711.

[11] Y. Chi, Y. C. Eldar, and R. Calderbank, “Petrels: Parallel estimation and
tracking of subspace by recursive least squares from partial observa-
tions,” IEEE Trans. on Signal Processing, 2013.

[12] J. Feng, H. Xu, and S. Yan, “Online robust pca via stochastic optimiza-
tion,” in Advances in Neural Information Processing Systems, 2013, pp.
404–412.

[13] H. Guo, C. Qiu, and N. Vaswani, “An online algorithm for separating
sparse and low-dimensional signal sequences from their sum,” IEEE
Transactions on Signal Processing, vol. 62, no. 16, pp. 4284–4297, 2014.

[14] M. Mardani, G. Mateos, and G. B. Giannakis, “Rank minimization
for subspace tracking from incomplete data,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013, pp. 5681–5685.

[15] Z. Kang and C. J. Spanos, “Sequential logistic principal component
analysis (slpca): Dimensional reduction in streaming multivariate binary-
state system,” in Machine Learning and Applications (ICMLA), 2014
13th International Conference on. IEEE, 2014, pp. 171–177.

[16] Y. Shen, M. Mardani, and G. B. Giannakis, “Online categorical subspace
learning for sketching big data with misses,” IEEE Transactions on
Signal Processing, vol. 65, no. 15, pp. 4004–4018, 2016.

[17] Z. T. Harmany, R. F. Marcia, and R. M. Willett, “This is SPIRAL-TAP:
Sparse poisson intensity reconstruction algorithms-theory and practice,”
IEEE Transactions on Image Processing, vol. 21, no. 3, pp. 1084–1096,
2012.

[18] M. Raginsky, S. Jafarpour, Z. T. Harmany, R. F. Marcia, R. Willett, and
R. Calderbank, “Performance bounds for expander-based compressed
sensing in Poisson noise,” IEEE Transactions on Signal Processing,
vol. 59, no. 9, pp. 4139–4153, 2011.

[19] M. Raginsky, R. Willett, Z. Harmany, and R. Marcia, “Compressed
sensing performance bounds under Poisson noise,” IEEE Transactions
on Signal Processing, vol. 58, no. 8, pp. 3990–4002, 2010.

[20] L. Wang, D. E. Carlson, M. Rodrigues, D. Wilcox, R. Calderbank, and
L. Carin, “Designed measurements for vector count data,” in Advances
in neural information processing systems, 2013, pp. 1142–1150.

[21] Y. Xie, Y. Chi, and R. Calderbank, “Low-rank matrix recovery with pois-
son noise,” in Global Conference on Signal and Information Processing
(GlobalSIP), 2013 IEEE. IEEE, 2013, pp. 622–622.

[22] Y. Cao and Y. Xie, “Poisson matrix completion,” in Information Theory
(ISIT), 2015 IEEE International Symposium on. IEEE, 2015, pp. 1841–
1845.

[23] L. Bottou, “Online learning and stochastic approximations,” On-line
learning in neural networks, vol. 17, no. 9, p. 142, 1998.

[24] A. Acharya, J. Ghosh, and M. Zhou, “Nonparametric bayesian factor
analysis for dynamic count matrices,” in Proceedings of the Eighteenth
International Conference on Artificial Intelligence and Statistics, 2015,
pp. 1–9.

[25] D. L. Pimentel-Alarcón, N. Boston, and R. D. Nowak, “A characteriza-
tion of deterministic sampling patterns for low-rank matrix completion,”
IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 4,
pp. 623–636, 2016.

[26] J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,”
IMA journal of numerical analysis, vol. 8, no. 1, pp. 141–148, 1988.

[27] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” Journal of Machine Learning Research,
vol. 11, no. Jan, pp. 19–60, 2010.

[28] J. Mairal, “Stochastic majorization-minimization algorithms for large-
scale optimization,” in Advances in Neural Information Processing
Systems, 2013, pp. 2283–2291.

[29] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, no. Jan, pp. 993–1022,
2003.

[30] S. Simic, “On an upper bound for Jensen’s inequality,” Journal of
Inequalities in Pure and Applied Mathematics, 2009.

[31] M. Métivier, Semimartingales: a course on stochastic processes. Walter
de Gruyter, 1982, vol. 2.

[32] A. W. Van der Vaart, Asymptotic Statistics. Cambridge university press,
2000, vol. 3.

[33] W. Rudin, Principles of mathematical analysis. McGraw-Hill New
York, 1964, vol. 3.

Liming Wang (S’08-M’11) received the B.E. degree
in Electronics and Information Engineering from the
Huazhong University of Science and Technology,
China, in 2006, the M.S. degree in Mathematics and
the Ph.D. degree in Electrical and Computer Engi-
neering from the University of Illinois at Chicago in
2011. From 2011 to 2017, he held postdoctoral po-
sitions at Columbia University, Duke University and
The Ohio State University. He was also a Visiting
Scholar at University College London, UK. Since
October 2017, he is a Senior Research Engineer at

HERE Technologies. His research interests are in high-dimensional signal
processing, machine learning, information theory, genomic signal processing
and bioinformatics.

Yuejie Chi (S’09-M’12-SM’17) received the Ph.D.
degree in Electrical Engineering from Princeton
University in 2012, and the B.E. (Hon.) degree
in Electrical Engineering from Tsinghua University,
Beijing, China, in 2007. Since September 2012, she
has been with the department of Electrical and Com-
puter Engineering and the department of Biomedical
Informatics at The Ohio State University, where she
is now an Associate Professor.

She is the recipient of the IEEE Signal Processing
Society Young Author Best Paper Award in 2013 and

the Best Paper Award at the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) in 2012. She received the Young
Investigator Program Awards from AFOSR and ONR respectively in 2015,
the Ralph E. Powe Junior Faculty Enhancement Award from Oak Ridge
Associated Universities in 2014, a Google Faculty Research Award in 2013,
the Roberto Padovani scholarship from Qualcomm Inc. in 2010, and an
Engineering Fellowship from Princeton University in 2007. She is an Elected
Member of the MLSP and SPTM Technical Committees of the IEEE Signal
Processing Society since January 2016. She has held visiting positions at
Colorado State University, Stanford University and Duke University, and
interned at Qualcomm Inc. and Mitsubishi Electric Research Lab. Her research
interests include statistical signal processing, information theory, machine
learning and their applications in high-dimensional data analysis, network
inference, active sensing and bioinformatics.

