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Abstract

Masked image modeling (MIM), which predicts randomly masked patches from unmasked ones,
has emerged as a promising approach in self-supervised vision pretraining. However, the theoretical
understanding of MIM is rather limited, especially with the foundational architecture of transformers.
In this paper, to the best of our knowledge, we provide the first end-to-end theory of learning one-layer
transformers with softmax attention in MIM self-supervised pretraining. On the conceptual side, we posit
a theoretical mechanism of how transformers, pretrained with MIM, produce empirically observed local
and diverse attention patterns on data distributions with spatial structures that highlight feature-position
correlations. On the technical side, our end-to-end analysis of the training dynamics of softmax-based
transformers accommodates both input and position embeddings simultaneously, which is developed based
on a novel approach to track the interplay between the attention of feature-position and position-wise

correlations.
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1 Introduction

Self-supervised learning has been the dominant approach to pretrain neural networks for downstream
applications since the introduction of BERT [DCLT18] and GPT [RNS*18] in natural language processing
(NLP). On the side of vision, self-supervised learning was initially more focused on the discriminative methods,
which include contrastive learning [HFW 20, CKNH20] and non-contrastive learning methods [GSA ™20,
CKNH20, CTM*21, ZJM*21]. Inspired by the masked language models in NLP, and also due to the crucial
progress by [DBKT20] in successfully implementing vision transformers (ViTs), the generative approach of
self-supervised learning, such as masked image modeling (MIM), has become popular in self-supervised vision
pretraining, especially due to the rise of masked auto-encoder (MAE) [HCX22] and SimMIM [XZCT22].

In MIM, neural network are instructed to reconstruct some or all parts of an image given a masked version,
alming to learn certain abstract semantics of visual contents when trained to fill in the missing pixels. In
practice, this approach not only proves to be very successful but also unveils intriguing phenomena that diverge
significantly from the behaviors observed in other self-supervised learning approaches. The initial work of
[HCX*22] showed that MAE can conduct visual reasoning when filling in masked patches even with very high
mask rates, suggesting that MIM learns not only global representations but also complex relationships between
visual objects and shapes. Some critical observations from recent research [WHX 22, PKH 23, XGH 23]
have suggested that the models trained via MIM display diverse locality inductive bias, contrasting with
the uniform long-range global patterns typically emphasized by other discriminative self-supervised learning
approaches.

Despite the great empirical effort put into investigating the MIM, our theoretical understanding of MIM is
still nascent. Most existing theories for self-supervised learning focused on discriminative methods [AKK ™19,
CLL21, RSY 21, HWGM21, WL21, TCG21, WCDT21, WL22|, such as contrastive learning. Among very
few attempts towards MIM, [CXC22] studied the patch-based attention via an integral kernel perspective;
[ZWW22] analyzed MAE through an augmentation graph framework, which connects MAE with contrastive
learning. [PZS22] characterized the optimization process of MAE with shallow convolutional neural networks
(CNNs). Nonetheless, transformer, the dominant architecture in current deep learning practice, was not



touched upon in the above theoretical studies of MIM and, more broadly, self-supervised learning methods,
leaving a considerable vacuum in the literature.

Building on the mind-blowing empirical advances and recognizing the lack of theoretical understanding
of MIM and transformers in self-supervised learning, we are motivated to answer the following intriguing
question:

Our theoretical question

Can we theoretically characterize what solution the transformer converges to in MIM? How does the
MIM optimize the transformer to learn diverse local patterns instead of the collapsed global solution?

Contributions. In this paper, we take a first step towards answering the above question, and highlight our
contributions below.

1. We give, to our knowledge, the first end-to-end theory of learning one-layer transformers with softmax
attention in masked-reconstruction type self-supervised pretraining, in terms of global convergence
guarantee of the loss function trained by gradient descent (GD).

2. We analyze the feature learning process of one-layer transformers on data distributions with spatial
structures that highlight feature-position correlations, to characterize attention patterns at the
time of convergence of MIM. To our knowledge, this marks the first result of the learning of softmax
self-attention model that jointly considers both input and position encodings.

3. Our theoretical proofs and new empirical observations (cf. Figure 3), collectively provide an explanation
to the local and diverse attention patterns observed from MIM pretraining [PKH™23, XGH"23]. We
design a novel empirical metric, attention diversity metric, to probe vision transformers trained by
different methods. We show that trained masked image models, due to the nature of their reconstruction
training objectives, are capable of attending to visual features irrespective of their significance.

Comparisons with prior works. A few works [JSL22, PZS22] have studied topics that are related to
ours. Here we summarize the differences of our work from theirs in terms of settings and analysis at a high
level. In Section 3.1, after formally defining the feature-position correlations, we will address the limitations
of previous works, particularly their inadequacy to fully capture MIM’s capability to learn locality, from a
more technical perspective.

e [JSL22] is the first work to characterize the training dynamics of transformers in supervised learning.
They provided the first convergence result for one-layer softmax-attention transformers trained on a
simple visual data distribution, in which the partition of patches is fixed (see Definition 2.1 in their
paper). Their assumptions require learning only the position-position correlations (see Definition 3.1)
in the softmax attention, which is rather limited. We draw inspiration from their data assumptions
and generalize them to allow variable partitions of patches (see Definition 2.1) with different spatial
structures. Because of this generalization, we need to analyze the learning processes of different spatial
correlations among visual features simultaneously, which poses key challenges in the overall analysis.

e [PZS22] proved a feature-learning result for MAEs with CNNs rather than transformers, on the so-called
multi-view data [AZL20] for proving the superiority of learned features. Although both our and
their works focus on the dynamics of gradient descent, since our work needs to handle transformers
and patch-wise data distribution, which are not present in their study, our analysis techniques are
significantly different from theirs.

Notation. We introduce notation to be used throughout the paper. For any two functions h(x) and g(x),
we employ the notation h(z) = Q(g(z)) (resp. h(z) = O(g(z))) to denote that there exist some universal
constants C; > 0 and ay, s.t. |h(z)] > Ci|g(z)| (resp. |h(z)| < Ci|g(z)]) for all z > a1; Furthermore,
h(z) = O(g(x)) indicates h(z) = Q(g(x)) and h(z) = O(g(x)) hold simultaneously. We use 1{-} to denote the
indicator function. Let [N] = {1,2,...,N}. We use O, ©, and © to further hide logarithmic factors in the
respective order notation. We use poly(P) and polylog(P) to represent large constant-degree polynomials of
P and log(P), respectively.



2 Problem Setup

In this section, we present our problem formulations to study the training process of transformers with MIM
pretraining. We first provide some background, and then introduce our dataset setting and present the MIM
pretraining strategy with the transformer architecture we consider in this paper.

2.1 Masked Image Reconstruction

We follow the MIM frameworks in [HCX 22, XZC*22]. Each data sample X € RYF has the form
X = (Xp)pep, which has |P| = P patches, and each patch X, € R%. Given a collection of images {Xi}iem),
we select a masking set M C [P] and mask them by setting the masked patches to some M € R¢, leading to
masked images {M(X;)}ic[,), where

M(X;)p = { [Xl\z]p 11))66/2({/1 , i€ [n], (2.1)

where U is the index set of unmasked patches. Let F' : X — X be a neural network that outputs a
reconstructed image X € R¥*F for any given input X € R4*F. The pretraining objective can then be set as
a mean-squared reconstruction loss of a subset P’ C P of the image as follows:

£F) = 130 5 s - trovcx -

2
i=1 peP’

In [HCX™22] the chosen subset P’ is the set of masked patches M, while [XZC"22] chose to reconstruct
the full image P’ = P. Here we do not study the trade-off between the two formulations. As shall be seen
momentarily, we base our theory upon a simplified version of vision transformers [DBK™20] which utilizes
the attention mechanism [VSP17].

2.2 Data Distribution

We assume the data samples X € R?? are drawn independently from some data distribution D. To capture
the feature-position (FP) correlation in the learning problem, we consider the following setup for the vision
data. Specifically, we assume that the data distribution consists of many different clusters, each defined by a
different partition of patches and a different set of visual features. We define the data distribution D formally
as follows.

Definition 2.1 (Data distribution D). The data distribution D has K = O(1) different clusters {Dj }X_,.

For every cluster Di, k € [K], there is a corresponding partition of P into Ny disjoint subsets P = Ujv:’“l Pr.;
which we call areas. For each sample X = (Xp)pep, its sampling process is as follows:

e We draw Dj, uniformly at random from all clusters and draw a sample X from Dj,.

e Given k € [K], for any j € [Nj], all patches X in the area P ; are given the same content
Xp = vg,j2j(X), where vy, ; € R? is the visual feature and z;(X) is the latent variable. We assume

Ule U;.Vzkl{vk,j} are orthogonal to each other with unit norm.

e Given k € [K], for any j € [Ny], 2;(X) € [L,U], where 0 < L < U are on the order of ©(1). The
distribution of z;(X) can be arbitrary within the above support set.

Global and local features in an image. In vision data, images inherently contain two distinct types
of features: global features and local features. For instance, in an image of an object, global features can
capture the shape and texture of the object, such as the fur color of an animal, whereas local features describe
specific details of local areas, such as the texture of leaves in the background. Recent empirical studies
on self-supervised pretraining with transformers [PKH™"23, WHX"22], have demonstrated that contrastive
learning predominantly utilizes these globally projected representations to contrast each other. This often



leads to a phenomenon known as “attention collapse”, where the attention maps for query patches from two
different spatial locations surprisingly indicate identical object shapes. In contrast, MIM exhibits the capacity
to avoid such collapse by identifying diverse local attention patterns for different query patches. Consequently,
unraveling the mechanisms behind MIM necessitates a thorough examination of data characteristics that
embody both global and local features.

?V‘Q ‘{PKA-
" "
v P Global
Sampling, e
| L
/ D
Dy /s _K
e Local
DK = N
N
\
' P T
Sampling.
\
’ N
i ?1'3 ?1,4
2

Figure 1: Illustration of the data distribution. Each cluster D, is segmented into distinct areas Py ; as
in Definition 2.1, with squares in the same color representing the same area Py ;. The global region Py 1
(depicted in orange) contains a larger count of patches compared to any other local regions.

In this paper, we characterize these two types of features by the following assumption on the data.

Assumption 2.2 (Global feature vs local feature). Let Dy € [K] be a cluster from D. We let Py 1 be the
global area of cluster Dy, and all the other areas Py j,j € [Ni] \ {1} be the local areas. Since each area
corresponds to an assigned feature, we also call them the global and local features, respectively. Moreover,
we assume:

e Global area: given k € [K], we assume Cy 1 = [Py 1| = O(P"<) with k. € [0.5005, 1], where C} ; is the
number of patches in the global area Py, ;.

e Local area: given k € [K], we choose Cj ; = ©(P"*) with ks € [0.001,0.5] for j > 1, where C}, ; denotes
the number of patches in the local area Py, ;.

The rationale behind defining the global feature in this manner is based on the observation that the
occurrence of patches depicting global features (C,1) are typically significantly higher than those of local
features (Cy,j;, for j > 1), since global features tend to capture the main visual information in an image and
provide a dominant view, whereas local features only describe small details within the image. An intuitive
illustration of data generation is given in Figure 1.

2.3 Masked Image Modeling with Transformers

Transformer architecture. A transformer block [VSPT17] consists of a self-attention layer and an MLP
layer. The self-attention layer has multiple heads, each of which consists of the following components: a
query matrix W&, a key matrix WX, and a value matrix WV. Given an input X, the self-attention layer is
a mapping given as follows:

GX; WL WE WY) =WV X - softmax (WFX)TWeX), (2.2)

where the softmax(-) function is applied column-wise.



Since input tokens in transformers are indistinguishable without any proper positional structure, one
should add positional encodings to the input embeddings in the softmax attention as in [JSL22]. We state
our assumption of the positional encodings as follows.

Assumption 2.3 (Positional encoding). We assume fixed positional encodings: E = (ep)pep € R where
positional embedding vectors ep, are orthogonal to each other and to all the features vy ;, and are of unit-norm.

We now present the actual network architecture in the paper. To simplify the theoretical analysis,
we consolidate the product of query and key matrices (WX)TW& into one weight matrix denoted as Q.
Furthermore, we set WV to be the identity matrix and fixed during the training. These simplifications are
often taken in recent theoretical works [JSL.22, HCL23, ZFB23], to allow tractable theoretical analysis. With
these simplifications in place, (2.2) can be rewritten as

F(X;Q) = X -softmax (X ' QX), (2.3)
which will be used for masked reconstruction, as formalized below.

Assumption 2.4 (Transformer network for MIM). We assume that our vision transformer F(X; Q) consists
of a single self-attention layer with an attention weight matrix @ € R4, For an input image X ~ D, we
add positional encoding by X = X + E. The attention score from patch X to patch Xq is denoted by

ST >
eXp QXq

attnp_.q(X;Q) = S for p,q € P. (2.4)
Then the output of the transformer is given by
[F(X;Q)lp = Y Xq-attng ,q(X;Q), forpeP. (2.5)

q€eP
Last but not least, we formally define the masking operation in our MIM pretraining task.

Definition 2.5 (Masking). Let M(X) — R%*¥ denote the random masking operation, which randomly
selects (without replacement) a subset of patches M in X with a masking ratio v = ©(1) € (0,1) and masks
them to be M := 0 € R%. The masked samples obey (2.1).

MIM objective. To train the transformer model F(M(X); Q) under the MIM framework, we minimize
the following squared loss of the reconstruction error only on masked patches, where the masking follows
Definition 2.5. The training objective thus can be written as

£@) = 5E [Sper 1o € M) [FM0: Q) - 1] (26)

where the expection is with respect to both the data distribution and the masking. Note that our objective
remains nonconvex under the Assumption 2.4.

Training algorithm. The above learning objective in (2.6) is minimized via GD with the learning rate
n > 0. At t = 0, we initialize Q(©) := 044 as the zero matrix. The parameter is updated as follows:

Q(t+1) — Q(t) _ anﬁ(Q(t)).

