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ABSTRACT

We study the performance of modal analysis using sparse linear arrays (SLAs) such as nested and co-prime
arrays, in both first-order and second-order measurement models. We treat SLAs as constructed from a subset
of sensors in a dense uniform linear array (ULA), and characterize the performance loss of SLAs with respect to
the ULA due to using much fewer sensors. In particular, we claim that, provided the same aperture, in order to
achieve comparable performance in terms of Cramér-Rao bound (CRB) for modal analysis, SLAs require more
snapshots, of which the number is about the number of snapshots used by ULA times the compression ratio in
the number of sensors. This is shown analytically for the case with one undamped mode, as well as empirically
via extensive numerical experiments for more complex scenarios. Moreover, the misspecified CRB proposed by
Richmond and Horowitz is also studied, where SLAs suffer more performance loss than their ULA counterpart.
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1. INTRODUCTION

Sparse linear arrays (SLAs), such as minimum redundancy arrays,1 nested arrays2 and co-prime arrays,3 have
attracted a great deal of attention in recent times, especially for beamforming and direction finding. Leveraging
second-order statistics as well as the geometry of difference co-arrays, these non-uniform array geometries are
capable of identifying (in the absence of noise) more modes than the number of sensors2–4 due to the increased
degrees of freedom. Even without going into the co-array domain, they exhibit lower Cramér-Rao bounds (CRBs)
and higher resolvability5,6 when their measurements are directly exploited, compared with a uniform linear array
(ULA) that is composed of the same number of sensors. These SLAs, investigated in Ref. 5, 6, have the same
number of sensors with the ULA, but they can benefit from the significantly increased size of aperture because
of well-designed geometries.

In this paper, inspired by Ref. 7, we consider SLAs as sub-arrays constructed by a subset of sensors in
a dense ULA with the same aperture of the SLAs. Thus, different from Ref. 5, 6, the SLAs studied in this
paper have the same aperture with the ULA, but consist of much fewer sensors. This viewpoint is taken in
order to characterize the performance degeneration of SLAs with respect to the original ULA, due to using fewer
sensors. Rather than examining performance of specific algorithms, we adopt CRB as the performance metric for
modal analysis, since the celebrated CRB provides a lower bound on the variances of unbiased mode estimates.
Various CRB expressions of SLAs have been presented under both first-order and second-order assumptions of
the measurement model.8–12

Our intuition is that, provided the same aperture, in order to achieve comparable performance in terms of
CRB for modal analysis, SLAs require a larger number of snapshots than the ULA. The number of snapshots
required is about the number of snapshots used by the ULA times the compression ratio in the number of sensors.
This is consistent with observations made in other recent studies (e.g., Ref. 7,13) that compare the performance
of SLAs with that of a ULA of similar aperture. We verify this intuitive result analytically in the case where
there is only one undamped mode in the first-order measurement model.
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Given a fixed number of sensors, we analytically show that the optimal SLA geometry from the perspective
of Fisher information is to build the SLA as two sub-arrays of consecutive elements taken from the two ends of
the ULA. Then we show that under the same number of snapshots and per-sensor signal-to-noise ratio (SNR),
the ratio of the CRB of the optimal SLA to that of the ULA is in the order of compression ratio in the number
of sensors. As a consequence, assuming the ratio of per-sensor SNRs, determined by the average energy of mode
amplitudes, keeps almost as a constant while increasing the number of snapshots, the CRB loss of SLAs can be
compensated by more snapshots. This claim is also empirically verified via extensive numerical experiments for
more complex scenarios, even with damped modes, in both first-order and second-order measurement models.

In addition, we conduct numerical experiments to compare the behaviors of SLAs under model misspecification
via the misspecified CRB (MCRB), recently proposed in Ref. 14, where the sensors are not perfectly located at
integer multiples of half wavelength. We demonstrate that SLAs not only yield a higher MCRB than ULA in
estimating an undamped mode, but also bear wider MCRB confidence intervals.

The remainder of the paper is organized as follows. First, we give the formulations of both first-order and
second-order measurement models, and discuss the corresponding CRB expressions in Sec. 2. In Sec. 3, given a
fixed number of sensors, we derive the optimal SLA geometry for estimating a single undamped mode, and the
ratio of its CRB to that of the ULA. Then we provide extensive numerical experiments in Sec. 4 to validate the
CRB compensation by using more snapshots in more complex scenarios. Next, we examine misspecified CRB in
Sec. 5. Finally, in Sec. 6 we conclude and discuss the future work.

