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Abstract—In this paper, we present coherence-based per-
formance guarantees of Orthogonal Matching Pursuit (OMP)
for both support recovery and signal reconstruction of sparse
signals when the measurements are corrupted by noise. In
particular, two variants of OMP either with known sparsity
level or with a stopping rule are analyzed. It is shown that if the
measurement matrix X ∈ Cn×p satisfies the strong coherence
property, then with n & O(k log p), OMP will recover a k-sparse
signal with high probability. In particular, the performance
guarantees obtained here separate the properties required of
the measurement matrix from the properties required of the
signal, which depends critically on the minimum signal to noise
ratio rather than the power profiles of the signal. We also
provide performance guarantees for partial support recovery.
Comparisons are given with other performance guarantees
for OMP using worst-case analysis and the sorted one step
thresholding algorithm.

Index Terms—Compressive Sensing (CS), Orthogonal Match-
ing Pursuit (OMP), worst-case coherence, average coherence,
support recovery, signal reconstruction

I. INTRODUCTION

Sparse signal processing is a fundamental task in many
applications involving high-dimensional data. Many of the
recent advances in Compressive Sensing (CS) [1], [2] have
been centered around reconstructing a sparse signal β ∈ Cp
with a few nonzero entries, from a number of linear mea-
surements that is much smaller than the signal dimension,
possibly corrupted by noise η, given as y = Xβ + η, where
X ∈ Cn×p is the measurement matrix. Two main classes
of algorithms have been successfully applied, one is convex
optimization based algorithms such as Basis Pursuit (BP) [3],
the other one is greedy pursuit based algorithms such as
Orthogonal Matching Pursuit (OMP) [4]. In particular, the
latter class is appealing and competitive in practice due to its
simplicity and low computational cost [5].

The performance of OMP can be characterized either in
a worst-case sense or in an average (probabilistic) sense.
Define the worst coherence of the measurement matrix X as
µ = maxi 6=j |〈xi, xj〉|, where xi denotes the ith unit-norm
column of X . It is shown in [4] that if µ < 1

2k−1 , then OMP
recovers any k-sparse vector β from the noiseless measure-
ment y = Xβ, and this result is confirmed to be sharp in

[6]. It is further studied in [7] that given the amplitudes of
the nonzero entries of β are not too small, OMP recovers
the support of the signal from noisy observations. From the
Welch bound [8] which gives µ & O(n−1/2), in order to
recover all k-sparse vectors, the number of measurements
is required to satisfy n & O(k2). It is demonstrated in
[9] that, if the Restricted Isometry Property (RIP) of X of
order k + 1 is satisfied with constant smaller than 1/(3

√
k),

then OMP recovers any k-sparse signal, again from the
noiseless measurements y = Xβ. Given a random matrix
satisfies the RIP of order k with constant δk provided that
n & O(k log(p/k)/δ2

k), then the number of measurements is
required n & O(k2 log(p/k)). These results all suffer from
what is called “square-root bottleneck”. Alternatively, instead
of aiming to recover all k sparse signals using OMP, it is
shown that for a fixed sparse vector β, a randomly drawn
measurement matrix X from i.i.d. normal entries can recover
β with high probability with n & O(k log p) measurements
from the noiseless measurements y = Xβ. However, it
does not provide a practical way to design or validate the
usefulness of a measurement matrix.

In this paper, we aim to use the strong coherence proper-
ties proposed in [10] to capture the performance of OMP.
The strong coherence properties require that the worst-
case coherence of the measurement matrix X is sufficiently
small, and also that the average coherence, defined as ν =

1
p−1 maxi |

∑
j:j 6=i〈xi, xj〉|, is small relative to the worst-

case coherence. Different from the worst-case sense, we aim
to provide conditions on the measurement matrix X that
are easily verifiable in contrast to RIP, and that succeeds
in support recovery and reconstruction of sparse signals
with high probability in the presence of noise. We show
that if X satisfied the strong coherence property, then with
n & O(k log p) measurements, OMP recovers a k-sparse
signal with high probability. In particular, the performance of
OMP depends on the smallest signal-to-noise ratio SNRmin

determined by the smallest nonzero entry instead of the
relative strengths of the nonzero entries of the signal.