3 Attention Patterns and Feature-Position Correlations

To show the significance of the data distribution design, we provide some preliminary implications of the
spatial structures in Definition 2.1. In fact, for a fixed cluster D, in order to reconstruct the missing patches
p € M inside an area Py, ,,, the attention head should exploit all unmasked patches in the same area Py, ,, NU
in order to find the same visual feature to fill in the blank. We explain this by describing the area attentions
in vision transformers.
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Figure 2: The mechanism of how the masked patch attends to other patches through attention correlations
after MIM pretraining.

Area attention scores. We first define a new notation for a cleaner presentation. Let X ~ D. We choose
a patch p € P and write the attention of patch p to a subset A C P of patches by

Attny 4 (X;Q) == Yge 4 attng q(X; Q). (3.1)

We now explain why the above notion of area attention matters in understanding how attention works in
masked reconstruction. Suppose now we have a sample X ~ Dj, where patch X, with p € P, ,, is masked,
i.e., p € M. Then the prediction of X, given masked input M(X) can be written as

[F(M(X); Q)]p = > gep M(X)q - attnp,q(M(X); Q)
= icvy) #i(X)vk - Attng ynp, ,(M(X); Q). (because M(X)q =0 if q € M)
Here we note that, to reconstruct the original patch X, = 2., (X)Vk,m, the transformer F' not only needs

to identify and focus on the correct area Py, with the area attention score Attny, .p, .., where the same
feature lies, but must also prioritize attention to the unmasked patches within this area. This specificity is

denoted by the attention score Attny, ,ynp, ., @ requirement imposed by masking operations. To further
explain the differences between these two types of attention, we introduce the following definition, which is
helpful in our proofs and captures the major novelty of our analysis that differentiates from those in [JSL22].

Definition 3.1. (Attention correlations) Let p,q € P. We define two types of attention correlations as:
1. Feature-Position (FP) Correlation: ®p_,y, . = ej Qug.m, k € [K] and m € [Ni];
2. Position-Position (PP) Correlation: Tp_q == engq, Vp,q € P;

Due to our (zero) initialization of Q(®), we have @éolm,ﬂ,m =1V, =0

The importance of the FP correlation ® and the PP correlation T defined above can be seen from how
they determine the area attention scores as follows. Given a masked input M(X), for the attention of area
Pr.m, it holds that

—_~—

Attnpp,  (M(X);Q)oc > efrrmemtlemag 3" Teoa, (3.2)
qEPr,m U qG'Pk)mﬁM

where the first term on the RHS is proportional to Attng_,ynp, ,,(M(X); Q). Apparently, the attention
scores are balanced by the relative magnitude between Qpﬁvkvm' and YTp_.q, and it is easy to note that
learning ®p_,,, ,, would reach a lower final loss in the reconstruction objective (illustrated in Figure 2).
Hence, understanding how the model trains and converges towards accurate image reconstruction can be
achieved by examining how the attention mechanism evolves, especially how these two types of attention



correlation changes during training. To present the results with simpler notations, we further define the
unmasked area attention as follows:

—_~—

Attnpp, , (M(X); Q) = Attng ynp, ,, (M(X); Q),

and we also abbreviate Attn,_,p,  (M(X); Q®) and attn,_,q(M(X); Q®)) as Attn!”) _and attnll, .

pﬁ'PM

3.1 Significance of the Feature-Position Correlation

The construction of attention correlation provides a framework where the transformer could attain a
certain locality through learning the FP correlation, which is a meaningful generalization on top of prior
works [JSL22, PZS22]. Below we further discuss the significance of FP correlation by highlighting a notable
gap in existing theoretical studies of transformers: a lack of characterization of the process in which different
features in a multi-patch input are learned to be correctly associated by transformers. We point out important
cases where the prior works were unable to address.

Can pure positional attention explain the transformer’s ability to learn locality? [JSL22]
presented a theoretical explanation of how ViTs can identify spatially localized patterns by minimizing the
supervised cross-entropy loss with gradient descent. Their analysis focused on a spatially structured dataset
equivalent to our data settings when there is a single cluster (K = 1), without distinguishing the global and
local features. Due to their data assumption where patch-feature associations are invariant, the optimal
attention mechanism can depend solely on the positional encodings. More specifically, the optimal attention
from patch X, to Xq can rely on only eg Q(t)eq (the PP correlation in our setting). They show that ViTs
can learn the so-called “patch association”, i.e. egQ(t)eq is large for Xy coming from the same area as Xp,
but the association is determined by the positions of patches in an absolute manner. Such an assumption of
invariant patch associations is often unrealistic for vision datasets in practice, as different features like shapes
and textures are usually of different spatial structures, which requires different patch association patterns to
extract and aggregate. Clearly, a cube-shaped building requires a different attention pattern to a bird inside
the woods. Therefore, when various patterns appear in the data distribution (e.g., in our settings with more
than one cluster K > 1), relying solely on positional correlations is insufficient. This highlights the necessity
of examining feature-position correlations, which have considerable value in a more generalized setting, for a
deeper understanding of the local representation power of transformers.

Can theories of MIM without positional encodings be enough to explain its power? The
theoretical work [PZS22] analyzed the feature learning process of MIM pretraining with CNN architectures,
without any patch-level positional structure in the network. The main implication of their theoretical result
is that the trained CNNs provably already identify all discriminative features during MIM’s pretraining.
However, leaving out ViTs which is the dominant architecture in MIM suggests a gap between theory
and practice. Moreover, recent works have suggested that the adoption of transformers is not only for
the convenience of engineering. Studies like [PKH'23, WHX 22| reveal the distinct advantages of MIM
through the lens of self-attention investigation, particularly its ability to learn diverse local patterns and
avoid collapsing solutions. Such evidence suggests that the reason behind MIM’s success may fall beyond
what CNN-based analysis could reveal, emphasizing the importance of studying attention patterns from a
theoretical point of view.

4 Main Results

In this section, we present our main theoretical results on how transformers capture target feature-position
(FP) correlations while downplaying position-wise correlations in the training process.

Information gap and a technical condition. Based on our data model in Section 2.2, we further
introduce a concept termed the information gap to quantify the difference of significance between the global



and the local areas (cf. Assumption 2.2). Denoted as A, the information gap is formally defined as follows:
A= (1-ks)—2(1 — ke). (4.1)

Our study focuses on the regime, where A is not too close to zero, i.e. |A| = (1), which allows for cleaner
induction arguments. This condition could be potentially relaxed via more involved analysis.

Notations for theorem and proof presentations. Firstly, any variable with superscript ®) refers to
the corresponding variable at the ¢-th step of the training process. We use kx € [K] to denote the cluster
index that a given image X is drawn from. We use ay p to indicate that the index of the area p is located in
the cluster Dy, i.e., p € Py,q,,,. We further use Cp == {k € [K]:p € Py 1} and By = [K]\ Cp to denote the
clusters into which p falls in the global and local areas, respectively. To properly evaluate the reconstructing
performance, we further introduce the following notion of the reconstruction loss with respect to a specific
patch p € P:

£0(@) = 38 [t1p € MEM: @ - %] (12

Now we present our main theorem, which characterizes the global convergence of the loss function and
the attention pattern at the time of convergence.

Theorem 4.1. Suppose the information gap A € [—0.5,—Q(1)] U [Q(1),1]. For any 0 < € < 1, suppose
polylog(P) > log(L). We apply GD to train the MIM loss function given in (2.6) with n < poly(P). Then
for each patch p € P, we have

1. Lp(QT)) = L5 <ein

1 1 P
T — O(* log(P)PmaX{Q(%*1)11}(17;{5) + 710g( ))
n ne

€
iterations, where Ly, is the global minimum of patch-level reconstruction loss in (4.2).

2. Area-wide pattern of attention: given cluster k € [K], if Xp is masked, then the one-layer transformer
nearly “pays all attention” to all unmasked patches in the same area Pk q, ,, i-€.,

(1 — Attn'™) p)2 < O(e).

P—=Pk,ay,

Theorem 4.1 indicates that, at the end of the training, for any masked query patch X, in the k-th cluster,
the transformer exhibits an area-wide pattern of attention, concentrating on those unmasked patches within
the area Py q, ,, i.e., the area in which X}, is located.

Implications of the theorem. The area-wide pattern of attention at the end of training suggests that
regardless of whether a patch p belongs to a global or a local area, the FP correlation (I’p—wk,ak_p will be
learned. As we discuss in Section 3, a high position-wise correlation Tp, 4 for q € Py, 4, ,, may also contribute
to increased attention towards the area Py 4, ., which mirrors the concept “patch association” in [JSL22],
wherein the attention is solely determined by positional encoding. However, two key issues can arise: i)
such position association varies for different clusters, i.e., a; p = ai,q, which does not necessarily hold for all

k € [K]; ii) such mechanism may also inadvertently direct attention towards the undesired masked patches,
()

P—Pk,ay,
applied to the settings where data exhibit varying spatiépl structures, such as distinct feature-area associations
in our setting. Our characterization for the learning dynamics of MIM in Section 5 verifies this implication
and explicitly demonstrates that the target FP correlation will be learned eventually and all PP correlations
remain negligible.

which leads to a flawed optimization of Attn . Consequently, the analysis in [JSL22] cannot be



Note that our proof of Theorem 4.1 will differ between A under positive and negative conditions (although
they are presented in a unified way in Theorem 4.1), as the learning process for local areas exhibits distinct
dynamic behaviors under those two conditions.

5 Overview of the Proof Techniques

In this section, we explain our key proof techniques in analyzing the MIM pretraining of transformers. We
focus on the reconstruction of a specific patch X, for p € P. We aim to elucidate the training phases through
which the model learns FP correlations related to the area associated with p across different clusters k € [K].

Our characterization of training phases differentiates between whether X, is located in the global or local
areas and further varies based on whether A is positive or negative. Specifically, for A € [2(1), 1], we observe
distinct learning dynamics for FP correlations between local and global areas:

e Local area attends to FP correlation in two-phase: given k € [K], if axp # 1, then

1. @g)_wm first quickly decreases whereas all other @gLU,WL with m # 1 and Tg)_,q do not change

much;
2. after some point, the increase of <I>](;)_>U,wk takes dominance. Such @g)_n,k% will keep growing

until convergence with all other FP and PP attention correlations nearly unchanged.

e Global areas learn FP correlation in one-phase: given k € [K], if ay p = 1, the update of @g)ﬁvm will

dominate throughout the training, whereas all other CIDgka,m with m # 1 and learned PP correlations
remain close to 0.

For A € [-0.5, —Q(1)], the behaviors of learning FP correlations are uniform for all areas. Namely, all areas
learn FP correlation through one-phase: given k € [K], throughout the training, the increase of @SL%% R
dominates, whereas all other @g)_wkm with m # ai p and PP correlations Tg)_ﬂq remain close to 0.

For clarity, this section will mainly focus on the learning of local feature correlations with a positive
information gap A > (1) in Sections 5.2 and 5.3, which exhibits a two-phase process. The other scenarios

will be discussed briefly in Section 5.4.

5.1 GD Dynamics of Attention Correlations

Based on the crucial roles that attention correlations play in determining the reconstruction loss, the main
idea of our analysis is to track the dynamics of those attention correlations. We first provide the following
GD updates of @g)ﬁ%m and Tqu (see Appendix A.1.1 for formal statements).

Lemma 5.1 (FP correlations, informal). Given k € [K], for p € P, denote n = ayp, let ozg)_wkm =
%(Q)g_ﬂ,)k’m — ‘I’g)—wk,m) for m € [Ny], and suppose Xp is masked. Then

1. for the same area, ozgf)_wk‘n ~ Attng)_ﬂ)k .

® .
(1-Awnl )

2. if k € By, for the global area,
t t t t t
al),,,  ~-Attn , . <Attn§))ﬁpk,1 (1 - Attn;)_)ml) +Attnl) (1 - Attn;)_mkm> > ;
3. for other area m ¢ {n} U {1},

2
~ *) (t) () ®
ail,,, .. ~Attn o (]1 {n#1} (Attnp_mm) — (1 — Attnp_ﬂ%n) Attnp_ﬂ,k,n)

10



From Lemma 5.1, it is observed that for p € Py ,,, the feature correlation @SLvm exhibits a monotonically

increasing trend over time because aSka:n > 0. Furthermore, if n > 1, i.e., Py, is the local area, @g)ﬂym

will monotonically decrease.
Lemma 5.2 (PP attention correlations, informal). Given p,q € P, let B}(,Zq = (ng,}l) — TSLq), and

(t)
k.p—q’

1
n
suppose Xp is masked. Then Bpﬁq = Zke

2
t t
1. ifagp = apq =1, Bk poq attn&,)_,q (1 — Attn;)_ﬂ,k ) ;

where b’k poa satisfies

2. if k € BpNCq, where app =n > 1 and ag,q = 1:
B o~ —attn{®, (AttnSLP ( ~ Attn) ) +Attnl) ( ~ Attnl) ) );
3. if apqg =m ¢ {n} U {1}, where arp =n,

2
8 ~attnl?, - <]l{n7é1} (Attnl) 5, ) = (1- Attnl) ;) Aten )

Based on the above gradient update for Tg)_ml, we further introduce the following auxiliary quantity

Tg)p . which can be interpreted as the PP attention correlation “projected” on the k-th cluster Dy, and
will be useful in the later proof.
T(Hl) o T(t

k.p—a ™ T k,p—q

We can directly verify that T&Hq = Eke[K] T,(C )p%q

+ ﬁk poqe  With T

k,p—q

=0. (5.1)

The key observation by comparing Lemma 5.1 and 5.2 is that the gradient of projected PP attention 5,?:) Sa

(t)
Attnpﬁpk -

(1=7)Ck,ay,
will show that the interplay between the increase of @SLD,CYH and the decrease of @SLW determines the
learning behaviors for the local patch p € Py, with n > 1, and which effect will happen first depends on the
initial attention, which is also determined by the value of information gap A.

is smaller than the corresponding FP gradient ag)ﬁvkyak . In magnitude since attng_>q ~ . We

5.2 Phase I: Decoupling the Global FP Correlations

We now explain how the attention correlations evolve at the initial phase of the training to decouple the
correlations of the non-target global features when p is located in the local area for the k-th cluster. This
phase can be further divided into the following two stages.

