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Abstract

Reinforcement learning (RL), which strives to learn desirable sequential decisions based

on trial-and-error interactions with an unknown environment, has achieved remarkable success

recently in a variety of domains including games and large language model alignment. In the face of

unknown environments with unprecedentedly large dimensionality, making the best use of available

samples inevitably lies at the core of RL, especially in ubiquitous sample-starved scenarios such as

clinical trials and autonomous driving. To understand and tackle the challenges of sample efficiency,

substantial progress has been made recently by developing a finite-sample theoretical framework

to analyze the algorithms of interest and design provably optimal algorithms in terms of sample

efficiency. Nevertheless, existing results still fall short with regards to the statistical understanding

and algorithmic optimality in a wide range of RL settings. Moreover, motivated by countless

scenarios with large dimensionality or sim-to-real gaps, sample efficiency needs to be considered

along with scalability and robustness — two equally important principles in RL.

This thesis breaks down the sample barriers of various RL formulations, taking additional

scalability and robustness into account. Specifically, for online RL that allows for adaptive inter-

actions with the environment, this thesis provides the first provable regret-optimal model-free RL

algorithm with a small burn-in cost — an initial sampling burden needed for the algorithm to

exhibit the desired performance — while maintaining its memory efficiency for scalability. For offline

RL that only has access to historical datasets, this thesis proposes the first provable near-optimal

model-free offline RL algorithm without the need of performing model estimation, and settles the

sample complexity by establishing the minimax optimality of model-based offline RL algorithms

without burn-in cost. Finally, for a robust variant of standard RL — distributionally robust RL, this

thesis uncovers a surprising fact that promoting additional distributional robustness in the learned

policy is neither necessarily harder nor easier than standard RL in terms of sample requirements,

which depends heavily on the prescribed uncertainty set. This thesis closes by providing the first

provable near-optimal algorithm for offline robust RL that can learn under simultaneous model

uncertainty and limited historical datasets.
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Chapter 1

Introduction

When contemplating the process of learning, especially within an unfamiliar environment, the

first thing that comes to mind is probably establishing a loop involving interacting with the real-world

environment and updating of knowledge to enhance performance. In this context, reinforcement

learning (RL) is a prominent framework that provides a general and mathematical formulation

of the learning process including the learner (or called an agent), the environments, and their

interactions. Specifically, RL introduces several key concepts to formulate the learning process: 1)

action: how the agent moves to interact with the environment; 2) state: the status of the agent

and the environment; 3) policy : the strategy the agent employs to select an action; 4) reward : the

immediate feedback the agent receives post-interaction with the environment. Equipped with these

principles, the learning problems can be naturally described by RL framework as searching for an

optimal sequential decision-making policy to maximize the long-term cumulative rewards gained

through trial-and-error within an unknown environment.

1.1 Overview

As a fast-growing subfield of artificial intelligence, RL has achieved remarkable success in diverse

areas of human endeavor, such as games (Silver et al., 2017), large language model alignment

(OpenAI, 2023; Ziegler et al., 2019), healthcare (Fatemi et al., 2021; Liu et al., 2019), and robotics

and control (Kober et al., 2013; Mnih et al., 2013). These noteworthy accomplishments are largely

due to the vast volume of interactive data that fuels the learning of the policy. Today, data-driven

methodologies are progressively vital in enhancing various aspects of human life. Then it is natural

to ask:

In designing data-driven RL algorithms, what should we consider?

Sample efficiency is arguably a cornerstone of contemporary RL that cannot be overlooked.

Contemporary RL problems typically involve unprecedentedly large environments and models of

the policies (OpenAI, 2023; Silver et al., 2017). Consequently, an agent may need to accumulate

vast amounts of data from these extensive environments to learn an effective policy, especially in

ubiquitous data-starved applications. This challenge is further magnified as the environment’s

complexity increases exponentially in terms of the horizon length, a characteristic inherent to

RL’s sequential problem structure. Moreover, data collection can be limited by privacy, expensive,

time-consuming, or even high-stakes issues, for instance, in clinical trials, online advertisements,
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and autonomous systems (Best et al., 2018; Fulbright, 2017; McGinnis et al., 2011; Saengkyongam

et al., 2023). Consequently, understanding and improving the sample efficiency of RL algorithms

inevitably lie at the core of cutting-edge RL research and are the key enabler for future advances.

In order to evaluate and compare the sample efficiency of RL algorithms in high dimension,

a recent body of works sought to develop a finite-sample theoretical framework to analyze the

algorithms of interest, with the aim of delineating the dependency of algorithm performance on all

salient problem parameters in a non-asymptotic fashion (Dann et al., 2017; Kakade, 2003). Such finite-

sample guarantees are brought to bear towards understanding and tackling the sample efficiency

challenges in the sample-starved regime commonly encountered in practice and have achieved

tremendous progress. Nevertheless, existing statistical understanding and provable algorithm

performance are still far from adequate in both theory and practice, due to technical challenges and

the broadness and diversity of RL world.

In light of this, this thesis concentrates on understanding and breaking sample size barriers

for different RL problems using the finite-sample theoretical framework. Prior to proceeding further,

it is also worth emphasizing two other vital facets of algorithm performance that we consider in

data-driven RL problems, as outlined below:

• Algorithm scalability. Given that the dimensions of environments encountered in practical

applications are often substantial, the scalability of RL algorithms is of critical importance,

particularly when memory and computational resources are constrained.

• Robustness to uncertainty. Robustness is highly desirable since the performance of the learned

policy in training environment could significantly deteriorate due to the uncertainty and

variations of the test environment induced by random perturbation, rare events, or even

malicious attacks (Mahmood et al., 2018; Zhang et al., 2021a).

In this thesis, driven by the principles previously mentioned, we concentrate on surmounting

sample barriers across various RL tasks by offering statistical insights and designing sample-efficient

algorithms with provable non-asymptotic guarantees. These efforts can be paired with two equally

significant principles - scalability and robustness. RL problem formulations can be classified

in numerous ways, according to the objectives of tasks, task-specific structures, and sampling

mechanisms, i.e., available data collection methods. Bearing this in mind, this thesis will focus on

three RL settings with distinct sampling mechanisms and objectives - online RL, offline RL, and

distributionally robust RL, which we will introduce shortly.

Specifically, this thesis focuses on the widely studied Markov decision processes (MDPs), whose

salient problem parameters (i.e., the number of states, actions, and the effective horizon) could be

enormous in modern RL applications. We consider two sets of MDPs that have been extensively

studied - finite-horizon MDPs and discounted infinite-horizon MDPs, which shall be separately

introduced in Chapter 2.1. These two settings are generally alike except for the configuration of the

2



accumulated reward, which gives rise to distinct technical challenges. For either or both of the two

settings, we evaluate and compare the statistical performance of RL algorithms mainly through the

lens of sample complexity — namely, the number of samples needed for an algorithm to output,

with probability approaching one, a policy whose resultant value function is at most ε away from

optimal (called “ε-accuracy” throughout).

The rest of this chapter is organized as follows. Chapter 1.2 to Chapter 1.4 provide an overview

of the main results of this thesis in understanding or breaking the sample barriers in a variety of RL

settings. Chapter 1.5 summarizes the related works. Finally, Chapter 1.6 describes the organization

of the rest of the thesis.

1.2 Online RL

An agent in online RL is only allowed to draw sample trajectories by executing a policy in the

unknown Markov decision process (MDP), where the initial states are pre-assigned and might even

be chosen by an adversary. Careful deliberation needs to be undertaken when deciding what policies

to use to allow for effective interaction with the unknown environment, how to optimally balance

exploitation and exploration, and how to process and store the collected information intelligently

without causing redundancy. Consequently, simultaneously achieving the desired sample efficiency

and memory efficiency for algorithm scalability is particularly challenging when it comes to online

RL scenarios.

1.2.1 Regret-optimal model-free RL? A sample size barrier

To facilitate discussion, let us take a moment to summarize the state-of-the-art theory, focusing on

minimizing cumulative regret — a metric that quantifies the performance difference between the

learned policy and the true optimal policy — with the fewest number of samples. For the formal

definition of regret, please refer to Chapter 3.1. Here and throughout, we denote by S, A, and

H the size of the state space, the size of the action space, and the horizon length of an episodic

finite-horizon MDP, respectively, and let T represent the sample size. The immediate reward gained

at each time step is assumed to lie between 0 and 1.

Fundamental regret lower bound. Following the arguments in Auer et al. (2002); Jaksch et al.

(2010), the recent works Domingues et al. (2021); Jin et al. (2018) developed a fundamental lower

bound1 on the expected total regret for this setting. Specifically, this lower bound claims that: no

1It is worth emphasizing that Domingues et al. (2021) adopts the notation T to represent the number of trajectories
(with each trajectory containing H samples), while the present chapter employs K to denote the number of sample
trajectories and T = KH the total number of samples. Consequently, the lower bound developed in Domingues et al.
(2021) for non-stationary finite-horizon MDPs reads Ω(

√
H3SAK), or equivalently, Ω(

√
H2SAT ) using the notation

adopted herein.
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matter what algorithm to use, one can find an MDP such that the accumulated regret incurred by

the algorithm necessarily exceeds the order of

(lower bound)
√
H2SAT , (1.1)

as long as T ≥ H2SA.2 This sublinear regret lower bound in turn imposes a sampling limit if one

wants to achieve ε average regret.

Model-based RL. Moving beyond the lower bound, let us examine the effectiveness of model-

based RL — which can be interpreted as a “plug-in” statistical approach — start by computing an

empirical model for the unknown MDP, and output a policy that is (near)-optimal in accordance

with the empirical MDP (Agrawal and Jia, 2023; Azar et al., 2017; Efroni et al., 2019; Jaksch et al.,

2010; Pacchiano et al., 2021). In order to ensure a sufficient degree of exploration, Azar et al. (2017)

came up with an algorithm called UCB-VI that blends model-based learning and the optimism

principle, which achieves a regret bound Õ
(√
H2SAT

)
that nearly attains the lower bound (1.1) as

T tends to infinity. Caution needs to be exercised, however, that existing theory does not guarantee

the near optimality of this algorithm unless the sample size T surpasses

T ≥ S3AH6,

a threshold that is significantly larger than the dimension of the underlying model. This threshold

can also be understood as the initial burn-in cost of the algorithm, namely, a sampling burden

needed for the algorithm to exhibit the desired performance. In addition, model-based algorithms

typically require storing the estimated probability transition kernel, resulting in a space complexity

that could be as high as O(S2AH) (Azar et al., 2017).

Model-free RL. Another competing solution paradigm is the model-free approach, which circum-

vents the model estimation stage and attempts to learn the optimal values directly (Bai et al., 2019;

Jin et al., 2018; Strehl et al., 2006; Yang et al., 2021). Noteworthily, Q-learning and its variants

(Watkins and Dayan, 1992), which apply stochastic approximation (Robbins and Monro, 1951)

based on the Bellman optimality condition, are among the most widely used model-free paradigms.

In comparison to the model-based counterpart, the model-free approach holds the promise of low

space complexity, as it eliminates the need of storing a full description of the model. In fact, in a

number of previous works (e.g., Jin et al. (2018); Strehl et al. (2006)), an algorithm is declared to

be model-free only if its space complexity is o(S2AH) regardless of the sample size T .

2Given that a trivial upper bound on the regret is T , one needs to impose a lower bound T ≥ H2SA in order for
(1.1) to be meaningful.
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• Memory-efficient model-free methods. Jin et al. (2018) proposed the first memory-efficient

model-free algorithm — which is an optimistic variant of classical Q-learning — that achieves

a regret bound proportional to
√
T with a space complexity O(SAH). Compared to the

lower bound (1.1), however, the regret bound in Jin et al. (2018) is off by a factor of
√
H

and hence suboptimal for problems with long horizon. This drawback has recently been

overcome in Zhang et al. (2020c) by leveraging the idea of variance reduction (or the so-called

“reference-advantage decomposition”) for large enough T . While the resulting regret matches

the information-theoretic limit asymptotically, its optimality in the non-asymptotic regime is

not guaranteed unless the sample size T exceeds (see Zhang et al. (2020c, Lemma 7))

T ≥ S6A4H28,

a requirement that is even far more stringent than the burn-in cost imposed by Azar et al.

(2017).

• A memory-inefficient “model-free” variant. The recent work Ménard et al. (2021) put forward

a novel sample-efficient variant of Q-learning called UCB-M-Q, which relies on a carefully

chosen momentum term for bias reduction. This algorithm is guaranteed to yield near-optimal

regret Õ
(√
H2SAT

)
as soon as the sample size exceeds T ≥ SApoly(H), which is a remarkable

improvement vis-à-vis previous regret-optimal methods (Azar et al., 2017; Zhang et al., 2020c).

Nevertheless, akin to the model-based approach, it comes at a price in terms of the space and

computation complexities, as the space required to store all bias-value function is O(S2AH)

and the computation required is O(ST ), both of which are larger by a factor of S than other

model-free algorithms like Zhang et al. (2020c). In view of this memory inefficiency, UCB-M-Q

falls short of fulfilling the definition of model-free algorithms in Jin et al. (2018); Strehl et al.

(2006). See Ménard et al. (2021, Section 3.3) for more detailed discussions.

A more complete summary of prior results can be found in Table 1.1.

1.2.2 Our contributions to model-free online RL

In brief, while it is encouraging to see that both model-based and model-free approaches allow

for near-minimal regret as the sample size T tends to infinity, they are either memory-inefficient,

or burn-in sample-inefficient — require the sample size to exceed a threshold substantially larger

than the model dimensionality. In fact, no prior algorithms have been shown to be simultaneously

regret-optimal and memory-efficient unless

T ≥ S6A4 poly(H),
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Algorithm Regret
Range of sample sizes T Space

that attain optimal regret complexity

UCB-VI √
H2SAT +H4S2A [S3AH6,∞) S2AH

(Azar et al., 2017)

UCB-Q-Hoeffding √
H4SAT never SAH

(Jin et al., 2018)

UCB-Q-Bernstein √
H3SAT +

√
H9S3A3 never SAH

(Jin et al., 2018)

UCB2-Q-Bernstein √
H3SAT +

√
H9S3A3 never SAH

(Bai et al., 2019)

UCB-Q-Advantage √
H2SAT +H8S2A

3
2T

1
4 [S6A4H28,∞) SAH

(Zhang et al., 2020c)

UCB-M-Q √
H2SAT +H4SA [SAH6,∞) S2AH

(Ménard et al., 2021)

CB-Q-Advantage

(Theorem 1)

√
H2SAT +H6SA [SAH10,∞) SAH

Lower bound √
H2SAT n/a n/a

(Domingues et al., 2021)

Table 1.1: Comparisons between prior art and our results for non-stationary episodic MDPs when
T ≥ H2SA. The table includes the order of the regret bound, the range of sample sizes that
achieve the optimal regret Õ(

√
H2SAT ), and the memory complexity, with all logarithmic factors

omitted for simplicity of presentation. The red text highlights the suboptimal part of the respective
algorithms.

which constitutes a stringent sample size barrier constraining their utility in the sample-starved and

memory-limited regime. The presence of this sample complexity barrier motivates one to pose a

natural question:

Is it possible to design an algorithm that accommodates a significantly broader sample

size range without compromising regret optimality and memory efficiency?

We break the sample barrier affirmatively, by designing a new model-free algorithm, dubbed

as CB-Q-Advantage, which has a space complexity O(SAH), and achieves near-optimal regret

Õ
(√
H2SAT

)
as soon as the sample size exceeds T ≥ SApoly(H). As can be seen from Table 1.1,

the proposed algorithm is far more memory-efficient than both the model-based approach in Azar

et al. (2017) and the UCB-M-Q algorithm in Ménard et al. (2021) (both of these prior algorithms

require S2AH units of space). In addition, the sample size requirement T ≥ SApoly(H) of our

algorithm improves — by a factor of at least S5A3 — upon that of any prior algorithm that is

simultaneously regret-optimal and memory-efficient. In fact, this requirement is nearly sharp in
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terms of the dependency on both S and A, and was previously achieved only by the UCB-M-Q

algorithm at a price of a much higher storage burden.

Let us also briefly highlight the key ideas of our algorithm. As an optimistic variant of

variance-reduced Q-learning, CB-Q-Advantage leverages the recently-introduced reference-advantage

decompositions for variance reduction (Zhang et al., 2020c). As a distinguishing feature from prior

algorithms, we employ an early-stopped reference update rule, with the assistance of two Q-learning

sequences that incorporate upper and lower confidence bounds, respectively. The design of our

early-stopped variance reduction scheme, as well as its analysis framework, might be of independent

interest to other settings that involve managing intricate exploration-exploitation trade-offs.

1.3 Offline RL

Limited capability of online data collection in other real-world applications — e.g., clinical trials and

online advertising, where real-time data acquisition is expensive, high-stakes, and/or time-consuming,

— presents a fundamental bottleneck for carrying such RL success over to broader scenarios. To

circumvent this bottleneck, one plausible strategy is to make more effective use of data collected

previously, given that such historical data might contain useful information that readily transfers to

new tasks (for instance, the state transitions in a historical task might sometimes resemble what

happen in new tasks). The potential of this data-driven approach has been explored and recognized

in a diverse array of contexts including but not limited to robotic manipulation (Ebert et al., 2018),

autonomous driving (Diehl et al., 2021), and healthcare (Tang and Wiens, 2021); see Levine et al.

(2020); Prudencio et al. (2023) for overviews of recent development. Nowadays, the subfield of RL

using historical data, without further exploration of the environment, is commonly referred to as

offline RL or batch RL (Lange et al., 2012; Levine et al., 2020). A desired offline RL algorithm

would achieve the target statistical accuracy using as few samples of the history dataset as possible.

1.3.1 Challenges of offline RL: distribution shift and limited data coverage

In contrast to online exploratory RL, offline RL has to deal with several critical issues resulting

from the absence of active exploration. Below we single out two representative issues surrounding

offline RL.

• Distribution shift. For the most part, the historical data is generated by a certain behavior

policy that departs from the optimal one. A key challenge in offline RL thus stems from the

shift of data distributions: how to leverage past data to the most effect, even though the

distribution induced by the target policy differs from what we have available?

• Limited data coverage. Ideally, if the dataset contained sufficiently many data samples for

every state-action pair, then there would be hope to simultaneously learn the performance of
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every policy. Such a uniform coverage requirement, however, is oftentimes not only unrealistic

(given that we can no longer change the past data) but also unnecessary (given that we might

only be interested in identifying a single optimal policy).

Whether one can effectively cope with distribution shift and insufficient data coverage becomes a

major factor that governs the feasibility and statistical efficiency of offline RL.

In order to address the aforementioned issues, a recent strand of works put forward the

principle of pessimism or conservatism (e.g., Buckman et al. (2020); Chen et al. (2021a); Cui and

Du (2022); Jin et al. (2021); Kumar et al. (2020); Liu et al. (2020); Rashidinejad et al. (2021);

Uehara and Sun (2021); Xie et al. (2021b); Yin and Wang (2021); Zanette et al. (2021); Zhong

et al. (2022)). This is reminiscent of the optimism principle in the face of uncertainty for online

exploration (Azar et al., 2017; Bourel et al., 2020; Jaksch et al., 2010; Jin et al., 2018; Lai and

Robbins, 1985), but works for drastically different reasons (as we shall elucidate momentarily). One

plausible idea of the pessimism principle, which has been incorporated into offline RL approaches, is

to penalize value estimation of those state-action pairs that have been poorly covered. Informally

speaking, insufficient coverage of a state-action pair inevitably results in low confidence and high

uncertainty in the associated value estimation, and it is hence advisable to act cautiously by tuning

down the corresponding value estimate. Proper use of pessimism amid uncertainty brings about

several provable benefits (Rashidinejad et al., 2021; Xie et al., 2021b): (i) it allows for a reduced

sample size that adapts to the degree of distribution shift; (ii) as opposed to uniform data coverage,

it only requires coverage of the part of the state-action space reachable by the target policy.

1.3.2 Inadequacy of prior works

Despite extensive recent activities, however, existing statistical guarantees for the above paradigm

remain inadequate, as we shall elaborate on below. In addition, previous works have isolated an

important parameter C? ≥ 1 — called the single-policy concentrability coefficient (Rashidinejad

et al., 2021; Xie et al., 2021b) — that measures the mismatch of distributions induced by the target

policy against the behavior policy; see Chapters 5.1.1 and 5.2.1 for precise definitions. Naturally,

the statistical performance of desirable algorithms would degrade gracefully as the distribution

mismatch worsens (i.e., as C? increases). In the sequel, considering finite-horizon non-stationary

(with horizon length H) and discounted infinite-horizon (with discount factor γ) MDPs, we shall

discuss the two RL paradigms introduced in Chapter 1.2.1 — model-based RL and model-free RL —

in the scope of offline RL separately.

Model-based offline RL. When coupled with the pessimism principle in offline RL, the model-

based approach has been shown to enjoy the following sample complexity bounds.

• By incorporating Hoeffding-style lower confidence bounds into value iteration, Rashidinejad
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et al. (2021); Xie et al. (2021b) demonstrated that a sample complexity of




Õ
(
H6SC?

ε2

)
for finite-horizon MDPs

Õ
(

SC?

(1−γ)5ε2

)
for infinite-horizon MDPs

(1.2)

suffices to yield ε-accuracy. Such a sample complexity bound, however, is a large factor of H2

(resp. 1
(1−γ)2 ) above the minimax lower limit derived for finite-horizon MDPs (resp. infinite-

horizon MDPs) (Rashidinejad et al., 2021; Xie et al., 2021b; Yin and Wang, 2021).

• In an attempt to optimize the sample complexity, Xie et al. (2021b) leveraged the idea

of variance reduction — a powerful strategy originating from the stochastic optimization

literature (Johnson and Zhang, 2013) — in model-based RL and obtained a strengthened

sample complexity of

Õ
(H4SC?

ε2
+
H6.5SC?

ε

)
(1.3)

for finite-horizon MDPs. This sample complexity bound approaches the minimax lower limit

(i.e., the order of H4SC?

ε2
) once the sample size exceeds the order of

(burn-in cost) H9SC?; (1.4)

in other words, an enormous burn-in sample size is needed in order to attain sample optimality.

Model-free offline RL. Before this thesis, it remains unknown whether the pessimism principle

can be incorporated into model-free algorithms — another class of popular algorithms that is flexible

and performs learning without model estimation — in a provably effective fashion for offline RL.

1.3.3 Our contributions to model-free offline RL

Consider finite-horizon non-stationary MDPs, our work pins down the sample efficiency for pes-

simistic variants of model-free algorithms, under the mild single-policy concentrability assumption

(Rashidinejad et al., 2021; Xie et al., 2021b). Given K episodes of history data each of length H

(which amounts to a total number of T = KH samples), our main contributions are summarized as

follows.

• We first study a natural pessimistic variant of the Q-learning algorithm, which simply modifies

the classical Q-learning update rule by subtracting a penalty term (via certain lower confidence

bounds). We prove that pessimistic Q-learning finds an ε-optimal policy as soon as the sample

9



size T exceeds the order of (up to log factor)

H6SC?

ε2
,

where C? denotes the single-policy concentrability coefficient of the batch dataset. In com-

parison to the minimax lower bound Ω
(
H4SC?

ε2

)
developed in Xie et al. (2021b), the sample

complexity of pessimistic Q-learning is at most a factor of H2 from optimal (modulo some log

factor).

• To further improve the sample efficiency of pessimistic model-free algorithms, we introduce a

variance-reduced variant of pessimistic Q-learning. This algorithm is guaranteed to find an

ε-optimal policy as long as the sample size T is above the order of

H4SC?

ε2
+
H5SC?

ε

up to some log factor. In particular, this sample complexity is minimax-optimal (namely, as

low as H4SC?

ε2
up to log factor) for small enough ε (namely, ε ≤ (0, 1/H]).

Regarding the scalability, both of the proposed algorithms achieve low computation cost (i.e., O(T ))

and low memory complexities (i.e., O(min{T, SAH})). In comparison with model-based algorithms,

model-free algorithms require drastically different technical tools to handle the complicated statistical

dependency between the estimated Q-values at different time steps.

1.3.4 Our contributions to model-based offline RL

Existing offline algorithms either suffer from suboptimal sample complexities, or require sophisticated

techniques like variance reduction to approach minimax optimality (cf. Chapter 1.3.2). Even when

variance reduction is employed, prior algorithms incur an enormous burn-in cost in order to work

optimally, thus posing an impediment to achieving sample efficiency in data-starved applications.

All this motivates the studies of the following open questions:

Can we develop an offline RL algorithm that achieves near-optimal sample complexity

without burn-in cost? If so, can we accomplish this goal by means of a simple algorithm

without resorting to sophisticated schemes like variance reduction?

In this thesis, we settle the sample complexity of model-based offline RL by studying a

pessimistic variant of value iteration — called VI-LCB — applied to some empirical MDP. Encour-

agingly, for both finite-horizon and discounted infinite-horizon MDPs, the model-based algorithms

provably achieve minimax-optimal sample complexities for any given target accuracy level ε —

namely, any ε ∈ (0, H] for finite-horizon MDPs and ε ∈
(
0, 1

1−γ
]

for discounted infinite-horizon

MDPs.
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To be more precise, we introduce a slightly modified version C?clipped of the concentrability

coefficient C?, which always satisfies C?clipped ≤ C? and shall be termed the single-policy clipped

concentrability coefficient (see Chapters 5.2.1 and 5.1.1 for more details as well as the advantages

of this coefficient). The introduction of this new parameter leads to slightly improved sample

complexity compared to the one based on C?. The main contributions are summarized as follows.

• For finite-horizon MDPs with nonstationary transition kernels, we propose a variant of VI-LCB

that adopts the Bernstein-style penalty to enforce pessimism in the face of uncertainty. We

prove that for any given ε ∈ (0, H], the proposed algorithm yields an ε-optimal policy using

Õ

(
H4SC?clipped

ε2

)
(1.5)

samples with high probability. A key ingredient in the algorithm design is a two-fold subsam-

pling trick that helps decouple the statistical dependency along the sample rollouts.

• For γ-discounted infinite-horizon MDPs, we demonstrate that with high probability, the VI-

LCB algorithm with Bernstein-style penalty finds an ε-optimal policy with a sample complexity

of

Õ

(
SC?clipped

(1− γ)3ε2

)
(1.6)

for any given accuracy level ε ∈
(
0, 1

1−γ
]
. Our algorithm reuses all samples across all iterations

in order to achieve data efficiency, and our analysis builds upon a novel leave-one-out argument

to decouple complicated statistical dependency across iterations.

• To assess the tightness and optimality of our results, we further develop minimax lower bounds,

which match the above upper bounds modulo some logarithmic factors.

Remarkably, our algorithms do not require sophisticated variance reduction schemes, as long as

suitable confidence bounds are adopted. Detailed theoretical comparisons with prior art can be

found in Table 1.2.

1.4 Robust RL

While standard RL has been heavily investigated recently, its use can be significantly hampered in

practice due to the sim-to-real gap; for instance, a policy learned in an ideal, nominal environment

might fail catastrophically when the deployed environment is subject to small changes in task

objectives or adversarial perturbations (Klopp et al., 2017; Mahmood et al., 2018; Zhang et al.,

2020a). Consequently, in addition to maximizing the long-term cumulative reward, robustness

emerges as another critical goal for RL, especially in high-stakes applications such as robotics,
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horizon algorithm
sample ε-range to attain

type
complexity sample optimality

finite

VI-LCB H6SC?

ε2
—— model-based

(Xie et al., 2021b)

LCB-Q
(Theorem 2)

H6SC?

ε2
—— model-free

VPVI H5SC?

ε2
—— model-based

(Yin and Wang, 2021)

PEVI-Adv H4SC?

ε2 + H6.5SC?

ε

(
0, 1

H2.5

]
model-based

(Xie et al., 2021b)

LCB-Q-Advantage
(Theorem 3)

H4SC?

ε2 + H5SC?

ε

(
0, 1

H

]
model-free

APVI/LCBVI H4SC?

ε2 + H4

db
minε

(0, SC?db
min] model-based

(Yin and Wang, 2021)

VI-LCB

(Theorem 4)
H4SC?

clipped

ε2 (≤ H4SC?

ε2 ) (0, H] model-based

lower bound

(Theorem 5)
H4SC?

clipped

ε2
—— ——

infinite

VI-LCB SC?

(1−γ)5ε2 —— model-based
(Rashidinejad et al., 2021)

Q-LCB SC?

(1−γ)5ε2 —— model-free
(Yan et al., 2022a)

VR-Q-LCB SC?

(1−γ)3ε2 + SC?

(1−γ)4ε (0, 1− γ] model-free
(Yan et al., 2022a)

VI-LCB
(Theorem 6)

SC?
clipped

(1−γ)3ε2 (≤ SC?

(1−γ)3ε2 )
(
0, 1

1−γ
]

model-based

lower bound
(Theorem 7)

SC?
clipped

(1−γ)3ε2 —— ——

Table 1.2: Comparisons with prior results (up to log terms) regarding finding an ε-optimal policy in
offline RL. The ε-range stands for the range of accuracy level ε for which the derived sample complex-
ity is optimal. Here, one always has C?clipped ≤ C?; and the parameter db

min := 1
mins,a,h{db

h(s,a): db
h(s,a)>0}

employed in Yin and Wang (2021) could be exceedingly small, with db
h the occupancy distribution

of the dataset. While multiple algorithms are referred to as VI-LCB in the table, they correspond
to different variants of VI-LCB. Our results are the first to achieve sample optimality for the full
ε-range.
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autonomous driving, clinical trials, financial investments, and so on. Towards achieving this,

distributionally robust RL (Iyengar, 2005; Nilim and El Ghaoui, 2005), which leverages insights

from distributionally robust optimization and supervised learning (Bertsimas et al., 2018; Blanchet

and Murthy, 2019; Duchi and Namkoong, 2021; Gao, 2022; Rahimian and Mehrotra, 2019), becomes

a natural yet versatile framework; the aim is to learn a policy that performs well even when the

deployed environment deviates from the nominal one in the face of environment uncertainty.

More concretely, imagine that one has access to samples from a MDP with a nominal transition

kernel under some sampling mechanisms. Standard RL aims to learn the optimal policy tailored to

the nominal kernel, for which the minimax sample complexity limit has been fully settled (Azar

et al., 2013; Li et al., 2023c). In contrast, distributionally robust RL seeks to learn a more robust

policy using the same set of samples, with the aim of optimizing the worst-case performance when

the transition kernel is arbitrarily chosen from some prescribed uncertainty set around the nominal

kernel; this setting is frequently referred to as robust MDPs (RMDPs).3 The formal formulation

of RMDPs can be referred to Chapter 2.2. Clearly, the RMDP framework helps ensure that the

performance of the learned policy does not fail catastrophically as long as the sim-to-real gap is not

overly large.

Compared with standard MDPs, the class of RMDPs encapsulates richer models, given that

one is allowed to prescribe the shape and size of the uncertainty set. Oftentimes, the uncertainty

set is hand-picked as a small ball surrounding the nominal kernel, with the size and shape of the

ball specified by some distance-like metric ρ between probability distributions and some uncertainty

level σ. To ensure tractability of solving RMDPs, the uncertainty set is often selected to obey

certain structures. For instance, a number of prior works assumed that the uncertainty set can be

decomposed as a product of independent uncertainty subsets over each state or state-action pair

(Wiesemann et al., 2013; Zhou et al., 2021), dubbed as the s- and (s, a)-rectangularity, respectively.

This thesis adopts the second choice by assuming (s, a)-rectangularity for the uncertainty set.

1.4.1 Challenges of robust RL

We are interested in how the sample complexity — the number of samples needed for an algorithm

to output a policy whose robust value function (the worst-case value over all the transition kernels

in the uncertainty set) is at most ε away from the optimal robust one — scales with all these salient

problem parameters. Unique challenge with RMDPs arises from distribution shift induced by model

uncertainty, where the transition kernel drawn from the uncertainty set can be different from the

nominal kernel. This challenge leads to complicated nonlinearity and nested optimization in the

problem structure not present in standard MDPs. In sum, it is natural to wonder how the robustness

consideration impacts data efficiency: is there a statistical premium that one needs to pay in quest

3While it is straightforward to incorporate additional uncertainty of the reward in our framework, we do not
consider it here for simplicity, since the key challenge is to deal with the uncertainty of the transition kernel.
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of additional robustness, and how to design sample-efficient RL algorithms for RMDPs?

Statistical implications of distributional robustness. It is of fundamental importance to

understand about whether, and how, the choice of distributional robustness bears statistical

implications in learning a desirable policy, through the lens of sample complexity. Even with the

simplest sampling mechanism, i.e. the generative model (also called a simulator), there remained

large gaps between the sample complexity upper and lower bounds established in prior literature,

regardless of the divergence metric in use. For example, consider two choices of the distance-like

metric ρ for the uncertainty set — total variation (TV) distance and the χ2 divergence, which are

motivated by their practical appeals: easy to implement, and already adopted by empirical RL

(Lee et al., 2021). For the case w.r.t. the TV distance (see Table 1.3 for a summary), while the

state-of-the-art upper bound (Clavier et al., 2023) and lower bound (Yang et al., 2022) coincide

when the uncertainty level σ . 1 − γ is small, the upper bound can be a factor of 1
(1−γ)5 larger

than the lower bound when σ approaches 1. The situation is even worse when it comes to the

case w.r.t. the χ2 divergence (see Table 1.4 for a summary). More specifically, the state-of-the-art

upper bound (Panaganti and Kalathil, 2022) scales quadratically with the size S of the state space

and linearly with the uncertainty level σ when σ & 1, while the lower bound (Yang et al., 2022)

exhibits only linear scaling with S and is, in the meantime, inversely proportional to σ; these lead

to unbounded gaps between the upper and lower bounds as σ grows.

Perhaps a more pressing issue is that, past works of robust RL failed to provide an affirmative

answer regarding how to benchmark the sample complexity of RMDPs with that of standard MDPs

over the full range of uncertainty levels, given the large unresolved gaps mentioned above. In fact,

prior works only achieved limited success in this regard — namely, demonstrating that the sample

complexity for RMDPs is the same as that of standard MDPs in the case of TV distance when the

uncertainty level satisfies σ . 1 − γ. For all the remaining situations, however, existing sample

complexity upper (resp. lower) bounds are all larger (resp. smaller) than the sample size requirement

for standard MDPs. As a consequence, it remains unclear whether learning RMDPs is harder or

easier than learning standard MDPs.

Robust RL meets offline data. Providing robustness guarantees becomes even more relevant

in the offline setting, which can be formulated as robust offline RL, since the history data is often

inevitably collected from a timeframe where it is no longer reasonable to assume model stillness, due

to the highly non-stationary and time-varying dynamics of many real-world applications. Despite

significant amount of recent activities in robust RL and offline RL, addressing model uncertainty

and sample efficiency simultaneously remains challenging. Understanding the implications of —

and designing algorithms that work around — these challenges play a major role in advancing the

state-of-the-art of robust offline RL.
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Result type Reference
Sample complexity

0 < σ . 1− γ 1− γ . σ < 1

Upper bound

Yang et al. (2022) S2A
σ2(1−γ)4ε2

Panaganti and Kalathil (2022) S2A
(1−γ)4ε2

Clavier et al. (2023) SA
(1−γ)3ε2

SA
(1−γ)4ε2

Theorem 10 SA
(1−γ)3ε2

SA
(1−γ)2σε2

Lower bound
Yang et al. (2022) SA

(1−γ)3ε2
SA(1−γ)
σ4ε2

Theorem 11 SA
(1−γ)3ε2

SA
(1−γ)2σε2

Table 1.3: Comparisons between our results and prior arts for finding an ε-optimal robust policy
in the infinite-horizon RMDPs, with the uncertainty set measured w.r.t. the TV distance. Here,
S, A, γ, and σ ∈ (0, 1) are the state space size, the action space size, the discount factor, and the
uncertainty level, respectively, and all logarithmic factors are omitted in the table. Our results (Shi
et al., 2023b) provide the first matching upper and lower bounds (up to log factors), improving
upon all prior results.

1.4.2 Our contributions to model-based robust RL with a generative model

We focuses on developing strengthened sample complexity upper bounds on learning RMDPs with

the TV distance and χ2 divergence in the infinite-horizon setting (with discount factor γ), using a

model-based approach called distributionally robust value iteration (DRVI) assuming access to a

generative model. Improved minimax lower bounds are also developed to help gauge the tightness

of our upper bounds and enable benchmarking with standard MDPs. The novel analysis framework

developed herein leads to new insights into the interplay between the geometry of uncertainty sets

and statistical hardness.

Sample complexity of RMDPs under the TV distance. We summarize our results and

compare them with past works in Table 1.3; see Figure 1.1(a) for a graphical illustration.

• Minimax-optimal sample complexity. We prove that DRVI reaches ε accuracy as soon

as the sample complexity is on the order of

Õ

(
SA

(1− γ)2ε2
min

{
1

1− γ ,
1

σ

})

for all σ ∈ (0, 1), assuming that ε is small enough. In addition, a matching minimax lower

bound (modulo some logarithmic factor) is established to guarantee the tightness of the upper
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(a) TV distance (b) χ2 divergence

Figure 1.1: Illustrations of the obtained sample complexity upper and lower bounds for learning
RMDPs with comparisons to state-of-the-art and the sample complexity of standard MDPs, where
the uncertainty set is specified using the TV distance (a) and the χ2 divergence (b).

bound over the full range of the uncertainty level. To the best of our knowledge, this is the first

minimax-optimal sample complexity for RMDPs, which was previously unavailable regardless

of the divergence metric in use.

• RMDPs are easier to learn than standard MDPs under the TV distance. Given

the sample complexity Õ
(

SA
(1−γ)3ε2

)
of standard MDPs (Li et al., 2023c), it can be seen that

learning RMDPs under the TV distance is never harder than learning standard MDPs; more

concretely, the sample complexity for RMDPs matches that of standard MDPs when σ . 1−γ,

and becomes smaller by a factor of σ/(1 − γ) when 1 − γ . σ < 1. Therefore, in this case,

distributional robustness comes almost for free, given that we do not need to collect more

samples.

Sample complexity of RMDPs under the χ2 divergence. We summarize our results and

provide comparisons with prior works in Table 1.4; see Figure 1.1(b) for an illustration.

• Near-optimal sample complexity. We demonstrate that DRVI yields ε accuracy as soon

as the sample complexity is on the order of

Õ

(
SA(1 + σ)

(1− γ)4ε2

)

for all σ ∈ (0,∞), which is the first sample complexity in this setting that scales linearly in the

size S of the state space; in other words, our theory breaks the quadratic scaling bottleneck

that was present in prior works (Panaganti and Kalathil, 2022; Yang et al., 2022). We have

also developed a strengthened lower bound that is optimized by leveraging the geometry
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Result type Reference
Sample complexity

0 < σ . 1− γ 1− γ . σ . 1
1−γ σ & 1

1−γ

Upper bound

Panaganti and Kalathil (2022) S2A(1+σ)
(1−γ)4ε2

Yang et al. (2022) S2A(1+σ)2

(
√
1+σ−1)2(1−γ)4ε2

Theorem 12
SA(1+σ)
(1−γ)4ε2

Lower bound
Yang et al. (2022) SA

(1−γ)3ε2
SA

(1−γ)2σε2

Theorem 13 SA
(1−γ)3ε2

SAσ
(1−γ)4(1+σ)4ε2

SAσ
ε2

Table 1.4: Comparisons between our results and prior art on finding an ε-optimal robust policy in
the infinite-horizon RMDPs, with the uncertainty set measured w.r.t. the χ2 divergence. Here, S,
A, γ, and σ ∈ (0,∞) are the state space size, the action space size, the discount factor, and the
uncertainty level, respectively, and all logarithmic factors are omitted in the table. Improving upon
all prior results, our theory is tight (up to log factors) when σ � 1, and otherwise loose by no more
than a polynomial factor in 1/(1− γ).

of the uncertainty set under different ranges of σ. Our theory is tight when σ � 1, and is

otherwise loose by at most a polynomial factor of the effective horizon 1/(1− γ) (regardless

of the uncertainty level σ). This significantly improves upon prior results (as there exists an

unbounded gap between prior upper and lower bounds as σ →∞).

• RMDPs can be harder to learn than standard MDPs under the χ2 divergence.

Somewhat surprisingly, our improved lower bound suggests that RMDPs in this case can

be much harder to learn than standard MDPs, at least for a certain range of uncertainty

levels. We single out two regimes of particular interest. Firstly, when σ � 1, the sample size

requirement of RMDPs is on the order of SA
(1−γ)4ε2

(up to log factor), which is provably larger

than the one for standard MDPs by a factor of 1
1−γ . Secondly, the lower bound continues to

increase as σ grows and exceeds the sample complexity of standard MDPs when σ & 1
(1−γ)3 .

In sum, our sample complexity bounds not only strengthen the prior art in the development

of both upper and lower bounds, but also unveil that the additional robustness consideration might

affect the sample complexity in a somewhat surprising manner. As it turns out, RMDPs are not

necessarily harder nor easier to learn than standard MDPs; the conclusion is far more nuanced and

highly dependent on both the size and shape of the uncertainty set. This constitutes a curious

phenomenon that has not been elucidated in prior analyses.
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1.4.3 Our contributions to model-based robust offline RL

Two prevalent algorithmic ideas, distributional robustness and pessimism, are called out as our

guiding principles. While these two ideas have been proven useful for robust RL and offline RL

separately, tackling robust offline RL needs novel ingredients that go significantly beyond a näıve

combination of existing techniques. This is because, in robust offline RL, one needs to handle

the distribution shift induced not only by the behavior policy, but also by model perturbations,

thus the penalty term derived from the pessimism principle in standard offline RL is no longer

applicable. In short, while the value function of standard RL depends linearly with respect to

the transition kernel, the dependency between the nominal transition kernel and the robust value

function unfortunately becomes highly nonlinear — even without a closed-form expression — making

the control of statistical uncertainty extremely challenging in robust offline RL. Altogether, this

naturally leads to a question:

Can we learn a near-optimal policy which is robust with respect to uncertainties and variabilities of

the environments using as few history samples as possible?

Our contributions. We provide an affirmative answer, by developing a provably efficient model-

based algorithm that learns a near-optimal distributionally-robust policy from a minimal number of

offline samples. Specifically, we consider an RMDP with S states, A actions in both the nonstationary

finite-horizon setting (with horizon length H) and the discounted infinite-horizon setting (with

discount factor γ), where the uncertainty set is taken as a small ball of size σ around a nominal

transition kernel with respect to the Kullback-Leibler (KL) divergence. Given some history data

drawn by following some behavior policy πb under the nominal transition kernel in the finite-horizon

(resp. infinite-horizon) setting, our goal is to learn the optimal robust policy π? in the maximin

sense, which has the best worst-case value for all the models within the uncertainty set (Iyengar,

2005; Nilim and El Ghaoui, 2005). Our main results are summarized below.

• We introduce a notion called robust single-policy clipped concentrability coefficient C?rob ∈
[1/S,∞] to quantify the quality of history data, which measures the distribution shift between

the behavior policy πb and the optimal robust policy π? in the presence of model perturbations,

without requiring full coverage of the entire state-action space by the behavior policy. In

contrast, prior algorithms (Panaganti and Kalathil, 2022; Yang et al., 2022; Zhou et al., 2021)

— using simulator or offline data — all require full coverage of the entire state-action space.

• We propose a novel pessimistic variant of distributionally robust value iteration with a plug-in

estimate of the nominal transition kernel (Iyengar, 2005; Nilim and El Ghaoui, 2005), called

DRVI-LCB, by penalizing the robust value estimates with a carefully designed data-driven

penalty term. We demonstrate that DRVI-LCB finds an ε-optimal robust policy as soon as the

sample size is above Õ
(
SC?robH

5

P ?minσ
2ε2

)
for the finite-horizon setting and Õ

(
SC?rob

P ?minσ
2(1−γ)4ε2

)
for the
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infinite-horizon setting, up to some logarithmic factor after a burn-in cost independent of ε.

Here, P ?min is the smallest positive state transition probability of the optimal robust policy π?

under the nominal kernel.

• To complement the upper bound, we further develop an information-theoretic lower bound,

where there exists some robust MDP such that at least Ω
(
SC?robH

3

P ?minσ
2ε2

)
samples (resp. Ω

(
SC?rob

P ?minσ
2(1−γ)2ε2

)

samples) are needed to find an ε-optimal robust policy regardless of the choice of algorithms in

the finite-horizon (resp. infinite-horizon) setting. Hence, this corroborates the near-optimality

of DRVI-LCB with respect to all key parameters up to a polynomial factor of the horizon

length H (resp. the effective horizon length 1
1−γ ).

To the best of our knowledge, this work is the first one to execute the principle of pessimism

in a data-driven manner for robust offline RL, leading to the first provably near-optimal algorithm

that learns under simultaneous model uncertainty and partial coverage of the history dataset. See

Table 1.5 and Table 1.6 for summaries.

Comparison with prior art under full coverage. In truth, prior works (Panaganti and

Kalathil, 2022; Yang et al., 2022; Zhou et al., 2021) have only addressed the infinite-horizon setting

under full coverage of the history data. Specializing our result to this setting, DRVI-LCB finds an

ε-optimal robust policy with at most Õ
(

SA
P ?min(1−γ)4σ2ε2

)
samples, which depends linearly with respect

to the size of the state space S (ignoring other parameters). In contrast, all prior works (Panaganti

and Kalathil, 2022; Yang et al., 2022; Zhou et al., 2021) incur sample complexities that scale at least

quadratically with respect to the size of the state space S. In addition, our bound improves the

exponential dependency on 1
1−γ of Panaganti and Kalathil (2022); Zhou et al. (2021) to a polynomial

dependency, as well as the quadratic dependency on 1/Pmin (which satisfies Pmin ≤ P ?min) of Yang

et al. (2022) to a linear one on 1/P ?min. These improvements further corroborate the benefit of the

proposed DRVI-LCB even under full coverage. See Table 1.6 for detailed comparisons.

1.5 Related works

We now discuss the related works of all the works proposed in this thesis. We limit our discussions

primarily to RL algorithms in the tabular setting with finite state and action spaces, which are the

closest to our work.

1.5.1 Online RL

Online RL and the optimism principle. The optimism principle in the face of uncertainty

has received widespread adoption from bandits to online RL (Agarwal et al., 2019; Lai and Robbins,

1985; Lattimore and Szepesvári, 2020). In the context of online RL, Jaksch et al. (2010) constructed
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Horizon Algorithm Coverage Sample complexity

finite-horizon

DRVI-LCB

(Theorem 14)
partial

SC?robH
5

P ?minσ
2ε2

Lower bound

(Theorem 15)
partial

SC?robH
3

P ?minσ
2ε2

infinite-horizon

DRVI-LCB

(Theorem 16)
partial

SC?rob
P ?min(1−γ)4σ2ε2

Lower bound

(Theorem 17)
partial

SC?rob
P ?min(1−γ)2σ2ε2

Table 1.5: Our results for finding an ε-optimal robust policy in the finite/infinite-horizon robust
MDPs with an uncertainty set measured with respect to the KL divergence using history data under
partial coverage. The sample complexities included in the table are valid for sufficiently small ε,
with all logarithmic factors omitted. Here, σ is the uncertainty level, C?rob is the robust single-policy
clipped concentrability coefficient, P ?min is the smallest positive state transition probability of the
nominal kernel visited by the optimal robust policy π?.

confidence regions for the probability transition kernel to help select optimistic policies in the

setting of weakly communicating MDPs, based on a variant (called UCRL2) of the UCRL algorithm

originally proposed in Auer and Ortner (2006); see also Bourel et al. (2020); Filippi et al. (2010);

Talebi and Maillard (2018) for other variants of UCRL. When applied to episodic finite-horizon

MDPs, the regret bound in Jaksch et al. (2010) was suboptimal by a factor of at least
√
H2S; see

discussion in Azar et al. (2017); Jin et al. (2018). Fruit et al. (2020) developed an improved regret

bound for UCRL2 by using empirical Bernstein-style bounds, which however was still suboptimal

by a factor of at least
√
HS when specialized to episodic finite-horizon MDPs. In comparison, a

more sample-efficient paradigm is to build Bernstein-style upper confidence bounds (UCBs) for

the optimal values to help select exploration policies, which has been recently adopted in both

model-based (Azar et al., 2017) and model-free algorithms (Dong et al., 2019; Jin et al., 2018;

Liu and Su, 2020; Yang et al., 2021). Note that Bernstein-style uncertainty estimation alone is

not enough to ensure regret optimality in model-free algorithms, thereby motivating the design

of more sophisticated variance reduction strategies (Li et al., 2023b; Zhang et al., 2020c). As

alluded to previously, none of these works was able to achieve optimal sample complexity without

incurring a large burn-in sample size requirement; addressing this issue requires development of a

new statistical toolbox beyond what is currently available (see more details in our work (Li et al.,

2023b)). Finally, the optimism principle has been studied in undiscounted infinite-horizon MDPs

too (e.g., Jafarnia-Jahromi et al. (2020); Qian et al. (2019)).

Regret lower bound. Inspired by the classical lower bound argument developed for multi-armed

bandits (Auer et al., 2002), the work Jaksch et al. (2010) established a regret lower bound for MDPs
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Problem type Algorithm Coverage Sample complexity

infinite

DRVI
full S2A exp

(
O( 1

1−γ )
)

(1−γ)4σ2ε2(Zhou et al., 2021)

REVI/DRVI
full S2A exp

(
O( 1

1−γ )
)

(1−γ)4σ2ε2(Panaganti and Kalathil, 2022)

DRVI
full S2A

P 2
min(1−γ)4σ2ε2(Yang et al., 2022)

DRVI-LCB

(Theorem 16)
full

SA
P ?min(1−γ)4σ2ε2

Table 1.6: Comparisons between our results and prior arts for finding an ε-optimal robust policy in
the infinite/finite-horizon robust MDPs with an uncertainty set measured with respect to the KL
divergence under full coverage of the history data. The sample complexities included in the table
are valid for sufficiently small ε, with all logarithmic factors omitted. Here, σ is the uncertainty
level, P ?min is the smallest positive state transition probability of the nominal kernel visited by the
optimal robust policy π?, and Pmin is the smallest positive state transition probability of the nominal
kernel; it holds Pmin ≤ P ?min.

with finite diameters (so that for an arbitrary pair of states, the expected time to transition between

them is assumed to be finite as long as a suitable policy is used), which has been reproduced in the

note Osband and Van Roy (2016) with the purpose of facilitating comparison with Bartlett and

Tewari (2009). The way to construct hard MDPs in Jaksch et al. (2010) has since been adapted by

Jin et al. (2018) to exhibit a lower bound on episodic MDPs (with a sketched proof provided therein).

It was recently revisited in Domingues et al. (2021), which presented a detailed and rigorous proof

argument with a different construction.

1.5.2 Offline RL

Broadly speaking, at least two families of problems have been investigated in the literature that

tackle offline batch data: off-policy evaluation, where the goal is to estimate the value function of

a target policy that deviates from the behavior policy used in data collection; and offline policy

learning, where the goal is to identify a near-optimal policy (or at least an improved one compared

to the behavior policy). Our works (Li et al., 2022a; Shi et al., 2022) falls under the second category.

A topic of its own interest, off-policy evaluation has been extensively studied in the recent literature;

we excuse ourselves from enumerating the works in that space but only provide pointers to a few

examples including Duan and Wang (2020); Duan et al. (2021); Jiang and Huang (2020); Jiang

and Li (2016); Kallus and Uehara (2020); Li et al. (2014); Ren et al. (2021); Thomas and Brunskill

(2016); Uehara et al. (2020); Xu et al. (2021); Yang et al. (2020).
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Offline RL and the pessimism principle. One of the key challenges in offline RL lies in the

insufficient coverage of the batch dataset, due to lack of interaction with the environment (Levine

et al., 2020; Liu et al., 2020). To address this challenge, most of the recent works can be divided

into two lines: 1) regularizing the policy to avoid visiting under-covered state and action pairs

(Dadashi et al., 2021; Fujimoto et al., 2019); 2) penalizing the estimated values of the under-covered

state-action pairs (Buckman et al., 2020; Kumar et al., 2020). Our work follows the latter line (also

known as the principle of pessimism), which has garnered significant attention recently. In fact,

pessimism has been incorporated into recent development of various offline RL approaches, such as

policy-based approaches (Rezaeifar et al., 2022; Xie et al., 2021a; Zanette et al., 2021), model-based

approaches (Jin et al., 2021; Kidambi et al., 2020; Rashidinejad et al., 2021; Uehara and Sun, 2021;

Uehara et al., 2022; Xie et al., 2021b; Yan et al., 2022b; Yin et al., 2022; Yin and Wang, 2021; Yu

et al., 2021b, 2020), and model-free approaches (Kumar et al., 2020; Shi et al., 2022; Yan et al.,

2022a; Yu et al., 2021a).

In addition to the ones discussed in Chapter 1.3.2 that focus on minimax performance, The

recent works Yin et al. (2022); Yin and Wang (2021) further developed instance-dependent statistical

guarantees for the pessimistic model-based approach. The results in Yin and Wang (2021), however,

required a large burn-in sample size, thus preventing it from attaining minimax optimality for the

entire accuracy range. On the empirical side, model-based algorithms (Kidambi et al., 2020; Yu

et al., 2020) have been shown to achieve superior performance than their model-free counterpart

for offline RL. In addition, a number of recent works studied offline RL under various function

approximation assumptions, e.g., Jin et al. (2021); Nguyen-Tang et al. (2021); Uehara and Sun

(2021); Uehara et al. (2022); Yin et al. (2022); Zanette et al. (2021); Zhan et al. (2022), which are

beyond the scope of the current thesis.

1.5.3 Robust RL

Robustness in RL. While standard RL has achieved remarkable success, current RL algorithms

still have significant drawbacks in that the learned policy could be completely off if the deployed

environment is subject to perturbation, model mismatch, or other structural changes. To address

these challenges, an emerging line of works begin to address robustness of RL algorithms with

respect to the uncertainty or perturbation over different components of MDPs — state, action,

reward, and the transition kernel; see Moos et al. (2022) for a recent review. Besides the framework

of distributionally robust MDPs (RMDPs) (Iyengar, 2005) adopted by this thesis, to promote

robustness in RL, there exist various other works including but not limited to Han et al. (2022);

Qiaoben et al. (2021); Sun et al. (2021); Xiong et al. (2022); Zhang et al. (2021a, 2020a) investigating

the robustness w.r.t. state uncertainty, where the agent’s policy is chosen based on a perturbed

observation generated from the state by adding restricted noise or adversarial attack. Besides, Tan

et al. (2020); Tessler et al. (2019) considered the robustness to the uncertainty of the action, namely,
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the action is possibly distorted by an adversarial agent abruptly or smoothly.

Distributionally robust RL. Rooted in the literature of distributionally robust optimization,

which has primarily been investigated in the context of supervised learning (Bertsimas et al., 2018;

Blanchet and Murthy, 2019; Duchi and Namkoong, 2021; Gao, 2022; Rahimian and Mehrotra, 2019),

distributionally robust dynamic programming and RMDPs have attracted considerable attention

recently (Badrinath and Kalathil, 2021; Derman and Mannor, 2020; Goyal and Grand-Clement,

2022; Ho et al., 2018, 2021; Iyengar, 2005; Kaufman and Schaefer, 2013; Smirnova et al., 2019; Tamar

et al., 2014; Wolff et al., 2012; Xu and Mannor, 2012). In the context of RMDPs, both empirical

and theoretical studies have been widely conducted, although most prior theoretical analyses focus

on planning with an exact knowledge of the uncertainty set (Iyengar, 2005; Tamar et al., 2014; Xu

and Mannor, 2012), or are asymptotic in nature (Roy et al., 2017).

Resorting to the tools of high-dimensional statistics, various recent works begin to shift

attention to understand the finite-sample performance of provable robust RL algorithms, under

diverse data generating mechanisms and forms of the uncertainty set over the transition kernel,

where the most related ones to ours prescribe the uncertainty set via the KL divergence, the TV

distance and the χ2 divergence. The KL divergence is a popular choice widely considered, where

Blanchet et al. (2023); Panaganti and Kalathil (2022); Wang et al. (2023a); Xu et al. (2023); Yang

et al. (2022); Zhou et al. (2021) investigated the sample complexity of both model-based and

model-free algorithms under the simulator or offline settings. Finite-sample complexity bounds for

RMDPs with the TV distance and the χ2 divergence are developed for both the infinite-horizon

setting (see Table 1.3 and Table 1.4) and the finite-horizon setting in Dong et al. (2022); Xu et al.

(2023). In addition, many other forms of uncertainty sets have been considered. For example,

Wang and Zou (2021) considered an R-contamination uncertain set and proposed a provable robust

Q-learning algorithm for the online setting with similar guarantees as standard MDPs. Xu et al.

(2023) considered a variety of uncertainty sets including one associated with Wasserstein distance.

Badrinath and Kalathil (2021) considered a general (s, a)-rectangular form of the uncertainty set

and proposed a model-free algorithm for the online setting with linear function approximation to

cope with large state spaces. Moreover, various other related issues have been explored such as

the iteration complexity of the policy-based methods (Kumar et al., 2023; Li et al., 2022b), and

regularization-based robust RL (Yang et al., 2023).

1.5.4 Other related works

Model-based RL. This popular paradigm has been deployed and studied under various data

collection mechanisms, including but not limited to the generative model (or simulator) setting

(Agarwal et al., 2020b; Azar et al., 2013; Li et al., 2023c; Pananjady and Wainwright, 2020) that

beats the state-of-the-art model-free algorithms by achieving optimality for the entire sample size
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range (Li et al., 2023c), the online exploratory setting Azar et al. (2017); He et al. (2021); Jin et al.

(2020), MDPs with bounded total reward (Zanette and Brunskill, 2019; Zhang et al., 2021b), and

Markov games (Zhang et al., 2020b). The leave-one-out analysis (and the construction of absorbing

MDPs) has been adopted by several recent works Agarwal et al. (2020b); Cui and Yang (2021); Li

et al. (2023c); Pananjady and Wainwright (2020).

Model-free RL. Another widely used paradigm is model-free RL, which attempts to learn the

optimal value function without explicit construction of the model. Q-learning is arguably among the

most famous model-free algorithms developed in the RL literature (Jaakkola et al., 1994; Szepesvári,

1997; Tsitsiklis, 1994; Watkins and Dayan, 1992), which applies the stochastic approximation

paradigm to find the fixed point of the Bellman operator and enjoys a low space complexity. Non-

asymptotic sample analysis and probably approximately correct (PAC) bounds for Q-learning and

its variants have seen extensive developments in the last several years, including but not limited

to the works of Azar et al. (2011); Beck and Srikant (2012); Chen et al. (2020); Even-Dar and

Mansour (2003); Li et al. (2023a); Wainwright (2019a); Woo et al. (2023); Xiong et al. (2020) for

the synchronous setting (the case with access to a generative model or a simulator), the works of

Beck and Srikant (2012); Chen et al. (2020, 2021c); Even-Dar and Mansour (2003); Li et al. (2023a,

2021); Qu and Wierman (2020); Wainwright (2019b); Woo et al. (2023); Xiong et al. (2020); Yin

et al. (2021a,b) for the asynchronous setting (where one observes a single Markovian trajectory

induced by a behavior policy), the works of Bai et al. (2019); Dong et al. (2019); Jafarnia-Jahromi

et al. (2020); Jin et al. (2018); Li et al. (2023b); Weng et al. (2020); Yang et al. (2021); Zhang et al.

(2021b, 2020c, 2021c) for the online setting via regret analysis, and the works of Shi et al. (2022);

Yan et al. (2022a) for the offline setting with the access to a history dataset.

It is worthnoting that the Q-learning in the asynchronous setting shares some similarity with

offline RL; note that prior results on vanilla asynchronous Q-learning require a strong uniform

coverage requirement (Chen et al., 2021c; Li et al., 2023a; Qu and Wierman, 2020), which is stronger

than the single-policy concentrability considered herein. Moreover, Q-learning alone is known to be

sub-optimal in terms of the sample complexity in various settings (Bai et al., 2019; Jin et al., 2018;

Li et al., 2023a; Shi et al., 2022; Wainwright, 2019a).

Variance reduction in RL. The seminal idea of variance reduction was originally proposed to

accelerate finite-sum stochastic optimization, e.g., Gower et al. (2020); Johnson and Zhang (2013);

Nguyen et al. (2017). Thereafter, the variance reduction strategy has been imported to RL, which

assists in improving the sample efficiency of RL algorithms in multiple contexts, including but not

limited to policy evaluation (Du et al., 2017; Khamaru et al., 2021; Wai et al., 2019; Xu et al., 2019),

RL with a generative model (Sidford et al., 2018a,b; Wainwright, 2019b), asynchronous Q-learning

(Li et al., 2021), and offline RL (Shi et al., 2022; Yin et al., 2021b). Note, however, variance-reduced

model-free RL typically requires a large burn-in cost in order to operate in a sample-optimal fashion,
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and is hence outperformed by the model-based approach under multiple sampling mechanisms.

1.6 Thesis organization and notation

Organization. The rest of this document is organized as follows.

• Chapter 2 describes the models and backgrounds of RL considered in this thesis, in particular

standard MDPs and robust MDPs.

• Chapter 3 describes the proposed algorithm for online RL, together with its theoretical

guarantees.

• Chapter 4 and Chapter 5 describe the proposed model-free and model-based algorithms of

offline RL, respectively, together with their theoretical guarantees.

• Chapter 6 and Chapter 7 describe the proposed algorithms for robust RL with a generative

model and offline data, respectively, together with their theoretical guarantees.

• Chapter 8 concludes the thesis and discusses future directions.

• The proof details are deferred to the Appendix.

Notation. Let us introduce a set of notation that will be used throughout the thesis.

• Basic notation. We denote by ∆(S) the probability simplex over a set S, and introduce the

notation [N ] := {1, · · · , N} for any integer N > 0. We adopt the convention that 0/0 = 0. We

use 1(·) to represent the indicator function. Additionally, we denote by ei the i-th standard

basis vector, with the only non-zero element being in the i-th entry and equal to 1. The KL

divergence for any two distributions P and Q is denoted as KL(P ‖ Q).

• Notation for vectors. For any vector x ∈ RSA (resp. x ∈ RS) that constitutes certain

values for each of the state-action pairs (resp. state), we shall often use x(s, a) (resp. x(s)) to

denote the entry associated with the (s, a) pair (resp. state s), as long as it is clear from the

context. Similarly, we shall denote by x := {xh}h∈[H] the set composed of certain vectors for

each of the time step h ∈ [H]. In addition, we often overload scalar functions and expressions

to take vector-valued arguments, with the interpretation that they are applied in an entrywise

manner. For example, for a vector x = [xi]1≤i≤n, we have x2 = [x2
i ]1≤i≤n. For any two vectors

x = [xi]1≤i≤n and y = [yi]1≤i≤n, the notation x ≤ y (resp. x ≥ y) means xi ≤ yi (resp. xi ≥ yi)
for all 1 ≤ i ≤ n.

• Big O notation. Let X :=
(
S,A, 1

1−γ , σ,
1
ε ,

1
δ

)
. Here and throughout, we use the standard

notation f(n) = O(g(n)) to indicate that f(n)/g(n) is bounded above by a constant as
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n grows. The notation f(n) = o(g(n)) means that limn→∞ f(n)/g(n) = 0. The notation

f(X ) = O(g(X )) or f(X ) . g(X ) indicates that there exists a universal constant C1 > 0 such

that f ≤ C1g, the notation f(X ) & g(X ) indicates that g(X ) = O(f(X )), and the notation

f(X ) � g(X ) indicates that f(X ) . g(X ) and f(X ) & g(X ) hold simultaneously. Additionally,

the notation Õ(·) is defined in the same way as O(·) except that it hides logarithmic factors.

• Additional notation. Following the convention in RL (Agarwal et al., 2019), the norm ‖ · ‖1
of a matrix P = [Pij ] is defined to be ‖P‖1 := maxi

∑
j |Pij |. For any vector V = [Vi]1≤i≤n,

we define its `∞ norm as ‖V ‖∞ := max1≤i≤n |Vi|. For any probability vector q ∈ R1×S (which

is a row vector) and any vector V ∈ RS , define

Varq(V ) := q
(
V ◦ V

)
− (qV )2 ∈ R (1.7)

with qV =
∑

i qiVi, which corresponds to the variance of V w.r.t. the distribution q.
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Chapter 2

Models and Backgrounds

2.1 Preliminaries of standard RL

In this subchapter, we introduce two widely-used models for standard RL, i.e., finite-horizon MDPs

and discounted infinite-horizon MDPs, respectively.

2.1.1 Basics of episodic finite-horizon MDPs

Let M = (S,A, H, {Ph}Hh=1, {rh}Hh=1) represent a finite-horizon MDP, where S := {1, · · ·S} is

the state space of size S, A := {1, · · · , A} is the action space of size A, H denotes the horizon

length, and Ph : S × A → ∆(S) (resp. rh : S × A → [0, 1]) represents the probability transition

kernel (resp. reward function) at the h-th time step, 1 ≤ h ≤ H, respectively. More specifically,

Ph(· | s, a) ∈ ∆(S) stands for the transition probability vector from state s at time step h when action

a is taken, while rh(s, a) indicates the immediate reward received at time step h for a state-action

pair (s, a) (which is assumed to be deterministic and fall within the range [0, 1]). The MDP is

said to be non-stationary when the Ph’s are not identical across 1 ≤ h ≤ H. A policy of an agent

is represented by π = {πh}Hh=1 with πh : S → A the action selection rule at time step h, so that

πh(s) specifies which action to execute in state s at time step h. Throughout this sub-chapter, we

concentrate on deterministic policies.

Value functions, Q-functions, and Bellman equations. The value function V π
h (s) of a

(deterministic) policy π at step h is defined as the expected cumulative rewards received between

time steps h and H when executing this policy from an initial state s at time step h, namely,

V π
h (s) := E

st+1∼Pt(·|st,πt(st)), t≥h

[
H∑

t=h

rt
(
st, πt(st)

) ∣∣∣ sh = s

]
, (2.1)

where the expectation is taken over the randomness of the MDP trajectory {st | h ≤ t ≤ H}.
The action-value function (a.k.a. the Q-function) Qπh(s, a) of a policy π at step h can be defined

analogously except that the action at step h is fixed to be a, that is,

Qπh(s, a) := rh(s, a) + E
sh+1∼Ph(·|s,a),

st+1∼Pt(·|st,πt(st)), t>h

[
H∑

t=h+1

rt
(
st, πt(st)

) ∣∣∣ sh = s, ah = a

]
. (2.2)

27



In addition, we define V π
H+1(s) = QπH+1(s, a) = 0 for any policy π and any state-action pair

(s, a) ∈ S ×A. By virtue of basic properties in dynamic programming (Bertsekas, 2017), the value

function and the Q-function satisfy the following Bellman equation:

Qπh(s, a) = rh(s, a) + E
s′∼Ph(·|s,a)

[
V π
h+1(s′)

]
. (2.3)

Additionally, when the initial state is drawn from a given distribution ρ, the expected value of a

given policy π and that of the optimal policy at the initial step are defined respectively by

V π
1 (ρ) := E

s1∼ρ

[
V π

1 (s1)
]

and V ?
1 (ρ) := E

s1∼ρ

[
V ?

1 (s1)
]
. (2.4)

A policy π? = {π?h}Hh=1 is said to be an optimal policy if it maximizes the value function

simultaneously for all states among all policies. The resulting optimal value function V ? = {V ?
h }Hh=1

and optimal Q-functions Q? = {Q?h}Hh=1 satisfy

V ?
h (s) = V π?

h (s) = max
π

V π
h (s) and Q?h(s, a) = Qπ

?

h (s, a) = max
π

Qπh(s, a) (2.5)

for any (s, a, h) ∈ S × A × [H]; here and throughout, we denote [H] := {1, · · · , H}. It is well

known that the optimal policy always exists (Puterman, 2014), and satisfies the Bellman optimality

equation:

∀(s, a, h) ∈ S ×A× [H] : Q?h(s, a) = rh(s, a) + E
s′∼Ph(·|s,a)

[
V ?
h+1(s′)

]
. (2.6)

Before proceeding, we shall also let

Ph,s,a = Ph(· | s, a) ∈ R1×S (2.7)

abbreviate the transition probability vector given the (s, a) pair at time step h.

2.1.2 Basics of discounted infinite-horizon MDPs

Consider a discounted infinite-horizon MDP (Bertsekas, 2017) represented by a tuple M =

{S,A, P, γ, r}. The key components of M are: (i) S = {1, 2, · · · , S}: a finite state space of

size S; (ii) A = {1, 2, · · · , A}: an action space of size A; (iii) P : S × A → ∆(S): the transition

probability kernel of the MDP (i.e., P (· | s, a) denotes the transition probability from state s when

action a is executed); (iv) γ ∈ [0, 1): the discount factor, so that 1
1−γ represents the effective horizon;

(v) r : S ×A → [0, 1]: the deterministic reward function (namely, r(s, a) indicates the immediate

reward received when the current state-action pair is (s, a)). Without loss of generality, the immedi-

ate rewards are normalized so that they are contained within the interval [0, 1]. Throughout, we
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introduce the convenient notation

Ps,a := P (· | s, a) ∈ R1×S . (2.8)

Policy, value function and Q-function. A stationary policy π : S → ∆(A) is a possibly

randomized action selection rule; that is, π(a | s) represents the probability of choosing a in state

s. When π is a deterministic policy, we abuse the notation by letting π(s) represent the action

chosen by the policy π in state s. A sample trajectory induced by the MDP under policy π can be

written as {(st, at)}t≥0, with st (resp. at) denoting the state (resp. action) of the trajectory at time

t. To proceed, we shall also introduce the value function V π and Q-value function Qπ associated

with policy π. Specifically, the value function V π : S → R of policy π is defined as the expected

discounted cumulative reward as follows:

∀s ∈ S : V π(s) := E

[ ∞∑

t=0

γtr(st, at) | s0 = s;π

]
, (2.9)

where the expectation is taken over the sample trajectory {(st, at)}t≥0 generated in a way that

at ∼ π(· | st) and st+1 ∼ P (· | st, at) for all t ≥ 0. Given that all immediate rewards lie within [0, 1],

it is easily verified that 0 ≤ V π(s) ≤ 1
1−γ for any policy π. The Q-function (or action-state function)

of policy π can be defined analogously as follows:

∀(s, a) ∈ S ×A : Qπ(s, a) := E

[ ∞∑

t=0

γtr(st, at) | s0 = s, a0 = a;π

]
, (2.10)

which differs from (2.9) in that it is also conditioned on a0 = a.

