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Abstract

This paper studies multi-agent reinforcement learning in Markov games, with the goal of learning
Nash equilibria or coarse correlated equilibria (CCE) sample-optimally. All prior results suffer from at
least one of the two obstacles: the curse of multiple agents and the barrier of long horizon, regardless of
the sampling protocol in use. We take a step towards settling this problem, assuming access to a flexible
sampling mechanism: the generative model. Focusing on non-stationary finite-horizon Markov games,
we develop a fast learning algorithm called Q-FTRL and an adaptive sampling scheme that leverage the
optimism principle in online adversarial learning (particularly the Follow-the-Regularized-Leader (FTRL)
method). Our algorithm learns an ε-approximate CCE in a general-sum Markov game using

Õ

(
H4S

∑m
i=1 Ai

ε2

)
samples, where m is the number of players, S indicates the number of states, H is the horizon, and Ai

denotes the number of actions for the i-th player. This is minimax-optimal (up to log factor) when the
number of players is fixed. When applied to two-player zero-sum Markov games, our algorithm provably
finds an ε-approximate Nash equilibrium with minimal samples. Along the way, we derive a refined regret
bound for FTRL that makes explicit the role of variance-type quantities, which might be of independent
interest.

Keywords: Markov games, sample complexity, Nash equilibrium, coarse correlated equilibrium, adversarial
learning, Follow-the-Regularized-Leader
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1 Introduction
The thriving field of multi-agent reinforcement learning (MARL) studies how a group of interacting agents
make decisions autonomously in a shared dynamic environment (Zhang et al., 2021). The recent developments
in game playing (Brown and Sandholm, 2019; Vinyals et al., 2019), self-driving vehicles (Shalev-Shwartz et al.,
2016), and multi-robot control (Matignon et al., 2012) are prime examples of MARL in action. In practice,
there is no shortage of situations where the agents involved have conflict of interest, and they have to act
competitively in order to promote their own benefits (possibly at the expense of one another). Scenarios
of this kind are frequently modeled via Markov games (MGs) (Littman, 1994; Shapley, 1953), a framework
that has been a fruitful playground to formalize and stimulate the studies of competitive MARL.

In view of the irreconcilable competition between individual players, solutions of competitive MARL
normally take the form of certain equilibrium strategy profiles, which are perhaps best epitomized by the
concept of Nash equilibrium (NE) (Nash Jr, 1950). In a Nash equilibrium, no gain can be realized through
a unilateral change — assuming no coordination between players — and hence no player has incentives to
deviate from her current strategy/policy. A myriad of research has been conducted surrounding NE, which
spans various aspects like existence, learnability, computational hardness, and algorithm design, among
others (Chen et al., 2015; Daskalakis, 2013; Daskalakis et al., 2020; Hansen et al., 2013; Jin et al., 2022;
Littman, 1994; Ozdaglar et al., 2021; Perolat et al., 2015; Rubinstein, 2016; Shapley, 1953). Given that
finding NE is notoriously expensive in general (except for special cases like two-player zero-sum MGs)
(Daskalakis, 2013; Daskalakis et al., 2009), several more tractable solution concepts have emerged in the
studies of game theory and MARL, a prominent example being the coarse correlated equilibirum (CCE)
(Moulin and Vial, 1978). A key compromise made in the CCE is that it permits the players to act in an
coordinated fashion, which contrasts sharply with the absence of coordination in the definition of NE.

One critical challenge impacting modern MARL applications is data efficiency. The players involved
often have minimal knowledge about how the environment responds to their actions, and have to learn
the dynamics and preferable actions by probing the unknown environment. For MARL to expand into
applications with enormous dimensionality and long planning horizon, the learning algorithms must manage
to make efficient use of the collected data. Nevertheless, how to learn NE and/or CCE with optimal sample
complexity remains by and large unsettled even when it comes to the most basic setting: two-player zero-sum
Markov games, as we shall discuss below.

Example: inadequacy in learning two-player zero-sum Markov games. To facilitate concrete
comparisons, let us review two representative algorithms aimed at learning NE in two-player zero-sum MGs.
These algorithms have been studied under two drastically different sampling protocols, and we shall discuss
the shortfalls of the cutting-edge sample complexity results. In a two-player zero-sum MG, we denote by S
the number of states and H the horizon or effective horizon, whereas A1 (resp. A2) denotes the number of
actions for the max-player (resp. min-player).
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• Model-based methods under either a generative model or online exploration. Assuming access to a
generative model (so that one can sample arbitrary state-action tuples), Zhang et al. (2020) investi-
gated a natural model-based algorithm, which performs planning (e.g., value iteration) on an empirical
MG derived from samples produced non-adaptively by the generative model. Focusing on stationary
discounted infinite-horizon MGs, their algorithm finds an ε-approximate NE with no more than

Õ

(
H3SA1A2

ε2

)
samples. (1)

In parallel, Liu et al. (2021) studied non-stationary finite-horizon MGs with online exploration, and
obtained similar sample complexity bounds, i.e.,

Õ

(
H4SA1A2

ε2

)
samples or Õ

(
H3SA1A2

ε2

)
episodes (2)

for learning an ε-approximate NE. While these bounds achieve minimax-optimal dependency on the
horizon H, a major drawback emerges — commonly referred to as the curse of multiple agents; namely,
these results scale proportionally with the total number of joint actions (i.e.,

∏
1≤i≤2Ai), a quantity

that blows up exponentially with the number of players.

• V-learning for online exploration settings. Focusing on online exploration settings, Bai et al. (2020); Jin
et al. (2021) proposed an algorithm called V-learning that leverages the advances in online adversarial
learning (e.g., adversarial bandits) to circumvent the curse of multiple agents. This algorithm provably
yields an ε-approximate NE in non-stationary finite-horizon MGs using

Õ

(
H6S(A1 +A2)

ε2

)
samples or Õ

(
H5S(A1 +A2)

ε2

)
episodes, (3)

which effectively brings down the sample size scaling (2) from A1A2 (i.e., the number of joint actions)
to A1 + A2 (i.e., the sum of individual actions). It is worth pointing out, however, that this theory
appears sub-optimal in terms of the horizon dependency, as it is a factor of H2 above the minimax
lower bound.

Key issues and our main contributions. While the above summary focuses on two-player zero-sum
MGs, it unveils a fundamental issue surrounding the sample efficiency of learning equilibria; that is, all
existing results in this front — irrespective of the sampling mechanism in use — fall short of overcoming at
least one of the two major hurdles: (i) the curse of multiple agents, and (ii) the barrier of long horizon. A
natural question to pose is:

Question: can we learn a Nash equilibrium in a two-player zero-sum Markov game
in a sample-optimal and computation-efficient fashion?

To settle this favorably, both of the above hurdles need to be crossed simultaneously. Moving beyond two-
player zero-sum MGs, it is not surprising to see that general-sum multi-player MGs have to grapple with the
aforementioned two hurdles as well. Thus, the following question also comes into mind when learning CCE
(a compromise due to the general intractability of learning NE):

Question: can we learn a coarse correlated equilibrium in a multi-player general-sum Markov game
in a sample-optimal and computation-efficient fashion?

Note that these questions remain open regardless of the sampling scheme in use.
This paper takes a first step towards solving the problem by assuming access to the most flexible sampling

protocol: the generative model (or simulator). In stark contrast to the single-agent case where uniform
sampling of all state-action pairs suffices (Azar et al., 2013; Li et al., 2020), the multi-agent scenario requires
one to take samples intelligently and adaptively, a crucial step to avoid inefficient use of data (otherwise
one cannot hope to break the curse of multiple agents). With the aim of computing an ε-approximate
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equilibrium in a non-stationary finite-horizon MG, we come up with a computationally efficient learning
algorithm (accompanied by an adaptive sampling strategy) that accomplishes this goal with no more thanÕ

(
H4S(A1+A2)

ε2

)
samples (learning ε-NE in two-player zero-sum MGs)

Õ
(
H4S

(∑m
i=1 Ai

)
ε2

)
samples (learning ε-CCE in multi-player general-sum MGs)

(4)

drawn from the generative model. Encouragingly, this sample complexity bound matches the minimax lower
limit (up to some log factor) as long as the number of players m ≥ 2 is a fixed constant or grows only
logarithmically fast. Our sample complexity theory is valid for the full ε-range (i.e., any ε ∈ (0, H]); this
unveils that no burn-in cost whatsoever is needed for our algorithm to achieve sample optimality, which
lends itself well to sample-hungry applications.

The proposed algorithm is inspired by two key algorithmic ideas in RL and bandit literature: (i) optimism
in the face of uncertainty (by leveraging upper confidence bounds (UCBs) in value estimation), and (ii)
online and adversarial learning (particularly the Follow-the-Regularized-Leader (FTRL) algorithm). Note
that the optimal design of bonus terms — typically based on certain data-driven variance estimates — is
substantially more challenging than the single-agent case, as it requires intricate adaptation in response to
the policy changes of one another as well as compatibility with the FTRL dynamics. Two points are worth
emphasizing (which will be made precise later on):

• The efficacy of FTRL in breaking the curse of multiple agents has been illustrated in Jin et al. (2021);
Mao and Başar (2022); Song et al. (2021). To improve horizon dependency, one needs to exploit
connections between the performance of FTRL and certain variances. Towards this, we develop a
refined regret bound for FTRL that unveils the role of variance-style quantities, which was previously
unavailable.

• The bonus terms entail Bernstein-style variance estimates that mimic the variance-style quantities
appearing in our refined FTRL regret bounds, and are carefully chosen so as to ensure certain decom-
posability over steps. This is crucial in optimizing the horizon dependency.

Additionally, the policy returned by our algorithm is Markovian (i.e., the action selection probability depends
only on the current state s and step h), and the algorithm can be carried out in a decentralized manner
without the need of directly observing the opponents’ actions.

Other related works. Let us discuss in passing additional prior works on learning equilibrium solutions in
MARL, which have attracted an explosion of interest in recent years. While the Nash equilibrium is arguably
the most compelling solution concept in Markov games, the finite-sample/finite-time studies of NE learning
concentrate primarily on two-player zero-sum MGs (e.g., Bai and Jin (2020); Chen et al. (2022); Cui and Du
(2022a,b); Dou et al. (2022); Jia et al. (2019); Mao and Başar (2022); Tian et al. (2021); Wei et al. (2017);
Yan et al. (2022); Yang and Ma (2022); Zhong et al. (2022)), mainly because computing NEs becomes, for the
most part, computationally infeasible (i.e., PPAD-complete) when going beyond two-player zero-sum MGs
(Daskalakis, 2013; Daskalakis et al., 2009). Roughly speaking, previous NE-finding algorithms for two-player
zero-sum Markov games can be categorized into model-based algorithms (Liu et al., 2021; Perolat et al.,
2015; Zhang et al., 2020), value-based algorithms (Bai and Jin, 2020; Bai et al., 2020; Chen et al., 2021b; Jin
et al., 2021; Sayin et al., 2021; Xie et al., 2020), and policy-based algorithms (Cen et al., 2022, 2021; Chen
et al., 2021a; Daskalakis et al., 2020; Wei et al., 2021; Zhang et al., 2022; Zhao et al., 2021). In particular,
Bai et al. (2020); Jin et al. (2021) developed the first algorithms to beat the curse of multiple agents in two-
player zero-sum MGs, while Daskalakis et al. (2022); Jin et al. (2021); Mao and Başar (2022); Song et al.
(2021) further demonstrated how to accomplish the same goal when learning other computationally tractable
solution concepts (e.g., coarse correlated equilibria) in general-sum multi-player Markov games. The recent
works Cui and Du (2022a,b); Yan et al. (2022) studied how to alleviate the sample size scaling with the
number of agents in the presence of offline data, with Cui and Du (2022a) providing a sample-efficient
algorithm that also learns NEs in multi-agent Markov games (despite computational intractability).

We shall also briefly remark on the prior works that concern RL with a generative model. While there are
multiple sampling mechanisms (e.g., online exploratory sampling, offline data) that bear practical relevance,
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the generative model (or simulator) serves as an idealistic sampling protocol that has received much recent
attention, covering the design of various model-based, model-free and policy-based algorithms (Agarwal
et al., 2020; Azar et al., 2013; Beck and Srikant, 2012; Chen et al., 2020; Du et al., 2020; Even-Dar and
Mansour, 2003; Jin and Sidford, 2021; Kakade, 2003; Kearns et al., 2002; Khamaru et al., 2021; Li et al.,
2021a, 2020; Mou et al., 2020; Pananjady and Wainwright, 2020; Sidford et al., 2018a,b; Vaswani et al., 2022;
Wainwright, 2019a,b; Wang et al., 2021; Wei et al., 2021; Weisz et al., 2021; Yang and Wang, 2019; Zanette
et al., 2019, 2020). In single-agent RL, the model-based approach has been shown to be minimax-optimal for
the entire ε-range (Agarwal et al., 2020; Azar et al., 2013; Li et al., 2020). When it comes to multi-agent RL,
sample-efficient solutions with a generative model have been proposed in the recent works (Cui and Yang,
2021; Sidford et al., 2020; Zhang et al., 2020), although a provably sample-optimal strategy was previously
unavailable.