2. MODEL FORMULATION AND CRB

Consider a linear array composed of ms sensors, whose locations are specified by Is = {i0, i1, . . . , ims−1} in units
of half wavelength (λ/2) in space. Suppose there are p potentially damped modes, represented as zk = ρke

j2πfk ,
with ρk ∈ R+ and fk ∈ [0, 1), k = 1, 2, . . . , p. Then the nth measurement snapshot observed by the linear array
can be formulated as a linear combination of p weighted steering vectors, perhaps corrupted by additive noise,
as

y [n] = V (z, Is)x [n] + e [n] , n = 0, 1, . . . , N − 1, (1)

where y[n] = [y0[n], y1[n], . . . , yms−1[n]]T ∈ Cms is the nth array measurement snapshot, x[n] = [x1[n], x2[n], . . . ,
xp[n]]T ∈ Cp is the nth mode amplitude vector, and e[n] = [e0[n], e1[n], . . . , ems−1[n]]T ∈ Cms is the additive
noise vector. Moreover, V (z, Is) ∈ Cms×p, of which each column is the steering vector corresponding to one
mode, is a generalized Vandermode matrix, expressed as

V (z, Is) = [v (z1, Is) ,v (z2, Is) , . . . ,v (zp, Is)] , (2)

where v (zk, Is) =
[
zi0k , z

i1
k , . . . , z

ims−1

k

]T
, k = 1, 2, . . . , p.

Below we discuss the first-order and second-order measurement model, respectively, and the corresponding
CRB expressions.

2.1 First-Order Measurement Model

Here, the mode amplitude vectors x [n], n = 0, 1, . . . , N − 1, are assumed unknown but deterministic, while the
noise vectors e[n], n = 0, 1, . . . , N − 1, are i.i.d. generated from Gaussian distribution as

e [n] ∼ CN
(
0, σ2

eI
)
. (3)

In this case, the CRB matrix of estimating the mode parameters z can be written as7

CRBf (z, Is) = σ2
e

(DH (z, Is)
[
I − PV (z,Is)

]
D (z, Is)

)
�

(
N−1∑
n=0

x [n]xH [n]

)T−1 , (4)



where � denotes Hadamard product, PV (z,Is) is the orthogonal projection onto the column spans of V (z, Is),
and D (z, Is) is defined as D (z, Is) =

[
∂v(z1,Is)
∂z1

, ∂v(z2,Is)∂z2
, . . . ,

∂v(zp,Is)
∂zp

]
. Further, define the sample covariance

matrix Σs = 1
N

∑N−1
n=0 x [n]xH [n], then the CRB matrix can be rewritten as

CRBf (z, Is) =
σ2
e

N

[(
DH (z, Is)

[
I − PV (z,Is)

]
D (z, Is)

)
�ΣT

s

]−1
. (5)

The CRB expression in Eq. (4) is valid when the number of sensors ms is larger than the number of modes
p, otherwise the CRB becomes unbounded due to singularity of the Fisher information matrix.

2.2 Second-Order Measurement Model

Here, the mode amplitude vectors x [n], n = 0, 1, . . . , N − 1, and the noise vectors e [n], n = 0, 1, . . . , N − 1, are
assumed uncorrelated and i.i.d. drawn from proper Gaussian distributions

x [n] ∼ CN (0,Σ) and e [n] ∼ CN
(
0, σ2

eI
)
, (6)

respectively.

Suppose the unknown variables are denoted by α = [α1, α2, . . . , αK ], containing both mode parameters
and other nuisance parameters. Let R = V (z, Is) ΣV H (z, Is) + σ2

eI, and let r be the vectorization of R as

r = vec (R). Also denote the derivative of r with respect to α by ∂r
∂α =

[
∂r
∂α1

, ∂r∂α2
, . . . , ∂r

∂αK

]
. Then the CRB

matrix for the estimation of all the unknown parameters, denoted by CRBs (α, Is), becomes10,15

CRBs (α, Is) =
1

N

[(
∂r

∂α

)H (
RT ⊗R

)−1 ∂r
∂α

]−1
, (7)

where ⊗ denotes the Kronecker product. Unlike the first-order expression in Eq. (4), this expression is valid even
when the number of modes p is greater than the number of sensors ms.