The rest of the paper is organized as follows. Section II
introduces two coherence parameters of the measurement ma-
trix and provides a detailed description of OMP. Section III



gives the main theorems on the performance guarantees of
OMP for support recovery and signal reconstruction under
the strong coherence property. Section IV prepares for the
proof and Section V proves the main theorems. Finally we
conclude with discussions in Section VI.

II. TWO FUNDAMENTAL COHERENCE PARAMETERS

Suppose we are given a measurement vector as y = Xβ+
η, where X is an n× p unit-norm measurement matrix, β ∈
Cp is a k-sparse vector, y ∈ Cn is the measurement and
η ∈ Cn is the noise. We define two coherence properties of
X = [x1, · · · , xp] below. The first is worst-case coherence:

µ = max
i 6=j
|〈xi, xj〉| = ‖XHX − I‖∞,

which captures the correlation between different columns of
X . The second is average coherence:

ν =
1

p− 1
max
i

∣∣∣ ∑
j:j 6=i

〈xi, xj〉
∣∣∣ =

1

p− 1
‖(XHX − I)1‖∞.

which captures the average correlation between one column
of X and the remaining columns of X .

We say a measurement matrix X satisfies the strong
coherence property if the equation below holds:

µ ≤ 1

240 log p
, ν ≤ µ√

n
. (1)

It is known that Gaussian random matrices satisfy the
strong coherence property with high probability as long as
n & O((log p)4) [11]. Several families of deterministic
matrices are also known to satisfy the strong coherence
property, including Gabor frames [10], Kerdock code sets
[12], and Delsarte-Goethals code sets [12]. Notice that the
condition on average coherence ν ≤ µ√

n
can be achieved

with essentially no cost via“wiggling”, i.e. flipping the signs
of the columns of X [11]. The “wiggling” procedure doesn’t
change µ and ‖X‖2.

The goal of this paper is to present performance guarantees
on OMP for both support recovery and signal reconstruction
under the assumption that X satisfies the strong coherence
property, when the measurements are corrupted by noise. In
particular, two variants of OMP that differ in the way they
terminate the iterations are analyzed, i.e. Algorithm 1 with
known sparsity level, and Algorithm 2 with a stopping rule.

III. PERFORMANCE GUARANTEES OF OMP

We define the minimum-to-average ratio MAR and the tth-
largest-to-average ratio LAR(t) of the signal β respectively as

MAR =
|β|2min

‖β‖22/k
, LAR(t) =

|β|2(t)
‖β‖22/k

, (2)

where |β|(t) is the tth largest absolute value of β, |β|min is
the smallest nonzero absolute value of β, and k is the sparsity

Algorithm 1 OMP with a fixed number of iterations
1: Input: an n×p matrix X , a vector y ∈ Cn, and a sparsity

level k
2: Output: an estimate Ŝ of the true model S
3: Initialization: Ŝ0 := empty set, residual r0 = y
4: for t := 1 : k do
5: f := XHrt−1

6: i := arg maxj |fj |
7: Ŝt := Ŝt−1 ∪ {j}
8: rt := y −XŜt(X

H
Ŝt
XŜt)

−1XH
Ŝt
y

9: end for
10: Ŝ := Ŝk

Algorithm 2 OMP with a stopping rule
1: Input: an n × p matrix X , a vector y ∈ Cn, and a

threshold level δ
2: Output: an estimate Ŝ of the true model S
3: Initialization: Ŝ0 := empty set, residual r0 = y, set the

iteration counter t = 1
4: while ‖XHrt−1‖∞ > δ do
5: f := XHrt−1

6: i := arg maxj |fj |
7: Ŝt := Ŝt−1 ∪ {j}
8: rt := y −XŜt(X

H
Ŝt
XŜt)

−1XH
Ŝt
y

9: t := t+ 1
10: end while
11: Ŝ := Ŝt−1

level of k. The signal-to-noise ratio SNR and minimum
signal-to-noise ratio SNRmin are defined respectively as

SNR =
‖β‖22
E‖η‖22

, SNRmin =
|β|2min

E‖η‖22/k
. (3)

A. Performance Guarantee for Support Recovery

We have the following theorem for OMP with knowledge
of sparsity level k in Algorithm 1.