Paper organization and notation. The rest of the paper is organized as follows. Section 2 introduces the
background of Markov games, the preliminaries of the solution concepts of NE and CCE, and formulates the
sampling protocol. The proposed learning algorithm and the sampling strategy are described in Section 3.1,
with the theoretical guarantees provided in Section 3.2. Section 4 takes a detour to develop our refined
regret bound for FTRL, which plays a crucial role in our main sample complexity analysis in Section 5.
Proof details (particularly those for auxiliary lemmas) are postponed to the appendix.

Let us also gather several convenient notation that shall be used multiple times. For any positive integer
n, we write [n] := {1, · · · , n}. We shall abuse notation and let 1 and 0 denote the all-one vector and the
all-zero vector, respectively. For a sequence {αk}k≥1 ⊆ (0, 1], we define

αki :=

{
αi
∏k
j=i+1(1− αj), if 0 < i < k

αk, if i = k
(5)

for any 1 ≤ i ≤ k. For a given vector x ∈ RSA (resp. y ∈ RSAB), we denote by x(s, a) (resp. y(s, a, b))
the entry of x (resp. y) associated with the state-action combination (s, a) (resp. (s, a, b)), as long as it is
clear from the context. Next, consider any two vectors a = [ai]1≤i≤n and b = [bi]1≤i≤n. We use a ≤ b
(resp. a ≥ b) to indicate that ai ≥ bi (resp. ai ≤ bi) holds for all i; we allow scalar functions to take
vector-valued arguments in order to denote entrywise operations (e.g., a2 = [a2

i ]1≤i≤n and a4 = [a4
i ]1≤i≤n);

and we denote by a ◦ b = [aibi]1≤i≤n the Hadamard product. For a finite set A = {1, · · · , A}, we denote by
∆(A) = {x ∈ RA |

∑
i xi = 1;x ≥ 0} the probability simplex over A. For any function f with domain A (or

B), we adopt the convenient notation

Eπ[f ] :=
∑

a
π(a)f(a) and Varπ(f) :=

∑
a
π(a)

(
f(a)− Eπ[f ]

)2
. (6)

2 Background and models
In this section, we introduce the basics for Markov games, as well as the solution concepts of Nash equilibrium
and coarse correlated equilibrium.

Markov games. A non-stationary finite-horizonmulti-player general-sum Markov game, denoted byMG ={
S, {Ai}1≤i≤m, H, P, r

}
, involves m players competing against each other, and consists of several key ele-

ments to be formalized below. Recall that ∆(S) represents the probability simplex over the set S.

• S = {1, · · · , S} is the state space of the shared environment, which comprises S different states.

• For each 1 ≤ i ≤ m, let Ai = {1, · · · , Ai} represent the action space of the i-th player, which contains
Ai different actions. Here and below, we denote

A := A1 × · · · × Am and A−i :=
∏
j:j 6=i

Aj (1 ≤ i ≤ m). (7)

Throughout the paper, we shall often use the boldface letter a ∈ A (resp. a−i ∈ A−i) to denote a joint
action profile of all players (resp. a joint action profile excluding the i-th player’s action).
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• H stands for the horizon length of the Markov game.

• P = {Ph}1≤h≤H — with Ph : S × A → ∆(S) — denotes the probability transition kernel of MG.
Namely, for any (s,a, h, s′) ∈ S × A × [H] × S, we let Ph(s′ | s,a) indicate the probability of MG
transitioning from state s to state s′ at step h when the joint action profile taken by the players is a.

• r = {ri,h}1≤h≤H,1≤i≤m — with ri,h : S ×A → [0, 1] — represents the (deterministic) reward function.
Namely, for any (s,a, h) ∈ S × A × [H], ri,h(s,a) stands for the immediate reward the i-th player
gains in state s at step h, if the joint action profile is a. Here and throughout, we assume normalized
rewards in the sense that ri,h(s,a) ∈ [0, 1] for any (s,a, h, i) ∈ S ×A× [H]× [m].

As an important special case, a two-player zero-sum Markov game—denoted byMG =
{
S, {A1,A2}, H, P, r

}
— satisfies r2,h = −r1,h for all h ∈ [H]. Following the convention, we assume that r1,h ≥ 0 for all h ∈ [H],1
and refer to the first (resp. second) player as the max-player (resp. the min-player).

Markov policies. This paper focuses on the class of Markov policies, such that the action selection
strategies of the players are determined by the current state s and the step number h, without depending on
previously visited states. To begin with, let πi = {πi,h}1≤h≤H represent the policy of the i-th player. Here,
πi,h(· | s) ∈ ∆(Ai) for any (s, h) ∈ S×[H], where πi,h(a | s) indicates the probability of the i-th player selecting
action a in state s at step h. The joint Markov policy can be defined analogously: we let π = (π1, . . . , πm) :
S × [H]→ ∆(A) represent a joint Markov policy of all players, where the joint actions of all players in state
s and step h are chosen according to the distribution specified by πh(· | s) = (π1,h, . . . , πm,h)(· | s) ∈ ∆(A).
For any given joint policy π, we employ π−i to represent the policies of all but the i-th player, and let π−i,h
denote the policies of all but the i-th player at step h. All policies are assumed throughout to be Markovian,
except our brief remarks on non-Markovian policies in Section 3.2.

Additionally, a joint policy π is said to be a product policy if π1, . . . , πm are executed in a statistically
independent fashion (namely, under policy π the players take actions independently), and we shall adopt the
notation π = π1 × · · · × πm to indicate that π is a product policy.

Value functions. Consider a Markovian trajectory {(sh,ah)}1≤h≤H , where sh ∈ S is the state at step h
and ah ∈ A is the joint action profile at step h. For any given joint policy π and any step h ∈ [H], we define
the value function V πi,h : S → R of the i-th player under policy π as follows:

V πi,h(s) := E

[
H∑
t=h

ri,t
(
st,at

)
| sh = s

]
, ∀s ∈ S, (8)

where the expectation is taken over the Markovian trajectory {(sh,ah)} with the m players jointly executing
policy π; that is, conditional on sh, we draw ah ∼ πh(· | sh) and then sh+1 ∼ Ph(· | sh,ah).

In addition, consider the case where (i) all but the i-th player executes the joint policy π−i and (ii) the
i-th player executes policy π′i independently from the other players; we shall denote by V π

′
i×π−i

i,h the resulting
value function under this joint policy π′i × π−i. By optimizing over all π′i, we can further define

V
?,π−i
i,h (s) := max

π′i:S×[H]→∆(Ai)
V
π′i×π−i
i,h (s), ∀(s, h, i) ∈ S × [H]× [m]. (9)

It is known that there exists at least one policy, denoted by π?i
(
π−i
)

: S × [H] → ∆(Ai) and commonly
referred to as the best-response policy, that can simultaneously attain V ?,π−ii,h (s) for all h ∈ [H] and all s ∈ S.
It is worth emphasizing that the best-response policy π?i

(
π−i
)
is the best among all policies of the i-th player

executed independently of π−i. Furthermore, if we freeze π−i, then the Bellman optimality condition for the
i-th player can be expressed as (Bertsekas, 2017)

V
?,π−i
i,h (s) = max

ai∈Ai

{
E

a−i∼π−i,h(·|s)

[
ri,h(s,a) +

〈
Ph(· | s,a), V

?,π−i
i,h+1

〉]}
, ∀(s, h, i) ∈ S × [H]× [m], (10)

where the joint action profile a is composed of ai for the i-th player and a−i for the remaining ones.
1The careful reader might immediately note that r2,h ≤ 0, thus falling outside our assumed range for the reward function.

This, however, can be easily addressed by enforcing a positive global shift to r2,h without changing the learning process.
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Equilibria of Markov games. In a multi-agent Markov game, each player wishes to maximize its own
value function. Due to the competing objectives, finding some sorts of equilibria — e.g., the Nash equilibrium
(Nash, 1951) and the coarse correlated equilibrium (Aumann, 1987; Moulin and Vial, 1978) — becomes a
central topic in the studies of Markov games. Let us introduce these solution concepts below.

• Nash equilibrium. A product policy π = π1×· · ·×πm is said to be a (mixed-strategy) Nash equilibrium
ofMG if the following holds:

V πi,1(s) = V
?,π−i
i,1 (s), for all (s, i) ∈ S × [m]. (11)

In other words, conditional on the opponents’ current policy and the assumption that all players take
actions independently, no player can harvest any gain by unilaterally deviating from its current policy.

• Coarse correlated equilibrium. A joint policy π is said to be a coarse correlated equilibrium ofMG if

V πi,1(s) ≥ V ?,π−ii,1 (s), for all (s, i) ∈ S × [m]. (12)

While a CCE also ensures that no unilateral deviation (performed independently from others) is ben-
eficial, its key distinction from the definition of NE lies in the fact that it allows the policy to be
correlated across the players. Any NE ofMG is, self-evidently, also a CCE.

In practice, it might be challenging to compute an “exact” equilibrium, and instead one would seek to find
approximate solutions. Towards this end, we find it helpful to define the sub-optimality gap of a policy π as
follows (measured in an `∞-based manner)

gap(π) := max
s∈S

gap(π; s), (13a)

where
gap(π; s) := max

1≤i≤m

{
V
?,π−i
i,1 (s)− V πi,1(s)

}
. (13b)

With this sub-optimality measure in place, a product policy π = π1×· · ·×πm is said to be an ε-approximate
NE — or more concisely, ε-Nash — if the resultant sub-optimality gap obeys gap(π) ≤ ε. Similarly, a joint
(and possibly correlated) policy π is said to be an ε-approximate CCE — or more concisely, ε-CCE — if
gap(π) ≤ ε.

Generative model / simulator. In reality, we oftentimes do not have access to perfect descriptions (e.g.,
accurate knowledge of the transition kernel P ) of the Markov game under consideration; instead, one has to
learn the true model on the basis of data samples. When it comes to the data generating mechanism, this
paper assumes access to a generative model (also called a simulator) (Kakade, 2003; Kearns et al., 2002): in
each call to the generative model, the learner can choose an arbitrary (s,a, h) ∈ S ×A× [H] and obtain an
independent sample generated based on the true transition kernel:

s′ ∼ Ph(· | s,a).

In words, a generative model facilitates query of arbitrary state-action-step combinations, which helps allevi-
ate the sampling constraints arising in online episodic settings for exploration. The goal of the current paper
is to compute an ε-approximate equilibrium (either NE or CCE) of MG with as few samples as possible,
i.e., using a minimal number of calls to the generative model.

3 Sample-efficient learning with a generative model
In this section, we put forward an efficient algorithm aimed at learning an ε-approximate equilibrium with
the assistance of a generative model, and demonstrate its sample optimality for the full ε-range.
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3.1 Algorithm description
We now describe the proposed algorithm, which is inspired by the optimism principle and the FTRL algo-
rithm for online/adversarial learning. Following the dynamic programming approach (Bertsekas, 2017), our
algorithm employs backward recursion from step h = H back to h = 1; in fact, we shall finish the sampling
and learning processes for step h before moving backward to step h− 1. For each h, the i-th player calls the
generative model for K rounds, with each round drawing SAi independent samples; as a result, the total
sample size is given by KSH

∑m
i=1Ai. In what follows, let us first introduce some convenient notation that

facilitates our exposition of the algorithm.

Notation. Consider any step h ∈ [H], any player i ∈ [m], and any data collection round k ∈ [K]. The
algorithm maintains the following iterates, whose notation is gathered here with their formal definitions
introduced later.

• V̂i,h ∈ RS represents the final estimate of the value function at step h by the i-th player; in particular,
we set V̂i,H+1 = 0.

• Qki,h ∈ RSAi represents the Q-function estimate of the i-th player at step h after the k-th round of data
collection.

• qki,h ∈ RSAi stands for a certain “one-step-look-ahead” Q-function estimate of the i-th player at step h
using samples collected in the k-th round.

• rki,h ∈ RSAi denotes the sample reward vector for step h received by the i-th player in the k-th round.

• P ki,h ∈ RSAi×S denotes the empirical probability transition matrix for step h constructed using the
samples collected by the i-th player in the k-th round.

• βi,h ∈ RS denotes the bonus vector chosen by the i-th player at step h during final value estimation.

• πki,h : S → ∆(Ai) denotes the policy iterate of the i-th player at step h before the beginning of the
k-th round of data collection; in particular, we set π1

i,h to be uniform, namely, π1
i,h(ai | s) = 1/Ai for

any (s, ai) ∈ S ×Ai.

Crucially, the above objects are all constructed from the perspective of a single player, and hence resemble
those needed to operate a “single-agent” MDP (as opposed to MARL). As such, the complexity of stor-
ing/updating the above objects only scales with the aggregate size of the individual action space, rather
than the size of the product action space.

Main steps of the proposed algorithm. As mentioned above, our algorithm collects multiple rounds of
independent samples for each h. In what follows, let us describe the proposed procedure for the i-th player
in the k-th round for step h.