Let ρ ∈ ∆(S) be a given state distribution. If the initial state is randomly drawn from ρ, then

we can define the following weighted value function of policy π:

V π(ρ) := E
s∼ρ

[
V π(s)

]
. (2.11)

2.2 Preliminaries of robust RL

Abusing the notation in standard RL, we introduce two models of robust RL — finite-horizon robust

MDPs and discounted infinite-horizon robust MDPs (RMDPs), respectively.

2.2.1 Basics of episodic finite-horizon RMDPs

Recall that π = {πh}Hh=1 is the policy or action selection rule of an agent, where πh : S → ∆(A)

specifies the action selection probability over the action space. Slightly abusing the notation, the
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value function V π,P = {V π,P
h }Hh=1 of policy π with a transition kernel P is defined by

∀(h, s) ∈ [H]× S : V π,P
h (s) := Eπ,P

[
H∑

t=h

rt
(
st, at

) ∣∣∣ sh = s

]
, (2.12)

where the expectation is taken over the randomness of the trajectory {sh, ah, rh}Hh=1 generated

by executing policy π, namely, at ∼ πt(st), and st+1 ∼ Pt(· | st, at). Similarly, the Q-function

Qπ,P = {Qπ,Ph }Hh=1 of policy π is defined as

∀(h, s, a) ∈ [H]× S ×A : Qπ,Ph (s, a) := rh(s, a) + Eπ,P

[
H∑

t=h+1

rt(st, at)
∣∣∣ sh = s, ah = a

]
, (2.13)

where the expectation is again taken over the randomness of the trajectory.

Moreover, when the initial state s1 is drawn from a given distribution ϕ, let dπ,Ph (s |ϕ) and

dπ,Ph (s, a |ϕ) denote respectively the state occupancy distribution and the state-action occupancy

distribution induced by π at time step h ∈ [H], i.e.,

∀(h, s) ∈ [H]× S : dπ,Ph (s) := P(sh = s | s1 ∼ ϕ, π, P ), (2.14a)

∀(h, s, a) ∈ [H]× S ×A : dπ,Ph (s, a) := P(sh = s | s1 ∼ ϕ, π, P )πh(a | s), (2.14b)

which are conditioned on s1 ∼ ϕ and the event that all actions and states are drawn according

to policy π and transition kernel P . In particular, we often drop the dependency with respect to

ϕ whenever it is clear from the context, by simply writing dπ,Ph (s) := dπ,Ph (s |ϕ) and dπ,Ph (s, a) :=

dπ,Ph (s, a |ϕ).

Finite-horizon distributionally robust MDPs. Consider a finite-horizon distributionally

robust MDP (RMDPs), denoted by Mrob =
(
S,A, H,Uσρ (P 0), {rh}Hh=1

)
. Different from standard

MDPs, we now consider an ensemble of probability transition kernels or models within an uncertainty

set centered around a nominal one P 0 = {P 0
h}Hh=1, where the distance between the transition kernels

is specified using some distance metric ρ of radius σ > 0. Specifically, the uncertainty set around

P 0 with the divergence metric ρ : ∆(S)×∆(S)→ R+ is specified as

Uσρ (P 0) := ⊗ Uσρ (P 0
h,s,a) with Uσρ (P 0

h,s,a) :=
{
Ph,s,a ∈ ∆(S) : ρ

(
Ph,s,a, P

0
h,s,a

)
≤ σ

}
, (2.15)

where ⊗ denote the Cartesian product. In words, the divergence between the true transition

probability vector and the nominal one at each state-action pair is at most σ; moreover, the RMDP

reduces to the standard MDP when σ = 0.

Instead of evaluating a policy in a fixed MDP, the performance of a policy in the RMDP is

evaluated based on its worst-case — i.e., smallest — value function over all the instances in the
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uncertainty set. That is, we define the robust value function V π,σ = {V π,σ
h }Hh=1 and the robust

Q-function Qπ,σ = {Qπ,σh }Hh=1 respectively as

∀(h, s, a) ∈ [H]× S ×A : V π,σ
h (s) := inf

P∈Uσρ (P 0)
V π,P
h (s), Qπ,σh (s, a) := inf

P∈Uσρ (P 0)
Qπ,Ph (s, a),

where the infimum is taken over the uncertainty set of transition kernels.

Optimal robust policy and the robust Bellman operator. For finite-horizon RMDPs, it

has been established that there exists at least one deterministic policy that maximizes the robust

value function and Q-function simultaneously (Iyengar, 2005; Nilim and El Ghaoui, 2005). In view

of this, we shall denote a deterministic policy π? = {π?h}Hh=1 as an optimal robust policy throughout

this chapter. The resulting optimal robust value function V ?,σ = {V ?,σ
h }Hh=1 and optimal robust

Q-function Q?,σ = {Q?,σh }Hh=1 are denoted by

∀(h, s) ∈ [H]× S : V ?,σ
h (s) := V π?,σ

h (s) = max
π

V π,σ
h (s), (2.16a)

∀(h, s, a) ∈ [H]× S ×A : Q?,σh (s, a) := Qπ
?,σ
h (s, a) = max

π
Qπ,σh (s, a). (2.16b)

Similar to (4.1), we adopt the following short-hand notation for the occupancy distributions

associated with the optimal policy:

∀(h, s) ∈ [H]× S : d?,Ph (s) := dπ
?,P
h (s), (2.17a)

∀(h, s, a) ∈ [H]× S ×A : d?,Ph (s, a) := dπ
?,P
h (s, a) = d?,Ph (s)1{a = π?h(s)}. (2.17b)

It turns out the Bellman’s principle of optimality can be extended naturally to its robust

counterpart (Iyengar, 2005; Nilim and El Ghaoui, 2005), which plays a fundamental role in solving

the RMDP. To begin with, for any policy π, the robust value function and robust Q-function satisfy

the following robust Bellman consistency equation:

∀(h, s, a) ∈ [H]× S ×A : Qπ,σh (s, a) = rh(s, a) + inf
P∈Uσρ (P 0

h,s,a)
PV π,σ

h+1. (2.18)

Additionally, the optimal robust Q-function obeys the robust Bellman optimality equation:

∀(h, s, a) ∈ [H]× S ×A : Q?,σh (s, a) = rh(s, a) + inf
P∈Uσρ (P 0

h,s,a)
PV ?,σ

h+1, (2.19)

which can be solved efficiently via a robust variant of value iteration when the RMDP is known

(Iyengar, 2005; Nilim and El Ghaoui, 2005).
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2.2.2 Basics of discounted infinite-horizon RMDPs

We now turn to the definition of discounted infinite-horizon RMDPs. To characterize the cumulative

reward, with a slight abuse of the notation, the value function V π,P for any policy π under the

transition kernel P is defined by

∀s ∈ S : V π,P (s) := Eπ,P

[ ∞∑

t=0

γtr
(
st, at

) ∣∣∣ s0 = s

]
, (2.20)

where the expectation is taken over the randomness of the trajectory {st, at}∞t=0 generated by

executing policy π under the transition kernel P , namely, at ∼ π(· | st) and st+1 ∼ P (· | st, at) for all

t ≥ 0. Similarly, the Q-function Qπ,P associated with any policy π under the transition kernel P is

defined as

∀(s, a) ∈ S ×A : Qπ,P (s, a) := Eπ,P

[ ∞∑

t=0

γtr
(
st, at

) ∣∣∣ s0 = s, a0 = a

]
, (2.21)

where the expectation is again taken over the randomness of the trajectory under policy π.

Letting ϕ be some initial state distribution, we denote dπ,P (s |ϕ) and dπ,P (s, a |ϕ) respectively

as the state occupancy distribution and the state-action occupancy distribution induced by policy

π, namely

∀s ∈ S : dπ,P (s) := (1− γ)
∞∑

t=0

γtP(st = s | s0 ∼ ϕ, π, P ), (2.22a)

∀(s, a) ∈ S ×A : dπ,P (s, a) := (1− γ)

∞∑

t=0

γtP(st = s | s0 ∼ ϕ, π, P )π(a | s). (2.22b)

Here, the occupancy distributions are conditioned on s0 ∼ ϕ and the sequence of actions and states

are generated based on policy π and transition kernel P .

Discounted infinite-horizon distributionally robust MDPs. We now introduce the distri-

butionally robust MDP (RMDP) tailored to the discounted infinite-horizon setting, denoted by

Mrob = {S,A, γ,Uσρ (P 0), r}, where S,A, γ, r are identical to those in the standard MDP. A key

distinction from the standard MDP is that: rather than assuming a fixed transition kernel P ,

it allows the transition kernel to be chosen arbitrarily from a prescribed uncertainty set Uσρ (P 0)

centered around a nominal kernel P 0 : S ×A → ∆(S), where the uncertainty set is specified using

some distance metric ρ of radius σ > 0. In particular, given the nominal transition kernel P 0 and

some uncertainty level σ, the uncertainty set — with the divergence metric ρ : ∆(S)×∆(S)→ R+
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— is specified as

Uσρ (P 0) := ⊗ Uσρ (P 0
s,a) with Uσρ (P 0

s,a) :=
{
Ps,a ∈ ∆(S) : ρ

(
Ps,a, P

0
s,a

)
≤ σ

}
, (2.23)

where we recall that a vector of the transition kernel P or P 0 at state-action pair (s, a) is denoted

respectively as

Ps,a := P (· | s, a) ∈ R1×S , P 0
s,a := P 0(· | s, a) ∈ R1×S . (2.24)

In other words, the uncertainty is imposed in a decoupled manner for each state-action pair, obeying

the so-called (s, a)-rectangularity (Wiesemann et al., 2013; Zhou et al., 2021).

In RMDPs, we are interested in the worst-case performance of a policy π over all the possible

transition kernels in the uncertainty set. This is measured by the robust value function V π,σ and

the robust Q-function Qπ,σ in Mrob, defined respectively as

∀(s, a) ∈ S ×A : V π,σ(s) := inf
P∈Uσρ (P 0)

V π,P (s), Qπ,σ(s, a) := inf
P∈Uσρ (P 0)

Qπ,P (s, a). (2.25)

Optimal robust policy and the robust Bellman operator. As a generalization of properties

of standard MDPs, it is well-known that there exists at least one deterministic policy that maximizes

the robust value function (resp. robust Q-function) simultaneously for all states (resp. state-action

pairs) (Iyengar, 2005; Nilim and El Ghaoui, 2005). Therefore, we denote the optimal robust value

function (resp. optimal robust Q-function) as V ?,σ (resp. Q?,σ), and the optimal robust policy as π?,

which satisfy

∀s ∈ S : V ?,σ(s) := V π?,σ(s) = max
π

V π,σ(s), (2.26a)

∀(s, a) ∈ S ×A : Q?,σ(s, a) := Qπ
?,σ(s, a) = max

π
Qπ,σ(s, a). (2.26b)

A key machinery in RMDPs is a generalization of Bellman’s optimality principle, encapsulated in

the following robust Bellman consistency equation (resp. robust Bellman optimality equation):

∀(s, a) ∈ S ×A : Qπ,σ(s, a) = r(s, a) + γ inf
P∈Uσρ (P 0

s,a)
PV π,σ, (2.27a)

∀(s, a) ∈ S ×A : Q?,σ(s, a) = r(s, a) + γ inf
P∈Uσρ (P 0

s,a)
PV ?,σ. (2.27b)

Applying (2.22) with π = π?, we adopt the the following short-hand notation for the occupancy

distributions associated with the optimal policy:

∀s ∈ S : d?,P (s) := dπ
?,P (s), (2.28a)

∀(s, a) ∈ S ×A : d?,P (s, a) := dπ
?,P (s, a) = d?,P (s)1{a = π?(s)}. (2.28b)
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The robust Bellman operator (Iyengar, 2005; Nilim and El Ghaoui, 2005) is denoted by

T σ(·) : RSA → RSA and defined as follows:

∀(s, a) ∈ S ×A : T σ(Q)(s, a) := r(s, a) + γ inf
P∈Uσρ (P 0

s,a)
PV, with V (s) := max

a
Q(s, a). (2.29)

Given that Q?,σ is the unique fixed point of T σ, one can recover the optimal robust value function

and Q-function using a procedure termed distributionally robust value iteration (DRVI). Generalizing

the standard value iteration, DRVI starts from some given initialization and recursively applies the

robust Bellman operator until convergence. As has been shown previously, this procedure converges

rapidly due to the γ-contraction property of T σ w.r.t. the `∞ norm (Iyengar, 2005; Nilim and

El Ghaoui, 2005).
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Chapter 3

Model-Free Online RL

3.1 Problem formulation

In this chapter, we investigate the online episodic finite-horizon RL setting, where the agent is

allowed to execute the MDP sequentially in a total number of K episodes each of length H. This

amounts to collecting

T = KH samples

in total. More specifically, in each episode k = 1, . . . ,K, the agent is assigned an arbitrary initial

state sk1 (possibly by an adversary), and selects a policy πk = {πkh}Hh=1 learned based on the

information collected up to the (k − 1)-th episode. The k-th episode is then executed following the

policy πk and the dynamic of the MDP M, leading to a length-H sample trajectory.

Goal: regret minimization. In order to evaluate the quality of the learned policies {πk}1≤k≤K ,

a frequently used performance metric is the cumulative regret defined as follows:

Regret(T ) :=

K∑

k=1

(
V ?

1 (sk1)− V πk

1 (sk1)
)
. (3.1)

In words, the regret reflects the sub-optimality gaps between the values of the optimal policy and

those of the learned policies aggregated over K episodes. A natural objective is thus to design

a sample-optimal algorithm, namely, an algorithm whose resulting regret scales optimally in the

sample size T . Accomplishing this goal requires carefully managing the trade-off between exploration

and exploitation, which is particularly challenging in the sample-limited regime.

3.2 Algorithm and theory

In this chapter, we present the proposed algorithm called CB-Q-Advantage, as well as the accompa-

nying theory confirming its sample and memory efficiency.

3.2.1 Review: Q-learning with UCB exploration and reference advantage

This subchapter briefly reviews the Q-learning algorithm with UCB exploration proposed in Jin

et al. (2018), as well as a variant that further exploits the idea of variance reduction (Zhang et al.,
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2020c). These two model-free algorithms inspire the algorithm design in the current chapter.

Q-learning with UCB exploration (UCB-Q or UCB-Q-Hoeffding). Recall that the classical

Q-learning algorithm has been proposed as a stochastic approximation scheme (Robbins and Monro,

1951) to solve the Bellman optimality equation (2.6), which consists of the following update rule

(Watkins and Dayan, 1992; Watkins, 1989):

Qh(s, a)← (1− η)Qh(s, a) + η
{
rh(s, a) + P̂h,s,aVh+1︸ ︷︷ ︸

stochastic estimate of Ph,s,aVh+1

}
. (3.2)

Here, Qh (resp. Vh) indicates the running estimate of Q?h (resp. V ?
h ), η is the (possibly iteration-

varying) learning rate or stepsize, and P̂h,s,aVh+1 is a stochastic estimate of Ph,s,aVh+1 (cf. (2.7)).

For instance, if one has available a sample (s, a, s′) transitioning from state s at step h to s′ at step

h+ 1 under action a, then a stochastic estimate of Ph,s,aVh+1 can be taken as Vh+1(s′), which is

unbiased in the sense that

E
[
Vh+1(s′)

]
= Ph,s,aVh+1.

To further encourage exploration, the algorithm proposed in Jin et al. (2018) — which shall be

abbreviated as UCB-Q or UCB-Q-Hoeffding hereafter — augments the Q-learning update rule (3.2)

in each episode via an additional exploration bonus:

QUCB
h (s, a)← (1− η)QUCB

h (s, a) + η
{
rh(s, a) + P̂h,s,aVh+1 + bh

}
. (3.3)

The bonus term bh ≥ 0 is chosen to be a certain upper confidence bound for (P̂h,s,a−Ph,s,a)Vh+1, an

exploration-efficient scheme that originated from the bandit literature (Lai and Robbins, 1985; Latti-

more and Szepesvári, 2020). The algorithm then proceeds to the next episode by executing/sampling

the MDP using a greedy policy w.r.t. the updated Q-estimate. These steps are repeated until the

algorithm is terminated.

Q-learning with UCB exploration and reference advantage (UCB-Q-Advantage). The

regret bounds derived for UCB-Q (Jin et al., 2018), however, fall short of being optimal, as they are

at least a factor of
√
H away from the fundamental lower bound. In order to further shave this

√
H

factor, one strategy is to leverage the idea of variance reduction to accelerate convergence (Johnson

and Zhang, 2013; Li et al., 2021; Sidford et al., 2018b; Wainwright, 2019b). An instantiation of this

idea for the regret setting is a variant of UCB-Q based on reference-advantage decomposition, which

was put forward in Zhang et al. (2020c) and shall be abbreviated as UCB-Q-Advantage throughout

this chapter.

To describe the key ideas of UCB-Q-Advantage, imagine that we are able to maintain a

collection of reference values V R = {V R
h }Hh=1, which form reasonable estimates of V ? = {V ?

h }Hh=1
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and become increasingly more accurate as the algorithm progresses.

At each time step h, the algorithm adopts the following update rule

QR
h(s, a)← (1− η)QR

h(s, a) + η
{
rh(s, a) + P̂h,s,a

(
Vh+1 − V R

h+1

)
︸ ︷︷ ︸

stochastic estimate of Ph,s,a

(
Vh+1−V R

h+1

)
+
[
P̂hV

R
h+1

]
(s, a) + bR

h

}
. (3.4)

Two ingredients of this update rule are worth noting.

• Akin to the UCB-Q case, we can take P̂h,s,a
(
Vh+1 − V R

h+1

)
to be the stochastic estimate

Vh+1(s′)− V R
h+1(s′) if we observe a sample transition (s, a, s′) at time step h. If Vh+1 is fairly

close to the reference V R
h+1, then this stochastic term can be less volatile than the stochastic

term P̂h,s,aVh+1 in (3.3).

• Additionally, the term P̂hV
R
h+1 indicates an estimate of the one-step look-ahead value PhV

R
h+1,

which shall be computed using a batch of samples.

The variability of P̂hV
R
h+1 can be well-controlled through the use of batch data, at the price of

an increased sample size.

Accordingly, the exploration bonus term bR
h is taken to be an upper confidence bound for the

above-mentioned two terms combined. Given that the uncertainty of (3.4) largely stems from these

two terms (which can both be much smaller than the variability in (3.3)), the incorporation of the

reference term helps accelerate convergence.

3.2.2 The proposed algorithm: CB-Q-Advantage

As alluded to previously, however, the sample size required for UCB-Q-Advantage to achieve optimal

regret needs to exceed a large polynomial S6A4 in the size of the state/action space. To overcome

this sample complexity barrier, we come up with an improved variant called CB-Q-Advantage.

Motivation: early settlement of a reference value. An important insight obtained from

previous algorithm designs is that: in order to achieve low regret, it is desirable to maintain an

estimate of Q-function that (i) provides an optimistic view (namely, an over-estimate) of the truth Q?,

and (ii) mitigates the bias Q−Q? as much as possible. With two additional optimistic Q-estimates

in hand — QUCB
h based on UCB-Q, and QR

h based on the reference-advantage decomposition — it

is natural to combine them as follows to further reduce the bias without violating the optimism

principle:

Qh(sh, ah)← min
{
QR
h(sh, ah), QUCB

h (sh, ah), Qh(sh, ah)
}
. (3.5)

This is precisely what is conducted in UCB-Q-Advantage. However, while the estimate QR
h obtained

with the aid of reference-advantage decomposition provides great promise, fully realizing its potential
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in the sample-limited regime relies on the ability to quickly settle on a desirable “reference” during

the initial stage of the algorithm. This leads us to a dilemma that requires careful thinking. On the

one hand, the reference value V R needs to be updated in a timely manner in order to better control

the stochastic estimate of Ph,s,a
(
Vh+1 − V R

h+1

)
. On the other hand, updating V R too frequently

incurs an overly large sample size burden, as new samples need to be accumulated whenever V R is

updated.

Built upon the above insights, it is advisable to prevent frequent updating of the reference

value V R. In fact, it would be desirable to stop updating the reference value once a point of sufficient

quality — denoted by V R,final — has been obtained. Locking on a reasonable reference value early

on means that (a) fewer samples will be wasted on estimating a drifting target PhV
R
h+1, and (b) all

ensuing samples can then be dedicated to estimating the key quantity of interest PhV
R,final
h+1 .

Remark 1. In Zhang et al. (2020c), the algorithm UCB-Q-Advantage requires collecting Õ
(
SAH6

)

samples for each state before settling on the reference value, which inevitably contributes to the

large burn-in cost.

The proposed CB-Q-Advantage algorithm. We now propose a new model-free algorithm that

allows for early settlement of the reference value. A few key ingredients are as follows.

• An auxiliary sequence based on LCB. In addition to the two optimistic Q-estimates QR
h and

QUCB
h described previously, we intend to maintain another pessimistic estimate QLCB

h ≤ Q?h
using the subroutine update-lcb-q, based on lower confidence bounds (LCBs). We will also

maintain the corresponding value function V LCB
h , which lower bounds V ?

h .

• Termination rules for reference updates. With V LCB
h ≤ V ?

h in place, the updates of the

references (lines 15-18 of Algorithm 1) are designed to terminate when

Vh(sh) ≤ V LCB
h (sh) + 1 ≤ V ?

h (sh) + 1. (3.6)

Note that V R
h keeps tracking the value of Vh before it stops being updated. In effect, when

the additional condition in lines 15 is violated and thus (3.6) is satisfied, we claim that it is

unnecessary to update the reference V R
h afterwards, since it is of sufficient quality (being close

enough to the optimal value V ?
h ) and further drifting the reference does not appear beneficial.

As we will make it rigorous shortly, this reference update rule is sufficient to ensure that

|Vh − V R
h | ≤ 2 throughout the execution of the algorithm, which in turn suggests that the

standard deviation of P̂h,s,a(Vh+1−V R
h+1) might be O(H) times smaller than that of P̂h,s,aVh+1

(i.e., the stochastic term used in (3.2) of UCB-Q). This is a key observation that helps shave

the addition factor H in the regret bound of UCB-Q.

• Update rules for QUCB
h and QR

h . The two optimistic Q-estimates QUCB
h and QR

h are updated

using the subroutine update-ucb-q (following the standard Q-learning with Hoeffding bonus
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Algorithm 1: CB-Q-Advantage

1 Parameters: some universal constant cb > 0 and probability of failure δ ∈ (0, 1);

2 Initialize Qh(s, a), QUCB
h (s, a), QR

h(s, a)← H; Vh(s), V R
h (s)← H; QLCB

h (s, a)← 0;

V LCB
h (s)← 0; Nh(s, a)← 0;
µref
h (s, a), σref

h (s, a), µadv
h (s, a), σadv

h (s, a), δR
h (s, a), BR

h (s, a)← 0; and uref(s) = True for all
(s, a, h) ∈ S ×A× [H].

3 for Episode k = 1 to K do
4 Set initial state s1 ← sk1.
5 for Step h = 1 to H do
6 Take action ah = πkh(sh) = arg maxaQh(sh, a), and draw sh+1 ∼ Ph(· | sh, ah).

// sampling

7 Nh(sh, ah)← Nh(sh, ah) + 1; n← Nh(sh, ah). // update the counter

8 ηn ← H+1
H+n . // update the learning rate

9 QUCB
h (sh, ah)← update-ucb-q(). // run UCB-Q; see Algorithm 6

10 QLCB
h (sh, ah)← update-lcb-q(). // run LCB-Q; see Algorithm 6

11 QR
h(sh, ah)← update-ucb-q-advantage(). // estimate QR

h; see Algorithm 6

/* update Q-estimates using all estimates in hand, and update value

estimates */

12 Qh(sh, ah)← min
{
QR
h(sh, ah), QUCB

h (sh, ah), Qh(sh, ah)
}

.
13 Vh(sh)← maxaQh(sh, a).

14 V LCB
h (sh)← max

{
maxaQ

LCB
h (sh, a), V LCB

h (sh)
}

.
/* update reference values */

15 if Vh(sh)− V LCB
h (sh) > 1 then

16 V R
h (sh)← Vh(sh).

17 else if uref(sh) = True then
18 V R

h (sh)← Vh(sh), uref(sh) = False.

(Jin et al., 2018)) and update-ucb-q-advantage, respectively. Note that QR
h continues to be

updated even after V R
h is no longer updated.

Q-learning with reference-advantage decomposition. The rest of this subchapter is devoted

to explaining the subroutine update-ucb-q-advantage, which produces a Q-estimate QR based

on the reference-advantage decomposition similar to Zhang et al. (2020c). To facilitate the imple-

mentation, let us introduce the parameters associated with a reference value V R, which include six

different components, i.e.,

[
µref
h (s, a), σref

h (s, a), µadv
h (s, a), σadv

h (s, a), δR
h (s, a), BR

h (s, a)
]
, (3.7)

for all (s, a, h) ∈ S×A× [H]. Here µref
h (s, a) and σref

h (s, a) estimate the running mean and 2nd

moment of the reference
[
PhV

R
h+1

]
(s, a); µadv

h (s, a) and σadv
h (s, a) estimate the running (weighted)
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mean and 2nd moment of the advantage
[
Ph(Vh+1 − V R

h+1)
]
(s, a); BR

h (s, a) aggregates the empirical

standard deviations of the reference and the advantage combined; and last but not least, δR
h (s, a) is

the temporal difference between BR
h (s, a) and its previous value.

As alluded to previously, the Q-function estimation follows the strategy (3.4) at a high level.

Upon observing a sample transition (sh, ah, sh+1), we compute the following estimates to update

QR(sh, ah).

• The term P̂h,s,a
(
Vh+1 − V R

h+1

)
is set to be Vh+1(sh+1) − V R

h+1(sh+1), which is an unbiased

stochastic estimate of Ph,s,a
(
Vh+1 − V R

h+1

)
.

• The term
[
PhV

R
h+1

]
(s, a) is estimated via µref,R

h (cf. line 9). Given that this is estimated using

all previous samples, we expect the variability of this term to be well-controlled as the sample

size increases (especially after V R is locked).

• The exploration bonus bR
h(s, a) is updated using BR

h (sh, ah) and δR
h (sh, ah) (cf. lines 5-6 of

Algorithm 6), which is a confidence bound accounting for both the reference and the advantage.

Let us also explain line 6 of Algorithm 6 a bit. If we augment the notation by letting bR,n+1
h (s, a)

and BR,n+1
h (s, a) denote respectively bR

h(s, a) and BR
h (s, a) after (s, a) is visited for the n-th

time, then this line is designed to ensure that

ηnb
R,n+1
h (s, a) + (1− ηn)BR,n

h (s, a) ≈ BR,n+1
h (s, a).

With the above updates implemented properly, QR
h provides the advantage-based update of the

Q-function at time step h, according to the update rule (3.4).

3.2.3 Theoretical guarantees

Encouragingly, the proposed CB-Q-Advantage algorithm manages to achieve near-optimal regret

even in the sample-limited and memory-limited regime, as formalized by the following theorem.

Theorem 1. Consider any δ ∈ (0, 1), and suppose that cb > 0 is chosen to be a sufficiently large

universal constant. Then there exists some absolute constant C0 > 0 such that Algorithm 1 achieves

Regret(T ) ≤ C0

(√
H2SAT log4 SAT

δ
+H6SA log3 SAT

δ

)
(3.8)

with probability at least 1− δ.

Theorem 1 delivers a non-asymptotic characterization of the performance of our algorithm

CB-Q-Advantage. Several appealing features of the algorithm are noteworthy.
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Algorithm 2: Auxiliary functions

1 Function update-ucb-q():

2 QUCB
h (sh, ah)← (1− ηn)QUCB

h (sh, ah) + ηn

(
rh(sh, ah) +Vh+1(sh+1) + cb

√
H3 log SAT

δ
n

)
.

3 Function update-lcb-q():

4 QLCB
h (sh, ah)← (1− ηn)QLCB

h (sh, ah) + ηn

(
rh(sh, ah) +V LCB

h+1 (sh+1)− cb

√
H3 log SAT

δ
n

)
.

5 Function update-ucb-q-advantage():
/* update the moment statistics of V R

h */

6 [µref
h , σref

h , µadv
h , σadv

h ](sh, ah)← update-moments();
/* update the accumulative bonus and bonus difference */

7 [δR
h , B

R
h ](sh, ah)← update-bonus();

8 bR
h ← BR

h (sh, ah) + (1− ηn)
δR
h(sh,ah)
ηn

+ cb
H2 log SAT

δ

n3/4 ;

/* update the Q-estimate based on reference-advantage decomposition */

9 QR
h(sh, ah)←

(1− ηn)QR
h(sh, ah) + ηn

(
rh(sh, ah) + Vh+1(sh+1)− V R

h+1(sh+1) + µref
h (sh, ah) + bR

h

)
;

10 Function update-moments():
11 µref

h (sh, ah)← (1− 1
n)µref

h (sh, ah) + 1
nV

R
h+1(sh+1); // mean of the reference

12 σref
h (sh, ah)← (1− 1

n)σref
h (sh, ah) + 1

n

(
V R
h+1(sh+1)

)2
; // 2nd moment of the reference

13 µadv
h (sh, ah)← (1− ηn)µadv

h (sh, ah) + ηn
(
Vh+1(sh+1)− V R

h+1(sh+1)
)
; // weighted

average of the advantage

14 σadv
h (sh, ah)← (1− ηn)σadv

h (sh, ah) + ηn
(
Vh+1(sh+1)− V R

h+1(sh+1)
)2

. // weighted 2nd

moment of the advantage

15 Function update-bonus():
16 Bnext

h (sh, ah)←
cb

√
log SAT

δ
n

(√
σref
h (sh, ah)−

(
µref
h (sh, ah)

)2
+
√
H
√
σadv
h (sh, ah)−

(
µadv
h (sh, ah)

)2 )
;

17 δR
h (sh, ah)← Bnext

h (sh, ah)−BR
h (sh, ah);

18 BR
h (sh, ah)← Bnext

h (sh, ah).

• Regret optimality. Our regret bound (3.8) simplifies to

Regret(T ) ≤ Õ
(√
H2SAT

)
(3.9)

as long as the sample size T exceeds

T ≥ SApoly(H). (3.10)

This sublinear regret bound (3.9) is essentially optimal, as it coincides with the existing lower

bound (1.1) modulo some logarithmic factor.
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• Sample complexity and substantially reduced burn-in cost. As an interpretation of our theory

(3.9), our algorithm attains ε average regret (i.e., 1
KRegret(T ) ≤ ε) with a sample complexity

Õ
(SAH4

ε2

)
.

Crucially, the burn-in cost (3.10) is significantly lower than that of the state-of-the-art memory-

efficient model-free algorithm (Zhang et al., 2020c) (whose optimality is guaranteed only in

the range T ≥ S6A4 poly(H)).

• Memory efficiency. Our algorithm, which is model-free in nature, achieves a low space

complexity O(SAH). This is basically un-improvable for the tabular case, since even storing

the optimal Q-values alone takes O(SAH) units of space. In comparison, while Ménard et al.

(2021) also accommodates the sample size range (3.10), the algorithm proposed therein incurs

a space complexity of O(S2AH) that is S times higher than ours.

• Computational complexity. An additional intriguing feature of our algorithm is its low

computational complexity. The runtime of CB-Q-Advantage is no larger than O(T ), which is

proportional to the time taken to read the samples. This matches the computational cost of

the model-free algorithm UCB-Q proposed in Jin et al. (2018), and is considerably lower than

that of the UCB-M-Q algorithm in Ménard et al. (2021) (which has a computational cost of at

least O(ST )).

3.3 Analysis

In this chapter, we outline the main steps needed to prove our main result in Theorem 1.

3.3.1 Preliminaries: basic properties about learning rates

Before continuing, let us first state some basic facts regarding the learning rates. Akin to Jin et al.

(2018), the proposed algorithm adopts the linearly rescaled learning rate

ηn =
H + 1

H + n
(3.11)

for the n-th visit of a state-action pair at any time step h. For notation convenience, we further

introduce two sequences of related quantities defined for any integer N ≥ 0 and n ≥ 1:

ηNn :=





ηn
∏N
i=n+1(1− ηi), if N > n,

ηn, if N = n,

0, if N < n

and ηN0 :=





∏N
i=1(1− ηi) = 0, if N > 0,

1, if N = 0.
(3.12)
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Algorithm 3: CB-Q-Advantage (a rewrite of Algorithm 1 that specifies dependency on
k)

1 Parameters: some universal constant cb > 0 and probability of failure δ ∈ (0, 1);

2 Initialize Q1
h(s, a), QUCB,1

h (s, a), QR,1
h (s, a)← H; QLCB,1

h (s, a)← 0; N0
h(s, a)← 0;

V 1
h (s), V R,1

h (s)← H; µref
h (s, a), σref

h (s, a), µadv
h (s, a), σadv

h (s, a), δR
h (s, a), BR

h (s, a)← 0; and
u1

ref(s) = True, for all (s, a, h) ∈ S ×A× [H].
3 for Episode k = 1 to K do
4 Set initial state s1 ← sk1.
5 for Step h = 1 to H do
6 Take action akh = πkh(sh) = arg maxaQ

k
h(skh, a), and draw skh+1 ∼ Ph(· | skh, akh).

// sampling

7 Nk
h (skh, a

k
h)← Nk−1

h (skh, a
k
h) + 1; n← Nk

h (skh, a
k
h). // update the counter

8 ηn ← H+1
H+n . // update the learning rate

9 QUCB,k+1
h (skh, a

k
h)← update-ucb-q(). // run UCB-Q; see Algorithm 6

10 QLCB,k+1
h (skh, a

k
h)← update-lcb-q(). // run LCB-Q; see Algorithm 6

11 QR,k+1
h (skh, a

k
h)← update-ucb-q-advantage(). // estimate QR

h; see

Algorithm 6

/* update Q-estimates using all estimates in hand, and update value

estimates */

12 Qk+1
h (skh, a

k
h)← min

{
QR,k+1
h (skh, a

k
h), QUCB,k+1

h (skh, a
k
h), Qkh(skh, a

k
h)
}

;

13 V k+1
h (skh)← maxaQ

k+1
h (skh, a).

14 V LCB,k+1
h (skh)← max

{
maxaQ

LCB,k+1
h (skh, a), V LCB,k

h (skh)
}

.

/* update reference values */

15 if V k+1
h (skh)− V LCB,k+1

h (skh) > 1 then

16 V R,k+1
h (skh)← V k+1

h (skh), uk+1
ref (skh) = True;

17 else if ukref(s
k
h) = True then

18 V R,k+1
h (sh)← V k+1

h (sh), uk+1
ref (skh) = False.

As can be easily verified, we have

N∑

n=1

ηNn =





1, if N > 0,

0, if N = 0.
(3.13)

The following properties play an important role in the analysis.

Lemma 1. For any integer N > 0, the following properties hold:

1

Na
≤

N∑

n=1

ηNn
na
≤ 2

Na
, for all

1

2
≤ a ≤ 1, (3.14a)
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max
1≤n≤N

ηNn ≤
2H

N
,

N∑

n=1

(ηNn )2 ≤ 2H

N
,

∞∑

N=n

ηNn ≤ 1 +
1

H
. (3.14b)

Proof. See Appendix A.2.

3.3.2 Additional notation used in the proof

In order to enable a more concise description of the algorithm, we have suppressed the dependency

of many quantities on the episode number k in Algorithms 1 and 6. This, however, becomes

notationally inconvenient when presenting the proof. As a consequence, we shall adopt, throughout

the analysis, a more complete set of notation, detailed below.

• (skh, a
k
h): the state-action pair encountered and chosen at time step h in the k-th episode.

• knh(s, a): the index of the episode in which (s, a) is visited for the n-th time at time step h; for

the sake of conciseness, we shall sometimes use the shorthand kn = knh(s, a) whenever it is

clear from the context.

• knh(s): the index of the episode in which state s is visited for the n-th time at time step h; we

might sometimes abuse the notation by abbreviating kn = knh(s).

• P kh ∈ {0, 1}1×|S|: the empirical transition at time step h in the k-th episode, namely,

P kh (s) = 1
(
s = skh+1

)
. (3.15)

In addition, for several parameters of interest in Algorithm 1, we introduce the following set of

augmented notation.

• Nk
h (s, a) denotes Nh(s, a) by the end of the k-th episode; for the sake of conciseness, we

shall often abbreviate Nk = Nk
h (s, a) or Nk = Nk

h (skh, a
k
h) (depending on which result we are

proving).

• Qkh(s, a), V k
h (s), and QUCB,k

h (s, a) denote respectively Qh(s, a), Vh(s) and QUCB
h (s, a) at the

beginning of the k-th episode.

• QLCB,k
h (s, a) and V LCB,k

h (s) denote respectively QLCB
h (s, a) and V LCB

h (s) at the beginning of the

k-th episode.

• QR,k
h (s, a), V R,k

h (s) and ukref(s) denote respectively QR
h(s, a), V R

h (s) and uref(s) at the beginning

of the k-th episode.

•
[
µref,k
h , σref,k

h , µadv,k
h , σadv,k

h , δR,k
h , BR,k

h

]
denotes

[
µref
h , σref

h , µadv
h , σadv

h , δR
h , B

R
h

]
at the beginning of

the k-th episode.
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For any given vector V ∈ RS , we define the variance parameter w.r.t. Ph,s,a (cf. (2.7)) as

follows

Varh,s,a(V ) := E
s′∼Ph,s,a

[(
V (s′)− Ph,s,aV

)2]
= Ph,s,a

(
V 2
)
−
(
Ph,s,aV

)2
. (3.16)

3.3.3 Key properties of Q-estimates and auxiliary sequences

In this subchapter, we introduce several key properties of our Q-estimates and value estimates,

which play a crucial role in the proof of Theorem 1. The proofs for this subchapter are deferred to

Appendix A.3.

Properties of the Q-estimate Qkh: monotonicity and optimism. We first make an important

observation regarding the monotonicity of the value estimates Qkh and V k
h . To begin with, it is

straightforward to see that the update rule in Algorithm 3 (cf. line 12) ensures the following

monotonicity property:

Qk+1
h (s, a) ≤ Qkh(s, a) for all (s, a, k, h) ∈ S ×A× [K]× [H], (3.17a)

which combined with line 13 of Algorithm 3 leads to monotonicity of Vh(s) as follows:

V k+1
h (s) = Qk+1

h

(
s, πk+1

h (s)
)
≤ Qkh

(
s, πk+1

h (s)
)
≤ V k

h (s). (3.17b)

Moreover, by virtue of the update rule in line 12 of Algorithm 3, we can immediately obtain (via

induction) the following useful property

QR,k
h (s, a) ≥ Qkh(s, a) for all (k, h, s, a) ∈ [K]× [H]× S ×A. (3.18)

In addition, Qkh and V k
h form an “optimistic view” of Q?h and V ?

h , respectively, as asserted by

the following lemma.

Lemma 2. Consider any δ ∈ (0, 1). Suppose that cb > 0 is some sufficiently large constant. Then

with probability at least 1− δ,

Qkh(s, a) ≥ Q?h(s, a) and V k
h (s) ≥ V ?

h (s) (3.19)

hold simultaneously for all (s, a, k, h) ∈ S ×A× [K]× [H].

Lemma 2 implies that Qkh (resp. V k
h ) is a pointwise upper bound on Q?h (resp. V ?

h ). Taking

this result together with the non-increasing property (3.17), we see that Qkh (resp. V k
h ) becomes an

increasingly tighter estimate of Q?h (resp. V ?
h ) as the number of episodes k increases. This important

fact forms the basis of the subsequent proof, allowing us to replace V ?
h with V k

h when upper bounding
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the regret. Combining Lemma 2 with (3.18), we can straightforwardly see that with probability at

least 1− δ:

QR,k
h (s, a) ≥ Q?h(s, a) for all (k, h, s, a) ∈ [K]× [H]× S ×A. (3.20)

Properties of the Q-estimate QLCB,k
h : pessimism and proximity. In parallel, we formalize

the fact that QLCB,k
h and V LCB,k

h provide a “pessimistic view” of Q?h and V ?
h , respectively. Furthermore,

it becomes increasingly more likely for QLCB,k
h and Qkh to stay close to each other as k increases,

which indicates that the confidence interval that contains the optimal value Q?h becomes shorter

and shorter. These properties are summarized in the following lemma.

Lemma 3. Consider any δ ∈ (0, 1), and suppose that cb > 0 is some sufficiently large constant.

Then with probability at least 1− δ,

QLCB,k
h (s, a) ≤ Q?h(s, a) and V LCB,k

h (s) ≤ V ?
h (s) (3.21)

hold for all (s, a, k, h) ∈ S ×A× [K]× [H], and

H∑

h=1

K∑

k=1

1
(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h) > ε

)
.
H6SA log SAT

δ

ε2
(3.22)

holds for all ε ∈ (0, H].

Interestingly, the upper bound (3.22) only scales logarithmically in the number K of episodes,

thus implying the closeness of QLCB,k
h and Qkh for a large fraction of episodes. Note that it is

straightforward to ensure the monotonicity property of V LCB,k
h from the update rule in Algorithm 3

(cf. line 14):

V LCB,k+1
h (s) ≥ V LCB,k

h (s) for all (s, k, h) ∈ S × [K]× [H], (3.23)

which in conjunction with (3.21), implies that V LCB,k
h (s) gets closer to V ?

h (s) as the number of

episodes k increases. Together with the monotonicity of V k
h (cf. (3.17b)), an important consequence

is that the reference value V R
h will stop being updated shortly after the following condition is met

for the first time (according to lines 15-18 of Algorithm 1)

V k
h (s) ≤ V LCB,k

h (s) + 1 ≤ V ?
h (s) + 1 for all s ∈ S. (3.24)

Properties of the reference V R,k
h . The above fact ensures that V R,k

h will not be updated too

many times. In fact, its value stays reasonably close to V k
h even after being locked to a fixed value,

which ensures its fidelity as a reference signal. Moreover, the aggregate difference between V R,k
h and

the final reference V R,K
h over the entire trajectory can be bounded in a reasonably tight fashion
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(owing to (3.22)), as formalized in the next lemma. These properties play a key role in reducing the

burn-in cost of the proposed algorithm.

Lemma 4. Consider any δ ∈ (0, 1). Suppose that cb > 0 is some sufficiently large constant. Then

with probability exceeding 1− δ, one has

∣∣V k
h (s)− V R,k

h (s)
∣∣ ≤ 2 (3.25)

for all (k, h, s) ∈ [K]× [H]× S, and

H∑

h=1

K∑

k=1

(
V R,k
h (skh)− V R,K

h (skh)
)

≤ H2S +
H∑

h=1

K∑

k=1

(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h)
)
1
(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h) > 1

)
(3.26)

. H6SA log
SAT

δ
. (3.27)

In words, Lemma 4 guarantees that (i) our value function estimate and the reference value

are always sufficiently close (cf. (3.25)), and (ii) the aggregate difference between V R,k
h and the

final reference value V R,K
h is nearly independent of the sample size T (except for some logarithmic

scaling).

3.3.4 Main steps of the proof

We are now ready to embark on the regret analysis for CB-Q-Advantage, which consists of multiple

steps as follows.

Step 1: regret decomposition. Lemma 2 allows one to upper bound the regret as follows

Regret(T ) :=
K∑

k=1

(
V ?

1 (sk1)− V πk

1 (sk1)
)
≤

K∑

k=1

(
V k

1 (sk1)− V πk

1 (sk1)
)
. (3.28)

To continue, it boils down to controlling V k
1 (sk1)− V πk

1 (sk1). Towards this end, we intend to examine

V k
h (skh)− V πk

h (skh) across all time steps 1 ≤ h ≤ H, which admits the following decomposition:

V k
h (skh)− V πk

h (skh)
(i)
= Qkh(skh, a

k
h)−Qπkh (skh, a

k
h)

= Qkh(skh, a
k
h)−Q?h(skh, a

k
h) +Q?h(skh, a

k
h)−Qπkh (skh, a

k
h)

(ii)
= Qkh(skh, a

k
h)−Q?h(skh, a

k
h) + Ph,skh,a

k
h

(
V ?
h+1 − V πk

h+1

)

(iii)
= Qkh(skh, a

k
h)−Q?h(skh, a

k
h) +

(
Ph,skh,a

k
h
− P kh

)(
V ?
h+1 − V πk

h+1

)
+ V ?

h+1(skh+1)− V πk

h+1(skh+1)
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≤ QR,k
h (skh, a

k
h)−Q?h(skh, a

k
h) +

(
Ph,skh,a

k
h
− P kh

)(
V ?
h+1 − V πk

h+1

)
+ V ?

h+1(skh+1)− V πk

h+1(skh+1).

(3.29)

Here, (i) holds since πkh is a greedy policy w.r.t. Qkh and πkh(skh) = akh, (ii) comes from the Bellman

equations

Qπ
k

h (s, a)−Q?h(s, a) =
(
rh(s, a) + Ph,s,aV

πk

h+1

)
−
(
rh(s, a) + Ph,s,aV

?
h+1

)
= Ph,s,a

(
V πk

h+1 − V ?
h+1

)
,

(iii) follows from P kh (V ?
h+1 − V πk

h+1) = V ?
h+1(skh+1) − V πk

h+1(skh+1) (see the notation (3.15)), whereas

the last inequality comes from (3.18). Summing (3.29) over 1 ≤ k ≤ K and making use of Lemma 2,

we reach at

K∑

k=1

(
V ?
h (skh)− V πk

h (skh)
)
≤

K∑

k=1

(
V k
h (skh)− V πk

h (skh)
)

≤
K∑

k=1

(
QR,k
h (skh, a

k
h)−Q?h(skh, a

k
h)
)

+

K∑

k=1

(
Ph,skh,a

k
h
− P kh

)(
V ?
h+1 − V πk

h+1

)

+
K∑

k=1

(
V ?
h+1(skh+1)− V πk

h+1(skh+1)
)
. (3.30)

This allows us to establish a connection between
∑

k

(
V ?
h (sk1)−V πk

h (skh)
)

for step h and
∑

k

(
V ?
h+1(skh+1)−

V πk

h+1(skh+1)
)

for step h+ 1.

Step 2: managing regret by recursion. The regret can be further manipulated by leveraging

the update rule of QR,k
h as well as recursing over the time steps h = 1, 2, · · · , H with the terminal

condition V k
H+1 = V πk

H+1 = 0. This leads to a key decomposition as summarized in the lemma below,

whose proof is provided in Appendix A.4.

Lemma 5. Fix δ ∈ (0, 1). Suppose that cb > 0 is some sufficiently large constant. Then with

probability at least 1− δ, one has

K∑

k=1

(
V k

1 (sk1)− V πk

1 (sk1)
)
≤ R1 +R2 +R3, (3.31)

where

R1 :=

H∑

h=1

(
1 +

1

H

)h−1(
HSA+ 8cbH

2(SA)3/4K1/4 log
SAT

δ
+

K∑

k=1

(
Ph,skh,a

k
h
− P kh

)(
V ?
h+1 − V πk

h+1

))
,

(3.32a)
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R2 :=

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

BR,k
h (skh, a

k
h), (3.32b)

R3 :=

H∑

h=1

K∑

k=1

λkh

(
(P kh − Ph,skh,akh)(V ?

h+1 − V R,k
h+1) +

∑Nk
h (skh,a

k
h)

i=1

(
V

R,kih(skh,a
k
h)

h+1 (s
kih(skh,a

k
h)

h+1 )− Ph,skh,akhV
R,k
h+1

)

Nk
h (skh, a

k
h)

)
,

(3.32c)

with

λkh :=

(
1 +

1

H

)h−1 N
K−1
h (skh,a

k
h)∑

n=Nk
h (skh,a

k
h)

ηn
Nk
h (skh,a

k
h)
.

This lemma attempts to upper bound the target quantity
∑K

k=1

(
V k

1 (sk1)− V πk
1 (sk1)

)
via three

terms (see (3.31)). Informally, these terms reflect (i) the influence of the initialization as well as the

finite-sample uncertainty of P kh (V ?
h+1 − V πk

h+1), (ii) the influence of the size of the bonus terms, and

(iii) the discrepancy term when the running value iterates are replaced by the reference values. As we

shall see in the analysis, the key in obtaining these terms lies in properly expanding the component∑K
k=1

(
QR,k
h (skh, a

k
h)−Q?h(skh, a

k
h)
)

in (3.30), as well as applying induction across all h = 1, · · · , H.

Step 3: controlling the terms in (3.32) separately. As it turns out, each of the terms in

(3.32) can be well controlled. We provide the bounds for these terms in the following lemma.

Lemma 6. Consider any δ ∈ (0, 1). With probability at least 1− δ, we have the following upper

bounds:

R1 ≤ Cr

{√
H2SAT log

SAT

δ
+H4.5SA log2 SAT

δ

}
,

R2 ≤ Cr

{√
H2SAT log

SAT

δ
+H4SA log2 SAT

δ

}
,

R3 ≤ Cr

{√
H2SAT log4 SAT

δ
+H6SA log3 SAT

δ

}

for some universal constant Cr > 0.

In order to derive the above bounds, the main strategy is to apply the Bernstein-type

concentration inequalities carefully, and to upper bound the sum of variance in a careful manner.

The proofs are deferred to Appendix A.5.

Step 4: putting all this together. We now have everything in place to establish our main

result. Taking the preceding bounds in Lemma 6 together with (3.32), we see that with probability
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exceeding 1− δ, one has

Regret(T ) ≤ R1 +R2 +R3 .

√
H2SAT log4 SAT

δ
+H6SA log3 SAT

δ

as claimed.

3.4 Discussions

In this chapter, we have proposed a novel model-free RL algorithm — tailored to online episodic

settings — that attains near-optimal regret Õ(
√
H2SAT ) and near-minimal memory complexity

O(SAH) at once. Remarkably, the near-optimality of the algorithm comes into effect as soon as

the sample size rises above O(SApoly(H)), which has significantly improved upon the sample size

requirements (or burn-in cost) for any prior regret-optimal model-free algorithm (based on the

definition of the model-free algorithm in Jin et al. (2018)). Given that online data collection could

be expensive, time-consuming, or high-stakes in a variety of contemporary applications (e.g., clinical

trials, autonomous driving, online advertisement), reducing burn-in sample sizes compromising

sample optimality is crucial in enabling sample-efficient solutions in these sample-constrained

applications.
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Chapter 4

Model-Free Offline RL

4.1 Problem formulation

In this chapter, we consider offline RL in the episodic finite-horizon setting (introduced in Chap-

ter 2.1.1), which assumes the availability of a history dataset D containing K episodes each of length

H. These episodes are independently generated based on a certain policy πb = {πb
h}Hh=1 — called

the behavior policy, resulting in a dataset

D :=
{(
sk1, a

k
1, r

k
1 , . . . , s

k
H , a

k
H , r

k
H

)}K−1

k=0
.

Here, the initial states {sk1}Kk=1 are independently drawn from ρ ∈ ∆(S) such that sk1
i.i.d.∼ ρ, while

the remaining states and actions are generated by the MDP induced by the behavior policy µ. The

total number of samples is thus given by

T = KH.

In addition, let dπh(s) and dπh(s, a) denote respectively the occupancy distribution induced by

π at time step h ∈ [H], namely,

dπh(s) := P(sh = s | s1 ∼ ρ, π), dπh(s, a) := P(sh = s | s1 ∼ ρ, π)πh(a | s); (4.1)

here and throughout, we denote [H] := {1, · · · , H}. Given that the initial state s1 is drawn from ρ,

the above definition gives

dπ1 (s) = ρ(s) for any policy π. (4.2)

Goal. With the notation (2.4) in place, the goal of offline RL amounts to finding an ε-optimal

policy π̂ = {π̂h}Hh=1 satisfying

V ?
1 (ρ)− V π̂

1 (ρ) ≤ ε

with as few samples as possible, and ideally, in a computationally fast and memory-efficient manner.

Single-policy concentrability. Obviously, efficient offline RL cannot be accomplished without

imposing proper assumptions on the behavior policy, which also provide means to gauge the
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difficulty of the offline RL task through the quality of the history dataset. Following the recent

works Rashidinejad et al. (2021); Xie et al. (2021b), we assume that the behavior policy µ satisfies

the following property called single-policy concentrability.

Definition 1 (single-policy concentrability). The single-policy concentrability coefficient C? ∈ [1,∞)

of a behavior policy µ is defined to be the smallest quantity that satisfies

max
(h,s,a)∈[H]×S×A

dπ
?

h (s, a)

dµh(s, a)
≤ C?, (4.3)

where we adopt the convention 0/0 = 0.

Intuitively, the single-policy concentrability coefficient measures the discrepancy between the

optimal policy π? and the behavior policy µ in terms of the resulting density ratio of the respective

occupancy distributions. It is noteworthy that a finite C? does not necessarily require µ to cover

the entire state-action space; instead, it can be attainable when its coverage subsumes that of the

optimal policy π?. This is in stark contrast to, and in fact much weaker than, other assumptions

that require either full coverage of the behavior policy (i.e., min(h,s,a)∈[H]×S×A d
µ
h(s, a) > 0 (Li et al.,

2021; Yin et al., 2021a,b)), or uniform concentrability over all possible policies (Chen and Jiang,

2019). Additionally, the single-policy concentrability coefficient is minimized (i.e., C? = 1) when

the behavior policy µ coincides with the optimal policy π?, a scenario closely related to imitation

learning or behavior cloning (Rajaraman et al., 2020).

4.2 Algorithms and theory

In the current chapter, we present two model-free algorithms — namely, LCB-Q and LCB-Q-Advantage

— for offline RL, along with their respective theoretical guarantees. The first algorithm can be

viewed as a pessimistic variant of the classical Q-learning algorithm, while the second one further

leverages the idea of variance reduction to boost the sample efficiency. In this chapter, we begin by

introducing LCB-Q.

4.2.1 LCB-Q: a natural pessimistic variant of Q-learning

Before proceeding, we find it convenient to first review the classical Q-learning algorithm (Watkins

and Dayan, 1992; Watkins, 1989), which can be regarded as a stochastic approximation scheme to

solve the Bellman optimality equation (2.6). Upon receiving a sample transition (sh, ah, rh, sh+1) at

time step h, Q-learning updates the corresponding entry in the Q-estimate as follows

Qh(sh, ah) ← (1− η)Qh(sh, ah) + η
{
rh(sh, ah) + Vh+1(sh+1)

}
, (4.4)
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where Qh (resp. Vh) indicates the running estimate of Q?h (resp. V ?
h ), and 0 < η < 1 is the learning

rate. In comparison to model-based algorithms that require estimating the probability transition

kernel based on all the samples, Q-learning, as a popular kind of model-free algorithms, is simpler

and enjoys more flexibility without explicitly constructing the model of the environment. The wide

applicability of Q-learning motivates one to adapt it to accommodate offline RL.

Inspired by recent advances in incorporating the pessimism principle for offline RL (Jin et al.,

2021; Rashidinejad et al., 2021), we study a pessimistic variant of Q-learning called LCB-Q, which

modifies the Q-learning update rule as follows

Qh(sh, ah)←(1− ηn)Qh(sh, ah) + ηn

{
rh(sh, ah) + Vh+1(sh+1)− bn

}
, (4.5)

where ηn is the learning rate depending on the number of times n that the state-action pair (sh, ah)

has been visited at step h, and the penalty term bn > 0 (cf. line 8 of Algorithm 4) reflects the

uncertainty of the corresponding Q-estimate and implements pessimism in the face of uncertainty.

The entire algorithm, which is a single-pass algorithm that only requires reading the offline dataset

once, is summarized in Algorithm 4.

Algorithm 4: LCB-Q for offline RL

1 Parameters: some constant cb > 0, target success probability 1− δ ∈ (0, 1), and

ι = log
(
SAT
δ

)
.

2 Initialize Qh(s, a)← 0, Nh(s, a)← 0, and Vh(s)← 0 for all (s, h) ∈ S × [H + 1]; π̂ s.t.
π̂h(s) = 1 for all (h, s) ∈ [H]× S.

3 for Episode k = 1 to K do
4 Sample a new trajectory {sh, ah, rh}Hh=1 from D. // sampling from batch dataset

// update the policy

5 for Step h = 1 to H do
6 Nh(sh, ah)← Nh(sh, ah) + 1. // update the counter

7 n← Nh(sh, ah); ηn ← H+1
H+n . // update the learning rate

8 bn ← cb

√
H3ι2

n . // update the bonus term

// run the Q-learning update with LCB

9 Qh(sh, ah)← Qh(sh, ah) + ηn

{
rh(sh, ah) + Vh+1(sh+1)−Qh(sh, ah)− bn

}
.

// update the value estimates

10 Vh(sh)← max
{
Vh(sh), maxaQh(sh, a)

}
.

11 If Vh(sh) = maxaQh(sh, a): update π̂h(s)← arg maxaQh(s, a).

12 Output: the policy π̂.
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4.2.2 Theoretical guarantees for LCB-Q

The proposed LCB-Q algorithm manages to achieve an appealing sample complexity as formalized

by the following theorem.

Theorem 2. Consider any δ ∈ (0, 1). Suppose that the behavior policy µ satisfies Assumption 1

with single-policy concentrability coefficient C? ≥ 1. Let cb > 0 be some sufficiently large constant,

and take ι := log
(
SAT
δ

)
. Assume that T > SC?ι, then the policy π̂ returned by Algorithm 4 satisfies

V ?
1 (ρ)− V π̂

1 (ρ) ≤ ca

√
H6SC?ι3

T
(4.6)

with probability at least 1− δ, where ca > 0 is some universal constant.

As asserted by Theorem 2, the LCB-Q algorithm is guaranteed to find an ε-optimal policy

with high probability, as long as the total sample size T = KH exceeds

Õ

(
H6SC?

ε2

)
, (4.7)

where Õ(·) hides logarithmic dependencies. When the behavior policy is close to the optimal policy,

the single-policy concentrability coefficient C? is closer to 1; if this is the case, then our bound

indicates that the sample complexity does not depend on the size A of the action space, which can

be a huge saving when the action space is enormous.

Comparison with model-based pessimistic approaches. A model-based approach — called

Value Iteration with Lower Confidence Bounds (VI-LCB) — has been recently proposed for offline

RL (Rashidinejad et al., 2021; Xie et al., 2021b). In the finite-horizon case, VI-LCB incorporates an

additional LCB penalty into the classical value iteration algorithm, and updates all the entries in

the Q-estimate simultaneously as follows

Qh(s, a) ← rh(s, a) + P̂h,s,aVh+1 − bh(s, a), (4.8)

with the aim of tuning down the confidence on those state-action pairs that have only been visited

infrequently. Here, P̂h,s,a represents the empirical estimation of the transition kernel Ph,s,a, and

bh(s, a) > 0 is chosen to capture the uncertainty level of (P̂h,s,a − Ph,s,a)Vh+1. Working backward,

the algorithm estimates the Q-value Qh recursively over the time steps h = H,H − 1, · · · , 1. In

comparison with VI-LCB, our algorithm enjoys enhanced flexibility without the need of specifying

the transition kernel of the environment (as model estimation might potentially incur a higher

memory burden).
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Figure 4.1: An illustration of the epoch-based LCB-Q-Advantage algorithm.

4.2.3 LCB-Q-Advantage for near-optimal offline RL

The careful reader might notice that the sample complexity (4.7) derived for LCB-Q remains a factor

of H2 away from the minimax lower bound (see Table 1.2). To further close the gap and improve

the sample complexity, we propose a new variant called LCB-Q-Advantage, which leverages the idea

of variance reduction to accelerate convergence (Johnson and Zhang, 2013; Li et al., 2023b, 2021;

Sidford et al., 2018b; Wainwright, 2019b; Xie et al., 2021b; Zhang et al., 2020c).

Inspired by the reference-advantage decomposition adopted in (Li et al., 2023b; Zhang et al.,

2020c) for online Q-learning, LCB-Q-Advantage maintains a collection of reference values {V h}Hh=1,

which serve as running proxy for the optimal values {V ?
h }Hh=1 and allow for reduced variability in

each iteration. To be more specific, the LCB-Q-Advantage algorithm (cf. Algorithm 5 as well as the

subroutines in Algorithm 6 that closely resemble Li et al. (2023b)) proceeds in an epoch-based style

(the m-th epoch consists of Lm = 2m episodes of samples), where the reference values are updated

at the end of each epoch to be used in the next epoch, and the Q-estimates are iteratively updated

during the remaining time of each epoch. By maintaining two auxiliary sequences of pessimistic

Q-estimates — that is, QLCB constructed by the pessimistic Q-learning update, and Q constructed by

the pessimistic Q-learning update based on the reference-advantage decomposition — the Q-estimate

is updated by taking the maximum over the three candidates (cf. line 16 of Algorithm 5)

Qh(s, a)← max{QLCB
h (s, a), Qh(s, a), Qh(s, a)} (4.9)

when the state-action pair (s, a) is visited at the step h. We now take a moment to discuss the key

ingredients of the proposed algorithm in further detail.

Updating the references V h and µh. At the end of each epoch, the reference values {V h}Hh=1,

as well as the associated running average {µh}Hh=1, are determined using what happens during the

current epoch. More specifically, the following update rules for V h and µh are carried out at the
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end of the m-th epoch:

V h(s)← V
next
h (s), (4.10a)

µh(s, a)←
∑Lm

t=1 1(sth = s, ath = a)V h+1(sth+1)

max
{{∑Lm

t=1 1(sth = s, ath = a)
}
, 1
} (4.10b)

for all (h, s, a) ∈ [H]×S ×A. Here, V h(s) is assigned by V
next
h (s), which is maintained as the value

estimate Vh(s) at the end of the (m− 1)-th epoch, and the update of µh(s, a) is implemented in a

recursive manner in the current m-th epoch. See also line 21 and line 19 of Algorithm 5.

Learning Q-estimate Qh based on the reference-advantage decomposition. Armed with

the references V h and µh updated at the end of the previous (m− 1)-th epoch, LCB-Q-Advantage

iteratively updates the Q-estimate Qh in all episodes during the m-th epoch. At each time step h in

any episode, whenever (s, a) is visited, LCB-Q-Advantage updates the reference Q-value as follows:

Qh(s, a)← (1− η)Qh(s, a) + η
{
rh(s, a) + P̂h,s,a

(
Vh+1 − V h+1

)
︸ ︷︷ ︸

estimate of Ph,s,a(Vh+1−V h+1)

+ µh︸︷︷︸
estimate of Ph,s,aV h+1

− bh(s, a)
}
.

(4.11)

Intuitively, we decompose the target Ph,s,aVh+1 into a reference part Ph,s,aV h+1 and an advantage

part Ph,s,a(Vh+1 − V h+1), and cope with the two parts separately. In the sequel, let us take a

moment to discuss three essential ingredients of the update rule (4.11), which shed light on the

design rationale of our algorithm.

• Akin to LCB-Q, the term P̂h,s,a
(
Vh+1 − V h+1

)
serves as an unbiased stochastic estimate of

Ph,s,a
(
Vh+1 − V h+1

)
if a sample transition (s, a, sh+1) at time step h is observed. If Vh+1

stays close to the reference V h+1 as the algorithm proceeds, the variance of this stochastic

term can be lower than that of the stochastic term P̂h,s,aVh+1 in (4.5).

• The auxiliary estimate µh introduced in (4.10b) serves as a running estimate of the reference

part Ph,s,aV h+1. Based on the update rule (4.10b), we design µh(s, a) to estimate the running

mean of the reference part
[
Ph,s,aV h+1

]
using a number of previous samples. As a result, we

expect the variability of this term to be well-controlled, particularly as the number of samples

in each epoch grows exponentially (recall that Lm = 2m).

• In each episode, the term bh(s, a) serves as the additional confidence bound on the error

between the estimates of the reference/advantage and the ground truth. More specifically,

µref
h (s, a) and σref

h (s, a) are respectively the running mean and 2nd moment of the reference

part
[
Ph,s,aV h+1

]
(cf. lines 9-10 of Algorithm 6); µadv

h (s, a) and σadv
h (s, a) represent respectively
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the running mean and 2nd moment of the advantage part
[
Ph,s,a(Vh+1−V h+1)

]
(cf. lines 11-12

of Algorithm 6); Bh(s, a) aggregates the empirical standard deviations of the reference and

the advantage parts. The LCB penalty term bh(s, a) is updated using Bh(s, a) and δh(sh, ah)

(cf. lines 5-6 of Algorithm 6), taking into account the confidence bounds for both the reference

and the advantage.

In a nutshell, the auxiliary sequences of the reference values are designed to help reduce the

variance of the stochastic Q-learning updates, which taken together with the principle of pessimism

play a crucial role in the improvement of sample complexity for offline RL.

4.2.4 Theoretical guarantees for LCB-Q-Advantage

Encouragingly, the proposed LCB-Q-Advantage algorithm provably achieves near-optimal sample

complexity for sufficiently small ε, as demonstrated by the following theorem.

Theorem 3. Consider any δ ∈ (0, 1), and recall that ι = log
(
SAT
δ

)
and T = KH. Suppose

that cb > 0 is chosen to be a sufficiently large constant, and that the behavior policy µ satisfies

Assumption 1. Then there exists some universal constant cg > 0 such that with probability at least

1− δ, the policy π̂ output by Algorithm 5 satisfies

V ?
1 (ρ)− V π̂

1 (ρ) ≤ cg

(√
H4SC?ι5

T
+
H5SC?ι4

T

)
. (4.12)

As a consequence, Theorem 3 reveals that the LCB-Q-Advantage algorithm is guaranteed to

find an ε-optimal policy (i.e., V ?
1 (ρ)− V π̂

1 (ρ) ≤ ε) as long as the total sample size T exceeds

Õ

(
H4SC?

ε2
+
H5SC?

ε

)
. (4.13)

For sufficiently small accuracy level ε (i.e., ε ≤ 1/H), this results in a sample complexity of

Õ

(
H4SC?

ε2

)
, (4.14)

thereby matching the minimax lower bound developed in Xie et al. (2021b) up to logarithmic factor.

Compared with the minimax lower bound Ω
(
H4SA
ε2

)
in the online RL setting (Domingues et al.,

2021), this suggests that offline RL can be fairly sample-efficient when the behavior policy closely

mimics the optimal policy in terms of the resulting state-action occupancy distribution (a scenario

where C? is potentially much smaller than the size of the action space).
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4.3 Analysis

In this subchapter, we outline the main steps needed to establish the main results in Theorem 2

and Theorem 3. Before proceeding, let us first recall the following rescaled learning rates

ηn =
H + 1

H + n
(4.15)

for the n-th visit of a given state-action pair at a given time step h, which are adopted in both

LCB-Q and LCB-Q-Advantage. For notational convenience, we further introduce two sequences of

related quantities defined for any integers N ≥ 0 and n ≥ 1:

ηN0 :=





∏N
i=1(1− ηi) = 0, if N > 0,

1, if N = 0,
and ηNn :=





ηn
∏N
i=n+1(1− ηi), if N > n,

ηn, if N = n,

0, if N < n.

(4.16)

The following identity can be easily verified:

N∑

n=0

ηNn = 1. (4.17)

4.3.1 Analysis of LCB-Q

To begin with, we intend to derive a recursive formula concerning the update rule of Qkh — the

estimate of the Q-function at step h at the beginning of the k-th episode. Note that we have omitted

the dependency of all quantities on the episode index k in Algorithm 4. For notational convenience

and clearness, we rewrite Algorithm 4 as Algorithm 7 by specifying the dependency on the episode

index k and shall often use the following set of short-hand notation when it is clear from context.

• Nk
h (s, a), or the shorthand Nk

h : the number of episodes that has visited (s, a) at step h before

the beginning of the k-th episode.

• knh(s, a), or the shorthand kn: the index of the episode in which the state-action pair (s, a) is

visited at step h for the n-th times. We also adopt the convention that k0 = 0.

• P kh ∈ {0, 1}1×S : a row vector corresponding to the empirical transition at step h of the k-th

episode, namely,

P kh (s) = 1
(
s = skh+1

)
for all s ∈ S. (4.18)
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• πk = {πkh}Hh=1 with πkh(s) := arg maxaQ
k
h(s, a), ∀(h, s) ∈ [H] × S: the deterministic greedy

policy at the beginning of the k-th episode.

• π̂: the final output π̂ of Algorithms 4 corresponds to πK+1 defined above; for notational

simplicity, we shall treat π̂ as πK in our analysis, which does not affect our result at all.

Consider any state-action pair (s, a). According to the update rule in line 11 of Algorithm 7,

we can express (with the assistance of the above notation)

Qkh(s, a) = Qk
Nkh+1
h (s, a) =

(
1− ηNk

h

)
Qk

Nkh

h (s, a) + ηNk
h

{
rh(s, a) + V kN

k
h

h+1

(
sk
Nkh

h+1

)
− bNk

h

}
, (4.19)

where the first identity holds since kN
k
h denotes the latest episode prior to k that visits (s, a) at step

h, and the learning rate is defined in (4.15). Note that it always holds that k > kN
k
h . Applying the

above relation (4.19) recursively and using the notation (4.16) lead to

Qkh(s, a) = η
Nk
h

0 Q1
h(s, a) +

Nk
h∑

n=1

η
Nk
h

n

(
rh(s, a) + V kn

h+1

(
sk
n

h+1

)
− bn

)
. (4.20)

As another important fact, the value estimate V k
h is monotonically non-decreasing in k, i.e.,

V k+1
h (s) ≥ V k

h (s) for all (s, k, h) ∈ S × [K]× [H], (4.21)

which is an immediate consequence of the update rule in line 12 of Algorithm 7. Crucially, we

observe that the iterate V k
h forms a “pessimistic view” of V πk

h — and in turn V ?
h — resulting from

suitable design of the penalty term. This observation is formally stated in the following lemma,

with the proof postponed to Appendix B.2.1.