Theorem 1. Suppose X satisfies the strong coherence prop-
erty for any p ≥ 128, and η ∼ CN (0, σ2I). If the sparsity
level of β satisfies

k ≤ min

{
p

c22‖X‖22 log p
,

1

c21µ
2 log p

}
(4)

for c1 = 50
√

2 and c2 = 104
√

2, and its nonzero entries
satisfy

|β|(t+1) >
2σ
√

(1 + α) log p

1− c1µ
√

(k − t) log p
, (5)

or write differently, that is

LAR(t+1) >
4(1 + α)

(1− c1µ
√

(k − t) log p)2
·
(
k log p

nSNR

)
, (6)



for 0 ≤ t ≤ k − 1 and α ≥ 1, then the OMP algorithm
in Algorithm 1 successfully finds the support of β with
probability at least 1− k(pαπ)−1 − 2p−2 log 2 − 4p−1.

For the OMP algorithm with a stopping rule in Algo-
rithm 2, we have the following theorem.

Theorem 2. If X satisfies the strong coherence property
for any p ≥ 128, and η ∼ CN (0, σ2I). If the sparsity
level of β satisfies (4) and its nonzero entries satisfy (6) for
α ≥ 1, and choose δ = σ

√
(1 + α) log p, then the OMP

algorithm in Algorithm 2 successfully finds the support of β
with probability at least 1−(k+1)(pαπ)−1−2p−2 log 2−4p−1

in k iterations.

Since MAR ≤ LAR(t+1) for all 0 ≤ t ≤ k − 1, we
have the following corollary respectively from Theorem 1
and Theorem 2.

Corollary 3. If X satisfies the strong coherence property for
any p ≥ 128, and η ∼ CN (0, σ2I). If the sparsity level of β
satisfies (4), and it satisfies

MAR >
4(1 + α)

(1− c1µ
√
k log p)2

·
(
k log p

nSNR

)
, (7)

for α ≥ 1, then the support of β is successfully recovered by
OMP with probability at least 1 − k(pαπ)−1 − 2p−2 log 2 −
4p−1 using Algorithm 1, and with probability at least 1 −
(k + 1)(pαπ)−1 − 2p−2 log 2 − 4p−1 by Algorithm 2 with
δ = σ

√
(1 + α) log p in k iterations.

Let θ = c1µ
√
k log p ∈ (0, 1), then (7) implies the sparsity

level k satisfies

k <
(1− θ)2

4(1 + α)
· SNRmin

log p
. (8)

Combining with (4), we have

k < max
0<θ<1

min
{n(1− θ)2 SNRmin

4(1 + α) log p
,

θ2

c21µ
2 log p

,

p

c22‖X‖22 log p

}
, (9)

where the first term is determined by SNRmin, which is signal
dependent; the second term and the third term are determined
by the worst-case coherence and the spectral norm of the
measurement matrix X . If X is a tight frame, ‖X‖22 = p/n,
the third term becomes k < O(n/ log p). From the Welch
bound µ is lower bounded as µ & O(n−1/2), we write the
worst-case coherence as µ = c3n

−1/γ for some c3 > 0 and
γ ≥ 2. Therefore the maximum sparsity level is determined
by the second term in (9), yielding k . O((n/ log p)2/γ),
and when γ = 2 this gives k . O(n/ log p). In particular,
the sparsity level k doesn’t depend on the profile of signal
strength of β, i.e. MAR of the signal.

We have another corollary on partial recovery.

Corollary 4. If X satisfies the strong coherence property for
any p ≥ 128, and η ∼ CN (0, σ2I). If the sparsity level of

β satisfies (4), and its nonzero entries satisfy (6) for 0 ≤
t ≤ k′ − 1 ≤ k − 1 and α ≥ 1, then the OMP algorithm
in both Algorithm 1 and Algorithm 2 successfully selects k′

entries from the support of β with probability at least 1 −
k′(pαπ)−1 − 2p−2 log 2 − 4p−1.

It is worth noting that it is not necessarily the support of the
k′-largest entries that is recovered from the first k′ iterations.
The next corollary provides the condition on detecting the
k′-largest entries.