2.3 Discussions

When assuming x [n]’s are i.i.d. generated from the proper Gaussian distribution CN (0,Σ), Σs is the sample
covariance matrix, which will converge to the real covariance matrix Σ with N approaching infinity. Nevertheless,
replacing the sample covariance matrix in Eq. (4) with the covariance matrix does not yield Eq. (7). Furthermore,
with finite N , different realizations of x [n]’s will lead to different CRB matrices CRBf (z, Is) in the first-
order measurement model. Therefore, when the number of modes is small, the ensemble of CRBf (z, Is) is
more revealing and indicative of performance than the CRB matrix CRBs (α, Is) obtained in the second-order
measurement model, which is determined by the population covariance matrix Σ. In this paper, we focus on
the CRB matrices in the first-order measurement model, while few numerical experiments are conducted in the
second-order measurement model.

3. THEORETICAL ANALYSIS WITH ONE UNDAMPED MODE

In the first-order measurement model, consider a scenario where only one undamped mode z1 exists, i.e. z1 =
ej2πf1 , so |z1| = 1. Suppose a linear array is composed of ms sensors, specified as Is = {i0, i1, . . . , ims−1}, then
the CRB of estimating the mode parameter z1 can be simplified as

CRBf (z1, Is) =

∑N−1
n=0 |x1[n]|2

σ2
e

·

ms−1∑
k=0

i2k −

(∑ms−1
k=0 ik

)2
ms



−1

=
1

N · SNRf (z1, Is) · Jf (z1, Is)
, (8)

where

SNRf (z1, Is) =

∑N−1
n=0 |x1[n]|2

Nσ2
e

(9)



represents the per-sensor SNR. Besides, Jf (z1, Is) is defined as

Jf (z1, Is) =

ms−1∑
k=0

i2k −

(∑ms−1
k=0 ik

)2
ms

=
1

ms

ms−1∑
k=0

ms−1∑
t=k

(ik − it)2 , (10)

which is determined by the sum of squared distances between sensors.

3.1 Optimal Array Configuration with Given Aperture

It is somewhat indicated by Eq. (10) that increasing the aperture of a linear array will introduce a larger
Jf (z1, Is), thereby resulting in a lower CRBf (z1, Is). However, a more interesting question concerns the optimal
array configuration to maximize Jf (z1, Is) for a given aperture.

Fixing the number of sensors, we have the following result about the optimal SLA configuration to maximize
Jf (z1, Is), which is proved in App. A.

Theorem 1. Suppose Iula is an m-sensor ULA, specified as Iula = {0, 1, . . . ,m− 1}. Assume ms is an even
integer, where 2 ≤ ms ≤ m, and let Is denote an ms-sensor linear array, which is constructed by a subset
of sensors in Iula such that Is = {i0, i1, . . . , ims−1} ⊆ Iula. Consequently, the aperture of Is is restricted by
m − 1, and the maximum of Jf (z1, Is) is achieved by consecutively picking half of the sensors from each end
of ULA. Specifically, from the perspective of Fisher information, the optimal ms-sensor linear array will be
Is−optimal = {0, 1, . . . ,ms/2− 1} ∪ {m−ms/2,m−ms/2 + 1, . . . ,m− 1}.
Remark 1. When ms is an odd integer, where 3 ≤ ms ≤ m, the optimal ms-sensor linear array will be
Is−optimal = {0, 1, . . . , (ms − 1) /2} ∪ {m − (ms − 1) /2,m − (ms − 3) /2, . . . ,m − 1} or Is−optimal = {0, 1, . . . ,
(ms − 3) /2} ∪ {m− (ms + 1) /2,m− (ms − 1) /2, . . . ,m− 1}.
Remark 2. For an even m and an even ms, it is not difficult to show that Is−worst = {0,m − 1} ∪ {m/2 −
ms/2 + 1,m/2−ms/2 + 2, . . . ,m/2 +ms/2− 2} will yield the smallest Jf (z1, Is) among all the ms-sensor linear
arrays with a fixed aperture m− 1.

Remark 3. Note that this optimal array geometry is derived when there is a single undamped mode, and therefore
is not guaranteed to be optimal when more modes are present.