Stage 1. At the beginning of training, @f,lwk = T(O) _q = 0, and hence attnﬁ,l)q = for any q € P,

which implies that the transformer equally attends to each patch. However, with high probablhty, the
(0)

number of unmasked global features in the global area Py ; is much larger than others. Hence, Attnp p ., =

MRl > Q(prkes) > O(prke) = Attnl)
1mmed1ately obtain

for m > 1. Therefore, by Lemma 5.1 and 5.2, we

(0) _ 1 (0) _ 1 .
® apliy, = —O| prr=ny |, Whereas Opsvga, | = O sy )i

e all other FP correlation gradients agi%m with m # 1, a; p are small;

e all projected PP correlation gradients 61(;,)2) _,q are small.

Since A = (1 — ks) — 2(1 — k) > Q(1), it can be seen that @g)ﬁukvl enjoys a much larger decreasing rate
initially. This captures the decoupling process of the feature correlations with the global feature vy ; in the
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global area for p. It can be shown that such an effect will dominate over a certain period that defines stage 1

of phase I. At the end of this stage, we will have ‘I)S)_WM < —Q(log(P)), whereas all FP attention correlation

(®)

hpsq Stay close to 0 (see Appendix C.1).

q)gka,m with m > 1 and all projected PP correlations Y

During stage 1, the significant decrease of the global FP correlation @g)_,%l leads to a reduction in the

attention score Attng)_ﬂ,m. Meanwhile, attention scores Attns)_mkw (where m > 1) for other patches

remain consistent, reflecting a uniform distribution over unmasked patches within each area. By the end of

stage 1, Attng)ﬁpk , drops to a certain level, resulting in a decrease in |a§ka,1| as it approaches ag)ﬂvkyn,

which indicates that stage 2 begins.

Stage 2. Soon as stage 2 begins, the dominant effect switches as |ag)_w,€11\ reaches the same order of

magnitude as ozl()t)_wk,ak . The following result shows that @SLU,C,% , must update during stage 2.

Lemma 5.3 (Switching of dominant effects (See Appendix C.2)). Under the same conditions as Theorem 4.1,
for p € P, there exists Th, such that at iteration t =Ty + 1, we have

a. @ﬁ,@ﬁ?ﬂk‘p > Q (log(P)), and @é@t:}l = —0O(log(P));

b. all other FP correlations @SLUW with m # 1, ay p are small;
(t)

kp—sq OT€ small.

c. all projected PP correlations T

Intuition of the transition. Once @SLW decreases to —% log(P), we observe that |a§f)_wk,1| is approxi-

mately equal to aSLi,k,% . After this point, reducing @QLUM further is more challenging compared to the

increase in @SLU,CY% . To illustrate, a minimal decrease of @SLWJ by an amount of % log(P) will yield
O
ap%‘ljk n

|a§vak,1| < O(—pooos™). Such a discrepancy triggers the switch of the dominant effect.

5.3 Phase II: Growth of Target Local FP Correlation
Moving beyond phase I, FP correlation @SLU,CY% . within the target local area p already enjoys a larger

gradient O‘g)—”’mk.p than other ‘I)g)—wk,m with m # aj p and all projected PP correlations T(t)

kp—q- We can

show that the growth of @SLU,C,% . will continue to dominate until the end of training by recognizing the
following two stages. '

Rapid growth stage. At the beginning of phase II, ag)_wk ep is mainly driven by Attng)_ﬂ,k since
Jag, akp
1-— Attns)_ﬂ;k,uk)p remains at the constant order. Therefore, the growth of (I)I(Jt)_)vk,akp naturally results in

(t)

a boost in Attn” , thereby promoting an increase in its own gradient ap-;., ,, , which defines the
g

P—Pk,ay,
rapid growth stage. On the other hand, we can prove that the following gap holds for FP and projected PP
correlation gradients (see Appendix C.3):

e all other FP correlation gradients ag)_wkm with m # ay p are small;
(t)

kpsq A€ small.

e all projected PP correlation gradients (3

Convergence stage. After the rapid growth stage, the desired local pattern with a high target feature-
position correlation @SLU,C,% . is learned. In this last stage, it is demonstrated that the above conditions

for non-target FP and projected PP correlations remain valid, while the growth of @g)ﬁ%ak . starts to

decelerate as @8)%%%) reaches ©(log(P)), resulting in Attns)_ﬂ,km ~ Q(1), which leads to convergence (see
Appendix C.4).
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5.4 Learning Processes in Other Scenarios

In this section, we talk about the learning process in other settings, including learning FP correlations for the
local area when the information gap is negative, learning FP correlations for the global area, and failure to
learn PP correlations.

What is the role of positive information gap? As described in stage 1 of phase 1 in Section 5.2,

the decoupling effect happens at the beginning of the training because aglm > ag)lwk’ak . attributed

to A > Q(1). However, in cases where A < —Q(1), this relationship reverses, with agivk’l becoming

significantly smaller than O‘g)ln)k,ak . Similarly, other FP gradients ozf,ol,q,kym with m # 1, ay,p and all the

projected gradients of PP correlation Bf)%q are small in magnitude. Consequently, @SLU,CY% , starts with a

larger gradient, eliminating the need to decouple FP correlations for the global area. As a result, training

skips the initial phase, and moves directly into Phase II, during which @g)ﬁvk’ak . continues to increase until

it converges (see Appendix D).

Learning FP correlations for the global area. When the patch X, is located in the global area of
cluster k, i.e., ayp = 1, the attention score Attnfbolﬂ%1 directed towards the target area Py ; is initially
higher compared to other attention scores due to the presence of a significant number of unmasked patches in
the global area. This leads to an initially larger gradient aé,ol%ak . Such an effect is independent of the
value of A. As a result, the training process skips the initial phase, which is typically necessary for the cases

where ay p > 1 with a positive information gap, and moves directly into Phase II (see Appendix E).

All PP correlations are small. Integrating the analysis from all previous discussions, we establish that for
every cluster k € [K], regardless of its association with Cp (global area) or By (local area), and for any patch

Xq with q € P, the projected PP correlation T](:)p _,q Temains nearly zero in comparison to the significant
(t)

changes observed in the FP correlation, because the gradient g,
overall PP correlation Tg)_ml = Zle T,(;)p_)q
K =0(1).

q 18 relatively negligible. Therefore, the

also stays close to zero, given that the number of clusters

6 Experiments

Previous studies on the attention mechanisms of ViT-based pre-training approaches have mainly utilized
a metric known as the attention distance [DBK™20]. Such a metric quantifies the average spatial distance
between the query and key tokens, weighted by their self-attention coefficients. The general interpretation is
that larger attention distances indicate global understanding, and smaller values suggest a focus on local
features. However, such a metric does not adequately determine if the self-attention mechanism is identifying
a unique global pattern. A high attention distance could result from different patches focusing on varied
distant areas, which does not necessarily imply that global information is being effectively synthesized. To
address this limitation, we introduce a novel and revised version of average attention distance, called attention
diversity metric, which is designed to assess whether various patches are concentrating on a similar region,
thereby directly capturing global information.

Attention diversity metric, in distance. This metric is computed for self-attention with a single head
of the specific layer. For a given image divided into P x P patches, the process unfolds as follows: for each
patch, it is employed as the query patch to calculate the attention weights towards all P? patches, and those
with the top-n attention weights are selected. Subsequently, the coordinates (e.g. (i,7) with 4,j € [P]) of
these top-n patches are concatenated in sequence to form a 2 x n-dimensional vector. The final step computes
the average distance between all these 2n-dimensional vectors, i.e., P? x P? vector pairs.
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Attention Diversity Metric, in distance
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Figure 3: Attention Diversity Metric: We examined the last layer of ViT trained by MIM (MAE), contrastive
learning (MoCo v3), non-contrastive learning (DINO), and supervised learning (DeiT). The results show that the MIM
model excels in capturing diverse feature-position correlations. This capability leads to a strong focus on locality,
distinguishing it from other models that emphasize uniform global information and exhibit less attention diversity.

Setup. In this work, we compare the performance of ViT-B/16 encoder pre-trained on ImageNet-1K [RDS ™ 15]
among the following four models: MIM model (MAE), contrastive learning model (MoCo v3 [CXH21]), other
self-supervised model (DINO [CTM*21]), and supervised model (DeiT [TCD*21]). We focus on 12 different
attention heads in the last layer of ViT-B on different pre-trained models. The box plot visualizes the
distribution of the top-10 averaged attention focus across 152 example images, as similarly done in [DBK™20].

Implications. The experiment results based on our new metric are provided in Figure 3. Lower values of
the attention diversity metric signify a focused attention on a coherent area across different patches, reflecting
a global pattern of focus. On the other hand, higher values suggest that attention is dispersed, focusing on
different, localized areas. It can be seen that the MIM model is particularly effective in learning more diverse
attention patterns, setting it apart from other models that prioritize a uniform global information with less
attention diversity. This aligns with and provides further evidence for the findings in [PKH™23].

7 Additional Related Work

Empirical studies of transformers in vision. A number of works have aimed to understand the
transformers in vision from different perspectives: comparison with CNNs [RUK'21, GKB*22, PK22],
robustness [BCG 21, PC22|, and role of positional embeddings [MK21, TK22]. Recent studies [XGH"23,
WHX 22, PKH"23] have delved into ViTs with self-supervision to uncover the mechanisms at play, particu-
larly through visualization and analysis of metrics related to self-attention. [XGHT23] compared the MIM’s
method with supervised models, revealing MIM’s capacity to enhance diversity and locality across all ViT
layers, w which significantly boosts performance on tasks with weak semantics following fine-tuning. Building
on MIM’s advantages, [WHX 22| further proposed a simple feature distillation method that incorporates
locality into various self-supervised methods, leading to an overall improvement in the finetuning performance.
[PKH"23] conducted a detailed comparison between MIM and contrastive learning. They demonstrated that
contrastive learning will make the self-attentions collapse into homogeneity for all query patches due to the
nature of discriminative learning, while MIM leads to a diverse self-attention map since it focuses on local
patterns.

Theory of self-supervised learning. A major line of theoretical studies falls into one of the most
successful self-supervised learning approaches, contrastive learning [WL21, RSY 21, CLL21, AKK*19], and
its variant non-contrastive self-supervised learning [WL22, PTLR22, WCDT21]. Some other works study the
mask prediction approach [LLSZ21, WXM21, LHRR22], which is the focus of this paper. [LLSZ21] provided
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statistical downstream guarantees for reconstructing missing patches. [WXM21] studied the benefits of head
and prompt tuning with MIM pretraining under a Hidden Markov Model framework. [LHRR22] provided a
parameter identifiability view to understand the benefit of masked prediction tasks, which linked the masked
reconstruction tasks to the informativeness of the representation via identifiability techniques from tensor
decomposition.

Theory of transformers and attention models. Prior work has studied the theoretical properties of
transformers from various aspects: representational power [YBRT19, EGKZ22, VBC20, WCM?22, SHT?24a],
internal mechanism [TLTO23, WGY21], limitations [Hah20, SHT24b], and PAC learning [CL24]. Recently,
there has been a growing body of research studying in-context learning with transformers due to the
remarkable emergent in-context ability of large language models [ZZYW23, VONR 23, GRST23, ACDS23,
7ZFB23, HCL23, NDL24, LWL"24]. Regarding the training dynamics of attention-based models, [LWLC23]
studied the training process of shallow ViTs in a classification task. Subsequent research expanded on this by
exploring the graph transformer with positional encoding [LWM™23] and in-context learning performance of
transformers with nonlinear self-attention and nonlinear MLP [LWL™T24]. However, all of these analyses rely
crucially on stringent assumptions on the initialization of transformers and hardly generalize to our setting.
[TWCD23] mathematically described how the attention map evolves trained by SGD but did not provide
any convergence guarantee. Furthermore, [HCL23] proved the in-context convergence of a one-layer softmax
transformer trained via GD and illustrated the attention dynamics throughout the training process. More
recently, [NDL24] studied GD dynamics on a simplified two-layer attention-only transformer and proved that
it can encode the causal structure in the first attention layer. However, none of the previous studies analyzed
the training of transformers under self-supervised learning, which is the focus of this paper.

8 Conclusion

In this work, we study the feature learning process of MIM with a one-layer softmax-based transformer. Our
key contribution lies in showing that transformers trained with MIM exhibit local and diverse patterns by
learning FP correlations. To our knowledge, our work is the first in analyzing softmax-based self-attention
with both patch and position embedding simultaneously. Our proof techniques feature novel ideas for phase
decomposition based on the interplay between feature-position and position-wise correlations, which do not
need to disentangle patches and positional encodings as in prior works. We anticipate that our theory can be
useful for future studies of the spatial structures inside transformers and can promote theoretical studies
relevant to deep learning practice.
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APPENDIX: THE PROOFS

A Preliminaries

In this section, we will introduce warm-up gradient computations and probabilistic lemmas that establish
essential properties of the data and the loss function, which are pivotal for the technical proofs in the upcoming
sections. Throughout the appendix, we assume N = N and Cj, , = C), for all k € [K] for simplicity. We will
also omit the explicit dependence on X for z,(X).

A.1 Gradient Computations

We first calculate the gradient with respect to Q. We omit the superscript ‘(¢)’ and write £(Q) as L here for
simplicity.