1. Sampling and model estimation. For each (s, ai) ∈ S ×Ai, draw an independent sample as follows

s′k,h,s,ai ∼ Ph
(
· | s,a(k, h, s, ai)

)
and rk,i,h,s,ai = ri,h

(
s,a(k, h, s, ai)

)
, (14a)

where a(k, h, s, ai) = [aj(k, h, s, ai)]1≤j≤m ∈ A consists of independent individual actions drawn from

aj(k, h, s, ai)
ind.∼ πkj,h(· | s) (j 6= i) and ai(k, h, s, ai) = ai. (14b)

These samples are then employed to construct the sample reward vector rki,h ∈ RSAi and empirical
probability transition kernel P ki,h ∈ RSAi×S such that

rki,h(s, ai) = rk,i,h,s,ai and P ki,h(s′ | s, ai) =

{
1, if s′ = s′k,h,s,ai
0, else

(14c)

for all (s, ai, s
′) ∈ S ×Ai×S. Note that the i-th player only needs to compute (14c), without the need

of directly observing the other players’ actions.
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2. Q-function estimation. Following the dynamic programming approach, we first compute the “one-step-
look-ahead” Q-function estimate as follows

qki,h = rki,h + P ki,hV̂i,h+1. (15)

We then adopt the update rule of Q-learning:

Qki,h = (1− αk)Qk−1
i,h + αkq

k
i,h, (16)

where 0 < αk < 1 is the learning rate. Applying (16) recursively and using the quantities defined in
(5), we easily arrive at the following expansion:

Qki,h =

k∑
j=1

αkj q
j
i,h. (17)

3. Policy updates. Once the Q-estimates are updated, we adopt the exponential weights strategy to
update the policy iterate of the i-th player as follows

πk+1
i,h (ai | s) =

exp
(
ηk+1Q

k
i,h(s, ai)

)∑
a′∈Ai exp

(
ηk+1Qki,h(s, a′)

) , ∀(s, ai) ∈ S ×Ai, (18)

where ηk+1 > 0 is another learning rate associated with policy updates (to be specified shortly). In
fact, this subroutine implements the Follow-the-Regularized-Leader strategy (Shalev-Shwartz, 2012):

πk+1
i,h (· | s) = arg min

µ∈∆(Ai)

{
−
〈
µ,Qki,h(s, ·)

〉
+

1

ηk+1
F (µ)

}
, (19)

where the regularizer F (·) is chosen to be the negative entropy function F (µ) :=
∑
a∈Ai µ(a) log

(
µ(a)

)
.

After carrying out K rounds of the above procedure, our final policy estimate π̂ : S × [H]→ ∆(A) and the
value estimate V̂i,h : S → R for step h are taken respectively to be

V̂i,h(s) = min

{
K∑
k=1

αKk

〈
πki,h(· | s), qki,h(s, ·)

〉
+ βi,h(s), H − h+ 1

}
and (20a)

π̂h(a | s) =

K∑
k=1

αKk

m∏
i=1

πki,h(ai | s) (20b)

for any
(
s,a = [a1, . . . , am]

)
∈ S × A, where {αKk } is defined in (5) and βi,h(s) ≥ 0 is some bonus term

(taking the form of some data-driven upper confidence bound) to be specified momentarily. It is worth
pointing out that the final policy (20b) takes the form of a mixture of product policies. In the special case
of two-player zero-sum MGs, we can alternatively output a product policy

(two-player zero-sum MGs) π̂ = π̂1 × π̂2, (21)

where for each i = 1, 2, we take π̂i = {π̂i,h}1≤h≤H with π̂i,h =
∑K
k=1 α

K
k π

k
i,h.

The whole procedure is summarized in Algorithm 1.

Choices of learning rates. Thus far, we have not yet specified the two sequences of learning rates, which
we describe now. The learning rates associated with Q-function updates are set to be rescaled linear, namely,

αk =
cα logK

k − 1 + cα logK
, k = 1, 2, . . . (22)

for some constant cα ≥ 24. In addition, the learning rates associated with policy updates are chosen to be:

ηk+1 =

√
logK

αkH
, k = 1, 2, . . . (23)
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Algorithm 1: Q-FTRL.
1 Input: number of rounds K for each step, learning rates {αk} (cf. (22)) and {ηk+1} (cf. (23)).
// set initial value estimates to 0, and initial policies to uniform distributions.

2 Initialize: for any i ∈ [m] and any (s, ai, h) ∈ S ×Ai × [H], set V̂i,H+1(s) = Q0
i,h(s, ai) = 0 and

π1
i,h(ai | s) = 1/Ai.

3 for h = H to 1 do
4 for k = 1 to K do
5 for i = 1 to m do

// draw independent samples, and construct empirical models.
6

(
rki,h, P

k
i,h

)
← sampling

(
i, h, πkh = {πkj,h}j∈[m]

)
. /* see Algorithm 2. */

// update Q-estimates with upper confidence bounds.
7 Compute qki,h = rki,h + P ki,hV̂i,h+1, and update

Qki,h = (1− αk)Qk−1
i,h + αkq

k
i,h.

// update policy estimates using FTRL.
8 for (s, ai) ∈ S ×Ai do
9

πk+1
i,h (ai | s) =

exp
(
ηk+1Q

k
i,h(s, ai)

)∑
a′ exp

(
ηk+1Qki,h(s, a′)

) .
// output the final value estimate for step h.

10 for i = 1 to m do
11

V̂i,h(s) = min

{
K∑
k=1

αKk
〈
πki,h(· | s), qki,h(s, ·)

〉
+ βi,h(s), H − h+ 1

}
, ∀s ∈ S,

where βi,h is given in (24).

12 if MG is a two-player zero-sum Markov game then
13 output: π̂1 × π̂2, where for any i = 1, 2, π̂i = {π̂i,h}1≤h≤H with π̂i,h =

∑K
k=1 α

K
k π

k
i,h.

14 if MG is a multi-player general-sum Markov game then
15 output: π̂ = {π̂h}1≤h≤H , where π̂h =

∑K
k=1 α

K
k

(
πk1,h × · · · × πkm,h

)
.

Choices of bonus terms. It remains to specify the bonus terms, which are selected based on fairly intricate
upper confidence bounds. This constitutes a key — and perhaps the most challenging — component of our
algorithm design. Specifically, we take

βi,h(s) = cb

√
log3

(KS∑
i Ai

δ

)
KH

K∑
k=1

αKk

{
Varπki,h(·|s)

(
qki,h(s, ·)

)
+H

}
(24)

for any (i, s, h) ∈ [m] × S × [H], where cb > 0 is some sufficiently large constant; see also (6) for the
definition of the variance-style quantity. As in previous works, the bonus terms, which are chosen carefully
in a data-driven fashion, need to compensate for the uncertainty incurred during the estimation process.

3.2 Main results
As it turns out, the proposed algorithm is tractable and provably sample-efficient. We begin by characterizing
its sample complexity when learning Nash equilibria in two-player zero-sum MGs, and then shift attention
to learning CCE in multi-player general-sum MGs (given the intractability of learning NEs in general).
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Algorithm 2: Auxiliary function sampling
(
i, h, πh = {πj,h}j∈[m]

)
.

1 Initialize: r = 0 ∈ RSAi , and P = 0 ∈ RSAi×S .
2 for (s, ai) ∈ S ×Ai do
3 Draw an independent sample from the generative model:

s′s,ai ∼ Ph
(
· | s,a(s, ai)

)
, (25)

where a(s, ai) = [aj(s, ai)]1≤j≤m is composed of independent individual actions drawn from

aj(s, ai)
ind.∼ πj,h(· | s) (j 6= i) and ai(s, ai) = ai. (26)

4 Set r(s, ai) = ri,h
(
s,a(s, ai)

)
and P

(
s′s,ai | s, ai

)
= 1.

5 Return:
(
r, P

)
.

Theorem 1 (NE for two-player zero-sum MGs). Consider a two-player zero-sum Markov game, and consider
any ε ∈ (0, H] and any 0 < δ < 1. Suppose that

K ≥
ckH

3 log4
(KS(A1+A2)

δ

)
ε2

(27)

for some large enough universal constant ck > 0. With probability at least 1− δ, the product policy π̂1 × π̂2

computed by Algorithm 1 is an ε-approximate Nash equilibrium, i.e., its sub-optimality gap (cf. (13)) obeys

gap
(
π̂1 × π̂2

)
≤ ε.

Theorem 2 (CCE for multi-player general-sum MGs). Consider an m-player general-sum Markov game,
and consider any ε ∈ (0, H] and any 0 < δ < 1. Suppose that

K ≥
ckH

3 log4
(KS∑m

i=1 Ai
δ

)
ε2

(28)

for some large enough universal constant ck > 0. With probability at least 1− δ, the joint policy π̂ returned
by Algorithm 1 is an ε-approximate CCE, i.e., its sub-optimality gap (cf. (13)) obeys

gap
(
π̂
)
≤ ε.

Theorems 1-2 establish sample complexity upper bounds for the proposed algorithm, which we take a
moment to interpret as follows. The proofs of these two theorems are postponed to Section 5.

Sample complexity. When a generative model is available, Theorems 1-2 assert that the total number
of samples (i.e., KSH

∑
iAi) needed for Algorithm 1 to work is{

Õ
(H4S(A1+A2)

ε2

)
, for learning an ε-NE in two-player zero-sum MGs;

Õ
(H4S

∑m
i=1 Ai

ε2

)
, for learning an ε-CCE in multi-player general-sum MGs.

(29)

As far as we know, our theorems deliver the first results that uncover the plausibility of simultaneously
overcoming the long-horizon barrier and the curse of multi-agents. Let us compare (29) with prior art.

• NE in two-player zero-sum MGs. First, consider learning ε-NE policies in two-player zero-sum MGs.
In comparison to Zhang et al. (2020) (cf. (1)), our result reveals that what ultimately matters is the
total number of individual actions (i.e., A1 +A2) as opposed to the total number A1A2 of possible joint
actions; additionally, our results exhibit improved horizon dependency (by a factor of H2) compared
to Bai et al. (2020); Jin et al. (2021) (see (3)), although we remark that the online sampling protocol
therein is clearly more restrictive than a generative model.
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• CCE in multi-player general-sum MGs (for a fixed m). Similar messages carry over to the task of
learning multi-player general-sum MGs when the number of players m is a fixed constant. Liu et al.
(2021) provided the first non-asymptotic result on learning CCE in the exploration setting; the model-
based algorithm studied therein learns an ε-CCE using

Õ

(
H5S2

∏m
i=1Ai

ε2

)
samples or Õ

(
H4S2

∏m
i=1Ai

ε2

)
episodes (30)

which is sub-optimal in terms of the dependency on both H and S and suffers from the curse of multiple
agents. A more recent strand of works focused on a type of online RL algorithms called V-learning,
which exploited the effectiveness of adversarial learning subroutines in overcoming the curse of multi-
agents (Jin et al., 2021; Mao and Başar, 2022; Song et al., 2021); along this line, the state-of-the-art
sample complexity bound is (Jin et al., 2021):

Õ

(
H6Smax1≤i≤mAi

ε2

)
samples or Õ

(
H5Smax1≤i≤mAi

ε2

)
episodes, (31)

which remains suboptimal in terms of the horizon dependency. As a drawback of these works, the policy
returned by V-learning is non-Markovian, an issue that has been recently addressed by Daskalakis et al.
(2022) at the price of a much higher sample complexity. It is worth emphasizing that all these works
assume the online exploration setting as opposed to the scenario with a generative model.

Minimax optimality. To assess the tightness of our result (29), it is helpful to look at the information-
theoretic limit. Following the minimax lower bound for single-agent MDPs (Azar et al., 2013; Li et al., 2022),
one can develop a minimax sample complexity lower bound for Markov games (w.r.t. finding either an ε-NE
or an ε-CCE) that scales as

(minimax lower bound)
H4Smax1≤i≤mAi

ε2
(32)

modulo some logarithmic factor; see Appendix B.3 for a formal statement and its proof. Taking this together
with (29) confirms the minimax optimality of our algorithm (up to logarithmic terms) when the number m
of players is fixed or grows only logarithmically in problem parameters.

No burn-in sample size and full ε-range. It is noteworthy that the validity of our sample complexity
bound (29) is guaranteed for the entire range of ε-levels (i.e., any ε ∈ (0, H]). This feature is particularly
appealing in the data-starved applications, as it implies that there is no burn-in sample size needed for our
algorithm to work optimally.

Miscellaneous properties of our algorithm. Finally, we would like to remark in passing that our
learning algorithm enjoys several properties that might be practically appealing. For instance, the output
policies are Markovian in nature, which depend only on the current state s and step number h. This
is enabled thanks to the availability of the generative model, which allows us to settle the sampling and
learning process for step h+1 completely before moving backward to step h; in contrast, the online sampling
protocol studied in Bai et al. (2020); Jin et al. (2021) cannot be implemented in this way without incurring
information loss. In addition, our algorithm can be carried out in a decentralized fashion (except that the
final estimate π̂ needs to aggregate policy iterates from all players), with each player acting in a symmetric
yet independent manner (without the need of knowing each other’s individual action). Our algorithm is also
“rational” in the sense that it converges to the best-response policy of a player if all other players freeze their
policies. All this is achieved under minimal sample complexity with the aid of the generative model.