Corollary 5. If X satisfies the strong coherence property for
any p ≥ 128, and η ∼ CN (0, σ2I). If the sparsity level of β
satisfies (4), and its nonzero entries satisfy

|β|(t+1) >
|β|(t+2) + 2σ

√
(1 + α) log p

1− c1µ
√

(k − t) log p
, (10)

for 0 ≤ t ≤ k′ − 1 ≤ k − 1 and α ≥ 1, then the OMP
algorithm in both Algorithm 1 and Algorithm 2 successfully
selects k′ largest entries from the support of β with proba-
bility at least 1− k′(pαπ)−1 − 2p−2 log 2 − 4p−1.

B. Performance Guarantees for Signal Reconstruction

Furthermore, we could reconstruct the amplitude of the
signal β by first reconstructing the amplitude on the detected
support Π via least-squares estimation as

ẑ = X†Πy,

then β̂ is obtained by filling in the zero entries. We have the
following theorem.

Theorem 6. If X satisfies the strong coherence property
for any p ≥ 128, and η ∼ N (0, σ2I). If the sparsity
level of β satisfies (4) and its nonzero entries satisfy (6)
for 0 ≤ t ≤ k − 1 and α ≥ 1, then the `2 norm error of
the signal reconstructed by least-squares estimation on the
support recovered by the OMP algorithm satisfies

‖β̂ − β‖22 ≤ 4(1 + α)kσ2 log p

with probability at least 1 − k(pαπ)−1 − 2p−2 log 2 − 4p−1

using Algorithm 1, and with probability at least 1 − (k +
1)(pαπ)−1 − 2p−2 log 2 − 4p−1 using Algorithm 2.

C. Comparison with Other Results

We now compare our bound with the performance guar-
antee of OMP for support recovery provided in [7], which
we have modified slightly for complex Gaussian noise. In
order to select exactly the correct support with probability
at least 1− (k + 1)(pαπ)−1 for the OMP Algorithm 2 with
the stopping rule δ = σ

√
(1 + α) log p, the signal β needs

to satisfy

MAR >
4(1 + α)

(1− (2k − 1)µ)2
·
(
k log p

nSNR

)
, (11)



therefore the sparsity level of β satisfies

k < max
0<θ<1

min

{
n(1− θ)2 SNRmin

4(1 + α) log p
,

1

2
+

θ

2µ

}
.

The first term is the same as that in (9), but the second term
gives k ∼ O(µ−1), therefore k . O(n1/γ). We achieved
a much tighter bound (9) by sacrificing the probability of
success to 1− (k + 1)(pαπ)−1 − 2p−2 log 2 − 4p−1.

We also compare with the performance guarantee of the
Sorted One Step Thresholding (SOST) algorithm analyzed in
[10], which outputs the index set of the k-largest entries in
absolute values of f = XHy from line 5 in Algorithm 1. By
rephrasing Theorem 4 in [10], in order to select the correct
support with probability at least 1− 6p−1, the sparsity level
of β satisfies

k < max
0<θ<1

min
{n(1− θ)2 SNRmin

16 log p
,

θ2

800µ2 log p
· 1

MAR
,

n

2 log p

}
. (12)

Compare to (9), we see that when X is not a tight frame, it is
the third term that degrades the performance guarantees. On
the other hand, the SOST algorithm performs poorly when
the MAR is of the signal is much smaller than 1, as seen
from the second term in (12).

IV. PREPARATIONS FOR PROOF

A. Statistical Orthogonality Condition (StOC)

The Statistical Orthogonality Condition (StOC) for a mea-
surement matrix X is first introduced in [10].

Definition 1. Let Π̄ = (π1, . . . , πp) be a random per-
mutation of {1, . . . , p}, and define Π = (π1, . . . , πk) and
Πc = (πk+1, . . . , πp) for any k ≤ p. Then the matrix X is
said to satisfy the (k, ε, δ)-StOC, if there exist ε, δ ∈ [0, 1)
such that the inequalities

‖(XH
Π XΠ − I)z‖∞ ≤ ε‖z‖2, (13)

‖XH
ΠcXΠz‖∞ ≤ ε‖z‖2, (14)

hold for every fixed z ∈ Ck with probability exceeding 1−δ,
with respect to Π̄.