Lemma A.1. The gradient of the loss function with respect to Q is given by

£ _ g >3 attng gM(X) ] (Xp — [F(M(X); Q)lp)-

aQ PEM q
-
M(X)p <|\7|(X)q -> attnpﬁrl\N/I(X)r>

Proof. We begin with the chain rule and obtain
oL HIF(M(X): Q)

@ - pEM 8Q
=3 3 MO0, (FMX): Q) - ) (A1)

We focus on the gradient for each attention score:

exp (I\N/I(X);,FQ(M(X)r-i-'\N/'(X)q)) ~ _ ~
M(X)p(M(X)q = M(X),)"

Oattn
P—q _ Z — — >
i) 7 (SeenMX)FQM(X),))
= attng_.q Z attng . M(X)p(M(X)q — M(X),)"

r

= attng_,M(X)p -

M(X)q — ) attn, . M(X),

Substituting the above equation into (A.1), we complete the proof. O

Recall that the quantities @SLU,W and Tgl)q are defined in Definition 3.1. These quantities are associated
with the attention weights for each token, and they play a crucial role in our analysis of learning dynamics.
We will restate their definitions here for clarity.

Definition A.2. (Attention correlations) Given p,q € P , for ¢ > 0, we define two types of attention
correlations as follows:

1. Feature Attention Correlation: (I)g)—wkm = egQ(t)vk’m for k € [K] and m € [N];

2. Positional Attention Correlation: T, = ep QWeq
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By our initialization, we have @LOLD,W =T Lq =0.

Next, we will apply the expression in Lemma A.1 to compute the gradient dynamics of these attention
correlations.
A.1.1 Formal Statements and Proof of Lemma 5.1 and 5.2

We first introduce some notations. Given r € U, for p € P, k € [K]| and n € [N] define the following
quantities:

TP = M(X), (Xp — [F(M(X);Q)]p)

.
Pk = <|\7|(X)r -y attnp_,w|\~/I(X)w> Vkon

weP

-
KP9 .= < Z attnp_>W )w> eq

weP

Lemma A.3 (Formal statement of Lemma 5.1). Given k € [K], for p € P, denote n = ay, p, let al(,t)_m,c,m =
(q)g_ﬂ,)k I ‘I’g)—wk,m) for m € [Ny], then
a. form=mn,

(t)
aP—Wk

=E|1{p € M, kx = k}Attn")

P—Pkn

3 ( — Attnl) ) +§nz 2 (Attng)_ﬂ;k )2 ];

b. for m #mn,

2
. []l{p € M kx = k}Attny) < S 2, (Attng)_ﬂ)k ) -

#m,n

(zmz ( — Attn{) ) Attnl) 423, (1 — Attnl ) Attn)) ) )] :

Proof. From Lemma A.1, we have

oL
ag)—mk,m = e;(—@)vk’m
=E[I{p € M} attny,_,,JP - IP*"]
rel
=E[l{p € M, kx =k} Z attng_,,JP - Pkm]

rel

where the last equality holds since when kx # k, IP*™ = 0 due to orthogonality. Thus, in the following, we
only need to consider the case kx = k.

Case 1: m =n.
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e For r € U NPy y, since vy s L vgp for n' #n, and vy, L {eq}qepr we have

P _ T
= — E attn
n > >
Jr Z7ka7 ZnVk,n p—q<nUk,n
qEL[ﬁPk_ﬂ

.2
~ 22 (1 Attng )

koo T _

IPP™ = (zpvpp — E attng g2, Vkn) Vkn = J2/2n
qEUNPr n

e Forr e U NPy, withn' #n

.
JP = 20V | ZnVkn — E attng_,q 2, Vg n/
qEUﬁ'PkYn/

= —22, Attn,_p_,

If’k’" = | 2p/Vpp — E attng_q2nVkn Vi
qQEUNPy n

= —zpAttng_,p, |

Putting it together, then we obtain:

oL
e;(—@)vk’n =E [ﬂ{{p e M kx = k}}AttnSLPk,n .
3 ®) 2 > ®) 2
z, (1 — Attnpﬁpkm’> + Z 25 %n, (Attnp‘)'Pk,a)
a#n
Case 2: m # n. Similarly
e ForrcUNPy,
JP = znv,;':n ZnVkn — Z attngq2nVkn
qQEUNPk,n
= 2727,(]- - Attnpﬁpk,n)
T
I}f’k'm = | ZnVkn — Z attng ,q2mVkm Vk,m
qEL[ﬁPk,m
= 7ZmAttIlp_>fpk_Ym
e Forr e U NPy m
JP = zmv,;':m ZnVk,n — Z attngngmvk’m
qQEUNPr,m

_ 2
= —ZmAttl’lp*)pk’m
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koo t
1P = | 2mVk,m — g attng,)_,qzmvhm Vk,m
qEZ/lﬂ'PkTm

= zn(1 — Attnp_p, )

e ForrcUNPyq, aF#n,m

-
JP = 2405 4 | 20V — E attnéquavk’a
qeumpk,a

= —ngttnpﬁpk)a

p.k,n
II‘

ZaVk,a — E attng,)_,qzmvhm Vk,m
q€UNPr,m

= 7ZmAttIlp_>7>k7m

Putting them together, then we complete the proof.

0, = 1 (D
n

Lemma A.4 (Formal statement of Lemma 5.2). Given p,q € P, let fpliq = p—a) p%q)), then

glq Z ﬂl(cti)—m’ where ﬁ,(:i)_m satisfies

a. if app = ap.q =N,

(t)

k.p—a

2
E|1{p € M, kx = k}attn{"), (Z (Attnfj)_ﬂ;k ) +
a#n

22 ( — Attn{) ) (]l{q cu} - Attng)_)%”) )] ;

b. for arp =n#m=apq,

(t)

kp—aq

2
E|1{p € M,,kx = k}attn{®), - (Z (Attné)_mk ) -
aF#n

/N
3N
A

2 (1-Attnl) p ) Attnl) o+ 1{a €Ut Atnl) ) )] .

Proof.

oL
B8O, = e (~ o5 )eq = ElL{p € M} Y attn),, JPKP]

p—q PYoQ =~
Then we let

Bipoa = E[L{p € M.kx = k} 3 attn) PP
reu

In the following, we denote ay,p = n and ay,q = m for simplicity.
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Case 1: m=n. IfqelUNPy:

e Forr=q

-
R g attng_,wzn Uk
wclUNPy n

22 (1 - Attng_,p, )

e ForrcU NPy, andr #q

Thus

e ForrcUNPrg, a#n

a T
KP9 = (eq — (attnp_,qeq + g attnp ,wew)) eq
w#q
=1-—attny_.q.
T
JII-) = ZnVkn | #nVkn — § attng w2,V n
weUNPy n

=22 (1 - Attn,_p, )

b (er — (attnp_qeq + Z attn, ,wew)) ' eq
w#q

=
°
Q
I

= —attn,_.4

P . P4
E attng_,.JP - Kf
reUlUNPr n

= 2121 1— E attng
wWEUNPy n

— Z attng_,.attn, .4 + attng_,q
relUNPy n

=22 (1 — Attnpﬁp,c_’n)2 attnqu

-
JE = 24V 4 | 200k — g attng w2qVkq
weUNPyr o
R E attn
- a P—W
weUNPL o
a_ T
KP9 = (e, — (attnp_qeq + E attng ,wew)) eq
w#q
= —attn,_.q
Thus
P [cP:d
E attng, . JP K}

rcid
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= attny q - | 22 (1 Attnp,p, )"+ 22 (Attng_p, )’
a#n

Ifqge MnN Pk,n:

e Forr cU NPy,

.
IR = 20V | 20V — E attng w2 Vi n
WEMﬂ'Pk,n

=z (1 — Attng_p, )

KP9 = (e, — (attnp_,qeq + Z attn, wew)) eq

w#q
= —attng_.q
e ForrcUNPra, a#n
JP = 2,0 — tt
r — Zavk@ ZnVk,n attngp ,wZaVk,a
wGMﬂPkwa
2
= —z; Z attng .
weUNPyg o
T
KP9 = (e, — (attnp_qeq + Z attn, ,wew)) ' eq
w#q
= —attn,_.q
Thus
P [cP:d
E attng_,. JJP KT
reu

= attnp_q- | 22 (1— Attng,p, )" — 22 (1 - Attngp, ) + Y 22 (Attngp, )’
aF#n

Putting it together,

ﬁlg)ﬁq =E[l{p € M, kx = k}attn, .,

—z2 (1 — Attnp,p, ) 1{q e M} +22 (1 - Attnp_>7>,€,n)2 + Z 22, (Attnpﬁpk’m)2

m#n

Case 2: m # n. Similarly, if q € U NPy m:

o Forr e U NPy n,

-
P = 20V | 200k — E attng w2,V
WGMﬂPkm,

= 2 (1 — Attngp, )

KP9 = (e, — attny qeq — Y atthp wew)  eq

w#q
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= —attnp_.q
e Forr=q

T
JIP = ZmUk m | ZnVk,n — g attng ,w2zmVk,m
wWEUNPr m

_ 2
- 7ZmAttnP—>7)k,m

KPa = (eq —attn,_,qeq — Z attnp—)wew)Teq

WHEW
=1 - attny_q
e ForrcUNPrq, a#n,andr #q
JP = z.v, tt
r Zavk’a ZnVkn — attnp ,w2aVk,a
wWEUNP o

= —Zi Attnp%pkﬂ

KP9 = (e, —attnp_,qeq — Z attng swew) ' eq

w#q
= —attng_.q

Thus

Z attng_,, JP KP4

rel

= attng_,q-

2 2 2 2
—Zn (1 - Attnp—ﬂ’k.n) Attnp—ﬂ’km - ZmAttnP%Pk,m + Z “a (Attnp—ﬂjk,a)
a#n
If g e MNP
o Forr cU NPy,
JP = znv,;r’n ZnVk,n — Z attng w2 Uk n

WEMﬂ'Pkm

= zTQL(l - Attnp%pk,n)

KP9 = (e, —attnp_,qeq — Z attng swew) ' eq

w#q
= —attng_.q
e ForrcUNPrg, a#n
JP = 2,0 — tt
r — ?aVkq | #nVkn attng _,w2qVk,q
weUNPL o

= —22Attng,p, ,

KP9 = (e, — attnp qeq — Y attp wew) ' eq

w#q
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= —attnp_.q

Thus
Z attn,_,, JP KPP
reu
= attnpﬁq . —Z?L (1 — Attnp*)fpk,n) Attnpﬁfpk,n + Z 22 (Attnp*ypk’a>2
a#n
Therefore
B’(Ctj)—m =E[1{p € M,kx = k}attn,_,q-

(=22 (1 — Attng_,p, ) Attn, ,p, , — 1{q € U}z, Attn,_p, .
+ Z 22 (Attnp—ﬂpk,a)Z
a#n

O

Based on the above gradient update for Tg)_ml, we further introduce the following auxiliary quantity,

which will be useful in the later proof.

(t+1) . A~(D) (t) ; (0) _
Yypsa ™= Thpoag T MBkpoq  With Ty (=0 (A.2)
; : ()  _ (t)
It is easy to verify that YpZl,q = Zke[K] Ty

A.2 High-probability Event

We first introduce the following exponential bounds for the hypergeometric distribution Hyper (m, D, M).
Hyper (m, D, M) describes the probability of certain successes (random draws for which the object drawn
has a specified feature) in m draws, without replacement, from a finite population of size M that contains
exactly D objects with that feature, wherein each draw is either a success or a failure.

Proposition A.5 ([GW17]). Suppose S ~ Hyper (m,D, M) with 1 < m,D < M. Define up == D/M.
Then for allt >0

t2
P (]S - t) <2 - .
(18 = mpr| > ) < 20w (- gt

We then utilize this property to prove the high-probability set introduced in Section 5.1.
Lemma A.6. For k € [K] n € [N], define
Ekm (7, P) = {M: [Prn NU| = O(Cy)}, (A:3)
we have
PMe &) >1—2exp(—cni1Ch) (A.4)
where ¢, 0 > 0 is some constant.

Proof. Under the random masking strategy, given k € [K] and n € [N], Y, = [U N Py | follows the
hypergeometric distribution, i.e. Yy ,, ~ Hyper((1 — )P, Cy, P). Then by tail bounds, for ¢t > 0, we have:

t2

P[|Yim — (1= 4)C| > ] < 2exp(—m

)
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Letting t = ©(C,,), we have
P[Yk,n == G(Cn)] 2 1 — 2676"'10,”.

O

We further have the following fact, which will be useful for proving the property of loss objective in the
next subsection.

Lemma A.7. For k € [K] and n € [N], we have
P(JU N Pr.pn| =0) < exp(—cp oCh). (A.5)

where ¢, 0 > 0 is some constant.

Proof. By the form of probability density for Hyper((1 — )P, C,, P), we have

()
(0P
< ’ch = exp(_cn,OCn))~

P(lU N Pron

=0) =

O
A.3 Properties of Loss Function
Recall the training and regional reconstruction loss we consider are given by:
1 2
L(Q) =k > {p e M}[F(M(X);Q, E)]p — Xy (A.6)
pPEP
1
£6(Q) = 3E[1{p € MYI[F(M(X), B)lp — Xp?] (A7)

In this part, we will present several important lemmas for such a training objective. We first single out
the following lemma, which connects the loss form with the attention score.

Lemma A.8 (Loss Calculation). The population loss L(Q) can be decomposed into the following form:

LQ) =) Lp(Q), where

pEP

£p(Q) = 3 S E[l{p e My =k} -
k=1

2 2
2 (t) 2 (t)
Z (1 - Attnpﬁpmk’g + > (Attnp_ﬂJ

aFag,p

Proof.

Lp

—~

Q)
1

|

[1{p € M, kx = B} [[F(M(X), E)]p — Xpl”

2

I{p e M, kx =k} Z Attng p, . ZmUkim — ZagpVk,ag.p
me[N]

DN | =

K
ZE
k=1

K
Z E
k=1
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K
(i) 1 2 2
2O E|tpeMbx =k} (22, (1-Attngp,, )+ D 22 (Attngop,)
k=1

m;éak,p
where (4) since the features are orthogonal. O

We then introduce some additional crucial notations for the loss objectives.