4 Regret bounds for FTRL via variance-type quantities
Before embarking on our analysis for Markov games, we take a detour to study the celebrated Follow-
the-Regularized-Leader algorithm for online weighted linear optimization, which plays a central role in the
analysis of Markov games.
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4.1 Setting: online learning for weighted linear optimization
Let `1, . . . , `n ∈ RA represent an arbitrary sequence of non-negative loss vectors. We focus on the following
setting of online learning or adversarial learning (Lattimore and Szepesvári, 2020): in each round k,

1. the learner makes a randomized prediction by choosing a distribution πk ∈ ∆(A) over the actions in
A = {1, · · · , A};

2. subsequently, the learner observes the loss vector `k, which is permitted to be adversarially chosen.

To evaluate the performance of the learner, we resort to a regret metric w.r.t. a certain weighted linear
objective function. To be precise, consider a non-negative sequence {αk}1≤k≤n with 0 ≤ αk ≤ 1; for each
1 ≤ k ≤ n, we define recursively the following weighted average of the loss vectors:

L0 = 0 and Lk = (1− αk)Lk−1 + αk`k, k ≥ 1,

which can be easily shown to enjoy the following expression

Lk =

k∑
i=1

αki `k

with αki defined in (5). When the sequential predictions made by the learner are {πk}k≥1, we define the
associated regret w.r.t. the above weighted sum of loss vectors as follows:

Rn := max
a∈A

Rn(a) with Rn(a) :=

n∑
k=1

αnk 〈πk, `k〉 −
n∑
k=1

αnk`k(a), (33)

which compares the learner’s performance (i.e., the expected loss of the learner over time if it draws actions
based on πk in round k) against that of the best fixed action in hindsight.

4.2 Refined regret bounds for FTRL
Follow-the-Regularized-Leader. The FTRL algorithm (Shalev-Shwartz, 2007; Shalev-Shwartz and Singer,
2007) tailored to the above online optimization setting adopts the following update rule:

πk+1 = arg min
π∈∆(A)

{
〈π, Lk〉+

1

ηk+1
F (π)

}
, k = 1, 2, . . . (34)

where ηk+1 > 0 denotes the learning rate, and F (·) is some convex regularization function employed to
stabilize the learning process (Shalev-Shwartz, 2012). Throughout this section, we restrict our attention to
negative-entropy regularization, namely,

F (π) =
∑
a∈A

π(a) log
(
π(a)

)
,

which allows one to express the FTRL update rule as the following exponential weights strategy (see, e.g.,
Lattimore and Szepesvári (2020, Section 28.1))

πk+1(a) =
exp

(
− ηk+1Lk(a)

)∑
a′∈A exp

(
− ηk+1Lk(a′)

) for all a ∈ A. (35)

This update rule is also intimately connected to online mirror descent (Lattimore and Szepesvári, 2020).
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Refined regret bounds via variance-style quantities. As it turns out, the regret of FTRL can be
upper bounded by certain (weighted) variance-type quantities, as asserted by the following theorem.

Theorem 3. Suppose that 0 < α1 ≤ 1 and η1 = η2(1 − α1). Also, assume that 0 < αk < 1 and 0 <
ηk+1(1− αk) ≤ ηk for all k ≥ 2. In addition, define

η̂k :=

{
η2, if k = 1,
ηk

1−αk , if k > 1.
. (36)

Then the regret (cf. (33)) of the FTRL algorithm satisfies

Rn ≤
5

3

n∑
k=1

αnk η̂kαkVarπk(`k) +
logA

ηn+1
+ 3

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥3

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
, (37)

where for any ` ∈ RA and any π ∈ ∆(A) we define

Varπ(`) :=
∑
a

π(a)
(
`(a)−

∑
a′

π(a′)`(a′)
)2

.

Remark 1. Note that the FTRL algorithm and the data generating process in this section are both described
in a completely deterministic manner; no randomness is involved in the above theorem even though we
introduce the variance-style quantities.

The proof of Theorem 3 is postponed to Appendix A. Let us take a moment to discuss the key distinction
between Theorem 3 and prior theory.

• A key term in the regret bound (37) is a weighted sum of the “variance-style” quantities {Varπk(`k)}.
In comparison, prior regret bounds typically involve the norm-type quantities (e.g., the infinity norms
{‖`k‖2∞}) as opposed to the “variances”; see, for instance, Lattimore and Szepesvári (2020, Corollary
28.8) for a representative existing regret bound that takes the form of the sum of {‖`k‖2∞} that takes
the form of the sum of {‖`k‖2∞}.2 While Var(`k) ≤ ‖`k‖2∞ is orderwise tight in the worst-case scenario
for a given iteration k, exploiting the problem-specific variance-type structure across time is crucial in
sharpening the horizon dependence in many RL problems (e.g., Azar et al. (2013); Jin et al. (2018); Li
et al. (2022, 2021c)).

• The careful reader would remark that the final term of (37) relies on the infinity norm ‖`k‖∞ as
well. Fortunately, when the products of the learning rates η̂kαk are chosen to be diminishing (which
is the case in our analysis for Markov games), the number of iterations obeying η̂kαk‖`k‖∞ > 1/3 is
reasonably small, thus ensuring that this term does not exert too much of an influence on the regret
bound.

5 Proof of Theorems 1-2
To begin with, we claim that Theorem 1 is a direct consequence of Theorem 2. Towards this, note that in a
two-player zero-sum Markov game, it is self-evident that π̂−1 = π̂2 and π̂−2 = π̂1 (see line 13 of Algorithm 1).
Consequently, Theorem 2 (if it is valid) reveals that

ε ≥ gap(π̂; s) = max
{
V
?,π̂−1

1,1 (s)− V π̂1,1(s), V
?,π̂−2

2,1 (s)− V π̂2,1(s)
}

= max
{
V ?,π̂2

1,1 (s)− V π̂1,1(s), V π̂1,?
2,1 (s)− V π̂2,1(s)

}
, for all s ∈ S. (38)

Moreover, recalling that r1,h = −r2,h for all h ∈ [H], one has V π1,1(s) = −V π2,1(s) for any joint policy profile
π, which taken collectively with (38) results in

V ?,π̂2

1,1 (s)− V π̂1×π̂2
1,1 (s) = V ?,π̂2

1,1 (s) + V π̂1×π̂2
2,1 (s) ≤ V ?,π̂2

1,1 (s) + V π̂1,?
2,1 (s)

2Note that the Bregman divergence generated by the negative entropy function is the (generalized) KL divergence (Beck,
2017), which is strongly convex w.r.t. ‖ · ‖1 due to Pinsker’s inequality. Additionally, the dual norm of ‖ · ‖1 is the infinity norm.
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= V ?,π̂2

1,1 (s)− V π̂1,1(s) + V π̂1,?
2,1 (s)− V π̂2,1(s) ≤ 2ε.

Analogously, one has V π̂1,?
2,1 (s)− V π̂1×π̂2

2,1 (s) ≤ 2ε. Replacing ε with ε/2 immediately establishes Theorem 1.
With the above argument in mind, the remainder of this section is devoted to proving Theorem 2.

5.1 Preliminaries and notation
Let us start with some preliminary facts and notation. Given that ε ≤ H, the assumption (28) requires

K ≥ ckH log4
(KS∑iAi

δ

)
(39)

for some large enough constant ck > 0, which will be a condition assumed throughout the proof. We also
gather below several basic facts about our choices of learning rates {αi} (cf. (22)) and the corresponding
quantities {αki } (cf. (5)).

Lemma 1. For any k ≥ 1, one has

α1 = 1,
k∑
i=1

αki = 1, max
1≤i≤k

αki ≤
2cα logK

k
. (40a)

In addition, if k ≥ cα logK + 1 and cα ≥ 24, then one has

max
1≤i≤k/2

αki ≤ 1/K6. (40b)

Proof. The result (40a) is standard and has been recorded in previous works (e.g., Jin et al. (2018, Appendix
B)). Regarding (40b), we note that for any i ≤ k/2 and k ≥ cα logK + 1,

αki ≤
k∏

j=i+1

(1− αj) ≤
k∏

j=k/2+1

(1− αj) ≤ (1− αk)k/2 ≤
(

1− cα logK

2k

)k/2
≤ exp

(
− cα logK

4

)
≤ 1

K6
,

where we have used the fact that αk = cα logK
k−1+cα logK ≥

cα logK
2k and the assumption cα ≥ 24.

Additionally, recognizing the definition in (15) and the upper bound V̂i,h+1(s) ≤ H − h (cf. (20a)), we
make note of the range of the iterates

{
qki,h
}
as follows.

Lemma 2. For any i ∈ [m] and any (h, k, s, ai) ∈ [H]× [K]× S ×Ai, it holds that

0 ≤ qki,h(s, ai) ≤ H − h+ 1. (41)

Next, we introduce several additional notation that helps simplify our presentation of the proof. For any
policy µ : S × [H]→ ∆(Ai), we adopt the convenient notation

µh(s) := µh(· | s) ∈ ∆(Ai).

We shall also employ the expectation operator Eh,k−1[·] (resp. variance operator Varh,k−1[·]) to denote the
expectation (resp. variance) conditional on what happens before the beginning of the k-th round of data
collection for step h (see Section 3.1 about the data collection process).

5.2 Proof outline
With the above preliminaries in place, we are in a position to present our analysis. Recall that the joint
policy π̂ computed by Algorithm 1 takes the form of a mixture of product policies

K∑
k=1

αKk
(
πk1,h × · · · × πkm,h

)︸ ︷︷ ︸
=:πkh

(42)
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at step h. Consequently, the value function under policy π̂ satisfies the following Bellman equation:

V π̂i,H+1(s) := 0 (43a)

V π̂i,h(s) :=

K∑
k=1

∑
a∈A

αKk π
k
h(a | s)

[
ri,h(s,a) +

〈
Ph(· | s,a), V π̂i,h+1

〉]
(43b)

for all (i, s, h) ∈ [m]× S × [H]. To establish Theorem 2, we seek to prove the following inequality:

V
?,π̂−i
i,1 (s)− V π̂i,1(s) ≤ ε, 1 ≤ i ≤ m, (44)

where we remind the reader of the definition of V ?,π̂−ii,1 in (9).
Towards this, let us introduce the following best-response policy of the i-th player:

π̃?i =
[
π̃?i,h

]
h∈[H]

:= arg max
π′i:S×[H]→∆(Ai)

V
π′i×π̂−i
i,1 .

We make note of the following key decomposition:

V
?,π̂−i
i,h − V π̂i,h ≤

(
V
?,π̂−i
i,h − V π̃

?
i×π̂−i
i,h

)
+
(
V
?,π̂−i
i,h − V π̂i,h

)
+
(
V
π̂

i,h − V π̂i,h
)
, (45)

where we define the following auxiliary value functions:

V
π̃?i×π̂−i
i,h (s) :=

K∑
k=1

αKk E
ai∼π̃?i,h(s)

[
rki,h(s, ai) +

〈
P ki,h(· | s, ai), V

π̃?i×π̂−i
i,h+1

〉]
, with V

π̃?i×π̂−i
i,H+1 = 0, (46a)

V
?,π̂−i
i,h (s) := max

ai∈Ai

K∑
k=1

αKk

[
rki,h(s, ai) +

〈
P ki,h(· | s, ai), V

?,π̂−i
i,h+1

〉]
, with V

?,π̂−i
i,H+1 = 0, (46b)

V
π̂

i,h(s) :=

K∑
k=1

αKk E
ai∼πki,h(s)

[
rki,h(s, ai) +

〈
P ki,h(· | s, ai), V

π̂

i,h+1

〉]
, with V

π̂

i,H+1 = 0. (46c)

Here, we have used the elementary fact V
π̃?i×π̂−i
i,h ≤ V

?,π̂−i
i,h . We shall establish bounds for the above terms

in (45), which consists of three steps as outlined below.

Step 1: showing that V̂i,h is an entrywise upper bound on V
?,π̂−i
i,h . The following lemma ascertains

that the value estimate V̂i,h of the i-th player returned by Algorithm 1 is an optimistic estimate of the
auxiliary value V

?,π̂−i
i,h defined in (46b). Evidently, this result cannot happen unless the bonus terms are

suitably chosen.