Lemma 7. Consider any δ ∈ (0, 1), and suppose that cb > 0 is some sufficiently large constant.

Then with probability at least 1− δ,
∣∣∣∣∣

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣ ≤
Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n bn (4.22)

holds simultaneously for all (k, h, s, a) ∈ [K]× [H]× S ×A, and

V k
h (s) ≤ V πk

h (s) ≤ V ?
h (s) (4.23)

holds simultaneously for all (k, h, s) ∈ [K]× [H]× S.

In a nutshell, the result (4.23) in Lemma 7 reveals that V k
h is a pointwise lower bound on

V πk

h and V ?
h , thereby forming a pessimistic estimate of the optimal value function. In addition,
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the property (4.22) in Lemma 7 essentially tells us that the weighted sum of the penalty terms

dominates the weighted sum of the uncertainty terms, which plays a crucial role in ensuring the

aforementioned pessimism property. As we shall see momentarily, Lemma 7 forms the basis of the

subsequent proof.

We are now ready to embark on the analysis for LCB-Q, which is divided into multiple steps

as follows.

Step 1: decomposing estimation errors. With the aid of Lemma 7, we can develop an upper

bound on the performance difference of interest in (4.12) as follows

V ?
1 (ρ)− V π̂

1 (ρ) = E
s1∼ρ

[
V ?

1 (s1)
]
− E
s1∼ρ

[
V πK

1 (s1)
]

(i)

≤ E
s1∼ρ

[
V ?

1 (s1)
]
− E
s1∼ρ

[
V K

1 (s1)
]

(ii)

≤ 1

K

K∑

k=1

(
E

s1∼ρ

[
V ?

1 (s1)
]
− E
s1∼ρ

[
V k

1 (s1)
])

=
1

K

K∑

k=1

∑

s∈S
dπ

?

1 (s)
(
V ?

1 (s)− V k
1 (s)

)
, (4.24)

where (i) results from Lemma 7 (i.e., V πK
1 (s) ≥ V K

1 (s) for all s ∈ S), (ii) follows from the

monotonicity property in (4.21), and the last equality holds since dπ
?

1 (s) = ρ(s) (cf. (4.2)).

We then attempt to bound the quantity on the right-hand side of (4.24). Given that π? is

assumed to be a deterministic policy, we have dπ
?

h (s) = dπ
?

h (s, π?(s)). Taking this together with

the relations V k
h (s) ≥ maxaQ

k
h(s, a) ≥ Qkh(s, π?h(s)) (see line 12 of Algorithm 7) and V ?

h (s) =

Q?h(s, π?h(s)), we obtain

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)

=
K∑

k=1

∑

s∈S
dπ

?

h (s, π?h(s))
(
V ?
h (s)− V k

h (s)
)

≤
K∑

k=1

∑

s∈S
dπ

?

h (s, π?h(s))
(
Q?h
(
s, π?h(s)

)
−Qkh

(
s, π?h(s)

))

=

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)
(
Q?h(s, a)−Qkh(s, a)

)
(4.25)

for any h ∈ [H], where the last identity holds since π? is deterministic and hence

dπ
?

h (s, a) = 0 for any a 6= π?h(s). (4.26)

In view of (4.25), we need to properly control Q?h(s, a)−Qkh(s, a). By virtue of (4.17), we can
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rewrite Q?h(s, a) as follows

Q?h(s, a) =

Nk
h∑

n=0

η
Nk
h

n Q?h(s, a) = η
Nk
h

0 Q?h(s, a) +

Nk
h∑

n=1

η
Nk
h

n Q?h(s, a)

= η
Nk
h

0 Q?h(s, a) +

Nk
h∑

n=1

η
Nk
h

n

(
rh(s, a) + Ph,s,aV

?
h+1

)
, (4.27)

where the second line follows from Bellman’s optimality equation (2.6). Combining (4.20) and (4.27)

leads to

Q?h(s, a)−Qkh(s, a)

= η
Nk
h

0

(
Q?h(s, a)−Q1

h(s, a)
)

+

Nk
h∑

n=1

η
Nk
h

n

(
Ph,s,aV

?
h+1 − V kn

h+1(sk
n

h+1) + bn

)

= η
Nk
h

0

(
Q?h(s, a)−Q1

h(s, a)
)

+

Nk
h∑

n=1

η
Nk
h

n bn +

Nk
h∑

n=1

η
Nk
h

n Ph,s,a
(
V ?
h+1 − V kn

h+1

)
+

Nk
h∑

n=1

η
Nk
h

n

(
Ph,s,a − P k

n

h

)
V kn

h+1

(4.28)

≤ ηN
k
h

0 H + 2

Nk
h∑

n=1

η
Nk
h

n bn +

Nk
h∑

n=1

η
Nk
h

n Ph,s,a
(
V ?
h+1 − V kn

h+1

)
, (4.29)

where we have made use of the definition in (4.18) by recognizing P k
n

h V kn

h+1 = V kn

h+1(sk
n

h+1) in (4.28),

and the last inequality follows from the fact Q?h(s, a)−Q1
h(s, a) = Q?h(s, a)− 0 ≤ H and the bound

(4.22) in Lemma 7. Substituting the above bound into (4.25), we arrive at

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)

≤
K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)η
Nk
h (s,a)

0 H + 2

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n bn

︸ ︷︷ ︸
=: Ih

+

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)Ph,s,a

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
V ?
h+1 − V

knh(s,a)

h+1

)
. (4.30)

Step 2: establishing a crucial recursion. As it turns out, the last term on the right-hand

side of (4.30) can be used to derive a recursive relation that connects step h with step h + 1, as

summarized in the next lemma.
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Lemma 8. With probability at least 1− δ, the following recursion holds:

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)Ph,s,a

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
V ?
h+1 − V

knh(s,a)

h+1

)

≤
(

1 +
1

H

) K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?
h+1(s)− V k

h+1(s)
)

+ 24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ
.

(4.31)

Lemma 8 taken together with (4.30) implies that

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)
≤
(

1 +
1

H

) K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?
h+1(s)− V k

h+1(s)
)

+ Ih + 24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ
. (4.32)

Invoking (4.32) recursively over the time steps h = H,H − 1, · · · , 1 with the terminal condition

V k
H+1 = V ?

H+1 = 0, we reach

K∑

k=1

∑

s∈S
dπ

?

1 (s)
(
V ?

1 (s)− V k
1 (s)

)
≤ max

h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)

≤
H∑

h=1

(
1 +

1

H

)h−1
(
Ih + 24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ

)
,

(4.33)

which captures the estimation error resulting from the use of pessimism principle.

Step 3: controlling the right-hand side of (4.33). The right-hand side of (4.33) can be

bounded through the following lemma, which will be proved in Appendix B.2.3.

Lemma 9. Consider any δ ∈ (0, 1). With probability at least 1− δ, we have

H∑

h=1

(
1 +

1

H

)h−1
(
Ih + 24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ

)
. H2SC?ι+

√
H5SC?Kι3,

(4.34)

where we recall that ι := log
(
SAT
δ

)
.
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Combining Lemma 9 with (4.33) and (4.24) yields

V ?
1 (ρ)− V π̂

1 (ρ) ≤ 1

K

K∑

k=1

∑

s∈S
dπ

?

1 (s)
(
V ?

1 (s)− V k
1 (s)

)

≤ 1

K
max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)

≤ ca

2

√
H5SC?ι3

K
+
ca

2

H2SC?ι

K
=
ca

2

√
H6SC?ι3

T
+
ca

2

H3SC?ι

T

≤ ca

√
H6SC?ι3

T
(4.35)

for some sufficiently large constant ca > 0, where the last inequality is valid as long as T > SC?ι.

This concludes the proof of Theorem 2.

4.3.2 Analysis of LCB-Q-Advantage

We now turn to the analysis of LCB-Q-Advantage. Thus far, we have omitted the dependency of

all quantities on the epoch number m and the in-epoch episode number t in Algorithms 5 and 6.

While it allows for a more concise description of our algorithm, it might hamper the clarity of our

proofs. In the following, we introduce the notation k to denote the current episode as follows:

k :=
m−1∑

i=1

Li + t, (4.36)

which corresponds to the t-th in-epoch episode in the m-th epoch; here, Lm = 2m stands for the

total number of in-epoch episodes in the m-th epoch. With this notation in place, we can rewrite

Algorithm 5 as Algorithm 8 in order to make clear the dependency on the episode index k, epoch

number m, and in-epoch episode index t.

Before embarking on our main proof, we make two crucial observations which play important

roles in our subsequent analysis. First, similar to the property (4.21) for LCB-Q, the update rule

(cf. lines 16-17 of Algorithm 8) ensures the monotonic non-decreasing property of Vh(s) such that

for all k ∈ [K],

V k+1
h (s) ≥ V k

h (s), for all (k, s, h) ∈ [K]× S × [H]. (4.37)

Secondly, V k
h forms a “pessimistic view” of V ?

h , which is formalized in the lemma below; the proof is

deferred to Appendix B.3.1.

Lemma 10. Let δ ∈ (0, 1). Suppose that cb > 0 is some sufficiently large constant. Then with

probability at least 1− δ, the value estimates produced by Algorithm 5 satisfy

V k
h (s) ≤ V πk

h (s) ≤ V ?(s) (4.38)
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for all (k, h, s) ∈ [K]× [H + 1]× S.

With these two observations in place, we can proceed to present the analysis for LCB-Q-

Advantage. To begin with, the performance difference of interest can be controlled similar to (4.24)

as follows:

V ?
1 (ρ)− V π̂

1 (ρ) = E
s1∼ρ

[
V ?

1 (s1)
]
− E
s1∼ρ

[
V πK

1 (s1)
]

(i)

≤ E
s1∼ρ

[
V ?

1 (s1)
]
− E
s1∼ρ

[
V K

1 (s1)
]

(ii)

≤ 1

K

K∑

k=1

(
E

s1∼ρ

[
V ?

1 (s1)
]
− E
s1∼ρ

[
V k

1 (s1)
])

=
1

K

K∑

k=1

∑

s∈S
dπ

?

1 (s)
(
V ?

1 (s)− V k
1 (s)

)
, (4.39)

where (i) follows from Lemma 10 (i.e., V πK
1 (s) ≥ V K

1 (s) for all s ∈ S), (ii) holds due to the

monotonicity in (4.37) and the last equality holds since dπ
?

1 (s) = ρ(s) (cf. (4.2)). It then boils down

to controlling the right-hand side of (4.39). Towards this end, it turns out that one can control a

more general counterpart, i.e.,

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)

(4.40)

for any h ∈ [H]. This is accomplished via the following lemma, whose proof is postponed to

Appendix B.3.2.

Lemma 11. Let δ ∈ (0, 1), and recall that ι := log
(
SAT
δ

)
. Suppose that ca, cb > 0 are some

sufficiently large constants. Then with probability at least 1− δ, one has

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)
≤ J1

h + J2
h + J3

h, (4.41)

where

J1
h :=

K∑

k=1

∑

s,a∈S×A
dπ

?

h (s, a)

[
η
Nk
h (s,a)

0 H +
4cbH

7/4ι
(
Nk
h (s, a) ∨ 1

)3/4 +
4cbH

2ι

Nk
h (s, a) ∨ 1

]
,

J2
h := 2

K∑

k=1

∑

s,a∈S×A
dπ

?

h (s, a)B
k
h(s, a),
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J3
h :=

(
1 +

1

H

) K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?
h+1(s)− V k

h+1(s)
)

+ 48

√
HC?K log

2H

δ
+ 28caH

3C?
√
Sι2.

(4.42)

As a direct consequence of Lemma 11, one arrives at a recursive relationship between time

steps h and h+ 1 as follows:

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)

≤
(

1 +
1

H

) K∑

k=1

∑

s∈S
dπ

?

h+1(s)
(
V ?
h+1(s)− V k

h+1(s)
)

+ 48

√
HC?K log

2H

δ
+ 28caH

3C?
√
Sι2 + J1

h + J2
h.

(4.43)

Recursing over time steps h = H,H − 1, · · · , 1 with the terminal condition V k
H+1 = V ?

H+1 = 0, we

can upper bound the performance difference at h = 1 as follows

K∑

k=1

∑

s∈S
dπ

?

1 (s)
(
V ?

1 (s)− V k
1 (s)

)

≤ max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)

≤
H∑

h=1

(
1 +

1

H

)h−1
(

48

√
HC?K log

2H

δ
+ 28caH

3C?
√
Sι2 + J1

h + J2
h

)
. (4.44)

To finish up, it suffices to upper bound each term in (4.44) separately. We summarize their

respective upper bounds as follows; the proof is provided in Appendix B.3.3.

Lemma 12. Fix δ ∈ (0, 1), and recall that ι := log
(
SAT
δ

)
. With probability at least 1− δ, we have

H∑

h=1

(
1 +

1

H

)h−1

J1
h . H2.75(SC?)

3
4K

1
4 ι2 +H3SC?ι3, (4.45a)

H∑

h=1

(
1 +

1

H

)h−1

J2
h .

√√√√H4SC?ι3 max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)

+
√
H3SC?Kι5 +H4SC?ι4,

(4.45b)

H∑

h=1

(
1 +

1

H

)h−1
(

48

√
HC?K log

2H

δ
+ 28caH

3C?
√
Sι2

)
.

√
H3C?K log

2H

δ
+H4C?

√
Sι2.

(4.45c)
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Substituting the above upper bounds into (4.39) and (4.44) and recalling that T = HK, we

arrive at

V ?
1 (ρ)− V π̂

1 (ρ) .
1

K
max
h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)

.
1

K



√√√√H4SC?ι3 max

h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)

+
(√

H3SC?Kι5 +H4SC?ι4 +H2.75(SC?)
3
4K

1
4 ι2
)



(i)� 1

K



√√√√H4SC?ι3 max

h∈[H]

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)

+
√
H3SC?Kι5 +H4SC?ι4




(ii)

.
1

K

(√
H3SC?Kι5 +H4SC?ι4

)

�
√
H4SC?ι5

T
+
H5SC?ι4

T
,

where (i) has made use of the AM-GM inequality:

2H2.75(SC?)
3
4K

1
4 ≤

(
H0.75(SC?)

1
4K

1
4

)2
+
(
H2(SC?)

1
2

)2
=
√
H3SC?K +H4SC?,

and (ii) holds by letting x := maxh∈[H]

∑K
k=1

∑
s∈S d

π?

h (s)
(
V ?
h (s)− V k

h (s)
)

and solving the inequality

x .
√
H4SC?ι3x+

√
H3SC?Kι5 +H4SC?ι4. This concludes the proof.

4.4 Discussions

Focusing on model-free paradigms, in this chapter, we developed near-optimal sample complexities

for some variants of pessimistic Q-learning algorithms — armed with lower confidence bounds and

variance reduction — for offline RL. These sample complexity results, taken together with the

analysis framework developed herein, open up a few exciting directions for future research. For

example, the pessimistic Q-learning algorithms can be deployed in conjunction with their optimistic

counterparts (e.g., Jin et al. (2018); Li et al. (2023b); Zhang et al. (2020c)), when additional online

data can be acquired to fine-tune the policy (Xie et al., 2021b).
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Algorithm 5: Offline LCB-Q-Advantage RL

1 Parameters: number of epochs M , universal constant cb > 0, probability of failure

δ ∈ (0, 1), and ι = log
(
SAT
δ

)
;

2 Initialize:

3 Qh(s, a), QLCB
h (s, a), Qh(s, a), µh(s, a), µnext

h (s, a), Nh(s, a)← 0 for all
(s, a, h) ∈ S ×A× [H];

4 Vh(s), V h(s), V
next
h (s)← 0 for all (s, h) ∈ S × [H + 1];

5 µref
h (s, a), σref

h (s, a), µadv
h (s, a), σadv

h (s, a), δh(s, a), Bh(s, a)← 0 for all
(s, a, h) ∈ S ×A× [H].

6 for Epoch m = 1 to M do
7 Lm = 2m; // specify the number of episodes in the current epoch

8 N̂h(s, a) = 0 for all (h, s, a) ∈ [H]× S ×A. // reset the epoch-wise counter

/* Inner-loop: update value-estimates Vh(s, a) and Q-estimates Qh(s, a) */

9 for In-epoch Episode t = 1 to Lm do
10 Sample a new trajectory {sh, ah, rh}Hh=1. // sampling from batch dataset

11 for Step h = 1 to H do
12 Nh(sh, ah)← Nh(sh, ah) + 1; n← Nh(sh, ah). // update the overall counter

13 ηn ← H+1
H+n ; // update the learning rate

// run the Q-learning update rule with LCB

14 QLCB
h (sh, ah)← update-lcb-q().

// update the Q-estimate with LCB and reference-advantage

15 Qh(sh, ah)← update-lcb-q-ra().
// update the Q-estimate Qh and value estimate Vh

16 Qh(sh, ah)← max
{
QLCB
h (sh, ah), Qh(sh, ah), Qh(sh, ah)

}
.

17 Vh(sh)← maxaQh(sh, a).
// update the epoch-wise counter and µnext

h for the next epoch

18 N̂h(sh, ah)← N̂h(sh, ah) + 1;

19 µnext
h (sh, ah)←

(
1− 1

N̂h(sh,ah)

)
µnext
h (sh, ah) + 1

N̂h(sh,ah)
V

next
h+1(sh+1);

/* Update the reference (V h, V
next
h ) and (µh, µnext

h ) */

20 for (s, a, h) ∈ S ×A× [H + 1] do

21 V h(s)← V
next
h (s); µh(s, a)← µnext

h (s, a). // set V h and µh for the next epoch

22 V
next
h (s)← Vh(s); µnext

h (s, a)← 0. // restart µnext
h and set V

next
h for the next

epoch

Output: the policy π̂ s.t. π̂h(s) = arg maxaQh(s, a) for any (s, h) ∈ S × [H].
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Algorithm 6: Auxiliary functions

1 Function update-lcb-q():

2 QLCB
h (sh, ah)← (1− ηn)QLCB

h (sh, ah) + ηn
(
r(sh, ah) + Vh+1(sh+1)− cb

√
H3ι2

n

)
.

3 Function update-lcb-q-ra():
/* update the moment statistics of the interested terms */

4 [µref
h , σref

h , µadv
h , σadv

h ](sh, ah)← update-moments();
/* update the bonus difference and accumulative bonus */

5 [δh, Bh](sh, ah)← update-bonus();

6 bh(sh, ah)← Bh(sh, ah) + (1− ηn) δh(sh,ah)
ηn

+ cb
H7/4ι
n3/4 + cb

H2ι
n ;

/* update the Q-estimate based on reference-advantage */

7 Qh(sh, ah)←
(1− ηn)Qh(sh, ah) + ηn

(
rh(sh, ah) + Vh+1(sh+1)− V h+1(sh+1) + µh(sh, ah)− bh

)
;

8 Function update-moments():

9 µref
h (sh, ah)← (1− 1

n)µref
h (sh, ah) + 1

nV
next
h+1(sh+1); // mean of the reference

10 σref
h (sh, ah)← (1− 1

n)σref
h (sh, ah) + 1

n

(
V

next
h+1(sh+1)

)2
; // 2nd moment of the reference

11 µadv
h (sh, ah)← (1− ηn)µadv

h (sh, ah) + ηn
(
Vh+1(sh+1)− V h+1(sh+1)

)
; // mean of the

advantage

12 σadv
h (sh, ah)← (1− ηn)σadv

h (sh, ah) + ηn
(
Vh+1(sh+1)− V h+1(sh+1)

)2
. // 2nd moment

of the advantage

13 Function update-bonus():
14 Bnext

h (sh, ah)←
cb

√
ι
n

(√
σref
h (sh, ah)−

(
µref
h (sh, ah)

)2
+
√
H
√
σadv
h (sh, ah)−

(
µadv
h (sh, ah)

)2 )
;

15 δh(sh, ah)← Bnext
h (sh, ah)−Bh(sh, ah);

16 Bh(sh, ah)← Bnext
h (sh, ah).
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Algorithm 7: LCB-Q for offline RL (a rewrite of Algorithm 4 to specify dependency
on k)

1 Parameters: some constant cb > 0, target success probability 1− δ ∈ (0, 1), and

ι = log
(
SAT
δ

)
.

2 Initialize Q1
h(s, a)← 0; N1

h(s, a)← 0 for all (s, a, h) ∈ S ×A× [H]; V 1
h (s)← 0 for all

(s, h) ∈ S × [H + 1]; π1 s.t. π1
h(s) = 1 for all (s, h) ∈ S × [H].

3 for Episode k = 1 to K do
4 Sample the k-th trajectory {skh, akh, rkh}Hh=1 from D. // sampling from batch dataset

5 for Step h = 1 to H do
6 for (s, a) ∈ S ×A do

// carry over the estimates and policy

7 Nk+1
h (s, a)← Nk

h (s, a); Qk+1
h (s, a)← Qkh(s, a); V k+1

h (s)← V k
h (s);

πk+1
h (s)← πkh(s).

8 Nk+1
h (skh, a

k
h)← Nk

h (skh, a
k
h) + 1. // update the counter

9 n← Nk+1
h (skh, a

k
h); ηn ← H+1

H+n . // update the learning rate

10 bn ← cb

√
H3ι2

n . // update the bonus term

// update the Q-estimates with LCB

11 Qk+1
h (skh, a

k
h)← Qkh(skh, a

k
h) + ηn

{
rh(skh, a

k
h) + V k

h+1(skh+1)−Qkh(skh, a
k
h)− bn

}
.

// update the value estimates

12 V k+1
h (skh)← max

{
V k
h (skh), maxaQ

k+1
h (skh, a)

}
.

// update the policy

13 If V k+1
h (skh) = maxaQ

k+1
h (skh, a): update πk+1

h (skh) = arg maxaQ
k+1
h (skh, a).
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Algorithm 8: LCB-Q-Advantage (a rewrite of Algorithm 5 that specifies dependency
on k or (m, t).)

1 Parameters: number of epochs M , universal constant cb > 0, target success probability

1− δ ∈ (0, 1), and ι = log
(
SAT
δ

)
.

2 Initialize:

3 Q1
h(s, a), QLCB,1

h (s, a), Q
1

h(s, a), µ1
h(s, a), µnext,1

h (s, a), N1
h(s, a)← 0 for all (s, a, h) ∈ S ×A× [H];

4 V 1
h (s), V

1

h(s), V
next,1
h (s)← 0 for all (s, h) ∈ S × [H + 1];

5 µref,1
h (s, a), σref,1

h (s, a), µadv,1
h (s, a), σadv,1

h (s, a), δ
1

h(s, a), B
1

h(s, a)← 0 for all (s, a, h) ∈ S ×A× [H].

6 for Epoch m = 1 to M do
7 Lm = 2m. // specify the number of episodes in the current epoch

8 N̂
(m,1)
h (s, a) = 0 for all (h, s, a) ∈ [H]× S ×A. // reset the epoch-wise counter

/* Inner-loop: update value-estimates Vh(s, a) and Q-estimates Qh(s, a) */

9 for In-epoch Episode t = 1 to Lm do

10 Set k ←∑m−1
i=1 Li + t. // set the episode index

11 Sample the k-th trajectory {skh, akh, rkh}Hh=1. // sampling from batch dataset

12 Compute πk s.t. πkh(s) = arg maxaQ
k
h(s, a) for all (s, h) ∈ S × [H]. // update the

policy

13 for Step h = 1 to H do
14 for (s, a) ∈ S ×A do

// carry over the estimates

15 Nk+1
h (s, a)← Nk

h (s, a); N̂k+1
h (s, a)← N̂k

h (s, a); V k+1
h (s)← V k

h (s);

16 QLCB,k+1
h (s, a)← QLCB,k

h (s, a) Q
k+1
h (s, a)← Q

k
h(s, a);

Qk+1
h (s, a)← Qkh(s, a); V

k+1
h (s)← V

k
h(s) V

next,k+1
h (s)← V

next,k
h (s);

µk+1(s, a)← µk(s, a).

17 Nk+1
h (skh, a

k
h)← Nk

h (skh, a
k
h) + 1; n← Nk+1

h (skh, a
k
h). // update the overall

counter

18 ηn ← H+1
H+n . // update the learning rate

// update the Q-estimate with LCB

19 QLCB,k+1
h (skh, a

k
h)← update-lcb-q().

// update the Q-estimate with LCB and reference-advantage

20 Q
k+1
h (skh, a

k
h)← update-lcb-q-ra().

// update the Q-estimate Qh and value estimate Vh

21 Qk+1
h (skh, a

k
h)← max

{
QLCB,k+1
h (skh, a

k
h), Q

k+1
h (skh, a

k
h), Qkh(skh, a

k
h)
}
.

22 V k+1
h (skh)← maxaQ

k+1
h (skh, a).

// update epoch-wise counter and µnext
h (s, a) for the next epoch

23 N̂
(m,t+1)
h (skh, a

k
h)← N̂

(m,t)
h (skh, a

k
h) + 1.

24 µnext,k+1
h (skh, a

k
h)←(

1− 1

N̂
(m,t+1)
h (skh,a

k
h)

)
µnext,k
h (sh, ah) + 1

N̂
(m,t+1)
h (skh,a

k
h)
V

next,k
h+1 (sh+1).

/* Update the reference (V h, V
next
h ) and (µh, µnext

h ) */

25 for (s, a, h) ∈ S ×A× [H + 1] do

26 V
k+1
h (s)← V

next,k+1
h (s); µk+1

h (s, a)← µnext,k+1
h (s, a). // set V h and µh for the

next epoch

27 V
next,k+1
h (s)← V k+1

h (s); µnext,k+1
h (s, a)← 0. // set µnext

h and V
next
h for the next

epoch

Output: the policy π̂ = πK with K =
∑M
m=1 Lm.
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Chapter 5

Model-Based Offline RL

5.1 Algorithm and theory: episodic finite-horizon MDPs

We begin by studying offline RL in episodic finite-horizon MDPs, which follows the same problem

formulation as Chapter 4.1. In the following, we shall first introduce a slightly improved version of

the single-policy concentrability (cf. Definition 1), followed by algorithm design and main results.

5.1.1 A refined single-policy concentrability C?
clipped

Let us begin with recalling the formulation of the concrete setting in Chapter 4.1. Throughout this

chapter, we denote ρ = ρb stands for some predetermined initial state distribution associated with

the batch dataset. For notational simplicity, we introduce the following short-hand notation for the

occupancy distribution w.r.t. the behavior policy πb:

∀(s, a, h) ∈ S ×A× [H] : db
h(s) := dπ

b

h (s) and db
h(s, a) := dπ

b

h (s, a). (5.1)

In particular, it is easily seen that db
1(s) = ρb(s) for all s ∈ S. Note that the initial state distribution

ρb of the batch dataset might not coincide with the test state distribution ρ.

Then, recall Definition 1, the introduced concentrability coefficient to capture the distribution

shift between the desired distribution and the one induced by the behavior policy.

C? employs the largest density ratio (using the occupancy distributions defined above) to

measure the distribution mismatch; it concerns the behavior policy vs. a single policy π?, and does

not require uniform coverage of the state-action space (namely, it suffices to cover the part reachable

by π?). We further introduce a slightly modified version of C? as follows.

Definition 2 (Single-policy clipped concentrability for finite-horizon MDPs). The single-policy

clipped concentrability coefficient of a batch dataset D is defined as

C?clipped := max
(s,a,h)∈S×A×[H]

min
{
d?h(s, a), 1

S

}

db
h(s, a)

. (5.2)

From the definition above, it holds trivially that

C?clipped ≤ C? and C?clipped ≥
1

S
. (5.3)
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As we shall see shortly, while all sample complexity upper bounds developed herein remain valid if

we replace C?clipped with C?, the use of C?clipped might yield some sample size reduction when C?clipped

drops below 1.

Goal. With the above batch dataset D in hand, our aim is to compute, in a sample-efficient

fashion, a policy π̂ that results in near-optimal values w.r.t. a given test state distribution ρ ∈ ∆(S).

Formally speaking, the current sub-chapter focuses on achieving

V ?
1 (ρ)− V π̂

1 (ρ) ≤ ε

with high probability using as few samples as possible, where ε stands for the target accuracy level.

We seek to achieve sample optimality for the full ε-range, i.e., for any ε ∈ (0, H].

5.1.2 A model-based offline RL algorithm: VI-LCB

Suppose for the moment that we have access to a dataset D0 containing N sample transitions

{(si, ai, hi, s′i)}Ni=1, where (si, ai, hi, s
′
i) denotes the transition from state si at step hi to state s′i in

the next step when action ai is taken. We now describe a pessimistic variant of the model-based

approach on the basis of D0.

Empirical MDP. For each (s, a, h) ∈ S ×A× [H], we denote by

Nh(s, a) :=
N∑

i=1

1
{

(si, ai, hi) = (s, a, h)
}

(5.4a)

Nh(s) :=
N∑

i=1

1
{

(si, hi) = (s, h)
}

(5.4b)

the total number of sample transitions at step h that transition from (s, a) and from s, respectively.

We can then compute the empirical estimate P̂ = {P̂h}1≤h≤H of the transition kernel P as follows:

P̂h(s′ | s, a) =





1
Nh(s,a)

N∑
i=1

1
{

(si, ai, hi, s
′
i) = (s, a, h, s′)

}
, if Nh(s, a) > 0

1
S , else

(5.5)

for each (s, a, h, s′) ∈ S ×A× [H]× S.

The VI-LCB algorithm. With this estimated model in place, the VI-LCB algorithm (i.e., value

iteration with lower confidence bounds) maintains the value function estimate {V̂h} and Q-function

estimate {Q̂h}, and works backward from h = H to h = 1 as in classical dynamic programming
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Algorithm 9: Offline value iteration with LCB (VI-LCB) for finite-horizon MDPs.

1 input: dataset D0; reward function r; target success probability 1− δ.
2 initialization: V̂H+1 = 0.
3 for h = H, · · · , 1 do

4 compute the empirical transition kernel P̂h according to (5.5).
5 for s ∈ S, a ∈ A do
6 compute the penalty term bh(s, a) according to (5.9).

7 set Q̂h(s, a) = max
{
rh(s, a) + P̂h,s,aV̂h+1 − bh(s, a), 0

}
.

8 for s ∈ S do

9 set V̂h(s) = maxa Q̂h(s, a) and π̂h(s) ∈ arg maxa Q̂h(s, a).

10 output: π̂ = {π̂h}1≤h≤H .

with the terminal value V̂H+1 = 0 (Jin et al., 2021; Xie et al., 2021b). Specifically, the algorithm

adopts the following update rule:

Q̂h(s, a) = max
{
rh(s, a) + P̂h,s,aV̂h+1 − bh(s, a), 0

}
, (5.6)

where P̂h,s,a is the empirical estimate of Ph,s,a (cf. (2.7)),

V̂h+1(s) = max
a

Q̂h+1(s, a), (5.7)

and bh(s, a) ≥ 0 denotes some penalty term that is a decreasing function in Nh(s, a) (as we shall

specify momentarily). In addition, the policy π̂ is selected greedily in accordance to the Q-estimate:

∀(s, h) ∈ S × [H] : π̂h(s) ∈ arg max
a

Q̂h(s, a). (5.8)

In a nutshell, the VI-LCB algorithm — as summarized in Algorithm 9 — applies the classical value

iteration approach to the empirical model P̂ , and in addition, implements the principle of pessimism

via certain lower confidence penalty terms {bh(s, a)}.

The Bernstein-style penalty terms. As before, we adopt Bernstein-style penalty in order to

better capture the variance structure over time; that is,

∀(s, a, h) ∈ S ×A× [H] : bh(s, a) = min

{√
cb log NH

δ

Nh(s, a)
Var

P̂h,s,a

(
V̂h+1

)
+ cbH

log NH
δ

Nh(s, a)
, H

}
(5.9)

for some universal constant cb > 0 (e.g., cb = 16). Here, Var
P̂h,s,a

(
V̂h+1

)
corresponds to the variance

of V̂h+1 w.r.t. the distribution P̂h,s,a (see the definition (1.7)). Note that we choose P̂ as opposed

to P (i.e., VarPh,s,a
(
V̂h+1

)
) in the variance term, mainly because we have no access to the true
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transition kernel P .

Finally, it is worth noting that the Bernstein-style uncertainty estimates have been widely

studied when performing online exploration in episodic finite-horizon MDPs (e.g., Azar et al. (2017);

Fruit et al. (2020); Jin et al. (2018); Li et al. (2023b); Talebi and Maillard (2018); Zhang et al.

(2020c)). Once again, the main purpose therein is to encourage exploration of the insufficiently

visited states/actions, a mechanism that is not applicable to offline RL due to the absence of further

data collection.

5.1.3 VI-LCB with two-fold subsampling

Given that the batch dataset D is composed of several sample trajectories each of length H, the

sample transitions in D cannot be viewed as being independently generated (as the sample transitions

at step h might influence the sample transitions in the subsequent steps). As one can imagine, the

presence of such temporal statistical dependency considerably complicates analysis.

In order to circumvent this technical difficulty, we propose a two-fold subsampling trick that

allows one to exploit the desired statistical independence. Informally, we propose the following

steps:

• First of all, we randomly split the dataset into two halves Dmain and Daux, where Dmain consists

of Nmain
h (s) sample transitions from state s at step h.

• For each (s, h) ∈ S × [H], we use the dataset Daux to construct a high-probability lower bound

N trim
h (s) on Nmain

h (s), and then subsample N trim
h (s) sample transitions w.r.t. (s, h) from Dmain;

this results in a new subsampled dataset Dtrim.

• Run VI-LCB on the subsampled dataset Dtrim (i.e., Algorithm 9).

The whole procedure is detailed in Algorithm 10. A few important features are worth highlighting,

under the assumption that the sample trajectories in D are independently generated from the same

distribution.

• Given that {N trim
h (s)} are computed on the basis of the dataset Daux and that Dtrim is

subsampled from another dataset Dmain, one can clearly see that {N trim
h (s)} are statistically

independent from the sample transitions in Dtrim.

• As we shall justify in the analysis, the samples in Dtrim can almost be treated as being

statistically independent, a key attribute resulting from the subsampling trick.

• The proposed algorithm only splits the data into two subsets, which is in stark contrast

to prior variants of VI-LCB that perform H-fold sample splitting (e.g., Xie et al. (2021b)).

Eliminating the H-fold splitting requirement plays a crucial role in enabling optimal sample

complexity.
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Algorithm 10: Subsampled VI-LCB for episodic finite-horizon MDPs

1 input: a dataset D; reward function r.
2 subsampling: run the following procedure to generate the subsampled dataset Dtrim.

1) Data splitting. Split D into two halves: Dmain (which contains the first K/2
trajectories), and Daux (which contains the remaining K/2 trajectories); we let Nmain

h (s)
(resp. Naux

h (s)) denote the number of sample transitions in Dmain (resp. Daux) that
transition from state s at step h.

2) Lower bounding {Nmain
h (s)} using Daux. For each s ∈ S and 1 ≤ h ≤ H, compute

N trim
h (s) := max

{
Naux
h (s)− 10

√
Naux
h (s) log

HS

δ
, 0

}
; (5.10)

3) Random subsampling. Let Dmain′ be the set of all sample transitions (i.e., the
quadruples taking the form (s, a, h, s′)) from Dmain. Subsample Dmain′ to obtain Dtrim,
such that for each (s, h) ∈ S × [H], Dtrim contains min{N trim

h (s), Nmain
h (s)} sample

transitions randomly drawn from Dmain′.

run VI-LCB: set D0 = Dtrim; run Algorithm 9 to compute a policy π̂.

Before proceeding, we formally justify that N trim
h (s) — as computed in (5.10) — is a valid

lower bound on Nmain
h (s). Here and below, we denote by N trim

h (s, a) the number of sample transitions

in Dtrim that are associated with the state-action pair (s, a) at step h.

Lemma 13. Suppose that the K trajectories in D are generated in an i.i.d. fashion (see Chap-

ter 5.1.1). With probability at least 1− 8δ, the quantities constructed in (5.10) obey

N trim
h (s) ≤ Nmain

h (s), (5.11a)

N trim
h (s, a) ≥ Kdb

h(s, a)

8
− 5

√
Kdb

h(s, a) log
KH

δ
(5.11b)

simultaneously for all 1 ≤ h ≤ H and all (s, a) ∈ S ×A.

5.1.4 Theoretical guarantees

In what follows, we characterize the sample complexity of Algorithm 10, as formalized below.

Theorem 4. Consider any ε ∈ (0, H] and any 0 < δ < 1. With probability exceeding 1− 12δ, the

policy π̂ returned by Algorithm 10 obeys

V ?
1 (ρ)− V π̂

1 (ρ) ≤ ε (5.12)

as long as the penalty terms are chosen according to the Bernstein-style quantity (5.9) for some
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large enough numerical constant cb > 0, and the total number of sample trajectories exceeds

K ≥
ckH

3SC?clipped log KH
δ

ε2
(5.13)

for some sufficiently large numerical constant ck > 0, where C?clipped is introduced in Definition 2.

In general, the total sample size characterized by Theorem 4 could be far smaller than the

ambient dimension (i.e., S2AH) of the probability transition kernel P , thus precluding one from

estimating P in a reliable fashion. As a crucial insight from Theorem 4, the model-based (or plug-in)

approach enables reliable policy learning even when model estimation is completely off. Our analysis

of Theorem 4 relies heavily on (i) suitable decoupling of complicated statistical dependency via

subsampling, and (ii) careful control of the variance terms in the presence of Bernstein-style penalty.

In order to help assess the tightness and optimality of Theoerem 4, we further develop a

minimax lower bound as follows.

Theorem 5. For any (H,S,C?clipped, ε) obeying H ≥ 12, C?clipped ≥ 8/S and ε ≤ c3H, one can

construct a collection of MDPs {Mθ | θ ∈ Θ}, an initial state distribution ρ, and a batch dataset

with K independent sample trajectories each of length H, such that

inf
π̂

max
θ∈Θ

Pθ
{
V ?

1 (ρ)− V π̂
1 (ρ) ≥ ε

}
≥ 1

4
, (5.14)

provided that the total sample size

N = KH ≤
c4C

?
clippedSH

4

ε2
. (5.15)

Here, c3, c4 > 0 are some small enough numerical constants, the infimum is over all estimator π̂,

and Pθ denotes the probability when the MDP is Mθ.

Implications. In what follows, let us take a moment to discuss several other key implications of

Theorem 4.

• Near-optimal sample complexities. In the presence of the Bernstein-style penalty, the total

number of samples (i.e., KH) needed for our algorithm to yield ε-accuracy is

Õ

(
H4SC?clipped

ε2

)
. (5.16)

This confirms the optimality of the proposed model-based approach (up to some logarithmic

term) when Bernstein-style penalty is employed, since Theorem 5 reveals that at least
H4SC?clipped

ε2

samples are needed regardless of the algorithm in use.
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• Full ε-range and no burn-in cost. The sample complexity bound (5.13) stated in Theorem 4

holds for an arbitrary ε ∈ (0, H]. In other words, no burn-in cost is needed for the algorithm

to work sample-optimally. This improves substantially upon the state-of-the-art results for

model-based and model-free offline algorithms, both of which require a significant level of

burn-in sample size (H9SC? and H6SC?, respectively).

• Sample reduction and model compressibility when C?clipped < 1. Given that C?clipped might

drop below 1, the sample complexity of our algorithm might be as low as Õ
(
H4S
ε2

)
. In fact,

recognizing that C?clipped can be as small as 1+o(1)
S , we see that the sample complexity can

sometimes be reduced to

Õ

(
H4

ε2

)
, (5.17)

resulting in significant sample size saving compared to prior works. Caution needs to be

exercised, however, that this sample size improvement is made possible as a result of certain

model compressibility implied by a small C?clipped. For instance, C?clipped = O(1/S) might happen

when a small number of states accounts for a dominant fraction of probability mass in d?h(s),

with the remaining states exhibiting vanishingly small occupancy probability (see also the

lower bound construction in the proof of Theorem 5); if this happens, then it often suffices to

focus on learning those dominant states.

Infeasibility of estimating C?clipped. With the sample complexity (5.16) in mind, one natural

question arises as to whether it is possible to estimate C?clipped from the batch dataset. Unfortunately,

this is in general infeasible, as demonstrated by the following example.

• (A hard example) Consider an MDP with horizon H = 2. In step h = 1, we have a singleton

state space S1 = {0} and an action space A1 = {0, 1}, whereas in step h = 2, we have a

state space S2 = {0, 1} and a singleton action space A2 = {0}. The reward function and the

transition kernel are given by:

r1(0, 0) = 0, r1(0, 1) = 0, r2(0, 0) = 0, r2(1, 0) = 1

P1(0 | 0, 0) = 0.5, P1(1 | 0, 0) = 0.5, P1(0 | 0, 1) = p, P1(1 | 0, 1) = 1− p

for some unknown parameter p ∈ (0, 1). We have K independent trajectories as usual, and let

db
1(0, 0) = 1− 1

K
and db

1(0, 1) =
1

K
. (5.18)

Elementary calculation then reveals that: C?clipped = K when p < 1
2 , and C?clipped = 1 + 1

K−1

when p > 1
2 . Such a remarkable difference in C?clipped depends on the value of p, which is only

reflected in (s, a) = (0, 1) at step 1. However, by construction, there is nonvanishing probability
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(i.e.,
(
1− db

1(0, 1)
)K ≈ 1/e for large K) such that the dataset does not visit (s, a) = (0, 1) in

step h = 1 at all, which in turn precludes one from distinguishing C?clipped = 1 + 1
K−1 from

C?clipped = K given only the available dataset.

Fortunately, implementing our algorithm does not require prior knowledge of C?clipped at all, and the

algorithm succeeds once the task becomes feasible. On the other hand, we won’t be able to tell how

large a sample size is enough a priori, but this is in general information-theoretically infeasible as

illustrated by the above example.

Comparisons with prior statistical analysis. We now briefly discuss the novelty of our

statistical analysis compared with past theory. Perhaps the most related prior work is Xie et al.

(2021b), which proposed two algorithms. The first algorithm therein is VI-LCB with H-fold sample

splitting and Hoeffding-style penalty, and each of these two features adds an H factor to the total

sample complexity. The second algorithm therein combines VI-LCB with variance reduction, which

leads to optimal sample complexity for sufficiently small ε (i.e., a large burn-in cost is required).

Note, however, that none of the existing statistical tools for variance reduction is able to work

without imposing a large burn-in cost, regardless of the sampling mechanism in use (e.g., generative

model, offline RL, online RL) (Li et al., 2023b; Sidford et al., 2018a; Xie et al., 2021b; Zhang

et al., 2020c). In contrast, our theory makes apparent that variance reduction is unnecessary, which

leads to both simpler algorithm and tighter analysis. Additionally, while Bernstein-style confidence

bounds have been deployed in online RL for finite-horizon MDPs (Azar et al., 2017; Fruit et al.,

2020; Jin et al., 2018; Zhang et al., 2020c), none of these works was able to yield optimal sample

complexity without a large burn-in cost (e.g., Azar et al. (2017) incurred a burn-in cost as large as

S3AH6). This in turn underscores the power of our statistical analysis when coping with the most

data-hungry regime.

5.2 Algorithm and theory: discounted infinite-horizon MDPs

Now, we turn attention to the studies of offline RL for discounted infinite-horizon MDPs.

5.2.1 Problem formulation and assumptions

As before, recalling the definition of discounted infinite-horizon MDPs in Chapter 2.1, we shall

further introduce additional notations, the sampling model and the goal.

Similar to finite-horizon case, we introduce the discounted occupancy distributions associated

with policy π as follows:

∀s ∈ S : dπ(s; ρ) := (1− γ)

∞∑

t=0

γtP(st = s | s0 ∼ ρ;π), (5.19)
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∀(s, a) ∈ S ×A : dπ(s, a; ρ) := (1− γ)
∞∑

t=0

γtP(st = s, at = a | s0 ∼ ρ;π), (5.20)

where we consider the randomness over a sample trajectory that starts from an initial state s0 ∼ ρ
and that follows policy π (i.e., at ∼ π(· | st) and st+1 ∼ P (· | st, at) for all t ≥ 0).

Correspondingly, we adopt the notation of the discounted occupancy distributions associated

with the optimal policy π? as:

∀(s, a) ∈ S ×A : d?(s) := dπ
?
(s; ρ) and d?(s, a) := dπ

?
(s, a; ρ) = d?(s)1

(
a = π?(s)

)
,

(5.21)

where the last equality is valid since π? is assumed to be deterministic.

Offline/batch data. Let us work with an independent sampling model as studied in the prior

work Rashidinejad et al. (2021). To be precise, imagine that we observe a batch dataset D =

{(si, ai, s′i)}1≤i≤N containing N sample transitions. These samples are independently generated

based on a distribution db ∈ ∆(S ×A) and the transition kernel P of the MDP, namely,

(si, ai)
ind.∼ db and s′i

ind.∼ P (· | si, ai), 1 ≤ i ≤ N. (5.22)

In addition, it is assumed that the learner is aware of the reward function.

In order to capture the distribution shift between the desired occupancy measure and the

data distribution, we introduce a key quantity previously introduced in Rashidinejad et al. (2021).

Definition 3 (Single-policy concentrability for infinite-horizon MDPs). The single-policy concen-

trability coefficient of a batch dataset D is defined as

C? := max
(s,a)∈S×A

d?(s, a)

db(s, a)
. (5.23)

Clearly, one necessarily has C? ≥ 1.

In words, C? measures the distribution mismatch in terms of the maximum density ratio. The

batch dataset can be viewed as expert data when C? approaches 1, meaning that the batch dataset

is close to the target policy in terms of the induced distributions. Moreover, this coefficient C? is

referred to as the “single-policy” concentrability coefficient since it is concerned with a single policy

π?; this is clearly a much weaker assumption compared to the all-policy concentrability assumption

(as adopted in, e.g., Chen and Jiang (2019); Fan et al. (2020); Farahmand et al. (2010); Munos

(2007); Ren et al. (2021); Xie and Jiang (2021)), the latter of which assumes a uniform density-ratio

bound over all policies and requires the dataset to be highly exploratory.

In the current sub-chapter, we also introduce a slightly improved version of C? as follows.
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Definition 4 (Single-policy clipped concentrability for infinite-horizon MDPs). The single-policy

clipped concentrability coefficient of a batch dataset D is defined as

C?clipped := max
(s,a)∈S×A

min
{
d?(s, a), 1

S

}

db(s, a)
. (5.24)

Remark 2. A direct comparison of Conditions (5.23) and (7.25) implies that for a given batch

dataset D,

C?clipped ≤ C?. (5.25)

As we shall see later, while our sample complexity upper bounds will be mainly stated in terms of

C?clipped, all of them remain valid if C?clipped is replaced with C?. Additionally, in contrast to C? that

is always lower bounded by 1, we have a smaller lower bound as follows (directly from the definition

(7.25))

C?clipped ≥ 1/S, (5.26)

which is nearly tight.1 This attribute could lead to sample size saving in some cases, to be detailed

shortly.

Let us take a moment to further interpret the coefficient in Definition 4, which says that

db(s, a) ≥





1
C?clipped

d?(s, a), if d?(s, a) ≤ 1/S

1
C?clippedS

, if d?(s, a) > 1/S
(5.27)

holds for any pair (s, a). Consider, for instance, the case where C?clipped = O(1): if a state-action

pair is infrequently (or rarely) visited by the optimal policy, then it is fine for the associated density

in the batch data to be very small (e.g., a density proportional to that of the optimal policy); by

contrast, if a state-action pair is visited fairly often by the optimal policy, then Definition 4 might

only require db(s, a) to exceed the order of 1/S. In other words, the required level of db(s, a) is

clipped at the level 1
C?clippedS

regardless of the value of d?(s, a).

Goal. Armed with the batch dataset D, the objective of offline RL in this case is to find a policy π̂

that attains near-optimal value functions — with respect to a given test state distribution ρ ∈ ∆(S)

1As a concrete example, suppose that d?(s) =

{
1− S−1

S3 if s = 1
1
S3 else

and db(s, a) =
1− S−1

S2 if a = π?(s) and s = 1,
1
S2 if a = π?(s) and s 6= 1,

0, else.

Then it can be easily verified that C?clipped = 1

S−1+ 1
S

. Nonetheless, cau-

tion should be exercised that an exceedingly small C?clipped requires highly compressible structure of d?, and the
real-world data often do not fall within this benign range of C?clipped.
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— in a sample-efficient manner. To be precise, for a prescribed accuracy level ε, we seek to identify

an ε-optimal policy π̂ satisfying

V ?(ρ)− V π̂(ρ) ≤ ε (5.28)

with high probability, using a batch dataset D (cf. (5.22)) containing as few samples as possible.

Particular emphasis is placed on achieving minimal sample complexity for the entire range of

accuracy levels (namely, for any ε ∈
(
0, 1

1−γ
]
).

Remark 3. The careful reader might remark that i.i.d. sampling as in (5.22) might be too stringent.

While our main theory is developed based on this idealistic sampling model, we shall present

extensions to Markovian data as well (see Appendix C.4).

5.2.2 VI-LCB for infinite-horizon MDPs

In this subchapter, we introduce a model-based offline RL algorithm that incorporates lower

concentration bounds in value estimation. The algorithm, called VI-LCB, applies value iteration

(based on some pessimistic Bellman operator) to the empirical MDP, with the key ingredients

described below.

The empirical MDP. Recall that we are given N independent sample transitions {(si, ai, s′i)}Ni=1

in the dataset D. For any given state-action pair (s, a), we denote by

N(s, a) :=

N∑

i=1

1
(
(si, ai) = (s, a)

)
(5.29)

the number of samples transitions from (s, a). We then construct an empirical transition matrix P̂

such that

P̂ (s′ | s, a) =





1
N(s,a)

N∑
i=1

1
{

(si, ai, s
′
i) = (s, a, s′)

}
, if N(s, a) > 0

1
S , else

(5.30)

for each (s, a, s′) ∈ S ×A× S.

The pessimistic Bellman operator. Our offline algorithm is developed based on finding the

fixed point of some variant of the classical Bellman operator. Let us first introduce this key

operator and eludicate how the pessimism principle is enforced. Recall that the Bellman operator

T (·) : RSA → RSA w.r.t. the transition kernel P is defined such that for any vector Q ∈ RSA,

T (Q)(s, a) := r(s, a) + γPs,aV for all (s, a) ∈ S ×A, (5.31)
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where V = [V (s)]s∈S with V (s) := maxaQ(s, a). We propose to penalize the original Bellman

operator w.r.t. the empirical kernel P̂ as follows:

T̂pe(Q)(s, a) := max
{
r(s, a) + γP̂s,aV − b(s, a;V ), 0

}
for all (s, a) ∈ S ×A, (5.32)

where b(s, a;V ) denotes the penalty term employed to enforce pessimism amid uncertainty. As one

can anticipate, the properties of the fixed point of T̂pe(·) relies heavily upon the choice of the penalty

terms {bh(s, a;V )}, often derived based on certain concentration bounds. In this sub-chapter, we

focus on the following Bernstein-style penalty to exploit the importance of certain variance statistics:

b(s, a;V ) := min

{
max

{√cb log N
(1−γ)δ

N(s, a)
Var

P̂s,a
(V ),

2cb log N
(1−γ)δ

(1− γ)N(s, a)

}
,

1

1− γ

}
+

5

N
(5.33)

for every (s, a) ∈ S ×A, where cb > 0 is some numerical constant (e.g., cb = 144), and δ ∈ (0, 1) is

some given quantity (in fact, 1− δ is the target success probability). Here, for any vector V ∈ RS ,

we recall that Var
P̂s,a

(V ) is the variance of V w.r.t. the distribution P̂s,a (see (1.7)).

We immediately isolate several useful properties as follows.

Lemma 14. For any γ ∈ [1
2 , 1), the operator T̂pe(·) (cf. (5.32)) with the Bernstein-style penalty (5.33)

is a γ-contraction w.r.t. ‖ · ‖∞, that is,

∥∥T̂pe(Q1)− T̂pe(Q2)
∥∥
∞ ≤ γ‖Q1 −Q2‖∞ (5.34)

for any Q1, Q2 ∈ RS×A obeying Q1(s, a), Q2(s, a) ∈
[
0, 1

1−γ
]

for all (s, a) ∈ S × A. In addition,

there exists a unique fixed point Q̂?pe of the operator T̂pe(·), which also obeys 0 ≤ Q̂?pe(s, a) ≤ 1
1−γ for

all (s, a) ∈ S ×A.

In words, even though T̂pe(·) integrates the penalty terms, it still preserves the γ-contraction property

and admits a unique fixed point, thereby resembling the classical Bellman operator (5.31).

The VI-LCB algorithm. We are now positioned to introduce the VI-LCB algorithm, which can

be regarded as classical value iteration applied in conjunction with pessimism. Specifically, the

algorithm applies the Bernstein-style pessimistic operator T̂pe (cf. (5.32)) iteratively in order to find

its fixed point:

Q̂τ (s, a) = T̂pe

(
Q̂τ−1

)
(s, a) = max

{
r(s, a) + γP̂s,aV̂τ−1 − b

(
s, a; V̂τ−1

)
, 0
}
, τ = 1, 2, · · · (5.35)

We shall initialize it to Q̂0 = 0, implement (5.35) for τmax iterations, and output Q̂ = Q̂τmax as the

final Q-estimate. The final policy estimate π̂ is chosen on the basis of Q̂ as follows:

π̂(s) ∈ arg max
a

Q̂(s, a) for all s ∈ S, (5.36)
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Algorithm 11: Offline value iteration with LCB (VI-LCB) for discounted infinite-
horizon MDPs

1 input: dataset D; reward function r; target success probability 1− δ; max iteration
number τmax.

2 initialization: Q̂0 = 0, V̂0 = 0.

3 construct the empirical transition kernel P̂ according to (5.30).
4 for τ = 1, 2, · · · , τmax do
5 for s ∈ S, a ∈ A do

6 compute the penalty term b
(
s, a; V̂τ−1

)
according to (5.33).

7 set Q̂τ (s, a) = max
{
r(s, a) + γP̂s,aV̂τ−1 − b

(
s, a; V̂τ−1

)
, 0
}

.

8 for s ∈ S do

9 set V̂τ (s) = maxa Q̂τ (s, a).

10 output: π̂ s.t. π̂(s) ∈ arg maxa Q̂τmax(s, a) for any s ∈ S.

with the whole algorithm summarized in Algorithm 11.

Let us pause to explain the rationale of the pessimism principle on a high level. If a pair

(s, a) has been insufficiently visited in D (i.e., N(s, a) is small), then the resulting Q-estimate

Q̂τ (s, a) could suffer from high uncertainty and become unreliable, which might in turn mislead

value estimation. By enforcing suitable penalization b(s, a; V̂τ−1) based on certain lower confidence

bounds, we can suppress the negative influence of such poorly visited state-action pairs. Fortunately,

suppressing these state-action pairs might not result in significant bias in value estimation when

C?clipped is small; for instance, when the behavior policy πb resembles π?, the poorly visited state-

action pairs correspond primarily to suboptimal actions (as they are not selected by π?), making it

acceptable to neglect these pairs.

Interestingly, Algorithm 11 is guaranteed to converge rapidly. In view of the γ-contraction

property in Lemma 14, the iterates {Q̂τ}τ≥0 converge linearly to the fixed point Q̂?pe, as asserted

below.

Lemma 15. Suppose Q̂0 = 0. Then the iterates of Algorithm 11 obey

Q̂τ ≤ Q̂?pe and
∥∥Q̂τ − Q̂?pe

∥∥
∞ ≤

γτ

1− γ for all τ ≥ 0, (5.37)

where Q̂?pe is the unique fixed point of T̂pe. As a consequence, by choosing τmax ≥
log N

1−γ
log(1/γ) one fulfills

∥∥Q̂τmax − Q̂?pe

∥∥
∞ ≤ 1/N. (5.38)

Algorithmic comparison with Rashidinejad et al. (2021). VI-LCB has been studied in the

prior work Rashidinejad et al. (2021). The difference between our algorithm and the version therein
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is two-fold:

• Sample reuse vs. Õ
(

1
1−γ
)
-fold sample splitting. Our algorithm reuses the same set of samples

across all iterations, which is in sharp contrast to Rashidinejad et al. (2021) that employs

fresh samples in each of the Õ
(

1
1−γ
)

iterations. This results in considerably better usage of

available information.

• Bernstein-style vs. Hoeffding-style penalty. Our algorithm adopts the Bernstein-type penalty,

as opposed to the Hoeffding-style penalty in Rashidinejad et al. (2021). This choice leads to

more effective exploitation of the variance structure across time.

Pessimism vs. optimism in the face of uncertainty. The careful reader might also notice

the similarity between the pessimism principle and the optimism principle utilized in online RL.

A well-developed paradigm that balances exploration and exploitation in online RL is optimistic

exploration based on uncertainty quantification (Lai and Robbins, 1985). The earlier work Jaksch

et al. (2010) put forward an algorithm called UCRL2 that computes an optimistic policy with the

aid of Hoeffding-style confidence regions for the probability transition kernel. Later on, Azar et al.

(2017) proposed to build upper confidence bounds (UCB) for the optimal values instead, which

leads to significantly improved sample complexity; see, e.g., He et al. (2021); Wang et al. (2019)

for the application of this strategy to discounted infinite-horizon MDPs. Note, however, that the

rationales behind optimism and pessimism are remarkably different. In offline RL (which does not

allow further data collection), the uncertainty estimates are employed to identify, and then rule out,

poorly-visited actions; this stands in sharp contrast to the online counterpart where poorly-visited

actions might be more favored during exploration.

5.2.3 Theoretical guarantees

When the Bernstein-style concentration bound (5.33) is adopted, the VI-LCB algorithm in Algo-

rithm 11 yields ε-accuracy with a near-minimal number of samples, as stated below.

Theorem 6. Suppose γ ∈ [1
2 , 1), and consider any 0 < δ < 1 and ε ∈

(
0, 1

1−γ
]
. Suppose that the

total number of iterations exceeds τmax ≥ 1
1−γ log N

1−γ . With probability at least 1− 2δ, the policy π̂

returned by Algorithm 11 obeys

V ?(ρ)− V π̂(ρ) ≤ ε, (5.39)

provided that cb (cf. the Bernstein-style penalty term in (5.33)) is some sufficiently large numerical

constant and the total sample size exceeds

N ≥
c1SC

?
clipped log NS

(1−γ)δ

(1− γ)3ε2
(5.40)
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for some large enough numerical constant c1 > 0, where C?clipped is introduced in Definition 4.

In general, the total sample size characterized by Theorem 6 could be far smaller than the

ambient dimension (i.e., S2A) of the transition kernel P , thus precluding one from estimating P

in a reliable fashion. As a crucial insight from Theorem 6, the model-based (or plug-in) approach

enables reliable offline learning even when model estimation is completely off.

Before discussing key implications of Theorem 6, we develop matching minimax lower bounds

that help confirm the efficacy of the proposed model-based algorithm.

Theorem 7. For any (γ, S, C?clipped, ε) obeying γ ∈
[

2
3 , 1
)
, S ≥ 2, C?clipped ≥ 8γ

S , and ε ≤ 1
42(1−γ) ,

one can construct two MDPs M0,M1, an initial state distribution ρ, and a batch dataset with N

independent samples and single-policy clipped concentrability coefficient C?clipped such that

inf
π̂

max
{
P0

(
V ?(ρ)− V π̂(ρ) > ε

)
, P1

(
V ?(ρ)− V π̂(ρ) > ε

)}
≥ 1

8
,

provided that

N ≤
c2SC

?
clipped

(1− γ)3ε2

for some numerical constant c2 > 0. Here, the infimum is over all estimator π̂, and P0 (resp. P1)

denotes the probability when the MDP is M0 (resp. M1).

Implications. In the following, we take a moment to interpret the above two theorems and single

out several key implications about the proposed model-based algorithm.

• Optimal sample complexities. In the presence of the Bernstein-style penalty, the total number

of samples needed for our algorithm to yield ε-accuracy is

Õ

(
SC?clipped

(1− γ)3ε2

)
. (5.41)

This taken together with the minimax lower bound asserted in Theorem 7 confirms the opti-

mality of the proposed model-based approach (up to some logarithmic factor). In comparison,

the sample complexity derived in Rashidinejad et al. (2021) exhibits a worse dependency on

the effective horizon (i.e., 1
(1−γ)5 ). Theorem 7 also enhances the lower bound developed in

Rashidinejad et al. (2021) to accommodate the scenario where C?clipped can be much smaller

than C?, i.e., C?clipped = O(1/S).

• No burn-in cost. The fact that the sample size bound (5.40) holds for the full ε-range (i.e., any

given ε ∈
(
0, 1

1−γ
]
) means that there is no burn-in cost required to achieve sample optimality.

This not only drastically improves upon, but in fact eliminates, the burn-in cost of the

best-known sample-optimal result (cf. Table 1.2), the latter of which required a burn-in cost
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at least on the order of SC?

(1−γ)5 . Accomplishing this requires one to tackle the sample-hungry

regime, which is statistically challenging to cope with.

• No need of sample splitting. It is noteworthy that prior works typically required sample

splitting. For instance, Rashidinejad et al. (2021) analyzed the VI-LCB algorithm with fresh

samples employed in each iteration, which effectively split the data into Õ
(

1
1−γ
)

disjoint

subsets. In contrast, the algorithm studied herein permits the reuse of all samples across all

iterations. This is an important feature in sample-starved applications to effectively maximize

information utilization, and is a crucial factor that assists in improving the sample complexity

compared to Rashidinejad et al. (2021).

• Sample size saving when C?clipped < 1. In view of Theorem 6, the sample complexity of the

proposed algorithm can be as low as

Õ

(
1

(1− γ)3ε2

)

when C?clipped is on the order of 1/S. This might seem somewhat surprising at first glance,

given that the minimax sample complexity for policy evaluation is at least Õ
(

S
(1−γ)3ε2

)
even in

the presence of a simulator (Azar et al., 2013). To elucidate this, we note that the condition

C?clipped = O(1/S) implicitly imposes special — in fact, highly compressible — structure on the

MDP that enables sample size reduction. As we shall see from the lower bound construction in

Theorem 7, the case with C?clipped = O(1/S) might require d?(s, a) to concentrate on one or a

small number of important states, with exceedingly small probability assigned to the remaining

ones. If this occurs, then it often suffices to focus on what happens on these important states,

thus requiring much fewer samples.

Comparisons with prior statistical analysis. Before concluding this subchapter, we highlight

the innovations of our statistical analysis compared to past theory when it comes to discounted

infinite-horizon MDPs. To begin with, our sample size improvement over Rashidinejad et al. (2021)

stems from the two algorithmic differences mentioned in Chapter 5.2.2: the sample-reuse feature

allows one to improve a factor of 1
1−γ , while the use of Bernstein-style penalty yields an additional

gain of 1
1−γ . In addition, while the design of data-driven Bernstein-style bounds has been extensively

studied in online RL in discounted MDPs (e.g., He et al. (2021); Zhang et al. (2021c)), all of these

past results were either sample-suboptimal, or required a huge burn-in sample size (e.g., S3A2

(1−γ)4

in He et al. (2021)). In other words, sample optimality was not previously achieved in the most

data-hungry regime. In comparison, our theory ensures optimality of our algorithm even for the

most sample-constrained scenario, which relies on much more delicate statistical tools. In a nutshell,

our statistical analysis is built upon at least two ideas: (i) a leave-one-out analysis framework that

allows to decouple complicated statistical dependency across iterations without losing statistical
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tightness; (ii) a delicate self-bounding trick that allows us to simultaneously control multiple crucial

statistical quantities (e.g., empirical variance) in the most sample-starved regime.

5.3 Analysis: episodic finite-horizon MDPs

5.3.1 Preliminary facts and notation

We first collect a few preliminary facts that are useful for the analysis. The first fact determines the

range of our estimates Q̂h and V̂h.

Lemma 16. The iterates of Algorithm 9 obey

0 ≤ Q̂h(s, a) ≤ H − h+ 1 and 0 ≤ V̂h(s) ≤ H − h+ 1 for all (s, a, h) ∈ S ×A× [H].

(5.42)

Proof. The non-negativity of Q̂h (and hence V̂h) follows directly from the update rule (5.6). Re-

garding the upper bound, we suppose for the moment that V̂h+1(s) ≤ H − h for step h+ 1. Then

(5.6) tells us that

Q̂h(s, a) ≤ 1 +
∥∥V̂h+1

∥∥
∞ ≤ 1 +H − h,

which together with V̂h(s) = maxa Q̂h(s, a) justifies the claim (5.42) for step h as well. Taking this

together with the base case V̂H+1 = 0 and the standard induction argument concludes the proof.

The second fact is concerned with the vector d?h := [d?h(s)]s∈S ∈ RS . For any h ∈ [H], denote

by P ?h ∈ RS×S a matrix whose s-th row is given by Ph
(
· | s, π?h(s)

)
. Then the Markovian property

of the MDP indicates that: for any j > h, one has

(
d?j
)>

=
(
d?h
)>
P ?h · · ·P ?j−1. (5.43)

Notation. We remind the reader that Ph,s,a ∈ R1×S represents the probability transition vector

Ph(· | s, a), and the associated variance parameter VarPh,s,a(V ) is defined to be the (h, s, a)-th row

of VarP (V ) (cf. (1.7)), namely,

VarPh,s,a(V ) :=
∑

s′∈S
Ph(s′ | s, a)

(
V (s′)

)2 −
(∑

s′∈S
Ph(s′ | s, a)V (s′)

)2

(5.44)

for any given vector V ∈ RS . The vector P̂h,s,a ∈ R1×S and the variance parameter Var
P̂h,s,a

(V ) are

defined analogously.
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5.3.2 A crucial statistical independence property

This subchapter demonstrates that the subsampling trick introduced in Chapter 5.1.3 leads to

some crucial statistical independence property. To be precise, let us consider the following two

data-generating mechanisms; here and below, a sample transition refers to a quadruple (s, a, h, s′)

that indicates a transition from state s to state s′ when action a is taken at step h.

• Model 1 (augmented dataset). Augment Dtrim to yield a dataset Dtrim,aug via the following

steps. For every (s, h) ∈ S × [H]:

1) Add to Dtrim,aug all N trim
h (s) sample transitions in Dtrim that transition from state s at

step h;

2) If N trim
h (s) > Nmain

h (s), then we further add to Dtrim,aug another set of N trim
h (s)−Nmain

h (s)

independent sample transitions
{(
s, a

(i)
h,s, h, s

′ (i)
h,s

)}
obeying

a
(i)
h,s

i.i.d.∼ πb
h(· | s), s

′ (i)
h,s

i.i.d.∼ Ph
(
· | s, a(i)

h,s

)
, Nmain

h (s) < i ≤ N trim
h (s). (5.45)

• Model 2 (independent dataset). For every (s, h) ∈ S× [H], generate N trim
h (s) independent

sample transitions
{(
s, a

(i)
h,s, h, s

′ (i)
h,s

)}
as follows:

a
(i)
h,s

i.i.d.∼ πb
h(· | s), s

′ (i)
h,s

i.i.d.∼ Ph(· | s, a), 1 ≤ i ≤ N trim
h (s). (5.46)

This forms the following dataset:

Di.i.d. :=
{(
s, a

(i)
h,s, h, s

′ (i)
h,s

)
| s ∈ S, 1 ≤ h ≤ H, 1 ≤ i ≤ N trim

h (s)
}
. (5.47)

In words, the dataset Dtrim,aug generated in Model 1 differs from Dtrim only if N trim
h (s) >

Nmain
h (s) occurs; this data generating mechanism ensures that Dtrim,aug comprises exactly N trim

h (s)

sample transitions from state s at step h. Two key features are: (a) the samples in Dtrim,aug are

statistically independent, and (b) Dtrim,aug is essentially equivalent to Dtrim with high probability,

as asserted below.

Lemma 17. The above two datasets Dtrim,aug and Di.i.d. have the same distributions. In addition,

with probability exceeding 1− 8δ, Dtrim,aug = Dtrim.

Proof. Both Dtrim,aug and Di.i.d. contain exactly N trim
h (s) sample transitions from state s at step

h. where {N trim
h (s)} are statistically independent from the randomness of the samples. It is easily

seen that: given {N trim
h (s)}, the sample transitions in Dtrim,aug across different steps are statistically

independent. As a result, Dtrim and Di.i.d. both consist of independent samples and are of the same

distribution.
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Furthermore, Lemma 13 tells us that with probability at least 1 − 8δ, N trim
h (s) ≤ Nmain

h (s)

holds for all (s, h) ∈ S × [H], implying that that all data in Dtrim,aug come from Dmain and hence

Dtrim,aug = Dtrim.

5.3.3 Proof of Theorem 4

We first demonstrate that Theorem 4 is valid as long as the following theorem can be established.

Theorem 8. Consider the dataset D0 described in Chapter 5.1.2, and any 0 < δ < 1. Suppose that

D0 contains N sample transitions, and that the non-negative integers {Nh(s, a)} defined in (5.4)

obey

∀(s, a, h) ∈ S ×A× [H] : Nh(s, a) ≥ Kdb
h(s, a)

8
− 5

√
Kdb

h(s, a) log
NH

δ
, (5.48)

with K some quantity obeying K ≥ 3872HSC?rob log NH
δ . Assume that conditional on {Nh(s, a)},

the sample transitions {(s, a, h, s′(i)) | 1 ≤ i ≤ Nh(s, a), (s, a, h) ∈ S × A × [H]} are statistically

independent. The penalty terms are taken to be (5.9), where cb ≥ 16 is chosen to be some constant.