Lp = min Lp(Q). (A8a)
low __ 1 2 L72 .
Lyt =52+ P (NP, | =0) (A.8b)
ke[K]
K ~
Lp(Q) = Z Ly p(Q), where
k=1

. 1
Lip(@) = 3B [1{p € Mokx = kM€ &y, )

sz,p ( AttnSLPL )2 + Z (AttnSLP,c )2 (A.8c)

aZak,p

Here 02 = E[Z,,(X)?]. £}, denotes the minimum value of the population loss in (A.7), and L% represents

the unavoidable errors for p € P, given that all the patches in Py 4, , are masked. We will show that Ei‘f‘”
serves as a lower bound for £, and demonstrate that the network trained with GD will attain nearly zero

error compared to ,CIP?W. Our convergence will be established by the sub-optimality gap with respect to Eg’w,
which necessarily implies the convergence to Ly (It also implies Ly, — ﬁg)w is small.)

Lemma A.9. For L} and LX" defined in (A.8a) and (A.8Db), respectively, we have LI < L% and they are
both at the order 0f®<exp (— (clP“C +1 {1 o4 Uke[K]{akvp}}CQPKS))) where c1,co > 0 are some constants.

1 .
Proof. We first prove L% < L1:

ﬁ;:Qgﬁgd§ZE ]l{pe/\/l k'X_k}

2
2, (- awnl ) + Y 2 (At )
aFag,p

> min fZE I{p € M,kx =k} L{|U N Pr,a,,| = 0} -

2
zgkp( Attnélpk ) + Z zizak,p (AttnSLPk )

aF#ak,p

Notice that when all patches in Py, 4, , are masked, Attn'®

PPy = 0. Moreover,

2
(1) L
Y. cmAttn >

m#ag,p
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by Cauchy—Schwarz inequality. Thus

K 2

1 L .
Ly > 52(03 + 5 1)1?(\un73k,ak,p\ =0) = Lov.
k=1

ﬁlsw = @(exp (— (clp"“—f—]l {1 & Uke[K]{ak’p}}CQPNS))) immediately comes from Lemma A.7. Furthermore,
we only need to show L} = O(exp (— (aPr+1{1¢ Uke[K]{ak’p}}CQPHS))). This can be directly obtained

by choosing @ = ol; for some sufficiently large ¢ and hence omitted here. O

Lemma A.10. Given p € P, for any Q, we have

Lp(Q) < Lp(Q) — £ < £5(Q) + O exp (= (esP™ + 1 {1 ¢ Upeps{anp} JeaP™) ) ).
where cg,cq > 0 are some constants.

Proof. The lower bound is directly obtained by the definition and thus we only prove the upper bound.

Lp(Q) = Lp(Q)

—~

ZK:E 1{peMhx=kMeg, 1} (zg (1 _ Attng)ﬁpk’ak,p)Q + 3 2 (Attng)ﬁpk’a)Q)
k=1

aFay,p

DN =

K
<Y UBMEE ., )
P
k=1

< O(exp ( — (esP™ +1{1¢ UkE[K]{akyp}}czlP“"’))).

where the last inequality follows from Lemma A.6.

B Overall Induction Hypotheses and Proof Plan

Our main proof utilizes the induction hypotheses. In this section, we introduce the main induction hypotheses
for the positive and negative information gaps, which will later be proven to be valid throughout the entire
learning process.

B.1 Positive Information Gap
We first state our induction hypothesis for the case that the information gap A is positive.
Induction Hypothesis B.1. For ¢t < T, given p,q € P, for k € [K], the following holds

a. @g)ﬁvkw%ap is monotonically increasing, and @g)%%%p € [0,0(1)];

b. if ap p # 1, then @g)ﬁvkvl is monotonically decreasing and @SLW € [-0(1),0];

c. [®5 0, | = O(prtss) for m ¢ {1} U {arp};
d. for q # p, Tsq = O(5);
e. Tphp = O(4).
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B.2 Negative Information Gap

Now we turn to the case that A < —Q(1).

Induction Hypothesis B.2. For ¢t < T, given p,q € P, for k € [K], the following holds
a. @g)_)q,ky%p is monotonically increasing, and <I>§,t)_>vk‘%p € [0,0(1)];

b. if agp # 1, then @SLW is monotonically decreasing and @SAW € [-0(5X%),0];

= 5(131%) for m ¢ {1} U{arp};

forq#p7 %q_O(Pmb)'

[N

o

.

e Tphp =0(3).

B.3 Proof Outline

In both settings, we can classify the process through which transformers learn the feature attention correlation
@SL% ok into two distinct scenarios. These scenarios hinge on the spatial relation of the area p within the
context of the k-th partition Dy, specifically, whether p is located in the global area of the k-th cluster, i.e.
whether a; p = 1. The learning dynamics exhibit different behaviors of learning the local FP correlation in
the local area with different A, while the behaviors for features located in the global area are very similar,
unaffected by the value of A. Therefore, through Appendices C to E, we delve into the learning phases and
provide technical proofs for the local area with A > Q(1), local area with A < —Q(1) and the global area
respectively. Finally, we will put this analysis together to prove that the Induction Hypothesis B.1 (resp.
Induction Hypothesis B.2) holds during the entire training process, thereby validating the main theorems in
Appendix F.

C Analysis for the Local Area with Positive Information Gap

In this section, we focus on a specific patch p € P with the k-th cluster for k € [K], and present the analysis
for the case that X is located in the local area for the k-th cluster, i.e. ajp > 1. We will analyze the case
that A > Q(1). Throughout this section, we denote ay, p, = n for simplicity. We will analyze the convergence
of the training process via two phases of dynamics. At the beginning of each phase, we will establish an
induction hypothesis, which we expect to remain valid throughout that phase. Subsequently, we will analyze
the dynamics under such a hypothesis within the phase, aiming to provide proof of the hypothesis by the end
of the phase.

C.1 Phase I, Stage 1

In this section, we shall discuss the initial stage of phase I. Firstly, we present the induction hypothesis in
this stage.
We define the stage 1 of phase I as all iterations ¢ < T3, where

1 /A
T; £ max {t P, > -5 (2 — 0.01) log(P)}.

We state the following induction hypotheses, which will hold throughout this period:
Induction Hypothesis C.1. For each 0 <¢ < T}, q € P\ {p}, the following holds:

a. <I>1(Dt)_wkm is monotonically increasing, and @gkam ( 770130010;% P)>],
b. ‘I’glwk,l is monotonically decreasing and @ﬁLT,M €l-¢ (5 —0.01) log(P),0];
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(t) _ot)

N8| = O( T for g £ 1
d. T,(f)p_,q = O(Lgé;") for ay.q =n, |T1(:,)p—>p| = O<4¢g)ﬂvk’";¢g)%ka’l);
‘Tl(ct)p—m‘ = O(l(bgéfm') + O(‘b(ptlvk "P(I)gL% 1) for ar,q = 1;
L = O(M) for aj.q # 1,n.

C.1.1 Property of Attention Scores

We first introduce several properties of the attention score if Induction Hypothesis B.1 and Induction
Hypothesis C.1 hold.

Lemma C.1. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.1 hold at iteration t <17,
then the following holds

1-Attnl) ,  — Attnl) > Q(1);
2. IfM € &, Attn) = @(p1 ) ;
3. Moreover, if M € & 1, we have Attng)_ﬂ;k1 = Q(m) )
4. Forqe M N (PinUPr1), attnglq = 0(1 Attngl}pk Iz A )

Lemma C.2. Forn > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.1 hold at iteration t <17,
then for m # n, 1, the following holds:

® 1-Attny) o, —Attnl) )
1. For any q € Pg,m, attnplq < O( 7 )
1—Attn(? —Attn'?,
2. Moreover, Attn;LP < O( LAESN P2 Pl )

The above properties can be easily verified through direct calculations by using the definition in (2.4) and
conditions in Induction Hypothesis C.1, which are omitted here for brevity.

C.1.2 Bounding the Gradient Updates for FP Correlations

Lemma C.3. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.1 hold at iteration
0<t<Ty, then O‘g)—wk,n > 0 and satisfies:

e =0(F) = (72 )

Proof. By Lemma 5.2, we have

L
2
—E |1{kx =kp € M}Attnl)p, - (25 (1 Aten), ) > 2z (Attnl) )

L m#n

2
=E |U{kx =k Exn N € MYAbIRG) 5 - (22 (1 Attn) ) > 2z (Attnl) )

m#n
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2
+E [y =k &, Np € MpAtenD, o |20 (1- Aten )+ > 22z, (At )
m#n

SP(M S Ekm)

P—Pk,n

2 2
B |1k = bp e MpAtY, |28 (1- vl )+ 3 s (Al ) [

m#n

+0(1)-P(M e & ,,)

< O(%) + O(exp(—cn,1Cn))

where the second inequality invokes Lemma C.1 and Lemma A.6, and the last inequality is due to
exp(—cn1Ch) < %. Similarly, we can show that al(,t)ﬁvk,n > Q(%)
O

Lemma C.4. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.1 hold at iteration
0<t<Ty, then ag)_wm < 0 and satisfies

1 1
t —
ol | 2 Q(m) = Q(m)

Proof. We first single out the following fact:

> ® ® 3 ® ® > ® 2
— a2t (1- At p Y Attel) 23 (1- At ) At o+ Y 22 (Attn )
a#l,n
2 (®) 2 (t) 2 (®) () (®)
<z (glé&f}; zgAttn, ", —z Attng o, — 2 Attnp_)Pm) (1-Attn,”,p ~—Attn," 5 )
=—z1(1— Attn” — Attn'? ) 22 Attn'" + 22Attn? — max z2Attn") (C.1)
- 1 P—Pk,n P—Pr,1 n P—Pk,n 1 P—Pr1 atln @ P—Pk,a | * ’

Therefore, by Lemma 5.1, we have

Pﬁpk,l.

o),  <E []l{kx =k, &1 Np € M}Attn”

P—Pi,n

<21(1 — Attn}) , — Attn)) ) <23Attn(” +23AttnY | - max ngttnfprm)) ]

+E |L{kx = k&, Np e MPAttn() - 3" 22z, (Attnggpm)

a#l,n

o)) H0() B(M e )

P2x (5= —0.01)

1 1
= ‘Q<m) = -5

where the second inequality invokes Lemma C.1 and the last inequality comes from Lemma A.6. O

<P(M € &) - (— (1) - 9

Lemma C.5. At each iteration t < Ty, if Induction Hypothesis B.1 and Induction Hypothesis C.1 hold, then
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for any m > 1 with m # n, the following holds

(t) (t) (1) (t)

|a(t) l <0 Ap>vg,n — Xpovgn 1o} Op>vp,n — Ap—ug
P—Vk,m!| — N - Pl—rs :

Proof. By Lemma 5.1, for m # n, we have

2
o, <E|U{kx =kpe MiAttnY o | S 22z, (Attng)_ﬂ)k ) (C.2)
aF#Em,n
t t t
—ag)_wk CS<E|l{kx =k,p€ /\/I}A’ctni,)_ﬂ,hm : (zmz ( Attnfj)_ﬂ)k ) Attn;)_mk
t
(1 — Attn ) Attn)) m) ] (C.3)
For (C.2), we have
S
2
<E|1{kx =k & N Np € MY o | S0 222, (Aten]) )
aF#m,n
2
+E |1{kx =k, (Ex1NEn) NP E M}Attnpﬂpk : Z 22 2m (Attn;LPk )
aF#m,n
— Attn” , — Attn'”
<E|1{kx =k E1NEpnNp E M}O( ‘H”N P Pen

(zlzm (Attnf;kal) +0(]1V)>}+0() P(M € (1 N Ern)©)

§O<mp%)+0( 1)-P(M € (Ek,1 N ERm)°)

‘agka,1|
<0(pr)

where the second inequality is due to Lemma C.2, the last inequality follows from Lemma C.4 and Lemma A.6.
On the other hand, for (C.3), we can use the similar argument by invoking Lemma C.2 and Lemma C.3,
and thus obtain

(®)

gO(O‘p*”’“").

t
NG, P,

P—Vk,m

Putting them together, we have

(t) (®)

Op sy — Op
|O[ ). | S O P—Vk,n P—Vk,1 )
P k,m Pl—"‘is
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C.1.3 Bounding the Gradient Updates for Positional Correlations
Lemma C.6. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.1 hold at iteration
0<t<T, then for q € P\ {p} and ar.q = n, we have ﬁk poq = 0 and satisfies:

(t)
(t) _ ap—>7)k n
Apa=0(7 )

*)

)
+ o o
Furthermore, we have |ﬁ,§ L—>p| = O(M)

Proof. By Lemma, 5.2, for q € Py, with q # p, we have

(t) _
ﬂk,p—ml -

G (1) ?
E|1{kx = k,p € M,qeUlattnl),- (22 (1-Attnl)p )+ > 22 (Atenl )
m#n

Hy

+E [1{kx = k,p € M,q € M}attn?), - ( At (1 — Attnl) ))}

Hs

CE |1k kop e Mg Matnft (32 (aunl, )
m#n

Hs

Firstly, for Hy, notice that

2 2

(Co—V)H; =E |1{kx = k,p € M}Attnl) , |22 ( — Attn{) ) + > 2 (AttngLPk )
m#n

=0(al

P—Vk,n ) .