Lemma 3. With probability at least 1− δ, it holds that

V̂i,h ≥ V
?,π̂−i
i,h , for all (i, h) ∈ [m]× [H]. (47)

The proof of this lemma is postponed to Appendix B.1. Armed with Lemma 3, we can further bound
(45) as follows

V
?,π̂−i
i,h − V π̂i,h ≤

(
V
?,π̂−i
i,h − V π̃

?
i×π̂−i
i,h

)
+
(
V̂i,h − V

π̂

i,h

)
+
(
V
π̂

i,h − V π̂i,h
)
. (48)

Step 2: establishing a key recursion. Recall the definition of πkh in (42). Let us define the following
auxiliary reward vectors rπ̂i,h, r

π̃?i×π̂−i
i,h , ri,h ∈ RS as well as the auxiliary probability transition matrices

P π̂i,h, P
π̃?i×π̂−i
i,h , P i,h ∈ RS×S such that: for any s, s′ ∈ S,

rπ̂i,h(s) :=

K∑
k=1

αKk E
a∼πkh(s)

[
ri,h(s,a)

]
, (49a)
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P π̂i,h(s, s′) :=

K∑
k=1

αKk E
a∼πkh(s)

[
Ph(s′ | s,a)

]
, (49b)

r
π̃?i×π̂−i
i,h (s) :=

K∑
k=1

αKk E
(ai,a−i)∼π̃?i,h(s)×πk−i,h(s)

[
ri,h(s,a)

]
, (49c)

P
π̃?i×π̂−i
i,h (s, s′) :=

K∑
k=1

αKk E
(ai,a−i)∼π̃?i,h(s)×πk−i,h(s)

[
Ph(s′ | s,a)

]
, (49d)

ri,h(s) :=

K∑
k=1

αKk
∑
ai∈Ai

πki,h(ai | s)rki,h(s, ai), (49e)

P i,h(s, s′) :=

K∑
k=1

αKk
∑
ai∈Ai

πki,h(ai | s)P ki,h(s′ | s, ai). (49f)

As it turns out, V
π̂

i,h (resp. V
π̃?i×π̂−i
i,h , V̂i,h) stays reasonably close to the “one-step-look-ahead” expression

rπ̂i,h +P π̂i,hV
π̂

i,h+1 (resp. rπ̃
?
i×π̂−i
i,h +P

π̃?i×π̂−i
i,h V

π̃?i×π̂−i
i,h+1 , ri,h +P i,hV̂i,h+1), as revealed by the recursive relations

stated in the following lemma; the proof of this lemma is deferred to Appendix B.2.

Lemma 4. There exists some universal constant c3 > 0 such that with probability exceeding 1− δ,

∣∣∣V π̂i,h − (rπ̂i,h + P π̂i,hV
π̂

i,h+1

)∣∣∣ ≤ c3
√
H log3

(KS∑
i Ai

δ

)
K

1

+ c3

√
log3

(KS∑
i Ai

δ

)
KH

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)]
, (50a)

∣∣∣V π̃?i×π̂−ii,h −
(
r
π̃?i×π̂−i
i,h + P

π̃?i×π̂−i
i,h V

π̃?i×π̂−i
i,h+1

)∣∣∣ ≤ c3
√
H log3

(KS∑
i Ai

δ

)
K

1

+ c3

√
log3

(KS∑
i Ai

δ

)
KH

[
P
π̃?i×π̂−i
i,h

(
V
π̃?i×π̂−i
i,h+1 ◦ V π̃

?
i×π̂−i
i,h+1

)
−
(
P
π̃?i×π̂−i
i,h V

π̃?i×π̂−i
i,h+1

)
◦
(
P
π̃?i×π̂−i
i,h V

π̃?i×π̂−i
i,h+1

)]
,

(50b)∣∣∣V̂i,h − (ri,h + P i,hV̂i,h+1

)∣∣∣ ≤ c3
√
H log3

(KS∑
i Ai

δ

)
K

1

+ c3

√
log3

(KS∑
i Ai

δ

)
KH

[
P i,h

(
V̂i,h+1 ◦ V̂i,h+1

)
−
(
P i,hV̂i,h+1

)
◦
(
P i,hV̂i,h+1

)]
(50c)

hold for all h ∈ [H].

Remark 2. The right-hand side of each of the bounds in (50) contains a variance-style term (e.g., those terms
taking the form of Pi,h(Vi,h+1 ◦ Vi,h+1) − (Pi,hVi,h+1) ◦ (Pi,hVi,h+1) for some probability transition matrix
Pi,h and value vector Vi,h+1). Such variance-style terms are direct consequences of our Bernstein-style bonus
terms, and are crucial in optimizing the horizon dependency.

With the above lemma in place, one can readily show that

∣∣∣V π̂i,h − P π̂i,hV π̂i,h+1

∣∣∣ ≤ rπ̂i,h + c3

√
H log3

(KS∑
i Ai

δ

)
K

1

+
c3
H

√
H log3

(KS∑
i Ai

δ

)
K

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)]
≤ c4

4
1 +

1

4H

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)]
=: ζ0 (51)
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for some large enough constant c4 > 0, where the last line holds due to Condition (39), the basic fact
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
≥
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)
, and the following fact (for large enough c4)

c3

√
H log3

(KS∑
i Ai

δ

)
K

1 + rπ̂i,h ≤ c3

√
H log3

(KS∑
i Ai

δ

)
K

1 + 1 ≤ c4
4

1.

In addition, recalling that ‖V π̂i,h‖∞, ‖V
π̂

i,h+1‖∞ ≤ H (cf. (20a)) and recognizing that ζ0 ≥ 0 (see (51)), we
can demonstrate that∣∣∣V π̂i,h ◦ V π̂i,h − (P π̂i,hV π̂i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)∣∣∣ =
∣∣∣(V π̂i,h + P π̂i,hV

π̂

i,h+1

)
◦
(
V
π̂

i,h − P π̂i,hV
π̂

i,h+1

)∣∣∣
≤
(
V
π̂

i,h + P π̂i,hV
π̂

i,h+1

)
◦ ζ0 ≤ 2Hζ0

=
c4
2
H1 +

1

2

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)]
. (52)

This further leads to

P π̂i,h
(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)
= P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
− V π̂i,h ◦ V

π̂

i,h + V
π̂

i,h ◦ V
π̂

i,h −
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)
≤ P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
− V π̂i,h ◦ V

π̂

i,h +
c4
2
H1 +

1

2

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)]
,

which can be rearranged to yield

P π̂i,h
(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
−
(
P π̂i,hV

π̂

i,h+1

)
◦
(
P π̂i,hV

π̂

i,h+1

)
≤ 2
[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
− V π̂i,h ◦ V

π̂

i,h

]
+ c4H1.

Substituting it into (50a) and combining terms give

∣∣∣V π̂i,h − (rπ̂i,h + P π̂i,hV
π̂

i,h+1

)∣∣∣ ≤ c5
√
H log3

(KS∑
i Ai

δ

)
K

1

+ 2c3

√
log3

(KS∑
i Ai

δ

)
KH

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
− V π̂i,h ◦ V

π̂

i,h

]
, (53)

where we take c5 = c3 + c3c4.
An analogous argument (which is omitted here for brevity) also reveals that∣∣∣V π̃?i×π̂−ii,h −

(
r
π̃?i×π̂−i
i,h + P

π̃?i×π̂−i
i,h V

π̃?i×π̂−i
i,h+1

)∣∣∣
≤ c5

√
H log3

(KS∑
i Ai

δ

)
K

1 + 2c3

√
log3

(KS∑
i Ai

δ

)
KH

[
P
π̃?i×π̂−i
i,h

(
V
π̃?i×π̂−i
i,h+1 ◦ V π̃

?
i ,π̂−i
i,h+1

)
− V π̃

?
i×π̂−i
i,h ◦ V π̃

?
i×π̂−i
i,h

]
,

(54)∣∣∣V̂i,h − (ri,h + P i,hV̂i,h+1

)∣∣∣
≤ c5

√
H log3

(KS∑
i Ai

δ

)
K

1 + 2c3

√
log3

(KS∑
i Ai

δ

)
KH

[
P i,h

(
V̂i,h+1 ◦ V̂i,h+1

)
− V̂i,h ◦ V̂i,h

]
. (55)

Step 3: invoking the key recursion to establish the desired bound. We find it helpful to introduce
the following notation (please note the order of the matrix product)

∏
j:j<h

P π̂i,j :=

{
P π̂i,1 · · ·P π̂i,h−1, if h > 1,

I, if h = 1.
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Armed with this notation, we can invoke the relation (53) recursively and use V
π̂

i,h+1 = V π̂i,h+1 = 0 to obtain

V
π̂

i,h − V π̂i,h
(i)
= rπ̂i,h + P π̂i,hV

π̂

i,h+1 +
(
V
π̂

i,h −
(
rπ̂i,h + P π̂i,hV

π̂

i,h+1

))
−
(
rπ̂i,h + P π̂i,hV

π̂
i,h+1

)
≤ P π̂i,h

(
V
π̂

i,h+1 − V π̂i,h+1

)
+
∣∣∣V π̂i,h − (rπ̂i,h + P π̂i,hV

π̂

i,h+1

)∣∣∣ (56)

(ii)

≤ c5

√
H log3

(KS∑
i Ai

δ

)
K

 H∑
h=1

∏
j:j<h

P π̂i,j

 1

+ 2c3

√
log3

(KS∑
i Ai

δ

)
KH

H∑
h=1

∏
j:j<h

P π̂i,j

[
P π̂i,h

(
V
π̂

i,h+1 ◦ V
π̂

i,h+1

)
− V π̂i,h ◦ V

π̂

i,h

]
(iii)

≤ c5

√
H log3

(KS∑
i Ai

δ

)
K

 H∑
h=1

∏
j:j<h

P π̂i,j

 1 = c5

√
H3 log3

(KS∑
i Ai

δ

)
K

1 ≤ ε

3
1. (57)

Here, (i) uses the Bellman equation; (ii) applies the bound (53) recursively; (iii) holds since for any transition
matrices {Pi,h} and any sequence {Vi,h} obeying Vi,h+1 = 0, one can use the telescoping sum to obtain

H∑
h=1

∏
j:j<h

Pi,j

[
Pi,h

(
Vi,h+1 ◦ Vi,h+1

)
− Vi,h ◦ Vi,h

]
=

H∑
h=1

∏
j:j≤h

Pi,j
(
Vi,h+1 ◦ Vi,h+1

)
−

H∑
h=1

∏
j:j<h

Pi,j
(
Vi,h ◦ Vi,h

)
=
∏
j:j≤H

Pi,j
(
Vi,h+1 ◦ Vi,h+1

)
− Vi,1 ◦ Vi,1

= −Vi,1 ◦ Vi,1 ≤ 0,

whereas the last inequality in (57) arises from the assumption (28) when ck is large enough. Similarly,
replacing π̂i with π̃?i in the above argument and recalling (54) directly lead to

V
?,π̂−i
i,h − V π̃

?
i×π̂−i
i,h = V

π̃?i×π̂−i
i,h − V π̃

?
i×π̂−i
i,h ≤ ε

3
1. (58)

In addition, recalling the definition of V
π̂

i,h (cf. (46c)), ri,h and P i,h (see (49)), we can deduce that

V̂i,h − V
π̂

i,h = ri,h + P i,hV̂i,h+1 +
{
V̂i,h −

(
ri,h + P i,hV̂i,h+1

)}
− ri,h − P i,hV

π̂

i,h+1

≤ P i,h
(
V̂i,h+1 − V

π̂

i,h+1

)
+
∣∣∣V̂i,h − (ri,h + P i,hV̂i,h+1

)∣∣∣,
which resembles (56). Thus, repeating the above argument for (57) and applying (55) recursively, we reach

V̂i,h − V
π̂

i,h ≤
ε

3
1. (59)

To finish up, combining (57), (58) and (59) with (48), we arrive at

V
?,π̂−i
i,h − V π̂i,h ≤

(
V
?,π̂−i
i,h − V π̃

?
i×π̂−i
i,h

)
+
(
V̂i,h − V

π̂

i,h

)
+
(
V
π̂

i,h − V π̂i,h
)
≤ ε1.

This establishes the first inequality in (44), while the second inequality in (44) can be validated via the same
argument. We have thus completed the proof of Theorem 2.

6 Discussion
The primary contribution of this paper has been to develop a sample-optimal paradigm that simultaneously
overcomes the curse of multiple agents and optimizes the horizon dependency when solving multi-player
Markov games. This goal was not accomplished in any of the previous works, regardless of the sampling
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mechanism in use. The adoption of the adversarial learning subroutine helps break the curse of multiple
agents compared to the prior model-based approach (Liu et al., 2021; Zhang et al., 2020), whereas the
availability of the generative model in conjunction with the variance-aware bonus design improves horizon
dependency compared to Bai et al. (2020); Jin et al. (2021). Our work opens further questions surrounding
sample efficiency in solving Markov games. For instance, our sample complexity bound (29) is likely subop-
timal (by a factor of, say,

∑
i Ai

maxi Ai
) when the number m of players is allowed to grow with other parameters;

can we further optimize this via a more refined learning algorithm? Also, how to attain minimax-optimal
sample complexity if we only have access to less idealistic sampling protocol (e.g., local access models (Li
et al., 2021b; Yin et al., 2022), and online sampling protocols (Azar et al., 2017; Jin et al., 2018)) as opposed
to the flexible generative model? How can we optimize the horizon dependency when computing correlated
equilibria (CE) in multi-agent general-sum scenarios (Jin et al., 2021; Song et al., 2021) without compromis-
ing the dependency on the size of the action spaces. In addition, our refined regret bound for FTRL (based
on variance-type quantities) only covers the full-information case; it would be of interest to generalize it to
the bandit-feedback setting (where only partial entries of the loss vectors are observable each time).
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A Proof of Theorem 3
This section is devoted to presenting the proof of Theorem 3. Before embarking on the analysis, let us
introduce a convenient auxiliary iterate

π−k+1 = arg min
π∈∆(A)

{
〈π, Lk〉+

1

η̂k
F (π)

}
, (60)

or equivalently,

π−k+1(a) =
exp

(
− η̂kLk(a)

)∑
a′∈A exp

(
− η̂kLk(a′)

) for all a ∈ A, (61)

which differs from (35) only in the learning rates being used (namely, πk+1 uses ηk+1 while π−k+1 adopts η̂k).