We have the following proposition rephrased from [10]
stating that the StOC is satisfied with high probability if X
satisfies the strong coherence property.

Proposition 1 ([10]). If the measurement matrix X satisfies
the strong coherence property, then it satisfies (k, ε, δ)-StOC
for k ≤ n/(2 log p), with ε = 10µ

√
2 log p and δ ≤ 4p−1.

If (13) and (14) hold for a realization of permutation
Π̄, then for t ≤ k, let Πt = (π1, . . . , πt) and Πc

t =
(πt+1, . . . , πk), if (13) and (14) hold for every z ∈ Ck, so

that Πt ∪ Πc
t = Π and Πt ∩ Πc

t = ∅. For every z ∈ Ct, we
have∥∥∥∥[XH

Πt
XΠt

− It XH
Πt
XΠc

t

XH
Πc

t
XΠt XH

Πc
t
XΠc

t
− Ik−t

] [
z
0

]∥∥∥∥
∞
≤ ε‖z‖2,

from (13), therefore

‖(XH
Πt
XΠt

− It)z‖∞ ≤ ε‖z‖2,
‖XH

Πc
t
XΠt

z‖∞ ≤ ε‖z‖2.

Moreover, from (14) we have

‖XH
ΠcXΠtz‖∞ =

∥∥∥∥[XH
ΠcXΠt

XH
ΠcXΠc

t

] [z
0

]∥∥∥∥
∞
≤ ε‖z‖2.

B. Conditioning of random submatrices

We need the following proposition that shows a random
submatrix of X is well-conditioned with high probability,
which is essentially due to Tropp [13], and first presented in
the form below by Candès and Plan [14].

Proposition 2 ([13], [14]). Let Π̄ = (π1, . . . , πp) be a ran-
dom permutation of {1, . . . , p}, and define Π = (π1, . . . , πk)
for any k ≤ p. Then for q = 2 log p and k ≤ p/(4‖X‖22), we
have (

E
[
‖XH

Π XΠ − I‖q2
])1/q

≤ 21/q

30µ log p+ 13

√
2k‖X‖22 log p

p

 . (15)

with respect to the random permutation Π̄.

The following proposition [14] states a probabilistic bound
on the extreme singular values of a random submatrix of X ,
by applying Markov’s inequality

Pr
(
‖XH

Π XΠ − I‖2 ≥ 1/2
)
≤ 2qE

[
‖XH

Π XΠ − I‖q2
]

to Proposition 2.

Proposition 3 ([14]). Let Π̄ = (π1, . . . , πp) be a random
permutation of {1, . . . , p}, and define Π = (π1, . . . , πk) for
any k ≤ p. Suppose that µ(X) ≤ 1/(240 log p) and k ≤
p/(c22‖X‖22 log p) for numerical constant c2 = 104

√
2, then

we have

Pr
(
‖XH

Π XΠ − I‖2 ≥ 1/2
)
≤ 2p−2 log 2.

Notice that ‖XH
Π XΠ−I‖2 = max{λmax(XH

Π XΠ)−1, 1−
λmin(XH

Π XΠ)}, where λmax(XH
Π XΠ) and λmin(XH

Π XΠ)
are the maximum and minimum eigenvalues of XH

Π XΠ, i.e.
all the eigenvalues of XH

Π XΠ are bounded in [1/2, 3/2]. If
for a realization of permutation Π̄, ‖XH

Π XΠ − I‖2 ≥ 1/2,
we have

‖(XH
Π XΠ)−1‖2 ≤ 2 and ‖XΠ(XH

Π XΠ)−1‖2 ≤
√

2.

Moreover, for t ≤ k and Πt = (π1, . . . , πt), we have

‖XH
Πt
XΠt

− It‖2 ≥ 1/2,



since the eigenvalues of XH
Πt
XΠt

are majorized by the
eigenvalues of XH

Π XΠ.