For Hs, since p,q € M, by Lemma C.1, we can upper bound attnl(;,t)_ml by O(%), thus

P—Pr,n

(t)
1 t I
—Hy <E|l{kx =k,p€ M}O(F) : ( 2Attn( : < Attné)—”’k ))} < O( p_]; g )
Further notice that Hs can be upper bounded by O(H;), putting it together, we have
B(t) _ ag)‘)'uk,n
k,p—aq Cn :
(t) _
Turn to 5y },,,, when q = p,

B = E [L{ky = k.p € Mjattnf), - (~=2Attn()

(t)
)

J2

+E ]l{kX = k,p S M}attnp_m : Z Zm (Attnglpk m)
m#n

J3
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We can bound J; in a similar way as Hy. Thus, we only focus on further bounding J3:

1—Attn'” . — Attn”
Js <E |1{kx = k,p € M}O( PP PPy ST 22 (Attn(t)

P p_)Pk,m)
‘agl)vkl
<Ol ———|.
< ( -

where the first inequality holds by invoking Lemma C.1 and the last inequality follows similar arguments as
analysis for (C.2). O

m#n

Lemma C.7. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.1 hold at iteration
0<t<Ty, then for q € P\ {p} and ar,q = 1, we have ﬂl(ﬂfi)ﬁq satisfies:

(t) -0 |ag§)‘>vk,n B agl)Uk,l 10 |as)ﬁvk,1‘
|5k,p4)q| - P + 76"1 .

Proof. By Lemma 5.2, for q € Py 1, we have

(t) _
5k7p—>q -

-k []l{kx = k,p € M,q € U}attn?)

p—a’

2 (t) ®)
ziAttn, " 5 (1 — Attny”,p

2
)22 (1- Avenl) 5 ) Atenl), — 3 22 (Atenl) g )
a#l,n

(C4)
~E |[1{kx = k,p € M,q € Mlattnl),, - (22 (1- Attn)) 5, ) Attn]) )]
G2
+E |L{kx = k,p € M,q € Mlattn®, - | S22 (Attng)ﬁpk,a)
a#n
G3
For (C.4) denoted as G, following the direct calculations, we have
(G =1)G1=06(aY,,, )
We can further bound G5 and Gj3 in a similar way as Ho and Hs in Lemma C.6 and thus obtain
Q)
Ap—vy ,
—Gy < O(%),
()
Opov
G3 < O<| p;k,1|>.
which completes the proof. O

Lemma C.8. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.1 hold at iteration
0<t<Ty, then forq € P\ {p} and n # aj q; ﬁ,(cfi)ﬁq satisfies:

®) (®)

(t) _ Ap=vp ., — Op—vgy
Bl = O( 7 )
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Proof. By Lemma 5.2, for q € Py, we have

¢
ﬁl(cyi)ﬂq =

—E [1{kx = k,p € M,q € U}attn?)

pP—q’

2
2 At 5 (1-Atenl) )+ 22 (1- At YAt~ 30 22 (At )

P—Pk,m
a#n,m
(C.5)
-E _IL{kX =k,peM,qe M}attng)_)q . (zi (1 - Attng)_mk,n) Attng)_mkm)}
I3
2
+E |1{kx = k,pe M,q € M}attnglq . Z 22 (AttnSLPk,a)
L a#n
I3
[N SR e S ey
(C.5) can be upper bounded by O(%) = O(W) = O(M>, where the
first equality holds by invoking Lemma C.5. I, and I3 can be bounded similarly as G2 and G5, which is
omitted here. O

C.1.4 At the end of Phase I, Stage 1
Lemma C.9. Forn > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.1 hold for all 0 <t <
0.98—rg
T, = O(%), At iteration t = Ty + 1, we have
T1
a. b < — L (5 —0.01) log(P);

b, AttnT1ED :o( 1 )

P—Pk,1 p—ro)+&(5-0.01)

Proof. By comparing Lemma C.3 and Lemma C.4, we have |a£f)_wk‘1| > ag)_n,k,n. Then the existence of

T = O(W) directly follows from Lemma C.4. O

C.2 Phase I, Stage 2

During stage 1, @g)ﬁvm significantly decreases to decouple the FP correlations with the global feature,
(t)
P—Pr,1’

order of O (5r5) (© (51=)). By the end of phase I, (Attng)_ﬂ,m

resulting in a decrease in Attn while other Attng)_ﬂ;]m with m > 1 remain approximately at the

)? decreases to O(prsi—z ), leading

to a decrease in aSLU,C,J as it approaches towards aSka,n. At this point, stage 2 begins. Shortly after

entering this phase, the prior dominant role of the decrease of @SLUM in learning dynamics diminishes as
|a§ka‘1| reaches the same order of magnitude as ag)ﬂyk,n.

We define stage 2 of phase I as all iterations 77 < t < T3, where

~ A .01 (1 — ks
Tl Amax{t>T1 : (p(t) 7(1)(15) < ( +00+Cl([]}€)> IOg(P)}

P—Vk,n P—Vk,1 — 2L L

for some small constant ¢j > 0.
For computational convenience, we make the following assumptions for . and ks, which can be easily
relaxed with the cost of additional calculations.

A ( 1 1 ) 0.01 0.01 < (1 — k)

S\ttt T ST o (C.62)
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L U A
1-S90-r)<(0-r)+—(5

+0.01) (C.6b)

Here ¢ is some small. We state the following induction hypotheses, which will hold throughout this period:

Induction Hypothesis C.2. For ecach Ty <t <T), q € P \ {p}, the following holds:

a. ‘I)g)—wk,n is monotonically increasing, and <I>p_>vk . €10, % log(P)];

b. (pg)—>7)k,1 is monotonically decreasing and fl)g)_wm € [—1 (£ +0.01) log(P), -% (5 —0.01) log(P)];

(t) R
. [ PpLug | = O(#) for m # 1,n;

40 _o <I>$lw” ‘ T ®0 0~ P
k.p—q O dk,q = M, | kp~>p|_ P ;

Ch

(t)

|(I>17"'Uk 1| ;tl’vk,ni(bgl’vk.l .
\Tkpﬁq\:O 07 +O # forak,qzl.,

@, O
£ T gl = O( 8= ) for ag g # 1,
C.2.1 Property of Attention Scores

We first single out several properties of attention scores that will be used for the proof of Induction
Hypothesis C.2.

Lemma C.10. if Induction Hypothesis B.1 and Induction Hypothesis C.2 hold at iteration Ty +1 <t < Tl,
then the following holds

1— Attnl), — Attn) > Q(1);

2. if M€ & n, Attng)_ypk," S [Q(P1£H5 )70(13(176;71%)(17%) )} ;

(t) _ 1 (t) _ 1 .
3. Moreover, Attnp—ﬂ’k 1 O<P(17~c)+%(%70.01)) ZfM € gk 1, we have Attnp—ﬂ’k 1 Q<P(1fnc)+%(%+o.01))’
1-Attn’ ,  —Attn),
4. forge M N (PrpnUPri), attng)_ml:O( PPk 2 e p“),

Lemma C.11. if Induction Hypothesis B.1 and Induction Hypothesis C.2 hold at iteration Ty +1 <t < 1~“1,
then for m # n, the following holds:

1—Attn® 7Attn(t)
P P
1. for any q € Pr.m, attnpﬂol < O( Eline ki );
1—Attn® 7Attn(t)
(t) PPy P— Pk, n
2. Moreover, Attnpﬁpk <O N .

C.2.2 Bounding the Gradient Updates of FP Correlations
Lemma C.12. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.2 hold at iteration
T +1<t<1Ty, then ag)_n,mL > 0 and satisfies:

1
t
él)vk n Q(Pl*ﬁs ) ’
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Proof. By Lemma 5.2, we have
a®

P—Wk n

=E [1{kx =k,p € M}Attnp_ﬂ)k 23 ( Attnp_ﬂ,k ) Z 25 %n (Attng)_}pk )2

m#n

—E | U{kx =k Exn N € MYAbERY) 5 - |22 (1 Attn) ) > 2z (Attnl) )

m#n

2
+E | 1{kx =k, &, Np e M}Attnl) |23 ( — Attnl) ) 3 22 (Attng)_ﬂ;k )
m#n

>P(M € ngL)
-E [1{kx =k,p € M}Attng/)ﬁpm . z ( AttnSka ) + Z zfnzn (Attnglpk ) ’Ekm
m¥#n
C,
> Q(—”)
- P

where the last inequality invokes Lemma C.10.
O

Lemma C.13. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.2 hold at iteration
T+ 1<t<Ty, then ag)ﬁvm < 0 and satisfies

0 1
\ p—wk 1| = (P2(1—~c)+%(a+o.02))‘
Proof. Following (C.1), we have

2
— 2122 (1 — Attn{) )Attng)_mk — 2} ( ~ Attnl) )Attnrf)_mk > 2. (Attn](:)_mk )

a#l,n
< =z (1 Attnélm - Attnglpk ) (z Attnslpk A Attni’tlpk L Ig?); ZQAttnSLPk’“)
Therefore, by Lemma 5.1, we obtain
o), <E[1{kx =k &1 np e MpAttl -
( 21(1 - Attné)—rpk - AttnSLPk )
(A, A, s At )
+E |1{kx = k&, Np e MYAttnl) o - > 23z, (Atenl) )
a#ln

1
PMe &) - (Q<1)'Q(p2(1m)JrZ’LU(ﬁJrO.Ol))) +0(1)-P(M e &)

< -0 !
= <P2(17nc)+%(A+0.02)>

where the second inequality invokes Lemma C.10 and the last inequality comes from Lemma A.6. The
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()

upper bound can be obtained by using similar arguments and invoking the upper bound for Attnp Lp,, In

Lemma C.10.

Lemma C.14. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.2 hold at iteration
Ty +1 <t <Ty, then for any m > 1 with m # n, the following holds

O‘g)—w - ag)—w
t k,n k,1
|a£))_>vk,'m| S O( Pl—ﬂs )

The proof is similar to Lemma C.5, and thus omitted here.

C.2.3 Bounding the Gradient Updates of Positional Correlations

We then summarize the properties for gradient updates of positional correlations, which utilize the identical
calculations as in Section C.1.3.

Lemma C.15. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.2 hold at iteration
T1+1StST1, then

o) s e
a. if ap,q =n and q # p, M >0;p0 = @(*pgnk’") and |ﬁr(f)| = O(——hn kL)),

k.p—a = k.p—q

(t) (t) (t)
. - (t) o ap%'uk)n_apﬂvk,l |0‘p~>vk,1|
boifarg =1, By pgl = O(——p—— ) + O~ ).

Q)

ol _a
c. if ag,q =m and m # 1,n, |5I(€2)_>q| — O(w)

C.2.4 End of Phase I, Stage 2

Lemma C.16. Induction Hypothesis C.2 holds for all iteration T; +1 <t < T, =T + O(w) , and

at iteration t = Tl + 1, we have
a. ‘I’éilt;},)n > CI(l—H.;J) log(P) :
b DULED > —(A + 200 log(P).
Proof. The existence of Tl =T + O(W) directly follows from Lemma C.12 and Lemma C.13.

. (t)
Moreover, since ap’sy, ; < 0, then

(I)(fl“rl) < (A n 001 + 81(15 H/s)) log(P) _ l(é _ 001) S (CO +Cl)(1 _ KJS) 10g(P)

P=Ukn = \ 2L L U2 U

where the last inequality invokes (C.6a). Now suppose @@Tgﬁﬁn < MU)I%(P), then <I>£,T_1>J5,€1,)1 < —(% +

0913 log(P). Denote the first time that <I>§f)_,,,k,1 reaches — (& + 2991 log(P) as T. Note that T < T} since
ag)_wm, the change of @gLUM, satisfies |04g)—>vk,1| < log(P). Then for t > T, the following holds:

1 Attn)) 5 > Q (k)

) 1
2. Attn) p | < O(ﬁ)

Therefore,

ol | <E [ﬂ{kx =k, &1 Np € M}Attn”

P—Vk,1 P—Pr,1

2 (zELAttngLPk C(1-Attn 4 2Acenl (11— Attnl) 1)) ]
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2
+E |1{kx = k,& 1 Np € M}Attn!” S Az, (Attng)_ﬂ)kﬂj

P—=Pr1
a#l,n
(t)

aP%UkJ

1

w)) + 0(1) -P(M S 51271)

t
ap%v;“l

éO(m)w(m)

Lemma C.12 still holds, and thus

(t)

(t) Xp—rvin
‘apﬁvk,1| < O( po.002 /)

Since |<I>§,T;$,},)l - (I)g)Tﬁ)vk’J > Q (log(P)), we have

(I)(fl"rl) > |(D§)T1+1) _ (D(f') | . Q(PO.OOZ) + @(T)

P—Vk,n —Vk,1 P—Vk,1 P—Vk,n

> QP2 1og(P)),

which contradicts the assumption that <I>,(,T$tk1,)n < w. O

C.3 Phase II, Stage 1

For n > 1, we define stage 1 of phase II as all iterations fl +1 <t < Ty, where
1- s
T, 2 max {t : (I)g)—mk,n < % log(P)} .

We state the following induction hypotheses, which will hold throughout this stage:
Induction Hypothesis C.3. For each Th+1<t< Ty, q € P\ {p}, the following holds:

a. @SLUM is monotonically increasing, and @SL%W, € [LJ”) log(P), % log(P)};

b. @SLU,M is monotonically decreasing and

1 /A 1 /A
® 1 o 1A .
Pyl € [ 7 (2 +0~01) log(P) ~o(1), ~ (2 0.01) log(P)],

o

o) —_p®
t Yem .
BP0 = o(w) for m # 1,m;

) ) —_p®)
_ P, _ (t) _ Pk, P2k,
—O(T”) for ag,q =n, [T |_O<+>,

k.p—p

) 'r(t)

k.,p—q

o,

(t) (t) _pt)

(t) _ |<I>p—>vk,1| (I)p—mk.y . q’p—ka o .
: ‘Tk,pﬁq‘ =0 Cy o “p for aj,q =1

@

w0, o,
£ T gl = O( 5= ) for ag g # 1.

k,p—q
C.3.1 Property of Attention Scores

We first single out several properties of attention scores that will be used for the proof of Induction
Hypothesis C.3.

Lemma C.17. if Induction Hypothesis B.1 and Induction Hypothesis C.3 hold at iteration fl +1<t< Ty,
then the following holds
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1. ifM € & p, Attng’LPk > Q(%) . Moreover, if AttnS’LPk does not reach the constant
m p=) k) o

= Q(1); otherwise, 1 — Attn!”