A.1 Main steps of the proof
The key steps of the proof lie in justifying the following two claims:

Rn ≤
n∑
k=1

αnk
〈
πk − π−k+1, `k

〉
+

logA

ηn+1
; (62)

and for all a ∈ A and all k ≥ 1,

π−k+1(a) ≥

{[
1− η̂kαk`k(a)

]
πk(a), if η̂kαk‖`k‖∞ > 1

3 ,{
1− η̂kαk

(
`k(a)− Eπk [`k]

)
− 2η̂2

kα
2
kVarπk

(
`k
)}
πk(a), if η̂kαk‖`k‖∞ ≤ 1

3 ,
(63)
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where for any vector ` ∈ RA we define

Eπk [`] :=
∑
a∈A

πk(a)`(a).

In words, the first claim (62) allows us to replace the action that appears best in hindsight (cf. (33)) by the
time-varying predictions {π−k+1} without incurring much cost, whereas the second claim (63) controls the
proximity of π−k+1 and πk in each round. Let us assume the validity of these two claims for the moment, and
return to prove them shortly.

In view of the upper bound (62), we are in need of controlling
〈
πk − π−k+1, `k

〉
. We divide into two cases.

• For any k obeying η̂kαk‖`k‖∞ > 1/3, invoke (63) and the non-negativity of `k to reach〈
πk − π−k+1, `k

〉
≤
∑
a∈A

η̂kαkπk(a)
[
`k(a)

]2 ≤∑
a∈A

η̂kαkπk(a)
∥∥`k∥∥2

∞ = η̂kαk
∥∥`k∥∥2

∞. (64)

• In contrast, if η̂kαk‖`k‖∞ ≤ 1/3, then it follows from (63) that〈
πk − π−k+1, `k

〉
≤
∑
a∈A

{
η̂kαk

(
`k(a)− Eπk [`k]

)
+ 2η̂2

kα
2
kVarπk(`k)

}
πk(a)`k(a)

= η̂kαk
∑
a∈A

πk(a)
(
`k(a)− Eπk

[
`k
])
Eπk

[
`k
]

+ η̂kαk
∑
a∈A

πk(a)
(
`k(a)− Eπk

[
`k
])2

+ 2η̂2
kα

2
kVarπk(`k)

∑
a∈A

πk(a)`k(a)

= η̂kαk
∑
a∈A

πk(a)
(
`k(a)− Eπk

[
`k
])2

+ 2η̂2
kα

2
kVarπk(`k)

∑
a∈A

πk(a)`k(a)

≤ η̂kαkVarπk
(
`k
)

+ 2η̂2
kα

2
kVarπk(`k)

∥∥`k∥∥∞, (65)

where we invoke the elementary facts that
∑
a πk(a)

(
`k(a)−Eπk

[
`k
])

= 0 and
∑
a πk(a)`k(a) ≤ ‖`k‖∞.

Putting the above two cases together yields
n∑
k=1

αnk
〈
πk − π−k+1, `k

〉
≤

n∑
k=1

αnk η̂kαk
∥∥`k∥∥2

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
+

n∑
k=1

αnk η̂kαkVarπk
(
`k
)
1

(
η̂kαk

∥∥`k∥∥∞ ≤ 1

3

)

+ 2

n∑
k=1

αnk η̂
2
kα

2
kVarπk

(
`k
)∥∥`k∥∥∞ 1

(
η̂kαk

∥∥`k∥∥∞ ≤ 1

3

)

≤ 5

3

n∑
k=1

αnk η̂kαkVarπk
(
`k
)

+ 3

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥3

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
, (66)

where the last inequality holds true since
n∑
k=1

αnk η̂kαk
∥∥`k∥∥2

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
≤ 3

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥3

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
,

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥∞Varπk(`k)1

(
η̂kαk

∥∥`k∥∥∞ ≤ 1

3

)
≤ 1

3

n∑
k=1

αnk η̂kαkVarπk(`k).

Substituting (66) into (62), we can readily arrive at

Rn ≤
5

3

n∑
k=1

αnk η̂kαkVarπk(`k) +
logA

ηn+1
+ 3

n∑
k=1

αnk η̂
2
kα

2
k

∥∥`k∥∥3

∞ 1

(
η̂kαk

∥∥`k∥∥∞ >
1

3

)
.

It thus remains to establish the claims (62) and (63), which we shall accomplish next.
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A.2 Proof of claim (62)
We claim that it suffices to prove that

αn1 〈π−2 , `1〉+
αn1
η2α1

F (π2) +

n∑
k=2

{
αnk 〈π−k+1, `k〉+

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
F (πk+1)

}

≤ min
π∈∆(A)

{〈
π,

n∑
k=1

αnk`k

〉
+

1

ηn+1
F (π)

}
. (67)

In fact, suppose that this inequality (67) is valid, then one can easily obtain

αn1 〈π−2 , `1〉+
αn1
η2α1

F (π2) +

n∑
k=2

{
αnk 〈π−k+1, `k〉+

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
F (πk+1)

}

≤ min
π∈∆(A)

{〈
π,

n∑
k=1

αnk`k

〉
+

1

ηn+1
F (π)

}
≤ min
π∈{ea | a∈A}

{〈
π,

n∑
k=1

αnk`k

〉
+

1

ηn+1
F (π)

}

= min
π∈{ea | a∈A}

〈
π,

n∑
k=1

αnk`k

〉
= min

a∈A

n∑
k=1

αnk`k(a)

with ea the a-th standard basis vector in RA, where the last line holds true since the negative entropy obeys
F (ea) = 0 for any a ∈ A. In turn, this implies that

Rn =

n∑
k=1

αnk
〈
πk, `k

〉
−min
a∈A

n∑
k=1

αnk`k(a)

≤
n∑
k=1

αnk
〈
πk − π−k+1, `k

〉
−

n∑
k=2

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
F (πk+1) +

αn1
η2α1

logA, (68)

where the last inequality invokes the elementary fact −F (π) ≤ logA for any π ∈ ∆(A). Additionally, under
the assumptions that ηk+1(1− αk) ≤ ηk (k ≥ 1), we can use the definition (5) to obtain

αnk
ηk+1αk

=

∏n
j=k+1(1− αj)

ηk+1
≥
∏n
j=k(1− αj)

ηk
=

αnk−1

ηkαk−1
,

for any k ≥ 2, which together with the basic fact 0 ≤ −F (π) ≤ logA yields

−
n∑
k=2

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
F (πk+1) +

αn1
η2α1

logA ≤
n∑
k=2

[ αnk
ηk+1αk

−
αnk−1

ηkαk−1

]
logA+

αn1
η2α1

logA

=
αnn

ηn+1αn
logA =

logA

ηn+1
. (69)

Substitution into (68) leads to

Rn ≤
n∑
k=1

αnk
〈
πk − π−k+1, `k

〉
+

logA

ηn+1
(70)

as advertised. As a consequence, everything boils down to establishing (67).
Towards this end, we would like to proceed with an induction argument, with the induction hypothesis

w.r.t. n given by (67). Firstly, the base case with n = 1 simplifies to

α1
1〈π−2 , `1〉+

1

η2
F (π2) ≤ min

π∈∆(A)

{
〈π, α1

1`1〉+
1

η2
F (π)

}
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given that α1 = α1
1; this inequality clearly holds since, according to (34) and (60),

π−2 = π2 = arg min
π∈∆(A)

{
〈π, L1〉+

1

η2
F (π)

}
= arg min

π∈∆(A)

{
〈π, α1`1〉+

1

η2
F (π)

}
.

Secondly, suppose that (67) holds w.r.t. n, and we intend to justify it w.r.t. n+ 1. To do so, we observe that

αn+1
1 〈π−2 , `1〉+

αn+1
1

η2α1
F (π2) +

n∑
k=2

{
αn+1
k 〈π−k+1, `k〉+

( αn+1
k

ηk+1αk
−

αn+1
k−1

ηkαk−1

)
F (πk+1)

}
+ αn+1〈π−n+2, `n+1〉

(i)
= (1− αn+1)

{
αn1 〈π−2 , `1〉+

αn1
η2α1

F (π2) +

n∑
k=2

{
αnk 〈π−k+1, `k〉+

( αnk
ηk+1αk

−
αnk−1

ηkαk−1

)
F (πk+1)

}}
+ αn+1〈π−n+2, `n+1〉

(ii)

≤ (1− αn+1)

{〈
π−n+2,

n∑
k=1

αnk`k

〉
+

1

ηn+1
F (π−n+2)

}
+ αn+1〈π−n+2, `n+1〉

(iii)
=

〈
π−n+2,

n+1∑
k=1

αn+1
k `k

〉
+

1− αn+1

ηn+1
F (π−n+2) = min

π∈∆(A)

{〈
π,

n+1∑
k=1

αn+1
k `k

〉
+

1

η̂n+1
F (π)

}
. (71)

Here, (i) and (iii) invoke the fact αn+1
k = (1 − αn+1)αnk and αn+1

n+1 = αn+1 (according to (5)), (ii) relies on
the induction hypothesis (67) w.r.t. n. To finish up, invoke (71) and the definition (5) to arrive at

αn+1
1 〈π−2 , `1〉+

αn+1
1

η2α1
F (π2) +

n+1∑
k=2

{
αn+1
k 〈π−k+1, `k〉+

[ αn+1
k

ηk+1αk
−

αn+1
k−1

ηkαk−1

]
F (πk+1)

}

=

{
αn+1

1 〈π−2 , `1〉+
αn+1

1

η2α1
F (π2) +

n∑
k=2

{
αn+1
k 〈π−k+1, `k〉+

[ αn+1
k

ηk+1αk
−

αn+1
k−1

ηkαk−1

]
F (πk+1)

}
+ αn+1〈π−n+2, `n+1〉

}

+
[ 1

ηn+2
− 1− αn+1

ηn+1

]
F (πn+2)

≤

{〈
πn+2,

n+1∑
k=1

αn+1
k `k

〉
+

1− αn+1

ηn+1
F (πn+2)

}
+
[ 1

ηn+2
− 1− αn+1

ηn+1

]
F (πn+2)

=

〈
πn+2,

n+1∑
k=1

αn+1
k `k

〉
+

1

ηn+2
F (πn+2) = min

π∈∆(A)

{〈
π,

n+1∑
k=1

αn+1
k `k

〉
+

1

ηn+2
F (π)

}
,

where the inequality above makes use of (71), and the last identity comes from (34). This justifies the
induction hypothesis w.r.t. n+1. Applying the induction argument in turn establishes (67) for all n, thereby
concluding the proof.

A.3 Proof of claim (63)
We first make the observation that∑

a

exp
(
− η̂kLk(a)

)
=
∑
a

exp
(
− ηkLk−1(a)

)
exp

(
− η̂kαk`k(a)

)
=
∑
a

{
πk(a)

∑
a′

exp
(
− ηkLk−1(a′)

)}
exp

(
− η̂kαk`k(a)

)
=
∑
a′

exp
(
− ηkLk−1(a′)

)∑
a

{
πk(a) exp

(
− η̂kαk`k(a)

)}
,

where the second equality follows from (35). This in turn allows us to demonstrate that

π−k+1(a) =
exp

(
− η̂kLk(a)

)∑
a′ exp

(
− η̂kLk(a′)

) =
exp

(
− ηkLk−1(a)

)∑
a′ exp

(
− ηkLk−1(a′)

) · exp
(
− η̂kαk`k(a)

)∑
a′ πk(a′) exp

(
− η̂kαk`k(a′)

)
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= πk(a)
exp

(
− η̂kαk`k(a)

)∑
a′ πk(a′) exp

(
− η̂kαk`k(a′)

) ≥ [1− η̂kαk`k(a)
]
πk(a),

where the last inequality holds since exp(−x) ≥ 1− x and
∑
a πk(a) exp

(
− η̂kαk`k(a)

)
≤
∑
a πk(a) = 1.

Next, suppose that η̂kαk‖`k‖∞ ≤ 1/3. In this case, it is self-evident that η̂kαk|`k(a)−Eπk [`k]| ≤ 2/3 for
all a ∈ A. Recalling that Eπk [`k] =

∑
a πk(a)`k(a), one can derive

π−k+1(a) = πk(a)
exp

(
− η̂kαk`k(a)

)∑
a′ πk(a′) exp

(
− η̂kαk`k(a′)

) =
exp

(
− η̂kαk

(
`k(a)− Eπk [`k]

))∑
a′ πk(a′) exp

(
− η̂kαk

(
`k(a′)− Eπk [`k]

))πk(a)

≥
1− η̂kαk

(
`k(a)− Eπk [`k]

)∑
a′ πk(a′) exp

(
− η̂kαk

(
`k(a′)− Eπk [`k]

))πk(a)

≥
1− η̂kαk

(
`k(a)− Eπk [`k]

)
1 + η̂2

kα
2
kVarπk(`k)

πk(a); (72)

here, the first inequality arises since exp(−x) ≥ 1 − x, while the second inequality can be shown via the
elementary inequality exp(−x) ≤ 1− x+ x2 for any x ≥ −1.5 and therefore∑

a

πk(a) exp
(
− η̂kαk

(
`k(a)− Eπk [`k]

))
≤
∑
a

πk(a)

{
1− η̂kαk

(
`k(a)− Eπk [`k]

)
+ η̂2

kα
2
k

(
`k(a)− Eπk [`k]

)2}
=
∑
a

πk(a)

{
1 + η̂2

kα
2
k

(
`k(a)− Eπk [`k]

)2}
= 1 + η̂2

kα
2
kVarπk(`k).