Then with probability at least 1− 4δ, one has

∑

s

d?h(s)
(
V ?
h (s)− V π̂

h (s)
)
≤ 80

√
2cbH3SC?rob log NH

δ

K
, 1 ≤ h ≤ H. (5.49)

By construction, {N trim
h (s, a)} are computed using Daux, and hence are independent from the

empirical model P̂h generated based on Dtrim. Additionally, Lemma 17 permits us to treat the

samples in Dtrim as being statistically independent. Recalling that the lower bound (5.11b) holds

with probability at least 1− 8δ, we can readily invoke Theorem 8 by taking Nh(s, a) = N trim
h (s, a)

and the property (4.2) to show that

∑

s∈S
ρ(s)

(
V ?

1 (s)− V π̂
1 (s)

)
=
∑

s∈S
d?1(s)

(
V ?

1 (s)− V π̂
1 (s)

)
≤ 80

√
2cbH3SC?rob log NH

δ

K
(5.50)

with probability at least 1− 12δ, provided that K ≥ 3872HSC?rob log KH
δ . Setting the right-hand

side of (5.50) to be smaller than ε immediately concludes the proof of Theorem 4, where we have

used the fact that N ≤ KH in D0. As a consequence, it suffices to establish Theorem 8. In the

sequel, we shall assume without loss of generality that we are working on the high-probability event

(5.11).

5.3.3.1 Proof of Theorem 8

Step 1: showing that Q̂h(s, a) ≤ Qπ̂h(s, a). This part relies crucially on the following lemma.
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Lemma 18. Consider any 1 ≤ h ≤ H, and any vector V ∈ RS independent of P̂h obeying

‖V ‖∞ ≤ H. With probability at least 1− 4δ/H, one has

∣∣(P̂h,s,a − Ph,s,a
)
V
∣∣ ≤

√√√√48Var
P̂h,s,a

(V ) log NH
δ

Nh(s, a)
+

48H log NH
δ

Nh(s, a)
(5.51)

Var
P̂h,s,a

(V ) ≤ 2VarPh,s,a
(
V
)

+
5H2 log NH

δ

3Nh(s, a)
(5.52)

simultaneously for all (s, a) ∈ S ×A.

Proof. The proof follows from exactly the same argument as that of Lemma 31, except that the

assumed upper bound on ‖V ‖∞ is now H (as opposed to 1
1−γ ) and δ is replaced with δ/H. We thus

omit the proof details for brevity.

Additionally, we make note of the crude bound
∣∣(P̂h,s,a − Ph,s,a)V̂h+1

∣∣ ≤ ‖V̂h+1‖∞ ≤ H. Also,

given that Algorithm 9 works backwards, the iterate V̂h+1 does not use P̂h, and is hence statistically

independent from P̂h. Thus, we can readily apply Lemma 18 to obtain

∀(s, a, h) ∈ S ×A× [H] :
∣∣(P̂h,s,a − Ph,s,a

)
V̂h+1

∣∣ ≤ bh(s, a) (5.53)

in the presence of the Bernstein-style penalty (5.9), provided that the constant cb > 0 is sufficiently

large.

In the sequel, we shall work with the high-probability events (5.53) and (5.52), in addition to

(5.11). We intend to prove the following relation

∀(s, a, h) ∈ S ×A× [H] : Q̂h(s, a) ≤ Qπ̂h(s, a) and V̂h(s) ≤ V π̂
h (s) (5.54)

hold with probability exceeding 1− 4δ. Note that the latter assertion concerning V̂h is implied by

the former, according to the following relation:

V̂h(s) = max
a

Q̂h(s, a) = Q̂h
(
s, π̂h(s)

)
≤ Qπ̂h

(
s, π̂h(s)

)
= V π̂

h (s). (5.55)

Therefore, we focus on the first assertion and will show it by induction. First of all, the claim (5.54)

holds trivially for the base case with h = H + 1, given that Q̂H+1(s, a) = Qπ̂H+1(s, a) = 0. Next,

suppose that Q̂h+1(s, a) ≤ Qπ̂h+1(s, a) holds for all (s, a) ∈ S ×A and some step h+ 1. We would

like to show that the claimed inequality holds for step h as well. If Q̂h(s, a) = 0, then the claim

holds trivially; otherwise, our update rule (5.6) reveals that

Q̂h(s, a) = rh(s, a) + P̂h,s,aV̂h+1 − bh(s, a)

= rh(s, a) + Ph,s,aV̂h+1 +
(
P̂h,s,a − Ph,s,a

)
V̂h+1 − bh(s, a)
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(i)

≤ rh(s, a) + Ph,s,aV
π̂
h+1

(ii)
= Qπ̂h(s, a),

with probability at least 1− δ/2, where (i) results from (5.53) and (5.55) (i.e., V̂h+1(s) ≤ V π̂
h+1(s)),

and (ii) arises from the Bellman equation. We have thus established (5.54) via a standard induction

argument.

Step 2: bounding V ?
h (s)− V π̂

h (s). In view of (5.55), we make the observation that

0 ≤ V ?
h (s)− V π̂

h (s) ≤ V ?
h (s)− V̂h(s) ≤ Q?h

(
s, π?h(s)

)
− Q̂h

(
s, π?h(s)

)
, (5.56)

where the last inequality holds true since V ?
h (s) = Q?h(s, π?h(s)) and V̂h(s) = maxa Q̂h(s, a) ≥

Q̂h(s, π?h(s)). Recognizing that

Q?h
(
s, π?h(s)

)
= r
(
s, π?h(s)

)
+ Ph,s,π?h(s)V

?
h+1,

Q̂h
(
s, π?h(s)

)
= max

{
r
(
s, π?h(s)

)
+ P̂h,s,π?h(s)V̂h+1 − bh

(
s, π?h(s)

)
, 0
}
,

we can continue the derivation of (5.56) to obtain

V ?
h (s)− V̂h(s) ≤ r

(
s, π?h(s)

)
+ Ph,s,π?h(s)V

?
h+1 −

{
r
(
s, π?h(s)

)
+ P̂h,s,π?h(s)V̂h+1 − bh

(
s, π?h(s)

)}

= Ph,s,π?h(s)V
?
h+1 − P̂h,s,π?h(s)V̂h+1 + bh

(
s, π?h(s)

)

= Ph,s,π?h(s)

(
V ?
h+1 − V̂h+1

)
−
(
P̂h,s,π?h(s) − Ph,s,π?h(s)

)
V̂h+1 + bh

(
s, π?h(s)

)

≤ Ph,s,π?h(s)

(
V ?
h+1 − V̂h+1

)
+ 2bh

(
s, π?h(s)

)
(5.57)

with probability at least 1 − δ, where the last inequality is valid due to (5.53). For notational

convenience, let us introduce a sequence of matrices P ?h ∈ RS×S (1 ≤ h ≤ H) and vectors b?h ∈ RS

(1 ≤ h ≤ H), with their s-th rows given by

[
P ?h
]
s,· := Ph,s,π?h(s) and b?h(s) := bh

(
s, π?h(s)

)
. (5.58)

This allows us to rewrite (5.57) in matrix/vector form as follows:

0 ≤ V ?
h − V̂h ≤ P ?h

(
V ?
h+1 − V̂h+1

)
+ 2b?h. (5.59)

The inequality (5.59) plays a key role in the analysis since it establishes a connection between the

value estimation errors in step h and step h+ 1.

Given that b?h, P ?h and V ?
h − V̂h are all non-negative, applying (5.59) recursively with the
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boundary condition V ?
H+1 = V̂H+1 = 0 leads to

0 ≤ V ?
h − V̂h ≤ P ?h

(
V ?
h+1 − V̂h+1

)
+ 2b?h

≤ P ?hP ?h+1

(
V ?
h+2 − V̂h+2

)
+ 2P ?hb

?
h+1 + 2b?h ≤ · · ·

≤ 2
H∑

j=h

( j−1∏

k=h

P ?k

)
b?j ,

where we adopt the following notation for convenience (note the order of the product)

h−1∏

k=h

P ?k = I and

j−1∏

k=h

P ?k = P ?h · · ·P ?j−1 if j > h.

With this inequality in mind, we can let d?h := [d?h(s)]s∈S be a S-dimensional vector and derive

〈
d?h, V

?
h − V π̂

h

〉
≤
〈
d?h, V

?
h − V̂h

〉
≤
〈
d?h, 2

H∑

j=h

( j−1∏

k=h

P ?k

)
b?j

〉

= 2
H∑

j=h

(
d?h
)>
( j−1∏

k=h

P ?k

)
b?j = 2

H∑

j=h

〈
d?j , b

?
j

〉
, (5.60)

where we have made use of (5.56) and the elementary identity (5.43).

Step 3: using concentrability to bound 〈d?j , b?j 〉. To finish up, we need to make use of the

concentrability coefficient. In what follows, we look at two cases separately.

• Case 1: Kdb
j

(
s, π?j (s)

)
≤ 4cb log NH

δ . Given that bh(s, a) ≤ H (cf. (5.9)), we necessarily have

b?j (s) ≤ H ≤ H ·
4cb log NH

δ

Kdb
j

(
s, π?j (s)

) ≤ 4cbC
?
robH log NH

δ

K min
{
d?j (s),

1
S

} (5.61)

in this case, where the last inequality arises from Definition 2.

• Case 2: Kdb
j

(
s, π?j (s)

)
> 4cb log NH

δ . It follows from the assumption (5.48) that

Nj

(
s, π?j (s)

)
≥
Kdb

j

(
s, π?j (s)

)

8
− 5

√
Kdb

j

(
s, π?j (s)

)
log

N

δ
≥
Kdb

j

(
s, π?j (s)

)

16

≥
K min

{
d?j
(
s, π?j (s)

)
, 1
S

}

16C?rob

=
K min

{
d?j (s),

1
S

}

16C?rob

, (5.62)

as long as cb > 0 is sufficiently large. Here, the last line results from Definition 2 and the

assumption that π? is a deterministic policy (so that d?j (s) = d?j
(
s, π?j (s)

)
).

92



This further leads to

b?j (s) ≤
√

cb log NH
δ

Nj

(
s, π?j (s)

)Var
P̂j,s,π?

j
(s)

(V̂j+1) + cbH
log NH

δ

Nj

(
s, π?j (s)

)

(i)

≤
√

2cb log NH
δ

Nj

(
s, π?j (s)

)VarPj,s,π?
j

(s)
(V̂j+1) + 3cbH

log NH
δ

Nj

(
s, π?j (s)

)

(ii)

≤

√√√√ 32cbC
?
rob log NH

δ

K min
{
d?j (s),

1
S

}VarPj,s,π?
j

(s)
(V̂j+1) + 48cbC

?
robH

log NH
δ

K min
{
d?j (s),

1
S

} .

Here, (i) comes from (5.52) and the elementary inequality
√
x+ y ≤ √x+

√
y for any x, y ≥ 0,

provided that cb is large enough; and (ii) relies on (5.62).

Putting the above two cases together, we arrive at

∑

s

d?j (s)b
?
j (s) ≤

∑

s

d?j (s)

√√√√ 32cbC
?
rob log NH

δ

K min
{
d?j (s),

1
S

}VarPj,s,π?
j

(s)
(V̂j+1) + 48cbH

∑

s

d?j (s)
C?rob log NH

δ

K min
{
d?j (s),

1
S

}

≤
∑

s

d?j (s)

√√√√ 32cbC
?
rob log NH

δ

K min
{
d?j (s),

1
S

}VarPj,s,π?
j

(s)
(V̂j+1) +

96cbHSC
?
rob log NH

δ

K
, (5.63)

where the last inequality holds since

∑

s

d?j (s)

min
{
d?j (s),

1
S

} ≤
∑

s

d?j (s)

{
1

d?j (s)
+

1

1/S

}
≤
∑

s

1 + S
∑

s

d?j (s) ≤ 2S.

In addition, we make the observation that

H∑

j=h

∑

s

d?j (s)

√√√√VarPj,s,π?
j

(s)

(
V̂j+1

)

min
{
d?j (s),

1
S

} ≤
H∑

j=h

∑

s

d?j (s)

√√√√VarPj,s,π?
j

(s)

(
V̂j+1

)

d?j (s)
+

H∑

j=h

∑

s

d?j (s)

√√√√VarPj,s,π?
j

(s)

(
V̂j+1

)

1/S

=
H∑

j=h

∑

s

√
d?j (s)VarPj,s,π?

j
(s)

(
V̂j+1

)
+
√
S

H∑

j=h

∑

s

d?j (s)

√
VarPj,s,π?

j
(s)

(
V̂j+1

)

≤
√
HS ·

√√√√
H∑

j=h

∑

s

d?j (s)VarPj,s,π?
j

(s)

(
V̂j+1

)
+
√
S

√√√√
H∑

j=h

∑

s

d?j (s)

√√√√
H∑

j=h

∑

s

d?j (s)VarPj,s,π?
j

(s)

(
V̂j+1

)

= 2
√
HS ·

√√√√
H∑

j=h

∑

s

d?j (s)VarPj,s,π?
j

(s)

(
V̂j+1

)

≤ 4

√√√√HS

(
H2 +H

H∑

j=h

〈
d?j , b

?
j

〉)
≤ 4
√
H3S + 4

√√√√H2S
H∑

j=h

〈
d?j , b

?
j

〉
,
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where the third line makes use of the Cauchy-Schwarz inequality, and the last line would hold as

long as we could establish the following inequality

H∑

j=h

∑

s

d?j (s)VarPj,s,π?
j

(s)

(
V̂j+1

)
≤ 4H2 + 4H

H∑

j=h

〈
d?j , b

?
j

〉
(5.64)

for all h ∈ [H] with probability exceeding 1− 4δ. Substitution into (5.63) yields

H∑

j=h

∑

s

d?j (s)b
?
j (s) ≤

√
32cbC

?
rob log NH

δ

K



4
√
H3S + 4

√√√√H2S
H∑

j=h

〈
d?j , b

?
j

〉


+

H∑

j=h

96cbHSC
?
rob log NH

δ

K

≤ 16

√
2cbH2SC?rob log NH

δ

K

√√√√
H∑

j=h

〈
d?j , b

?
j

〉
+ 16

√
2cbH3SC?rob log NH

δ

K
+

96cbH
2SC?rob log NH

δ

K

≤ 1

2

H∑

j=h

〈
d?j , b

?
j

〉
+

256cbH
2SC?rob log NH

δ

K
+ 16

√
2cbH3SC?rob log NH

δ

K
+

96cbH
2SC?rob log NH

δ

K
,

where the last inequality follows from the elementary inequality 2xy ≤ x2 + y2. Rearranging terms,

we are left with

H∑

j=h

∑

s

d?j (s)b
?
j (s) ≤ 32

√
2cbH3SC?rob log NH

δ

K
+

704cbH
2SC?rob log NH

δ

K

≤ 40

√
2cbH3SC?rob log NH

δ

K
,

provided that K ≥ 3872HSC?rob log NH
δ . This taken collectively with (5.60) completes the proof of

Theorem 8, as long as the inequality (5.64) can be validated.

Proof of inequality (5.64). First of all, we observe that

V̂j(s) + 2b?j
(
s, π?j (s)

)
− Pj,s,π?j (s)V̂j+1 = V̂j(s)− P̂j,s,π?j (s)V̂j+1 + 2b?j

(
s, π?j (s)

)
+
(
P̂j,s,π?j (s) − Pj,s,π?j (s)

)
V̂j+1

(i)

≥ V̂j(s)− P̂j,s,π?j (s)V̂j+1 + b?j
(
s, π?j (s)

)

≥ V̂j(s)−
{
r
(
s, π?j (s)

)
+ P̂j,s,π?j (s)V̂j+1 − b?j

(
s, π?j (s)

)}

≥ max
a

Q̂j(s, a)− Q̂j
(
s, π?j (s)

)
≥ 0
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for any s ∈ S, where (i) is a consequence of (5.53), and the last line arises from (5.6) and (5.7). This

implies the non-negativity of the vector V̂j + 2b?j − P ?j V̂j+1, which in turn allows one to deduce that

V̂j ◦ V̂j −
(
P ?j V̂j+1

)
◦
(
P ?j V̂j+1

)
=
(
V̂j + P ?j V̂j+1

)
◦
(
V̂j − P ?j V̂j+1

)

≤
(
V̂j + P ?j V̂j+1

)
◦
(
V̂j + 2b?j − P ?j V̂j+1

)

≤ 2H
(
V̂j + 2b?j − P ?j V̂j+1

)
, (5.65)

where the last line relies on Lemma 16. Consequently, we can demonstrate that

H∑
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∑

s

d?j (s)VarPj,s,π?
j
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V̂j+1
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=
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)〉
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◦
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)〉
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〉
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?
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〉

=
〈
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〉
−
〈
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〉
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〉
−
〈
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H∑
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?
j

〉

≤
∥∥d?H+1

∥∥
1

∥∥V̂H+1 ◦ V̂H+1
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∞ + 2H

∥∥d?h
∥∥

1

∥∥V̂h
∥∥
∞ + 4H

H∑

j=h

〈
d?j , b

?
j

〉

(iii)

≤ 3H2 + 4H

H∑

j=h

〈
d?j , b

?
j

〉
,

where (i) arises from (5.65) as well as the basic property
(
d?j
)>
P ?j =

(
d?j+1

)>
, (ii) follows by

rearranging terms and using the property
(
d?j
)>
P ?j =

(
d?j+1

)>
once again, and (iii) holds due to the

fact that ‖V̂h‖∞ ≤ H and ‖d?h‖1 = 1. This concludes the proof of (5.64).

5.4 Analysis: discounted infinite-horizon MDPs

This subchapter is devoted to establishing Theorem 6. Towards this end, we claim that it is sufficient

to prove the following theorem.

Theorem 9. Consider any 0 < δ < 1 and any γ ∈ [1
2 , 1). Suppose that the penalty terms are set

to be (5.33) for any numerical constant cb ≥ 144. Then with probability exceeding 1− 2δ, for any
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estimate Q̂ obeying
∥∥Q̂− Q̂?pe

∥∥
∞ ≤ 1/N one has

V ?(ρ)− V π̂(ρ) ≤ 120

√
cbSC

?
rob log NS

(1−γ)δ

(1− γ)3N
+

3464cbSC
?
rob log NS

(1−γ)δ

(1− γ)2N
, (5.66)

where π̂(s) ∈ arg maxa Q̂(s, a) for any s ∈ S.

As we have demonstrated in Lemma 15, the output of Algorithm 11 satisfies
∥∥Q̂−Q̂?pe

∥∥
∞ ≤ 1/N

once the iteration number exceeds τmax ≥
log N

1−γ
log(1/γ) , thus making Theorem 9 applicable. Taking the

right-hand side of (5.66) to be no larger than ε reveals that: V ?(ρ)− V π̂(ρ) ≤ ε holds as long as N

exceeds

N ≥
21000cbSC

?
rob log NS

(1−γ)δ

(1− γ)3ε2
, (5.67)

given that ε ∈
(
0, 1

1−γ
]
.

The remainder of this subchapter is thus dedicated to establishing Theorem 9. Throughout

the proof, it suffices to focus on the case where

N ≥
c3SC

?
rob log NS

(1−γ)δ

1− γ (5.68)

for some large constant c3 ≥ 2880000; otherwise the claim (5.66) follows directly since V ?(ρ) −
V π̂(ρ) ≤ 1

1−γ .

5.4.1 Preliminary facts

Before embarking on the proof, we collect a couple of preliminary facts that will be used multiple

times.

Properties of N(s, a). To begin with, the quantity N(s, a) — the total number of sample

transitions from (s, a) — can be bounded through the following lemma; the proof is provided in

Appendix C.2.3.

Lemma 19. Consider any δ ∈ (0, 1). With probability at least 1− δ, the quantities {N(s, a)} in

(5.29) obey

max
{
N(s, a),

2

3
log

N

δ

}
≥ Ndb(s, a)

12
(5.69)

simultaneously for all (s, a) ∈ S ×A.
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Properties about V̂ and V̂ ?
pe. First of all, note that the assumption

∥∥Q̂− Q̂?pe

∥∥
∞ ≤

1

N
(5.70)

has the following direct consequence:

∥∥V̂ − V̂ ?
pe

∥∥
∞ = max

s

∣∣∣max
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Q̂(s, a)−max
a

Q̂?pe(s, a)
∣∣∣ ≤

∥∥Q̂− Q̂?pe

∥∥
∞ ≤

1

N
. (5.71)

Given the proximity of V̂ and V̂ ?
pe, we can bound the difference of the corresponding variance terms

as follows:

∣∣∣Var
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(
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pe

)
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?
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)2∣∣∣
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∣∣∣P̂s,a

((
V̂ + V̂ ?
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)
◦
(
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))
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(
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))(
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(
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≤
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1

∥∥V̂ + V̂ ?
pe
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∞
∥∥V̂ ?
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∞ +
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∥∥2

1

∥∥V̂ + V̂ ?
pe
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∞
∥∥V̂ ?
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∥∥
∞

≤
(∥∥P̂s,a

∥∥
1

+
∥∥P̂s,a

∥∥2

1

)(
2
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∥∥
∞ +

∥∥V̂ ?
pe − V̂
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∞

)∥∥V̂ ?
pe − V̂
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∞

≤ 2

N

(
2

1− γ +
1

N

)
≤ 6

(1− γ)N
. (5.72)

Here, (i) follows from the definition (1.7), the penultimate inequality follows from (5.71) and the

basic facts ‖P̂s,a‖1 = 1 and ‖V̂ ‖∞ ≤ 1
1−γ , while the last line relies on (5.68).

Armed with (5.72), one can further control the difference of the associated penalty terms.

Note that the definition of b(s, a;V ) in (5.33) tells us that

∣∣∣b
(
s, a; V̂ ?

pe

)
− b
(
s, a; V̂

)∣∣∣ =
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2cb log N
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}
,

1
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}

−min

{
max

{√cb log N
(1−γ)δ

N(s, a)
Var

P̂s,a

(
V̂
)
,

2cb log N
(1−γ)δ

(1− γ)N(s, a)

}
,

1

1− γ

}∣∣∣∣∣.

(5.73)

If at least one of the variance terms is not too small in the sense that

max
{

Var
P̂s,a

(
V̂ ?

pe

)
,Var

P̂s,a

(
V̂
)}
≥

4cb log N
(1−γ)δ

(1− γ)2N(s, a)
, (5.74)

then (5.73) implies that

(5.73) ≤

√
cb log N

(1−γ)δ

N(s, a)

∣∣∣
√

Var
P̂s,a

(
V̂ ?

pe

)
−
√

Var
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(
V̂
)∣∣∣ =

√
cb log N

(1−γ)δ
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∣∣Var
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(
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− Var
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Var
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97



(i)

≤ 1− γ
2

∣∣∣Var
P̂s,a

(
V̂ ?

pe

)
− Var

P̂s,a

(
V̂
)∣∣∣

(ii)

≤ 3

N
, (5.75)

where (i) results from (5.74), and (ii) holds due to (5.72). On the other hand, if (5.74) is not

satisfied, then one clearly has b
(
s, a; V̂ ?

pe

)
= b
(
s, a; V̂

)
. In conclusion, in all cases we have

∣∣∣b
(
s, a; V̂ ?

pe

)
− b
(
s, a; V̂

)∣∣∣ ≤ 3

N
. (5.76)

5.4.2 Proof of Theorem 9

Armed with the preceding preliminary facts, we can readily turn to the proof of Theorem 9. By

virtue of Lemma 19, our proof shall — unless otherwise noted — operate on the high-probability

event that

∀(s, a) ∈ S ×A : max

{
N(s, a),

2

3
log

SN

δ

}
≥ Ndb(s, a)

12
. (5.77)

In addition, from the sampling model (5.22), the sample transitions employed to form P̂ are

statistically independent conditional on {N(s, a)}. Our proof consists of four steps as detailed

below.

Step 1: Bernstein-style inequalities and leave-one-out decoupling argument. We are

in need of tight control of the size of
(
P̂s,a − Ps,a

)
V̂ . However, this becomes challenging due to

the statistical dependency between P̂ and the value estimate V̂ (given that we reuse samples in

all iterations of Algorithm 11). In order to circumvent this difficulty, we resort to a leave-one-out

argument to decouple the statistical dependency, as motivated by Agarwal et al. (2020b); Li et al.

(2023c). The result stated below establishes Bernstein-style inequalities despite the complicated

dependency.

Lemma 20. Suppose that γ ∈ [1
2 , 1), and consider any δ ∈ (0, 1). With probability at least 1− δ,

we have

∣∣∣
(
P̂s,a − Ps,a

)
Ṽ
∣∣∣ ≤ 12

√
log 2N

(1−γ)δ

N(s, a)
Var

P̂s,a

(
Ṽ
)

+
74 log 2N

(1−γ)δ

(1− γ)N(s, a)
, (5.78a)

Var
P̂s,a

(
Ṽ
)
≤ 2VarPs,a

(
Ṽ
)

+
41 log 2N

(1−γ)δ

(1− γ)2N(s, a)
(5.78b)

simultaneously for all (s, a) ∈ S ×A and all Ṽ with
∥∥Ṽ − V̂ ?

pe

∥∥
∞ ≤

1
N and ‖Ṽ ‖∞ ≤ 1

1−γ .

High-level proof ideas. In short, the proof consists of contructing a finite collection of auxiliary

MDPs {M̂s,u} for each state s obeying the following properties: (i) each M̂s,u is constructed without
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using any sample transition that comes from state s, and is hence statistically independent from

P̂s,a for all a ∈ A (instead, the useful information is embedded into the corresponding immediate

reward, which is a low-dimensional object and easier to control); (ii) at least one of the MDPs in

{M̂s,u} is extremely close to the true MDP in terms of the resulting value function. With the aid of

these leave-one-out auxiliary MDPs, one can control
(
P̂s,a−Ps,a

)
Ṽ by first exploiting the statistical

independence between P̂s,a and {M̂s,u} and then transferring the concentration bound back to the

original MDP using the proximity property (ii). The construction of these auxiliary MDPs and the

proof details can be found in Appendix C.2.4.

Note that (5.78a) has been derived only for those pairs (s, a) with N(s, a) > 0. For every

(s, a) with N(s, a) = 0, one can directly obtain

∣∣∣
(
P̂s,a − Ps,a

)
Ṽ
∣∣∣ =

∣∣Ps,aṼ
∣∣ ≤

∥∥Ps,a
∥∥

1

∥∥Ṽ
∥∥
∞ ≤

1

1− γ .

Putting these bounds together with the definition (5.33) of b(s, a;V ) reveals that

∣∣∣
(
P̂s,a − Ps,a

)
Ṽ
∣∣∣+

5

N
≤ b
(
s, a; Ṽ

)
for all (s, a) ∈ S ×A (5.79)

for all Ṽ obeying
∥∥Ṽ − V̂ ?

pe

∥∥
∞ ≤

1
N and ‖Ṽ ‖∞ ≤ 1

1−γ , provided that the constant cb is sufficiently

large. The remainder of the proof should then also operate on the high-probability events (5.79)

and (5.78b), in addition to assuming that the event (5.77) occurs.

Step 2: showing that Q̂(s, a) is a lower bound on Qπ̂(s, a). We now justify that Q̂(s, a)

(resp. V̂ (s)) is a “pessimistic” estimate of Qπ̂(s, a) (resp. V π̂(s)); this is enabled by the pessimism

principle (so that the algorithm effectively seeks lower estimates of the value iteration) and the

Bernstein-style bounds in Lemma 20 (so that the penalty term always dominates the uncertainty

incurred by using the empirical MDP).

To begin with, recall that Q̂?pe(s, a) is the unique fixed point of the pessimistic Bellman

operator that obeys

Q̂?pe(s, a) = max
{
r(s, a) + γP̂s,aV̂

?
pe − b

(
s, a; V̂ ?

pe

)
, 0
}
. (5.80)

In the sequel, we divide the set of state-action pairs (s, a) into two types.

• Case 1: Q̂?pe(s, a) = 0. Given that Q̂0 = 0, Lemma 15 tells us that

Q̂(s, a) = Q̂τmax(s, a) ≤ Q̂?pe(s, a) = 0.

This combined with the basic fact Qπ̂ ≥ 0 immediately yields 0 = Q̂(s, a) ≤ Qπ̂(s, a).
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• Case 2: Q̂?pe(s, a) = r(s, a) + γP̂s,aV̂
?

pe − b
(
s, a; V̂ ?

pe

)
> 0. It is first observed that

Q̂(s, a)
(i)

≤ Q̂?pe(s, a) +
1

N

(ii)
= r(s, a)− b

(
s, a; V̂ ?

pe

)
+ γP̂s,aV̂

?
pe +

1

N

≤ r(s, a)− b
(
s, a; V̂ ?

pe

)
+ γP̂s,aV̂ +

1

N
+ γ
∥∥P̂s,a

∥∥
1

∥∥V̂ − V̂ ?
pe

∥∥
∞

(iii)

≤ r(s, a)− b
(
s, a; V̂ ?

pe

)
+ γP̂s,aV̂ +

2

N

≤ r(s, a)− b
(
s, a; V̂

)
+ γPs,aV̂ +

2

N
+ γ
∣∣∣
(
P̂s,a − Ps,a

)
V̂
∣∣∣+
∣∣∣b
(
s, a; V̂ ?

pe

)
− b
(
s, a; V̂

)∣∣∣
(iv)

≤ r(s, a) + γPs,aV̂ . (5.81)

Here, (i) and (iii) arise from the assumption (5.70), (ii) relies on the fact that Q̂?pe is the fixed

point of the operator T̂pe, whereas (iv) takes advantage of (5.76) and (5.79). Combining (5.81)

with the Bellman equation Qπ̂ = r + γPV π̂ results in

Qπ̂(s, a)− Q̂(s, a) ≥ r(s, a) + γPs,aV
π̂ −

(
r(s, a) + γPs,aV̂

)
= γPs,a

(
V π̂ − V̂

)
. (5.82)

Suppose for the moment that there exists some (s, a) obeying Qπ̂(s, a)− Q̂(s, a) < 0 (which

clearly cannot happen in Case 1), then arg mins,a
[
Qπ̂(s, a)− Q̂(s, a)

]
must belong to Case 2.

Thus, taking the minimum over (s, a) and using the above inequality (5.82) give

min
s,a

[
Qπ̂(s, a)− Q̂(s, a)

]
≥ min

s,a

[
γPs,a

(
V π̂ − V̂

)] (i)

≥ γmin
s

[
V π̂(s)− V̂ (s)

]

= γmin
s

[
Qπ̂
(
s, π̂(s)

)
− Q̂

(
s, π̂(s)

)]
≥ γmin

s,a

[
Qπ̂(s, a)− Q̂(s, a)

]
,

(5.83)

where (i) holds since Ps,a ∈ ∆(S). Given that 1 > γ > 0, inequality (5.83) holds only

when mins,a
[
Qπ̂(s, a) − Q̂(s, a)

]
≥ 0. We therefore conclude that in this case, one also has

Qπ̂(s, a) ≥ Q̂(s, a).

With the arguments for the above two cases in place, we arrive at

Qπ̂(s, a) ≥ Q̂(s, a) for all (s, a) ∈ S ×A, (5.84)

and evidently,

V ?(s) ≥ V π̂(s) = Qπ̂
(
s, π̂(s)

)
≥ Q̂

(
s, π̂(s)

)
= max

a
Q̂(s, a) = V̂ (s) for all s ∈ S. (5.85)
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Step 3: bounding V ?(s)− V π̂(s). Recall that the Bellman optimality equation gives

V ?(s) = r
(
s, π?(s)

)
+ γPs,π?(s)V

?. (5.86)

Before continuing, we make note of the following lower bound on V̂ :

V̂ (s) = max
a

Q̂(s, a) ≥ Q̂
(
s, π?(s)

) (i)

≥ Q̂?pe

(
s, π?(s)

)
− 1

N
(ii)

≥ r
(
s, π?(s)

)
− b
(
s, π?(s); V̂ ?

pe

)
+ γP̂s,π?(s)V̂

?
pe −

1

N

= r
(
s, π?(s)

)
− b
(
s, π?(s); V̂ ?

pe

)
+ γP̂s,π?(s)V̂ −

1

N
− γP̂s,π?(s)

(
V̂ − V̂ ?

pe

)

(iii)

≥ r
(
s, π?(s)

)
− b
(
s, π?(s); V̂ ?

pe

)
+ γP̂s,π?(s)V̂ −

2

N

≥ r
(
s, π?(s)

)
− b
(
s, π?(s); V̂

)
+ γPs,π?(s)V̂ −

2

N
− γ
∣∣∣
(
P̂s,π?(s) − Ps,π?(s)

)
V̂
∣∣∣

−
∣∣∣b
(
s, π?(s); V̂ ?

pe

)
− b
(
s, π?(s); V̂

)∣∣∣
(iv)

≥ r
(
s, π?(s)

)
− 2b

(
s, π?(s); V̂

)
+ γPs,π?(s)V̂ . (5.87)

Here, (i) results from the assumption (5.70), (ii) relies on (5.80), (iii) is valid since P̂s,π?(s)

(
V̂ −V̂ ?

pe

)
≤∥∥P̂s,π?(s)

∥∥
1

∥∥V̂ − V̂ ?
pe

∥∥
∞ ≤ 1/N , whereas (iv) holds by virtue of (5.76) and (5.79). Armed with the

results in (5.86) and (5.87), we can readily show that

〈
ρ, V ? − V̂

〉
=
∑

s∈S
ρ(s)

(
V ?(s)− V̂ (s)

)

≤
∑

s∈S
ρ(s)

{
r
(
s, π?(s)

)
+ γPs,π?(s)V

? −
(
r
(
s, π?(s)

)
− 2b

(
s, π?(s); V̂

)
+ γPs,π?(s)V̂

)}

≤ γ
∑

s∈S
ρ(s)Ps,π?(s)

(
V ? − V̂

)
+ 2

∑

s∈S
ρ(s)b

(
s, π?(s); V̂

)
. (5.88)

For notational convenience, let us introduce a matrix P ? ∈ RS×S and a vector b? ∈ RS×1

whose s-th row are given respectively by

[
P ?
]
s,· := Ps,π?(s) and b?(s) := b

(
s, π?(s); V̂

)
for all s ∈ S. (5.89)

This allows us to rewrite (5.88) in the following matrix/vector form:

ρ>
(
V ? − V̂

)
≤ γρ>P ?

(
V ? − V̂

)
+ 2ρ>b?. (5.90)
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Note that this relation holds for any arbitrary ρ. Apply it recursively to arrive at

ρ>
(
V ? − V̂

)
≤
(
γρ>P ?

)(
V ? − V̂

)
+ 2ρ>b?

≤ γ
(
γρ>P ?

)
P ?
(
V ? − V̂

)
+ 2
(
γρ>P ?

)
b? + 2ρ>b?

= γ2ρ>
(
P ?
)2(

V ? − V̂
)

+ 2γρ>P ?b? + 2ρ>b?

≤ · · · ≤
{

lim
i→∞

γiρ>
(
P ?
)i(
V ? − V̂

)}
+ 2ρ>

{ ∞∑

i=0

γi
(
P ?
)i
}
b?

(i)
= 2ρ>

{ ∞∑

i=0

γi
(
P ?
)i
}
b? = 2ρ>

(
I − γP ?

)−1
b?

=
2

1− γ 〈d
?, b?〉, (5.91)

where (i) holds since limi→∞ γ
iρ>
(
P ?
)i(
V ?− V̂

)
= 0 (given that limi→∞ γ

i = 0 and ‖ρ>
(
P ?
)i‖1 = 1

for any i ≥ 0), and the last equality results from the definition of d? (see (5.21)) expressed in the

following matrix/vector form:

(
d?
)>

= (1− γ)
∞∑

t=0

γtρ>
(
P ?
)t

= (1− γ)ρ>
(
I − γP ?

)−1
. (5.92)

Combine the above inequality with (5.85) to reach

〈
ρ, V ? − V π̂

〉
≤
〈
ρ, V ? − V̂

〉
≤ 2

〈
d?, b?

〉

1− γ . (5.93)

Step 4: using concentrability to control
〈
d?, b?

〉
. We shall control

〈
d?, b?

〉
by dividing the

state set S into the following two disjoint subsets:

Ssmall :=

{
s ∈ S | Ndb

(
s, π?(s)

)
≤ 8 log

NS

(1− γ)δ

}
; (5.94a)

S large :=

{
s ∈ S | Ndb

(
s, π?(s)

)
> 8 log

NS

(1− γ)δ

}
. (5.94b)

• To begin with, consider any state s ∈ Ssmall. Applying Definition 4 and the definition of Ssmall

yields

min
{
d?(s),

1

S

}
≤ C?robd

b
(
s, π?(s)

)
≤

8C?rob log NS
(1−γ)δ

N
<

1

S
, (5.95)
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provided that N > 8SC?rob log NS
(1−γ)δ (see (5.68)). This inequality necessarily implies that

d?(s) ≤
8C?rob log NS

(1−γ)δ

N
<

1

S
. (5.96)

Combining the preceding inequality with the following fact (see the definition (5.33))

b?(s) := b
(
s, π?(s); V̂

)
≤ 1

1− γ +
5

N
, (5.97)

we arrive at

∑

s∈Ssmall

d?(s)b?(s) ≤
∑

s∈Ssmall

(
8C?rob log NS

(1−γ)δ

(1− γ)N
+ d?(s)

5

N

)
≤

8SC?rob log NS
(1−γ)δ

(1− γ)N
+

5

N
. (5.98)

• Next, we turn to any state s ∈ S large. Using the definition (5.33) of b(s, a;V ), we obtain

b?(s) = b
(
s, π?(s); V̂

)
≤

√√√√cb log N
(1−γ)δ

N
(
s, π?(s)

)Var
P̂s,π?(s)

(
V̂
)

+
2cb log N

(1−γ)δ

(1− γ)N
(
s, π?(s)

) +
5

N

(i)

≤

√√√√cb log N
(1−γ)δ

N
(
s, π?(s)

)
(

2VarPs,π?(s)

(
V̂
)

+
41 log 2N

(1−γ)δ

(1− γ)2N
(
s, π?(s)

)
)

+
2cb log N

(1−γ)δ

(1− γ)N
(
s, π?(s)

) +
5

N

(ii)

≤

√√√√2cb log N
(1−γ)δ

N
(
s, π?(s)

) VarPs,π?(s)

(
V̂
)

+
4cb log N

(1−γ)δ

(1− γ)N
(
s, π?(s)

) , (5.99)

where (i) arises from Lemma 20 and (5.71), (ii) applies the elementary inequality
√
x+ y ≤

√
x+
√
y for any x, y ≥ 0 and the fact N ≥ N(s, a), in addition to assuming that cb is large

enough. To continue, we observe that

1

N
(
s, π?(s)

)
(i)

≤ 12

Ndb
(
s, π?(s)

)
(ii)

≤ 12C?rob

N min
{
d?(s), 1

S

} ≤ 12C?rob

N

(
1

d?(s)
+ S

)
, (5.100)

where (i) follows from the assumption (5.77) and the definition of S large, and (ii) results from

Assumption 4. Substitution into (5.99) yields

b?(s) ≤

√
24cbC

?
rob log N

(1−γ)δ

N
VarPs,π?(s)

(
V̂
)
(

1√
d?(s)

+
√
S

)

︸ ︷︷ ︸
=:α1(s)

+
48cbC

?
rob log N

(1−γ)δ

(1− γ)N

(
1

d?(s)
+ S

)

︸ ︷︷ ︸
=:α2(s)

,

(5.101)
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where the last line comes from the elementary inequality
√
x+ y ≤ √x+

√
y for any x, y ≥ 0.

To proceed, observe that the sum of the first terms in (5.101) satisfies

∑

s∈S large

d?(s)α1(s)

=

√
24cbC

?
rob log N

(1−γ)δ

N


 ∑

s∈S large

√
d?(s)VarPs,π?(s)

(
V̂
)

+
∑

s∈S large

√
d?(s)

√
Sd?(s)VarPs,π?(s)

(
V̂
)



(i)

≤

√
24cbC

?
rob log N

(1−γ)δ

N

(
√
S ·
√ ∑

s∈S large

d?(s)VarPs,π?(s)

(
V̂
)

+

√ ∑

s∈S large

Sd?(s)VarPs,π?(s)

(
V̂
)
)

=

√
96cbSC

?
rob log N

(1−γ)δ

N

√ ∑

s∈S large

d?(s)VarPs,π?(s)

(
V̂
)
, (5.102)

where (i) arises from the Cauchy-Schwarz inequality and the fact
∑

s d
?(s) = 1. In addition, it

is easily verified that the sum of the second terms in (5.101) obeys

∑

s∈S large

d?(s)α2(s) ≤
96cbSC

?
rob log N

(1−γ)δ

(1− γ)N
, (5.103)

which also makes use of the identity
∑

s d
?(s) = 1. Combining (5.102) and (5.103) with (5.101)

gives

∑

s∈S large

d?(s)b?
(
s, π?(s)

)
≤

∑

s∈S large

d?(s)α1(s) +
∑

s∈S large

d?(s)α2(s)

≤

√
96cbSC

?
rob log N

(1−γ)δ

N

√ ∑

s∈S large

d?(s)VarPs,π?(s)

(
V̂
)

+
96cbSC

?
rob log N

(1−γ)δ

(1− γ)N
. (5.104)

The above results (5.98) and (5.104) taken collectively give

〈
d?, b?

〉
=

∑

s∈S large

d?(s)b?(s) +
∑

s∈Ssmall

d?(s)b?(s)

≤

√
96cbSC

?
rob log N

(1−γ)δ

N

√ ∑

s∈S large

d?(s)VarPs,π?(s)

(
V̂
)

+
96cbSC

?
rob log N

(1−γ)δ

(1− γ)N

+
8SC?rob log NS

(1−γ)δ

(1− γ)N
+

5

N
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(i)

≤

√
96cbSC

?
rob log NS

(1−γ)δ

N

√∑

s∈S
d?(s)VarPs,π?(s)

(
V̂
)

+
98cbSC

?
rob log NS

(1−γ)δ

(1− γ)N

(ii)

≤ 2

γ

√
96cbSC

?
rob log NS

(1−γ)δ

(1− γ)N

〈
d?, b?

〉
+

1

γ

√
192cbSC

?
rob log NS

(1−γ)δ

(1− γ)N
+

98cbSC
?
rob log NS

(1−γ)δ

(1− γ)N
,

(iii)

≤ 4

√
96cbSC

?
rob log NS

(1−γ)δ

(1− γ)N

〈
d?, b?

〉
+ 2

√
192cbSC

?
rob log NS

(1−γ)δ

(1− γ)N
+

98cbSC
?
rob log NS

(1−γ)δ

(1− γ)N
,

(iv)

≤ 1

2

〈
d?, b?

〉
+

768cbSC
?
rob log NS

(1−γ)δ

(1− γ)N
+

√
768cbSC

?
rob log NS

(1−γ)δ

(1− γ)N
+

98cbSC
?
rob log NS

(1−γ)δ

(1− γ)N
.

Here, (i) follows when cb is sufficiently large and C?rob ≥ 1/S (see (5.26)), (ii) would hold as long as

the following inequality could be established:

∑

s∈S
d?(s)VarPs,π?(s)

(
V̂
)
≤ 2

γ2(1− γ)
+

4

γ2(1− γ)

〈
d?, b?

〉
; (5.105)

(iii) is valid since γ ∈ [1
2 , 1), and (iv) follows from the elementary inequality 2xy ≤ x2 + y2.

Rearranging terms, we are left with

〈
d?, b?

〉
≤

√
3072cbSC

?
rob log NS

(1−γ)δ

(1− γ)N
+

1732cbSC
?
rob log NS

(1−γ)δ

(1− γ)N
, (5.106)

which combined with (5.93) yields

〈
ρ, V ? − V π̂

〉
≤ 2

〈
d?, b?

〉

1− γ ≤ 120

√
cbSC

?
rob log NS

(1−γ)δ

(1− γ)3N
+

3464cbSC
?
rob log NS

(1−γ)δ

(1− γ)2N
. (5.107)

This concludes the proof, as long as the inequality (5.105) can be established.

Proof of inequality (5.105). To begin with, we make the observation that

(
V̂ ◦ V̂

)
−
(
γP ?V̂ ) ◦

(
γP ?V̂ ) =

(
V̂ − γP ?V̂

)
◦
(
V̂ + γP ?V̂

)

(i)

≤
(
V̂ − γP ?V̂ + 2b?

)
◦
(
V̂ + γP ?V̂

)

(ii)

≤ 2

1− γ
(
V̂ − γP ?V̂ + 2b?

)
, (5.108)

where (i) holds since b? ≥ 0 and V̂ +γP ?V̂ ≥ 0, (ii) follows from the basic property ‖V̂ +γP ?V̂ ‖∞ ≤
2‖V̂ ‖∞ ≤ 2

1−γ and the fact V̂ − γP ?V̂ + 2b? ≥ 0, the latter of which has been verified in (5.87).
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Figure 5.1: The performances of the proposed method VI-LCB and the baseline value iteration
(VI) in the gambler’s problem. It shows that VI-LCB outperforms VI by taking advantage of the
pessimism principle and achieves approximately 1/

√
N sample complexity dependency w.r.t. the

sample size N .

Armed with this fact, one can deduce that

∑

s

d?(s)VarPs,π?(s)

(
V̂
) (i)

=
〈
d?, P ?

(
V̂ ◦ V̂

)
−
(
P ?V̂

)
◦
(
P ?V̂

)〉

(ii)

≤
〈
d?, P ?

(
V̂ ◦ V̂

)
− 1

γ2
V̂ ◦ V̂ +

2

γ2(1− γ)

(
V̂ − γP ?V̂ + 2b?

)〉

(iii)

≤
〈
d?, P ?

(
V̂ ◦ V̂

)
− 1

γ
V̂ ◦ V̂ +

2

γ2(1− γ)
(I − γP ?)V̂ +

4

γ2(1− γ)
b?
〉

=

〈
d?,

1

γ

(
γP ? − I

)(
V̂ ◦ V̂

)
+

2

γ2(1− γ)
(I − γP ?)V̂ +

4

γ2(1− γ)
b?
〉

= d?>
(
I − γP ?

){
−1

γ
V̂ ◦ V̂ +

2

γ2(1− γ)
V̂

}
+

4

γ2(1− γ)
〈d?, b?〉

(iv)

≤ (1− γ)ρ>
{
−1

γ
V̂ ◦ V̂ +

2

γ2(1− γ)
V̂

}
+

4

γ2(1− γ)
〈d?, b?〉

≤ 2

γ2
ρ>V̂ +

4

γ2(1− γ)
〈d?, b?〉

(v)

≤ 2

γ2(1− γ)
+

4

γ2(1− γ)
〈d?, b?〉 .

Here, (i) follows by invoking the definition (1.7), (ii) holds due to (5.108), (iii) is valid since γ < 1, (iv)

is a direct consequence of (5.92), while (v) comes from the basic facts ‖ρ>‖1 = 1 and ‖V̂ ‖∞ ≤ 1
1−γ .

5.5 Numerical experiments

To confirm the practical applicability of the proposed VI-LCB algorithm, we evaluate its performance

in the gambler’s problem (Panaganti and Kalathil, 2022; Shi and Chi, 2022; Sutton and Barto, 2018;

Zhou et al., 2021). The code can be accessed at:
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https://github.com/Laixishi/Model-based-VI-LCB.

Gambler’s problem. We start by introducing the formulation of the gambler’s problem and its

underlying MDP. An agent plays a gambling game in which she bets on a sequence of random coin

flips, winning when the coins are heads and losing when they are tails. To bet on each random

clip, the agent’s policy chooses an integer number of dollars based on an initial balance. If the

number of bets hits the maximum length H, or if the agent reaches 50 dollars (win) or 0 dollars

(lose), the game ends. Without loss of generality, the problem can be formulated as an episodic

finite-horizon MDP. Here, S is the state space {0, 1, · · · , 50} and the associated accessible actions

obey a ∈
{

0, 1, · · · ,min{s, 50 − s}
}

, H = 100 is the horizon length, the reward is set to 0 for all

other states unless s = 50. For the transition kernel, we fix the probability of heads as phead = 0.45

at all steps h ∈ [H] in the episode. Moreover, the initial state/balance distribution of the agent ρ is

taken as a uniform distribution over S. The offline historical dataset is constructed by collecting N

independent samples drawn randomly over each state-action pair and time step.

Evaluation results. First, we evaluate the performance of our proposed method VI-LCB (cf. Al-

gorithm 9) with comparisons to the well-known value iteration (VI) method without the pessimism

principle. To begin with, Figure 5.1(a) shows the average and standard derivations of the perfor-

mance gap V ?
1 (s)−V π̂

1 (s) over all states s ∈ S, over 10 independent experiments with a fixed sample

size N = 50. The results indicate that the proposed VI-LCB method outperforms the baseline VI

method uniformly over the entire state space, showing that pessimism brings significant advantages

in this sample-scarce regime. Secondly, we evaluate the performance gap V ?
1 (ρ)−V π̂

1 (ρ) with varying

sample size N ∈
{

54, 90, 148, · · · , 22026} ≈ {e4, e4.5, e5, · · · , e10}, over 10 independent trials. Note

that throughout the experiments, we fix the parameter cb = 0.05, which determines the level of the

pessimism penalty of VI-LCB (cf. (5.9)). Figure 5.1(b) shows the average and standard derivations

of the performance gap V ?
1 (ρ)− V π̂

1 (ρ) with respect to the sample size N . Clearly, as the sample

size increases, both our method VI-LCB and the baseline VI method perform better. Moreover,

our VI-LCB method consistently outperforms the baseline VI method over the entire range of the

sample size N , especially in the sample-starved regime. In addition, to corroborate the scaling of the

sample size on the performance gap, we plot the sub-optimality performance gap of VI-LCB w.r.t.

the sample size on a log-log scale in Figure 5.1(c). Fitting using linear regression leads to a slope

estimate of −0.502, with the corresponding fitted line plotted in Figure 5.1(c) as well. This nicely

matches the finding of Theorem 4, which says the performance gap of VI-LCB scales as N−1/2.

5.6 Discussions

Our primary contribution has been to pin down the sample complexity of model-based offline

RL for the tabular settings, by establishing its (near) minimax optimality for both infinite- and
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finite-horizon MDPs. While reliable estimation of the transition kernel is often infeasible in the

sample-starved regime, it does not preclude the success of this “plug-in” approach in learning

the optimal policy. Encouragingly, the sample complexity characterization we have derived holds

for the entire range of target accuracy level ε, thus revealing that sample optimality comes into

effect without incurring any burn-in cost. This is in stark contrast to all prior results, which either

suffered from sample sub-optimality or required a large burn-in sample size in order to yield optimal

efficiency. We have demonstrated that sophisticated techniques like variance reduction are not

necessary, as long as Bernstein-style lower confidence bounds are carefully employed to capture the

variance of the estimates in each iteration.

Turning to future directions, we note that the two-fold subsampling adopted in Algorithm 10 is

likely unnecessary; it would be of interest to develop sharp analysis for the VI-LCB algorithm without

sample splitting, which would call for more refined analysis in order to handle the complicated

statistical dependency between different time steps. Notably, while avoiding sample splitting cannot

improve the sample complexity in an order-wise sense, the potential gain in terms of the pre-constants

as well as the algoritmic simplicity might be of practical interest.
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Chapter 6

Model-Based Robust RL with a

Generative Model

6.1 Problem formulation

In this chapter, recalling the distributionally robust Markov decision processes (RMDPs) in the

discounted infinite-horizon setting in Chapter 2.2.2, we introduce the sampling mechanism, and

describe our goal.

Specification of the divergence ρ. Recall that the uncertainty set Uσρ (·) defined in (2.23), we

shall first specify the divergence measure function ρ(·). We consider two popular choices of the

uncertainty set measured in terms of two different f -divergence metric: the total variation distance

and the χ2 divergence, given respectively by (Tsybakov, 2009)

ρTV

(
Ps,a, P

0
s,a

)
:=

1

2

∥∥Ps,a − P 0
s,a

∥∥
1

=
1

2

∑

s′∈S
P 0(s′ | s, a)

∣∣∣∣1−
P (s′ | s, a)

P 0(s′ | s, a)

∣∣∣∣ , (6.1)

ρχ2

(
Ps,a, P

0
s,a

)
:=
∑

s′∈S
P 0(s′ | s, a)

(
1− P (s′ | s, a)

P 0(s′ | s, a)

)2

. (6.2)

Note that ρTV

(
Ps,a, P

0
s,a

)
∈ [0, 1] and ρχ2

(
Ps,a, P

0
s,a

)
∈ [0,∞) in general. As we shall see shortly,

these two choices of divergence metrics result in drastically different messages when it comes to

sample complexities.

Sampling mechanism: a generative model. Following Panaganti and Kalathil (2022); Zhou

et al. (2021), we assume access to a generative model or a simulator (Kearns and Singh, 1999),

which allows us to collect N independent samples for each state-action pair generated based on the

nominal kernel P 0:

∀(s, a) ∈ S ×A, si,s,a
i.i.d∼ P 0(· | s, a), i = 1, 2, · · · , N. (6.3)

The total sample size is, therefore, NSA.
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Goal. Given the collected samples, the task is to learn the robust optimal policy for the RMDP —

w.r.t. some prescribed uncertainty set Uσ(P 0) around the nominal kernel — using as few samples as

possible. Specifically, given some target accuracy level ε > 0, the goal is to seek an ε-optimal robust

policy π̂ obeying

∀s ∈ S : V ?,σ(s)− V π̂,σ(s) ≤ ε. (6.4)

6.2 Distributionally robust value iteration

We consider a model-based approach tailored to RMDPs, which first constructs an empirical nominal

transition kernel based on the collected samples, and then applies distributionally robust value

iteration (DRVI) to compute an optimal robust policy.

Empirical nominal kernel. The empirical nominal transition kernel P̂ 0 ∈ RSA×S can be con-

structed on the basis of the empirical frequency of state transitions, i.e.,

∀(s, a) ∈ S ×A : P̂ 0(s′ | s, a) :=
1

N

N∑

i=1

1
{
si,s,a = s′

}
, (6.5)

which leads to an empirical RMDP M̂rob = {S,A, γ,Uσρ (P̂ 0), r}. Analogously, we can define

the corresponding robust value function (resp. robust Q-function) of policy π in M̂rob as V̂ π,σ

(resp. Q̂π,σ) (cf. (2.26)). In addition, we denote the corresponding optimal robust policy as π̂? and

the optimal robust value function (resp. optimal robust Q-function) as V̂ ?,σ (resp. Q̂?,σ) (cf. (2.27)),

which satisfies the robust Bellman optimality equation:

∀(s, a) ∈ S ×A : Q̂?,σ(s, a) = r(s, a) + γ inf
P∈Uσρ (P̂ 0

s,a)
PV̂ ?,σ. (6.6)

Equipped with P̂ 0, we can define the empirical robust Bellman operator T̂ σ as

∀(s, a) ∈S ×A : T̂ σ(Q)(s, a) := r(s, a) + γ inf
P∈Uσρ (P̂ 0

s,a)
PV, with V (s) := max

a
Q(s, a). (6.7)

DRVI: distributionally robust value iteration. To compute the fixed point of T̂ σ, we introduce

distributionally robust value iteration (DRVI), which is summarized in Algorithm 12. From an

initialization Q̂0 = 0, the update rule at the t-th (t ≥ 1) iteration can be formulated as:

∀(s, a) ∈S ×A : Q̂t(s, a) = T̂ σ
(
Q̂t−1

)
(s, a) = r(s, a) + γ inf

P∈Uσρ (P̂ 0
s,a)
PV̂t−1, (6.8)
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Algorithm 12: Distributionally robust value iteration (DRVI) for infinite-horizon
RMDPs.

1 input: empirical nominal transition kernel P̂ 0; reward function r; uncertainty level σ;
number of iterations T .

2 initialization: Q̂0(s, a) = 0, V̂0(s) = 0 for all (s, a) ∈ S ×A.
3 for t = 1, 2, · · · , T do
4 for s ∈ S, a ∈ A do

5 Set Q̂t(s, a) according to (6.8);

6 for s ∈ S do

7 Set V̂t(s) = maxa Q̂t(s, a);

8 output: Q̂T , V̂T and π̂ obeying π̂(s) := arg maxa Q̂T (s, a).

where V̂t−1(s) = maxa Q̂t−1(s, a) for all s ∈ S. However, directly solving (6.8) is computationally

expensive since it involves optimization over an S-dimensional probability simplex at each iteration,

especially when the dimension of the state space S is large. Fortunately, in view of strong duality

(Iyengar, 2005), (6.8) can be equivalently solved using its dual problem, which concerns optimizing

a scalar dual variable and thus can be solved efficiently. The specific form of the dual problem

depends on the choice of the divergence ρ, which we shall discuss separately in Appendix D.1.2. To

complete the description, we output the greedy policy of the final Q-estimate Q̂T as the final policy

π̂, namely,

∀s ∈ S : π̂(s) = arg max
a

Q̂T (s, a). (6.9)

Encouragingly, the iterates
{
Q̂t
}
t≥0

of DRVI converge linearly to the fixed point Q̂?,σ, owing to the

appealing γ-contraction property of T̂ σ.

6.3 Theoretical guarantees: sample complexity analyses

We now present our main results, which concern the sample complexities of learning RMDPs when

the uncertainty set is specified using the TV distance or the χ2 divergence. Somewhat surprisingly,

different choices of the uncertainty set can lead to dramatically different consequences in the sample

size requirement.

6.3.1 The case of TV distance: RMDPs are easier to learn than standard MDPs

We start with the case where the uncertainty set is measured via the TV distance. The following

theorem develops an upper bound on the sample complexity of DRVI in order to return an ε-optimal

robust policy. The key challenge of the analysis lies in careful control of the robust value function
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V π,σ as a function of the uncertainty level σ.

Theorem 10 (Upper bound under TV distance). Let the uncertainty set be Uσρ (·) = UσTV(·), as

specified by the TV distance (6.1). Consider any discount factor γ ∈
[

1
4 , 1
)
, uncertainty level

σ ∈ (0, 1), and δ ∈ (0, 1). Let π̂ be the output policy of Algorithm 12 after T = C1 log
(
N

1−γ
)

iterations. Then with probability at least 1− δ, one has

∀s ∈ S : V ?,σ(s)− V π̂,σ(s) ≤ ε (6.10)

for any ε ∈
(

0,
√

1/max{1− γ, σ}
]
, as long as the total number of samples obeys

NSA ≥ C2SA

(1− γ)2 max{1− γ, σ}ε2
log

(
SAN

(1− γ)δ

)
. (6.11)

Here, C1, C2 > 0 are some large enough universal constants.

Remark 4. Note that Theorem 10 is not only valid when invoking Algorithm 12. In fact, the

theorem holds for any oracle planning algorithm (designed based on the empirical transitions P̂ 0)

whose output policy π̂ obeys

∥∥V̂ ?,σ − V̂ π̂,σ
∥∥
∞ ≤ O

(
(1− γ)2

N
log

(
SAN

(1− γ)δ

))
. (6.12)

Before discussing the implications of Theorem 10, we present a matching minimax lower

bound that confirms the tightness and optimality of the upper bound, which in turn pins down

the sample complexity requirement for learning RMDPs with TV distance. The proof is based on

constructing new hard instances inspired by the asymmetric structure of RMDPs.

Theorem 11 (Lower bound under TV distance). Consider any tuple (S,A, γ, σ, ε) obeying σ ∈
(0, 1− c0] with 0 < c0 ≤ 1

8 being any small enough positive constant, γ ∈
[

1
2 , 1
)
, and ε ∈

(
0, c0

256(1−γ)

]
.

We can construct two infinite-horizon RMDPsM0,M1 defined by the uncertainty set Uσρ (·) = UσTV(·),
an initial state distribution ϕ, and a dataset with N independent samples for each state-action pair

over the nominal transition kernel (for M0 and M1 respectively), such that

inf
π̂

max
{
P0

(
V ?,σ(ϕ)− V π̂,σ(ϕ) > ε

)
, P1

(
V ?,σ(ϕ)− V π̂,σ(ϕ) > ε

)}
≥ 1

8
,

provided that

NSA ≤ c0SA log 2

8192(1− γ)2 max{1− γ, σ}ε2
.

Here, the infimum is taken over all estimators π̂, and P0 (resp. P1) denotes the probability when the

RMDP is M0 (resp. M1).
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Below, we interpret the above theorems and highlight several key implications about the

sample complexity requirements for learning RMDPs for the case w.r.t. the TV distance.

Near minimax-optimal sample complexity. Theorem 10 shows that the total number of

samples required for DRVI (or any oracle planning algorithm claimed in Remark 4) to yield ε-

accuracy is

Õ

(
SA

(1− γ)2 max{1− γ, σ}ε2

)
. (6.13)

Taken together with the minimax lower bound asserted by Theorem 11, this confirms the near

optimality of the sample complexity (up to some logarithmic factor) almost over the full range

of the uncertainty level σ. Importantly, this sample complexityscales linearly with the size of the

state-action space, and is inversely proportional to σ in the regime where σ & 1− γ.

RMDPs is easier than standard MDPs with TV distance. Recall that the sample com-

plexity requirement for learning standard MDPs with a generative model is (Agarwal et al., 2020a;

Azar et al., 2013; Li et al., 2023c)

Õ

(
SA

(1− γ)3ε2

)
(6.14)

in order to yield ε accuracy. Comparing this with the sample complexity requirement in (6.13) for

RMDPs under the TV distance, we confirm that the latter is at least as easy as — if not easier

than — standard MDPs. In particular, when σ . 1− γ is small, the sample complexity of RMDPs

is the same as that of standard MDPs as in (6.14), which is as anticipated since the RMDP reduces

to the standard MDP when σ = 0. On the other hand, when 1− γ . σ < 1, the sample complexity

of RMDPs simplifies to

Õ

(
SA

(1− γ)2σε2

)
, (6.15)

which is smaller than that of standard MDPs by a factor of σ/(1− γ).

Comparison with state-of-the-art bounds. While the state-of-the-art sample complexity

upper bound derived in Clavier et al. (2023) is tight when σ is small (i.e., σ . 1− γ), the sample

complexity bound therein scales as Õ
(

SA
(1−γ)4ε2

)
in the regime where 1− γ . σ < 1. Consequently,

this is worse than our result by a factor of

σ

(1− γ)2
∈
(

1

1− γ ,
1

(1− γ)2

)
.
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Turning to the lower bound side, Yang et al. (2022) developed a lower bound for RMDPs under the

TV distance, which scales as

Õ

(
SA(1− γ)

ε2
min

{
1

(1− γ)4
,

1

σ4

})
.

Clearly, this is worse than ours by a factor of σ3

(1−γ)3 ∈
(
1, 1

(1−γ)3

)
in the regime where 1− γ . σ < 1.

6.3.2 The case of χ2 divergence: RMDPs can be harder than standard MDPs

We now switch attention to the case when the uncertainty set is measured via the χ2 divergence.

The theorem below presents an upper bound on the sample complexity for this case.

Theorem 12 (Upper bound under χ2 divergence). Let the uncertainty set be Uσρ (·) = Uσχ2(·), as

specified using the χ2 divergence (6.2). Consider any uncertainty level σ ∈ (0,∞), γ ∈ [1/4, 1) and

δ ∈ (0, 1). With probability at least 1 − δ, the output policy π̂ from Algorithm 12 with at most

T = c1 log
(
N

1−γ
)

iterations yields

∀s ∈ S : V ?,σ(s)− V π̂,σ(s) ≤ ε (6.16)

for any ε ∈
(
0, 1

1−γ
]
, as long as the total number of samples obeying

NSA ≥ c2SA(1 + σ)

(1− γ)4ε2
log

(
SAN

δ

)
. (6.17)

Here, c1, c2 > 0 are some large enough universal constants.

Remark 5. Akin to Remark 4, the sample complexity derived in Theorem 12 continues to hold for

any oracle planning algorithm that outputs a policy π̂ obeying
∥∥V̂ ?,σ − V̂ π̂,σ

∥∥
∞ ≤ O

(
log( SAN

(1−γ)δ
)

N2

)
.

In addition, in order to gauge the tightness of Theorem 12 and understand the minimal sample

complexity requirement under the χ2 divergence, we further develop a minimax lower bound as

follows.

Theorem 13 (Lower bound under χ2 divergence). Consider any (S,A, γ, σ, ε) obeying γ ∈ [3
4 , 1),

σ ∈ (0,∞), and

ε ≤ c3





1
1−γ if σ ∈

(
0, 1−γ

4

)

max
{

1
(1+σ)(1−γ) , 1

}
if σ ∈

[
1−γ

4 ,∞
) (6.18)

for some small universal constant c3 > 0. Then we can construct two infinite-horizon RMDPs

M0,M1 defined by the uncertainty set Uσρ (·) = Uσχ2(·), an initial state distribution ϕ, and a dataset
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with N independent samples per (s, a) pair over the nominal transition kernel (for M0 and M1

respectively), such that

inf
π̂

max
{
P0

(
V ?,σ(ϕ)− V π̂,σ(ϕ) > ε

)
, P1

(
V ?,σ(ϕ)− V π̂,σ(ϕ) > ε

)}
≥ 1

8
, (6.19)

provided that the total number of samples

NSA ≤ c4





SA
(1−γ)3ε2

if σ ∈
(

0, 1−γ
4

)

σSA
min{1,(1−γ)4(1+σ)4}ε2 if σ ∈

[
1−γ

4 ,∞
) (6.20)

for some universal constant c4 > 0.

We are now positioned to single out several key implications of the above theorems.

Nearly tight sample complexity. In order to achieve ε-accuracy for RMDPs under the χ2

divergence, Theorem 12 asserts that a total number of samples on the order of

Õ

(
SA(1 + σ)

(1− γ)4ε2

)
. (6.21)

is sufficient for DRVI (or any other oracle planning algorithm as discussed in Remark 5). Taking

this together with the minimax lower bound in Theorem 13 confirms that the sample complexity is

near-optimal — up to a polynomial factor of the effective horizon 1
1−γ — over the entire range of

the uncertainty level σ. In particular,

• when σ � 1, our sample complexity Õ
(

SA
(1−γ)4ε2

)
is sharp and matches the minimax lower

bound;

• when σ & 1
(1−γ)3 , our sample complexity correctly predicts the linear dependency with σ,

suggesting that more samples are needed when one wishes to account for a larger χ2-based

uncertainty sets.

RMDPs can be much harder to learn than standard MDPs with χ2 divergence. The

minimax lower bound developed in Theorem 13 exhibits a curious non-monotonic behavior of

the sample size requirement over the entire range of the uncertainty level σ ∈ (0,∞) when the

uncertainty set is measured via the χ2 divergence. When σ . 1− γ, the lower bound reduces to

Õ

(
SA

(1− γ)3ε2

)
,
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which matches with that of standard MDPs, as σ = 0 corresponds to standard MDP. However, two

additional regimes are worth calling out:

1− γ . σ .
1

(1− γ)1/3
: Õ

(
SA

(1− γ)4ε2
min

{
σ,

1

σ3

})
,

σ &
1

(1− γ)3
: Õ

(
SAσ

ε2

)
,

both of which are greater than that of standard MDPs, indicating learning RMDPs under the χ2

divergence can be much harder.

Comparison with state-of-the-art bounds. Our upper bound significantly improves over the

prior art Õ
(
S2A(1+σ)
(1−γ)4ε2

)
of Panaganti and Kalathil (2022) by a factor of S, and provides the first

finite-sample complexity that scales linearly with respect to S for discounted infinite-horizon RMDPs,

which typically exhibit more complicated statistical dependencies than the finite-horizon counterpart.

On the other hand, Yang et al. (2022) established a lower bound on the order of Õ
(

SA
(1−γ)2σε2

)
when

σ & 1− γ, which is always smaller than the requirement of standard MDPs, and diminishes when σ

grows. Consequently, Yang et al. (2022) does not lead to the rigorous justification that RMDPs can

be much harder than standard MDPs, nor the correct linear scaling of the sample size as σ grows.

6.4 Discussions

In this chapter,we have developed improved sample complexity bounds for learning RMDPs when

the uncertainty set is measured via the TV distance or the χ2 divergence, assuming availability of a

generative model. Our results have not only strengthened the prior art in both the upper and lower

bounds, but have also unlocked curious insights into how the quest for distributional robustness

impacts the sample complexity. As a key takeaway of this chapter, RMDPs are not necessarily

harder nor easier to learn than standard MDPs, as the answer depends — in a rather subtle maner —

on the specific choice of the uncertainty set. For the case w.r.t. the TV distance, we have settled the

minimax sample complexity for RMDPs, which is never larger than that required to learn standard

MDPs. Regarding the case w.r.t. the χ2 divergence, we have uncovered that learning RMDPs can

oftentimes be provably harder than the standard MDP counterpart. All in all, our findings help

raise awareness that the choice of the uncertainty set not only represents a preference in robustness,

but also exerts fundamental influences upon the intrinsic statistical complexity.
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Chapter 7

Model-Based Robust Offline RL

7.1 Algorithm and theory: episodic finite-horizon RMDPs

In this chapter, we present a model-based algorithm — namely DRVI-LCB — for robust offline RL,

along with its performance guarantees.

7.1.1 Problem formulation and assumptions

Specification of the divergence ρ. Recall that the uncertainty set Uσρ (·) defined in (2.23), in

this work, we consider a popular choice of the uncertainty set measured in terms of f -divergence

metric: Kullback-Leibler (KL) divergence, given by (Tsybakov, 2009)

ρKL (P,Q) :=
∑

s′∈S
P(s′) log

P(s′)

Q(s′)
∈ [0,∞), (7.1)

where P and Q are any distribution obeying P ∈ ∆(S),Q ∈ ∆(S). It directly leads to the

corresponding uncertainty set:

UσKL(P 0) := Uσ(P 0) := ⊗ Uσ(P 0
h,s,a), Uσ(P 0

h,s,a) :=
{
Ph,s,a ∈ ∆(S) : KL

(
Ph,s,a ‖ P 0

h,s,a

)
≤ σ

}
.