C. Correlated Gaussian Noise

Let P ∈ Cn×n be a projection matrix such that P 2 = P .
Since η ∼ CN (0, σ2In) is i.i.d. complex Gaussian noise,
XHPη ∼ CN (0, σ2XHPX) is also Gaussian distributed,
but is correlated with covariance matrix σ2XHPX . We want
to bound Pr(‖XHPη‖∞ ≥ τ) for some τ > 0. First, we
need the Sidak’s lemma [15] below.

Lemma 4 (Sidak’s lemma). Let [X1, · · · , Xn] be a vector
of random multivariate normal variables with zero means,
arbitrary variances σ2

1 , · · · , σ2
n and and an arbitrary corre-

lation matrix. Then, for any positive numbers c1, · · · , cn, we
have

Pr(|X1| ≤ c1, · · · , |Xn| ≤ cn) ≥
n∏
i=1

Pr(|Xi| ≤ ci).

Since XHPη ∼ CN (0, σ2XHPX), then each xHi Pη ∼
CN (0, σ2

i ), where σ2
i = σ2xHi Pxi ≤ σ2. Then

Pr(|xHi Pη| ≤ τ) = 1− 1

π
e−τ

2/σ2
i ≥ 1− 1

π
e−τ

2/σ2

.

Following Sidak’s lemma, for τ > 0 we have

Pr(‖XHPη‖∞ ≤ τ) ≥
p∏
i=1

Pr(|xHi Pη| ≤ τ)

≥ (1− 1

π
e−τ

2/σ2

)p

≥ 1− p

π
e−τ

2/σ2

,

provided the RHS is greater than zero. We have the propo-
sition below.

Proposition 5. Let η be a random vector with i.i.d.
CN (0, σ2) entries, P be a projection matrix, and X be a
unit-column matrix, then for τ > 0 we have

Pr(‖XHPη‖∞ ≤ τ) ≥ 1− p

π
e−τ

2/σ2

,

provided the RHS is greater than zero.

Now let τ = σ
√

(1 + α) log p for α ≥ 1, we have

Pr{‖XHPη‖∞ ≤
√
σ2(1 + α) log p} ≥ 1− (pαπ)−1.

V. PROOF OF MAIN RESULTS

We first write the data vector β as β = PΠz, where z ∈
Ck is a deterministic vector, and PΠ ∈ Rp×k is a partial
identity matrix composed of columns indexed by Π. Then
the measurement vector can be written as

y = Xβ + η = XPΠz + η = XΠz + η,

where XΠ denotes the submatrix of X composed of columns
indexed by Π.

We note that in OMP, the residual rt, t = 0, · · · , k − 1
is orthogonal to the selected columns in previous iterations,
so in each iteration a new column will be selected. Define
a subset Πt which contains t variables that are selected at
the tth iteration. Then Pt = XΠt(X

H
Πt
XΠt)

−1XH
Πt

is the
projection matrix onto the linear subspace spanned by the
columns of XΠt

, and we assume P0 = 0.
We want to prove Πt ⊂ Π by induction. First at t = 0,

Πt = ∅ ⊂ Π. Assume at iteration t, Πt ⊂ Π, then the residual
rt can be written as

rt = (I − Pt)y = (I − Pt)XΠz + (I − Pt)η , st + nt.

Let M t
Π = ‖XH

Π st‖∞, M t
Πc = ‖XH

Πcst‖∞ and Nt =
‖XHnt‖∞, then a sufficient condition for Πt+1 ⊂ Π, i.e. for
OMP to select a correct variable at the next iteration is that

M t
Π −M t

Πc > 2Nt, (16)

since

‖XH
Π rt‖∞ ≥M t

Π −Nt > M t
Πc +Nt ≥ ‖XH

Πcrt‖∞.

A. Bounding M t
Π and M t

Πc

Define the event

G1 = {X satisfies the (k, ε, δ)-StOC},

that happens with probability at least 1− 4p−1 with respect
to Π̄ from Proposition 1, and the event

G2 = {‖XH
Π XΠ − I‖2 ≤ 1/2},

which happens at least 1− 2p−2 log 2 with respect to Π̄ from
Proposition 3. Let the event G = G1 ∩ G2. From the above
discussions the event G holds with probability at least 1 −
4p−1 − 2p−2 log 2 with respect to Π̄.