3.2 CRB Ratios

We now characterize the performance loss of SLAs in one undamped mode scenario with respect to the dense
ULA, due to making use of much fewer sensors. Define η as the ratio of the number of sensors of the ULA to
that of the SLAs as η = m/ms, referred to as the compression ratio in the number of sensors, thus η ≥ 1. The
following results connect the performance loss of SLAs in terms of CRB with the compression ratio η.

Theorem 2. Suppose Iula is an m-sensor ULA, specified as Iula = {0, 1, . . . ,m− 1}. Assume ms is an even
integer, where 2 ≤ ms ≤ m, and let Is denote an ms-sensor linear array, which is constructed by a subset of
sensors in Iula such that Is = {i0, i1, . . . , ims−1} ⊆ Iula. Then we have

Jf (z1, Iula)

Jf (z1, Is)
≥ Jf (z1, Iula)

Jf (z1, Is−optimal)
≥ 1

3
η,

where Is−optimal = {0, 1, . . . ,ms/2− 1} ∪ {m−ms/2,m−ms/2 + 1, . . . ,m− 1}. Further, we have

CRBf (z1, Is)
CRBf (z1, Iula)

=
Nula · SNRf (z1, Iula) · Jf (z1, Iula)

Ns · SNRf (z1, Is) · Jf (z1, Is)
≥ 1

3
η · Nula

Ns
· SNRf (z1, Iula)

SNRf (z1, Is)
.

Remark 4. When ms is an odd integer satisfying 3 ≤ ms ≤ m, we can obtain the same bound that is
Jf (z1, Iula) /Jf (z1, Is) ≥ η/3.

Remark 5. Specifically, consider a co-prime array specified as Icoprime = {0,m2, 2m2, . . . , (m1 − 1)m2} ∪
{m1, 2m1, . . . , (2m2 − 1)m1}, where the greatest common factor (m1,m2) = 1 and m1 > m2. Hence, this co-
prime array totally contains mcoprime = m1 +2m2−1 sensors, and has an aperture as Acoprime = (2m2 − 1)m1.



We would like to compare this co-prime array with a ULA, which has an aperture as Aula = (2m2 − 1)m1 as well,
so we consider a ULA specified as Iula = {0, 1, . . . , (2m2 − 1)m1}, which is composed of mula = (2m2 − 1)m1+1
sensors. Assuming m2 ≥ 5, we have

Jf (z1, Iula)

Jf (z1, Icoprime)
> 0.88 · mula

mcoprime
.

The proof of Thm. 2 is provided in App. B. In this one undamped mode scenario, the per-sensor SNR happens
to be independent on the array geometry. So provided with same mode amplitudes, we obtain SNRf (z1, Iula) =
SNRf (z1, Is), and further CRBf (z1, Is) /CRBf (z1, Iula) ≥ η/3, which implies that compared with the ULA, an
ms-sensor SLA suffers a CRB loss in the order of compression ratio η.

If the per-sensor SNR can perform almost as a constant while increasing the number of snapshots, we know

CRBf (z1, Is)
CRBf (z1, Iula)

≈ cηNula
Ns

, (11)

for some constant c. In such a case, to achieve comparable performance in terms of CRB for modal analysis,
the number of snapshots required by SLAs needs to be about the number of snapshots used by ULA times the
compression ratio in the number of sensors, up to some constant. Actually, in practice, it is quite common to
approximate the per-sensor SNR, determined by the average energy of mode amplitudes, by a constant with
respect to the number of snapshots. This can be satisfied, for example, in the case where the mode amplitudes
are i.i.d. generated from some complex Gaussian distribution. As long as the number of snapshots is large
enough, based on the law of large numbers, the sample variance will concentrate around the population variance,
which guarantees an almost constant per-sensor SNR despite the change of number of snapshots.

Before concluding this section, we consider the asymptotic behaviors of CRB comparisons by assuming both
m → ∞ and ms → ∞ while keeping η fixed. Supposing both m and ms are even integers, where 2 ≤ ms ≤ m,
besides Iula and Is−optimal, we also examine the following array configurations:

Iula−short = {0, 1, . . . ,ms − 1} ;

Is−worst = {0,m− 1} ∪ {m/2−ms/2 + 1,m/2−ms/2 + 2, . . . ,m/2 +m2/2− 2}.