(7.2)

In words, the KL divergence between the true transition probability vector and the nominal one at

each state-action pair is at most σ; moreover, the RMDP reduces to the standard MDP when σ = 0.

Sampling mechanism: batch data. Let D be a history/batch dataset, which consists of a

collection of K independent episodes generated based on executing a behavior policy πb = {πb
h}Hh=1

in some nominal MDP M0 =
(
S,A, H, P 0 := {P 0

h}Hh=1, {rh}Hh=1

)
. More specifically, for 1 ≤ k ≤ K,

the k-th episode
(
sk1, a

k
1, . . . , s

k
H , a

k
H , s

k
H+1

)
is generated according to

sk1 ∼ ϕb, akh ∼ πb
h(· | skh) and skh+1 ∼ P 0

h (· | skh, akh), 1 ≤ h ≤ H. (7.3)

Throughout the chapter, ϕb represents for some initial distribution associated with the history

dataset. Then, recalling the notations about occupancy distribution in Chapter 2.2.1, we introduce
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the following short-hand notation for the occupancy distribution w.r.t. πb:

∀(h, s, a) ∈ [H]× S ×A : db,P 0

h (s) := dπ
b,P 0

h (s), db,P 0

h (s, a) := dπ
b,P 0

h (s, a). (7.4)

Robust single-policy clipped concentrability. To quantify the quality of the history dataset,

it is desirable to capture the distribution mismatch between the history dataset and the desired

ones, inspired by the single-policy clipped concentrability assumption in Definition 2, we introduce a

tailored assumption for robust MDPs as follows.

Definition 5 (Robust single-policy clipped concentrability). The behavior policy of the history

dataset D satisfies

max
(s,a,h,P )∈S×A×[H]×Uσ(P 0)

min
{
d?,Ph (s, a), 1

S

}

db,P 0

h (s, a)
≤ C?rob (7.5)

for some quantity C?rob ∈
[

1
S ,∞

]
. Here, we take C?rob to be the smallest quantity satisfying (7.5),

and refer to it as the robust single-policy clipped concentrability coefficient. In addition, we follow

the convention 0/0 = 0.

In words, C?rob measures the worst-case discrepancy — between the optimal robust policy π?

in any model P ∈ Uσ(P 0) within the uncertainty set and the behavior policy πb in the nominal

model P 0 — in terms of the maximum density ratio of the state-action occupancy distributions.

• Distribution shift. When the uncertainty level σ = 0, Assumption 5 reduces back to the

single-policy clipped concentrability in Definition 2 for standard offline RL, a weaker notion

that can be S times smaller than the single-policy concentrability adopted in (Rashidinejad

et al., 2021; Shi et al., 2022; Xie et al., 2021b). On the other end, whenever σ > 0, the proposed

robust single-policy clipped concentrability accounts for the distribution shift not only due to

the policies in use (π? versus πb), but also the underlying environments (P ∈ Uσ(P 0) versus

P 0).

• Partial coverage. As long as C?rob is finite, i.e., C?rob < ∞, it admits the scenarios when the

history dataset only provides partial coverage over the entire state-action space, as long as the

behavior policy πb visits the state-action pairs that are visited by the optimal robust policy

π? under at least one model in the uncertainty set.

Remark 6. To facilitate comparison with prior works assuming full coverage, we can bound C?rob

when the batch dataset is generated using a simulator (Panaganti and Kalathil, 2022; Yang et al.,

2022); namely, we can generate sample state transitions based on the transition kernel of the nominal

MDP for all state-action pairs at all time steps. In this case, it amounts to that db,P 0

h (s, a) = 1
SA
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for all (s, a, h) ∈ S ×A× [H], which directly leads to the bound

C?rob = max
(s,a,h,P )∈S×A×[H]×Uσ(P 0)

min
{
d?,Ph (s, a), 1

S

}

db,P 0

h (s, a)
≤ 1/S

1/(SA)
= A.

Goal. With the history dataset D in hand, our goal is to find a near-optimal robust policy π̂,

which satisfies

V π̂,σ
1 (ϕ) ≥ V ?,σ

1 (ϕ)− ε (7.6)

using as few samples as possible, where ε is the target accuracy level, and

V π,σ
1 (ϕ) := E

s1∼ϕ

[
V π,σ

1 (s1)
]

and V ?,σ
1 (ϕ) := E

s1∼ϕ

[
V ?,σ

1 (s1)
]

(7.7)

are evaluated when the initial state s1 is drawn from a given distribution ϕ.

7.1.2 Proposed algorithm: a pessimistic variant of robust value iteration

Building an empirical nominal MDP. For a moment, imagine we have access to N independent

sample transitions D0 := {(hi, si, ai, s′i)}Ni=1 drawn from the transition kernel P 0 of the nominal

MDP M0, where each sample (hi, si, ai, s
′
i) indicates the transition from state si to state s′i when

action ai is taken at step hi, drawn according to s′i ∼ P 0
hi

(· | si, ai). It is then natural to build an

empirical estimate P̂ 0 = {P̂ 0
h}Hh=1 of P 0 based on the empirical frequencies of state transitions,

where

P̂ 0
h (s′ | s, a) :=





1
Nh(s,a)

N∑
i=1

1
{

(hi, si, ai, s
′
i) = (h, s, a, s′)

}
, if Nh(s, a) > 0

0, else

(7.8)

for any (h, s, a, s′) ∈ [H]×S ×A×S. Here, Nh(s, a) denotes the total number of sample transitions

from (s, a) at step h as

Nh(s, a) :=

N∑

i=1

1
{

(hi, si, ai) = (h, s, a)
}
. (7.9)

While it is possible to directly break down the history dataset D into sample transitions,

unfortunately, the sample transitions from the same episode are not independent, significantly

hurdling the analysis. To alleviate this, Chapter 5.1.3 proposed a simple two-fold subsampling

scheme to preprocess the history dataset D and decouple the statistical dependency, resulting into

a distributionally equivalent dataset D0 with independent samples. We have the following lemma

paraphrased from Lemma 13.
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Lemma 21. With probability at least 1 − 8δ, the output dataset from the two-fold subsampling

scheme in Li et al. (2022a) is distributionally equivalent to D0, where {Nh(s, a)} are independent

and obey

Nh(s, a) ≥ Kdb,P 0

h (s, a)

8
− 5

√
Kdb,P 0

h (s, a) log
KH

δ
. (7.10)

for all (h, s, a) ∈ [H]× S ×A.

By invoking the two-fold sampling trick from Li et al. (2022a), it is sufficient to treat the

dataset D0 with independent samples onwards with Lemma 21 in place. Armed with the estimate

P̂ 0 of the nominal transition kernel P 0, we are positioned to introduce our algorithm DRVI-LCB,

summarized in Algorithm 13.

Distributionally robust value iteration. Before proceeding, let us recall the update rule of the

classical distributionally robust value iteration (DRVI), which serves as the basis of our algorithmic

development. Given an estimate of the nominal MDP P̂ 0 and the radius σ of the uncertainty set,

DRVI updates the robust value functions according to

Q̂h(s, a) = rh(s, a) + inf
P∈Uσ(P̂ 0

h,s,a)
PV̂h+1, and V̂h(s) = max

a
Q̂h(s, a), (7.11)

which works backwards from h = H to h = 1, with the terminal condition Q̂H+1 = 0. Due to strong

duality (Hu and Hong, 2013), the update rule of the robust Q-functions in (7.11) can be equivalently

reformulated in its dual form as

Q̂h(s, a) = rh(s, a) + sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V̂h+1

λ

))
− λσ

}
, (7.12)

which can be solved efficiently (Iyengar, 2005; Panaganti and Kalathil, 2022; Yang et al., 2022).

Our algorithm DRVI-LCB. Motivated by the principle of pessimism in standard offline RL (Jin

et al., 2021; Li et al., 2022a; Rashidinejad et al., 2021; Xie et al., 2021b), we propose to perform a

pessimistic variant of DRVI, where the update rule of DRVI-LCB at step h is modified as

Q̂h(s, a) = max

{
rh(s, a) + sup

λ≥0

{
−λ log

(
P̂ 0
h,s,a · exp

(
−V̂h+1

λ

))
− λσ

}
− bh

(
s, a
)
, 0

}
. (7.13)

Here, the robust Q-function estimate is adjusted by subtracting a carefully designed data-driven

penalty term bh(s, a) that measures the uncertainty of the value estimates. Specifically, for some
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Algorithm 13: Robust value iteration with LCB (DRVI-LCB) for robust offline RL.

1 input: a dataset D0; reward function r; uncertainty level σ.

2 initialization: Q̂H+1 = 0, V̂H+1 = 0.
3 for h = H, · · · , 1 do

4 Compute the empirical nominal transition kernel P̂ 0
h according to (7.8);

5 for s ∈ S, a ∈ A do
6 Compute the penalty term bh

(
s, a
)

according to (7.14);

7 Set Q̂h(s, a) according to (7.13);

8 for s ∈ S do

9 Set V̂h(s) = maxa Q̂h(s, a) and π̂h(s) = arg maxa Q̂h(s, a);

10 output: π̂ = {π̂h}1≤h≤H .

δ ∈ (0, 1) and any (s, a, h) ∈ S ×A× [H], the penalty term bh(s, a) is defined as

bh(s, a) =





min

{
cb

H
σ

√
log(KHS

δ
)

P̂min,h(s,a)Nh(s,a)
, H

}
if Nh(s, a) > 0,

H otherwise,

(7.14)

where cb is some universal constant, and

P̂min,h(s, a) := min
s′

{
P̂ 0
h (s′ | s, a) : P̂ 0

h (s′ | s, a) > 0
}
. (7.15)

The penalty term is novel and different from the one used in standard (no-robust) offline RL (Jin

et al., 2021; Li et al., 2022a; Rashidinejad et al., 2021; Shi et al., 2022; Xie et al., 2021b), by taking

into consideration the unique problem structure pertaining to robust MDPs. In particular, it tightly

upper bounds the statistical uncertainty which carries a non-linear and implicit dependency w.r.t.

the estimated nominal transition kernel induced by the uncertainty set U(P 0), addressing unique

challenges not present for the standard MDP case.

7.1.3 Theoretical guarantees

Before stating the main theorems, let us first introduce several important metrics.

• P ?min, which only depends on the state-action pairs covered by the optimal robust policy π?

under the nominal model P 0:

P ?min := min
h,s,s′

{
P 0
h

(
s′|s, π?h(s)

)
: P 0

h

(
s′|s, π?h(s)

)
> 0
}
. (7.16)

In words, P ?min is the smallest positive state transition probability of the optimal robust policy

π? under the nominal kernel P 0.
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• Similarly, we introduce P b
min which only depends on the state-action pairs covered by the

behavior policy πb under the nominal model P 0:

P b
min := min

h,s,a,s′

{
P 0
h

(
s′|s, a

)
: db,P 0

h (s, a) > 0, P 0
h

(
s′ | s, a

)
> 0
}
. (7.17)

In words, P b
min is the smallest positive state transition probability of the behavior policy πb

under the nominal kernel P 0.

• Finally, let db
min denote the smallest positive state-action occupancy distribution of the behavior

policy πb under the nominal model P 0:

db
min := min

h,s,a

{
db,P 0

h (s, a) : db,P 0

h (s, a) > 0
}
. (7.18)

We are now positioned to present the performance guarantees of DRVI-LCB for robust offline RL.

Theorem 14. Given an uncertainty level σ > 0, suppose that the penalty terms in Algorithm 13 are

chosen as (7.14) for sufficiently large cb. With probability at least 1−δ, the output π̂ of Algorithm 13

obeys

V ?,σ
1 (ρ)− V π̂,σ

1 (ρ) ≤ c0
H2

σ

√
SC?rob log2(KHS/δ)

P ?minK
, (7.19)

as long as the number of episodes K satisfies

K ≥ c1 log(KHS/δ)

db
minP

b
min

, (7.20)

where c0 and c1 are some sufficiently large universal constants.

Our theorem is the first to characterize the sample complexities of robust offline RL under

partial coverage, to the best of our knowledge (cf. Table 1.6). Theorem 14 shows that DRVI-LCB

finds an ε-optimal robust policy as soon as the sample size T = KH is above the order of

SC?robH
5

P ?minσ
2ε2

︸ ︷︷ ︸
ε-dependent

+
H

db
minP

b
min︸ ︷︷ ︸

burn-in cost

, (7.21)

up to some logarithmic factor, where the burn-in cost is independent of the accuracy level ε. For

sufficiently small accuracy level ε, this results in a sample complexity of

Õ

(
SC?robH

5

P ?minσ
2ε2

)
. (7.22)
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Our theorem suggests that the sample efficiency of robust offline RL critically depends on the

problem structure of the given RMDP (i.e. coverage of the optimal robust policy π? as measured

by P ?min) as well as the quality of the history dataset (as measured by C?rob). Given that C?rob can

be as small as on the order of 1/S, the sample complexity requirement can exhibit a much weaker

dependency with the size of the state space S.

On the flip side, to assess the optimality of Theorem 14, we develop an information-theoretic

lower bound for robust offline RL as provided in the following theorem.

Theorem 15. For any (H,S,C, P ?min, σ, ε) obeying H ≥ 2e8, C ≥ 4/S, P ?min ∈ (0, 1
H ], log(1/P ?min)−

6 ≤ σ ≤ log(1/P ?min) − 5, and ε ≤ H
384e6 log(1/P ?min)

, we can construct two finite-horizon RMDPs

M0,M1, an initial state distribution ρ, and a batch dataset with K independent sample trajectories

each with length H satisfying 2C ≤ C?rob ≤ 4C, such that

inf
π̂

max
{
P0

(
V ?,σ

1 (ρ)− V π̂,σ
1 (ρ) > ε

)
, P1

(
V ?,σ

1 (ρ)− V π̂,σ
1 (ρ) > ε

)}
≥ 1

8
,

provided that

T = KH ≤ c1SC
?
robH

3

P ?minσ
2ε2

.

Here, c1 > 0 is some universal constant, the infimum is taken over all estimators π̂, and P0 (resp. P1)

denotes the probability when the RMDP is M0 (resp. M1).

Theorem 15 shows that no algorithm can succeed in finding an ε-optimal robust policy when

the sample complexity falls below the order of

Ω

(
SC?robH

3

P ?minσ
2ε2

)
,

which confirms the near-optimality of DRVI-LCB up to a factor of H2 ignoring logarithmic factors.

Therefore, DRVI-LCB is the first provable algorithm for robust offline RL with a near-optimal sample

complexity without requiring the stringent full coverage assumption.

7.2 Algorithm and theory: discounted infinite-horizon RMDPs

Now, we turn to the studies of robust offline RL for discounted infinite-horizon MDPs.

7.2.1 Problem formulation and assumptions

Similar to the finite-horizon setting, using the distance measured in terms of the KL divergence

introduced in (7.1), given an uncertainty level σ > 0, the uncertainty set around P 0 is specified as

UσKL(P 0) := Uσ(P 0) := ⊗ Uσ(P 0
s,a), Uσ(P 0

s,a) :=
{
Ps,a ∈ ∆(S) : KL

(
Ps,a ‖ P 0

s,a

)
≤ σ

}
, (7.23)
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where we recall that a vector of the transition kernel P or P 0 at (s, a) is denoted respectively in

(2.24).

Data sampling mechanism: batch data. Suppose that we observe a batch/history dataset

D = {(si, ai, s′i)}1≤i≤N consisting of N sample transitions. These transitions are independently

generated, where the state-action pair is drawn from some behavior distribution db ∈ ∆(S × A),

followed by a next state drawn over the nominal transition kernel P 0, i.e.,

(si, ai)
i.i.d.∼ db and s′i

i.i.d.∼ P 0(· | si, ai), 1 ≤ i ≤ N. (7.24)

Similar to Definition 5, we design the following robust single-policy clipped concentrability

assumption tailored for infinite-horizon RMDPs to characterize the quality of the history dataset.

Definition 6 (Robust single-policy clipped concentrability for infinite-horizon MDPs). The behavior

policy of the history dataset D satisfies

max
(s,a,P )∈S×A×Uσ(P 0)

min
{
d?,P (s, a), 1

S

}

db,P 0(s, a)
≤ C?rob (7.25)

for some finite quantity C?rob ∈
[

1
S ,∞

)
. Following the convention 0/0 = 0, we denote C?rob to be the

smallest quantity satisfying (7.25), and refer to it as the robust single-policy clipped concentrability

coefficient.

Remark 7. Similar to Remark 6, we can bound C?rob ≤ A when the batch dataset is generated using

a simulator (Panaganti and Kalathil, 2022; Yang et al., 2022). By combining this bound of C?rob

with the theoretical guarantees developed momentarily in Theorem 16, we obtain the comparison in

Table 1.6.

Armed with these, we are ready to introduce the goal in the infinite-horizon setting. Given

the history dataset D, for some target accuracy ε > 0, we aim to find a near-optimal robust policy

π̂, which satisfies

V π̂,σ(ϕ) ≥ V ?,σ(ϕ)− ε (7.26)

in a sample-efficient manner for some initial state distribution ϕ.

7.2.2 DRVI-LCB for discounted infinite-horizon RMDPs

Building an empirical nominal MDP Recalling that we have N independent samples in the

dataset D = {(si, ai, s′i)}1≤i≤N . First, we denote N(s, a) as the total number of sample transitions
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Algorithm 14: Robust value iteration with LCB (DRVI-LCB) for infinite-horizon
RMDPs.

1 input: a dataset D; reward function r; uncertainty level σ; number of iterations M .

2 initialization: Q̂0(s, a) = 0, V̂0(s) = 0 for all (s, a) ∈ S ×A.

3 Compute the empirical nominal transition kernel P̂ 0 according to (7.28);
4 Compute the penalty term b(s, a) according to (7.32);
5 for m = 1, 2, · · · ,M do
6 for s ∈ S, a ∈ A do

7 Set Q̂m(s, a) according to (7.35);

8 for s ∈ S do

9 Set V̂m(s) = maxa Q̂m(s, a);

10 output: π̂ s.t. π̂(s) = arg maxa Q̂M (s, a) for all s ∈ S.

from any state-action pair (s, a) as

N(s, a) :=

N∑

i=1

1
{

(si, ai) = (s, a)
}
. (7.27)

Armed with N(s, a), we construct the empirical estimate P̂ 0 of the nominal kernel P 0 by the visiting

frequencies of state-action pairs as follows:

P̂ 0(s′ | s, a) :=





1
N(s,a)

N∑
i=1

1
{

(si, ai, s
′
i) = (s, a, s′)

}
, if N(s, a) > 0

0, else

(7.28)

for any (s, a, s′) ∈ S ×A× S.

With the estimate P̂ 0 of the nominal transition kernel P 0 in hand, we are positioned to

introduce our algorithm DRVI-LCB for infinite-horizon RMDPs, which bears some similarity with

the finite-horizon version (cf. Algorithm 13), by taking the uncertainties of the value estimates into

consideration throughout the value iterations. The procedure is summarized in Algorithm 14.

The pessimistic robust Bellman operator. At the core of DRVI-LCB is a pessimistic variant

of the classical robust Bellman operator in the infinite-horizon setting (Iyengar, 2005; Nilim and

El Ghaoui, 2005; Zhou et al., 2021), denoted as T σ(·) : RSA → RSA, which we recall as follows:

∀(s, a) ∈S ×A : T σ(Q)(s, a) := r(s, a) + γ inf
P∈Uσ(P 0

s,a)
PV, with V (s) := max

a
Q(s, a). (7.29)

Encouragingly, the robust Bellman operator shares the nice γ-contraction property of the standard

Bellman operator, ensuring fast convergence of robust value iteration by applying the robust Bellman
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operator (7.29) recursively. In the robust offline setting, instead of recursing using the population

robust Bellman operator, we need to construct a pessimistic variant of the robust Bellman operator

T̂ σpe(·) w.r.t. the empirical nominal kernel P̂ 0 as follows:

∀(s, a) ∈ S ×A : T̂ σpe(Q)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV − b

(
s, a
)
, 0

}
, (7.30)

where b(s, a) denotes the penalty term that measures the data-dependent uncertainty of the value

estimates.

To specify the tailored penalty term b(s, a) in (7.30), we first introduce an additional term

∀(s, a) ∈ S ×A : P̂min(s, a) := min
s′

{
P̂ 0(s′ | s, a) : P̂ 0(s′ | s, a) > 0

}
, (7.31)

which in words represents the smallest positive transition probability of the estimated nominal

kernel P̂ 0(s′ | s, a). Then for some δ ∈ (0, 1), some universal constant cb > 0, b(s, a) is defined as

b(s, a) =





min





cb
σ(1−γ)

√
log
(

2(1+σ)N3S
(1−γ)δ

)

P̂min(s,a)N(s,a)
+ 4

σN(1−γ) ,
1

1−γ



+ 2

σN if N(s, a) > 0,

1
1−γ + 2

σN otherwise.

(7.32)

As shall be illuminated, our proposed pessimistic robust Bellman operator T̂ σpe(·) (cf. (7.30))

plays an important role in DRVI-LCB. Encouragingly, despite the additional data-driven penalty

term b(s, a), it still enjoys the celebrated γ-contractive property, which greatly facilitates the analysis.

Before continuing, we summarize the γ-contraction property below, whose proof is postponed to

Appendix E.3.1.

Lemma 22 (γ-Contraction). For any γ ∈ [0, 1), the operator T̂ σpe(·) (cf. (7.30)) is a γ-contraction

w.r.t. ‖ · ‖∞. Namely, for any Q1, Q2 ∈ RSA s.t. Q1(s, a), Q2(s, a) ∈
[
0, 1

1−γ
]

for all (s, a) ∈ S ×A,

one has

∥∥∥T̂ σpe(Q1)− T̂ σpe(Q2)
∥∥∥
∞
≤ γ ‖Q1 −Q2‖∞ . (7.33)

Additionally, there exists a unique fixed point Q̂?,σpe of the operator T̂ σpe(·) obeying 0 ≤ Q̂?,σpe (s, a) ≤ 1
1−γ

for all (s, a) ∈ S ×A.

Our algorithm DRVI-LCB for infinite-horizon robust offline RL. Armed with the γ-contraction

property of the pessimistic robust Bellman operator T̂ σpe(·), we are positioned to introduce DRVI-LCB

for infinite-horizon RMDPs, summarized in Algorithm 14. Specifically, DRVI-LCB can be seen as a

value iteration algorithm w.r.t. T̂ σpe(·) (cf. (7.30)), whose update rule at the m-th iteration can be
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formulated as

Q̂m(s, a) = T̂ σpe(Q̂m−1)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV̂m−1 − b

(
s, a
)
, 0

}
, (7.34)

and V̂m(s) = maxa Q̂m(s, a) for all m = 1, 2, · · · ,M . In view of strong duality (Hu and Hong,

2013), the above convex problem can be translated into a dual formulation, leading to the following

equivalent update rule:

Q̂m(s, a) = max

{
r(s, a) + sup

λ≥0

{
−λ log

(
P̂ 0
s,a · exp

(
−V̂m−1

λ

))
− λσ

}
− b
(
s, a
)
, 0

}
, (7.35)

which can be solved efficiently (Iyengar, 2005; Panaganti and Kalathil, 2022; Yang et al., 2022) as a

one-dimensional optimization problem.

To finish the description, we initialize the estimates of Q-function (Q̂0) and value function (V̂0)

to be zero and output the greedy policy of the final Q-estimates (Q̂M ) as the final policy π̂, namely,

π̂(s) = arg max
a

Q̂M (s, a) for all s ∈ S. (7.36)

It turns out that the iterates
{
Q̂m
}
m≥0

of DRVI-LCB converge linearly to the fixed point Q̂?,σpe owing

to the nice γ-contraction property. This fact is summarized in the following lemma.

Lemma 23. Let Q̂0 = 0. The iterates of Algorithm 14 obey

∀m ≥ 0 : Q̂m ≤ Q̂?,σpe and
∥∥Q̂m − Q̂?,σpe

∥∥
∞ ≤

γm

1− γ . (7.37)

7.2.3 Theoretical guarantees

Before introducing the main theorems, we first define several essential metrics.

• db
min: the smallest positive entry of the distribution db,P 0

, i.e.,

db
min := min

s,a

{
db,P 0

(s, a) : db,P 0
(s, a) > 0

}
. (7.38)

• P b
min: the smallest positive state transition probability under the nominal kernel P 0 in the

region covered by dataset D, i.e.,

P b
min := min

s,a,s′

{
P 0
(
s′ | s, a

)
: db,P 0

(s, a) > 0, P 0
(
s′ | s, a

)
> 0
}
. (7.39)

Note that P b
min is determined only by the state-action pairs covered by the batch dataset D.
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• P ?min: the smallest positive state transition probability of the optimal robust policy π? under

the nominal kernel P 0, namely

P ?min := min
s,s′

{
P 0
(
s′ | s, π?(s)

)
: P 0

(
s′ | s, π?(s)

)
> 0
}
. (7.40)

We also note that P ?min is determined only by the state-action pairs covered by the optimal

robust policy π? under the nominal model P 0.

We are now positioned to introduce the sample complexity upper bound of DRVI-LCB,

together with the minimax lower bound, for solving infinite-horizon RMDPs. First, we present the

performance guarantees of DRVI-LCB for robust offline RL in the infinite-horizon case.

Theorem 16. Let c0 and c1 be some sufficiently large universal constants. Given an uncertainty

level σ > 0, suppose that the penalty terms in Algorithm 14 are chosen as (7.32) for sufficiently

large cb. With probability at least 1− δ, the output π̂ of Algorithm 14 obeys

V ?,σ(ϕ)− V π̂,σ(ϕ) ≤ c0

σ(1− γ)2

√√√√SC?rob log2
(

(1+σ)N3S
(1−γ)δ

)

P ?minN
, (7.41)

as long as the number of samples N satisfies

N ≥ c1 log(NS/δ)

db
minP

b
min

. (7.42)

The result directly indicates that DRVI-LCB can finds an ε-optimal policy as long as the

sample size in dataset D exceeds the order of (ignoring logarithmic factors)

SC?rob

P ?min(1− γ)4σ2ε2

︸ ︷︷ ︸
ε-dependent

+
1

db
minP

b
min︸ ︷︷ ︸

burn-in cost

. (7.43)

Note that the burn-in cost is independent with the accuracy level ε, which tells us that the sample

complexity is no more than

Õ

(
SC?rob

P ?min(1− γ)4σ2ε2

)
(7.44)

as long as ε is small enough. The sample complexity of DRVI-LCB still dramatically outperforms

prior works under full coverage, which has been compared in detail in Table 1.6. In particular, our

sample complexity produces an exponential improvement over Panaganti and Kalathil (2022); Zhou

et al. (2021) in terms of the dependency with the effective horizon 1
1−γ , which is especially significant

for long-horizon problems. Compared with Yang et al. (2022), our sample complexity is better by
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at least a factor of S/P ?min. To achieve the claimed bound, we resort to a delicate technique called

the leave-one-out analysis (Agarwal et al., 2020b; Li et al., 2022a, 2023c), by carefully designing an

auxiliary set of RMDPs to decouple the statistical dependency introduced across the iterates of

pessimistic robust value iteration. This is the first time that the leave-one-out analysis is applied

to understanding the sample efficiency of model-based robust RL algorithms, which is of potential

independent interest to tighten the sample complexity of other robust RL problems.

To complement the upper bound, we develop an information-theoretic lower bound for robust

offline RL as provided in the following theorem.

Theorem 17. For any (S, P ?min, C
?
rob, γ, σ, ε) obeying 1

1−γ ≥ 2e8, P ?min ∈
(
0, 1−γ

]
, S ≥ log

(
1/P ?min

)
,

C?rob ≥ 8/S, ε ≤ 1

384e6(1−γ) log
(

1/P ?min

) , and log
(
1/P ?min

)
−6 ≤ σ ≤ log

(
1/P ?min

)
−5, we can construct

two infinite-horizon RMDPs M0,M1, an initial state distribution ϕ, and a batch dataset with N

independent samples, such that

inf
π̂

max
{
P0

(
V ?,σ(ϕ)− V π̂,σ(ϕ) > ε

)
, P1

(
V ?,σ(ϕ)− V π̂,σ(ϕ) > ε

)}
≥ 1

8
,

provided that

N ≤ c1SC
?
rob

P ?min(1− γ)2σ2ε2
.

Here, c1 > 0 is some universal constant, the infimum is taken over all estimators π̂, and P0 (resp. P1)

denotes the probability when the RMDP is M0 (resp. M1).

The above theorem suggests that there exists some RMDP such that no algorithm can find

an ε-optimal policy if the sample complexity is below the order of

Ω

(
SC?rob

P ?min(1− γ)2σ2ε2

)
,

which directly confirms that DRVI-LCB is near-optimal up to a polynomial factor of the effective

horizon length 1
1−γ (cf. (7.43)). To the best of our knowledge, DRVI-LCB is the first provable

algorithm with near-optimal sample complexity for infinite-horizon robust offline RL. Moreover, the

requirement imposed on the history dataset is also much weaker than prior literature on robust

offline RL (Yang et al., 2022; Zhou et al., 2021), without the need of full coverage of the state-action

space.

7.3 Numerical experiments

We conduct experiments on the gambler’s problem (Sutton and Barto, 2018; Zhou et al., 2021)

to evaluate the performance of the proposed algorithm DRVI-LCB, with comparisons to both the

robust value iteration algorithm DRVI without pessimism (Panaganti and Kalathil, 2022). Our code
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can be accessed at:

https://github.com/Laixishi/Robust-RL-with-KL-divergence.

Gambler’s problem. In the gambler’s game (Sutton and Barto, 2018; Zhou et al., 2021), a

gambler bets on a sequence of coin flips, winning the stake with heads and losing with tails. Starting

from some initial balance, the game ends when the gambler’s balance either reaches 50 or 0, or the

total number of bets H is hit. This problem can be formulated as an episodic finite-horizon MDP, with

a state space S = {0, 1, · · · , 50} and the associated possible actions a ∈
{

0, 1, · · · ,min{s, 50− s}
}

at state s. Here, we set the horizon length H = 100. Moreover, the parameter of the transition

kernel, which is the probability of heads for the coin flip, is fixed as phead and remains the same in

all time steps h ∈ [H]. The reward is set as 1 when the state reaches s = 50 and 0 for all other

cases. In addition, suppose the initial state (i.e., the gambler’s initial balance) distribution ρ is

taken uniformly at random within S. Throughout the experiments, we utilize a history dataset

with N samples per state-action pair and time step, which is generated from a nominal MDP with

p0
head = 0.6.

Results and discussions. First, we evaluate the performance of the learned policy π̂ using our

proposed method DRVI-LCB with comparison to robust value iteration (DRVI) without pessimism,

where we fix the uncertainty level σ = 0.1 for learning the robust optimal policy. The experiments

are repeated 10 times with the average and standard deviations reported. To begin with, Figure

7.1(a) plots the sub-optimality value gap V ?,σ
1 (s) − V π̂,σ

1 (s) for every s ∈ S, when a sample size

N = 100 is used to learn the robust policies. It is shown that DRVI-LCB outperform the baseline

DRVI uniformly over the state space when the sample size is small, corroborating the benefit of

pessimism in the sample-starved regime. Furthermore, Figure 7.1(b) shows the sub-optimality

gap V ?,σ
1 (ρ) − V π̂,σ

1 (ρ) with varying sample sizes n = 100, 300, 1000, 3000, 5000, where the initial

test distribution ρ is generated randomly.1 While the performance of DRVI-LCB and DRVI both

improves with the increase of the sample size, the proposed algorithm DRVI-LCB achieves much

better performance with fewer samples.

Finally, to corroborate the benefit of distributional robustness, we evaluate the performance of

the policy learned from N = 1000 samples using DRVI-LCB on perturbed environments with varying

model parameters phead ∈ [0.25, 0.75]. We measure the practical performance based on the ratio of

winning (i.e., reaching the state s = 50) calculated from 3000 episodes. Figure 7.1(c) illustrates the

ratio of winning against the test probability of heads for the policies learned from DRVI-LCB with

σ = 0.01 and σ = 0.2, which are benchmarked against the non-robust optimal policy of the nominal

MDP using the exact model. It can be seen that the policies learned from DRVI-LCB deviate from

1The probability distribution vector ρ ∈ ∆(S) is generated as ρ(s) = us/
∑
s∈S us, where us is drawn independently

from a uniform distribution.
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Figure 7.1: The performance evaluation of the proposed algorithm DRVI-LCB, where it shows better
sample efficiency than the baseline algorithm DRVI without pessimism, as well as better robustness
in the learned policy compare to its non-robust counterpart.

the non-robust optimal policy as σ increases, which achieves better worst-case rates of winning

across a wide range of perturbed environments. On the other end, while the non-robust policy

maximizes the performance when the test environment is close to the history one used for training,

its performance degenerates to be much worse than the robust policies when the probability of

heads is mismatched significantly, especially when phead drops below, say around, 0.5.

7.4 Discussions

To accommodate both model robustness and sample efficiency, in this chapter, we propose a

distributionally robust model-based algorithm for offline RL with the principle of pessimism. We

study the finite-sample complexity of the proposed algorithm DRVI-LCB, and establishes its near-

optimality with a matching information-theoretic lower bound. Numerical experiments are provided

to demonstrate the efficacy of the proposed algorithm. To the best our knowledge, this provides the

first provably near-optimal robust offline RL algorithm that learns under model perturbation and

partial coverage.
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Chapter 8

Conclusion

This thesis breaks down the sample barriers of various RL problems, taking into consideration

additional facets of scalability and robustness. Specifically, for online RL, which permits adaptive

interactions with the environment, this thesis presents the first regret-optimal model-free RL

algorithm with a small burn-in cost — an initial sampling burden needed for the algorithm to exhibit

the desired performance — while maintaining its memory efficiency for scalability. In the context of

offline RL, which relies solely on historical datasets, this thesis puts forward the first provable near-

optimal model-free offline RL algorithm that doesn’t require model estimation. In addition, it settles

the sample complexity by establishing the minimax optimality of model-based offline RL algorithms

without burn-in cost. Lastly, for a robust variant of standard RL — distributionally robust RL,

this thesis reveals a surprising fact: the introduction of additional distributional robustness into

the learned policy doesn’t inherently increase or decrease the sample requirements compared to

standard RL; it largely depends on the defined uncertainty set. This thesis closes by providing the

first provable near-optimal algorithm for offline robust RL that can learn under simultaneous model

uncertainty and limited historical datasets.

The findings of this thesis naturally suggest numerous potential extensions and future research

directions. The thesis concludes by outlining a selection of these possibilities.

• Improved analysis. Some results established in this thesis can be further improved. For

instance, for online RL, while the proposed algorithm in Chapter 3 provably enables minimal

burn-in cost in terms of the dependency on S and A, our current theory falls short of delivering

optimal horizon dependency of the burn-in cost. More specifically, even though our burn-in

cost improves upon the state-of-the-art theory for sample-optimal model-free algorithms by a

factor of at least S5A3H18 (see Zhang et al. (2020c)), the way we cope with the dependency

on H remains inadequate. This calls for more refined analysis tools to optimize the horizon

dependency. For offline RL, the ε-range for LCB-Q-Advantage in Chapter 4 to attain sample

optimality remains somewhat limited (i.e., ε ∈ (0, 1/H])). Further investigation into whether

model-free algorithms can accommodate a broader ε-range without compromising sample

efficiency is called for.

• Further investigation in tabular settings. For robust RL, it is likely that our current analysis

framework in Chapter 6 can be extended to tackle finite-horizon RMDPs with a generative

model, which would help complete our understanding for the tabular cases. Moreover, Our
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work in Chapter 6 raises an interesting question concerning how the geometry of the uncertainty

sets intervenes the sample complexity. Hence, characterizing the tight sample complexity

for RMDPs under a more general family of uncertainty sets — such as using `p distance or

f -divergence, as well as s-rectangular sets — would be highly desirable. In addition, in light of

the results in Chapter 7, it is also promising to design provably efficient model-free algorithms

for robust offline RL with partial coverage.

• Extensions to function approximation settings. Admittedly, even though we are now able

to settle the sample size dependency on the state-action space, the size of SA might remain

prohibitively large in many modern RL applications. As a result, parsimonious function

representation/approximation of the underlying MDP is needed in order to further reduce the

sample complexity. Moving beyond tabular settings, it would be of great interest to extend

our analysis to accommodate value-based RL in more general scenarios; examples include

MDPs with low-complexity linear representations, realizable MDPs, and RL involving multiple

agents (Jin et al., 2020; Li et al., 2021; Nguyen-Tang et al., 2021).

• Investigation of RL in real-world applications. In addition to the theoretical investigations

of RL problems included in this thesis, my Ph.D. research also focused on seeking practical

solutions for diverse applications in real-world settings (Chen et al., 2021b; Ding et al., 2023;

Huang et al., 2022; Low et al., 2022; Sang et al., 2018; Shi and Chi, 2021; Shi et al., 2023a,

2021a,b, 2019, 2020; Wang et al., 2023b). Looking ahead, there is great interest in exploring

promising application scenarios of RL in both fundamental science and daily life including

but not limited to facilitating protein discovery in biology, enhancing the simulation of fluid

dynamics, and revolutionizing recommendation systems for social media.
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Appendix A

Proofs for Chapter 3

A.1 Freedman’s inequality

A.1.1 A user-friendly version of Freedman’s inequality

Due to the Markovian structure of the problem, our analysis relies heavily on the celebrated

Freedman’s inequality (Freedman, 1975; Tropp, 2011), which extends the Bernstein’s inequality to

accommodate martingales. For ease of reference, we state below a user-friendly version of Freedman’s

inequality as provided in Li et al. (2023a, Section C).

Theorem 18 (Freedman’s inequality). Consider a filtration F0 ⊂ F1 ⊂ F2 ⊂ · · · , and let Ek stand

for the expectation conditioned on Fk. Suppose that Yn =
∑n

k=1Xk ∈ R, where {Xk} is a real-valued

scalar sequence obeying

|Xk| ≤ R and Ek−1

[
Xk

]
= 0 for all k ≥ 1

for some quantity R <∞. We also define

Wn :=

n∑

k=1

Ek−1

[
X2
k

]
.

In addition, suppose that Wn ≤ σ2 holds deterministically for some given quantity σ2 <∞. Then

for any positive integer m ≥ 1, with probability at least 1− δ one has

|Yn| ≤
√

8 max
{
Wn,

σ2

2m

}
log

2m

δ
+

4

3
R log

2m

δ
. (A.1)

A.1.2 Application of Freedman’s inequality

We now develop several immediate consequences of Freedman’s inequality, which lend themselves

well to our context. Before proceeding, we recall that N i
h(s, a) denotes the number of times that the

state-action pair (s, a) has been visited at step h by the end of the i-th episode, and knh(s, a) stands

for the episode index when (s, a) is visited at step h for the n-th time (see Appendix 3.3.2).

Our first result is concerned with a martingale concentration bound as follows.
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Lemma 24. Let
{
W i
h ∈ RS | 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1

}
and

{
uih(s, a,N) ∈ R | 1 ≤ i ≤ K, 1 ≤

h ≤ H + 1
}

be a collections of vectors and scalars, respectively, and suppose that they obey the

following properties:

• W i
h is fully determined by the samples collected up to the end of the (h− 1)-th step of the i-th

episode;

• ‖W i
h‖∞ ≤ Cw;

• uih(s, a,N) is fully determined by the samples collected up to the end of the (h− 1)-th step of

the i-th episode, and a given positive integer N ∈ [K];

• 0 ≤ uih(s, a,N) ≤ Cu;

• 0 ≤∑Nk
h (s,a)

n=1 u
knh(s,a)

h (s, a,N) ≤ 2.

In addition, consider the following sequence

Xi(s, a, h,N) := uih(s, a,N)
(
P ih − Ph,s,a

)
W i
h+1 1

{
(sih, a

i
h) = (s, a)

}
, 1 ≤ i ≤ K, (A.2)

with P ih defined in (3.15). Consider any δ ∈ (0, 1). Then with probability at least 1− δ,
∣∣∣∣∣
k∑

i=1

Xi(s, a, h,N)

∣∣∣∣∣

.

√
Cu log2 SAT

δ

√√√√√
Nk
h (s,a)∑

n=1

u
knh(s,a)

h (s, a,N)Varh,s,a
(
W

knh(s,a)

h+1

)
+

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ

(A.3)

holds simultaneously for all (k, h, s, a,N) ∈ [K]× [H]× S ×A× [K].

Proof. For the sake of notational convenience, we shall abbreviate Xi(s, a, h,N) as Xi throughout

the proof of this lemma, as long as it is clear from the context. The plan is to apply Freedman’s

inequality (cf. Theorem 18) to control the term
∑k

i=1Xi of interest.

Consider any given (k, h, s, a,N) ∈ [K]× [H]× S ×A× [K]. It can be easily verified that

Ei−1 [Xi] = 0,

where Ei−1 denotes the expectation conditioned on everything happening up to the end of the

(h− 1)-th step of the i-th episode. Additionally, we make note of the following crude bound:

∣∣Xi

∣∣ ≤ uih(s, a,N)
∣∣∣
(
P ih − Ph,s,a

)
W i
h+1

∣∣∣
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≤ uih(s, a,N)
(∥∥P ih

∥∥
1

+
∥∥Ph,s,a

∥∥
1

)∥∥W i
h+1

∥∥
∞ ≤ 2CwCu, (A.4)

which results from the assumptions ‖W i
h+1‖∞ ≤ Cw, 0 ≤ uih(s, a,N) ≤ Cu as well as the basic facts∥∥P ih

∥∥
1

=
∥∥Ph,s,a

∥∥
1

= 1. To continue, recalling the definition of the variance parameter in (B.51), we

obtain

k∑

i=1

Ei−1

[∣∣Xi

∣∣2
]

=

k∑

i=1

(
uih(s, a,N)

)2
1
{

(sih, a
i
h) = (s, a)

}
Ei−1

[∣∣(P ih − Ph,s,a)W i
h+1

∣∣2
]

=

Nk
h (s,a)∑

n=1

(
u
knh(s,a)

h (s, a,N)
)2

Varh,s,a
(
W

knh(s,a)

h+1

)

≤ Cu

(Nk
h (s,a)∑

n=1

u
knh(s,a)

h (s, a,N)

)
∥∥W knh(s,a)

h+1

∥∥2

∞

≤ 2CuC
2
w, (A.5)

where the inequalities hold true due to the assumptions ‖W i
h‖∞ ≤ Cw, 0 ≤ uih(s, a,N) ≤ Cu, and

0 ≤∑Nk
h (s,a)

n=1 u
knh(s,a)

h (s, a,N) ≤ 1.

With (A.4) and (A.5) in place, we can invoke Theorem 18 (with m = dlog2Ne) and take the

union bound over all (k, h, s, a,N) ∈ [K] × [H] × S × A × [K] to show that: with probability at

least 1− δ,

∣∣∣∣
k∑

i=1

Xi

∣∣∣∣ .

√√√√√max

{
Cu

Nk
h (s,a)∑

n=1

u
knh(s,a)

h (s, a,N)Varh,s,a
(
W

knh(s,a)

h+1

)
,
CuC2

w

N

}
log

SAT 2 logN

δ

+ CuCw log
SAT 2 logNk

h

δ

.

√
Cu log2 SAT

δ

√√√√√
Nk
h (s,a)∑

n=1

u
knh(s,a)

h (s, a,N)Varh,s,a
(
W

knh(s,a)

h+1

)
+

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ

holds simultaneously for all (k, h, s, a,N) ∈ [K]× [H]× S ×A× [K].

The next result is concerned with martingale concentration bounds for another type of

sequences of interest.

Lemma 25. Let
{
N(s, a, h) ∈ [K] | (s, a, h) ∈ S ×A× [H]

}
be a collection of positive integers, and

let {ch : 0 ≤ ch ≤ e, h ∈ [H]} be a collection of fixed and bounded universal constants. Moreover, let{
W i
h ∈ RS | 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1

}
and

{
uih(sih, a

i
h) ∈ R | 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1

}
represent

respectively a collection of random vectors and scalars, which obey the following properties.
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• W i
h is fully determined by the samples collected up to the end of the (h− 1)-th step of the i-th

episode;

• ‖W i
h‖∞ ≤ Cw and W i

h ≥ 0;

• uih(sih, a
i
h) is fully determined by the integer N(sih, a

i
h, h) and all samples collected up to the

end of the (h− 1)-th step of the i-th episode;

• 0 ≤ uih(sih, a
i
h) ≤ Cu.

Consider any δ ∈ (0, 1), and introduce the following sequences

Xi,h := uih(sih, a
i
h)
(
P ih − Ph,sih,aih

)
W i
h+1, 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1, (A.6)

Yi,h := ch
(
P ih − Ph,sih,aih

)
W i
h+1, 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1. (A.7)

Then with probability at least 1− δ,

∣∣∣∣∣
H∑

h=1

K∑

i=1

Xi,h

∣∣∣∣∣ .

√√√√C2
u

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣(P ih − Ph,sih,aih)W i
h+1

∣∣2
]

log
THSA

δ
+ CuCw log

THSA

δ

.

√√√√C2
uCw

H∑

h=1

K∑

i=1

Ei,h−1

[
P ihW

i
h+1

]
log

THSA

δ
+ CuCw log

THSA

δ
∣∣∣∣∣
H∑

h=1

K∑

i=1

Yi,h

∣∣∣∣∣ .
√
TC2

w log
1

δ
+ Cw log

1

δ

holds simultaneously for all possible collections {N(s, a, h) ∈ [K] | (s, a, h) ∈ S ×A× [H]}.

Proof. This lemma can be proved by Freedman’s inequality (cf. Theorem 18).

• We start by controlling the first term of interest
∑H

h=1

∑K
i=1Xi,h. As can be easily seen,

aih = arg maxQih(sih, a) is fully determined by what happens before step h of the i-th episode.

Consider any given
{
N(s, a, h) ∈ [K] | (s, a, h) ∈ S ×A× [H]

}
. It is readily seen that

Ei,h−1 [Xi] = Ei,h−1

[
uih(sih, a

i
h)
(
P ih − Ph,sih,aih

)
W i
h+1

]
= 0,

where Ei,h−1 denotes the expectation conditioned on everything happening before step h of

the i-th episode. In addition, we make note of the following crude bound:

∣∣Xi,h

∣∣ ≤ uih(sih, a
i
h)
∣∣∣
(
P ih − Ph,sih,aih

)
W i
h+1

∣∣∣

≤ uih(sih, a
i
h)
(∥∥P ih

∥∥
1

+
∥∥Ph,sih,aih

∥∥
1

)∥∥W i
h+1

∥∥
∞ ≤ 2CwCu, (A.8)
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which arises from the assumptions ‖W i
h+1‖∞ ≤ Cw, 0 ≤ uih(s, a,N) ≤ Cu together with the

basic facts
∥∥P ih

∥∥
1

=
∥∥Ph,sih,aih

∥∥
1

= 1. Additionally, we can calculate that

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣Xi,h

∣∣2
]

=
H∑

h=1

K∑

i=1

(
uih(sih, a

i
h)
)2Ei,h−1

[∣∣(P ih − Ph,sih,aih)W i
h+1

∣∣2
]

(i)

≤ C2
u

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣(P ih − Ph,sih,aih)W i
h+1

∣∣2
]

(A.9)

≤ C2
u

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣P ihW i
h+1

∣∣2
]

(ii)
= C2

u

H∑

h=1

K∑

i=1

Ei,h−1

[
P ih
(
W i
h+1

)2]

(iii)

≤ C2
u

H∑

h=1

K∑

i=1

∥∥W i
h+1

∥∥
∞Ei,h−1

[
P ihW

i
h+1

]

(iv)

≤ C2
uCw

H∑

h=1

K∑

i=1

Ei,h−1

[
P ihW

i
h+1

]
(A.10)

≤ C2
uCw

H∑

h=1

K∑

i=1

∥∥W i
h+1

∥∥
∞

(v)

≤ HKC2
uC

2
w = TC2

uC
2
w. (A.11)

Here, (i) holds true due to the assumption 0 ≤ uih(sih, a
i
h) ≤ Cu, (ii) is valid since P ih only

has one non-zero entry (cf. (3.15)), (iii) relies on the assumptions that W i
h is non-negative,

whereas (iv) and (v) follow since ‖W i
h‖∞ ≤ Cw,

With (A.8), (A.10) and (A.11) in mind, we can invoke Theorem 18 (with m = dlog2 T e) and

take the union bound over all possible collections
{
N(s, a, h) ∈ [K] | (s, a, h) ∈ S ×A× [H]

}

— which has at most KHSA possibilities — to show that: with probability at least 1− δ,

∣∣∣∣
H∑

h=1

k∑

i=1

Xi,h

∣∣∣∣ .

√√√√max
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u

H∑
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K∑

i=1
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[∣∣(P ih − Ph,sih,aih)W i
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∣∣2
]
,
TC2

uC
2
w

2m

}
log

KHSA log T

δ

+ CuCw log
KHSA log T

δ

.
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h+1

∣∣2
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log
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δ
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δ
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holds simultaneously for all
{
N(s, a, h) ∈ [K] | (s, a, h) ∈ S ×A× [H]

}
.

• Then we turn to control the second term
∣∣∣
∑H

h=1

∑K
i=1 Yi,h

∣∣∣ of interest. Similar to
∣∣∣
∑H

h=1

∑K
i=1Xi,h

∣∣∣,
we have

|Yi,h| ≤ 2eCw,

H∑

h=1

K∑

i=1

Ei,h−1

[∣∣Yi,h
∣∣2
]
≤ e2TC2

w.

Invoke Theorem 18 (with m = 1) to arrive at

∣∣∣∣
H∑

h=1

K∑

i=1

Yi,h

∣∣∣∣ .
√
TC2

w log
1

δ
+ Cw log

1

δ
(A.12)

with probability at least 1− δ.

A.2 Proof of Lemma 1

First of all, the properties in (3.14b) follow directly from Jin et al. (2018, Lemma 4.1). Therefore, it

suffices to establish the property in (3.14a), which forms the remainder of this sub-chapter.

When N = 1, the statement holds trivially since

N∑

n=1

ηNn
na

= η1
1 = 1 ∈ [1, 2].

Now suppose that N ≥ 2. Making use of the basic relation ηNn = (1−ηN )ηN−1
n for all n = 1, · · · , N−1,

we observe the following identity:

N∑

n=1

ηNn
na

=
ηN
Na

+ (1− ηN )
N−1∑

n=1

ηN−1
n

na
. (A.13)

We now prove the property in (3.14a) by induction. Suppose for the moment that the property

holds for N − 1, namely,

1

(N − 1)a
≤

N−1∑

n=1

ηN−1
n

na
≤ 2

(N − 1)a
. (A.14)
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Then it is readily seen from (A.13) that

N∑

n=1

ηNn
na

=
ηN
Na

+ (1− ηN )
N−1∑

n=1

ηN−1
n

na
≥ ηN
Na

+
1− ηN

(N − 1)a
≥ ηN
Na

+
1− ηN
Na

=
1

Na
, (A.15)

where the first inequality comes from (A.14). Similarly, one can upper bound

N∑

n=1

ηNn
na

=
ηN
Na

+ (1− ηN )
N−1∑

n=1

ηN−1
n

na

(i)

≤ ηN
Na

+
2(1− ηN )

(N − 1)a
(ii)
=

H + 1

Na(H +N)
+

2(N − 1)1−a

H +N

(iii)

≤ H + 1

Na(H +N)
+

2N1−a

H +N
=

1

Na

(
H + 1

H +N
+

2N

H +N

)
(iv)

≤ 2

Na
,

where (i) arises from (A.14), (ii) follows from the choice ηN = H+1
H+N , (iii) holds since a ≤ 1,

and (iv) follows since H ≥ 1. Consequently, we can immediately establish the advertised property

(3.14a) by induction.

A.3 Proof of key lemmas in Chapter 3.3.3

A.3.1 Proof of Lemma 2

To begin with, suppose that we can prove

Qkh(s, a) ≥ Q?h(s, a) for all (k, h, s, a) ∈ [K]× [H]× S ×A. (A.16)

Then this property would immediately lead to the claim w.r.t. V k
h , namely,

V k
h (s) ≥ Qkh

(
s, π?h(s)

)
≥ Q?h

(
s, π?h(s)

)
= V ?

h (s) for all (k, h, s) ∈ [K]× [H]× S. (A.17)

As a result, it suffices to focus on justifying the claim (A.16), which we shall accomplish by induction.

• Base case. Given that the initialization obeys Q1
h(s, a) = H ≥ Q?h(s, a) for all (h, s, a) ∈

[H]× S ×A, the claim (A.16) holds trivially when k = 1.

• Induction. Suppose that the claim (A.16) holds all the way up to the k-th episode, and we

wish to establish it for the (k + 1)-th episode as well. To complete the induction argument, it

suffices to justify

min
{
QUCB,k+1
h (s, a), QR,k+1

h (s, a)
}
≥ Q?h(s, a)

according to line 12 of Algorithm 3. Recognizing that QUCB,k+1
h is computed via the standard

UCB-Q update rule (see line 2 of Algorithm 6), we can readily invoke the argument in Jin
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et al. (2018, Lemma 4.3) to show that with probability at least 1− δ,

QUCB,k+1
h (s, a) ≥ Q?h(s, a)

holds simultaneously for all (k, h, s, a) ∈ [K]× [H]×S ×A. Therefore, it is sufficient to prove

that

QR,k+1
h (s, a) ≥ Q?h(s, a). (A.18)

The remainder of the proof is thus devoted to justifying (A.18), assuming that the claim (A.16)

holds all the way up to k.

Since QR,k
h (skh, a

k
h) is updated in the k-th episode while other entries of QR,k

h remain fixed, it

suffices to verify

QR,k+1
h (skh, a

k
h) ≥ Q?h(skh, a

k
h).

We remind the readers of two important short-hand notation that shall be used when it is clear

from the context:

• Nk
h = Nk

h (skh, a
k
h) denotes the number of times that the state-action pair (skh, a

k
h) has been

visited at step h by the end of the k-th episode;

• kn = knh(skh, a
k
h) denotes the index of the episode in which the state-action pair (skh, a

k
h) is

visited for the n-th time at step h.

Step 1: decomposing QR,k+1
h (skh, a

k
h) −Q?h(skh, a

k
h). To begin with, the above definition of Nk

h

and kn allows us to write

QR,k+1
h (skh, a

k
h) = QR,kN

k
h+1

h (skh, a
k
h), (A.19)

since kN
k
h = kN

k
h (skh,a

k
h) = k. According to the update rule (i.e., line 11 in Algorithm 3 and line 7 in

Algorithm 6), we obtain

QR,k+1
h (skh, a

k
h) = QR,kN

k
h+1

h (skh, a
k
h) = (1− ηNk

h
)QR,kN

k
h

h (skh, a
k
h)

+ ηNk
h

{
rh(skh, a

k
h) + V kN

k
h

h+1 (sk
Nkh

h+1)− V R,kN
k
h

h+1 (sk
Nkh

h+1) + µref,kN
k
h+1

h (skh, a
k
h) + bR,kN

k
h+1

h

}

= (1− ηNk
h
)QR,kN

k
h−1+1

h (skh, a
k
h)

+ ηNk
h

{
rh(skh, a

k
h) + V kN

k
h

h+1 (sk
Nkh

h+1)− V R,kN
k
h

h+1 (sk
Nkh

h+1) + µref,kN
k
h+1

h (skh, a
k
h) + bR,kN

k
h+1

h

}
,
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where the last identity again follows from our argument for justifying (A.19). Applying this relation

recursively and invoking the definitions of ηN0 and ηNn in (4.16), we are left with

QR,k+1
h (skh, a

k
h) = η

Nk
h

0 QR,1
h (skh, a

k
h)

+

Nk
h∑

n=1

η
Nk
h

n

{
rh(skh, a

k
h) + V kn

h+1(sk
n

h+1)− V R,kn

h+1 (sk
n

h+1) + µref,kn+1
h (skh, a

k
h) + bR,kn+1

h

}
.

(A.20)

Additionally, the basic relation η
Nk
h

0 +
∑Nk

h
n=1 η

Nk
h

n = 1 (see (4.16) and (4.17)) tells us that

Q?h(skh, a
k
h) = η

Nk
h

0 Q?h(skh, a
k
h) +

Nk
h∑

n=1

η
Nk
h

n Q?h(skh, a
k
h), (A.21)

which combined with (B.65) leads to

QR,k+1
h (skh, a

k
h)−Q?h(skh, a

k
h) = η

Nk
h

0

(
QR,1
h (skh, a

k
h)−Q?h(skh, a

k
h)
)

+

Nk
h∑

n=1

η
Nk
h

n

{
rh(skh, a

k
h) + V kn

h+1(sk
n

h+1)− V R,kn

h+1 (sk
n

h+1) + µref,kn+1
h (skh, a

k
h) + bR,kn+1

h −Q?h(skh, a
k
h)

}
.

(A.22)

To continue, invoking the Bellman optimality equation

Q?h(skh, a
k
h) = rh(skh, a

k
h) + Ph,skh,a

k
h
V ?
h+1 (A.23)

and using the construction of µref
h in line 9 of Algorithm 6 (which is the running mean of V R

h+1), we

reach

rh(skh, a
k
h) + V kn

h+1(sk
n

h+1)− V R,kn

h+1 (sk
n

h+1) + µref,kn+1
h (skh, a

k
h) + bR,kn+1

h −Q?h(skh, a
k
h)

= V kn

h+1(sk
n

h+1)− V R,kn

h+1 (sk
n

h+1) +

∑n
i=1 V

R,ki

h+1 (sk
i

h+1)

n
− Ph,skh,akhV

?
h+1 + bR,kn+1

h (A.24)

= Ph,skh,a
k
h

{
V kn

h+1 − V R,kn

h+1

}
+

∑n
i=1 Ph,skh,a

k
h

(
V R,ki

h+1

)

n
− Ph,skh,akhV

?
h+1 + bR,kn+1

h + ξk
n

h ,

= Ph,skh,a
k
h

{
V kn

h+1 − V ?
h+1 +

∑n
i=1

(
V R,ki

h+1 − V
R,kn

h+1

)

n

}
+ bR,kn+1

h + ξk
n

h . (A.25)
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Here, we have introduced the following quantity

ξk
n

h :=
(
P k

n

h − Ph,skh,akh
)(
V kn

h+1 − V R,kn

h+1

)
+

1

n

n∑

i=1

(
P k

i

h − Ph,skh,akh
)
V R,ki

h+1 , (A.26)

with the notation P kh defined in (3.15). Putting (A.25) and (B.67) together leads to the following

decomposition

QR,k+1
h (skh, a

k
h)−Q?h(skh, a

k
h) = η

Nk
h

0

(
QR,1
h (skh, a

k
h)−Q?h(skh, a

k
h)
)

+

Nk
h∑

n=1

η
Nk
h

n

{
Ph,skh,a

k
h

(
V kn

h+1 − V ?
h+1 +

∑n
i=1

(
V R,ki

h+1 − V
R,kn

h+1

)

n

)
+ bR,kn+1

h + ξk
n

h

}
.

(A.27)

Step 2: two key quantities for lower bounding QR,k+1
h (skh, a

k
h) − Q?h(skh, a

k
h). In order to

develop a lower bound on QR,k+1
h (skh, a

k
h)−Q?h(skh, a

k
h) based on the decomposition (B.71), we make

note of several simple facts as follows.

(i) The initialization satisfies QR,1
h (skh, a

k
h)−Q?h(skh, a

k
h) ≥ 0.

(ii) For any 1 ≤ kn ≤ k, one has

V kn

h+1 ≥ V ?
h+1, (A.28)

owing to the induction hypotheses (A.16) and (A.17) that hold up to k.

(iii) For all 0 ≤ i ≤ n and any s ∈ S, one has

V R,ki

h+1 (s)− V R,kn

h+1 (s) ≥ 0, (A.29)

which holds since the reference value V R
h (s) is monotonically non-increasing in view of the

monotonicity of Vh(s) in (3.17b) and the update rule in line 16 of Algorithm 3.

The above three facts taken collectively with (B.71) allow one to drop several terms and yield

QR,k+1
h (skh, a

k
h)−Q?h(skh, a

k
h) ≥

Nk
h∑

n=1

η
Nk
h

n

(
bR,kn+1
h + ξk

n

h

)
. (A.30)

In the sequel, we aim to establish QR,k+1
h (skh, a

k
h) ≥ Q?h(skh, a

k
h) based on this inequality (A.30).

As it turns out, if one could show that

∣∣∣∣
Nk
h∑

n=1

η
Nk
h

n ξk
n

h

∣∣∣∣ ≤
Nk
h∑

n=1

η
Nk
h

n bR,kn+1
h , (A.31)

143



then taking this together with (A.30) and the triangle inequality would immediately lead to the

desired result

QR,k+1
h (skh, a

k
h)−Q?h(skh, a

k
h) ≥

Nk
h∑

n=1

η
Nk
h

n bR,kn+1
h −

∣∣∣∣
Nk
h∑

n=1

η
Nk
h

n ξk
n

h

∣∣∣∣ ≥ 0. (A.32)

As a result, the remaining steps come down to justifying the claim (B.73). In order to do so, we

need to control the following two quantities (in view of (B.69))

I1 :=

Nk
h∑

n=1

η
Nk
h

n

(
P k

n

h − Ph,skh,akh
)(
V kn

h+1 − V R,kn

h+1

)
, (A.33a)

I2 :=

Nk
h∑

n=1

1

n
η
Nk
h

n

n∑

i=1

(
P k

i

h − Ph,skh,akh
)
V R,ki

h+1 (A.33b)

separately, which constitutes the next two steps. As will be seen momentarily, these two terms can

be controlled in a similar fashion using Freedman’s inequality.

Step 3: controlling I1. In the following, we intend to invoke Lemma 24 to control the term I1

defined in (A.33a). To begin with, consider any (N,h) ∈ [K]× [H], and introduce

W i
h+1 := V i

h+1 − V R,i
h+1 and uih(s, a,N) := ηNN i

h(s,a) ≥ 0. (A.34)

Accordingly, we can derive and define

‖W i
h+1‖∞ ≤ ‖V R,i

h+1‖∞ + ‖V i
h+1‖∞ ≤ 2H =: Cw, (A.35)

and

max
N,h,s,a∈[K]×[H]×S×A

ηNN i
h(s,a) ≤

2H

N
=: Cu, (A.36)

where the last inequality follows since (according to Lemma 1 and the definition in (4.16))

ηNN i
h(s,a) ≤

2H

N
, if 1 ≤ N i

h(s, a) ≤ N ;

ηNN i
h(s,a) = 0, if N i

h(s, a) > N.

Moreover, observed from (4.17), we have

0 ≤
N∑

n=1

u
knh(s,a)

h (s, a,N) =

N∑

n=1

ηNn ≤ 1 (A.37)
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holds for all (N, s, a) ∈ [K] × S × A. Therefore, choosing (N, s, a) = (Nk
h , s

k
h, a

k
h) and applying

Lemma 24 with the quantities (A.34) implies that, with probability at least 1− δ,

|I1| =

∣∣∣∣∣∣

Nk
h∑

n=1

η
Nk
h

n

(
P k

n

h − Ph,skh,akh
)(
V kn

h+1 − V R,kn

h+1

)
∣∣∣∣∣∣

=

∣∣∣∣∣
k∑

i=1

Xi(s
k
h, a

k
h, h,N

k
h )

∣∣∣∣∣

.

√
Cu log2 SAT

δ

√√√√√
Nk
h∑

n=1

uk
n

h (skh, a
k
h, N

k
h )Varh,skh,a

k
h

(
W kn
h+1

)
+

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ

�
√

H

Nk
h

log2 SAT

δ

√√√√√
Nk
h∑

n=1

η
Nk
h

n Varh,skh,a
k
h

(
V kn
h+1 − V

R,kn

h+1

)
+
H2 log2 SAT

δ

Nk
h

(A.38)

.

√
H

Nk
h

log2 SAT

δ

√
σadv,k

Nk
h+1

h (skh, a
k
h)−

(
µadv,k

Nk
h+1

h (skh, a
k
h)
)2

+
H2 log2 SAT

δ

(Nk
h )3/4

, (A.39)

where the proof of the last inequality (B.151) needs additional explanation and is postponed to

Appendix A.3.1.1 to streamline the presentation.

Step 4: controlling I2. Next, we turn attention to the quantity I2 defined in (A.33b). Rearrang-

ing terms in the definition (A.33b), we are left with

I2 =

Nk
h∑

n=1

η
Nk
h

n

∑n
i=1

(
P k

i

h − Ph,skh,akh
)
V R,ki

h+1

n
=

Nk
h∑

i=1




Nk
h∑

n=i

η
Nk
h

n

n


(P kih − Ph,skh,akh

)
V R,ki

h+1 ,

which can again be controlled by invoking Lemma 24. To do so, we abuse the notation by taking

W i
h+1 := V R,i

h+1 and uih(s, a,N) :=
N∑

n=N i
h(s,a)

ηNn
n
≥ 0. (A.40)

These quantities satisfy

∥∥W i
h+1

∥∥
∞ ≤

∥∥V R,i
h+1

∥∥
∞ ≤ H =: Cw (A.41)

and, according to Lemma 1,

max
N,h,s,a∈[K]×[H]×S×A

N∑

n=N i
h(s,a)

ηNn
n
≤

N∑

n=1

ηNn
n
≤ 2

N
=: Cu. (A.42)
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Then it is readily seen from (A.42) that

0 ≤
N∑

n=1

u
knh(s,a)

h (s, a,N) ≤
N∑

n=1

2

N
≤ 2. (A.43)

holds for all (N, s, a) ∈ [K]× S ×A.

With the above relations in mind, Taking (N, s, a) = (Nk
h , s

k
h, a

k
h) and applying Lemma 24

w.r.t. the quantities (A.40) reveals that

|I2| =
∣∣∣∣
Nk
h∑

i=1

Nk
h∑

n=i

η
Nk
h

n

n

(
P k

i

h − Ph,skh,akh
)
V R,ki

h+1

∣∣∣∣ =

∣∣∣∣
k∑

i=1

Xi(s
k
h, a

k
h, h,N

k
h )

∣∣∣∣ (A.44)

.

√
Cu log2 SAT

δ

√√√√√
Nk
h∑

n=1

uk
n

h (skh, a
k
h, N

k
h )Varh,skh,a

k
h

(
W kn
h+1

)
+

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ

.

√
1

Nk
h

log2 SAT

δ

√√√√√ 1

Nk
h

Nk
h∑

n=1

Varh,skh,a
k
h

(
V R,kn

h+1

)
+

H

Nk
h

log2 SAT

δ
(A.45)

.

√
1

Nk
h

log2 SAT

δ

√
σref,k

Nk
h+1

h (skh, a
k
h)−

(
µref,k

Nk
h+1

h (skh, a
k
h)
)2

+
H

(Nk
h )3/4

log2 SAT

δ
(A.46)

with probability exceeding 1 − δ, where the proof of the last inequality (B.153) is deferred to

Appendix B.3.4.3 in order to streamline presentation.

Step 5: combining the above bounds. Summing up the results in (B.151) and (B.153), we

arrive at an upper bound on
∣∣∑Nk

h
n=1 η

Nk
h

n ξk
n

h

∣∣ as follows:

∣∣∣∣
Nk
h∑

n=1

η
Nk
h

n ξk
n

h

∣∣∣∣ ≤ |I1|+ |I2|

.

√
H

Nk
h

log2 SAT

δ

√
σadv,k

Nk
h+1

h (skh, a
k
h)−

(
µadv,k

Nk
h+1

h (skh, a
k
h)
)2

+

√
1

Nk
h

log2 SAT

δ

√
σref,k

Nk
h+1

h (skh, a
k
h)−

(
µref,k

Nk
h+1

h (skh, a
k
h)
)2

+
H2 log2 SAT

δ

(Nk
h )3/4

≤ BR,kN
k
h+1

h (skh, a
k
h) + cb

H2 log2 SAT
δ

(Nk
h )3/4

(A.47)

for some sufficiently large constant cb > 0, where the last line follows from the definition of

BR,kN
k
h+1

h (skh, a
k
h) in line 14 of Algorithm 6.
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In order to establish the desired bound (B.73), we still need to control the sum
∑Nk

h
n=1 η

Nk
h

n bR,kn+1
h .

Towards this end, the definition of bR,kn+1
h (resp. δR

h ) in line 6 (resp. line 15) of Algorithm 6 yields

bR,kn+1
h =

(
1− 1

ηn

)
BR,kn

h (skh, a
k
h) +

1

ηn
BR,kn+1
h (skh, a

k
h) +

cb

n3/4
H2 log2 SAT

δ
. (A.48)

This taken collectively with the definition (4.16) of ηNn allows us to expand

Nk
h∑

n=1

η
Nk
h

n bR,kn+1
h

=

Nk
h∑

n=1

ηn

Nk
h∏
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(1− ηi)
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1− 1
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)
BR,kn

h (skh, a
k
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1
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BR,kn+1
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η
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=
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Here, (i) is valid due to the fact that BR,k1

h (skh, a
k
h) = 0; (ii) follows from the fact that
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k
h),

where the first relation can be seen by replacing n with n+ 1, and the last relation holds true since

the state-action pair (skh, a
k
h) has not been visited at step h between the (kn + 1)-th episode and

the (kn+1 − 1)-th episode. Combining the above identity (A.49) with the following property (see
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Taking (B.154) and (B.62) collectively demonstrates that
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as claimed in (B.73). We have thus concluded the proof of Lemma 2 based on the argument in Step

2.

A.3.1.1 Proof of the inequality (B.151)

In order to establish the inequality (B.151), it suffices to look at the following term
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which forms the main content of this sub-chapter.