Now we bound M t
Π and M t

Πc under the event G. Let
Πc
t = Π\Πt be the set of yet to be selected indices of the sup-

port of β, and βΠc
t

= zΠc
t

be the corresponding coefficients.
Since (I−Pt)XΠz ∈ R(XΠc

t
) belongs to the linear subspace

spanned by the columns of XΠc
t
, we can find a vector w of

dimension (k − t) such that XΠc
t
w = (I − Pt)XΠz, where

the vector w can be written as

w = (XH
Πc

t
XΠc

t
)−1XH

Πc
t
(I − Pt)XΠc

t
zΠc

t

= zΠc
t
− (XH

Πc
t
XΠc

t
)−1XH

Πc
t
PtXΠc

t
zΠc

t
.

We need the following lemma on eigenvalue majorization
from [7].

Lemma 6 ([7]). The minimum and maximum eigenvalues of
XH

Πc
t
(I − Pt)XΠc

t
are bounded as

λmin(XH
Πc

t
(I − Pt)XΠc

t
) ≥ λmin(XH

Π XΠ),

λmax(XH
Πc

t
(I − Pt)XΠc

t
) ≤ λmax(XH

Π XΠ).



The readers are referred to [7] for the proof. Since we have

‖w‖2 ≤ ‖(XH
Πc

t
XΠc

t
)−1‖2‖XH

Πc
t
(I − Pt)XΠc

t
zΠc

t
‖2 (17)

≤ 2‖XH
Π XΠ‖2‖zΠc

t
‖2 ≤ 3‖zΠc

t
‖2, (18)

where (17) follows from Lemma 6, and (18) follows from
Proposition 3. Also,

‖XH
Πc

t
PtXΠc

t
zΠc

t
‖∞ = ‖XH

Πc
t
XΠt

(XH
Πt
XΠt

)−1XH
Πt
XΠc

t
zΠc

t
‖∞

≤ ε‖(XH
Πt
XΠt)

−1XH
Πt
XΠc

t
zΠc

t
‖2

≤ ε‖(XH
Πt
XΠt

)−1‖2‖XH
Πt
XΠc

t
‖2‖zΠc

t
‖2

≤ ε‖zΠc
t
‖2,

therefore M t
Π can be bounded as

M t
Π = ‖XH

Πc
t
XΠc

t
zΠc

t
−XH

Πc
t
PtXΠc

t
zΠc

t
‖∞

≥ ‖zΠc
t
‖∞ − ‖(XH

Πc
t
XΠc

t
− I)zΠc

t
‖∞ − ‖XH

Πc
t
PtXΠc

t
zΠc

t
‖∞

≥ ‖zΠc
t
‖∞ − 2ε‖zΠc

t
‖2. (19)

where (19) follows from (13). Next, M t
Πc can be bounded as

M t
Πc = ‖XH

Πc(I − Pt)XΠz‖∞
= ‖XH

ΠcXΠc
t
w‖∞

≤ ε‖w‖2 ≤ 3ε‖zΠc
t
‖2. (20)

where (20) follows from (14).

B. Bounding Nt
Conditioned on the event G, for each Pt, since I − Pt is

also a projection matrix, define the event

Ht = {Nt ≤ σ
√

(1 + α) log p}, t = 0, · · · , k − 1. (21)

Then from Proposition 5, it happens with probability at
least 1 − (pαπ)−1 with respect to η. We further define
the event H = ∩k−1

t=0Ht, then from the union bound
Pr(H|G) = Pr(H) ≥ 1− k(pαπ)−1. Similarly, for the event
H′ = ∩kt=0Ht, then from the union bound Pr(H′|G) =
Pr(H′) ≥ 1− (k + 1)(pαπ)−1.

C. Proof of Theorem 1 and Theorem 2

Define the event I = G ∩ H, from the above discussions
we have Pr(I) ≥ 1−k(pαπ)−1−2p−2 log 2−4p−1. Now we
are ready to analyze the OMP performance under the event
G. We want to prove Πt ⊂ Π by induction.