Accordingly, Iula has the same aperture with Is−optimal and Is−worst, but contains more sensors, while Iula−short
is constructed by the same number of sensors with Is−optimal and Is−worst, but possesses a much smaller aperture.
Then we have

Jf (z1, Iula)

Jf (z1, Iula−short)
=

m
(
m2 − 1

)
/12

ms (m2
s − 1) /12

m→∞,ms→∞
= η3; (12)

Jf (z1, Iula)

Jf (z1, Is−optimal)
=

m
(
m2 − 1

)
/12

ms (m2
s − 3mms + 3m2 − 1) /12

m→∞,ms→∞
= η · η2

3η2 − 3η + 1
∈
[

1

3
η, η

]
; (13)

Jf (z1, Is−optimal)
Jf (z1, Iula−short)

=
ms

(
m2
s − 3mms + 3m2 − 1

)
/12

ms (m2
s − 1) /12

m→∞,ms→∞
= 1 + 3η(η − 1); (14)

and
Jf (z1, Is−worst)
Jf (z1, Iula−short)

=

(
m3
s − 6m2

s + 11ms + 6m2 − 12m
)
/12

ms (m2
s − 1) /12

m→∞,ms→∞
= 1. (15)

With the same number of snapshots and per-sensor SNR, the ratio of CRBs between the two ULAs, i.e.
Jf (z1, Iula) /Jf (z1, Iula−short), is roughly in the order ofO

(
η3
)
, determined by the third order of the compression

ratio in the number of sensors. Then for an ms-sensor linear array, the smallest CRB is achieved by Is−optimal,
which has the same aperture as Iula as m−1 and only loses a factor η with respect to Iula. In addition, for some
ms-sensor array, like Is−worst, even with aperture m − 1, it can only achieve comparable CRB performance as
Iula−short.



4. NUMERICAL CRB COMPARISONS

In previous section, we have analytically argued that provided the same aperture, for one undamped mode
scenario in the first-order measurement model, the CRB loss of SLAs resulting from lack of sensors with respect
to ULA can be compensated by more measurement snapshots, roughly in the number of snapshots used by ULA
times the compression ratio in the number of sensors. This section works as a supplementary part to support
this argument via providing extensive numerical experiments in more complex scenarios in both first-order and
second-order measurement models.

Consider the following array configurations:

Imra = {0, 1, 4, 10, 16, 22, 28, 30, 33, 35}, mmra = 10, Amra = 35;

Inested = {1, 2, 3} ∪ {4, 8, 12, 16, 20, 24, 28, 32, 36}, mnested = 12, Anested = 35;

Icoprime = {0, 3, 6, 9, 12, 15, 18} ∪ {7, 14, 21, 28, 35}, mcoprime = 12, Acoprime = 35;

Iula = {0, 1, 2, 3, 4, 5, . . . , 35}, mula = 36, Aula = 35;

Iula−short = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, mula−short = 12, Aula−short = 11;

Istretched = {0, 1, 2, 3, 4, 5} ∪ {30, 31, 32, 33, 34, 35}, mstretched = 12, Astretched = 35,

where except for Iula−short, all the other linear arrays have the same aperture.

4.1 CRB Comparisons in First-Order Measurement Model

Two modes are specified as z = [z1, z2]T = [ej2πf1 , 0.95 · ej2πf2 ]T , with f1 = 0.14 and f2 = 0.71. Assume the

mode amplitude vectors are i.i.d. drawn from CN [0,Σ], where Σ =

[
1 ρ
ρ 1

]
with ρ = 0.8. The per-sensor SNR

is defined as

SNRf (z, I) = 10 log10

∑N−1
n=0 ‖V (z, I)x [n]‖22

Nmσ2
e

. (16)

The number of snapshots for all arrays is set as N = 200. Then the CRBs of estimating the two modes by
different arrays with respect to per-sensor SNR are shown in Fig. 1. Figure 1 indicates that the 36-sensor ULA
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Figure 1. CRB comparisons with respect to per-sensor SNR, when the number of snapshots for all arrays set as N = 200
in the first-order measurement model.