First of all, the update rules of µadv,kn+1

h and σadv,kn+1

h in lines 11-12 of Algorithm 6 tell us

that
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Applying this relation recursively and invoking the definitions of ηNn (resp. P kh ) in (4.16) (resp. (3.15))

give
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148



Recognizing that
∑Nk

h
n=1 η

Nk
h

n = 1 (see (4.17)), we can immediately apply Jensen’s inequality to the

expressions (i) and (ii) to yield
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Further, in view of the definition (B.51), we have
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which allows one to decompose and bound I3 as follows
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It then boils down to controlling the above two terms in (B.156) separately.

Step 1: bounding I3,1. To upper bound the term I3,1 in (B.156), we resort to Lemma 24 by

setting
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(
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h+1

)2
and uih(s, a,N) := ηNN i

h(s,a). (A.56)

It is easily seen that
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and it follows from (A.36) that
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Armed with the properties (A.57) and (A.58) and recalling (B.149), we can invoke Lemma 24

w.r.t. (A.56) and set (N, s, a) = (Nk
h , s

k
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h) to yield
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with probability at least 1− δ. Here, the last inequality results from the fact
∑Nk
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n ≤ 1 (see

(4.17)) and the following trivial result:
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Step 2: bounding I3,2. Jensen’s inequality tells us that
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where the last line arises from (4.17). Substitution into I3,2 (cf. (B.156)) gives
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(A.61)
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In what follows, we would like to use this relation to show that

I3,2 ≤ C32
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}
(A.62)

for some universal constant C32 > 0.

If I3,2 ≤ 0, then (B.161) holds true trivially. Consequently, it is sufficient to study the case

where I3,2 > 0. To this end, we first note that the term in the first pair of curly brakets of (B.159)

is exactly I1 (see (A.33a)), which can be bounded by recalling (B.150):
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with probability at least 1− δ. Here, the second inequality arises from the following property
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whereas the last inequality (A.63) holds as a result of the fact
∑Nk

h
n=1 η

Nk
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n ≤ 1 (see (4.17)).

Moreover, the term in the second pair of curly brakets of (B.159) can be bounded straightfor-

wardly as follows
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where we have made use of the property (4.17), as well as the elementary facts
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= 1. Substituting the above two results (A.63) and (A.65) back into

(B.159), we arrive at the bound (B.161) as long as I3,2 > 0. Putting all cases together, we have

established the claim (B.161).
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Step 3: putting all this together. To finish up, plugging the bounds (A.59) and (B.161) into

(B.156), we can conclude that
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for some constant C3 > 0. This together with the definition (A.52) of I3 results in
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which combined with the elementary inequality
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yields
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Substitution into (B.150) establishes the desired result (B.151).

A.3.1.2 Proof of the inequality (B.153)

In order to prove the inequality (B.153), it suffices to look at the following term
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In view of the update rules of µref,kn+1

h and σref,kn+1

h in lines 9-10 of Algorithm 6, we have
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Through simple recursion, these identities together with the definition (3.15) of P kh lead to
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The expressions (i) and (ii) combined with Jensen’s inequality give
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Taking these together with the definition
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(A.69)

In what follows, we shall bound the terms I4,1 and I4,2 in (B.166) separately.

Step 1: bounding I4,1. The first term I4,1 in (B.166) can be bounded by means of Lemma 24 in

an almost identical fashion as I3,1 in (A.59). Specifically, let us set

W i
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which clearly obey
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holds for all (N, s, a) ∈ [K]×S×A. Hence we can take (N, s, a) = (Nk
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with probability at least 1− δ, where the last inequality results from the fact that

Varh,skh,a
k
h

(
W kn

h+1

)
≤
∥∥W kn

h+1

∥∥2

∞ ≤ C
2
w = H4.

Step 2: bounding I4,2. We now turn to the other term I4,2 defined in (B.166). Towards this,

we first make the observation that
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which follows from Jensen’s inequality. Equipped with this relation, we can upper bound I4,2 as

follows

I4,2 ≤
(

1

Nk
h

Nk
h∑

n=1

P k
n

h V R,kn

h+1

)2

−
(

1

Nk
h

Nk
h∑

n=1

Ph,skh,a
k
h
V R,kn

h+1

)2

=

{
1

Nk
h

Nk
h∑

n=1

(
P k

n

h − Ph,skh,akh
)
V R,kn

h+1

}{
1

Nk
h

Nk
h∑

n=1

(
P k

n

h + Ph,skh,a
k
h

)
V R,kn

h+1

}
. (A.72)

In the following, we would like to apply this relation to prove

I4,2 ≤ C42

(√
H4

Nk
h

log2 SAT

δ
+
H2

Nk
h

log2 SAT

δ

)
(A.73)

for some constant C42 > 0.

When I4,2 ≤ 0, the claim (B.169) holds trivially. As a result, we shall focus on the case where

I4,2 > 0. Let us begin with the term in the first pair of curly brackets of (B.168). Towards this, let
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us abuse the notation and set

W i
h+1 := V R,i

h+1 and uih(s, a,N) :=
1

N
,

which satisfy

|uih(s, a,N)| = 1

N
=: Cu and ‖W i

h+1‖∞ ≤ H =: Cw.

Akin to our argument for bounding I4,1, invoking Lemma 24 and setting (N, s, a) = (Nk
h , s

k
h, a

k
h)

imply that ∣∣∣∣∣
1

Nk
h

Nk
h∑

n=1

(P k
n

h − Ph,skh,akh)V R,kn

h+1

∣∣∣∣∣ .
√
H2 log2 SAT

δ

Nk
h

+
H log2 SAT

δ

Nk
h

with probability at least 1− δ. In addition, the term in the second pair of curly brackets of (B.168)

can be bounded straightforwardly by

∣∣∣∣∣
1

Nk
h

Nk
h∑

n=1

(
P k

n

h + Ph,skh,a
k
h

)
V R,kn

h+1

∣∣∣∣∣ ≤
1

Nk
h

Nk
h∑

n=1

(∥∥P knh
∥∥

1
+
∥∥Ph,skh,akh

∥∥
1

)∥∥V R,kn

h+1

∥∥
∞ ≤ 2H,

where we have used
∥∥V R,kn

h+1

∥∥
∞ ≤ H and

∥∥P knh
∥∥

1
=
∥∥Ph,skh,akh

∥∥
1

= 1. Substituting the preceding

facts into (B.168) validates the bound (B.169) as long as I4,2 > 0. We have thus finished the proof

of the claim (B.169).

Step 3: putting all pieces together. Combining the results (A.70) and (B.169) with (B.166)

yields

I4 ≤ |I4,1|+ I4,2 ≤ C4

{√
H4

Nk
h

log2 SAT

δ
+
H2

Nk
h

log2 SAT

δ

}

for some constant C4 > 0. This bound taken together with the definition (A.66) of I4 gives

1

Nk
h

Nk
h∑

n=1

Varh,skh,a
k
h
(V R,kn

h+1 ) ≤
{
σref,kN

k
h+1

h (skh, a
k
h)−

(
µref,kN

k
h+1

h (skh, a
k
h)
)2}

+ C4

{√
H4

Nk
h

log2 SAT

δ
+
H2

Nk
h

log2 SAT

δ

}
.
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Invoke the elementary inequality
√
u+ v ≤ √u+

√
v for any u, v ≥ 0 and use the property (A.68)

to obtain

(
1

Nk
h

Nk
h∑

n=1

Varh,skh,a
k
h
(V R,kn

h+1 )

)1/2

.
{
σref,kN

k
h+1

h (skh, a
k
h)−

(
µref,kN

k
h+1

h (skh, a
k
h)
)2}1/2

+
H

(Nk
h )1/4

log1/2 SAT

δ
+

H

(Nk
h )1/2

log
SAT

δ
.

Substitution into (A.45) directly establishes the desired result (B.153).

A.3.2 Proof of Lemma 3

A.3.2.1 Proof of the inequalities (3.21)

Suppose that we can verify the following inequality:

QLCB,k
h (s, a) ≤ Q?h(s, a) for all (s, a, k, h) ∈ S ×A× [K]× [H]. (A.74)

which in turn yields

max
a

QLCB,k
h (s, a) ≤ max

a
Q?h(s, a) = V ?

h (s) for all (k, h, s) ∈ [K]× [H]× S. (A.75)

In addition, the construction of V LCB,k
h (see line 14 of Algorithm 3) allows us to show that

V LCB,k+1
h (s) ≤ max

{
max

j:j≤k+1
max
a

QLCB,j
h (s, a), max

j:j≤k
V LCB,j
h (s)

}
.

This taken together with the initialization V LCB,1
h = 0 and a simple induction argument yields

V LCB,k
h (s) ≤ V ?

h (s) for all (k, h, s) ∈ [K]× [H]× S. (A.76)

As a consequence, everything comes down to proving the claim (A.74), which we shall accomplish

by induction.

Base case. Given our initialization, we have

QLCB,1
h (s, a)−Q?h(s, a) = 0−Q?h(s, a) ≤ 0,

and hence the claim (A.74) holds trivially when k = 1.

Induction step. Suppose now that the claim (A.74) holds all the way up to k for all (s, a, h),

and we would like to validate it for the (k + 1)-th episode as well. Towards this end, recall that the
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state-action pair (skh, a
k
h) is visited in the k-th episode at time step h; this means that QLCB

h (skh, a
k
h)

is updated once we collect samples in the k-th episode, with all other entries QLCB
h frozen. It thus

suffices to verify that

QLCB,k+1
h (skh, a

k
h) ≤ Q?h(skh, a

k
h).

In what follows, we shall adopt the short-hand notation (see also Chapter 3.3.2)

Nk
h = Nk

h (skh, a
k
h) and kn = knh(skh, a

k
h)

which will be used throughout this subchapter as long as it is clear from the context.

The update rule of QLCB,k
h (cf. line 2 of Algorithm 6) and the Bellman optimality equation in

(A.23) tell us the following identities:

QLCB,k+1
h (skh, a

k
h) = QLCB,kN

k
h+1

h (skh, a
k
h)

= (1− ηNk
h
)QLCB,kN

k
h

h (skh, a
k
h) + ηNk

h

(
rh(skh, a

k
h) + V LCB,kN

k
h

h+1 (sk
Nkh

h+1)− bkN
k
h

h

)
,

Q?h(skh, a
k
h) = (1− ηNk

h
)Q?h(skh, a

k
h) + ηNk

h
Q?h(skh, a

k
h)

= (1− ηNk
h
)Q?h(skh, a

k
h) + ηNk

h

(
r(skh, a

k
h) + Ph,skh,a

k
h
V ?
h+1

)
,

which taken collectively lead to the following identity

QLCB,k+1
h (skh, a

k
h)−Q?h(skh, a

k
h) = QLCB,kN

k
h+1

h (skh, a
k
h)−Q?h(skh, a

k
h)

= (1− ηNk
h
)
(
QLCB,kN

k
h

h (skh, a
k
h)−Q?h(skh, a

k
h)
)

+ ηNk
h

(
V LCB,kN

k
h

h+1 (sk
Nkh

h+1)− Ph,skh,akhV
?
h+1 − bk

Nkh

h

)

= (1− ηNk
h
)
(
QLCB,kN

k
h−1+1

h (skh, a
k
h)−Q?h(skh, a

k
h)
)

+ ηNk
h

(
V LCB,kN

k
h

h+1 (sk
Nkh

h+1)− Ph,skh,akhV
?
h+1 − bk

Nkh

h

)
.

Recall the definitions of ηN0 and ηNn in (4.16). Applying the above relation recursively and making

use of the decomposition of Q?h(skh, a
k
h) in (B.75) result in

QLCB,k+1
h (skh, a

k
h)−Q?h(skh, a

k
h)

= η
Nk
h

0

(
QLCB,1
h (skh, a

k
h)−Q?h(skh, a

k
h)
)

+

Nk
h∑

n=1

η
Nk
h

n

(
V LCB,kn

h+1 (sk
n

h+1)− Ph,skh,akhV
?
h+1 − bk

n

h

)

≤
Nk
h∑

n=1

η
Nk
h

n

(
V LCB,kn

h+1 (sk
n

h+1)− V ?
h+1(sk

n

h+1) +
(
P k

n

h − Ph,skh,akh
)
V ?
h+1 − bk

n

h

)
, (A.77)

where the inequality follows from the initialization QLCB,1
h (skh, a

k
h) = 0 ≤ Q?h(skh, a

k
h) and the definition

of P kh in (3.15). To continue, we invoke a result established in Jin et al. (2018, proof of Lemma 4.3),
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which guarantees that with probability at least 1− δ,

Nk
h∑

n=1

η
Nk
h

n

(
P k

n

h − Ph,skh,akh
)
V ?
h+1 .

√
H3 log(SATδ )

Nk
h

≤
Nk
h∑

n=1

η
Nk
h

n bk
n

h ,

provided that cb is some sufficiently large constant. Substituting the above relation into (A.77)

implies that

QLCB,k+1
h (skh, a

k
h)−Q?h(skh, a

k
h) ≤

Nk
h∑

n=1

η
Nk
h

n

(
V LCB,kn

h+1 (sk
n

h+1)− V ?
h+1(sk

n

h+1)
)
≤ 0, (A.78)

where the last inequality follows from the induction hypothesis

V LCB,j
h+1 (s) ≤ V ?

h+1(s) for all s ∈ S and j ≤ k.

The proof is thus completed by induction.

A.3.2.2 Proof of the inequality (3.22)

The proof of (3.22) essentially follows the same arguments of Yang et al. (2021, Lemma 4.2) (see

also Jin et al. (2018, Lemma C.7)), an algebraic result leveraging certain relations w.r.t. the Q-value

estimates. Accounting for the difference between our algorithm and the one in Yang et al. (2021),

we paraphrase Yang et al. (2021, Lemma 4.2) into the following form that is convenient for our

purpose.

Lemma 26 (paraphrased from Lemma 4.2 in Yang et al. (2021)). Assume there exists a constant

cb > 0 such that for all (s, a, k, h) ∈ S ×A× [K]× [H], it holds that

0 ≤ Qk+1
h (s, a)−QLCB,k+1

h (s, a)

≤ ηN
k
h (s,a)

0 H +

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
V kn

h+1(sk
n

h+1)− V LCB,kn

h+1 (sk
n

h+1)
)

+ 4cb

√
H3 log SAT

δ

Nk
h (s, a)

. (A.79)

Consider any ε ∈ (0, H]. Then for all β = 1, . . . ,
⌈
log2

H
ε

⌉
, one has

∣∣∣∣∣
H∑

h=1

K∑

k=1

1
(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h) ∈

[
2β−1ε, 2βε

))
∣∣∣∣∣ .

H6SA log SAT
δ

4βε2
. (A.80)

We first show how to justify (3.22) if the inequality (A.80) holds. As can be seen, the fact

158



(A.80) immediately leads to

H∑

h=1

K∑

k=1

1
(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h) > ε

)
.

dlog2
H
ε e∑

β=1

H6SA log SAT
δ

4βε2
≤ H6SA log SAT

δ

2ε2
(A.81)

as desired.

We now return to justify the claim (A.80), towards which it suffices to demonstrate that

(A.79) holds. Lemma 2 and Lemma 3 directly verify the left-hand side of (A.79) since

Qkh(s, a) ≥ Q?h(s, a) ≥ QLCB,k
h (s, a) for all (s, a, k, h) ∈ S ×A× [K]× [H]. (A.82)

The remainder of the proof is thus devoted to justifying the upper bound on Qk+1
h (s, a) −

QLCB,k+1
h (s, a) in (A.79). In view of the update rule in line 12 of Algorithm 3, we have the

following basic fact

Qk+1
h (s, a) ≤ QUCB,k+1

h (s, a).

This enables us to obtain

Qk+1
h (s, a)−QLCB,k+1

h (s, a) ≤ QUCB,k+1
h (s, a)−QLCB,k+1

h (s, a) = QUCB,kN
k
h+1

h (s, a)−QLCB,kN
k
h+1

h (s, a),

(A.83)

where we abbreviate

Nk
h = Nk

h (s, a)

throughout this subchapter as long as it is clear from the context. Making use of the update rules

of QUCB,k
h and QLCB,k

h in line 2 and line 2 of Algorithm 6, we reach

QUCB,kN
k
h+1

h (s, a)−QLCB,kN
k
h+1

h (s, a)

= (1− ηNk
h
)QUCB,kN

k
h

h (s, a) + ηNk
h

(
rh(s, a) + V kN

k
h

h+1 (sk
Nkh

h+1) + cb

√
H3 log SAT

δ

Nk
h

)

− (1− ηNk
h
)QLCB,kN

k
h

h (s, a)− ηNk
h

(
rh(s, a) + V LCB,kN

k
h

h+1 (sk
Nkh

h+1)− cb

√
H3 log SAT

δ

Nk
h

)

= (1− ηNk
h
)
(
QUCB,kN

k
h

h (s, a)−QLCB,kN
k
h

h (s, a)
)

+ ηNk
h

(
V kN

k
h

h+1 (sk
Nkh

h+1)− V LCB,kN
k
h

h+1 (sk
Nkh

h+1) + 2cb

√
H3 log SAT

δ

Nk
h

)

= (1− ηNk
h
)
(
QUCB,kN

k
h−1+1

h (s, a)−QLCB,kN
k
h

h (s, a)
)
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+ ηNk
h

(
V kN

k
h

h+1 (sk
Nkh

h+1)− V LCB,kN
k
h

h+1 (sk
Nkh

h+1) + 2cb

√
H3 log SAT

δ

Nk
h

)
.

Applying this relation recursively leads to the desired result

QUCB,kN
k
h+1

h (s, a)−QLCB,kN
k
h+1

h (s, a)

= η
Nk
h

0

(
QUCB,1
h (s, a)−QLCB,1

h (s, a)
)

+

Nk
h∑

n=1

η
Nk
h

n

(
V kn

h+1(sk
n

h+1)− V LCB,kn

h+1 (sk
n

h+1) + 2cb

√
H3 log SAT

δ

n

)

≤ ηN
k
h

0 H +

Nk
h∑

n=1

η
Nk
h

n

(
V kn

h+1(sk
n

h+1)− V LCB,kn

h+1 (sk
n

h+1)
)

+ 4cb

√
H3 log SAT

δ

Nk
h

.

Here, the last line is valid due to the property 0 ≤ QLCB,1
h (s, a) ≤ QUCB,1

h (s, a) ≤ H and the following

fact
Nk
h∑

n=1

η
Nk
h

n cb

√
H3 log SAT

δ

Nk
h

≤ 2cb

√
H3 log SAT

δ

Nk
h

,

which is an immediate consequence of the elementary property
∑N

n=1
ηNn√
n
≤ 2√

N
(see Lemma 1). This

combined with (A.83) establishes the condition (A.79), thus concluding the proof of the inequality

(3.22).

A.3.3 Proof of Lemma 4

A.3.3.1 Proof of the inequality (3.25)

Consider any state s that has been visited at least once during the K episodes. Throughout this

proof, we shall adopt the shorthand notation

ki = kih(s),

which denotes the index of the episode in which state s is visited for the i-th time at step h. Given that

Vh(s) and V R
h (s) are only updated during the episodes with indices coming from {i | 1 ≤ ki ≤ K},

it suffices to show that for any s and the corresponding 1 ≤ ki ≤ K, the claim (3.25) holds in the

sense that

∣∣V ki+1
h (s)− V R,ki+1

h (s)
∣∣ ≤ 2. (A.84)

Towards this end, we look at three scenarios separately.
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Case 1. Suppose that ki obeys

V ki+1
h (s)− V LCB,ki+1

h (s) > 1 (A.85)

or

V ki+1
h (s)− V LCB,ki+1

h (s) ≤ 1 and uk
i

ref(s) = True (A.86)

The above conditions correspond to the ones in line 15 and line 17 of Algorithm 3 (meaning that

V R
h is updated during the ki-th episode), thus resulting in

V ki+1
h (s) = V R,ki+1

h (s).

This clearly satisfies (A.84).

Case 2. Suppose that ki0 is the first time such that (A.85) and (A.86) are violated, namely,

i0 := min
{
j | V kj+1

h (s)− V LCB,kj+1
h (s) ≤ 1 and uk

j

ref(s) = False
}
. (A.87)

We make three observations.

• The definition (A.87) taken together with the update rules (lines 15-18 of Algorithm 3) reveals

that V R
h has been updated in the ki0−1-th episode, thus indicating that

V R,ki0
h (s) = V R,ki0−1+1

h (s) = V ki0−1+1
h (s) = V ki0

h (s). (A.88)

• Additionally, note that under the definition (A.87), V R
h (s) is not updated during the ki0-th

episode, namely,

V R,ki0+1
h (s) = V R,ki0

h (s). (A.89)

• The definition of ki0 indicates that either (A.85) or (A.86) is satisfied in the previous episode

ki = ki0−1 in which s was visited. If (A.85) is satisfied, then lines 15-16 in Algorithm 3 tell us

that

True = uk
i0−1+1

ref (s) = uk
i0

ref (s), (A.90)

which, however, contradicts the assumption uk
i0

ref (s) = False in (A.87). Therefore, in the

ki0−1-th episode, (A.86) is satisfied, thus leading to

V ki0
h (s)− V LCB,ki0

h (s) = V ki0−1+1
h (s)− V LCB,ki0−1+1

h (s) ≤ 1. (A.91)

161



We see from (A.88), (A.89) and (A.91) that

V R,ki0+1
h (s)− V ki0+1

h (s) = V R,ki0
h (s)− V ki0+1

h (s) = V ki0
h (s)− V ki0+1

h (s) (A.92)

(i)

≤ V ki0
h (s)− V LCB,ki0

h (s)
(ii)

≤ 1, (A.93)

where (i) holds since V ki0+1
h (s) ≥ V ?

h (s) ≥ V LCB,ki0
h (s), and (ii) follows from (A.91). In addition, we

make note of the fact that

V R,ki0+1
h (s)− V ki0+1

h (s) = V ki0
h (s)− V ki0+1

h (s) ≥ 0, (A.94)

which follows from (A.92) and the monotonicity of V k
h (s) in k. With the above results in place, we

arrive at the advertised bound (A.84) when i = i0.

Case 3. Consider any i > i0. It is easily verified that

V ki+1
h (s)− V LCB,ki+1

h (s) ≤ 1 and uk
i

ref(s) = False. (A.95)

It then follows that

V R,ki+1
h (s)

(i)

≤ V R,ki0+1
h (s)

(ii)

≤ V ki0+1
h (s) + 1

(iii)

≤ V LCB,ki0+1
h (s) + 2

(iv)

≤ V ?
h (s) + 2

(v)

≤ V ki+1
h (s) + 2. (A.96)

Here, (i) holds due to the monotonicity of V R
h and V k

h (see line 14 of Algorithm 3), (ii) is a

consequence of (A.93), (iii) comes from the definition (A.87) of i0, (iv) arises since V LCB
h is a lower

bound on V ?
h (see Lemma 3), whereas (v) is valid since V ki+1

h (s) ≥ V ?
h (s) (see Lemma 2). In

addition, in view of the monotonicity of V k
h (see line 14 of Algorithm 3) and the update rule in line

16 of Algorithm 3, we know that

V R,ki+1
h (s) ≥ V ki+1

h (s).

The preceding two bounds taken collectively demonstrate that

0 ≤ V R,ki+1
h (s)− V ki+1

h (s) ≤ 2,

thus justifying (A.84) for this case.

Therefore, we have established (A.84)—and hence (3.25)—for all cases.
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A.3.3.2 Proof of the inequality (3.26)

Suppose that

V R,k
h (skh)− V R,K

h (skh) 6= 0 (A.97)

holds for some k < K. Then there are two possible scenarios to look at:

(a) Case 1: the condition in line 15 and line 17 of Algorithm 3 are violated at step h of the k-th

episode. This means that we have

V k+1
h (skh)− V LCB,k+1

h (skh) ≤ 1 and ukref(s
k
h) = False (A.98)

in this case. Then for any k′ > k, one necessarily has




V k′
h (skh)− V LCB,k′

h (skh) ≤ V k+1
h (skh)− V LCB,k+1

h (skh) ≤ 1,

uk
′

ref(s
k
h) = ukref(s

k
h) = False,

(A.99)

where the first property makes use of the monotonicity of V k
h and V LCB,k

h (see (3.17b) and

line 14 of Algorithm 3). In turn, Condition (A.99) implies that V R
h will no longer be updated

after the k-th episode (see line 15 of Algorithm 3), thus indicating that

V R,k
h (skh) = V R,k+1

h (skh) = · · · = V R,K
h (skh). (A.100)

This, however, contradicts the assumption (A.97).

(b) Case 2: the condition in either line 15 or line 17 of Algorithm 3 is satisfied at step h of the

k-th episode. If this occurs, then the update rule in line 15 of Algorithm 3 implies that

V k+1
h (skh)− V LCB,k+1

h (skh) > 1, (A.101)

or

V k+1
h (skh)− V LCB,k+1

h (skh) ≤ 1 and ukref(s
k
h) = True. (A.102)

To summarize, the above argument demonstrates that (A.97) can only occur if either (A.101) or

(A.102) holds.

With the above observation in place, we can proceed with the following decomposition:

H∑

h=1

K∑

k=1

(
V R,k
h (skh)− V R,K

h (skh)
)

=
H∑

h=1

K∑

k=1

(
V R,k
h (skh)− V R,K

h (skh)
)
1
(
V R,k
h (skh)− V R,K

h (skh) 6= 0
)
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≤
H∑

h=1

K∑

k=1

(
V R,k
h (skh)− V R,K

h (skh)
)
1
(
V k+1
h (skh)− V LCB,k+1

h (skh) ≤ 1 and ukref(s
k
h) = True

)

+
H∑

h=1

K∑

k=1

(
V k
h (skh)− V LCB,k

h (skh)
)
1
(
V k
h (skh)− V LCB,k

h (skh) > 1
)

︸ ︷︷ ︸
=:ω

. (A.103)

Regarding the first term in (A.103), it is readily seen that for all s ∈ S,

K∑

k=1

1
(
V k+1
h (s)− V LCB,k+1

h (s) ≤ 1 and ukref(s) = True
)
≤ 1, (A.104)

which arises since, for each s ∈ S, the above condition is satisfied in at most one episode, owing to

the monotonicity property of Vh, V
LCB
h and the update rule for uref in (17). As a result, one has

H∑

h=1

K∑

k=1

(
V R,k
h (skh)− V R,K

h (skh)
)
1
(
V k+1
h (skh)− V LCB,k+1

h (skh) ≤ 1 and ukref(s
k
h) = True

)

≤ H
H∑

h=1

K∑

k=1

1
(
V k+1
h (skh)− V LCB,k+1

h (skh) ≤ 1 and ukref(s
k
h) = True

)

= H
H∑

h=1

∑

s∈S

K∑

k=1

1
(
V k+1
h (s)− V LCB,k+1

h (s) ≤ 1 and ukref(s) = True
)

≤ H
H∑

h=1

∑

s∈S
1 = H2S,

where the first inequality holds since ‖V R,k
h − V R,K

h ‖∞ ≤ H. Substitution into (A.103) yields

H∑

h=1

K∑

k=1

(
V R,k
h (skh)− V R,K

h (skh)
)
≤ H2S + ω. (A.105)

To complete the proof, it boils down to bounding the term ω defined in (A.103). To begin

with, note that

V R,K
h (skh) ≥ V ?

h (skh) ≥ V LCB,k
h (skh),

where we make use of the optimism of V R,K
h (skh) stated in Lemma 2 (cf. (3.19)) and the pessimism

of V LCB
h in Lemma 3 (see (3.21)). As a result, we can obtain

ω =

H∑

h=1

K∑

k=1

(
V k
h (skh)− V LCB,k

h (skh)
)
1
(
V k
h (skh)− V LCB,k

h (skh) > 1
)
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≤
H∑

h=1

K∑

k=1

(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h)
)
1
(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h) > 1

)
, (A.106)

where the second line arises from the properties V k
h (skh) = Qkh(skh, a

k
h) (given that akh = arg maxaQ

k
h(skh, a))

as well as the following fact (see line 14 of Algorithm 3)

V LCB,k
h (skh) ≥ max

a
QLCB,k
h (skh, a) ≥ QLCB,k

h (skh, a
k
h).

Further, let us make note of the following elementary identity

Qkh(skh, a
k
h)−QLCB,k

h (skh, a
k
h) =

∫ ∞

0
1
(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h) > t

)
dt.

This allows us to obtain

ω ≤
H∑

h=1

K∑

k=1

{∫ ∞

0
1
(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h) > t

)
dt

}
1
(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h) > 1

)

=

∫ H

1

H∑

h=1

K∑

k=1

1
(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h) > t

)
dt

.
∫ H

1

H6SA log SAT
δ

t2
dt . H6SA log

SAT

δ
, (A.107)

where the last line follows from the property (3.22) in Lemma 3. Combining the above bounds

(A.106) and (A.107) with (A.105) establishes

H∑

h=1

K∑

k=1

(
V R,k
h (skh)− V R,K

h (skh)
)

≤ H2S +
H∑

h=1

K∑

k=1

(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h)
)
1
(
Qkh(skh, a

k
h)−QLCB,k

h (skh, a
k
h) > 1

)

≤ H6SA log
SAT

δ

as claimed.

A.4 Proof of Lemma 5

For notational simplicity, we shall adopt the short-hand notation

kn = knh(skh, a
k
h)
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throughout this chapter. A starting point for proving this lemma is the upper bound already derived

in (3.30), and we intend to further bound the first term on the right-hand side of (3.30). Recalling

the expression of QR,k+1
h (skh, a

k
h) in (B.67) and (A.24), we can derive

QR,k
h (skh, a

k
h)−Q?h(skh, a

k
h) = QR,k

Nk−1
h

(skh,a
k
h)

+1
h (skh, a

k
h)−Q?h(skh, a

k
h) (A.108)

= η
Nk−1
h (skh,a

k
h)

0

(
QR,1
h (skh, a

k
h)−Q?h(skh, a

k
h)
)

+

Nk−1
h (skh,a

k
h)∑

n=1

η
Nk−1
h (skh,a

k
h)

n bR,kn+1
h

+

Nk−1
h (skh,a

k
h)∑

n=1

η
Nk−1
h (skh,a

k
h)

n

(
V kn

h+1(sk
n

h+1)− V R,kn

h+1 (sk
n

h+1) +
1

n

n∑

i=1

V R,ki

h+1 (sk
i

h+1)− Ph,skh,akhV
?
h+1

)

≤ ηN
k−1
h (skh,a

k
h)

0 H +BR,k
h (skh, a

k
h) +

2cbH
2

(
Nk−1
h (skh, a

k
h)
)3/4 log

SAT

δ

+

Nk−1
h (skh,a

k
h)∑

n=1

η
Nk−1
h (skh,a

k
h)

n

(
V kn

h+1(sk
n

h+1)− V R,kn

h+1 (sk
n

h+1) +
1

n

n∑

i=1

V R,ki

h+1 (sk
i

h+1)− Ph,skh,akhV
?
h+1

)
,

where the last line follows from (B.62) with BR,k
Nk−1
h +1

h = BR,k
h and the initialization QR,1

h (skh, a
k
h) =

H. Summing over all 1 ≤ k ≤ K gives

K∑

k=1

(
QR,k
h (skh, a

k
h)−Q?h(skh, a

k
h)
)

≤
K∑

k=1

(
Hη

Nk−1
h (skh,a

k
h)

0 +BR,k
h (skh, a

k
h) +

2cbH
2

(
Nk−1
h (skh, a

k
h)
)3/4 log

SAT

δ

)

+
K∑

k=1

Nk−1
h (skh,a

k
h)∑

n=1

η
Nk−1
h (skh,a

k
h)

n

(
V kn

h+1(sk
n

h+1)− V R,kn

h+1 (sk
n

h+1) +

∑n
i=1 V

R,ki

h+1 (sk
i

h+1)

n
− Ph,skh,akhV

?
h+1

)

≤
K∑

k=1

(
Hη

Nk−1
h (skh,a

k
h)

0 +BR,k
h (skh, a

k
h) +

2cbH
2

(
Nk−1
h (skh, a

k
h)
)3/4 log

SAT

δ

)

+

K∑

k=1

Nk−1
h (skh,a

k
h)∑

n=1

η
Nk−1
h (skh,a

k
h)

n

(
V kn

h+1(sk
n

h+1)− V ?
h+1(sk

n

h+1)
)

+

K∑

k=1

Nk−1
h (skh,a

k
h)∑

n=1

η
Nk−1
h (skh,a

k
h)

n

(
V ?
h+1(sk

n

h+1)− V R,kn

h+1 (sk
n

h+1) +
1

n

n∑

i=1

V R,ki

h+1 (sk
i

h+1)− Ph,skh,akhV
?
h+1

)
.

(A.109)

Next, we control each term in (A.109) separately.
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• Regarding the first term of (A.109), we make two observations. To begin with,

K∑

k=1

η
Nk−1
h (skh,a

k
h)

0 ≤
∑

(s,a)∈S×A

NK−1
h (s,a)∑

n=0

ηn0 ≤ SA, (A.110)

where the last inequality follows since ηn0 = 0 for all n > 0 (see (4.16)). Next, it is also

observed that

K∑

k=1

1
(
Nk−1
h (skh, a

k
h)
)3/4 =

∑

(s,a)∈S×A

NK−1
h (s,a)∑

n=1

1

n3/4

≤
∑

(s,a)∈S×A

4
(
NK−1
h (s, a)

)1/4 ≤ 4(SA)3/4K1/4, (A.111)

where the last inequality comes from Holder’s inequality

∑

(s,a)∈S×A

(
NK−1
h (s, a)

)1/4 ≤
[ ∑

(s,a)∈S×A

1

]3/4[ ∑

(s,a)∈S×A

NK−1
h (s, a)

]1/4

≤ (SA)3/4K1/4.

Combine the above bounds to yield

K∑

k=1

(
Hη

Nk−1
h (skh,a

k
h)

0 +BR,k
h (skh, a

k
h) +

2cbH
2

(
Nk−1
h (skh, a

k
h)
)3/4 log

SAT

δ

)

≤ HSA+

K∑

k=1

BR,k
h (skh, a

k
h) + 8cb(SA)3/4K1/4H2 log

SAT

δ
. (A.112)

• We now turn to the second term of (A.109). A little algebra gives

K∑

k=1

Nk−1
h (skh,a

k
h)∑

n=1

η
Nk−1
h (skh,a

k
h)

n

(
V kn

h+1(sk
n

h+1)− V ?
h+1(sk

n

h+1)
)

=

K∑

l=1

NK−1
h (slh,a

l
h)∑

N=N l
h(slh,a

l
h)

ηN
N l
h(slh,a

l
h)

(
V l
h+1(slh+1)− V ?

h+1(slh+1)
)

≤
(

1 +
1

H

) K∑

l=1

(
V l
h+1(slh+1)− V ?

h+1(slh+1)
)

=

(
1 +

1

H

)[ K∑

k=1

(
V k
h+1(skh+1)− V πk

h+1(skh+1)
)
−

K∑

k=1

(
V ?
h+1(skh+1)− V πk

h+1(skh+1)
)
]
.

(A.113)
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Here, the second line replaces kn (resp. n) with l (resp. N l
h(slh, a

l
h)), the third line is due to the

property
∑∞

N=n η
N
n ≤ 1 + 1/H (see Lemma 1), while the last relation replaces l with k again.

• When it comes to the last term of (A.109), we can derive

K∑

k=1

Nk−1
h (skh,a

k
h)∑

n=1

η
Nk−1
h (skh,a

k
h)

n

(
V ?
h+1(sk

n

h+1)− V R,kn

h+1 (sk
n

h+1) +
1

n

n∑

i=1

V R,ki

h+1 (sk
i

h+1)− Ph,skh,akhV
?
h+1

)

=

K∑

k=1

Nk−1
h (skh,a

k
h)∑

n=1

η
Nk−1
h (skh,a

k
h)

n

(
(
P k

n

h − Ph,skh,akh
)(
V ?
h+1 − V R,kn

h+1

)
+

1

n

n∑

i=1

(
V R,ki

h+1 (sk
i

h+1)− Ph,skh,akhV
R,kn

h+1

)
)

=
K∑

k=1

NK−1
h (skh,a

k
h)∑

N=Nk
h (skh,a

k
h)

ηN
Nk
h (skh,a

k
h)

(
(
P kh − Ph,skh,akh

)(
V ?
h+1 − V R,k

h+1

)
+

∑Nk
h (skh,a

k
h)

i=1

(
V R,ki

h+1 (sk
i

h+1)− Ph,skh,akhV
R,k
h+1

)

Nk
h (skh, a

k
h)

)
.

Here, the first equality holds since V ?
h+1(sk

n

h+1)− V R,kn

h+1 (sk
n

h+1) = P k
n

h

(
V ?
h+1 − V

R,kn

h+1

)
(in view

of the definition of P kh in (3.15)), the second equality can be seen via simple rearrangement of

the terms, while in the last line we replace kn (resp. n) with k (resp. Nk
h (skh, a

k
h)).

Taking the above bounds together with (A.109) and (3.30), we can rearrange terms to reach

K∑

k=1

(
V k
h (skh)− V πk

h (skh)
)

≤
(

1 +
1

H

) K∑

k=1

(
V k
h+1(skh+1)− V πk

h+1(skh+1)
)

+
K∑

k=1

BR,k
h (skh, a

k
h)

+HSA+ 8cbH
2(SA)3/4K1/4 log

SAT

δ
+

K∑

k=1

(
Ph,skh,a

k
h
− P kh

)(
V ?
h+1 − V πk

h+1

)

+
K∑

k=1

NK−1
h (skh,a

k
h)∑

N=Nk
h (skh,a

k
h)

ηN
Nk
h (skh,a

k
h)

[
(
P kh − Ph,skh,akh

)(
V ?
h+1 − V R,k

h+1

)
+

∑Nk
h (skh,a

k
h)

i=1

(
V R,ki

h+1 (sk
i

h+1)− Ph,skh,akhV
R,k
h+1

)

Nk
h (skh, a

k
h)

]
,

(A.114)

where we have dropped the term − 1
H

∑
k

(
V ?
h+1(skh+1)− V πk

h+1(skh+1)
)

owing to the fact that V ?
h+1 ≥

V πk

h+1.

Thus far, we have established a crucial connection between
∑K

k=1

(
V k
h (skh)− V πk

h (skh)
)

at step

h and
∑K

k=1

(
V k
h+1(skh+1)− V πk

h+1(skh+1)
)

at step h+ 1. Clearly, the term V k
h+1(skh+1)− V πk

h+1(skh+1)

can be further bounded in the same manner. As a result, by recursively applying the above relation

(A.114) over the time steps h = 1, 2, · · · , H and using the terminal condition V k
H+1 = V πk

H+1 = 0, we

can immediately arrive at the advertised bound in Lemma 5.
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A.5 Proof of Lemma 6

A.5.1 Bounding the term R1

First of all, let us look at the first two terms of R1 in (3.32a). Recognizing the following elementary

inequality (
1 +

1

H

)h−1

≤
(

1 +
1

H

)H
≤ e for all h = 1, 2, · · · , H + 1, (A.115)

we are allowed to upper bound the first two terms in (3.32a) as follows:

H∑

h=1

(
1 +

1

H

)h−1{
HSA+ 8cbH

2(SA)3/4K1/4 log
SAT

δ

}
. H2SA+H3(SA)3/4K1/4 log

SAT

δ

. H4.5SA log2 SAT

δ
+
√
H3SAK = H4.5SA log2 SAT

δ
+
√
H2SAT , (A.116)

where the last inequality can be shown using the AM-GM inequality as follows:

H3(SA)3/4K1/4 log
SAT

δ
=
(
H9/4

√
SA log

SAT

δ

)
· (H3SAK)1/4 ≤ H4.5SA log2 SAT

δ
+
√
H3SAK.

We are now left with the last term of R1 in (3.32a). Towards this, we resort to Lemma 25 by

setting

W i
h+1 := V ?

h+1 − V πk

h+1 and ch :=

(
1 +

1

H

)h−1

.

In view of (B.44) and the property H ≥ V ?(s) ≥ V π(s) ≥ 0, we see that

0 ≤ ch ≤ e, W i
h+1 ≥ 0, and ‖W i

h+1‖∞ ≤ H =: Cw.

Therefore, applying Lemma 25 yields

∣∣∣∣∣
H∑
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(
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(
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k
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)
∣∣∣∣∣ =

∣∣∣∣∣
H∑

h=1

K∑

k=1

Yk,h

∣∣∣∣∣

.

√
TC2

w log
1

δ
+ Cw log

1

δ
=

√
H2T log

1

δ
+H log

1

δ
(A.117)

with probability exceeding 1− δ.
Combining (A.116) and (A.117) with the definition (3.32a) of R1 immediately leads to the

claimed bound.
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A.5.2 Bounding the term R2

In view of the definition of BR,k
h (skh, a

k
h) in line 14 of Algorithm 6, we can decompose R2 (cf. (3.32b))

as follows:

R2 =
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, (A.118)

where the last relation holds due to (B.44). In what follows, we intend to bound these two terms

separately.

Step 1: upper bounding the first term in (B.103). Towards this, we make the observation

that

K∑

k=1

√√√√σadv,k
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(A.119)

where the second line follows from the update rule of σadv,k
h in (B.54). Combining the relation

|V k
h+1(skh)− V R,k

h+1(skh)| ≤ 2 (cf. (3.25)) and the property
∑Nk

h (skh,a
k
h)

n=1 η
Nk
h (skh,a

k
h)

n ≤ 1 (cf. (4.17)) with

(B.104) yields
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Here, the last inequality holds due to the following fact:
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SAK, (A.121)

where the last line arises from Cauchy-Schwarz and the basic fact that
∑

(s,a)N
K
h (s, a) = K.

Step 2: upper bounding the second term in (B.103). Recalling the update rules of µref,k
h

and σref,k
h in (B.55), we have

K∑

k=1

√√√√σref,k
h (skh, a

k
h)−

(
µref,k
h (skh, a

k
h)
)2

Nk
h (skh, a

k
h)

=
K∑

k=1

√
1

Nk
h (skh, a

k
h)

√√√√
∑Nk

h (skh,a
k
h)

n=1

(
V R,kn

h+1 (sk
n

h+1)
)2

Nk
h (skh, a

k
h)

−
(∑Nk

h (skh,a
k
h)

n=1 V R,kn

h+1 (sk
n

h+1)

Nk
h (skh, a

k
h)

)2

︸ ︷︷ ︸
=:Jkh

. (A.122)

Additionally, the quantity Jkh defined in (B.107) obeys
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(A.123)

which arises from the fact that H ≥ V R,kn

h+1 ≥ V ?
h+1 ≥ 0 for all kn ≤ K and hence

(
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With (A.123) in mind, we shall proceed to bound each term in (A.123) separately.
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• The first term J1 can be straightforwardly bounded as follows
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where Φk
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(A.125)

• When it comes to the second term J2, we claim that
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which will be justified in Appendix A.5.2.1.

Plugging (A.124) and (B.141) into (A.123) and (B.107) allows one to demonstrate that
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(A.127)

where the last line follows from (A.121) and (A.111).

172



Step 3: putting together the preceding results. Finally, the above results in (A.120) and

(A.127) taken collectively with (B.103) lead to

R2 .
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Here, (i) holds due to the following two claimed inequalities
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whose proofs are postponed to to Appendix A.5.2.2 and Appendix A.5.2.3, respectively. Additionally,

the inequality (ii) above is valid since
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due to the Cauchy-Schwarz inequality. This concludes the proof of the advertised upper bound on

R2.

A.5.2.1 Proof of the inequality (B.141)

Akin to the proof of I1
4 in (A.70), let

W i
h+1 := (V ?

h+1)2 and uih(s, a,N) :=
1

N
.
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By observing and setting

Cu :=
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we can apply Lemma 24 to yield
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we can use the preceding two bounds and the triangle inequality to show that:
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with probability at least 1− δ, where the last line also makes use of the fact that ‖V ?
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A.5.2.2 Proof of the inequality (B.144)

To begin with, we make the observation that
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which relies on the fact that
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where the second inequality invokes the Cauchy-Schwarz inequality.

The rest of the proof is then dedicated to bounding (A.130). Towards this end, we first

decompose
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where (ii) follows directly from Jin et al. (2018, Lemma C.5). The second term on the right-hand

side of (A.131) can be bounded as follows
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where we define
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We shall take a moment to explain how we derive (A.132). The inequality (i) holds by observing
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(ii) is valid since V UCB
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which come respectively from Jin et al. (2018, Eqn. (C.13)) and the argument for Jin et al. (2018,

Eqn. (C.12)).1

As a consequence, substituting (A.131) and (A.132) into (A.130), we reach
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where we have applied the basic inequality 2ab ≤ a2 + b2 for any a, b ≥ 0.

1Note that the notation δkh used in Jin et al. (2018, Section C.2) and the one in the proof of Jin et al. (2018,
Theorem 1) are different; here, we need to adopt the notation used in the proof of Jin et al. (2018, Theorem 1).
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A.5.2.3 Proof of the inequality (A.129)

First, it is observed that
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Here, the first inequality holds by the monotonicity property of Φk
h(sh, ah) with respect to k (see its

definition in (A.125)) due to the same property of V R,k
h+1, while the second inequality comes from

Cauchy-Schwarz.

To continue, note that
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where the first inequality follows from Lemma 4 (cf. (3.25)) and Lemma 3 (so that V R,k
h+1(skh+1)−
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of the Cauchy-Schwarz inequality.

Combining the above relation with (A.106) and applying the triangle inequality, we can

demonstrate that
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where the second inequality follows directly from (3.26), and the first inequality is valid since

V k
h+1(skh+1)− V LCB,k

h+1 (skh+1) ≤ Qkh+1(skh+1, a
k
h+1)−QLCB,k

h+1 (skh+1, a
k
h+1).

Substitution into (A.135) gives
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thus concluding the proof.

A.5.3 Bounding the term R3

For notational convenience, we shall use the short-hand notation

ki := kih(skh, a
k
h)

whenever it is clear from the context. This allows us to decompose the expression of R3 in (3.32c)

as follows

R3 :=
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)(
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H
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k
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ηn
Nk
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≤
(
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)h
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(

1 +
1

H

)H
≤ e. (A.137)

Here, the first inequality in (A.137) follows from the property
∑∞

N=n η
N
n ≤ 1 + 1/H in Lemma 1,

while the last inequality in (A.137) results from (B.44). In the sequel, we shall control each of these

two terms separately.
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Step 1: upper bounding R1
3. We plan to control this term by means of Lemma 25. For

notational simplicity, let us define

N(s, a, h) := NK−1
h (s, a)

and set

W i
h+1 := V R,k

h+1 − V ?
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i
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H

)h−1 N(sih,a
i
h,h)∑

n=N i
h(sih,a

i
h)

ηnN i
h(sih,a

i
h).

Given the fact that V R,k
h+1(s), V ?

h+1(s) ∈ [0, H] and the condition (A.137), it is readily seen that

∣∣uih(sih, a
i
h)
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Apply Lemma 25 to yield
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(A.138)

with probability at least 1− δ/2.

It then comes down to controlling the sum
∑H

h=1

∑K
k=1 Ph,skh,a

k
h

(
V R,k
h+1 − V ?

h+1

)
. Towards this

end, we first single out the following useful fact:
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δ
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with probability at least 1− δ/4, where (i) holds according to (3.25), and (ii) is valid since
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where the first inequality follows since V UCB,k
h+1 ≥ V k

h+1 and V ?
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h+1, and the second inequality

comes from (A.134a). Additionally, invoking Freedman’s inequality (see Lemma 25) with ch = 1

and W̃ i
h = V R,k
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h+1 (so that 0 ≤ W̃ i
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∣∣∣∣∣
H∑

h=1

K∑

k=1

(
P kh − Ph,skh,akh

)(
V R,k
h+1 − V ?

h+1

)
∣∣∣∣∣ .

√
TH2 log

1

δ
+H log

1

δ
�
√
H3K log

1

δ

with probability at least 1− δ/4, which taken collectively with (A.139) reveals that
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with probability at least 1− δ/2. Substitution into (A.138) then gives
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with probability exceeding 1− δ, where the third line holds since (due to Cauchy-Schwarz)
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√
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Step 2: upper bounding R2
3. We start by making the following observation:
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where the first inequality comes from the monotonicity property V R,k
h+1 ≥ V

R,k+1
h+1 ≥ · · · ≥ V R,K

h+1 , and

the last line follows from the facts that
∑NK−1

h (skh,a
k
h)

n=Nk
h (skh,a

k
h)

1
n ≤ log T and λkh ≤ e (cf. (A.137)). In what

follows, we shall control the three terms in (A.142) separately.

• The first term in (A.142) can be controlled by Lemma 4 (cf. (3.26)) as follows:
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)
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with probability at least 1− δ/3.

• To control the second term in (A.142), we abuse the notation by setting

N(s, a, h) := NK−1
h (s, a)

and

W i
h+1 := V ?

h+1, and uih(sih, a
i
h) :=

N(sih,a
i
h,h)∑

n=N i
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i
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,
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which clearly satisfy
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Here, we have made use of the properties
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1
n ≤ log T and λkh ≤ e (cf. (A.137)).

With these in place, applying Lemma 25 reveals that
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with probability at least 1− δ/3. Here, (i) comes from the definition in (B.51), (ii) holds due

to (A.131) and (A.132), whereas (iii) is valid since

HT +H4
√
SAT = HT +

√
H7SA ·

√
HT . HT +H7SA

due to the Cauchy-Schwarz inequality.

• Turning attention the third term of (A.142), we need to properly cope with the dependency

between P kh and V R,K
h+1 . Towards this, we shall resort to the standard epsilon-net argument

(see, e.g., (Tao, 2012)), which will be presented in Appendix A.5.3.1. The final bound reads

like

∣∣∣∣∣∣

H∑

h=1

K∑

k=1

NK−1
h (skh,a

k
h)∑

n=Nk
h (skh,a

k
h)

λkh
n

(
P kh − Ph,skh,akh

)(
V R,K
h+1 − V ?

h+1

)
∣∣∣∣∣∣
. H4SA log2 SAT

δ
+

√
H3SAK log3 SAT

δ
.

(A.145)
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• Combining (A.143), (A.144) and (A.145) with (A.142), we can use the union bound to

demonstrate that

R2
3 ≤ C3,2

{
H6SA log3 SAT

δ
+

√
H2SAT log4 SAT

δ

}
(A.146)

with probability at least 1− δ, where C3,2 > 0 is some constant.

Step 3: final bound of R3. Putting the above results (A.141) and (A.146) together, we

immediately arrive at

R3 ≤
∣∣R1

3

∣∣+R2
3 ≤ Cr,3

{
H6SA log3 SAT

δ
+

√
H2SAT log4 SAT

δ

}
(A.147)

with probability at least 1− 2δ, where Cr,3 > 0 is some constant. This immediately concludes the

proof.

A.5.3.1 Proof of (A.145)

Step 1: concentration bounds for a fixed group of vectors. Consider a fixed group of

vectors {V d
h+1 ∈ RS | 1 ≤ h ≤ H} obeying the following properties:

V ?
h+1 ≤ V d

h+1 ≤ H for 1 ≤ h ≤ H. (A.148)

We intend to control the following sum
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∣∣uih(sih, a
i
h)
∣∣ ≤ e

N(sih,a
i
h,h)∑

n=N i
h(sih,a

i
h)

1

n
≤ e log T =: Cu and ‖W i

h+1‖∞ ≤ H =: Cw,

183



which hold due to the facts
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with probability at least 1− δ0, where the choice of δ0 will be revealed momentarily.

Step 2: constructing and controlling an epsilon net. Our argument in Step 1 is only

applicable to a fixed group of vectors. The next step is then to construct an epsilon net that allows

one to cover the set of interest. Specifically, let us construct an epsilon net Nh+1,α (the value of α

will be specified shortly) for each h ∈ [H] such that:

a) for any Vh+1 ∈ [0, H]S , one can find a point V net
h+1 ∈ Nh+1,α obeying

0 ≤ Vh+1(s)− V net
h+1(s) ≤ α for all s ∈ S;

b) its cardinality obeys
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(H
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)S
. (A.150)

Clearly, this also means that

∣∣N2,α ×N3,α × · · · × NH+1,α
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.

Set δ0 = 1
6δ/
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. Taking (A.149) together the union bound implies that: with probability
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(A.151)

simultaneously for all {V net
h+1 | 1 ≤ h ≤ H} obeying V d

h+1 ∈ Nh+1,α (h ∈ [H]).

Step 3: obtaining uniform bounds. We are now positioned to establish a uniform bound over

the entire set of interest. Consider an arbitrary group of vectors {V u
h+1 ∈ RS | 1 ≤ h ≤ H} obeying

(A.148). By construction, one can find a group of points
{
V net
h+1 ∈ Nh+1,α | h ∈ [H]

}
such that

0 ≤ V u
h+1(s)− V net

h+1(s) ≤ α for all (h, s) ∈ S × [H]. (A.152)

It is readily seen that
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where the last inequality follows from
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where the last line holds due to the condition (A.152) and our choice of α. To summarize, with

probability exceeding 1− δ/6, the property (A.154) holds simultaneously for all {V u
h+1 ∈ RS | 1 ≤

h ≤ H} obeying (A.148).

Step 4: controlling the original term of interest. With the above union bound in hand, we

are ready to control the original term of interest

H∑

h=1

K∑

k=1

NK−1
h (skh,a

k
h)∑

n=Nk
h (skh,a

k
h)

λkh
n

(
P kh − Ph,skh,akh

)(
V R,K
h+1 − V ?

h+1

)
. (A.155)

To begin with, it can be easily verified using (3.20) that

V ?
h+1 ≤ V R,K

h+1 ≤ H for all 1 ≤ h ≤ H. (A.156)

Moreover, we make the observation that

H∑

h=1

K∑

k=1

Ph,skh,a
k
h

(
V R,K
h+1 − V ?

h+1

) (i)

≤
H∑

h=1

K∑

k=1

Ph,skh,a
k
h

(
V R,k
h+1 − V ?

h+1

)

(ii)

≤
√
H7SAK log

SAT

δ
+H3SA+HK (A.157)

with probability exceeding 1− δ/6, where (i) holds because V R
h+1 is monotonically non-increasing

(in view of the monotonicity of Vh(s) in (3.17b) and the update rule in line 16 of Algorithm 3), and

(ii) follows from (A.140). Substitution into (A.154) yields

∣∣∣∣∣∣

H∑

h=1

K∑

k=1

NK−1
h (skh,a

k
h)∑

n=Nk
h (skh,a

k
h)

λkh
n

(
P kh − Ph,skh,akh

)(
V R,K
h+1 − V ?

h+1

)
∣∣∣∣∣∣

.

√√√√H2SA

H∑

h=1

K∑

i=1

Ph,skh,a
k
h

(
V R,K
h+1 − V ?

h+1

) (
log2 T

)
log

SAT

δ
+H2SA log2 SAT

δ

.

√√√√H2SA

{√
H7SAK log

SAT

δ
+H3SA+HK

}
(

log2 T
)

log
SAT

δ
+H2SA log2 SAT

δ

.

√
H2SA

{
H6SA log

SAT

δ
+H3SA+HK

}
log3 SAT

δ
+H2SA log2 SAT

δ
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. H4SA log2 SAT

δ
+

√
H3SAK log3 SAT

δ
, (A.158)

where the penultimate line holds since

√
H7SAK log

SAT

δ
=

√
H6SA log

SAT

δ

√
HK . H6SA log

SAT

δ
+HK.
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Appendix B

Proofs for Chapter 4

B.1 Technical lemmas

B.1.1 Preliminary facts

Our results rely heavily on proper choices of the learning rates, leading to several useful properties

which have been established in Lemma 1.

In addition, we gather a few elementary properties about the Binomial distribution, which will

be useful throughout the proof. The lemma below is adapted from Xie et al. (2021b, Lemma A.1).

Lemma 27. Suppose N ∼ Binomial(n, p), where n ≥ 1 and p ∈ [0, 1]. For any δ ∈ (0, 1), we have

p

N ∨ 1
≤ 8 log

(
1
δ

)

n
, (B.1)

and

N ≥ np

8 log
(

1
δ

) if np ≥ 8 log

(
1

δ

)
, (B.2a)

N ≤




e2np if np ≥ log

(
1
δ

)
,

2e2 log
(

1
δ

)
if np ≤ 2 log

(
1
δ

)
.

(B.2b)

with probability at least 1− 4δ.

Proof. To begin with, we directly invoke Xie et al. (2021b, Lemma A.1) which yields the results in

(B.1) and (B.2a). Regarding (B.2b), invoking the Chernoff bound (Vershynin, 2018, Theorem 2.3.1)

with E[N ] = np, when np ≥ log
(

1
δ

)
, it satisfies

P(N ≥ e2np) ≤ e−np
(
enp

e2np

)e2np
≤ e−np ≤ δ.

Similarly, when np ≤ 2 log
(

1
δ

)
, we have

P
(
N ≥ 2e2 log

(
1

δ

))
(i)

≤ e−np

(
enp

2e2 log
(

1
δ

)
)2e2 log( 1

δ
)
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(ii)

≤ e−np
(
enp

e2np

)2e2 log( 1
δ

)

≤ e−2e2 log( 1
δ ) ≤ δ,

where (i) results from Vershynin (2018, Theorem 2.3.1), and (ii) follows from the basic fact

e2 log
(

1
δ

)
≥ 2 log

(
1
δ

)
≥ np. Taking the union bound thus completes the proof.

B.1.2 Application of Freedman’s inequality

Both the samples collected within each episode and the algorithms analyzed herein exhibit certain

Markovian structure. As a result, concentration inequalities tailored to martingales become particu-

larly effective for our analysis. Besides Freedman’s inequality (cf. Theorem 18) and its consequence

established in Lemma 24, we shall make note of an immediate consequence of Lemma 24 tailored to

our problem. Recall that N i
h(s, a) denotes the number of times that (s, a) has been visited at step h

before the beginning of the i-th episode, and kn(s, a) stands for the index of the episode in which

(s, a) is visited for the n-th time.

Lemma 28. Let
{
W i
h ∈ RS | 1 ≤ i ≤ K, 1 ≤ h ≤ H + 1

}
be a collection of vectors satisfying the

following properties:

• W i
h is fully determined by the samples collected up to the end of the (h− 1)-th step of the i-th

episode;

• ‖W i
h‖∞ ≤ Cw.

For any positive N ≥ H, we consider the following sequence

Xi(s, a, h,N) := ηNN i
h(s,a)

(
P ih − Ph,s,a

)
W i
h+1 1

{
(sih, a

i
h) = (s, a)

}
, 1 ≤ i ≤ K, (B.3)

with P ih defined in (4.18). Consider any δ ∈ (0, 1). With probability at least 1− δ,
∣∣∣∣∣
k∑

i=1

Xi(s, a, h,N)

∣∣∣∣∣ .
√
H

N
C2

w log2 SAT

δ
(B.4)

holds simultaneously for all (k, h, s, a,N) ∈ [K]× [H]× S ×A× [K].

Proof. Taking uih(s, a,N) = ηN
N i
h(s,a)

, one can see from (3.14b) in Lemma 1 that

∣∣uih(s, a,N)
∣∣ ≤ 2H

N
=: Cu.

Recognizing the trivial bound Varh,s,a
(
W

knh(s,a)

h+1

)
≤ C2

w, we can invoke Lemma 24 to obtain that,
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with probability at least 1− δ,

∣∣∣∣∣
k∑

i=1

Xi(s, a, h,N)

∣∣∣∣∣ .
√
Cu log2 SAT

δ

√√√√√
Nk
h (s,a)∑

n=1

ηNn C
2
w +

(
CuCw +

√
Cu

N
Cw

)
log2 SAT

δ

.

√
H

N
log2 SAT

δ
· Cw +

HCw

N
log2 SAT

δ
.

√
HC2

w

N
log2 SAT

δ

holds simultaneously for all (k, h, s, a,N) ∈ [K] × [H] × S × A × [K], where the last line applies

(3.14b) in Lemma 1 once again.

Finally, we introduce another lemma by invoking Freedman’s inequality in Theorem 18.

Lemma 29. Let
{
W k
h (s, a) ∈ RS | (s, a) ∈ S × A, 1 ≤ k ≤ K, 1 ≤ h ≤ H + 1

}
be a collection of

vectors satisfying the following properties:

• W k
h (s, a) is fully determined by the given state-action pair (s, a) and the samples collected up

to the end of the (k − 1)-th episode;

• ‖W k
h (s, a)‖∞ ≤ Cw.

For any positive Cd ≥ 0, we consider the following sequences

Xh,k := Cd


d

π?
h (skh, a

k
h)

dµh(skh, a
k
h)
Ph,skh,a

k
h
W k
h+1(skh, a

k
h)−

∑

(s,a)∈S×A

dπ?h (s, a)Ph,s,aW
k
h+1(s, a)


 , 1 ≤ k ≤ K,

(B.5)

Xh,k := Cd


d

π?
h (skh, a

k
h)

dµh(skh, a
k
h)
P khW

k
h+1(skh, a

k
h)−

∑

(s,a)∈S×A

dπ?h (s, a)Ph,s,aW
k
h+1(s, a)


 , 1 ≤ k ≤ K.

(B.6)

Consider any δ ∈ (0, 1). Then with probability at least 1− δ,
∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣ ≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A

dπ?h (s, a)
[
Ph,s,aW

k
h+1(s, a)

]2
log

2H

δ
+ 2CdC

?Cw log
2H

δ
(B.7)

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣ ≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A

dπ?h (s, a)Ph,s,a
[
W k
h+1(s, a)

]2
log

2H

δ
+ 2CdC

?Cw log
2H

δ

(B.8)

hold simultaneously for all h ∈ [H].
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Proof. We intend to apply Freedman’s inequality (cf. Theorem 18) to control
∑K

k=1Xh,k. Considering

any given time step h, it is easily verified that

Ek−1[Xh,k] = 0, Ek−1[Xh,k] = 0,

where Ek−1 denotes the expectation conditioned on everything happening up to the end of the

(k − 1)-th episode. To continue, we observe that

|Xh,k| ≤ Cd

(
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)

+ 1

)∥∥∥W k
h+1(s, a)

∥∥∥
∞
≤ 2CdC

?Cw, (B.9)

|Xh,k| ≤ Cd

(
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)

+ 1

)∥∥∥W k
h+1(s, a)

∥∥∥
∞
≤ 2CdC

?Cw, (B.10)

where we use the assumptions
dπ?h (s,a)

dµh(s,a)
≤ C? for all (h, s, a) ∈ [H]× S ×A (cf. Assumption 1) and

∥∥W k
h+1(skh, a

k
h)
∥∥
∞ ≤ Cw.

Recall that ∆(S ×A) is the probability simplex over the set S ×A of all state-action pairs,

and we denote by dµh ∈ ∆(S ×A) the state-action visitation distribution induced by the behavior

policy µ at time step h ∈ [H]. With this in hand, we obtain

K∑

k=1

Ek−1[|Xh,k|2] ≤
K∑

k=1

C2
dEk−1


d

π?
h (skh, a

k
h)

dµh(skh, a
k
h)
Ph,skh,a

k
h
W k
h+1(skh, a

k
h)−

∑

(s,a)∈S×A

dπ?h (s, a)Ph,s,aW
k
h+1(s, a)




2

≤
K∑

k=1

C2
dE(skh,a

k
h)∼dµh

[
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)
Ph,skh,a

k
h
W k
h+1(skh, a

k
h)

]2

=
K∑

k=1

C2
d

∑

(s,a)∈S×A

dπ?h (s, a)

dµh(s, a)
dπ?h (s, a)

[
Ph,s,aW

k
h+1(s, a)

]2

(i)

≤
K∑

k=1

C2
dC

?
∑

(s,a)∈S×A

dπ?h (s, a)
[
Ph,s,aW

k
h+1(s, a)

]2
(B.11)

≤
K∑

k=1

C2
d

∑

(s,a)∈S×A

C?dπ?h (s, a)
∥∥∥W k

h+1(skh, a
k
h)
∥∥∥

2

∞
≤ C2

dC
?C2

wK, (B.12)

where (i) follows from
dπ?h (s,a)

dµh(s,a)
≤ C? (see Assumption 1) and the assumption

∥∥W k
h+1(skh, a

k
h)
∥∥
∞ ≤ Cw.

Similarly, we can derive

K∑

k=1

Ek−1[|Xh,k|2] ≤
K∑

k=1

C2
dEk−1


d

π?
h (skh, a

k
h)

dµh(skh, a
k
h)
P khW

k
h+1(skh, a

k
h)−

∑

(s,a)∈S×A

dπ?h (s, a)Ph,s,aW
k
h+1(s, a)




2
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≤
K∑

k=1

C2
dE(skh,a

k
h)∼dµh


EPkh∼Ph,sk

h
,ak
h

[
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)
P khW

k
h+1(skh, a

k
h)

]2



=

K∑

k=1

C2
d

∑

(s,a)∈S×A

dπ?h (s, a)

dµh(s, a)
dπ?h (s, a)EPkh∼Ph,s,a

[
P khW

k
h+1(s, a)

]2

(i)

≤
K∑

k=1

C2
dC

?
∑

(s,a)∈S×A

dπ?h (s, a)EPkh∼Ph,s,a
[
P khW

k
h+1(s, a)

]2
(B.13)

=

K∑

k=1

C2
dC

?
∑

(s,a)∈S×A

dπ?h (s, a)Ph,s,a

[
W k
h+1(s, a)

]2
(B.14)

≤
K∑

k=1

C2
d

∑

(s,a)∈S×A

C?dπ?h (s, a)
∥∥∥W k

h+1(s, a)
∥∥∥

2

∞
≤ C2

dC
?C2

wK, (B.15)

where (i) follows from
dπ?h (s,a)

dµh(s,a)
≤ C? (see Assumption 1) and the assumption

∥∥W k
h+1(skh, a

k
h)
∥∥
∞ ≤ Cw.

Plugging in the results in (B.9) and (B.11) (resps. (B.10) and (B.14)) to control
∑K

k=1 |Xh,k|
(resps.

∑K
k=1

∣∣Xh,k

∣∣), we invoke Theorem 18 with m = dlog2Ke and take the union bound over

h ∈ [H] to show that with probability at least 1− δ,

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣ ≤

√√√√√8 max





K∑

k=1

C2
dC

?
∑

(s,a)∈S×A

dπ?h (s, a)
[
Ph,s,aW

k
h+1(s, a)

]2
,
C2

dC
?C2

wK

2m



 log

2H

δ

+
8

3
CdC

?Cw log
2H

δ

≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A

dπ?h (s, a)
[
Ph,s,aW

k
h+1(s, a)

]2
log

2H

δ
+ 6CdC

?Cw log
2H

δ

and

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣ ≤

√√√√√8 max





K∑

k=1

C2
dC

?
∑

(s,a)∈S×A

dπ?h (s, a)Ph,s,a
[
W k
h+1(s, a)

]2
,
C2

dC
?C2

wK

2m



 log

2H

δ

+
8

3
CdC

?Cw log
2H

δ

≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A

dπ?h (s, a)Ph,s,a
[
W k
h+1(s, a)

]2
log

2H

δ
+ 6CdC

?Cw log
2H

δ

holds simultaneously for all h ∈ [H].
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B.2 Proof of main lemmas for LCB-Q (Theorem 2)

B.2.1 Proof of Lemma 7

B.2.1.1 Proof of inequality (4.22)

To begin with, we shall control
∑Nk

h (s,a)
n=1 η

Nk
h (s,a)

n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1 by invoking Lemma 28.

Let

W i
h+1 := V i

h+1,

which satisfies

‖W i
h+1‖∞ ≤ H =: Cw.

Applying Lemma 28 with N = Nk
h (s, a) reveals that, with probability at least 1− δ,

∣∣∣∣∣

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣ =

∣∣∣∣∣
k∑

i=1

Xi

(
s, a, h,Nk

h (s, a)
)
∣∣∣∣∣ ≤ cb

√
H3ι2

Nk
h (s, a)

(B.16a)

holds simultaneously for all (s, a, k, h) ∈ S × A× [K]× [H], provided that the constant cb > 0 is

large enough and that Nk
h (s, a) > 0. If Nk

h (s, a) = 0, then we have the trivial bound

∣∣∣∣∣

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣ = 0. (B.16b)

Additionally, from the definition bn = cb

√
H3ι2

n , we observe that





∑Nk
h (s,a)

n=1 η
Nk
h (s,a)

n bn ∈
[
cb

√
H3ι2

Nk
h (s,a)

, 2cb

√
H3ι2

Nk
h (s,a)

]
, if Nk

h (s, a) > 0
∑Nk

h (s,a)
n=1 η

Nk
h (s,a)

n bn = 0, if Nk
h (s, a) = 0

(B.17)

holds simultaneously for all s, a, h, k ∈ S ×A× [H]× [K], which follows directly from the property

(3.14a) in Lemma 1.

Combining the above bounds (B.16) and (B.17), we arrive at the advertised result

∣∣∣∣∣

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣ ≤
Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n bn.
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B.2.1.2 Proof of inequality (4.23)

Note that the second inequality of (4.23) holds straightforwardly as

V π
h (s) ≤ V ?(s)

holds for any policy π. As a consequence, it suffices to establish the first inequality of (4.23), namely,

V k
h (s) ≤ V πk

h (s) for all (s, h, k) ∈ S × [H]× [K]. (B.18)

Before proceeding, let us introduce the following auxiliary index

ko(h, k, s) := max
{
l : l < k and V l

h(s) = max
a

Qlh(s, a)
}

(B.19)

for any (h, k, s) ∈ [H]× [K]× S, which denotes the index of the latest episode — before the end

of the (k − 1)-th episode — in which Vh(s) has been updated. In what follows, we shall often

abbreviate ko(h, k, s) as ko(h) whenever it is clear from the context.