O = L
level, 1 — Attn P—Pron =9 (W)

P—Pk,n

(t)
2. Attnp_m L=

1—-Attn("
= ( P2 Phun ); if M € &1, we have Attn?) Q( L );

pl—re)+& (5 —0.01) P—Pk,1 p—ro)+ZL(5+0.01)

® 1-Attn(?,
3. forq € M N (Prn UPra), attnplgq = O(fm)

Lemma C.18. if Induction Hypothesis B.1 and Induction Hypothesis C.3 hold at iteration Tvl +1<t<Ts,
then for m # n, the following holds:

1—Attn®

1. for any q € Pi,m, attnﬁ,ﬁq < O(#).
1—-Attn® —Attn®
2. Moreover, Attnglp < O( Lindid B < P2 Phin )

C.3.2 Bounding the Gradient Updates of FP Correlations

Lemma C.19. if Induction Hypothesis B.1 and Induction Hypothesis C.3 hold at iteration Th+1<t< Ty,
then aqu;km > 0 and satisfies:

1 1
al®) > mi
R {Q(pu—”ff)(l—m))’g (PQ“L’—”“—“S)) }

Proof. By Lemma 5.2, we have

aplu,,
2
=E |1{kx = k,p € M}Attnl) , |23 ( — Attn}) ) + Y 2k, (Attnif)_)pk,m)
L m#n
2
=E |1{kx =k EnNp € M}Attnl) . |23 ( — Attn}) ) > 22z, (Attng)_)pk )
L m#n
2
+E [1{kx =k, &, Np € M}AttnS) o (2} ( — Attnl ) S22z, (Attng)_ﬂ)k )
m#n

zP(M S 5167”)'
E |1{kx =k (t) . (t) ®)
X P € M}Attnpﬁpk‘n 23 Attnpﬁpk Z Zi Zn Attnpﬂpk Ekn

m#n
+0(1)-P(Me 527n)

Smindo(—— Vo(— 1t
~ P(l*c%}L)(lfl‘és) PQ(ffl)(lfﬁs)

where the last inequality invokes Lemma C.17 by observing that for M € & ,,,

() ) : 1 . a1
AttanP ( Attl’lp%’P ) > min {Q (]D(I_LTUL)(I_M> Q(l),Q(l) Q <P2><(g—1)(1—f€5)> }
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Lemma C.20. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.3 hold at iteration
T, +1<t<Ty, then agLUM < 0 and satisfies

. 1 1 1
‘Oép—)'uk ‘ > min {Q (P(chL)(lns)> ’Q (P([il)(llis)> } . Q(P(17KC)+%(%70.01)>a

| I <max{o( b ).0( O )}
al max , . .
P—>'Uk P—re)t+E&(A/2-0.01) P2l—re)+ & (A—0.02)—(1- ) (1-k.)

Proof. Following (C.1), we have

2
¢ ¢ t (t (t
— 222 (1= At Y Attel) 23 (1- At ) At o+ 3 22 (Attn )
a#l,n
¢ t ¢ t ¢
—2z1(1 - AttnE)L - Attn;LP ) ( 2Attn;LP + 2] Attnélp - (glﬁ); zQAttni)LPm> .
Therefore, by Lemma 5.1, we obtain
o)., <E [ll{kx = k.&aNpeMjAttnl) -
—z(1—Attn'” . — Attn'” ) (22Attn'") .+ 22Attnl” . — max 22Attn'” ]
1 P—Pk,n P—Pr,1 P—Pk,n 1 P=Pr1 oy, e P—Pk,a
2
c t t
+E [1{kx =k, &, Np € M}Attnl) - 3 22z, (Attn;)_mk )
a#l,n
1 1 1
< —mi - - - - .
o {Q ( REGTT. m) ? <P<%—1><l—~s>> } U parrpaEmm)
where the second inequality invokes Lemma C.17 and (C.6b). Moreover,
0, | SE [n{kx = k&1 N € Np € MJALEDY
t ¢ t
(zlz (1 - Attni))%73 ) AttnLLP + 23 (1 - Attnélp ) Attnélpk 1) ]
= [1{kx = k.1 Nk NP € Miziz2Attnl) o - (1= Attnl) ) Attnl) |
+E [n{kx = k&1 NErnNp € M)z} (Attnl) )2 ( — Attn{) )}
() ()
S ap_H}k n

< max {O POk, >,O —

- <P<1'€c>+5<%0~01> P2—ro)+35(4-0.00)—(1- ) (1-k,)
where the second inequality invokes Lemma C.17. O

Lemma C.21. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.3 hold at iteration
Ty +1<t<T, for any m > 1 with m # n, the following holds

t t
|a(t) | < O(a}(i))ﬁvk,n a;ka 1 )
P—=Vk,m! — Pl—ks !

The proof is similar to Lemma C.5, and thus omitted here.

C.3.3 Bounding the Gradient Updates of Positional Correlations

We then summarize the properties for gradient updates of positional correlations, which utilizes the identical
calculations as in Section C.1.3.
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Lemma C.22. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.3 hold at iteration
Ty +1<t<Ts,, then

(t) chlwk n t) gl’“k niagl’“k 1
e Zfakq_nandq#p’ﬁkpﬁq—oﬂkpﬂq o(—=," )‘md|5n|— ( P )

O = a0, |
_ YE,n YE,1 YE,1
b if arg =1, |8 ol = (#)H)(i).

1

0 a®
c. if agq=m and m # 1,n, |5kpﬁq| —O(W).
C.3.4 End of Phase II, Stage 1
Lemma C.23. Induction Hypothesis C.3 holds for all Tl + 1<t <T5, and at iteration t = To + 1, we have

a. @gkan > (k) ”5) log(P);

b. Attn'"

P—Pi,n

(1) lf M e gk,n'
Proof. By comparing Lemma C.19 and Lemma C.20-C.23, we have aSLU,C,,L > |o¢p_>uk

the existence of Ty = fl + O(M) directly follows from Lemma C.19, where

\,Bk pﬁq| Then

A= max{(l - %)72(2 - 1)} (1= k).

The second statement can be directly verified by noticing that @g)_n,m > @ log(P) while all other
attention correlations are sufficiently small. O

C.4 Phase II, Stage 2

In this final stage, we establish that these structures indeed represent the solutions toward which the algorithm
converges.
Given any 0 < e < 1, for n > 1, define

Ts £ max {t > Ty @gka <log <c5 ((3) — 1) N) } . (C.n
€

where c5 is some largely enough constant.
We state the following induction hypotheses, which will hold throughout this stage:

Induction Hypothesis C.4. For n > 1, suppose polylog(P) > log(%), foreach To+1 <t <T%, q € P\{p},
the following holds:

a. @SLWL is monotonically increasing, and @SLW,” € [% log(P), O(log(P/e))];

b. @SLW is monotonically decreasing and @SLUM € [—% (5 +0.01) log(P)—o(1), — & (5 — 0.01) log(P)};

U\2
c. \@g)_,vk’“ = (%) for m # 1,n;
d. T}(:)pﬁq O(L:kn) for kg =N, |Tk pﬁp| — (cbgl’“kn—l;bg)_’“m);
e. \Tgi)p_)q\ = O(%) +O<%) for agq =1

B, -0,
£ [0, gl = O ) for apq # 1,1,
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C.4.1 Property of Attention Scores

We first single out several properties of attention scores that will be used for the proof of Induction
Hypothesis C.4.

Lemma C.24. if Induction Hypothesis B.1 and Induction Hypothesis C.4 hold at iteration T), o <t <T7 5,
then the following holds

LifME &y, Attnl) o =0Q(1) and (1 - Attnl )2 > O(e).
) 1-Attn() ‘ ) 1-Attn()
2. Moreover, Attnp_ﬂ,h1 = O(ﬂkwﬂ%(%f&on); if M € & 1, we have Attnp_ﬂ,k’1 = Q(P(l—m>+%(%+5-01>);

P‘”’k,n

) 1—-Attn®
3. forq € M N (Prn UPx1), attnplgq = O(#)

Lemma C.25. if Induction Hypothesis B.1 and Induction Hypothesis C.4 hold at iteration T}, o <t <Ty 5,then
for m #£ n, the following holds:

) 1-Attnl
1. for any q € P m, attnplq < O(%)

2. Attn?

1-Attn{) ‘ ) 1-Attn{)
O opy, SO(——F2), and if M € &, Attn —0(——x ).

N P—Pk,n

C.4.2 Bounding the Gradient Updates of FP Correlations
Lemma C.26. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.4 hold at iteration
Ty +1<t<Ts, then aSka,n > 0 and satisfies:

ald) > Q(e).

P—Vk,n —

Proof. By Lemma 5.2, we have

LN
2 2
=E |1{kx = k,p € M}Attng)ﬁp}m N P (1 - Attns)ﬁpkm) + Z 22 2 (Attng)ﬁpk‘m)
L m#n
. 2 2
—E | 1{kx = k,&np € MpAtRT o - (23 (1= Attnl)p )+ 3 2z (Aten )
L m#n
) 2 2
+E [1kx =k &, Np € MpAtenD, o |22 (1= Atend )+ > 22z, (At )
m#n
ZP(M € &;pn)-
2 2
E|1{kx =kpe MpAttnl) p - (23 (1= At )+ > 22z (Astnll ) [En
m#n

+0(1)-PM € &)
Z e)

where the last inequality invokes Lemma C.24, Lemma A.6 and the fact that

€ > exp(— polylog(K)) > exp (—¢;,1C) .
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Lemma C.27. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.4 hold at iteration
Ths <t<Tg,, then aﬁf)%,w < 0 and satisfies

t t
‘Oé(t) | < max {O( ag))_wk’" ) O( ag)_wk’" )}
P=veml = PR+ G (A/2-0.01) )77\ pa(1—k,)+ £ (A—0.02)—(1— F5) (1-~.)

U
The proof follows the similar arguments Lemma C.20 by noticing that € > P(M € & ) for any m # n.

Lemma C.28. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.4 hold at iteration
Ty, <t <T%, then for any m > 1 with m # n, the following holds

(®)

ap—>vk,n t
_O( Pl*ﬁs ) S O(;C’)—Wk,m S O

Proof. We first note that

2
— 222 (1 — Attn!” ) Attnl) =23, (1 - AttnSLPm> Attn) o+ > 22z, (Attnif)ﬁpm)

P—Pr,n
a#l,n
< Zm (arélzxn ZZAttnSLPM - zTQLAttnSLPkm - z?nAttnSLPk,m) (1 - Attng)ﬁpkm - AttnSLPk,m)
< -1 - Attnl )
since when M € & ,,, we have AttnSLPk,7z =Q(1) > AttnSLPk,a' Thus, we have
0= af,,, 2 -E[M{kx =k &,NpeMAtm 01 - Attnl) )

0,
= -0(F)

C.4.3 Bounding the Gradient Updates of Positional Correlations

We then summarize the properties for gradient updates of positional correlations, which utilizes the identical
calculations as in Section C.1.3.

Lemma C.29. For n > 1, if Induction Hypothesis B.1 and Induction Hypothesis C.4 hold at iteration
To+1<t<Ts, then

o, 0Py =02
0. if arg =n and A £ D, By q = 0; Al q = O(“25n ) and |8)] = O Pt o),

(t) (t) (t)
; _ (t) _ T T |QPH%,1|
b. Zfak’q =1, |ﬂ’€,P—>q| =0 —7p ) 0 )

. (t) aé’tka n_algtl’vk 1
c. if ap,g =m and m # 1,n, |Bk,p_>q|:0<—’ - : >

C.4.4 End of Phase II, Stage 2

Lemma C.30. Forn > 1, and 0 < € < 1, suppose polylog(P) > log(%). Then Induction Hypothesis C./

holds for all Ty <t <T5 =Ty + O(bg(fjif_l)), and at iteration t =T5 4+ 1, we have

1 Lpp(QTH) < 0%

2. If M € &, , we have (1 — Attn'2 1D )2 < O(e).

P—Prn’/ —
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Proof. The existence of T3 , =T + O(Wj%”) directly follows from Lemma C.26. We further derive

Lpp(QTHY) =

1
51[*] Ikx =k,pe MNME &} | 22 (1- Attnp_g:'k,n)2 + Z 22 (Attn, )’

m#n
1
< .~ U?. .
< 57 U (L o(1)) - O
€
< —
T 2K

where the first inequality is due to direct calculations by the definition of 75, and the second inequality can
be obtained by setting ¢, 2 in (C.7) sufficiently large. O

D Analysis for Local Areas with Negative Information Gap

In this section, we focus on a specific patch p € P with the k-th cluster for k& € [K], and present the analysis
for the case that X, is located in the local area for the k-th cluster, i.e. ay p > 1. Throughout this section, we
denote ay, p = n for simplicity. When A < —Q(1), we can show that the gap of attention correlation changing

rate for the positive case does not exist anymore, and conversely a](;)_mkm > Oég)—wk,l from the beginning. We

can reuse most of the gradient calculations in the previous section and only sketch them in this section.

Stage 1: we define stage 1 as all iterations 0 <t < T},¢q 1, Where

1- s
Tneg,l £ max {t : (I)E)t)%ykn S 7( LK ) lOg(P)} .
We state the following induction hypothesis, which will hold throughout this stage:
Induction Hypothesis D.1. For each 0 <t < Tye1, q € P\ {p}, the following holds:
() ‘o : : o ®) (1=ks) .
a. ®p’yy, ,, is monotonically increasing, and ®p-y, ,, € |0, =5 log(P)|;

a® : : ® 2 0n ) o).
. ®pZsy,,, is monotonically decreasing and ®p’,y,, € | — O ,01;

o

P—A

Q o~ i
s e .
. [ Pptuy | = O(#) for m # 1,n;

() ® _p®

(t) o P v . (t) _ R A
d. Tk,p%q =0 -, for Akg.q = N, |Tk:,p—>p| =0 - p s

() 0 _pW®

(t) _ |q>PH”k,1| P UL n  PTUL 1.

e. ‘T,’mp—)q =0 - + O —t——t for Ak,q = 17
P(t) —_p()

t e

£TE ol = 0(%) for agq # 1, 1.