Iula has the smallest CRBs, while the 12-sensor ULA Iula−short has the largest CRBs, which accords with one
undamped mode case. However, one array may have a different performance when dealing with a damped mode
from that of an undamped mode. In general, estimating a damped mode will suffer from a larger CRB.
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Figure 2. CRB comparisons with respect to per-sensor SNR, when the number of snapshots for all arrays set as N = 720,
except for Nula = 200, in the first-order measurement model.
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Figure 3. CRB comparisons with respect to per-sensor SNR, when the number of snapshots for all arrays set as N = 200
in the second-order measurement model.

Next, we increase the number of snapshots to N = 1.2 · d36/12e · 200 = 720 for all arrays, except for Iula,
which still works with Nula = 200 snapshots, and show the CRB results in Fig. 2. The improvements from Fig. 1
to Fig. 2 demonstrate that the CRB loss of SLAs in comparison with 36-sensor ULA due to smaller number of
sensors can be compensated by larger number of snapshots, which is around the number of snapshots used by
the 36-sensor ULA scaled by the compression ratio in the number of sensors.

4.2 CRB Comparisons in Second-Order Measurement Model

As in first-order measurement model, we continue to consider two modes, specified as z = [z1, z2]T = [ej2πf1 , 0.95·
ej2πf2 ]T , with f1 = 0.14 and f2 = 0.71. The mode amplitude vectors are assumed to be i.i.d. drawn from

CN [0,Σ], where Σ =

[
1 ρ
ρ 1

]
with ρ = 0.8. In the second-order measurement model, the per-sensor SNR is
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Figure 4. CRB comparisons with respect to per-sensor SNR, when the number of snapshots for all arrays set as N = 720,
except for Nula = 200, in the second-order measurement model.
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Figure 5. CRB comparisons with respect to correlation coefficient ρ, when the number of snapshots for all arrays set as
N = 200 in the second-order measurement model.

defined as

SNRs (z, I) = 10 log10

E
[
‖V (z, I)x [n]‖22

]
mσ2

e

= 10 log10

Tr
(
V (z, I) ΣV H (z, I)

)
mσ2

e

. (17)

To simplify calculation, here we assume only the mode parameters z are the unknown variables. Setting the
number of snapshots for all arrays as N = 200, we depict the CRB results of mode estimation with respect to
per-sensor SNR in Fig. 3. Then increasing the number of snapshots to N = 1.2 · d36/12e · 200 = 720 for all
arrays, except for Iula, which remains Nula = 200, the CRB results are shown in Fig. 4. Note that a threshold
phenomenon appears in the second-order measurement model. The CRB change trend is divided into two stages
by the threshold, that is the CRB changes fast with respect to low per-sensor SNR, while exhibits a relatively
slower change rate once the per-sensor SNR goes above the threshold. With large per-sensor SNR, the CRB
compensation for SLAs brought by more snapshots is verified by the comparisons between Fig. 3 and Fig. 4.

Next, fixing the per-sensor SNR SNRs (z, I) to be 20 dB and keeping the mode setting, we examine the CRB
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Figure 6. CRB comparisons with respect to correlation coefficient ρ, when the number of snapshots for all arrays set as
N = 720, except for Nula = 200, in the second-order measurement model.

compensation effect with respect to the correlation coefficient ρ in the covariance matrix Σ of mode amplitude
generation. Similarly, we conduct two numerical experiments, one with N = 200 for all arrays, while the other
one with N = 1.2 · d36/12e · 200 = 720 for all arrays, except for Nula = 200. The CRB results with respect
to correlation coefficient ρ are shown in Fig. 5 and Fig. 6, respectively. Both Fig. 5 and Fig. 6 imply that the
change of correlation coefficient ρ has little impact on CRB, especially for ULAs, except for the points ρ = ±1.
The CRB compensation of SLAs thanks to a larger number of snapshots can also be observed in Fig. 6.

These numerical results provide an evidence for that exploiting certain times as many snapshots as the 36-
sensor ULA, which is about the compression ratio in the number of sensors adjusted by some constant, SLAs can
achieve comparable CRB performance as the 36-sensor ULA in the second-order measurement model. In fact,
recalling Eq. (7), we know that the CRB matrix CRBs (α, Is) in second-order measurement model has a clear
inversely proportional relationship with respect to the number of snapshots N , regardless of mode amplitude
realization. However, the theoretical analysis about CRB comparison between two arrays will be more involved
for the sake of complicated expression of CRBs (α, Is) and is left for future work.