Towards establishing the relation (B.18), we proceed by means of an inductive argument. In

what follows, we shall first justify the desired inequality for the base case when h + 1 = H + 1

for all episodes k ∈ [K], and then use induction to complete the argument for other cases. More

specifically, consider any step h ∈ [H] in any episode k ∈ [K], and suppose that the first inequality

of (4.23) is satisfied for all previous episodes as well as all steps h′ ≥ h+ 1 in the current episode,

namely,

V k′
h′ (s) ≤ V πk

′

h′ (s) for all (k′, h′, s) ∈ [k − 1]× [H + 1]× S, (B.20a)

V k
h′(s) ≤ V πk

h′ (s) for all h′ ≥ h+ 1 and s ∈ S. (B.20b)

We intend to justify that the following is valid

V k
h (s) ≤ V πk

h (s) for all s ∈ S, (B.21)

assuming that the induction hypothesis (B.20) holds.

Step 1: base case. Let us begin with the base case when h+ 1 = H + 1 for all episodes k ∈ [K].

Recognizing the fact that V π
H+1 = V k

H+1 = 0 for any π and any k ∈ [K], we directly arrive at

V k
H+1(s) ≤ V πk

H+1(s) for all (k, s) ∈ [K]× S. (B.22)
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Step 2: induction. To justify (B.21) under the induction hypothesis (B.20), we decompose the

difference term to obtain

V πk

h (s)− V k
h (s) = V πk

h (s)−max
{

max
a

Qkh(s, a), V k−1
h (s)

}

= Qπ
k

h

(
s, πkh(s)

)
−max

{
max
a

Qkh(s, a), V
ko(h)
h (s)

}
, (B.23)

where the last line holds since Vh(s) has not been updated during episodes ko(h), ko(h) + 1, · · · , k−1

(in view of the definition of ko(h) in (B.19)). We shall prove that the right-hand side of (B.23) is

non-negative by discussing the following two cases separately.

• Consider the case where V k
h (s) = maxaQ

k
h(s, a). Before continuing, it is easily observed from

the update rule in line 13 and line 12 of Algorithm 4 that: Vh(s) and πh(s) are updated

hand-in-hand for every h. Thus, it implies that

πkh(s) = arg max
a

Qkh(s, a), when V k
h (s) = max

a
Qkh(s, a) (B.24)

holds for all (k, h) ∈ [K]× [H]. As a result, we express the term of interest as follows:

V πk

h (s)− V k
h (s) = Qπ

k

h

(
s, πkh(s)

)
−max

a
Qkh(s, a) = Qπ

k

h

(
s, πkh(s)

)
−Qkh

(
s, πkh(s)

)
. (B.25)

To continue, we turn to controlling a more general term Qπ
k

h (s, a)−Qkh(s, a) for all (s, a) ∈ S×A.

Invoking the fact η
Nk
h

0 +
∑Nk

h
n=1 η

Nk
h

n = 1 (see (4.16) and (4.17)) leads to

Qπ
k

h (s, a) = η
Nk
h

0 Qπ
k

h (s, a) +

Nk
h∑

n=1

η
Nk
h

n Qπ
k

h (s, a).

This relation combined with (4.20) allows us to express the difference between Qπ
k

h and Qkh as

follows

Qπ
k

h (s, a)−Qkh(s, a) = η
Nk
h

0

(
Qπ

k

h (s, a)−Q1
h(s, a)

)
+

Nk
h∑

n=1

η
Nk
h

n

[
Qπ

k

h (s, a)− rh(s, a)− V kn

h+1(sk
n

h+1) + bn

]

(i)
= η

Nk
h

0

(
Qπ

k

h (s, a)−Q1
h(s, a)

)
+

Nk
h∑

n=1

η
Nk
h

n

[
Ph,s,aV

πk

h+1 − V kn

h+1(sk
n

h+1) + bn

]

(ii)

≥
Nk
h∑

n=1

η
Nk
h

n

[
Ph,s,aV

πk

h+1 − V kn

h+1(sk
n

h+1) + bn

]

(iii)
=

Nk
h∑

n=1

η
Nk
h

n Ph,s,a

(
V πk

h+1 − V kn

h+1

)
+

Nk
h∑

n=1

η
Nk
h

n

[(
Ph,s,a − P k

n

h

)
V kn

h+1 + bn

]
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(iv)

≥
Nk
h∑

n=1

η
Nk
h

n

[(
Ph,s,a − P k

n

h

)
V kn

h+1 + bn

]
. (B.26)

Here, (i) invokes the Bellman equation Qπ
k

h (s, a) = rh(s, a) + Ph,s,aV
πk

h+1; (ii) holds since

Qπ
k

h (s, a) ≥ 0 = Q1
h(s, a); (iii) relies on the notaion (4.18); and (iv) comes from the fact

V πk

h+1 ≥ V k
h+1 ≥ V kn

h+1,

owing to the induction hypothesis in (B.20) as well as the monotonicity of Vh+1 in (4.21).

Consequently, it follows from (B.26) that

Qπ
k

h (s, a)−Qkh(s, a) ≥
Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1 +

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n bn

≥
Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n bn −
∣∣∣∣∣

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
Ph,s,a − P k

n(s,a)
h

)
V
kn(s,a)
h+1

∣∣∣∣∣ ≥ 0 (B.27)

for all state-action pair (s, a), where the last inequality holds due to the bound (4.22) in

Lemma 7. Plugging the above result into (B.25) directly establishes that

V πk

h (s)− V k
h (s) = Qπ

k

h

(
s, πk(s)

)
−Qkh

(
s, πk(s)

)
≥ 0. (B.28)

• When V k
h (s) = V

ko(h)
h (s), it indicates that

V
ko(h)
h (s) = max

a
Q
ko(h)
h (s, a), π

ko(h)
h (s) = arg max

a
Q
ko(h)
h (s, a), (B.29)

which follows from the definition of ko(h) in (B.19) and the corresponding fact in (B.24). We

also make note of the fact that

πkh(s) = π
ko(h)
h (s), (B.30)

which holds since Vh(s) (and hence πh(s)) has not been updated during episodes ko(h), ko(h) +

1, · · · , k − 1 (in view of the definition (B.19)). Combining the above two results, we can show

that

V πk

h (s)− V k
h (s) = Qπ

k

h

(
s, πkh(s)

)
− V ko(h)

h (s) = Qπ
k

h

(
s, πkh(s)

)
−max

a
Q
ko(h)
h (s, a)

= Qπ
k

h

(
s, π

ko(h)
h (s)

)
−Qko(h)

h

(
s, π

ko(h)
h (s)

)

≥ 0, (B.31)
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where the final line can be verified using exactly the same argument as in the previous case to

show (B.26) and then (B.28). Here, we omit the proof of this step for brevity.

To conclude, substituting the relations (B.28) and (B.31) in the above two cases back into

(B.23), we arrive at

V πk

h (s)− V k
h (s) ≥ 0

as desired in (B.21). This immediately completes the induction argument.

B.2.2 Proof of Lemma 8

We make the observation that Lemma 8 would follow immediately if we could establish the following

relation:

Ah :=

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)Ph,s,a

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
V ?
h+1 − V

kn(s,a)
h+1

)

︸ ︷︷ ︸
=:Ah,k

≤
K∑

k=1

(
1 +

1

H

)∑

s∈S
dπ

?

h+1(s)
(
V ?
h+1(s)− V k

h+1(s)
)

︸ ︷︷ ︸
=:Bh,k

+24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ
.

(B.32)

The remainder of the proof is thus dedicated to proving (B.32).

To continue, let us first consider two auxiliary sequences {Yh,k}Kk=1 and {Zh,k}Kk=1 which are

the empirical estimates of Ah,k and Bh,k, respectively. For any time step h in episode k, Yh,k and

Zh,k are defined as follows

Yh,k :=
dπ

?

h (skh, a
k
h)

dµh(skh, a
k
h)
Ph,skh,a

k
h

Nk
h (skh,a

k
h)∑

n=1

η
Nk
h (skh,a

k
h)

n

(
V ?
h+1 − V

kn(skh,a
k
h)

h+1

)
,

Zh,k :=

(
1 +

1

H

)
dπ

?

h (skh, a
k
h)

dµh(skh, a
k
h)
Ph,skh,a

k
h

(
V ?
h+1 − V k

h+1

)
.

To begin with, let us establish the relationship between {Yh,k}Kk=1 and {Zh,k}Kk=1:

K∑

k=1

Yh,k =
K∑

k=1

dπ
?

h (skh, a
k
h)

dµh(skh, a
k
h)
Ph,skh,a

k
h

Nk
h (skh,a

k
h)∑

n=1

η
Nk
h (skh,a

k
h)

n

(
V ?
h+1 − V

kn(skh,a
k
h)

h+1

)

(i)
=

K∑

l=1

dπ
?

h (slh, a
l
h)

dµh(slh, a
l
h)
Ph,slh,a

l
h





NK
h (slh,a

l
h)∑

N=N l
h(slh,a

l
h)

ηN
N l
h(slh,a

l
h)




(
V ?
h+1 − V l

h+1

)
(B.33)
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≤
(

1 +
1

H

) K∑

k=1

dπ
?

h (skh, a
k
h)

dµh(skh, a
k
h)
Ph,skh,a

k
h

(
V ?
h+1 − V k

h+1

)
=

K∑

k=1

Zh,k. (B.34)

Here, (i) holds by replacing kn(skh, a
k
h) with l and gathering all terms that involve V ?

h+1 − V l
h+1;

in the last line, we have invoked the property
∑NK

h (s,a)

N=n ηNn ≤
∑∞

N=n η
N
n = 1 + 1/H (see (3.14b))

together with the fact V ?
h+1 − V l

h+1 ≥ 0 (see Lemma 7), and have further replaced l with k.

With the above relation in hand, in order to verify (B.32), we further decompose Ah into

several terms

Ah =

K∑

k=1

Ah,k =

K∑

k=1

Yh,k +

K∑

k=1

(Ah,k − Yh,k)
(i)

≤
K∑

k=1

Zh,k +

K∑

k=1

(Ah,k − Yh,k)

=
K∑

k=1

Bh,k +
K∑

k=1

(Zh,k −Bh,k) +
K∑

k=1

(Ah,k − Yh,k) (B.35)

where (i) follows from (B.34).

As a result, it remains to control
∑K

k=1 (Zh,k −Bh,k) and
∑K

k=1 (Ah,k − Yh,k) separately in

the following.

Step 1: controlling
∑K

k=1 (Ah,k − Yh,k). We shall first control this term by means of Lemma 29.

Specifically, consider

W k
h+1(s, a) :=

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
V ?
h+1 − V

kn(s,a)
h+1

)
, Cd := 1 (B.36)

which satisfies

∥∥∥W k
h+1(s, a)

∥∥∥
∞
≤

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(∥∥V ?
h+1

∥∥
∞ +

∥∥∥V kn(s,a)
h+1

∥∥∥
∞

)
≤ 2H =: Cw. (B.37)

Here we use the fact that η
Nk
h

0 +
∑Nk

h
n=1 η

Nk
h

n = 1 (see (4.16) and (4.17)). Then, applying Lemma 29

with (B.36), we have with probability at least 1− δ, the following inequality holds true

∣∣∣∣∣
K∑

k=1

(Ah,k − Yh,k)
∣∣∣∣∣ =:

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣

≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A

dπ
?

h (s, a)
[
Ph,s,aW

k
h+1(s, a)

]2
log

2H

δ
+ 2CdC

?Cw log
2H

δ
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(i)

≤

√√√√8C?
K∑

k=1

∥∥W k
h+1(s, a)

∥∥2

∞ log
2H

δ
+ 4HC? log

2H

δ

≤ 8

√
H2C?K log

2H

δ
+ 4HC? log

2H

δ
, (B.38)

where (i) holds since
∣∣Ph,s,aW k

h+1(s, a)
∣∣ ≤

∥∥Ph,s,a
∥∥

1
‖W k

h+1(s, a)‖∞ = ‖W k
h+1(s, a)‖∞.

Step 2: controlling
∑K

k=1 (Zh,k −Bh,k). Similarly, we shall control
∑K

k=1 (Zh,k −Bh,k) by in-

voking Lemma 29.

Recall that

Zh,k −Bh,k =

(
1 +

1

H

)
dπ

?

h (skh, a
k
h)

dµh(skh, a
k
h)
Ph,skh,a

k
h

(
V ?
h+1 − V k

h+1

)
−
(

1 +
1

H

)∑

s∈S
dπ

?

h+1(s)
(
V ?
h+1(s)− V k

h+1(s)
)
,

(B.39)

and let us consider

W k
h+1(s, a) := V ?

h+1 − V k
h+1, Cd :=

(
1 +

1

H

)
≤ 2 (B.40)

which satisfies

∥∥∥W k
h+1(s, a)

∥∥∥
∞
≤
∥∥V ?

h+1

∥∥
∞ +

∥∥∥V k
h+1

∥∥∥
∞
≤ 2H =: Cw. (B.41)

Again, in view of Lemma 29, we can show that with probability at least 1− δ,
∣∣∣∣∣
K∑

k=1

(Bh,k − Zh,k)
∣∣∣∣∣ =

∣∣∣∣∣
K∑

k=1

Xh,k

∣∣∣∣∣

≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A

dπ
?

h (s, a)
[
Ph,s,aW

k
h+1(s, a)

]2
log

2H

δ
+ 2CdC

?Cw log
2H

δ

(i)

≤

√√√√32C?
K∑

k=1

∥∥W k
h+1(s, a)

∥∥2

∞ log
2H

δ
+ 8HC? log

2H

δ

≤ 16

√
H2C?K log

2H

δ
+ 8HC? log

2H

δ
, (B.42)

where (i) holds due to the fact
∥∥Ph,s,a

∥∥
1

= 1.
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Step 3: putting all this together. Substitution results in (B.38) and (B.42) back into (B.35)

completes the proof of (B.32) as follows

Ah ≤
K∑

k=1

Bh,k +

∣∣∣∣
K∑

k=1

(Zh,k −Bh,k)
∣∣∣∣+

∣∣∣∣
K∑

k=1

(Ah,k − Yh,k)
∣∣∣∣

≤
K∑

k=1

Bh,k + 24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ
.

This in turn concludes the proof of Lemma 8.

B.2.3 Proof of Lemma 9

Recall that the term of interest in (4.33) is given by

H∑

h=1

(
1 +

1

H

)h−1
(

24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ

)
+

H∑

h=1

(
1 +

1

H

)h−1

Ih. (B.43)

First, it is easily seen that

(
1 +

1

H

)h−1

≤
(

1 +
1

H

)H
≤ e for every h = 1, · · · , H, (B.44)

which taken collectively with the expression of the first term in (B.43) yields

H∑

h=1

(
1 +

1

H

)h−1
(

24

√
H2C?K log

2H

δ
+ 12HC? log

2H

δ

)
≤ 24e

H∑

h=1

(√
H2C?K log

2H

δ
+HC? log

2H

δ

)

.

√
H4C?K log

H

δ
+H2C? log

H

δ
.

(B.45)

As a result, it remains to control the second term in (B.43). Plugging the expression of Ih

(cf. (4.30)) and invoking the fact (B.44) give

H∑

h=1

(
1 +

1

H

)h−1

Ih =

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)η
Nk
h (s,a)

0 H

+ 2

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n bn
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≤ e
H∑

h=1

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)η
Nk
h (s,a)

0 H

︸ ︷︷ ︸
=:A

+ 2e
H∑

h=1

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n bn

︸ ︷︷ ︸
=:B

.

(B.46)

Step 1: controlling the quantities A and B in (B.46). We first develop an upper bound on

the quantity A in (B.46). Recognizing the fact that ηN0 = 0 for any N > 0 (see (4.16)), we have

A = e
H∑

h=1

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)η
Nk
h (s,a)

0 H

≤ eH
H∑

h=1

∑

(s,a)∈S×A

dπ
?

h (s, a)
K∑

k=1

1
(
Nk
h (s, a) < 1

)

≤ eH
H∑

h=1

∑

(s,a)∈S×A

dπ
?

h (s, a)
8ι

dµh(s, a)
+ eH

H∑

h=1

∑

(s,a)∈S×A

dπ
?

h (s, a)

K∑

k=d 8ι

d
µ
h

(s,a)
e

1
(
Nk
h (s, a) < 1

)

= eH
H∑

h=1

∑

s∈S
dπ

?

h

(
s, π?(s)

) 8ι

dµh
(
s, π?(s)

) + eH
H∑

h=1

∑

s∈S
dπ

?

h

(
s, π?(s)

) K∑

k=d 8ι

d
µ
h

(s,π?(s))
e

1
(
Nk
h

(
s, π?(s)

)
< 1
)
,

where the last equality holds since π? is a deterministic policy (so that dπ
?

h (s, a) 6= 0 only when

a = π?(s)). Recalling
dπ
?

h (s,a)

dµh(s,a)
≤ C? under Assumption 1, we can further bound A by

A ≤ 8eH2SC?ι+ eH

H∑

h=1

∑

s∈S
dπ

?

h

(
s, π?(s)

) K∑

k=d 8ι

d
µ
h

(s,π?(s))
e

1
(
Nk
h

(
s, π?(s)

)
< 1
)

= 8eH2SC?ι, (B.47)

where the last inequality follows since when k ≥ 8ι
dµh(s,a)

, one has — with probability at least 1− δ —

that

Nk
h (s, a) ≥ kdµh(s, a)

8ι
≥ 1,

holds simultaneously for all (s, a, h, k) ∈ S ×A× [K]× [H] (as implied by (B.2a)).

Turning to the quantity B in (B.46), one can deduce that

B = 2e

H∑

h=1

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n bn
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.
H∑

h=1

K∑

k=1

∑

(s,a)∈S×A

dπ
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√
H3ι2

Nk
h (s, a) ∨ 1

=
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s∈S
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?
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(
s, π?(s)

)
√

H3ι2

Nk
h

(
s, π?(s)

)
∨ 1

,

(B.48)

where the inequality follows from inequality (B.17), and the last equality is valid since π? is a

deterministic policy.

To further control the right hand side above, Lemma 27 provides an upper bound for√
1/
(
Nk
h

(
s, π?(s)

)
∨ 1
)

which in turn leads to

B .
√
H3ι3

H∑
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s∈S
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(
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)
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(
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.
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s∈S

√
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(
s, π?(s)

)√1

k

.
√
H5C?Kι3 max

h
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s∈S

√
dπ

?

h

(
s, π?(s)

)

.
√
H5C?Kι3 ·

(
√
S ·
√∑

s∈S
dπ

?

h

(
s, π?(s)

)
)
�
√
H5SC?Kι3, (B.49)

where the second inequality follows from the fact
dπ
?

h (s,a)

dµh(s,a)
≤ C? under Assumption 1, and the last

line invokes the Cauchy-Schwarz inequality.

Taking the upper bounds on both A and B collectively establishes

H∑

h=1

(
1 +

1

H

)h−1

Ih ≤ A+B . H2SC?ι+
√
H5SC?Kι3. (B.50)

Step 2: putting everything together. Combining (B.45) and (B.50) allows us to establish

that

H∑

h=1

(
1 +

1

H

)h−1
(
Ih + 16

√
H2C?K log

2H

δ
+ 8HC? log

2H

δ

)
. H2SC?ι+

√
H5SC?Kι3,

as advertised.

B.3 Proof of lemmas for LCB-Q-Advantage (Theorem 3)

Additional notation for LCB-Q-Advantage. Let us also introduce, and remind the reader of,

several notation of interest in Algorithm 8 as follows.
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• Nk
h (s, a) (resp. N

(m,t)
h (s, a)) denotes the value of Nh(s, a) — the number of episodes that has

visited (s, a) at step h at the beginning of the k-th episode (resp. the beginning of t-th episode

of the m-th epoch); for the sake of conciseness, we shall often abbreviate Nk
h = Nk

h (s, a)

(resp. N
(m,t)
h = N

(m,t)
h (s, a)) when it is clear from context.

• Lm = 2m: the total number of in-epoch episodes in the m-th epoch.

• knh(s, a): the index of the episode in which (s, a) is visited for the n-th time at time step h;

(mn
h(s, a), tnh(s, a)) denote respectively the index of the epoch and that of the in-epoch episode

in which (s, a) is visited for the n-th time at step h; for the sake of conciseness, we shall often

use the shorthand kn = knh(s, a), (mn, kn) = (mn
h(s, a), knh(s, a)) whenever it is clear from

context.

• Qkh(s, a), QLCB,k
h (s, a), Q

k
h(s, a) and V k

h (s) are used to denote Qh(s, a), QLCB
h (s, a), Qh(s, a),

and Vh(s) at the beginning of the k-th episode, respectively.

• V k
h(s), V

next,k
h (s), µkh(s, a), µnext,k

h (s, a) denote the values of V h(s), V
next
h (s), µh(s, a) and µnext

h (s, a)

at the beginning of the k-th episode, respectively.

• N̂ (m,t)
h (s, a) represents N̂h(s, a) at the beginning of the t-th in-epoch episode in the m-th epoch.

• N̂ epo,m
h (s, a) denotes N̂

(m,Lm+1)
h (s, a), representing the number of visits to (s, a) in the entire

duration of the m-th epoch.

• [µref,k
h , σref,k

h , µadv,k
h , σadv,k

h , δ
k
h, B

k
h, b

k
h]: the values of [µref

h , σref
h , µadv

h , σadv
h , δh, Bh, bh] at the be-

ginning of the k-th episode, respectively.

In addition, for a fixed vector V ∈ R|S|, let us define a variance parameter with respect to

Ph,s,a as follows

Varh,s,a(V ) := E
s′∼Ph,s,a

[(
V (s′)− Ph,s,aV

)2]
= Ph,s,a(V

2)− (Ph,s,aV )2. (B.51)

This notation will be useful in the subsequent proof. We remind the reader that there exists a

one-to-one mapping between the index of the episode k and the index pair (m, t) (i.e., the epoch m

and in-epoch episode t), as specified in (4.36).

In the following, for any episode k, we recall the expressions of V h+1 and µh (which is the

running mean of V h+1).

• Recalling the update rule of V h and V
next
h in line 26 and line 27 of Algorithm 8, we observe

that both the reference values for the current epoch V h and for the next epoch V
next
h remain

unchanged within each epoch. Additionally, for any epoch m, V h takes the value of V
next
h in
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the previous (m− 1)-th epoch; namely, for any episode k happening in the m-th epoch, we

have

V
k
h = V

next,k′

h (B.52)

for all episode k′ within the (m− 1)-th epoch.

• µkh serves as the estimate of Ph,s,aV
k
h+1 constructed by the samples in the previous (m− 1)-th

epoch (collected by updating µnext
h ). Recall the update rule of µh in line 26 and line 24 of

Algorithm 8: for any (s, a, h) ∈ S ×A× [H], we can write µkh as

µkh(s, a) = µ
(m,1)
h (s, a) = µ

next,(m,1)
h (s, a) = µ

next,(m−1,Lm−1)
h (s, a)

=

∑N
(m,1)
h

i=N
(m−1,1)
h +1

V
next,ki

h+1 (sk
i

h+1)

N̂ epo,m−1
h (s, a) ∨ 1

=

∑N
(m,1)
h

i=N
(m−1,1)
h +1

V
k
h+1(sk

i

h+1)

N̂ epo,m−1
h (s, a) ∨ 1

, (B.53)

where the last equality follows from (B.52) using the fact that the indices of episodes in which

(s, a) is visited within the (m−1)-th epoch are {i : i = N
(m−1,1)
h +1, N

(m−1,1)
h +2, · · · , N (m,1)

h }.

Finally, according to the update rules of µadv,kn+1

h (skh, a
k
h) and σadv,kn+1

h (skh, a
k
h) in lines 11-12

of Algorithm 6, we have

µadv,kn+1

h (skh, a
k
h) = µadv,kn+1

h (skh, a
k
h) = (1− ηn)µadv,kn

h (skh, a
k
h) + ηn

(
V kn

h+1(sk
n

h+1)− V kn

h+1(sk
n

h+1)
)
,

σadv,kn+1

h (skh, a
k
h) = σadv,kn+1

h (skh, a
k
h) = (1− ηn)σadv,kn

h (skh, a
k
h) + ηn

(
V kn

h+1(sk
n

h+1)− V kn

h+1(sk
n

h+1)
)2
.

Applying this relation recursively and invoking the definitions of η
Nk
h

n in (4.16) give

µadv,kN
k
h+1

h (s, a) =

Nk
h∑

n=1

η
Nk
h

n P k
n

h

(
V kn

h+1 − V
kn

h+1

)
, σadv,kN

k
h+1

h (s, a) =

Nk
h∑

n=1

η
Nk
h

n P k
n

h

(
V kn

h+1 − V
kn

h+1

)2
.

(B.54)

Similarly, according to the update rules of µref,kn+1

h (s, a) and σref,kn+1

h (s, a) in lines 9-10 of Algorithm 6,

we obtain

µref,kn+1

h (s, a) = µref,kn+1
h (s, a) =

(
1− 1

n

)
µref,kn

h (s, a) +
1

n
V

next,kn

h+1 (sk
n

h+1),

σref,kn+1

h (s, a) = σref,kn+1
h (s, a) =

(
1− 1

n

)
σref,kn

h (s, a) +
1

n

(
V

next,kn

h+1 (sk
n

h+1)
)2
.
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Simple recursion leads to

µref,kN
k
h+1

h (s, a) =
1

Nk
h

Nk
h∑

n=1

P k
n

h V
next,kn

h+1 , σref,kN
k
h+1

h (s, a) =
1

Nk
h

Nk
h∑

n=1

P k
n

h

(
V

next,kn

h+1

)2
. (B.55)

B.3.1 Proof of Lemma 10

Akin to the proof of Lemma 7, the second inequality of (4.38) holds trivially since

V π
h (s) ≤ V ?

h (s)

holds for any policy π. Thus, it suffices to focus on justifying the first inequality of (4.38), namely,

V k
h (s) ≤ V πk

h (s) ∀(k, h, s) ∈ [K]× [H]× S, (B.56)

which we shall prove by induction.

Step 1: introducing the induction hypothesis. For notational simplicity, let us define

ko(h, k, s) := max
{
l : l < k and V l

h(s) = max
a

max
{
QLCB,l
h (s, a), Q

l
h(s, a)

}}
(B.57)

for any (h, k, s) ∈ [H]× [K]×S. Here, ko(h, k, s) denotes the index of the latest episode — right at

the end of the (k− 1)-th episode — in which Vh(s) has been updated, which shall be abbreviated as

ko(h) whenever it is clear from context.

In what follows, we shall first justify the advertised inequality for the base case where h = H+1

for all episodes k ∈ [K], followed by an induction argument. Regarding the induction part, let us

consider any k ∈ [K] and any h ∈ [H], and suppose that

V k′
h′ (s) ≤ V πk

′

h′ (s) for all (k′, h′, s) ∈ [k − 1]× [H + 1]× S, (B.58a)

V k
h′(s) ≤ V πk

h′ (s) for all h′ ≥ h+ 1 and s ∈ S. (B.58b)

We intend to justify

V k
h (s) ≤ V πk

h (s) ∀s ∈ S, (B.59)

assuming that the induction hypotheses (B.58) hold.

Step 2: controlling the confident bound
∑Nk

h
n=1 η

Nk
h

n b
kn+1
h . Before proceeding, we first intro-

duce an auxiliary result on bounding
∑Nk

h
n=1 η

Nk
h

n b
kn+1
h , which plays a crucial role. For any (s, a), it
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is easily seen that

Nk
h (s, a) = 0 =⇒

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n b
kn(s,a)+1
h = 0. (B.60)

When Nk
h (s, a) > 0, expanding the definitions of b

kn+1
h (cf. line 6 of Algorithm 6) and δ

k+1
h (cf. line 15

of Algorithm 6) leads to

Nk
h∑

n=1

η
Nk
h

n b
kn+1
h

=

Nk
h∑

n=1

ηn

Nk
h∏

i=n+1

(1− ηi) ·
((

1− 1

ηn

)
B
kn

h (s, a) +
1

ηn
B
kn+1
h (s, a)

)
+ cb

Nk
h∑

n=1

η
Nk
h

n

n3/4
H7/4ι+ cb

Nk
h∑

n=1

η
Nk
h

n

n
H2ι

=

Nk
h∑

n=1




Nk
h∏

i=n+1

(1− ηi)Bkn+1
h (s, a)−

Nk
h∏

i=n

(1− ηi)Bkn

h (s, a)


+ cb

Nk
h∑

n=1

η
Nk
h

n

n3/4
H7/4ι+ cb

Nk
h∑

n=1

η
Nk
h

n

n
H2ι

(i)
=

Nk
h∑

n=1

Nk
h∏

i=n+1

(1− ηi)Bkn+1
h (s, a)−

Nk
h∑

n=2

Nk
h∏

i=n

(1− ηi)Bkn

h (s, a) + cb

Nk
h∑

n=1

η
Nk
h

n

n3/4
H7/4ι+ cb

Nk
h∑

n=1

η
Nk
h

n

n
H2ι

(ii)
=

Nk
h∑

n=1

Nk
h∏

i=n+1

(1− ηi)Bkn+1
h (s, a)−

Nk
h−1∑

n=1

Nk
h∏

i=n+1

(1− ηi)Bkn+1
h (s, a) + cb

Nk
h∑

n=1

η
Nk
h

n

n3/4
H7/4ι+ cb

Nk
h∑

n=1

η
Nk
h

n

n
H2ι

= B
kN

k
h+1

h (s, a) + cb

Nk
h∑

n=1

η
Nk
h

n

n3/4
H7/4ι+ cb

Nk
h∑

n=1

η
Nk
h

n

n
H2ι, (B.61)

where we abuse the notation to let
∏j
i=j+1(1 − ηi) = 1. Here, (i) holds since B

k1

(s, a) = 0, (ii)

follows from the fact that B
kn+1

(s, a) = B
kn+1

(s, a), since (s, a) has not been visited at step h

during the episodes between the indices kn + 1 and kn+1 − 1. Combining the above result in (B.61)

with the properties 1
(Nk

h )3/4 ≤
∑Nk

h
n=1

η
Nkh
n

n3/4 ≤ 2
(Nk

h )3/4 and 1
Nk
h

≤∑Nk
h

n=1
η
Nkh
n
n ≤ 2

Nk
h

(see Lemma 1), we

arrive at

B
kN

k
h+1

h (s, a)+cb
H7/4ι

(Nk
h )3/4

+cb
H2ι

Nk
h

≤
Nk
h∑

n=1

η
Nk
h

n b
kn+1
h ≤ BkN

k
h+1

h (s, a)+2cb
H7/4ι

(Nk
h )3/4

+2cb
H2ι

Nk
h

(B.62)

as long as Nk
h (s, a) > 0.
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Step 3: base case. Let us look at the base case with h = H + 1 for any k ∈ [K]. Recalling the

facts that V π
H+1 = V k

H+1 = 0 for any π and any k ∈ [K], we reach

V k
H+1(s) ≤ V πk

H+1(s) for all (k, s) ∈ [K]× S. (B.63)

Step 4: induction arguments. We now turn to the induction arguments. Suppose that (B.58)

holds for a pair (k, h) ∈ [K]× [H]. Everything comes down to justifying (B.59) for time step h in

the episode k.

First, we recall the update rule of Vh(s) in lines 21-22 of Algorithm 8:

V k
h (s) = max

a
Qkh(s, a) = Qkh

(
s, πkh(s)

)
= max

{
QLCB,k
h

(
s, πkh(s)

)
, Q

k
h

(
s, πkH(s)

)
, Qk−1

h

(
s, πkh(s)

)}
.

Then we shall verify (B.59) in three different cases.

• When V k
h (s) = QLCB,k

h

(
s, πkh(s)

)
, the term of interest can be controlled by

V πk

h (s)− V k
h (s)

(i)
= Qπ

k

h

(
s, πkh(s)

)
−QLCB,k

h

(
s, πkh(s)

)
≥ 0,

where (i) holds since πk is set to be the greedy policy such that V πk

h (s) = Qπ
k

h (s, πkh(s)), and

the last inequality follows directly from the analysis for LCB-Q (see (B.27)).

• When V k
h (s) = Q

k
h

(
s, πkh(s)

)
, we obtain

V πk

h (s)− V k
h (s) = Qπ

k

h

(
s, πkh(s)

)
−Qkh

(
s, πkh(s)

)
. (B.64)

To prove the term on the right-hand side of (B.64) is non-negative, we proceed by developing

a more general lower bound on Qπ
k

h (s, a)−Qkh(s, a) for every (s, a) ∈ S × A. Towards this,

recalling the definition of Nk
h and kn, we can express

Q
k
h(s, a) = Q

kN
k
h+1

h (s, a).

Thus, according to the update rule (cf. line 7 in Algorithm 6), we arrive at

Q
k
h(s, a) = Q

kN
k
h+1

h (s, a)

= (1− ηNk
h
)Q

kN
k
h

h (s, a) + ηNk
h

{
rh(s, a) + V kN

k
h

h+1 (sk
Nkh

h+1)− V kN
k
h

h+1(sk
Nkh

h+1) + µk
Nkh

h (s, a)− bk
Nkh+1
h

}
.
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Applying this relation recursively and invoking the definitions of η
Nk
h

0 and η
Nk
h

n in (4.16) give

Q
k
h(s, a) = η

Nk
h

0 Q
1
h(s, a) +

Nk
h∑

n=1

η
Nk
h

n

{
rh(s, a) + V kn

h+1(sk
n

h+1)− V kn

h+1(sk
n

h+1) + µk
n

h (s, a)− bk
n+1
h

}
.

(B.65)

Additionally, for any policy πk, the basic relation η
Nk
h

0 +
∑Nk

h
n=1 η

Nk
h

n = 1 (see (4.17) and (4.16))

gives

Qπ
k

h (s, a) = η
Nk
h

0 Qπ
k

h (s, a) +

Nk
h∑

n=1

η
Nk
h

n Qπ
k

h (s, a). (B.66)

Combing (B.65) and (B.66) leads to

Qπ
k

h (s, a)−Qkh(s, a) = η
Nk
h

0

(
Qπ

k

h (s, a)−Q1
h(s, a)

)

+

Nk
h∑

n=1

η
Nk
h

n

{
Qπ

k

h (s, a)− rh(s, a)− V kn

h+1(sk
n

h+1) + V
kn

h+1(sk
n

h+1)− µknh (s, a) + b
kn+1
h

}
.

(B.67)

Plugging in the construction of µh in (B.53) and invoking the Bellman equation

Qπ
k

h (s, a) = rh(s, a) + Ph,s,aV
πk

h+1, (B.68)

we arrive at

Qπ
k

h (s, a)− rh(s, a)− V kn

h+1(sk
n

h+1) + V
kn

h+1(sk
n

h+1)− µknh (s, a) + b
kn+1
h

= Ph,s,aV
πk

h+1 + V
kn

h+1(sk
n

h+1)− V kn

h+1(sk
n

h+1)−

∑N
(mn,1)
h

i=N
(mn−1,1)
h +1

V
kn

h+1(sk
i

h+1)

N̂ epo,mn−1
h (s, a) ∨ 1

+ b
kn+1
h

= Ph,s,aV
πk

h+1 − V kn

h+1(sk
n

h+1) +
(
P k

n

h − Ph,s,a
)
V
kn

h+1 +


Ph,s,a −

∑N
(mn,1)
h

i=N
(mn−1,1)
h +1

P k
i

h

N̂ epo,mn−1
h (s, a) ∨ 1


V

kn

h+1 + b
kn+1
h

= Ph,s,a

(
V πk

h+1 − V kn

h+1

)
+ b

kn+1
h + ξk

n

h ,

where

ξk
n

h :=
(
P k

n

h − Ph,s,a
)(
V
kn

h+1 − V kn

h+1

)
+


Ph,s,a −

∑N
(mn,1)
h

i=N
(mn−1,1)
h +1

P k
i

h

N̂ epo,mn−1
h (s, a) ∨ 1


V

kn

h+1. (B.69)
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Inserting the above result into (B.67) leads to the following decomposition

Qπ
k

h (s, a)−Qkh(s, a) = η
Nk
h

0

(
Qπ

k

h (s, a)−Q1
h(s, a)

)
+

Nk
h∑

n=1

η
Nk
h

n

{
Ph,s,a

(
V πk

h+1 − V kn

h+1

)
+ b

kn+1
h + ξk

n

h

}

(B.70)

≥
Nk
h∑

n=1

η
Nk
h

n (b
kn+1
h + ξk

n

h ), (B.71)

which holds by virtue of the following facts:

(i) The initialization Q
1
h(s, a) = 0 and the non-negativity of Qπh(s, a) for any policy π and

(s, a) ∈ S ×A lead to Qπ
k

h (s, a)−Q1
h(s, a) = Qπ

k

h (s, a) ≥ 0.

(ii) For any episode kn appearing before k, making use of the induction hypothesis V πk

h+1(s) ≥
V k
h+1(s) in (B.58b) and the monotonicity of Vh(s) in (4.37), we obtain

V πk

h+1(s)− V kn

h+1(s) ≥ V k
h+1(s)− V kn

h+1(s) ≥ 0. (B.72)

The following lemma ensures that the right-hand side of (B.71) is non-negative. We postpone

the proof of Lemma 30 to Appendix B.3.4 to streamline our discussion.

Lemma 30. For any δ ∈ (0, 1), there exists some sufficiently large constant cb > 0, such that

with probability at least 1− δ,

∣∣∣∣
Nk
h∑

n=1

η
Nk
h

n ξk
n

h

∣∣∣∣ ≤
Nk
h∑

n=1

η
Nk
h

n b
kn+1
h , ∀k ∈ [K]. (B.73)

Taking this lemma together with the inequalities (B.64) and (B.71) yields

V πk

h (s)− V k
h (s) = Qπ

k

h (s, a)−Qkh(s, a) ≥
Nk
h∑

n=1

η
Nk
h

n b
kn+1
h −

∣∣∣∣
Nk
h∑

n=1

η
Nk
h

n ξk
n

h

∣∣∣∣ ≥ 0.

• Next, consider the case where V k
h (s) = Qk−1

h

(
s, πkh(s)

)
. In view of the definition of ko(h) in

(B.57), one has

V k
h (s) = Qk−1

h

(
s, πkh(s)

)
= Q

ko(h)
h

(
s, πkh(s)

)
= max

{
Q

LCB,ko(h)
h

(
s, πkh(s)

)
, Q

ko(h)
h

(
s, πkh(s)

)}
,

since Qh
(
s, πkh(s)

)
has not been updated during the episode ko(h) and remains unchanged in

the episodes ko(h) + 1, ko(h) + 2, · · · , k − 1. With this equality in hand, the term of interest
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in (B.59) can be controlled by

V πk

h (s)− V k
h (s) = Qπ

k

h (s, πkh(s))−max
{
Q

LCB,ko(h)
h

(
s, πkh(s)

)
, Q

ko(h)
h

(
s, πkh(s)

)}
≥ 0,

where the last inequality follows from the facts

Qπ
k

h (s, πkh(s))−QLCB,ko(h)
h (s, πkh(s))

(i)

≥ 0,

Qπ
k

h (s, πkh(s))−Qko(h)
h (s, πkh(s))

(ii)

≥ 0.

Here, (i) follows from the same analysis framework for showing (B.26) and (B.28); (ii) holds

due to the following fact

Qπ
k

h (s, a)−Qko(h)
h (s, a) ≥

N
ko(h)
h∑

n=1

η
N
ko(h)
h

n (b
kn+1
h + ξk

n

h ) ≥ 0,

which is obtained directly by adapting (B.71) and then invoking (B.73) for k = ko(h); since

the analysis follows verbatim, we omit their proofs here.

Combining the above three cases verifies the induction hypothesis in (B.59), provided that

(B.58) is satisfied.

Step 5: putting everything together. Combining the base case in Step 3 and induction

arguments in Step 4, we can readily verify the induction hypothesis in Step 1, which in turn

establishes Lemma 10.

B.3.2 Proof of Lemma 11

For every h ∈ [H], we can decompose

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
) (i)

≤
K∑

k=1

∑

s∈S
dπ

?

h

(
s, π?h(s)

) (
Q?h
(
s, π?h(s)

)
−Qkh

(
s, π?h(s)

))

=

K∑

k=1

∑

s,a∈S×A
dπ

?

h (s, a)
(
Q?h(s, a)−Qkh(s, a)

)
, (B.74)

where (i) follows from the fact V k
h (s) = maxaQ

k
h(s, a) ≥ maxaQ

k
h(s, a) ≥ Qkh(s, π?h(s)) (see lines 21-

22 in Algorithm 8). Here, the last equality is due to (4.26).
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Step 1: bounding Q?h(s, a)−Qkh(s, a). The basic relation η
Nk
h

0 +
∑Nk

h
n=1 η

Nk
h

n = 1 (see (4.17) and

(4.16)) gives

Q?h(s, a) = η
Nk
h

0 Q?h(s, a) +

Nk
h∑

n=1

η
Nk
h

n Q?h(s, a), (B.75)

which combined with (B.65) leads to

Q?h(s, a)−Qkh(s, a) = η
Nk
h

0

(
Q?h(s, a)−Q1

h(s, a)
)

+

Nk
h∑

n=1

η
Nk
h

n

{
Q?h(s, a)− rh(s, a)− V kn

h+1(sk
n

h+1) + V
kn

h+1(sk
n

h+1)− µknh (s, a) + b
kn+1
h

}
. (B.76)

Invoking the Bellman optimality equation

Q?h(s, a) = rh(s, a) + Ph,s,aV
?
h+1, (B.77)

we can decompose Q?h(s, a)−Qkh(s, a) similar to (B.70) by inserting (B.69) as follows:

Q?h(s, a)−Qkh(s, a) = η
Nk
h

0

(
Q?h(s, a)−Q1

h(s, a)
)

+

Nk
h∑

n=1

η
Nk
h

n

{
Ph,s,a

(
V ?
h+1 − V kn

h+1

)
+ b

kn+1
h + ξk

n

h

}

(i)

≤ η
Nk
h

0 H +

Nk
h∑

n=1

η
Nk
h

n

(
b
kn+1
h + ξk

n

h

)
+

Nk
h∑

n=1

η
Nk
h

n Ph,s,a

(
V ?
h+1 − V kn

h+1

)

(ii)

≤ η
Nk
h

0 H +

Nk
h∑

n=1

η
Nk
h

n Ph,s,a

(
V ?
h+1 − V kn

h+1

)
+ 2

Nk
h∑

n=1

η
Nk
h

n b
kn+1
h

(iii)

≤ η
Nk
h

0 H +

Nk
h∑

n=1

η
Nk
h

n Ph,s,a

(
V ?
h+1 − V kn

h+1

)
+ 2

(
B
k
h(s, a) + 2cb

H7/4ι
(
Nk
h ∨ 1

)3/4 + 2cb
H2ι

Nk
h ∨ 1

)
,

(B.78)

where (i) follows from the initialization Q
1
h(s, a) = 0 and the trivial upper bound Qπh(s, a) ≤ H for

any policy π, (ii) holds owing to the fact (see (B.73))

Nk
h∑

n=1

η
Nk
h

n

(
b
kn+1
h + ξk

n

h

)
≤

Nk
h∑

n=1

η
Nk
h

n b
kn+1
h +

∣∣∣∣
Nk
h∑

n=1

η
Nk
h

n ξk
n

h

∣∣∣∣ ≤ 2

Nk
h∑

n=1

η
Nk
h

n b
kn+1
h , (B.79)

and (iii) comes from (B.62) with the fact B
kN

k
h+1

h (s, a) = B
k
h(s, a).
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Step 2: decomposing the error in (B.74). Plugging (B.78) into (B.74) and rearranging terms

yield

K∑

k=1

∑

s∈S
dπ

?

h (s)
(
V ?
h (s)− V k

h (s)
)

(B.80)

≤
K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)

[
η
Nk
h (s,a)

0 H + 2B
k
h(s, a) +

4cbH
7/4ι

(
Nk
h (s, a) ∨ 1

)3/4 +
4cbH

2ι

Nk
h (s, a) ∨ 1

]

+
K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)Ph,s,a

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
V ?
h+1 − V

kn(s,a)
h+1

)

≤
K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)

[
η
Nk
h (s,a)

0 H +
4cbH

7/4ι
(
Nk
h (s, a) ∨ 1

)3/4 +
4cbH

2ι

Nk
h (s, a) ∨ 1

]

︸ ︷︷ ︸
=:J1

h

+ 2
K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)B
k
h(s, a)

︸ ︷︷ ︸
=:J2

h

+
K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)Ph,s,a

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
V ?
h+1 − V

kn(s,a)
h+1

)
. (B.81)

Step 3: controlling the last term in (B.81). If we could verify the following result

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)Ph,s,a

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
V ?
h+1 − V

kn(s,a)
h+1

)

≤
(

1 +
1

H

)∑

s∈S
dπ

?

h+1(s)
(
V ?
h+1(s)− V k

h+1(s)
)

+ 48

√
HC?K log

2H

δ
+ 28caH

3C?
√
Sι2

︸ ︷︷ ︸
=:J3

h

, (B.82)

then combining this result with inequality (B.81) would immediately establish Lemma 11. As a

result, it suffices to verify the inequality (B.82), which shall be accomplished as follows.

Proof of inequality (B.82). We first make the observation that the left-hand side of inequal-

ity (B.82) is the same as what Lemma 8 shows. Therefore, we shall establish this inequality

following the same framework as in Appendix B.2.2. To begin with, let us recall several definitions

in Appendix B.2.2:

Ah :=

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)Ph,s,a

Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n

(
V ?
h+1 − V

kn(s,a)
h+1

)

︸ ︷︷ ︸
=:Ah,k

,
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Bh,k :=

(
1 +

1

H

)∑

s∈S
dπ

?

h+1(s)
(
V ?
h+1(s)− V k

h+1(s)
)
,

Yh,k =
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)
Ph,skh,a

k
h

Nk
h (skh,a

k
h)∑

n=1

η
Nk
h (skh,a

k
h)

n

(
V ?
h+1 − V

kn(skh,a
k
h)

h+1

)
,

Zh,k =

(
1 +

1

H

)
dπ?h (skh, a

k
h)

dµh(skh, a
k
h)
Ph,skh,a

k
h

(
V ?
h+1 − V k

h+1

)
, (B.83)

and we also remind the reader of the relation in (B.35) as follows

Ah ≤
K∑

k=1

Bh,k +
K∑

k=1

(Zh,k −Bh,k) +
K∑

k=1

(Ah,k − Yh,k) . (B.84)

Equipped with these relations, we aim to control
∑K

k=1 (Zh,k −Bh,k) and
∑K

k=1 (Ah,k − Yh,k)
respectively as follows.

• We first bound
∑K

k=1 (Ah,k − Yh,k), which is similar to (B.38) (as controlled by Lemma 29).

Repeating the argument and tightening the bound from the second line of (B.38), we have for

all (h, s, a) ∈ [H]× S ×A, with probability at least 1− δ,
∣∣∣∣∣
K∑

k=1

(Ah,k − Yh,k)
∣∣∣∣∣ ≤

√√√√
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8C2
dC

?
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(s,a)∈S×A

dπ?h (s, a)
[
Ph,s,aW

k
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]2
log

2H

δ
+ 2CdC

?Cw log
2H

δ
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√√√√√8C? log
2H

δ

K∑

k=1

∑

(s,a)∈S×A

dπ?h (s, a)



Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n Ph,s,a

(
V ?
h+1 − V

kn(s,a)
h+1

)



2

+ 4HC? log
2H

δ

(i)

≤
√

8C? log
2H

δ
(36HK + 3c2

aH
6SC?ι) + 4HC? log

2H

δ

≤ 32

√
HC?K log

2H

δ
+ 12caH

3C?
√
Sι2. (B.85)

Here, (i) holds by virtue of the following fact

K∑

k=1

∑

(s,a)∈S×A

dπ?h (s, a)



Nk
h (s,a)∑

n=1

η
Nk
h (s,a)

n Ph,s,a

(
V ?
h+1 − V

kn(s,a)
h+1

)



2

≤ 36HK + 3c2
aH

6SC?ι,

(B.86)

whose proof is postponed to Appendix B.3.2.1.

• Next, we turn to
∑K

k=1 (Zh,k −Bh,k), which can be bounded similar to (B.42) (as controlled

via Lemma 29). Repeating the argument and tightening the bound from the second line of
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(B.42) yield

∣∣∣∣∣
K∑

k=1

(Bh,k − Zh,k)
∣∣∣∣∣ ≤

√√√√
K∑

k=1

8C2
dC

?
∑

(s,a)∈S×A

dπ?h (s, a)
[
Ph,s,aW

k
h+1(s, a)

]2
log

2H

δ
+ 2CdC

?Cw log
2H

δ

≤ 8

√√√√C? log
2H

δ

K∑

k=1

∑

(s,a)∈S×A

dπ?h (s, a)
[
Ph,s,a

(
V ?
h+1 − V k

h+1

)]2
+ 8HC? log

2H

δ
. (B.87)

To further control (B.87), we have

K∑

k=1

∑

(s,a)∈S×A

dπ?h (s, a)
[
Ph,s,a

(
V ?
h+1 − V k

h+1

)]2 (i)

≤
K∑

k=1

∑

(s,a)∈S×A

dπ?h (s, a)Ph,s,a

(
V ?
h+1 − V k

h+1

)2

(ii)

≤ H
K∑

k=1

∑

(s,a)∈S×A

dπ?h (s, a)Ph,s,a

(
V ?
h+1 − V k

h+1

)

(iii)

≤ 2HK + c2
aH

6SC?ι. (B.88)

Here, (i) holds due to the non-negativity of the variance

Varh,s,a(V
?
h+1 − V

k
h+1) = Ph,s,a(V

?
h+1 − V k

h+1)2 −
(
Ph,s,a(V

?
h+1 − V k

h+1)
)2
≥ 0; (B.89)

(ii) follows from the basic property
∥∥V ?

h+1 − V k
h+1

∥∥
∞ ≤ H; to see why (iii) holds, we refer the

reader to (B.96), which will be proven in Appendix B.3.2.1 as well. Inserting (B.88) back into

(B.87) yields

∣∣∣∣∣
K∑

k=1

(Bh,k − Zh,k)
∣∣∣∣∣ ≤ 8

√
C? log

2H

δ
(2KH + c2

aH
6SC?ι) + 8HC? log

2H

δ

≤ 16

√
HC?K log

2H

δ
+ 16caH

3C?
√
Sι. (B.90)

Substituting the inequalities (B.85) and (B.90) into (B.84), and using the definitions in (B.83),

we arrive at

Ah =
K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)Ph,s,a

Nk
h (s,a)∑
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n

(
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)
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)

+
K∑
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(Zh,k −Bh,k) +
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≤
(

1 +
1

H

)∑

s∈S
dπ

?

h+1(s)
(
V ?
h+1(s)− V k

h+1(s)
)

+ 32

√
HC?K log
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√
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√
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δ
+ 28caH

3C?
√
Sι2, (B.91)

which directly verifies (B.82) and completes the proof.

B.3.2.1 Proof of inequality (B.86)

Step 1: rewriting the term of interest. We first invoke Jensen’s inequality to obtain

( Nk
h∑

n=1

η
Nk
h

n Ph,s,a

(
V ?
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h+1

))2
≤
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V ?
h+1 − V kn

h+1

)2
,

where the first inequality follows from
∑Nk

h
n=1 η

Nk
h

n = 1 (see (4.17) and (4.16)), and the last inequality

holds by the non-negativity of the variance Varh,s,a[V
?
h+1 − V kn

h+1]. This allows one to derive
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
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(
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(i)

≤
(

1 +
1

H
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∑

s∈S
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(
V ?
h+1(s)− V k
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)2

+ 32

√
H4C?K log

2H

δ
+ 32H2C? log

2H

δ
,

(B.92)

where (i) can be verified in a way similar to the proof of Lemma 8 in Appendix B.2.2. We omit the

details for conciseness.

Step 2: controlling the first term in (B.92). Let us introduce the following short-hand

notation

kstop := c2
aH

5SC?ι,
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and decompose the term in (B.92) as follows

∑

s∈S
dπ

?

h+1(s)
K∑

k=1

(
V ?
h+1(s)− V k

h+1(s)
)2 (i)

≤ H
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s∈S
dπ

?

h+1(s)
(
V ?
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)

= H
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s∈S
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?
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(
V ?
h+1(s)− V k

h+1(s)
)
. (B.93)

Here, (i) holds since 0 ≤ V ?
h+1(s)− V k

h+1(s) ≤ H. The first term in (B.93) satisfies

H
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∑

s∈S
dπ
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V ?
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h+1(s)
)
≤ H

(
ca

√
H5SC?ιkstop + caH

2SC?ι

)
≤ c2

aH
6SC?ι,

(B.94)

where the first inequality holds by applying the results of LCB-Q in (4.35) with K = kstop. The

second term in (B.93) can be controlled as follows:

H

K∑

k=kstop+1

∑

s∈S
dπ

?

h+1(s)
(
V ?
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dπ

?
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h+1(s)
)

≤ HK
(
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√
H5SC?ι
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+
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2SC?ι

kstop

)
≤ 2HK, (B.95)

where the first and the second inequalities hold by the monotonicity property V k+1
h+1 ≥ V k

h+1

introduced in (4.37), and the final inequality follows from applying (4.35).

Inserting the results in (B.94) and (B.95) into (B.93) yields

∑
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≤ 2HK + c2

aH
6SC?ι.

(B.96)

Step 3: combining the above results. Inserting the above result (B.96) back into (B.92), we

reach:
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≤
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≤ 36HK + 3c2
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6SC?ι, (B.97)

where (i) holds due to (B.96) and 1 + 1
H ≤ 2, and (ii) results from the Cauchy-Schwarz inequality.

B.3.3 Proof of Lemma 12

We shall verify the three inequalities in (4.45) separately.

B.3.3.1 Proof of inequality (4.45a)

We start by rewriting the term of interest using the expression of J1
h in (4.42) as
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. (B.98)

Invoking (B.47) and (B.44) yields

J 1
1 . H2SC?ι. (B.99)

In terms of J 2
1 , one has
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1 =

H∑

h=1

(
1 +

1

H

)h−1 K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)
4cbH

7/4ι

(Nk
h (s, a) ∨ 1)

3
4

(i)

. H7/4ι2
H∑

h=1

K∑

k=1

∑

(s,a)∈S×A

dπ
?

h (s, a)
1

(kdµh(s, a))
3
4

217
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?
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4
,

where (i) holds due to (B.44) and 1
Nk
h (s,a)∨1

≤ 8ι
kdµh(s,a)

from Lemma 27, and (ii) follows from the

definition of C? in Assumption 1. A direct application of Hölder’s inequality leads to
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3
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3
4K

1
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where (iii) follows since π? is assumed to be a deterministic policy.

Similarly, we can derive an upper bound on J 3
1 as follows:

J 3
1 =

H∑
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(
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. H3SC?ι3, (B.101)

where (i) follows from the result in (B.44) and the fact 1
Nk
h (s,a)∨1

≤ 8ι
kdµh(s,a)

(cf. Lemma 27), and the

last relation results from the definition of C? (cf. Assumption 1) and the assumption that π? is a

deterministic policy.

Putting the preceding results (B.99), (B.100) and (B.101) together, we conclude that
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(
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1

H
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J1
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3
4K

1
4 ι2 +H3SC?ι3. (B.102)

B.3.3.2 Proof of inequality (4.45b)

Making use of the definition of B
k
h(s, a) (cf. (14)) in the expression of J2

h (cf. (4.42)), we obtain
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where the last inequality follows from (B.44). In the following, we shall look at the two terms in

(B.103) separately.

Step 1: controlling J 1
2 . Recalling the expressions of σadv,k

h (s, a) = σadv,kN
k
h+1

h (s, a) in (B.54), we

observe that the main part of J 1
2 in (B.103) satisfies
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, (B.104)

where the first inequality is due to the fact 1
Nk
h (s,a)∨1

≤ 8ι
kdµh(s,a)

from Lemma 27, (i) follows from the

definition of C? in Assumption 1 and (4.26), and (ii) follows from the Cauchy-Schwarz inequality.
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To continue, we claim the following bound holds, which will be proven in Appendix B.3.3.4:
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√
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Combining the above inequality with (B.104), we arrive at
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Step 2: controlling J 2
2 . Recalling the expressions of µref,k+1

h (s, a) = µref,kN
k
h+1

h (s, a) and
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h (s, a) = σref,kN

k
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h (s, a) in (B.55) to J 2
2 in (B.103), we can deduce that
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(B.107)

We further decompose and bound Fh,k as follows:
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(ii)
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(B.108)

where (i) follows from the fact that for some k′ ∈ [K], V
next,kn

h+1 = V k′
h+1 ≤ V ?

h+1 (see the update rule

of V
next

in line 27 and the fact in (4.38)), and (ii) holds due to the fact that
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Inserting (B.108) back into (B.107), we arrive at
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√
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where (i) follows from the following facts
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√
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We postpone the proofs of (B.110) and (B.111) to Appendix B.3.3.5 and Appendix B.3.3.6, respec-

tively.

Putting the bounds together. Substitute (B.106) and (B.109) back into (B.103) to yield
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B.3.3.3 Proof of inequality (4.45c)

Invoking inequality (B.44) directly leads to

H∑
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δ
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δ
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√
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as claimed.

B.3.3.4 Proof of inequality (B.105)

We shall control the term in (B.105) in a way similar to the proof of Lemma 8 in Appendix B.2.2.

Step 1: decomposing the terms of interest. Akin to Appendix B.2.2, let us introduce the

terms of interest and definitions as follows:
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With these definitions in place, we directly adapt the argument in (B.35) to arrive at

Ah ≤
K∑
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Bh,k +

K∑
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(Zh,k −Bh,k) +
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As a consequence, it remains to control
∑K

k=1 (Zh,k −Bh,k) and
∑K

k=1 (Ah,k − Yh,k) separately.

Step 2: controlling
∑K

k=1 (Ah,k − Yh,k). To control
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k=1 (Ah,k − Yh,k), we resort to Lemma 29
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which satisfies

∥∥∥W k
h+1(s, a)

∥∥∥
∞
≤ 4H2 =: Cw.

Applying Lemma 29 with (B.114) yields that: with probability at least 1− δ,
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(B.115)

To further control the first term in (B.115), it follows from Jensen’s inequality that
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which yields
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(B.117)

This can be verified similar to the proof for Lemma 8 in Appendix B.2.2. We omit the details for

conciseness. To continue, it follows that
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Here, (i) holds by using the pessimistic property V ? ≥ V k ≥ V k
for all k ∈ [K] (see (4.38)) and by

regrouping the summands; (ii) follows from the fact (see updating rules in line 26 and line 27) that
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and (iii) results from the choice of the parameter Lm = 2m. In addition, we can further control
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(B.119)

≤ 8H4 + 4H3
∑

s∈S
dπ
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(
V ?
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(vi)

. H3K +H8SC?ι. (B.120)

Here, (iv) follows from the fact 0 ≤ V ?
h+1(s) − V (1,1)

h+1 (s) ≤ H − 0 = H; (v) holds since V ?
h+1 ≥

V
(m+1,1)
h+1 = V

(m,Lm)
h+1 ≥ V

(m,t)
h+1 for all t ∈ [Lm] (using the monotonic increasing property of Vh+1

introduced in (4.37)); and (vi) follows from (B.96). Putting (B.120) and (B.117) together with
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(B.115), we arrive at
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Step 3: controlling
∑K

k=1 (Zh,k −Bh,k). Similarly, we also invoke Lemma 29. Let’s set
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(
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1

H

)
≤ 2, (B.122)

which satisfies

∥∥∥W k
h+1(s, a)

∥∥∥
∞
≤ 4H2 =: Cw.

Applying Lemma 29 with (B.122) yields that: with probability at least 1− δ,
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where (i) follows from (B.119) and (B.120).

Step 4: combining the results. Inserting (B.123) and (B.121) back into (B.113), we can

conclude that
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where (i) follows from the same routine to obtain (B.119) and the Cauchy-Schwarz inequality.

B.3.3.5 Proof of inequality (B.110)

Step 1: decomposing the error in (B.110). The term in (B.110) obeys
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Here, (i) follows from the fact 1
Nk
h (s,a)∨1

≤ 8ι
kdµh(s,a)

(cf. Lemma 27); (ii) follows from the definition of

C? in Assumption 1; (iii) invokes the Cauchy-Schwarz inequality; (iv) can be obtained by regrouping

the terms (the terms involving (V ?
h+1 − V

next,k
h+1 ) associated with index k will only been added during

episodes k′ = k, k + 1, · · · ,K).

With this upper bound in hand, we further decompose
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(B.126)

Here (i) holds due to the following observation: denoting by m the index of the epoch in which

episode k occurs, we have

V
next,k
h+1 = V

(m,1)
h+1 ≥ V ((m−1∨1),1)

h+1 = V
k
h+1, (B.127)

which invokes the monotonicity of V k
h+1 in (4.37). In addition, (ii) arises from the Cauchy-Schwarz

inequality.

Step 2: controlling the first term in (B.126). The first term in (B.126) satisfies
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where (i) holds due to the fact
∑

(s,a)∈S×A d
π?

h (s, a)Ph(· | s, a) = dπ
?

h+1(·), (ii) comes from the same

argument employed to establish (B.119), and (iii) follows from (B.96).

Step 3: controlling the second term in (B.126). We shall invoke Lemma 29 for this purpose.

To proceed, let

W k
h+1(s, a) := V ?

h+1 − V
k
h+1, Cd =: 1, (B.129)

which satisfies
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Applying Lemma 29 with (B.129) yields, for all h ∈ [H], with probability at least 1− δ
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Here (i) follows from the same routine to arrive at (B.119), and (ii) comes from (B.96). As a result,

the second term in (B.126) satisfies, with probability at least 1− δ,
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Step 4: combining the results. Finally, inserting (B.128) and (B.131) into (B.126), we arrive

at
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(B.132)

where the last two inequalities follow from the Cauchy-Schwarz inequality.

B.3.3.6 Proof of inequality (B.111)

Recall the expression of Gh,k in (B.108) as
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To continue, we make the following observation
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due to the elementary inequality
√
a2 + b2 ≤ a+ b for any a, b ≥ 0. Here, we remind the reader that
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(B.135)

leaving us with two terms to cope with.
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Step 1: controlling the first term of (B.135). By definition, we have
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where the last inequality holds due to
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We now control the two terms in (B.136) separately by invoking Lemma 24. For the first

term in (B.136), let us set
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which indicates that
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Applying Lemma 24 with (B.137) and N = Nk
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Similarly, for the second term in (B.136), with W i
h+1 := V ?

h+1, we have with probability at least

1− δ
2 ,

1
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√
1
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. (B.140)

Inserting (B.139) and (B.140) back into (B.136) yields
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?
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√
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Consequently, the first term in (B.135) can be controlled as

H∑

h=1

∑

(s,a)∈S×A

dπ
?

h (s, a)
K∑

k=1

√√√√
∣∣∣G2

h,k − Varh,s,a(V
?
h+1)

∣∣∣
Nk
h (s, a) ∨ 1

. Hι
H∑

h=1

∑

(s,a)∈S×A

dπ
?

h (s, a)
K∑

k=1

1
(
Nk
h (s, a)

) 3
4 ∨ 1

. H2(SC?)
3
4K

1
4 ι2, (B.142)

where the last inequality holds due to (B.100).

Step 2: controlling the second term of (B.135). The second term can be decomposed as
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where (i) follows from the facts 1
Nk
h (s,a)∨1

≤ 8ι
kdµh(s,a)

by Lemma 27 and the definition of C? in

Assumption 1, (ii) holds by the Cauchy-Schwarz inequality, and the final inequality comes from the

fact that π? is deterministic.
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We are then left with bounding
∑H
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∑
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where (i) follows from Bellman’s optimality equation, (ii) follows from the Markov property, (iii)

holds due to the fact that V ?
H+1(s) = 0 for all s ∈ S, and (iv) arises from the fact rh(s, a) ≤ 1 for all

(s, a, h) ∈ S ×A× [H]. Substituting (B.144) back into (B.143), we get
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Step 4: combing the results. Combining (B.142) and (B.145) with (B.135) yields
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B.3.4 Proof of Lemma 30

In view of (B.69), we can decompose the term of interest into
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Next, we turn to controlling these two terms separately with the assistance of Lemma 24.

Step 1: controlling U1. In the following, we invoke Lemma 24 to control U1 in (B.147a). Let us

set

W i
h+1 := V

i
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h(s,a) ≥ 0,

which indicates that
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Here, the last inequality follows since (according to Lemma 1 and the definition in (4.16))
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, if 0 ≤ N i
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To continue, it can be seen from (4.17) that
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u
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holds for all (N, s, a) ∈ [K] × S × A. Therefore, choosing N = Nk
h (s, a) = Nk

h for any (s, a) and

applying Lemma 24 with the above quantities, we arrive at
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.
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with probability at least 1 − δ. Here, the proof of the inequality (B.151) is postponed to Ap-

pendix B.3.4.1 in order to streamline the presentation of the analysis.

Step 2: bounding U2. Making use of the result in (B.53), we arrive at
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To continue, for any (s, a) ∈ S ×A, we rewrite and rearrange U2 (cf. (B.147b)) as follows:
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where (i) follows from the fact that N
(mn,1)
h −N (mn−1,1)

h = N̂ epo,mn−1
h (s, a), and (ii) is obtained by

rearranging terms with respect to i (the terms with respect to V
next,ki

h+1 will only be added during the

epoch mi + 1), and the last equality holds since mn − 1 = mi for all n = N
(mi+1,1)
h + 1, N

(mi+1,1)
h +

2, N
(mi+2,1)
h .

With the above relation in mind, we are ready to invoke Lemma 24 to control U2. To continue,

for any episode j ≤ k, let us denote by m(j) the index of the epoch in which episode j happens

(with slight abuse of notation). Let us set
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holds for all (j, h, s, a) ∈ [K]× [H]× S ×A with probability at least 1− δ.
Given that N = Nk

h (s, a) = Nk
h , applying Lemma 24 with the above quantities, we can show
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To streamline the presentation of the analysis, we shall postpone the proof of (B.153) to Ap-

pendix B.3.4.3.
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Step 3: summing up. Combining the bounds in (B.151) and (B.153) yields that: for any

state-action pair (s, a) ∈ S ×A,
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holds for some sufficiently large constant cb > 0, where the last line follows from the definition

of B
kN

k
h+1

h (s, a) in line 14 of Algorithm 6. As a consequence of the inequality (B.154), for any

(s, a) ∈ S ×A, one has
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where the last inequality holds due to (B.62). We have thus concluded the proof of Lemma 30.

B.3.4.1 Proof of inequality (B.151)

To establish the inequality (B.151), it is sufficient to consider the difference
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we can take this result together with (B.54) to yield
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It then boils down to control the above two terms in (B.156) separately when Nk
h = Nk

h (s, a) ≥ 1.

Step 1: controlling W 1
1 . To control W 1

1 , we shall invoke Lemma 24 by setting
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Step 2: controlling W 2
1 . Observe that Jensen’s inequality gives
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due to the fact
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h (V kn

h+1 − V
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=
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)
·
( Nk

h∑

n=1

η
Nk
h

n (P k
n

h + Ph,s,a)(V
kn

h+1 − V
kn

h+1)
)
. (B.159)

Note that the first term in (B.159) is exactly |U1| defined in (B.147a), which can be controlled by

invoking (B.150) to achieve that, with probability at least 1− δ,

∣∣∣
Nk
h∑

n=1

η
Nk
h

n (P k
n

h − Ph,s,a)(V kn

h+1 − V
kn

h+1)
∣∣∣

.

√
H
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h ∨ 1

ι2

√√√√√
Nk
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η
Nk
h

n Varh,s,a
(
V kn
h+1 − V
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)
+

H2ι2
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.

√
H3ι2

Nk
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+
H2

Nk
h ∨ 1

ι2, (B.160)

where the final inequality holds since Varh,s,a
(
V kn

h+1−V
kn

h+1

)
. H2 and the fact in (4.17). In addition,

the second term in (B.159) can be controlled straightforwardly by

∣∣∣
Nk
h∑

n=1

η
Nk
h

n

(
P k

n

h + Ph,s,a

)(
V kn

h+1 − V
kn

h+1

) ∣∣∣ ≤
Nk
h∑

n=1

η
Nk
h

n

(∥∥P knh
∥∥

1
+
∥∥Ph,s,a

∥∥
1

)∥∥V kn

h+1 − V
kn

h+1

∥∥
∞ ≤ 2H,

where we have used the fact in (4.17),
∥∥V kn

h+1 − V
kn

h+1

∥∥
∞ ≤ H and

∥∥P knh
∥∥

1
=
∥∥Ph,s,a

∥∥
1

= 1.

Taking the above two facts collectively with (B.159) yields

W 2
1 .

√
H5ι2

Nk
h ∨ 1

+
H3ι2

Nk
h ∨ 1

. (B.161)
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Step 3: summing up. Plugging the results in (B.157) and (B.161) back into (B.156), we have

W1 ≤W 1
1 +W 2

1 .

√
H5ι2

Nk
h ∨ 1

+
H3ι2

Nk
h ∨ 1

,

which leads to the desired result (B.151) directly.

B.3.4.2 Proof of inequality (B.152)

To begin with, let us recall two pieces of notation that shall be used throughout this proof:

1. m(j): the index of the epoch in which the j-th episode occurs.

2. N̂ epo,m
h (s, a): the value of N̂

(m,Lm+1)
h (s, a), representing the number of visits to (s, a) in the

entire m-th epoch with length Lm = 2m.

Applying (B.1) and taking the union bound over (m(j), h, s, a) ∈ [M ]× [H]× S ×A yield

N̂
epo,m(j)
h (s, a) ∨ 1 ≥ 2m(j)dµh(s, a)

8 log
(
SAT
δ

) (B.162)

with probability at least 1− δ/2.

For any epoch m, if we denote by klast(m) the index of the last episode in the m-th epoch, we

can immediately see that

klast(m) =
m∑

i=1

Li =
m∑

i=1

2i = 2m+1 − 2 ≤ 2m+1. (B.163)

Applying (B.1) again and taking the union bound over (m(j), h, s, a) ∈ [M ]× [H]×S ×A, one can

guarantee that for every n ∈ [N
(m(j)+1,1)
h , N

(m(j)+2,1)
h ], with probability at least 1− δ/2,

N
(m(j)+1,1)
h ≤ n ≤ N (m(j)+2,1)

h = N
klast(m(j)+1)
h

≤ N2m(j)+2

h ≤


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(
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δ

)

2e2 log
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)
if 2m(j)+2dµh(s, a) ≤ 2 log

(
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δ

) .