Through similar calculations for phase II, stage 1 in Appendix C.3, we obtain the following lemmas to
control the gradient updates for attention correlations.

Lemma D.1. If Induction Hypothesis B.2 and Induction Hypothesis D.1 hold for 0 <t < Tyeq 1, then we

have
1 1
t .
ap)suy,, 2 min {Q(pu—m))’g <P2<‘51><1~s)) } (B-12)
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(®)

ApSog
0= ag)—wk 1= _O( P Ak )a (D.lb)
s — sy

\ag)ﬁvk’m\ < O( k}’;l - 2 ) for allm #mn,1 (D.1¢)
(t) _ @ ag)—ﬂlbn _ D ld
kp—a =~ O\ o for axq =n,q#p (D.1d)

o, o, |

‘Bk pﬁq| = O(#) + O(Tkl) for Ak,q = 1, (D.le)
(t) (t) Oég)—wk n Oég)—mk 1

\ﬂk7p_,p|, |6k,p—>q| = O( 7 ) for all a p # n, 1. (D.1f)

Here A < 0 implies |ozpﬂv,c < OZ;)tLUk ... Induction Hypothesis D.1 can be directly proved by Lemma D.1

and we have

Tneg,l =0

Pmax{l,Q(%—l)}(l—ms)l P
( og( )). (D.2)

n

Stage 2: Given any 0 < € < 1, define

1
3 2
Tseg 1 2 max {t >Tr: (I)g)—wk < log (CG (() - 1) Pl_ns) } : (D3)
’ €

where cg is some largely enough constant. We then state the following induction hypotheses, which will hold
throughout this stage:

Induction Hypothesis D.2. For n > 1, suppose polylog(P) > log(1), for q € P\ {p}, and each

Theg,1 <t <Tg., 1, the following holds:

a. @g)ﬁvk’n is monotonically increasing, and @gkam € {(1_7;) log(P),O(log(P/e))};

(t)

q:‘p_”’kn
_O( p—A’ )50 5

@gLUk , is monotonically decreasing and (I>pLUk , €

=a

[l

50, -,
= O(M) for m # 1, n;

C. Pl—rs
a® ® _a®
t Uk t —UE —v
d. T = 0(7'° ) for agq =n, [T\ | = (— e );
v @(tln; _q)(tiw
€. ‘Tg,)p—)q‘ = O(lpc‘ikll> + O(%) for ayq = 1;
f. \T](:)p_)q\ = O(W) for apq # 1,n.
Lemma D.2. If Induction Hypothesis B.2 and Induction Hypothesis D.2 hold for Theg,1 <t < Ty, 1, then
we have
e, = Qe), (D.4a)
a(t)—m
0>al,, > fo( ‘]’D_A’“”), (D.4b)
o, — ol
\ag)_wk’m\ < O( P kl’;l Nép = 1) for allm #n,1 (D.4c)
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(t)
(t) = @(M) for arq =n,q#p (D.4d)

k,p—a C,
(t) O‘g)—> k |O‘g)—> k |
Vi .n Vg1
1Br.psql = O<7P ) + 0(701 ) for apq =1, (D.4e)

(t) (t)
« V. — O v
B sl 1Bl = O FEten Rt )

Induction Hypothesis D.2 can be directly proved by Lemma D.2. Furthermore, at the end of this stage,
we will have:

for all agp # n, 1. (D.4f)

Lemma D.3. Suppose polylog(P) > log(%), then Induction Hypothesis D.2 holds for all Theg1 < t <

Theg1 = Theg1 + O(logfiél)), and at iteration t =Ty, 1 + 1, we have

1. ﬁk,p(QTéeg‘l+1) < 3%’

2
(Tncg 1+1)) S O(E)

2. If M € &, , we have (1 — Attn n, "5

E Analysis for the Global area

When ap 1, = 1, i.e. the patch lies in the global area, the analysis is much simpler and does not depend on
the value of A. We can reuse most of the gradient calculations in Appendix C and only sketch them in this
section.

For X, in the global region Py, 1, since the overall attention Attn'”

poPry 1O the target feature already

reaches Q(ﬁ) = Q(ﬁ) due to the large number of unmasked patches featuring v 1 when M € & 1,

which is significantly larger than Attn'? L= @( for all other m > 1. This results in large ag)ﬁvkyl

1
P—Pr, m)
initially, and thus the training directly enters phase II.

Stage 1: we define stage 1 as all iterations 0 < ¢t < T, 1, where
1- c
T.1 = max {t @SL% < % log(P)} .
We state the following induction hypotheses, which will hold throughout this stage:
Induction Hypothesis E.1. For each 0 <t <T,;, q € P\ {p}, the following holds:
a. <I>£,)_M,k . is monotonically increasing, and <I>p)_wk L € [0, (117'%) log(P)];

b. ®, ., . is monotonically decreasing for m > 1 and ®p_,,, ,, € [f O(%),O];

(tlnz @(tl}v
0l 05 b 1 10 )

(t)

ép—)vk 1
d x| = 0(7) for ay.q # 1.

Through similar calculations for phase II, stage 1 in Appendix C.3, we obtain the following lemmas to
control the gradient updates for attention correlations.

Lemma E.1. If Induction Hypothesis B.1 (or Induction Hypothesis B.2) and Induction Hypothesis E.1 hold
for 0 <t <1T.;, then we have

1 1
t .
o)y, 2 min {Q<p<1—nc>)’9 <P2(ILJ1)(1HC)) } (E.1a)
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g
lalt) | < O( e k’l) for allm # 1, (E.1b)

p—)’Uk,m Plfﬁs
avak 1
ﬁk p=a ( C, - )7 for arq=1,9#p, (E.1c)
Aoy
‘ﬂk,pﬁp| |ﬁk pﬁq| = O(T) for all ap,q > 1. (E.1d)

Induction Hypothesis E.1 can be directly proved by Lemma E.1 and we have

Pmax{l,Q(g—l)}-(l—nc)l P
T, = o( - og(P) ) (E.2)

n

Stage 2: Given any 0 < € < 1, define

3\ 2
Tsy £ max {t >Teq: ‘bg)%k , <log <C7 <<e) _ 1) Pl—m) } ) (E.3)

where c¢7 is some largely enough constant. We then state the following induction hypotheses, which will hold
throughout this stage:

Induction Hypothesis E.2. For n > 1, suppose polylog(P) > log(1), g € P\ {p}, foreach T,; +1 < ¢ <
T¢ 4, the following holds:

a. @SLU,M is monotonically increasing, and @SLU,M € [% log(P),O(log(P/e))];

b. ®, .y, ., is monotonically decreasing for n > 1 and &, ., ,, € [ — O(%),O};

o), o),
c. 1 ,(:,)p q= O(‘pclkJ) for ag,q =1, | ;:}D p| = O(ip pk’1>;
d \T(t) | = O(Lﬁuk ! ) for ay q # 1.
© It k,p—q k.a

We also have the following lemmas to control the gradient updates for attention correlations.

Lemma E.2. If Induction Hypothesis B.1 (or Induction Hypothesis B.2) and Induction Hypothesis E.1 hold
forTe;+1<t< Ty, then we have

(®)

apso,
agka > Q(e), |a vak < O( ;?_: ) for allm #1 (E.4a)
(t) Oég)—wk.l
Opa=0(75 ) forara=La#p (E4D)
=0 Op s i 1 E.4
18 pﬁp| 18 p~>q| (T) for all ap,q > 1. (E.4c)

Induction Hypothesis E.2 can be directly proved by Lemma E.2. Furthermore, at the end of this stage,
we will have:

Lemma E.3. Suppose polylog(P) > log(%), then Induction Hypothesis E.2 holds for all T.; <t <Tg; =
T.1+ O(M), and at iteration t = Tf,1 + 1, we have

1 Lip(@QTrH) < 5%

. 2
2. IfM € &1, we have (1 - Attni)g;,—:)) < O(e).
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F Proof of Main Theorems

F.1 Proof of Induction Hypotheses

We are now ready to show Induction Hypothesis B.1 (resp. Induction Hypothesis B.2) holds through the
learning process.

Theorem F.1 (Positive Information Gap). For sufficiently large P > 0, n < log(P), (1) < A < 1,

Induction Hypothesis B.1 holds for all iterations t =0,1,--- T = O(%)

Theorem F.2 (Negative Information Gap). For sufficiently large P > 0, n < log(P), —0.5 < A < —Q(1),

Induction Hypothesis B.2 holds for all iterations t =0,1,--- ;T = O(w)

Proof of Theorem F.1. It is easy to verify Induction Hypothesis B.1 holds at iteration ¢ = 0 due to the
initialization Q(©) = 04,4. At iteration ¢ > 0:

e Induction Hypothesis B.1la. can be proven by Induction Hypothesis C.1-C.4 a and Induction Hypothe-
sis E.1-E.2 a, combining with the fact that log(1/€) < polylog(P).

e Induction Hypothesis B.1b. can be obtained by invoking Induction Hypothesis C.1-C.4 b.

e Induction Hypothesis B.1lc. can be obtained by invoking Induction Hypothesis C.1-C.4 ¢ and Induction
Hypothesis E.1-E.2 b.

e To prove Induction Hypothesis B.1d., for q # p, Tqu = Zszl T,(f’)p%q. By item d-f in Induction
Hypothesis C.1-C.4 and item c-d in Induction Hypothesis E.1-E.2, we can conclude that no matter the
relative areas q and p belong to for a specific cluster, for all k € [K], throughout the entire learning

process, the following upper bound always holds:

T € (0| 002 D {0(5) 05 ) 0(5) | <0(2)

Moreover, since K = ©(1), we then have Tg)_m = 6(63 ), which completes the proof.

e The proof for Induction Hypothesis B.1d. is similar as before, by noticing that T,(:’)p p = 5(%) for

each k € [K], which is due to Induction Hypothesis C.1-C.4 d and Induction Hypothesis E.1-E.2 c.

The proof of Theorem F.2 mirrors that of Theorem F.1, with the only difference being the substitution
of relevant sections with Induction Hypothesis B.2. For the sake of brevity, this part of the proof is not
reiterated here.

F.2 Proof of Theorem 4.1 with Positive Information Gap

Theorem F.3. Suppose (1) < A < 1. For any 0 < € < 1, suppose polylog(P) > log(%). We apply GD to
train the loss function given in (2.6) with n < poly(P). Then for each p € P, we have

u
log(P)Pma‘x{Q(ffl)’l}(lfns) log(Pe™ 1) . . T* N
7 + = iterations, EP(Q( )) — Ly <e,

where Ly, is the global minimum of patch-level construction loss in (4.2).

1. The loss converges: after T* = O(

2. Attention score concentrates: given cluster k € [K|, if Xp is masked, then the one-layer transformer

. 2
nearly “pays all attention” to all unmasked patches in the same area Py 4, ,,, i-€-, (I—Attng_);;k ) <

, akp
O(e).

3. Local area learning feature attention correlation through two-phase: given k € [K|, if axp > 1, then
we have

o1



(a) @SLU,C,I first quickly decrease with all other cI)Ska,m , Tqu not changing much;

(b) after some point, the increase of @SLU,C,% . takes dominance. Such @SLUW . will keep growing
until convergence with all other feature and positional attention correlations nearly unchanged.

4. Core area learning feature attention correlation through one-phase: given k € [K], if axp = 1,
throughout the training, the increase of cI)SLvM dominates, whereas all Agt)m with m # 1 and position

attention correlations remain close to 0.

Proof. The first statement is obtained by letting 7* = max{T5, T} + 1 in Lemma C.30 and Lemma E.3,
combining wth Lemma A.9 and Lemma A.10, which lead to

<Lp(@")+ O(eXp ( — (P +1{1¢ Uke[K}{ak,p}}C‘le)))

<K -— + O(eXP ( — (csP +1{1¢ Uke[K]{%p}}C‘le)))

The second statement follows from Lemma C.30 and Lemma E.3. The third and fourth statements directly
follow from the learning process described in Appendix C and Appendix E when Induction Hypothesis B.1
holds. O

F.3 Proof of Theorem 4.1 with Negative Information Gap

Theorem F.4. Suppose —0.5 < A < Q(1). For any 0 < € < 1, suppose polylog(P) > log(%). We apply GD
to train the loss function given in (2.6) with n < poly(P). Then for each p € P, we have
log(P Pmaxw(gfl)’l}(l*'”) log(Pe™! . . * *

£(P) nL + g(ne )) iterations, EP(Q(T )) — Ly <e,

where Ly, is the global minimum of patch-level construction loss in (4.2).

1. The loss converges: after T* = O(

2. Attention score concentrates: given cluster k € [K|, if Xp is masked, then the one-layer transformer
. 2
nearly “pays all attention” to all unmasked patches in the same area Py q, ,,, i-€-, <I—Attn£T_>2Pk ) <
, hp
O(e).
3. A1l areas learning feature attention correlation through one-phase: given k € [K|, throughout the
training, the increase of cDgkayak . dominates, whereas all @SLUW with m # 1 and position attention

. t .
correlations Tg,)_)q remain close to 0.

Proof. The first statement is obtained by letting 7% = max{T}
combining wth Lemma A.9 and Lemma A.10, which lead to

g 1> Le1} +11in Lemma D.3 and Lemma E.3,

Lo(@QT)) = L5 < Lp(QT) — Llov

< L@+ O(eXp ( — (P +1{1 ¢ Uke[K}{ak,p}}&;Pm)))

< K- 5=+ 0(exp (= (esP™ + 1 {1 ¢ Ueri{anp} }eaP) ) )

The second statement follows from Lemma D.3 and Lemma E.3. The third and fourth statements directly
follow from the learning process described in Appendix D and Appendix E when Induction Hypothesis B.2
holds. -
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