Applying the elementary inequality 1−a
1+b ≥ (1 − a)(1 − b) = 1 − a − b + ab ≥ 1 − a − 2b for any a ∈ [−1, 1]

and b > 0, we can continue to lower bound (72) as follows

(72) ≥
{

1− η̂kαk
(
`k(a)− Eπk [`k]

)
− 2η̂2

kα
2
kVarπk

(
`k
)}
πk(a),

thereby completing the proof.

B Proofs of auxiliary lemmas and details

B.1 Proof of Lemma 3
This section aims to prove Lemma 3, which establishes the inequality V̂i,h ≥ V

?,π̂−i
i,h . In what follows, we

shall proceed with an induction argument. The base case with step H + 1 is trivially true, given that

V̂i,H+1 = V
?,π̂−i
i,H+1 = 0

holds for any joint policy. Next, let us assume that the claim (47) is valid for step h+ 1, namely,

V̂i,h+1 ≥ V
?,π̂−i
i,h+1, (73)

and attempt to justify the validity of this result when h+ 1 is replaced with h.
This step is mainly accomplished by applying our refined theory (cf. Theorem 3) for FTRL (see (19)).

More precisely, we claim that

max
ai

QKi,h(s, ai) ≤
K∑
k=1

αKk

〈
πki,h(s), qki,h(s, ·)

〉
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+ 10

√
cα log3(KAi)

KH

K∑
k=1

αKk Varπki,h(s)

(
qki,h(s, ·)

)
+ 2

√
cαH log3(KAi)

K
(74)

for any s ∈ S, whose proof is deferred to Appendix B.1.1. Recall the construction (20a) of V̂i,h. If V̂i,h =

H − h+ 1, then the claimed result V̂i,h ≥ V
?,π̂−i
i,h holds trivially. It thus suffices to focus on the case where

V̂i,h(s) =

K∑
k=1

αKk

〈
πki,h(s), qki,h(s, ·)

〉
+ βi,h(s). (75)

In this case, recalling the definition of V
?,π̂−i
i,h (s) in (46b) gives

V
?,π̂−i
i,h (s) = max

ai

K∑
k=1

αKk

[
rki,h(s, ai) +

〈
P ki,h(· | s, ai), V

?,π̂−i
i,h+1

〉]
≤ max

ai

K∑
k=1

αKk

[
rki,h(s, ai) +

〈
P ki,h(· | s, ai), V̂i,h+1

〉]
= max

ai
QKi,h(s, ai)

≤
K∑
k=1

αKk

〈
πki,h(s), qki,h(s, ·)

〉
+ 10

√
cα log3(KAi)

KH

K∑
k=1

αKk Varπki,h(s)

(
qki,h(s, ·)

)
+ 2

√
cαH log3(KAi)

K

≤
K∑
k=1

αKk

〈
πki,h(s), qki,h(s, ·)

〉
+ βi,h(s) = V̂i,h(s)

simultaneously for all (s, h) ∈ S × [H]. Here, the second line follows from the induction hypothesis (73) and
the definition (17) of QKi,h, the third line invokes the claim (74), whereas the last line comes from our choice
(24) of βi,h (provided cb is large enough) and (75). This concludes the proof, as long as (74) can be justified.

B.1.1 Proof of claim (74)

Consider any state s ∈ S. By virtue of the identity Qki,h =
∑k
j=1 α

k
j q
j
i,h (see (17)), the policy update rule

(18) (or (19)) for πki,h(s) can essentially be viewed as the FTRL algorithm applied to the loss vectors

`k = −qki,h(s, ·), k ≥ 1.

Moreover, recalling the definition (23) of ηk+1 and the definition (22) of αk (with cα ≥ 24), we have(
ηk
ηk+1

)2

=
αk
αk−1

=
k − 2 + cα logK

k − 1 + cα logK
≥ k − 1

k − 1 + cα logK
= 1− αk > (1− αk)2. (76)

This property (76) permits us to invoke Theorem 3 to obtain

max
ai∈Ai

QKi,h(s, ai)−
K∑
k=1

αKk

〈
πki,h(s), qki,h(s, ·)

〉
= max
ai∈Ai

{
K∑
k=1

αKk
〈
πki,h(s), `k

〉
−

K∑
k=1

αKk `k(ai)

}

≤ 5

3

K∑
k=2

αKk
ηkαk

1− αk
Varπki,h(s)

(
qki,h(s, ·)

)
+

logAi
ηK+1

+ ξi,h

(i)

≤ 5

3

K/2∑
k=2

(
2cα
)1.5

log2K
√
kH

αKk Varπki,h(s)

(
qki,h(s, ·)

)

+
20

3

K∑
k=K/2+1

αKk

√
cα log2K

KH
Varπki,h(s)

(
qki,h(s, ·)

)
+

logAi
ηK+1

+ ξi,h, (77)
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where ξi,h is defined as

ξi,h :=
5

3
αK1 η2

∥∥q1
i,h

∥∥2

∞ +

{
3

K∑
k=2

αKk
η2
kα

2
k

(1− αk)2

∥∥qki,h∥∥3

∞ 1

(
ηkαk

1− αk
∥∥qki,h∥∥∞ >

1

3

)}
+ 3αK1 η

2
2

∥∥q1
i,h

∥∥3

∞. (78)

Here, to see why (i) holds, we make use of the facts that

1− αk = 1− cα logK

k − 1 + cα logK
≥

{
1− cα logK

1+cα logK = 1
1+cα logK ≥

1
2cα logK , if k ≥ 2,

1− cα logK
K/2+cα logK = K

K+2cα logK ≥
1
2 , if k ≥ K/2 + 1,

(79a)

ηkαk =

√
logK

αk−1H
· αk ≤

√
logK

αkH
· αk =

√
αk logK

H
≤

√
2cα log2K

kH
, (79b)

where the first line makes use of (39) for large enough ck, and the second line relies on (40a) in Lemma 1.
To proceed, let us control the terms in (77) separately.

• We start with the first term in (77). The elementary bound
∥∥qki,h∥∥∞ ≤ H in Lemma 2 taken together

with (40b) in Lemma 1 helps us derive

K/2∑
k=2

αKk log2K√
kH

Varπki,h(s)

(
qki,h(s, ·)

)
≤
K/2∑
k=2

log2K

K6
√
kH

Varπki,h(s)

(
qki,h(s, ·)

)

≤
K/2∑
k=2

log2K

K6
√
kH

∥∥qki,h(s, ·)
∥∥2

∞ ≤
H3/2 log2K

K6

K/2∑
k=2

1√
k

≤ 2H3/2 log2K

K6
·
√
K/2 ≤ 2H3/2 log2K

K5
. (80)

• Turning to the third term in (77), we recall the definition of ηK+1 (cf. (23)) to obtain

logAi
ηK+1

= logAi

√
αKH

logK
≤

√
2cαH log2Ai

K
, (81)

where the inequality comes from Lemma 1.

• Finally, we move on to the last term in (77). For any k ≥ 2, combine Lemma 2 with (79) to obtain

ηkαk
1− αk

∥∥qki,h∥∥∞ ≤
√

2cα log2K
kH

1
2cα logK

·H =

√
8c3αH log4K

k
. (82)

Clearly, the right-hand side of (82) is upper bounded by 1/3 for all k obeying k ≥ c9H log4 K
δ for some

large enough constant c9 > 0 (see also (39)). Consequently, one can derive

ξi,h =
5

3
αK1 η2

∥∥q1
i,h

∥∥2

∞ +

{
3

K∑
k=2

αKk
η2
kα

2
k

(1− αk)2

∥∥qki,h∥∥3

∞ 1

(
ηkαk

1− αk
∥∥qki,h∥∥∞ >

1

3

)}
+ 3αK1 η

2
2

∥∥q1
i,h

∥∥3

∞

≤ 5

3K6

√
logK

H

∥∥q1
i,h

∥∥2

∞ +

(
2cα logK

)2
K6

3

c9H log4 K
δ∑

k=2

η2
kα

2
k

∥∥qki,h∥∥3

∞

+
3

K6

logK

H

∥∥q1
i,h

∥∥3

∞

≤ 24c3α log4K

K6H

{
K∑
k=1

1

k
H3

}

≤ 24c3αH
2 log5K

K6
≤ 1

K4
, (83)

where the second line comes from (79) and the fact that K/2 > c9H log4 K
δ (as a consequence of (39)),

and the third line holds due to Lemma 2.
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Putting the preceding bounds together and substituting them into (77), we arrive at

max
ai

QKi,h(s, ai)−
K∑
k=1

αKk

〈
πki,h(s), qki,h(s, ·)

〉

≤ 5(2cα)1.5

3
· 2H3/2 log2K

K5
+

20

3

√
cα log2K

KH

K∑
k=K/2+1

αKk Varπki,h(s)

(
qki,h(s, ·)

)
+

√
2cαH log2Ai

K
+

1

K4

≤ 10

√
cα log3(KAi)

KH

K∑
k=1

αKk Varπki,h(s)

(
qki,h(s, ·)

)
+ 2

√
cαH log3(KAi)

K
, (84)

where the last line is valid under Condition (39). This completes the proof of Claim (74).

B.2 Proof of Lemma 4
In this section, we present the proof of Lemma 4. To begin with, we introduce the auxiliary quantities

q̃ki,h(s, ai) := rki,h(s, ai) + P ki,h(· | s, ai)V
π̂

i,h+1, ∀(s, ai) ∈ S ×Ai.

It is also helpful to introduce an auxiliary random action ak,s ∈ Ai generated in a way that

ak,s ∼ πki,h(s),

which is independent from q̃ki,h conditional on πki,h. This allows us to define another set of random variables

q̂ki,h(s) := q̃ki,h
(
s, ak,s), ∀s ∈ S, (85)

which plays a central role in our analysis. It is readily seen from the facts V i,h+1(s) ≤ H − h (cf. (20a)) and
rki,h(s, ai) ∈ [0, 1] that

0 ≤ q̂ki,h(s), q̃ki,h(s, ai) ≤ H − h+ 1, ∀(s, ai, h, k) ∈ S ×Ai × [H]× [K]. (86)

Letting e(i) ∈ RAi denote the i-th standard basis vector, we learn from the law of total variance that

Varh,k−1

(
q̂ki,h(s)

)
= Varh,k−1

(〈
e(ak,s), q̃

k
i,h(s, ·)

〉)
≥ Varh,k−1

(
Eh,k−1

[〈
e(ak,s), q̃

k
i,h(s, ·)

〉
| q̃ki,h

])
= Varh,k−1

(〈
πki,h(s), q̃ki,h(s, ·)

〉)
. (87)

With these preparations in place, we are ready to embark on the proof.

B.2.1 Proof of inequalities (50a) and (50b)

Recall the definition of V
π̂

i,h(s) in (46c) that

V
π̂

i,h(s) =

K∑
k=1

αKk E
ai∼πki,h(s)

[
rki,h(s, ai) + P ki,h(· | s, ai)V

π̂

i,h+1

]
=

K∑
k=1

αKk

〈
πki,h(s), q̃ki,h(s, ·)

〉
. (88)

It is first observed that

K∑
k=1

Eh,k−1

[
αKk
〈
πki,h(s), q̃ki,h(s, ·)

〉]
=

K∑
k=1

αKk E
a∼πkh(s)

[
ri,h(s,a) +

〈
Pi,h(· | s,a), V

π̂

i,h+1

〉
| V π̂i,h+1, π

k
i,h

]
= rπ̂i,h(s) +

〈
P π̂i,h(s, ·), V π̂i,h+1

〉
, (89)
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where the second identity arises from the definitions (49) of rπ̂i,h and P π̂i,h. It is also seen that

R1 := max
k

∣∣∣αKk 〈πki,h(s), q̃ki,h(s, ·)
〉∣∣∣ ≤ {max

k
αKk

}{
max
k

∥∥πki,h(s)
∥∥

1

∥∥q̃ki,h∥∥∞} ≤ 2cαH logK

K
,

where the first line invokes Lemma 1, (86) and the fact ‖πki,h(s)‖1 = 1. Another observation is that

W1 =

K∑
k=1

(
αKk
)2
Varh,k−1

(〈
πki,h(s), q̃ki,h(s, ·)

〉)
≤
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}{ K∑
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αKk Varh,k−1
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〉)}

≤ 2cα logK

K
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k=1

αKk Varh,k−1

(
q̂ki,h(s)

)
, (90)

where the second line makes use of Lemma 1 and the inequality (87). With the definitions (88) and (89) in

mind, invoking Freedman’s inequality (i.e., Theorem 5) with κ1 =

√
K log K

δ

H then leads to∣∣∣∣V π̂i,h(s)−
(
rπ̂i,h(s) +

〈
P π̂i,h(s, ·), V π̂i,h+1

〉)∣∣∣∣
=

∣∣∣∣ K∑
k=1

αKk

〈
πki,h(s), q̃ki,h(s, ·)