5. COMPARISONS OF MISSPECIFIED CRB

In this section, we carry out numerical experiments to investigate the behaviors of both ULA and SLAs under
model misspecification, caused by sensor location perturbations.

Suppose only one undamped mode exists, denoted by zt = ej2πft with ft ∈ [0, 1), and a linear array is
composed of ms sensors, nominally specified as Is = {i0, i1, . . . , ims−1}. In practice, usually the sensors can not
be installed precisely, which will introduce position errors. Denote the position error imposed on the ikth sensor
by εk, k = 0, 1, . . . ,ms − 1, and assume εk’s are i.i.d. generated from a uniform distribution U [−0.2, 0.2]. Then
the true distribution for the measurement data can be represented as

g (y) = CN (d, I) , (18)

where d = st ·
[
ej2πft(i0+ε0), ej2πft(i1+ε1), . . . , ej2πft(ims−1+εms−1)

]T ∈ Cms , which is the true steering vector of
the array, multiplied by the true complex amplitude st. The true noise covariance, denoted by I, is an identity
matrix.

On the other hand, the user assumes a different distribution for the measurement data, expressed as

f (y) = CN (r,R) , (19)



where r = s · v, of which v is the steering vector without taking the position errors into account, defined as
v = [ej2πfi0 , ej2πfi1 , . . . , ej2πfims−1 ]T ∈ Cms . The assumed noise covariance is set to be known and same as the
true one as R = I.

For each numerical experiment in this section, only one measurement snapshot is available. The unknown
parameters are f and s, and the corresponding ground truth is ft and st, respectively. While treating st as
a nuisance complex parameter, for the estimators of ft, whose mean and estimator-score function correlation
matrix are imposed the same constraints with maximum-likelihood, the MCRB with single snapshot can be
obtained from the results in Ref. 14.

The array configurations explored here are same with those in Sec. 4. The comparisons of usual CRBs and the
MCRB confidence intervals are shown in Fig. 7, with respect to per-sensor SNR, where each MCRB confidence
interval, indicated by a pair of upper bound (U) and lower bound (L), is obtained from multiple realizations of
the position errors. It seems the distances between usual CRBs and MCRBs are independent on the per-sensor
SNR. Iula has the smallest MCRBs, while Iula−short has the largest MCRBs. Besides, Istretched has the smallest
MCRBs among all the 12-sensor arrays. Since Imra, Inested and Icoprime have comparable performance, only the
MCRBs of Icoprime are provided in Fig. 7 as a representative.
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Figure 7. Comparisons of CRBs and the MCRB confidence intervals with respect to per-sensor SNR.

To see more details, fix the per-sensor SNR to be 0 dB, then the CRB and MCRB confidence interval of
each array are shown in Fig. 8, where the blue marks represent the usual CRBs when no sensor perturbation is
involved, and the red line segments represent the MCRB confidence intervals. Figure 8 (a) provides a comparison
among all the arrays with a same y-axis, while in Fig. 8 (b), the comparisons are zoomed in. The SLAs not
only yield a larger MCRB than the 36-sensor ULA on mode parameter estimation, but also bear wider MCRB
confidence intervals.

6. CONCLUSION

In this paper, we investigate the CRB comparisons between a dense ULA and the embedded SLAs with the
same aperture. Under the scenario of estimating one undamped mode, we theoretically show that SLAs can
achieve comparable performance as ULA in terms of CRB, if the number of snapshots given for SLAs is about
the number of snapshots used by ULA times the compression ratio in the number of sensors. This claim is further
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Figure 8. Comparisons of CRBs and the MCRB confidence intervals, when the per-sensor SNR is 0 dB.

validated via numerical experiments in more complex scenarios. Moreover, the MCRBs of ULA and SLAs on
mode parameter estimation are numerically compared under model misspecification. In the future, it will be of
great interest to extend the theory in one undamped mode scenario to cases involved with multiple modes.

APPENDIX A. PROOF OF THEOREM 1

During this proof, we assume that ms is an even integer satisfying 2 ≤ ms ≤ m. Similar argument works for an
odd ms as well.

For an arbitrary ms-sensor array specified by Is = {i0, i1, . . . , ims−1} ⊆ Iula, we will show that the corre-
sponding Jf (z1, Is) is not larger than Jf (z1, Is−optimal), where Is−optimal = {0, 1, . . . ,ms/2−1}∪{m−ms/2,m−
ms/2 + 1, . . . ,m− 1}.