Substituting the bounds (19), (20) and (21) into (16), it is
sufficient that at the tth iteration

‖zΠc
t
‖∞ > 5ε‖zΠc

t
‖2 + 2σ

√
(1 + α) log p. (22)

Note that ‖zΠc
t
‖∞ ≥ |β|(t+1), ‖zΠc

t
‖2 ≤

√
k − t|β|(t+1),

(22) is satisfied by

|β|(t+1) > 5ε
√
k − t|β|(t+1) + 2σ

√
(1 + α) log p.

Since k < 1/(c11µ
2 log p) and ε = 10µ

√
2 log p, this is

equivalent to the condition in (6) for 0 ≤ t ≤ k−1, therefore

a correct variable is selected at the tth iteration, Πt ⊂ Π.
Since the sparsity level of β is k, the OMP algorithm in
Algorithm 1 successfully finds the support of β in k iterations
under the event I, and we have proved Theorem 1.

Now we define the event I ′ = H′ ∩ G, where I ′ ⊂ I
which happens with probability at least 1−(k+1)(pαπ)−1−
2p−2 log 2 − 4p−1. Conditioned on the event I ′, in order to
prove Theorem 2, we need to further show that ‖XHrt‖∞ >
δ for 0 ≤ t ≤ k− 1 so that the algorithm doesn’t stop early,
and ‖XHrk‖∞ ≤ δ so that the algorithm stops at the kth
iteration. While the latter is obvious from the definition of
Hk, for the first inequality we have

‖XHrt‖∞ ≥M t
Π −Nt

≥ ‖zΠc
t
‖∞ − 2ε‖zΠc

t
‖2 − σ

√
(1 + α) log p

(23)

> 3ε‖zΠc
t
‖2 + σ

√
(1 + α) log p (24)

≥ σ
√

(1 + α) log p = δ,

where (23) follows from (19) and (21), and (24) follows from
(22).

Remark: The proof of Corollary 4 is straightforward by
early-terminating the induction procedure at the k′th iteration.

D. Proof of Corollary 5
Again we prove by induction. First at t = 0, Πt = ∅ ⊂ Π.

Assume at iteration t, the OMP algorithm has successfully
detected the t largest entries of |β|. For i ∈ Πc

t that
corresponds to the t+ 1th largest entry of |β|, we have

|xHi rt| ≥ |zi| − 2ε‖zΠc
t
‖2 − σ

√
(1 + α) log p,

= |β|(t+1) − 2ε‖zΠc
t
‖2 − σ

√
(1 + α) log p

from a simple variation of (19). On the other hand, for j ∈ Πc
t

that corresponds to the rest undetected entries of β, we have

|xHj rt| ≤ |zj |+ 2ε‖zΠc
t
‖2 + σ

√
(1 + α) log p,

≤ |β|(t+2) + 2ε‖zΠc
t
‖2 + σ

√
(1 + α) log p.

To detect the t+ 1th largest entries it is sufficient to have

|β|(t+1) − |β|(t+2) ≥ 4ε
√
k − t|β|(t+1) + 2σ

√
(1 + α) log p.

This is satisfied when (10) by simply plugging it into the
above equation.

E. Proof of Theorem 6
Conditioned on the event that the support is successfully

recovered, since

ẑ = X†Πy = X†Π(XΠz + η) = z + (XH
Π XΠ)−1XT

Πη,

where z = βΠ is the non-zero part of β, and

‖(XH
Π XΠ)−1XH

Π η‖22
≤ ‖(XH

Π XΠ)−1‖22‖XH
Π η‖22

≤ 4k‖XH
Π η‖2∞ ≤ 4(1 + α)kσ2 log p, (25)



it follows that

‖β̂ − β‖22 = ‖ẑ − z‖22 ≤ 4(1 + α)kσ2 log p.

VI. CONCLUSION

In this paper, we provide coherence-based performance
guarantees of two variants of OMP for both support recovery
and signal reconstruction of sparse signals when the measure-
ments are corrupted by noise. It is shown that if X satisfied
the strong coherence property, then with n & O(k log p),
OMP recovers a k-sparse signal with high probability. In
particular, the guarantees obtained here separate the proper-
ties required of the measurement matrix from the properties
required of the signal. The resilience of OMP to variability
in relative strength of the entries of the signal might be an
advantage in applications like multi-user detection in wireless
communications because it makes power control less critical
[16], [17].
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