〉
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3K

δ
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δ

KH
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(
q̂ki,h(s)

)
+

(
2

√
H

K log K
δ

+
10cαH logK

K
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3K
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≤ 2cα
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log3 K

δ

KH
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k=1

αKk Varh,k−1

(
q̂ki,h(s)

)
+ 4

√
H log 3K

δ

K
(91)

with probability at least 1− δ, where the last relation holds true under Condition (39).
To continue, we note the first term in (91) can be bounded by Cauchy-Schwarz as follows:

K∑
k=1

αKk Varh,k−1

(
q̂ki,h(s)

)
=

K∑
k=1

αKk Eh,k−1

[(
q̂ki,h(s)

)2]− K∑
k=1

αKk

(
Eh,k−1

[
q̂ki,h(s)

] )2

≤
K∑
k=1

αKk Eh,k−1

[(
q̂ki,h(s)

)2]− ( K∑
k=1

αKk Eh,k−1

[
q̂ki,h(s)

])2

. (92)

Further, we make note of two additional facts:

• The weighted mean of q̂ki,h(s) obeys

K∑
k=1

αKk Eh,k−1

[
q̂ki,h(s)

]
=

K∑
k=1

αKk E
a∼πkh(s)

[
ri,h(s,a)

]
+

K∑
k=1

αKk E
a∼πkh(s)

[〈
Pi,h(· | s,a), V

π̂

i,h+1

〉]
= rπ̂i,h(s) +

〈
P π̂i,h(s, ·), V π̂i,h+1

〉
≥
〈
P π̂i,h(s, ·), V π̂i,h+1

〉
. (93)

• Regarding the square of q̂ki,h(s), one has (see (85))

(
q̂ki,h(s)

)2
=
(
rki,h(s, ak,s) +

〈
P ki,h(· | s, ak,s), V

π̂

i,h+1

〉)2
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π̂

i,h+1

〉)2

+
(
rki,h(s, ak,s)

)2

+ 2rki,h(s, ak,s)
〈
P ki,h(· | s, ak,s), V

π̂

i,h+1

〉
28



≤
(〈
P ki,h(· | s, ak,s), V

π̂

i,h+1

〉)2

+ 3H

≤
〈
P ki,h(· | s, ak,s), V

π̂

i,h+1 ◦ V
π̂

i,h+1

〉
+ 3H,

where we have used the fact that ‖V π̂i,h+1‖∞ ≤ H and ‖rki,h‖∞ ≤ 1; consequently,

K∑
k=1

αKk Eh,k−1

[(
q̂ki,h(s)

)2] ≤ K∑
k=1

αKk Eh,k−1

[〈
P ki,h(· | s, ak,s), V

π̂

i,h+1 ◦ V
π̂

i,h+1

〉]
+ 3H

=

K∑
k=1

αKk
∑
ai∈Ai

πki,h(ai | s)Eh,k−1

[〈
P ki,h(· | s, ai), V

π̂

i,h+1 ◦ V
π̂

i,h+1

〉]
+ 3H

=
〈
P π̂i,h(s, ·), V π̂i,h+1 ◦ V

π̂

i,h+1

〉
+ 3H. (94)

Taking (93) and (94) together with (92) yields

K∑
k=1

αKk Varh,k−1

(
q̂ki,h(s)

)
≤

K∑
k=1

αKk Eh,k−1

[(
q̂ki,h(s)

)2]− ( K∑
k=1

αKk Eh,k−1
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q̂ki,h(s)

])2

≤
〈
P π̂i,h(s, ·), V π̂i,h+1 ◦ V

π̂

i,h+1

〉
−
(〈
P π̂i,h(s, ·), V π̂i,h+1

〉)2

+ 3H.

To finish up, substituting these into (91) and making use of the assumption (39) give∣∣∣∣V π̂i,h(s)−
(
rπ̂i,h(s) +

〈
P π̂i,h(s, ·), V π̂i,h+1

〉)∣∣∣∣
≤ 2cα

√
log3 K

δ

KH

[〈
P π̂i,h(s, ·), V π̂i,h+1 ◦ V

π̂

i,h+1

〉
−
(〈
P π̂i,h(s, ·), V π̂i,h+1

〉)2
]

+ (6cα + 4)

√
H log3 K

δ

K

for any s ∈ S, thus concluding the proof of the first claim (50a) of Lemma 4.
The second claim (50b) of Lemma 4 can be established using exactly the same argument, and hence we

omit the proof here for the sake of brevity.

B.2.2 Proof of inequality (50c)

We then turn to the last advertised inequality (50c). Given that ri,h(s) +P i,h(s, ·)V̂i,h+1 ∈ [0, H −h+ 1] for
all s ∈ S, we can recall the definition (20a) of V̂i,h to obtain

∣∣∣V̂i,h(s)−
(
ri,h(s) + P i,h(s, ·)V̂i,h+1

)∣∣∣ ≤ ∣∣∣∣ K∑
k=1

αKk

〈
πki,h(· | s), qki,h(s, ·)

〉
+ βi,h(s)−

(
ri,h(s) + P i,h(s, ·)V̂i,h+1

)∣∣∣∣
(95)

for all s ∈ S. The remaining analysis is dedicated to bounding the right-hand side of (95).
Let us begin with the following identity:

K∑
k=1

αKk

〈
πki,h(· | s), qki,h(s, ·)

〉
+ βi,h(s) =

K∑
k=1

αKk E
ai∼πki,h(s)

[
rki,h(s, ai) + P ki,h(· | s, ai)V̂i,h+1

]
+ βi,h(s)

= ri,h(s) +
〈
P i,h(s, ·), V̂i,h+1

〉
+ βi,h(s), (96)

where we recall the definitions of ri,h ∈ RS and P i,h ∈ RS×S in (49). The key step boils down to bounding
the bonus term defined in (24), towards which we first claim that

K∑
k=1

αKk Varπki,h(s)

(
qki,h(s, ·)

)
≤ 2 + 2

[
P i,h(s, ·)

(
V̂i,h+1 ◦ V̂i,h+1

)
−
(
P i,h(s, ·)V̂i,h+1

)2] (97)
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holds for all s ∈ S. Assuming the validity of this claim, we can then demonstrate that

βi,h(s) = cb

√
log3

(KS∑
i Ai

δ

)
KH

K∑
k=1

αKk

{
Varπki,h(s)

(
qki,h(s, ·)

)
+H

}

≤ 2cb

√
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)
KH

{
P i,h(s, ·)

(
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)
−
(
P i,h(s, ·)V̂i,h+1

)2
+H

}
, (98)

where we have used the identity
∑K
k=1 α

K
k = 1. Hence, we can readily establish the desired result (50c) by

combining (98) with (96) and (95), provided that c3 > 0 is sufficiently large.
It remains to justify the claim (97). Towards this end, we make the observation that

Varπki,h(s)

(
qki,h(s, ·)

)
≤ 2Varπki,h(s)

(
rki,h(s, ·)

)
+ 2Varπki,h(s)

(∑
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P ki,h(s′ | s, ·)V̂i,h+1(s′)
)
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[∑
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)
−
(∑

ai

πki,h(ai | s)P ki,h(· | s, ai)V̂i,h+1

)2
]
,

which results from ‖rki,h‖∞ ≤ 1 and the following relation:

Varπki,h(s)

(∑
s′

P ki,h(s′ | s, ·)V̂i,h+1(s′)
)

=
∑
ai

πki,h(ai | s)
(
P ki,h(· | s, ai)V̂i,h+1

)2

−
(∑
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πki,h(ai | s)P ki,h(· | s, ai)V̂i,h+1

)2

≤
∑
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V̂i,h+1 ◦ V̂i,h+1

)
−
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πki,h(ai | s)P ki,h(· | s, ai)V̂i,h+1

)2

.

This taken together with the fact
∑K
k=1 α

K
k = 1 and Jensen’s inequality yields

K∑
k=1

αKk Varπki,h(s)

(
qki,h(s, ·)

)
≤

K∑
k=1

αKk

{
2 + 2

[∑
ai

πki,h(ai | s)P ki,h(· | s, ai)
(
V̂i,h+1 ◦ V̂i,h+1

)
−
(∑

ai

πki,h(ai | s)P ki,h(· | s, ai)V̂i,h+1

)2
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≤ 2 + 2P i,h(s, ·)
(
V̂i,h+1 ◦ V̂i,h+1

)
− 2

( K∑
k=1

αKk
∑
ai

πki,h(ai | s)P ki,h(· | s, ai)V̂i,h+1

)2

= 2 + 2
[
P i,h(s, ·)

(
V̂i,h+1 ◦ V̂i,h+1

)
−
(
P i,h(s, ·)V̂i,h+1

)2]
as claimed.

B.3 Minimax lower bound
In this section, we formalize the minimax lower bound claimed in (32).

Theorem 4 (Minimax lower bound). Consider any m ≥ 2 and any 0 < ε ≤ c1H for some small enough
constant c1 > 0. Then one can construct a collection of m-player zero-sum Markov games {MGθ | θ ∈ Θ}
with S states, horizon H, and Ai actions for the i-th player (1 ≤ i ≤ m) such that

inf
π̂

max
θ∈Θ

PMGθ
{
gap
(
π̂
)
> ε
}
≥ 1

4
, (99)
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provided that the total sample size obeys

N ≤ c2H
4Smax1≤i≤mAi

ε2
(100)

for some sufficiently small constant c2 > 0. Here, the infimum is over all (joint) policy estimator π̂, and
PMGθ denotes the probability when the Markov game isMGθ.

Proof. Suppose without loss of generality that A1 ≥ max{A2, . . . , Am}. Let us begin by considering the
special scenario with A2 = . . . = Am = 1; in this case, computing either the NE or the CCE reduces to
finding the optimal policy of a single-agent MDP with S states and A1 actions. It is well-known that for any
given accuracy level ε ∈ (0, H], there exists a non-stationary MDP with S states and A1 actions such that
no algorithm can learn an ε-optimal policy with o

(
H4SA1

ε2

)
samples (Azar et al., 2013; Li et al., 2022). More

precisely, for any given 0 < ε ≤ c1H for some small enough constant c1 > 0, one can construct a collection
of MDPs {Mθ | θ ∈ Θ} such that

inf
µ̂

max
θ∈Θ

PMθ

{
max
s∈S

(
V ?1 (s)− V µ̂1 (s)

)
> ε

}
≥ 1

4
, (101)

with the proviso that the total sample size obeys

N ≤ c2H
4SA1

ε2
(102)

for some small enough constant c2 > 0. Here, the infimum is over all policy estimate µ̂ in this single-agent
scenario, and PMθ denotes the probability when the MDP isMθ.

Next, let us construct a collection of Markov games by augmenting each of the single-agent MDPs Mθ

with Ai completely identical actions for the i-th player (2 ≤ i ≤ m); that is, to constructMGθ, we take its
reward function and probability transition kernel to be

rMGθi,h (s,a) =


rMθ

h (s, a1) if i = 1

−rMθ

h (s, a1) if i = m

0 else
and PMGθh (· | s,a) = PMθ

h (· | s, a1) (103)

for all (s, h,a = [a1, . . . , am]) ∈ S × [H]×A. Evidently, finding either an NE or a CCE ofMGθ is equivalent
to computing the optimal policy of Mθ, given the non-distinguishability of the actions of all but the first
player inMGθ. This in turn immediately establishes the advertised lower bound.

B.4 Freedman’s inequality
In this section, we record the Freedman inequality for martingales (Freedman, 1975) with slight modification,
which is a crucial concentration bound for our analysis.

Theorem 5. Suppose that Yn =
∑n
k=1Xk ∈ R, where {Xk} is a real-valued scalar sequence obeying

|Xk| ≤ R and E
[
Xk | {Xj}j:j<k

]
= 0 for all k ≥ 1

for some quantity R > 0. Define

Wn :=

n∑
k=1

Ek−1

[
X2
k

]
,

where Ek−1 stands for the expectation conditional on {Xj}j:j<k. Consider any arbitrary quantity κ > 0.
With probability at least 1− δ, one has

|Yn| ≤
√

8Wn log
3n

δ
+ 5R log

3n

δ
≤ κWn +

( 2

κ
+ 5R

)
log

3n

δ
. (104)
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Proof. Suppose that Wn ≤ σ2 holds deterministically for some quantity σ2. As has been demonstrated in
Li et al. (2021a, Theorem 5), with probability at least 1− δ we have

|Yn| ≤

√
8 max

{
Wn,

σ2

2K

}
log

2K

δ
+

4

3
R log

2K

δ
(105)

for any positive integer K ≥ 1. Recognizing the trivial bound Wn ≤ nR2, one can take σ2 = nR2 and
K = log2 n to obtain

|Yn| ≤
√

8 max
{
Wn, R2

}
log

4 log2 n

δ
+

4

3
R log

4 log2 n

δ

≤
√

8Wn log
3n

δ
+

√
8R2 log

3n

δ
+

4

3
R log

3n

δ

≤
√

8Wn log
3n

δ
+ 5R log

3n

δ
,

where we have used 4 log2 n ≤ 3n for any integer n ≥ 1. This establishes the first inequality in (104). The
second inequality in (104) is then a direct consequence of the elementary inequality 2ab ≤ a2 + b2.
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