Without loss of generality, assume the elements in Is are in ascending order, that is i0 < i1 < · · · <
ims−1, then the proof idea is as follows. In the first stage, starting from Is, we move the first half sensors, i.e.
i0, i1, . . . , ims/2−1, to the left most in the order of their indices. Specifically, via the lth move operation, the
sensor il−1 will be moved to the location l− 1, for 1 ≤ l ≤ ms/2. Next, in the second stage, the left half sensors,
i.e. im2/2, im2/2+1, . . . , ims−1, will be moved to the right most in the reverse order of their indices. To put it in
other words, via the lth move operation, the sensor i3ms/2−l will be moved to the location m + ms/2 − l, for
ms/2 + 1 ≤ l ≤ ms. Finally, Is will be transformed into Is−optimal via these move operations. Denote the array
after lth move operation by Isl , then the left work is to show that Jf (z1, Isl) is a non-decreasing function with
respect to l.

Let’s consider the first stage. After the first move operation, the array can be represented as Is1 = {0} ∪
{i1, i2, . . . , ims−1} and it is not difficult to verify Jf (z1, Is1) ≥ Jf (z1, Is). For 1 ≤ l ≤ ms/2 − 1, after the lth
move operation, the array is rearranged to be Isl = {0, 1, . . . , l − 1} ∪ {il, il+1, . . . , ims−1}. During the l + 1th
move operation, we will move il to the location l, and consequently obtain the array as Isl+1

= {0, 1, . . . , l} ∪
{il+1, il+2, . . . , ims−1}. Then we can calculate

ms

(
Jf
(
z1, Isl+1

)
− Jf (z1, Isl)

)
=

l−1∑
t=0

(l − t)2 +

ms−1∑
t=l+1

(l − it)2 −
l−1∑
t=0

(il − t)2 −
ms−1∑
t=l+1

(il − it)2

=

l−1∑
t=0

(l − t)2 +

ms−1∑
t=ms−l

(l − it)2 −
l−1∑
t=0

(il − t)2 −
ms−1∑
t=ms−l

(il − it)2



+

ms−l−1∑
t=l+1

[
(l − it)2 − (il − it)2

]

≥
l−1∑
t=0

(l − t)2 +

ms−1∑
t=ms−l

(l − it)2 −
l−1∑
t=0

(il − t)2 −
ms−1∑
t=ms−l

(il − it)2 (20)

=

l−1∑
t=0

[
(l − t)2 + (l − ims−1−t)

2 − (il − t)2 − (il − ims−1−t)
2
]

= 2

l−1∑
t=0

(il − l) (t+ ims−1−t − l − il)

≥ 0, (21)

where the inequality Eq. (20) comes from the fact that l ≤ il < it, for t ≥ l + 1, and the inequality Eq. (21)
comes from the fact that for 1 ≤ l ≤ ms/2 − 1 and t < l, there is ims−1−t − il ≥ ims−1−t − ims−1−l ≥
(ms − 1− t)− (ms − 1− l) = l − t. Therefore, we have Jf

(
z1, Isl+1

)
− Jf (z1, Isl) ≥ 0, for 1 ≤ l ≤ ms/2− 1.

Next, employing the similar proof techniques, we can also show that Jf (z1, Isl) is a non-decreasing function
with respect to l in the second stage. This completes the proof.

APPENDIX B. PROOF OF THEOREM 2

According to the configurations of Iula and Is−optimal, we can calculate Eq. (10) for each array as

Jf (z1, Iula) =
1

12
m
(
m2 − 1

)
, and Jf (z1, Is−optimal) =

1

12
ms

(
m2
s − 3mms + 3m2 − 1

)
,

respectively. Then we get

Jf (z1, Iula)

Jf (z1, Is−optimal)
=

m
(
m2 − 1

)
ms (m2

s − 3mms + 3m2 − 1)
≤ η · m

2 − 1

m2 − 1
= η,

and
Jf (z1, Iula)

Jf (z1, Is−optimal)
=

m
(
m2 − 1

)
ms (m2

s − 3mms + 3m2 − 1)
≥ η · m2 − 1

3 (m− 1)
2 ≥

1

3
η,

when 2 ≤ ms ≤ m.
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