(B.164)

Combine the above results to yield





N̂
epo,m(j)
h (s, a) ∨ 1

(i)

≥ 2m(j)dµh(s,a)

8 log(SATδ )

(ii)

≥ 1
32e2 log(SATδ )

n, if 2m(j)+2 · dµh(s, a) ≥ log
(
SAT
δ

)
,

N̂
epo,m(j)
h (s, a) ∨ 1 ≥ 1

(iii)

≥ 1
2e2 log(SATδ )

n if 2m(j)+2 · dµh(s, a) ≤ 2 log
(
SAT
δ

)
,

(B.165)
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where (i) follows from (B.162), (ii) and (iii) hold due to (B.164). As a result, we arrive at

N
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h ∧N∑

n=N
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h +1
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N ∨ 1
,

where the last inequality holds since
∑N

i=1
ηNi
i ≤ 2

N∨1 (see Lemma 1).

B.3.4.3 Proof of inequality (B.153)

In this subchapter, we intend to control the following term
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for all (s, a) ∈ S × A. First, it is easily seen that if Nk
h = 0, then we have W2 = 0 and thus

(B.153) is satisfied. Therefore, the remainder of the proof is devoted to verifying (B.153) when

Nk
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Combining the expression (B.55) with the following definition
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(B.166)

In the sequel, we intend to control the terms in (B.166) separately.
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Step 1: controlling W 1
2 . The first term W 1

2 can be controlled by invoking Lemma 24 and set
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1

N
=: Cu.
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Step 2: controlling W 2
2 . Towards controlling W 2

2 in (B.166), we observe that by Jensen’s

inequality,
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Equipped with this relation, W 2
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. (B.168)

As for the first term in (B.168), let us set

W i
h+1 := V

next,i
h+1 , and uih(s, a,N) :=

1

N
=: Cu,
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which satisfy
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with probability at least 1− δ. In addition, the second term can be bounded straightforwardly by
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where the last inequality is valid since
∥∥V next,kn

h+1

∥∥
∞ ≤ H and

∥∥P knh
∥∥

1
=
∥∥Ph,s,a

∥∥
1

= 1. Substitution

of the above two observations back into (B.168) yields
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Step 3: combining the above results. Plugging the results in (B.167) and (B.169) into (B.166),

we reach

W2 ≤W 1
2 +W 2

2 .

√
H4

Nk
h ∨ 1

ι2 +
H2

Nk
h ∨ 1

ι2,

thus establishing the desired inequality (B.153).
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Appendix C

Proofs for Chapter 5

C.1 Proof of auxiliary lemmas: episodic finite-horizon MDPs

C.1.1 Proof of Lemma 13

(a) Let us begin by proving the claim (5.11a). Recall from our construction that Daux is composed

of the second half of the sample trajectories, and hence for each s ∈ S and 1 ≤ h ≤ H,

Naux
h (s) =

K∑

k=K/2+1

1
{
skh = s

}

can be viewed as the sum of K/2 independent Bernoulli random variables, each with mean db
h(s).

According to the union bound and the Bernstein inequality, we obtain

P
{
∃(s, h) ∈ S × [H] :

∣∣∣∣Naux
h (s)− K

2
db
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}
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2
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≤ 2SH exp

(
− τ2/2

vs,h + τ/3

)

for any τ ≥ 0, where
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K

2
Var
(
1{sth = s}

)
=
Kdb

h(s)
(
1− db

h(s)
)

2
≤ Kdb

h(s)

2
.

A little algebra then yields that with probability at least 1− 2δ, one has

∣∣∣∣Naux
h (s)− K

2
db
h(s)

∣∣∣∣ ≤
√

4vs,h log
HS

δ
+

2

3
log

HS

δ
≤
√

2Kdb
h(s) log
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δ
+ log

HS

δ
(C.1)

simultaneously for all s ∈ S and all 1 ≤ h ≤ H. The same argument also reveals that with

probability exceeding 1− 2δ,

∣∣∣∣Nmain
h (s)− K

2
db
h(s)

∣∣∣∣ ≤
√

2Kdb
h(s) log

HS

δ
+ log

HS

δ
(C.2)
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holds simultaneously for all s ∈ S and all 1 ≤ h ≤ H. Combine (C.1) and (C.2) to show that

∣∣Nmain
h (s)−Naux

h (s)
∣∣ ≤ 2

√
2Kdb

h(s) log
HS

δ
+ 2 log

HS

δ
(C.3)

for all s ∈ S and all 1 ≤ h ≤ H.

To establish the claimed result (5.11a), we divide into two cases.

• Case 1: Naux
h (s) ≤ 100 log HS

δ . By construction, it is easily seen that

N trim
h (s) = max

{
Naux
h (s)− 10

√
Naux
h (s) log

HS

δ
, 0

}
= 0 ≤ Nmain

h (s). (C.4)

• Case 2: Naux
h (s) > 100 log HS

δ . In this case, invoking (C.1) reveals that

K

2
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√
2Kdb

h(s) log
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δ
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δ
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h (s) > 100 log
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δ
,

and hence one necessarily has

Kdb
h(s) ≥ (9

√
2)2 log

HS

δ
≥ 100 log

HS

δ
. (C.5)

In turn, this property (C.5) taken collectively with (C.28) ensures that

Naux
h (s) ≥ K

2
db
h(s)−

√
2Kdb

h(s) log
HS

δ
− log

HS

δ
≥ K

4
db
h(s). (C.6)

Therefore, in the case with Naux
h (s) > 100 log HS

δ , we can demonstrate that

N trim
h (s) = max

{
Naux
h (s)− 10

√
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h (s) log

HS

δ
, 0

}
= Naux

h (s)− 10

√
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h (s) log
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δ
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h (s)− 5

√
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h(s) log
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δ

(ii)

≤ Naux
h (s)−

{
2

√
2Kdb

h(s) log
HS

δ
+ 2 log

HS

δ

}

(iii)

≤ Nmain
h (s), (C.7)

where (i) comes from Condition (C.6), (ii) is valid under the condition (C.5), and (iii) holds

true with probability at least 1− 2δ due to the inequality (C.3).

Putting the above two cases together establishes the claim (5.11a).

(b) We now turn to the second claim (5.11b). Towards this, we first claim that the following bound
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holds simultaneously for all (s, a, h) ∈ S ×A× [H] with probability exceeding 1− 2δ:

N trim
h (s, a) ≥ N trim

h (s)πb
h(a | s)−

√
4N trim

h (s)πb
h(a | s) log

KH

δ
− log

KH

δ
. (C.8)

Let us take this claim as given for the moment, and return to establish it towards the end of this

subchapter. We shall discuss the following two cases separately.

• If Kdb
h(s, a) = Kdb

h(s)πb
h(a | s) > 1600 log KH

δ , then it follows from (C.6) (with slight modifi-

cation) that

Naux
h (s) ≥ K

4
db
h(s) ≥ 400 log
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δ
. (C.9)

This property together with the definition of N trim
h (s) in turn allows us to derive
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and as a result,
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8
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h(s)πb
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8
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h(s, a) ≥ 200 log
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,

where the last inequality arises from the assumption of this case. Taking this lower bound

with (C.8) implies that

N trim
h (s, a) ≥ K

8
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δ
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≥ K

8
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.

• If Kdb
h(s, a) ≤ 1600 log KH

δ , then one can easily verify that

K

8
db
h(s, a)− 5

√
Kdb

h(s, a) log
KH

δ
≤ 0 ≤ N trim

h (s, a).

Putting these two cases together concludes the proof, provided that the claim (C.8) is valid.

Proof of inequality (C.8). Let us look at two cases separately.

• If N trim
h (s)πb

h(a | s) ≤ 4 log KH
δ , then the right-hand side of (C.8) is negative, and hence the

claim (C.8) holds trivially.
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• We then turn attention to the following set:

Alarge :=

{
(s, a, h) ∈ S ×A× [H]

∣∣∣ N trim
h (s)πb

h(a | s) > 4 log
KH

δ

}
. (C.10)

Recognizing that

∑

(s,a,h)∈S×A×[H]
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h (s)πb
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∑
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∑
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N trim
h (s)

≤
∑

(s,h)∈S×[H]

Naux
h (s) =

KH

2
,

we can immediately bound the cardinality of Alarge as follows:

∣∣Alarge

∣∣ <
∑

(s,a,h)N
trim
h (s)πb

h(a | s)
4 log KH

δ

≤ KH/2. (C.11)

Additionally, it follows from our construction that: conditional on N trim
h (s), Nmain

h (s) and the

high-probability event (5.11a), N trim
h (s, a) can be viewed as the sum of min

{
N trim
h (s), Nmain

h (s)
}

=

N trim
h (s) independent Bernoulli random variables each with mean πh(a | s). As a result, repeat-

ing the Bernstein-type argument in (C.28) on the event (5.11a) reveals that, with probability

at least 1− 2δ/(KH),

N trim
h (s, a) ≥ N trim

h (s)πb
h(a | s)−

√
4N trim

h (s)πb
h(a | s) log

KH

δ
− log

KH

δ
(C.12)

for any fixed triple (s, a, h). Taking the union bound over all (s, a, h) ∈ Alarge and using the

bound (C.11) imply that with probability exceeding 1− δ, (C.12) holds simultaneously for all

(s, a, h) ∈ Alarge.

Combining the above two cases allows one to conclude that with probability at least 1 − δ, the

advertised property (C.8) holds simultaneously for all (s, a, h) ∈ S ×A× [H].

C.2 Proof of auxiliary lemmas: infinite-horizon MDPs

C.2.1 Proof of Lemma 14

Before embarking on the proof, we introduce several notation. To make explicit the dependency on

V , we shall express the penalty term using the following notation throughout this subchapter:

b(s, a;V ) = min

{
max

{√cb log N
(1−γ)δ

N(s, a)
Var

P̂s,a
(V ),

2cb log N
(1−γ)δ

(1− γ)N(s, a)

}
,

1

1− γ

}
+

5

N
(C.13)
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For any Q,Q1, Q2 ∈ RSA, we write

V (s) := max
a

Q(s, a), V1(s) := max
a

Q1(s, a) and V2(s) := max
a

Q2(s, a) (C.14)

for all s ∈ S. Unless otherwise noted, we assume that

Q(s, a), Q1(s, a), Q2(s, a) ∈
[
0,

1

1− γ
]

for all (s, a) ∈ S ×A

throughout this subchapter. In addition, let us define another operator T̃pe obeying

T̃pe(Q)(s, a) = r(s, a)− b(s, a;V ) + γP̂s,aV for all (s, a) ∈ S ×A (C.15)

for any Q ∈ RSA. It is self-evident that

T̂pe(Q)(s, a) = max
{
T̃pe(Q)(s, a), 0

}
for all (s, a) ∈ S ×A. (C.16)

γ-contraction. The main step of the proof lies in showing the monotonicity of the operator T̃pe

in the sense that

T̃pe(Q) ≤ T̃pe(Q̃) for any Q ≤ Q̃. (C.17)

Suppose that this claim is valid for the moment, then one can demonstrate that: for any Q1, Q2 ∈
RSA,

T̃pe(Q1)− T̃pe(Q2) ≤ T̃pe

(
Q2 + ‖Q1 −Q2‖∞1

)
− T̃pe(Q2), (C.18a)

T̃pe(Q1)− T̃pe(Q2) ≥ T̃pe

(
Q2 − ‖Q1 −Q2‖∞1

)
− T̃pe(Q2), (C.18b)

with 1 denoting the all-one vector. Additionally, observe that

Var
P̂s,a

(V ) = Var
P̂s,a

(V + c · 1) and hence b(s, a;V ) = b(s, a;V + c · 1)

for any constant c, which together with the identity P̂1 = 1 immediately leads to

∥∥∥T̃pe

(
Q2 − ‖Q1 −Q2‖∞1

)
− T̃pe(Q2)

∥∥∥
∞
≤ γ

∥∥∥P̂
(
‖Q1 −Q2‖∞1

)∥∥∥
∞

= γ‖Q1 −Q2‖∞,
∥∥∥T̃pe

(
Q2 + ‖Q1 −Q2‖∞1

)
− T̃pe(Q2)

∥∥∥
∞
≤ γ

∥∥∥P̂
(
‖Q1 −Q2‖∞1

)∥∥∥
∞

= γ‖Q1 −Q2‖∞.

Taking this together with (C.18) yields

∥∥T̃pe(Q1)− T̃pe(Q2)
∥∥
∞ ≤ γ‖Q1 −Q2‖∞,
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which combined with the basic property
∥∥T̂pe(Q1)−T̂pe(Q2)

∥∥
∞ ≤

∥∥T̃pe(Q1)−T̃pe(Q2)
∥∥
∞ (as a result

of (C.16)) justifies that

∥∥T̂pe(Q1)− T̂pe(Q2)
∥∥
∞ ≤ γ‖Q1 −Q2‖∞. (C.19)

The remainder of the proof is thus devoted to establishing the monotonicity property (C.17).

Proof of the monotonicity property (C.17). Consider any point Q ∈ RSA, and we would like

to examine the derivative of T̃pe at point Q. Towards this end, we consider any (s, a) ∈ S ×A and

divide into several cases.

• Case 1: max

{√
cb log N

(1−γ)δ

N(s,a) Var
P̂s,a

(V ),
2cb log N

(1−γ)δ

(1−γ)N(s,a)

}
> 1

1−γ . In this case, the penalty term

(C.13) simplifies to

b(s, a;V ) =
1

1− γ +
5

N
.

Taking the derivative of T̃pe(Q)(s, a) w.r.t. the s′-th component of V leads to

∂
(
T̃pe(Q)(s, a)

)

∂V (s′)
=
∂
(
r(s, a)− 1

1−γ + γP̂s,aV
)

∂V (s′)
= γP̂ (s′ | s, a) ≥ 0 (C.20)

for any s′ ∈ S.

• Case 2:

√
cb log N

(1−γ)δ

N(s,a) Var
P̂s,a

(V ) <
2cb log N

(1−γ)δ

(1−γ)N(s,a) < 1
1−γ . The penalty (C.13) in this case

reduces to

b(s, a;V ) =
2cb log N

(1−γ)δ

(1− γ)N(s, a)
+

5

N
,

an expression that is independent of V . As a result, repeating the argument for Case 1

indicates that (C.20) continues to hold for this case.

• Case 3:
2cb log N

(1−γ)δ

(1−γ)N(s,a) <

√
cb log N

(1−γ)δ

N(s,a) Var
P̂s,a

(V ) < 1
1−γ . In this case, the penalty term is given

by

b(s, a;V ) =

√
cb log N

(1−γ)δ

N(s, a)
Var

P̂s,a
(V ) +

5

N
.

Note that in this case, we necessarily have

Var
P̂s,a

(V ) ≥
4cb log N

(1−γ)δ

(1− γ)2N(s, a)
,

248



which together with the definition in (1.7) indicates that

P̂s,a(V ◦ V )−
(
P̂s,aV

)2 ≥
4cb log N

(1−γ)δ

(1− γ)2N(s, a)
> 0. (C.21)

As a result, for any s′ ∈ S, taking the derivative of b(s, a;V ) w.r.t. the s′-th component of V

gives

∂b(s, a;V )

∂V (s′)
=

√
cb log N

(1−γ)δ

N(s, a)

∂
√
P̂s,a(V ◦ V )−

(
P̂s,aV

)2

∂V (s′)

=

√
cb log N

(1−γ)δ

N(s, a)

P̂ (s′ | s, a)V (s′)−
(
P̂s,aV

)
P̂ (s′ | s, a)√

P̂s,a(V ◦ V )−
(
P̂s,aV

)2

≤

√
cb log N

(1−γ)δ

N(s, a)

P̂ (s′ | s, a)V (s′)√
P̂s,a(V ◦ V )−

(
P̂s,aV

)2

≤ 1

2
(1− γ)P̂ (s′ | s, a)V (s′) ≤ γP̂ (s′ | s, a),

where the penultimate inequality relies on (C.21), and the last inequality is valid since

V (s′) = maxaQ(s′, a) ≤ 1
1−γ and γ ≥ 1/2. In turn, the preceding relation allows one to derive

∂
(
T̃pe(Q)(s, a)

)

∂V (s′)
= γP̂ (s′ | s, a)− ∂b(s, a;V )

∂V (s′)
≥ 0

for any s′ ∈ S.

Putting the above cases together reveals that

∂
(
T̃pe(Q)(s, a)

)

∂V (s′)
≥ 0 for all (s, a, s′) ∈ S ×A× S

holds almost everywhere (except for the boundary points of these cases). Recognizing that T̃pe(Q)

is continuous in Q and that V is non-decreasing in Q, one can immediately conclude that

T̃pe(Q) ≤ T̃pe(Q̃) for any Q ≤ Q̃. (C.22)

Existence and uniqueness of fixed points. To begin with, note that for any 0 ≤ Q ≤ 1
1−γ · 1,

one has 0 ≤ T̂pe(Q) ≤ 1
1−γ · 1. If we produce the following sequence recursively:

Q(0) = 0 and Q(t+1) = T̂pe(Q
(t)) for all t ≥ 0,
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then the standard proof for the Banach fixed-point theorem (e.g., Agarwal et al. (2001, Theorem

1)) tells us that Q(t) converges to some point Q(∞) as t→∞. Clearly, Q(∞) is a fixed point of T̂pe

obeying 0 ≤ Q(∞) ≤ 1
1−γ · 1.

We then turn to justifying the uniqueness of fixed points of T̂pe. Suppose that there exists

another point Q̃ obeying Q̃ = T̂pe

(
Q̃
)
, which clearly satisfies Q̃ ≥ 0. If ‖Q̃‖∞ > 1

1−γ , then

∥∥Q̃
∥∥
∞ =

∥∥T̂pe

(
Q̃
)∥∥
∞ ≤ ‖r‖∞ + γ‖P̂‖1

∥∥Q̃
∥∥
∞ ≤ 1 + γ

∥∥Q̃
∥∥
∞ < (1− γ)

∥∥Q̃
∥∥
∞ + γ

∥∥Q̃
∥∥
∞ =

∥∥Q̃
∥∥
∞,

resulting in contradiction. Consequently, one necessarily has 0 ≤ Q̃ ≤ 1
1−γ · 1. Further, the

γ-contraction property (C.19) implies that

∥∥Q̃−Q(∞)
∥∥
∞ =

∥∥T̂pe

(
Q̃
)
− T̂pe

(
Q(∞)

)∥∥
∞ ≤ γ

∥∥Q̃−Q(∞)
∥∥
∞.

Given that γ < 1, this inequality cannot happen unless Q̃ = Q∞, thus confirming the uniqueness of

Q∞.

C.2.2 Proof of Lemma 15

Let us first recall the monotone non-decreasing property (C.17) of the operator T̃pe defined in (C.15),

which taken together with the property (C.16) readily yields

T̂pe(Q) ≤ T̂pe(Q̃) (C.23)

for any Q and Q̃ obeying Q ≤ Q̃, 0 ≤ Q ≤ 1
1−γ · 1 and 0 ≤ Q̃ ≤ 1

1−γ · 1 (with 1 the all-one vector).

Given that Q̂0 = 0 ≤ Q̂?pe, we can apply (C.23) to obtain

Q̂1 = T̂pe

(
Q0

)
≤ T̂pe

(
Q̂?pe

)
= Q̂?pe.

Repeat this argument recursively to arrive at

Q̂τ ≤ Q̂?pe for all τ ≥ 0.

In addition, it comes directly from Lemma 14 that

∥∥Q̂τ − Q̂?pe

∥∥
∞ =

∥∥T̂pe

(
Q̂τ−1

)
− T̂pe

(
Q̂?pe

)∥∥
∞ ≤ γ

∥∥Q̂τ−1 − Q̂?pe

∥∥
∞

≤ · · · ≤ γτ
∥∥Q̂0 − Q̂?pe

∥∥
∞

≤ γτ

1− γ (C.24)

for any τ ≥ 0, where the last inequality is valid since Q̂0 = 0 and ‖Q̂?pe‖∞ ≤ 1
1−γ (see Lemma 14).
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The other claim (5.38) also follows immediately by taking the right-hand side of (C.24) to be no

larger than 1/N .

C.2.3 Proof of Lemma 19

For any (s, a) ∈ S × A, if Ndb(s,a)
12 < 2

3 log SN
δ , then it is self-evident that this pair satisfies (5.69).

As a consequence, it suffices to focus attention on the following set of state-action pairs:

Nlarge :=

{
(s, a)

∣∣∣ db(s, a) ≥ 8 log SN
δ

N

}
. (C.25)

To bound the cardinality of Nlarge, we make the observation that

∣∣Nlarge

∣∣ · 8 log SN
δ

N
≤

∑

(s,a)∈Nlarge

db(s, a) ≤
∑

(s,a)∈S×A

db(s, a) ≤ 1,

thus leading to the crude bound

∣∣Nlarge

∣∣ ≤ N

8 log SN
δ

≤ N

8
. (C.26)

Let us now look at any (s, a) ∈ Nlarge. Given that N(s, a) can be viewed as the sum of

N independent Bernoulli random variables each with mean db(s, a), we can apply the Bernstein

inequality to yield

P
{ ∣∣∣N(s, a)−Ndb(s, a)

∣∣∣ ≥ τ
}
≤ 2 exp

(
− τ2/2

vs,a + τ/3

)

for any τ ≥ 0, where we define

vs,a := NVar
(
1
{

(si, ai) = (s, a)
})
≤ Ndb(s, a).

A little algebra then yields that with probability at least 1− δ,

∣∣∣N(s, a)−Ndb(s, a)
∣∣∣ ≤

√
4vs,a log

2

δ
+

2

3
log

2

δ
≤
√

4Ndb(s, a) log
2

δ
+ log

2

δ
. (C.27)

Combining this result with the union bound over (s, a) ∈ Nlarge and making use of (C.26) give: with

probability at least 1− δ,

∣∣∣N(s, a)−Ndb(s, a)
∣∣∣ ≤

√
4Ndb(s, a) log

N

δ
+ log

N

δ
(C.28)

holds simultaneously for all (s, a) ∈ Nlarge. Recalling that Ndb(s, a) ≥ 8 log NS
δ holds for any
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(s, a) ∈ Nlarge, we can easily verify that

N(s, a) ≥ Ndb(s, a)−
(√

4Ndb(s, a) log
N

δ
+ log

N

δ

)
≥ Ndb(s, a)

12
, (C.29)

thereby establishing (5.69) for any (s, a) ∈ Nlarge. This concludes the proof.

C.2.4 Proof of Lemma 20

If N(s, a) = 0, then the inequalities hold trivially. Hence, it is sufficient to focus on the case where

N(s, a) > 0. Before proceeding, we make note of a key Bernstein-style result; the proof is deferred

to Appendix C.2.4.1.

Lemma 31. Consider any given pair (s, a) ∈ S ×A with N(s, a) > 0. Let V ∈ RS be any vector

independent of P̂s,a obeying ‖V ‖∞ ≤ 1
1−γ . With probability at least 1− 4δ, one has

∣∣(P̂s,a − Ps,a
)
V
∣∣ ≤

√
48Var

P̂s,a
(V ) log N

δ

N(s, a)
+

48 log N
δ

(1− γ)N(s, a)
(C.30a)

Var
P̂s,a

(V ) ≤ 2VarPs,a
(
V
)

+
5 log N

δ

3(1− γ)2N(s, a)
(C.30b)

Remark 8. In words, Lemma 31 develops a Bernstein bound (C.30a) on
∣∣(P̂s,a − Ps,a

)
V
∣∣ that

makes clear the importance of the variance parameter. Lemma 31 (cf. (C.30b)) also ascertains that

the variance w.r.t. the empirical distribution P̂s,a does not deviate much from the variance w.r.t. the

true distribution Ps,a.

Equipped with this result, we are now ready to present the proof of Lemma 20, which is built

upon a leave-one-out decoupling argument and consists of the following steps.

Step 1: construction of auxiliary state-absorbing MDPs. Recall that M̂ is the empirical

MDP. For each state s ∈ S and each scalar u ≥ 0, we construct an auxiliary state-absorbing MDP

M̂s,u in a way that makes it identical to the empirical MDP M̂ except for state s. More specifically,

the transition kernel of the auxiliary MDP M̂s,u — denoted by P s,u — is chosen such that

P s,u( s̃ | s, a) = 1(s̃ = s) for all ( s̃, a) ∈ S ×A,
P s,u(· | s′, a) = P̂ (· | s′, a) for all (s′, a) ∈ S ×A and s′ 6= s;

and the reward function of M̂s,u — denoted by rs,u — is set to be

rs,u(s, a) = u for all a ∈ A,
rs,u(s′, a) = r(s′, a) for all (s′, a) ∈ S ×A and s′ 6= s.

252



In words, the probability transition kernel of M̂s,u is obtained by dropping all randomness of P̂s,a

(a ∈ A) that concerns state s and making s an absorbing state. In addition, let us define the

pessimistic Bellman operator T̂ s,upe based on the auxiliary MDP M̂s,u such that

T̂ s,upe (Q)(s, a) := max
{
rs,u(s, a) + γP s,us,a V − bs,u(s, a;V ), 0

}
(C.31)

for any (s, a) ∈ S ×A, where the penalty term is taken to be

bs,u(s, a;V ) = min

{
max

{√cb log N
(1−γ)δ

N(s, a)
VarP s,u(· | s,a)(V ),

2cb log N
(1−γ)δ

(1− γ)N(s, a)

}
,

1

1− γ

}
+

5

N
.

(C.32)

Step 2: the correspondence between the empirical MDP and auxiliary MDP. Taking

u? = (1− γ)V̂ ?
pe(s) + min

{
2cb log N

(1−γ)δ

(1− γ) maxaN(s, a)
,

1

1− γ

}
+

5

N
, (C.33)

we claim that there exists a fixed point Q̂?s,u? of T̂ s,u?pe whose corresponding value function V̂ ?
s,u?

coincides with V̂ ?
pe. To justify this, it suffices to verify the following properties:

• Consider any a ∈ A. Given that P s,u(· | s, a) only has a single non-zero entry (equal to 1), it

is easily seen that VarP s,u(· | s,a)(V ) = 0 holds for any V and any u, thus indicating that

bs,u(s, a;V ) = min

{
2cb log N

(1−γ)δ

(1− γ)N(s, a)
,

1

1− γ

}
+

5

N
. (C.34)

Consequently, for state s, one has

max
a

{
rs,u

?
(s, a)− bs,u?

(
s, a; V̂ ?

pe

)
+ γ
〈
P s,u

?
(· | s, a), V̂ ?

pe

〉}
= max

a

{
u? − bs,u?

(
s, a; V̂ ?

pe

)
+ γV̂ ?

pe(s)
}

= u? −min
a
bs,u

?(
s, a; V̂ ?

pe

)
+ γV̂ ?

pe(s)

= (1− γ)V̂ ?
pe(s) + γV̂ ?

pe(s)

= V̂ ?
pe(s), (C.35)

where the third identity makes use of our choice (C.33) of u? and (C.34).

• Next, consider any s′ 6= s and any a ∈ A. We make the observation that

max
{
rs,u

?
(s′, a)− bs,u?

(
s′, a; V̂ ?

pe

)
+ γ
〈
P s,u

?
(· | s′, a), V̂ ?

pe

〉
, 0
}

= max
{
r(s′, a)− b

(
s′, a; V̂ ?

pe

)
+ γ
〈
P̂ (· | s′, a), V̂ ?

pe

〉
, 0
}

= Q̂?pe(s
′, a), (C.36)
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where the last relation holds since Q̂?pe is a fixed point of T̂pe.

Armed with (C.35) and (C.36), we see that Q̂?s,u? = T̂ s,u?pe

(
Q̂?s,u?

)
by taking

max
a∈A

Q̂?s,u?(s, a) = V̂ ?
pe(s),

Q̂?s,u?(s
′, a) = Q̂?pe(s

′, a) for all s′ 6= s and a ∈ A.

This readily confirms the existence of a fixed point of T̂ s,u?pe whose corresponding value coincides

with V̂ ?
pe.

Step 3: building an ε-net. Consider any (s, a) ∈ S ×A with N(s, a) > 0. Construct a set Ucover

as follows

Ucover :=

{
i

N
| 1 ≤ i ≤ Numax

}
, (C.37)

with umax = min
{

2cb log N
(1−γ)δ

(1−γ)N(s,a) ,
1

1−γ

}
+ 5

N + 1. This can be viewed as the ε-net (Vershynin, 2018) of

the range [0, umax] ⊆
[
0, 2

1−γ
]

with ε = 1/N . Let us construct an auxiliary MDP M̂s,u as in Step 1

for each u ∈ Ucover. Repeating the argument in the proof of Lemma 14 (see Chapter C.2.1), we can

easily show that there exists a unique fixed point Q̂?s,u of M̂s,u, which also obeys 0 ≤ Q̂?s,u ≤ 1
1−γ · 1.

In what follows, we denote by V̂ ?
s,u the corresponding value function of Q̂?s,u.

Recognizing that M̂s,u is statistically independent from P̂s,a for any u ∈ Ucover (by construc-

tion), we can apply Lemma 31 in conjunction with the union bound (over all u ∈ Ucover) to show

that, with probability exceeding 1− δ,

∣∣∣
(
P̂s,a − Ps,a

)
V̂ ?
s,u

∣∣∣ ≤

√√√√48 log 8N2

(1−γ)δ

N(s, a)
Var

P̂s,a

(
V̂ ?
s,u

)
+

48 log 8N2

(1−γ)δ

(1− γ)N(s, a)
, (C.38a)

Var
P̂s,a

(
V̂ ?
s,u

)
≤ 2VarPs,a

(
V̂ ?
s,u

)
+

5 log 8N2

(1−γ)δ

3(1− γ)2N(s, a)
(C.38b)

hold simultaneously for all u ∈ Ucover. Clearly, the total number of (s, a) pairs with N(s, a) > 0

cannot exceed N . Thus, taking the union bound over all these pairs yield that, with probability at

least 1− δ,

∣∣∣
(
P̂s,a − Ps,a

)
V̂ ?
s,u

∣∣∣ ≤

√√√√48 log 8N3

(1−γ)δ

N(s, a)
Var

P̂s,a

(
V̂ ?
s,u

)
+

48 log 8N3

(1−γ)δ

(1− γ)N(s, a)
, (C.39a)

Var
P̂s,a

(
V̂ ?
s,u

)
≤ 2VarPs,a

(
V̂ ?
s,u

)
+

5 log 8N3

(1−γ)δ

3(1− γ)2N(s, a)
(C.39b)
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hold simultaneously for all (s, a, u) ∈ S ×A× Ucover obeying N(s, a) > 0.

Step 4: a covering argument. In this step, we shall work on the high-probability event

(C.38) that holds simultaneously for all u ∈ Ucover. Given that V̂ ?
pe satisfies the trivial bound

0 ≤ V̂ ?
pe(s) ≤ 1

1−γ for all s ∈ S, one can find some u0 ∈ Ucover such that |u0 − u?| ≤ 1/N , where we

recall the choice of u? in (C.33). From the definition of the MDP M̂s,u and the operator (C.31), it

is readily seen that ∥∥T̂ s,u0
pe (Q)− T̂ s,u?pe (Q)

∥∥
∞ ≤

∣∣u0 − u?
∣∣ ≤ 1

N

holds for any Q ∈ RSA. Consequently, we can use γ-contraction of the operator to obtain

∥∥Q̂?s,u0
− Q̂?s,u?

∥∥
∞ =

∥∥∥T̂ s,u0
pe

(
Q̂?s,u0

)
− T̂ s,u?pe

(
Q̂?s,u?

)∥∥∥
∞

≤
∥∥∥T̂ s,u?pe

(
Q̂?s,u0

)
− T̂ s,u?pe

(
Q̂?s,u?

)∥∥∥
∞

+
∥∥∥T̂ s,u0

pe

(
Q̂?s,u0

)
− T̂ s,u?pe

(
Q̂?s,u0

)∥∥∥
∞

≤ γ
∥∥Q̂?s,u0

− Q̂?s,u?
∥∥
∞ +

1

N
,

which implies that ∥∥Q̂?s,u0
− Q̂?s,u?

∥∥
∞ ≤

1

(1− γ)N

and therefore ∥∥V̂ ?
s,u0
− V̂ ?

s,u?
∥∥
∞ ≤

∥∥Q̂?s,u0
− Q̂?s,u?

∥∥
∞ ≤

1

(1− γ)N
.

This in turn allows us to demonstrate that

VarPs,a
(
V̂ ?
s,u0

)
− VarPs,a

(
V̂ ?
s,u?
)

= Ps,a

((
V̂ ?
s,u0
− Ps,aV̂ ?

s,u0

)
◦
(
V̂ ?
s,u0
− Ps,aV̂ ?

s,u0

)
−
(
V̂ ?
s,u? − Ps,aV̂ ?

s,u?
)
◦
(
V̂ ?
s,u? − Ps,aV̂ ?

s,u?
))

≤ Ps,a
((
V̂ ?
s,u0
− Ps,aV̂ ?

s,u?
)
◦
(
V̂ ?
s,u0
− Ps,aV̂ ?

s,u?
)
−
(
V̂ ?
s,u? − Ps,aV̂ ?

s,u?
)
◦
(
V̂ ?
s,u? − Ps,aV̂ ?

s,u?
))

≤ Ps,a
((
V̂ ?
s,u0
− Ps,aV̂ ?

s,u? + V̂ ?
s,u? − Ps,aV̂ ?

s,u?
)
◦
(
V̂ ?
s,u0
− V̂ ?

s,u?
))

≤ 2

1− γ
∣∣∣Ps,a

(
V̂ ?
s,u0
− V̂ ?

s,u?
)∣∣∣ ≤ 2

1− γ
∥∥V̂ ?

s,u0
− V̂ ?

s,u?
∥∥
∞ ≤

2

(1− γ)2N
,

where the third line comes from the fact that E[X] = arg minc E[(X − c)2], and the last line relies

on the property 0 ≤ V̂ ?
s,u0

, V̂ ?
s,u? ≤ 1

1−γ . In addition, by swapping V̂ ?
s,u0

and V̂ ?
s,u? , we can derive

VarPs,a
(
V̂ ?
s,u?
)
− VarPs,a

(
V̂ ?
s,u0

)
≤ 2

(1− γ)2N
,
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and then

∣∣∣VarPs,a
(
V̂ ?
s,u0

)
− VarPs,a

(
V̂ ?
s,u?
)∣∣∣ ≤ 2

(1− γ)2N
. (C.40)

Clearly, this bound (C.40) continues to be valid if we replace Ps,a with P̂s,a.

With the above perturbation bounds in mind, we can invoke the triangle inequality and

(C.39a) to reach

∣∣∣
(
P̂s,a − Ps,a

)
V̂ ?

pe

∣∣∣ =
∣∣∣
(
P̂s,a − Ps,a

)
V̂ ?
s,u?

∣∣∣ ≤
∣∣∣
(
P̂s,a − Ps,a

)
V̂ ?
s,u0

∣∣∣+
∣∣∣
(
P̂s,a − Ps,a

)(
V̂ ?
s,u? − V̂ ?

s,u0

)∣∣∣

≤
∣∣∣
(
P̂s,a − Ps,a

)
V̂ ?
s,u0

∣∣∣+
2

N(1− γ)

≤

√√√√48 log 8N3

(1−γ)δ

N(s, a)
Var

P̂s,a

(
V̂ ?
s,u0

)
+

48 log 8N3

(1−γ)δ

(1− γ)N(s, a)
+

2

N(1− γ)

≤

√√√√48 log 8N3

(1−γ)δ

N(s, a)
Var

P̂s,a

(
V̂ ?
s,u?
)

+

√√√√ 96 log 8N3

(1−γ)δ

(1− γ)2N(s, a)
+

48 log 8N3

(1−γ)δ

(1− γ)N(s, a)
+

2

N(1− γ)

≤

√√√√48 log 8N3

(1−γ)δ

N(s, a)
Var

P̂s,a

(
V̂ ?
s,u?
)

+
60 log 8N3

(1−γ)δ

(1− γ)N(s, a)
, (C.41)

where the second line holds since

∣∣∣
(
P̂s,a − Ps,a

)(
V̂ ?
s,u? − V̂ ?

s,u0

)∣∣∣ ≤
(∥∥P̂s,a

∥∥
1

+
∥∥Ps,a

∥∥
1

)∥∥V̂ ?
s,u? − V̂ ?

s,u0

∥∥
∞ ≤

2

N(1− γ)
,

the penultimate line is valid due to (C.40), and the last line holds true under the conditions that

T ≥ N(s, a) and that T is sufficiently large. Moreover, apply (C.39b) and the triangle inequality to

arrive at

Var
P̂s,a

(
V̂ ?

pe

)
= Var

P̂s,a

(
V̂ ?
s,u?
)
≤ Var

P̂s,a

(
V̂ ?
s,u0

)
+
∣∣∣Var

P̂s,a

(
V̂ ?
s,u?
)
− Var

P̂s,a

(
V̂ ?
s,u0

)∣∣∣

(i)

≤ 2VarPs,a
(
V̂ ?
s,u0

)
+

5 log 8N3

(1−γ)δ

3(1− γ)2N(s, a)
+

2

(1− γ)2N

≤ 2VarPs,a
(
V̂ ?
s,u?
)

+ 2
∣∣∣VarPs,a

(
V̂ ?
s,u?
)
− VarPs,a

(
V̂ ?
s,u0

)∣∣∣+
5 log 8N3

(1−γ)δ

3(1− γ)2N(s, a)
+

2

(1− γ)2N

(ii)

≤ 2VarPs,a
(
V̂ ?

pe

)
+

6

(1− γ)2N
+

5 log 8N3

(1−γ)δ

3(1− γ)2N(s, a)

≤ 2VarPs,a
(
V̂ ?

pe

)
+

23 log 8N3

(1−γ)δ

3(1− γ)2N(s, a)
, (C.42)
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where (i) arise from (C.39b) and (C.40), (ii) follows from (C.40), and the last line holds true since

N ≥ N(s, a).

Step 5: extending the bounds to Ṽ . Consider any Ṽ obeying ‖Ṽ − V̂ ?
pe‖∞ ≤ 1

N and ‖Ṽ ‖∞ ≤
1

1−γ . Invoke (C.41) and the triangle inequality to arrive at

∣∣∣
(
P̂s,a − Ps,a

)
Ṽ
∣∣∣ ≤

∣∣∣
(
P̂s,a − Ps,a

)
V̂ ?

pe

∣∣∣+
∣∣∣
(
P̂s,a − Ps,a

)(
V̂ ?

pe − Ṽ
)∣∣∣

≤

√√√√48 log 8N3

(1−γ)δ

N(s, a)
Var

P̂s,a

(
V̂ ?
s,u?
)

+
60 log 2N

(1−γ)δ

(1− γ)N(s, a)
+

2

N
,

≤ 12

√
log 2N

(1−γ)δ

N(s, a)
Var

P̂s,a

(
V̂ ?
s,u?
)

+
62 log 2N

(1−γ)δ

(1− γ)N(s, a)

= 12

√
log 2N

(1−γ)δ

N(s, a)
Var

P̂s,a

(
V̂ ?

pe

)
+

62 log 2N
(1−γ)δ

(1− γ)N(s, a)
, (C.43)

where the penultimate inequality relies on N ≥ N(s, a), and the second line holds since

∣∣∣
(
P̂s,a − Ps,a

)(
V̂ ?

pe − Ṽ
)∣∣∣ ≤

(∥∥P̂s,a
∥∥

1
+
∥∥Ps,a

∥∥
1

)∥∥V̂ ?
pe − Ṽ

∥∥
∞ ≤

2

N
.

Given that
∥∥Ṽ − V̂ ?

pe

∥∥
∞ ≤ 1/N , we can repeat the argument for (C.40) allows one to demonstrate

that ∣∣∣Var
P̂s,a

(
V̂ ?

pe

)
− Var

P̂s,a

(
Ṽ
)∣∣∣ ≤ 2

(1− γ)2N

which taken together with (C.43) and the basic inequality
√
x+ y ≤ √x+

√
y gives

∣∣∣
(
P̂s,a − Ps,a

)
Ṽ
∣∣∣ ≤ 12

√
log 2N

(1−γ)δ

N(s, a)
Var

P̂s,a

(
Ṽ
)

+ 12

√
log 2N

(1−γ)δ

N(s, a)
· 2

(1− γ)2N
+

62 log 2N
(1−γ)δ

(1− γ)N(s, a)

≤ 12

√
log 2N

(1−γ)δ

N(s, a)
Var

P̂s,a

(
Ṽ
)

+
74 log 2N

(1−γ)δ

(1− γ)N(s, a)
.

Additionally, repeating the argument for (C.42) leads to another desired inequality:

Var
P̂s,a

(
Ṽ
)
≤ 2VarPs,a

(
Ṽ
)

+
6

(1− γ)N
+

23 log 8N3

(1−γ)δ

3(1− γ)2N(s, a)

≤ 2VarPs,a
(
Ṽ
)

+
41 log 2N

(1−γ)δ

(1− γ)2N(s, a)
.
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C.2.4.1 Proof of Lemma 31

In this proof, we shalle often use Vars,a to abbreviate VarPs,a for notational simplicity. Before

proceeding, let us define the following vector

V = V − (Ps,aV )1, (C.44)

with 1 denoting the all-one vector. It is clearly seen that

Ps,a
(
V ◦ V

)
= Ps,a

(
V ◦ V

)
−
(
Ps,aV

)2
= Vars,a(V ). (C.45)

In addition, we make note of the following basic facts that will prove useful:

‖V ‖∞ ≤
1

1− γ , ‖V ‖∞ ≤
1

1− γ , ‖V ◦ V ‖∞ ≤ ‖V ‖2∞ ≤ H2, (C.46a)

Vars,a
(
V ◦ V

)
≤ Ps,a

(
V ◦ V ◦ V ◦ V

)
≤ 1

(1− γ)2
Ps,a

(
V ◦ V

)
=

1

(1− γ)2
Vars,a

(
V
)
. (C.46b)

Proof of inequality (C.30a). If 0 < N(s, a) < 48 log N
δ , then we can immediately see that

∣∣∣
(
P̂s,a − Ps,a

)
V
∣∣∣ ≤ ‖V ‖∞ ≤

1

1− γ ≤
48 log N

δ

(1− γ)N(s, a)
, (C.47)

and hence the claim (C.30a) is valid. As a result, it suffices to focus on the case where

N(s, a) ≥ 48 log
N

δ
. (C.48)

Note that the total number of pairs (s, a) with nonzero N(s, a) cannot exceed N . Akin to

(C.28), taking the Bernstein inequality together with (C.46) and invoking the union bound, we can

demonstrate that with probability at least 1− 4δ,

∣∣∣
(
P̂s,a − Ps,a

)
V
∣∣∣ ≤

√
4Vars,a(V ) log N

δ

N(s, a)
+

2‖V ‖∞ log N
δ

3N(s, a)

≤
√

4Vars,a(V ) log N
δ

N(s, a)
+

2 log N
δ

3(1− γ)N(s, a)
(C.49a)

∣∣∣
(
Ps,a − P̂s,a

)(
V ◦ V

)∣∣∣ ≤
√

4Vars,a
(
V ◦ V

)
log N

δ

N(s, a)
+

2‖V ◦ V ‖∞ log N
δ

3N(s, a)

≤
√

4Vars,a(V ) log N
δ

(1− γ)2N(s, a)
+

2 log N
δ

3(1− γ)2N(s, a)
(C.49b)

hold simultaneously over all (s, a) with N(s, a) > 0. Note, however, that the Bernstein bounds in
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(C.49) involve the variance Vars,a(V ); we still need to connect Vars,a(V ) with its empirical estimate

Var
P̂s,a

(V ).

In the sequel, let us look at two cases separately.

• Case 1: Vars,a(V ) ≤ 9 log N
δ

(1−γ)2N(s,a)
. In this case, our bound (C.49a) immediately leads to

∣∣∣
(
P̂s,a − Ps,a

)
V
∣∣∣ ≤

7 log N
δ

(1− γ)N(s, a)
. (C.50)

• Case 2: Vars,a(V ) >
9 log N

δ
(1−γ)2N(s,a)

. We first single out the following useful identity:

P̂s,a
(
V ◦ V

)
− Var

P̂s,a
(V ) = P̂s,a

(
V ◦ V

)
−
[
P̂s,a

(
V ◦ V

)
−
(
P̂s,aV

)2]

= P̂s,a
(
V ◦ V

)
− 2
(
P̂s,aV

)(
Ps,aV

)
+
(
Ps,aV

)2 −
[
P̂s,a

(
V ◦ V

)
−
(
P̂s,aV

)2]

=
∣∣(P̂s,a − Ps,a

)
V
∣∣2. (C.51)

Combining (C.51) with (C.49b) then implies that, with probability exceeding 1− 4δ,

Vars,a(V ) = Ps,a
(
V ◦ V

)
=
(
Ps,a − P̂s,a

)(
V ◦ V

)
+ P̂s,a

(
V ◦ V

)

=
(
Ps,a − P̂s,a

)(
V ◦ V

)
+
{∣∣(P̂s,a − Ps,a

)
V
∣∣2 + Var

P̂s,a
(V )

}
(C.52)

≤
√

4 log N
δ

(1− γ)2N(s, a)

√
Vars,a(V ) +

∣∣(P̂s,a − Ps,a
)
V
∣∣2 + Var

P̂s,a
(V ) +

2 log N
δ

3(1− γ)2N(s, a)

≤ 2

3
Vars,a(V ) +

∣∣(P̂s,a − Ps,a
)
V
∣∣2 + Var

P̂s,a
(V ) +

2 log N
δ

3(1− γ)2N(s, a)
, (C.53)

where the second line arises from the identity (C.51), the penultimate inequality results from

(C.49b), and the last inequality holds true due to the assumption Vars,a(V ) >
9 log N

δ
(1−γ)2N(s,a)

in

this case. Rearranging terms of the above inequality, we are left with

Vars,a(V ) ≤ 3
∣∣(P̂s,a − Ps,a

)
V
∣∣2 + 3Var

P̂s,a
(V ) +

2 log N
δ

(1− γ)2N(s, a)

Taking this upper bound on Vars,a(V ) collectively with (C.49a) and using a little algebra lead

to

∣∣∣
(
P̂s,a − Ps,a

)
V
∣∣∣ ≤

√
12 log N

δ

N(s, a)

∣∣(P̂s,a − Ps,a
)
V
∣∣+

√
12Var

P̂s,a
(V ) log N

δ

N(s, a)
+

5 log N
δ

(1− γ)N(s, a)

(C.54)
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with probability at least 1−4δ. When N(s, a) ≥ 48 log N
δ (cf. (C.48)), one has

√
12 log N

δ
N(s,a) ≤ 1/2.

Substituting this into (C.54) and rearranging terms, we arrive at

∣∣∣
(
P̂s,a − Ps,a

)
V
∣∣∣ ≤

√
48Var

P̂s,a
(V ) log N

δ

N(s, a)
+

10 log N
δ

(1− γ)N(s, a)

with probability at least 1− 4δ.

Putting the above two cases together establishes the advertised bound (C.30a).

Proof of inequality (C.30b). It follows from (C.52) and (C.49a) that with probability at least

1− 4δ,

Vars,a(V ) ≥ −
∣∣∣
(
Ps,a − P̂s,a

)(
V ◦ V

)∣∣∣+ Var
P̂s,a

(V )

≥ −
√

4Vars,a
(
V
)

log N
δ

(1− γ)2N(s, a)
− 2 log N

δ

3(1− γ)2N(s, a)
+ Var

P̂s,a
(V ),

or equivalently,

Var
P̂s,a

(V ) ≤ Vars,a(V ) + 2

√
Vars,a

(
V
)

log N
δ

(1− γ)2N(s, a)
+

2 log N
δ

3(1− γ)2N(s, a)
.

Invoke the elementary inequality 2xy ≤ x2 + y2 to establish the claimed bound:

Var
P̂s,a

(V ) ≤ Vars,a(V ) +

(
Vars,a

(
V
)

+
log N

δ

(1− γ)2N(s, a)

)
+

2 log N
δ

3(1− γ)2N(s, a)

= 2Vars,a(V ) +
5 log N

δ

3(1− γ)2N(s, a)
.

C.2.5 Proof of Theorem 5

To establish Theorem 5, we shall first generate a collection of hard problem instances (including

MDPs and the associated batch datasets), and then conduct sample complexity analyses over these

hard instances.

C.2.5.1 Construction of hard problem instances

Construction of the hard MDPs. To begin with, for any integer H ≥ 32, let us consider a

set Θ ⊆ {0, 1}H of H-dimensional vectors, which we shall construct shortly. We then generate a
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collection of MDPs

MDP(Θ) =
{
Mθ =

(
S,A, P θ = {P θhh }Hh=1, {rh}Hh=1, H

)
| θ = [θh]1≤h≤H ∈ Θ

}
, (C.55)

where

S = {0, 1, . . . , S − 1}, and A = {0, 1}.

To define the transition kernel of these MDPs, we find it convenient to introduce the following state

distribution supported on the state subset {0, 1}:

µ(s) =
1

CS
1{s = 0}+

(
1− 1

CS

)
1{s = 1}, (C.56)

where 1(·) is the indicator function, and C > 0 is some constant that will determine the concentra-

bility coefficient C?clipped (as we shall detail momentarily). It is assumed that

1

CS
≤ 1

4
. (C.57)

With this distribution in mind, we can specify the transition kernel P θ = {P θhh }Hh=1 of the MDP

Mθ as follows:

P θhh (s′ | s, a) =





p1{s′ = 0}+ (1− p)µ(s′) if (s, a) = (0, θh)

q1{s′ = 0}+ (1− q)µ(s′) if (s, a) = (0, 1− θh)

1{s′ = 1} if (s, a) = (1, 0)(
1− 2c1

H

)
1{s′ = 1}+ 2c1

H µ(s′) if (s, a) = (1, 1)(
1− 1

H

)
1{s′ = s}+ 1

Hµ(s′) if s > 1

(C.58)

for any (s, a, s′, h) ∈ S ×A× S × [H], where p and q are set to be

p = 1− c1

H
+
c2ε

H2
and q = 1− c1

H
− c2ε

H2
(C.59)

for c1 = 1/4 and c2 = 4096 such that

c2ε

H2
≤ c1

2H
≤ 1

8
. (C.60)

It is readily seen from the above assumption that

p > q ≥ 1

2
. (C.61)
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In view of the transition kernel (C.58), the MDP will never leave the state subset {0, 1} if its initial

state belongs to {0, 1}. The reward function of all these MDPs is chosen to be

rh(s, a) =





1 if s = 0
1
2 if (s, a) = (1, 0)

0 if (s, a) = (1, 1)

0 if s > 1

(C.62)

for any (s, a, h) ∈ S ×A× [H].

Finally, let us choose the set Θ ⊆ {0, 1}H . By virtue of the Gilbert-Varshamov lemma (Gilbert,

1952), one can construct Θ ⊆ {0, 1}H in a way that

|Θ| ≥ eH/8 and ‖θ − θ̃‖1 ≥
H

8
for any θ, θ̃ ∈ Θ obeying θ 6= θ̃. (C.63)

In other words, the set Θ we construct contains an exponentially large number of vectors that are

sufficiently separated. This property plays an important role in the ensuing analysis.

Value functions and optimal policies. Next, we look at the value functions of the constructed

MDPs and identify the optimal policies. For the sake of notational clarity, for the MDP Mθ, we

denote by π?,θ = {π?,θh }Hh=1 the optimal policy, and let V π,θ
h (resp. V ?,θ

h ) indicate the value function

of policy π (resp. π?,θ) at time step h. The following lemma collects a couple of useful properties

concerning the value functions and optimal policies; the proof can be found in Appendix E.2.3.5.

Lemma 32. Consider any θ ∈ Θ and any policy π. Then it holds that

V π,θ
h (0) = 1 +

(
µ(1)xπ,θh + µ(0)

)
V π,θ
h+1(0) + (1− xπ,θh )µ(1)V π,θ

h+1(1) (C.64)

for any h ∈ [H], where

xπ,θh = pπh(θh | 0) + qπh(1− θh | 0). (C.65)

In addition, for any h ∈ [H], the optimal policies and the optimal value functions obey

π?,θh (θh | 0) = 1, V ?,θ
h (0) ≥ 2

3(H + 1− h), (C.66a)

π?,θh (0 | 1) = 1, V ?,θ
h (1) = 1

2(H + 1− h), (C.66b)

provided that 0 < c1 ≤ 1/2.

Construction of the batch dataset. A batch dataset is then generated, which consists of K

independent sample trajectories each of length H. The initial state distribution ρb and the behavior
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policy πb = {πb
h}Hh=1 (according to (7.3)) are chosen as follows:

ρb(s) = µ(s) and πb
h(a | s) =

1

2
, ∀(s, a, h) ∈ S ×A× [H],

where µ has been defined in (E.67). As it turns out, for any MDP Mθ, the occupancy distributions

of the above batch dataset admit the following simple characterization:

db
h(s) = µ(s), db

h(s, a) =
1

2
µ(s), ∀(s, a, h) ∈ S ×A× [H]. (C.67)

Additionally, we shall choose the initial state distribution ρ as follows

ρ(s) =





1, if s = 0,

0, if s > 0.
(C.68)

With this choice of ρ, the single-policy clipped concentrability coefficient C?clipped and the quantity

C are intimately connected as follows:

C?clipped = 2C. (C.69)

The proof of the claims (E.69) and (E.80) can be found in Appendix E.2.3.3.

C.2.5.2 Establishing the minimax lower bound

We are now positioned to establish our sample complexity lower bounds. Recalling our choice of ρ

in (E.70), our proof seeks to control the quantity

〈
ρ, V ?,θ

1 − V π̂,θ
1

〉
= V ?,θ

1 (0)− V π̂,θ
1 (0),

where π̂ is any policy estimator computed based on the batch dataset.

Step 1: converting π̂ into an estimate θ̂ of θ. Towards this, we first make the following claim:

for an arbitrary policy π obeying

H∑

h=1

∥∥πh(· | 0)− π?,θh (· | 0)
∥∥

1
≥ H

8
, (C.70)

one has

〈
ρ, V ?,θ

1 − V π,θ
1

〉
> ε. (C.71)
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We shall postpone the proof of this claim to Appendix E.2.3.3. Suppose for the moment that there

exists a policy estimate π̂ that achieves

P
{〈
ρ, V ?,θ

1 − V π̂,θ
1

〉
≤ ε
}
≥ 3

4
, (C.72)

then in view of (E.83), we necessarily have

P

{
H∑

h=1

∥∥π̂h(· | 0)− π?,θh (· | 0)
∥∥

1
< H/8

}
≥ 3

4
. (C.73)

With the above observation in mind, we are motivated to construct the following estimate θ̂

for θ ∈ Θ:

θ̂ = arg min
θ∈Θ

H∑

h=1

∥∥π̂h(· | 0)− π?,θh (· | 0)
∥∥

1
. (C.74)

If
∑

h

∥∥π̂(· | 0)− π?,θ(· | 0)
∥∥

1
< H/8 holds for some θ ∈ Θ, then for any θ̃ ∈ Θ with θ̃ 6= θ one has

H∑

h=1

∥∥π̂h(· | 0)− π?,θ̃h (· | 0)
∥∥

1
≥

H∑

h=1

∥∥π?,θh (· | 0)− π?,θ̃h (· | 0)
∥∥

1
−

H∑

h=1

∥∥π̂h(· | 0)− π?,θh (· | 0)
∥∥

1

= 2
∥∥θ − θ̃

∥∥
1
−

H∑

h=1

∥∥π̂h(· | 0)− π?,θh (· | 0)
∥∥

1

>
H

4
− H

8
=
H

8
, (C.75)

where the first inequality holds by the triangle inequality, the second line arises from the fact

π?,θh (θh | 0) = 1 for all 1 ≤ h ≤ H (see (E.79)), and the last line comes from the properties (C.63)

about Θ. Putting (C.74) and (C.75) together implies that θ̂ = θ if

H∑

h=1

∥∥π̂h(· | 0)− π?,θh (· | 0)
∥∥

1
<
H

8
<

H∑

h=1

∥∥π̂h(· | 0)− π?,θ̃h (· | 0)
∥∥

1

is valid for all θ̃ ∈ Θ with θ̃ 6= θ. As a consequence,

P
(
θ̂ = θ

)
≥ P

(
H∑

h=1

∥∥π̂h(· | 0)− π?,θh (· | 0)
∥∥

1
<
H

8

)
≥ 3

4
. (C.76)

In the sequel, we aim to demonstrate that (C.76) cannot possibly happen without enough

samples, which would in turn contradict (E.84).
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Step 2: probability of error in testing multiple hypotheses. Next, we turn attention to a

|Θ|-ary hypothesis testing problem. For any θ ∈ Θ, denote by Pθ the probability distribution when

the MDP is Mθ. We will then study the minimax probability of error defined as follows:

pe := inf
ψ

max
θ∈Θ

Pθ(ψ 6= θ), (C.77)

where the infimum is taken over all possible tests ψ (constructed based on the batch dataset

available).

Let µb,θ (resp. µb,θh
h (sh)) represent the distribution of a sample trajectory {s1, a1, s2, a2, · · · , sH , aH}

(resp. a sample (ah, sh+1) conditional on sh) for the MDP Mθ. Recalling that the K trajectories in

the batch dataset are independently generated, one obtains

pe

(i)

≥ 1−
K max

θ,θ̃∈Θ, θ 6=θ̃ KL
(
µb,θ ‖ µb,θ̃

)
+ log 2

log |Θ|
(ii)

≥ 1− 8K

H
max

θ,θ̃∈Θ, θ 6=θ̃
KL
(
µb,θ ‖ µb,θ̃

)
− 8 log 2

H

(iii)

≥ 1

2
− 8K

H
max

θ,θ̃∈Θ, θ 6=θ̃
KL
(
µb,θ ‖ µb,θ̃

)
, (C.78)

where (i) arises from Fano’s inequality (cf. (Tsybakov, 2009, Corollary 2.6)) and the additivity

property of the KL divergence (cf. Tsybakov (2009, Page 85)), (ii) holds since |Θ| ≥ eH/8 (according

to our construction (C.63)), and (iii) is valid when H ≥ 16 log 2. Recalling that the occupancy state

distribution db
h is the same for any MDP Mθ with θ ∈ Θ (see (E.69)), one can invoke the chain

rule of the KL divergence (Duchi, 2018, Lemma 5.2.8) and the Markovian nature of the sample

trajectories to obtain

KL
(
µb,θ ‖ µb,θ̃

)
=

H∑

h=1

E
sh∼db

h

[
KL
(
µb,θh
h (sh) ‖ µb,θ̃h

h (sh)
)]

=
1

2
µ(0)

H∑

h=1

∑

a∈{0,1}

KL
(
P θhh (· | 0, a) ‖ P θ̃hh (· | 0, a)

)
,

where the last identity holds true since (by construction and (E.69))

E
sh∼db

h

[
KL
(
µb,θh
h (sh) ‖ µb,θ̃h

h (sh)
)]

=
∑

s

db
h(s)




∑

a,s′

πb
h(a | s)P θhh (s′ | s, a) log

πb
h(a | s)P θhh (s′ | s, a)

πb
h(a | s)P θ̃hh (s′ | s, a)





=
1

2
µ(0)

∑

a

∑

s′

P θhh (s′ | 0, a) log
P θhh (s′ | 0, a)

P θ̃hh (s′ | 0, a)

=
1

2
µ(0)

∑

a

KL
(
P θhh (· | 0, a) ‖ P θ̃hh (· | 0, a)

)
.
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Substitution into (C.78) yields

pe ≥
1

2
− 4Kµ(0)

H
max

θ,θ̃∈Θ, θ 6=θ̃

H∑

h=1

[
KL
(
P θhh (· | 0, 0) ‖ P θ̃hh (· | 0, 0)

)
+ KL

(
P θhh (· | 0, 1) ‖ P θ̃hh (· | 0, 1)

)]
.

(C.79)

It then boils down to bounding the KL divergence terms in (E.88). If θh = θ̃h, then it is

self-evident that

KL
(
P θhh (· | 0, 0) ‖ P θ̃hh (· | 0, 0)

)
+ KL

(
P θhh (· | 0, 1) ‖ P θ̃hh (· | 0, 1)

)
= 0. (C.80)

Consider now the case that θh 6= θ̃h, and suppose without loss of generality that θh = 0 and θ̃h = 1.

It is seen that

P θhh (0 | 0, 0) = P θhh (θh | 0, 0) =

(
1− 1

CS

)
p+

1

CS
,

P θ̃hh (0 | 0, 0) = P θ̃hh
(
1− θ̃h | 0, 0

)
=

(
1− 1

CS

)
q +

1

CS
.

Given that p ≥ q ≥ 1/2 (see (C.61)), we can apply Lemma 60 to arrive at

KL
(
P θhh (0 | 0, 0) ‖ P θ̃hh (0 | 0, 0)

)
= KL

((
1− 1

CS

)
p+

1

CS
‖
(

1− 1

CS

)
q +

1

CS

)

≤
(
1− 1

CS

)2
(p− q)2

((
1− 1

CS

)
p+ 1

CS

) (
1− p− (1− p) 1

CS

)

(i)

≤
(
1− 1

CS

)2
(p− q)2

((
1− 1

CS

)
p
) (

(1− p)(1− 1
CS )

) =
4(c2)2ε2

H4p(1− p)
(ii)
=

4(c2)2ε2

H4
(
1− c1

H + c2ε
H2

) (
c1
H − c2ε

H2

)

≤ 4(c2)2ε2

H4 1
2
c1
2H

=
16(c2)2ε2

c1H3
, (C.81)

where (i) and (ii) make use of the definition (E.61) of (p, q), and the last line follows as long as
c2ε
H2 ≤ c1

2H ≤ 1
4 . Similarly, it can be easily verified that KL

(
P θhh (0 | 0, 1) ‖ P θ̃hh (0 | 0, 1)

)
can be upper

bounded in the same way. Substituting (E.89) and (C.80) back into (E.88) indicates that: if the

sample size obeys

N = KH ≤ c1CSH
4

512(c2)2ε2
=
c1C

?
clippedSH

4

1024(c2)2ε2
, (C.82)
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then one necessarily has

pe ≥
1

2
− 4Kµ(0)

H
max

θ,θ̃∈Θ, θ 6=θ̃

H∑

h=1

[
KL
(
P θhh (· | 0, 0) ‖ P θ̃hh (· | 0, 0)

)
+ KL

(
P θhh (· | 0, 1) ‖ P θ̃hh (· | 0, 1)

)]

≥ 1

2
− 4Kµ(0)

H

H∑

h=1

32(c2)2ε2

c1H3
≥ 1

4
. (C.83)

Step 3: combining the above results. Suppose that there exists an estimator π̂ satisfying

max
θ∈Θ

Pθ
{〈
ρ, V ?,θ

1 − V π̂,θ
1

〉
≥ ε
}
<

1

4
, (C.84)

where Pθ denotes the probability when the MDP is Mθ. Then in view of the analysis in Step 1, we

must have

Pθ

(
H∑

h=1

∥∥π̂(· | 0)− π?,θ(· | 0)
∥∥

1
<
H

8

)
≥ 3

4
, for all θ ∈ Θ,

and as a consequence of (C.76), the estimator θ̂ defined in (C.74) must satisfy

Pθ
(
θ̂ 6= θ

)
<

1

4
, for all θ ∈ Θ. (C.85)

Nevertheless, this cannot possibly happen under the sample size condition (C.82); otherwise it is

contradictory to the result in (C.83). This concludes the proof by inserting c1 = 1/4 and c2 = 4096.

C.2.5.3 Proof of Lemma 63

To start with, for any policy π, it is observed that the value function of state s = 0 at step h is

V π,θ
h (0) = E

a∼πh(· | 0)

[
1 +

∑

s′

P θhh (s′ | 0, a)V π,θ
h+1(s′)

]

= 1 + πh(θh | 0)
[(
p+ (1− p)µ(0)

)
V π,θ
h+1(0) + (1− p)µ(1)V π,θ

h+1(1)
]

+ π(1− θh | 0)
[(
q + (1− q)µ(0)

)
V π,θ
h+1(0) + (1− q)µ(1)V π,θ

h+1(1)
]

= 1 +
[
pπh(θh | 0) + qπ(1− θh | 0) + µ(0)− pπh(θh | 0)µ(0)− qπ(1− θh | 0)µ(0)

]
V π,θ
h+1(0)

+ µ(1)
[
1− pπh(θh | 0)− qπ(1− θh | 0)

]
V π,θ
h+1(1)

(i)
= 1 +

[
xπ,θh + (1− xπ,θh )µ(0)V π,θ

h+1(0) + (1− xπ,θh )µ(1)V π,θ
h+1(1)

]

(ii)
= 1 +

(
µ(1)xπh + µ(0)

)
V π,θ
h+1(0) + (1− xπh)µ(1)V π,θ

h+1(1), (C.86)
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where (i) is valid due to the choice

xπ,θh = pπh(θh | 0) + qπh(1− θh | 0), (C.87)

and (ii) holds since µ(0) + µ(1) = 1.

Additionally, the value function of state 1 at any step h obeys

V π,θ
h (1) = πh(0 | 1)

(
1

2
+ V π,θ

h+1(1)

)
+ πh(1 | 1)

[(
1− 2c1

HCS

)
V π,θ
h+1(1) +

2c1

HCS
V π,θ
h+1(0)

]
(C.88)

(i)

≤ πh(0 | 1)

(
1

2
+ V π,θ

h+1(1)

)
+ πh(1 | 1)

[(
1− 2c1

HCS

)
V π,θ
h+1(1) +

2c1

HCS
(H − h)

]

(ii)

≤ πh(0 | 1)

(
1

2
+ V π,θ

h+1(1)

)
+ πh(1 | 1)

[
1

2
+

(
1− 2c1

HCS

)
V π,θ
h+1(1)

]

=
1

2
+ V π,θ

h+1(1)− 2c1

HCS
πh(1 | 1)V π,θ

h+1(1), (C.89)

where (i) arises from the basic fact 0 ≤ V π,θ
h (s) ≤ H −h+ 1 for any policy π and all (s, h) ∈ S × [H],

and (ii) holds since 2c1
HCS (H − h) ≤ 1

2 for c1 small enough. The above results lead to several

immediate facts.

• If we choose π such that πh(0 | 1) = 1 for all h ∈ [H], then (C.88) tells us that

V π,θ
h (1) =

1

2
+ V π,θ

h+1(1). (C.90)

A recursive application of this relation reveals that

V π,θ
h (1) =

1

2
+ V π,θ

h+1(1) = · · · =
H∑

j=h

1

2
=

1

2
(H + 1− h). (C.91)

• For any policy π, applying (C.89) recursively tells us that

V π,θ
h (1) ≤ 1

2
+ V π,θ

h+1(1) ≤ · · · ≤
H∑

j=h

1

2
=

1

2
(H + 1− h). (C.92)

The above two facts taken collectively imply that the optimal policy and optimal value function

obey

π?,θh (0 | 1) = 1, V ?,θ
h (1) =

1

2
(H + 1− h), ∀h ∈ [H]. (C.93)

We then return to state 0. By taking π such that πh(θh | 0) = 1 (and hence xπ,θh = p) for all h ∈ [H],
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one can invoke (C.86) to derive

V π,θ
h (0) = 1 +

(
µ(1)p+ µ(0)

)
V π,θ
h+1(0) + (1− p)µ(1)V π,θ

h+1(1)

≥ 1 + pV π,θ
h+1(0) ≥

H−h∑

j=0

pj ≥
H−h∑

j=0

(
1− c1

H

)j
=

1−
(
1− c1

H

)H−h+1

c1/H

≥ 2

3
(H + 1− h). (C.94)

To see that why the last inequality holds, it suffices to observe that

(
1− c1

H

)H−h+1
≤ exp

(
− c1

H
(H − h+ 1)

)
≤ 1− 2c1(H − h+ 1)

3H
,

as long as c1 ≤ 0.5, which follows due to the elementary inequalities 1− x ≤ exp(−x) for any x ≥ 0

and exp(−x) ≤ 1− 2x/3 for any 0 ≤ x ≤ 1/2. Combine (C.94) with (C.93) to reach

V ?,θ
h (0) ≥ V π,θ

h (0) ≥ 2

3
(H + 1− h) > V ?,θ

h (1). (C.95)

Moreover, it follows from (C.86) that

V ?,θ
h (0) = 1 +

(
µ(1)xπ

?,θ,θ
h + µ(0)

)
V ?,θ
h+1(0) + (1− xπ?,θ,θh )µ(1)V ?,θ

h+1(1)

= 1 + µ(0)V ?,θ
h+1(0) + µ(1)V ?,θ

h+1(1) + µ(1)
(
V ?,θ
h+1(0)− V ?,θ

h+1(1)
)
xπ

?,θ,θ
h . (C.96)

Observing that the function

µ(1)
(
V ?,θ
h+1(0)− V ?,θ

h+1(1)
)
x (C.97)

is increasing in x (as a result of (C.95)) and that xπ,θh is increasing in πh(θh | 0) (since p ≥ q), we

can readily conclude that the optimal policy in state 0 obeys

π?,θh (θh | 0) = 1, for all h ∈ [H]. (C.98)

C.2.5.4 Proof of auxiliary properties

Throughout this subchapter, we shall suppress the dependency on θ in the notation d?h whenever it

is clear from the context.

Proof of claim (E.69). For any MDPMθ, from the definition of db
h(s, a) in (5.1) and the Markov

property, it is clearly seen that

db
h+1(s) = dπ

b

h+1(s; ρb) = P(sh+1 = s | sh ∼ db
h;πb), ∀(s, h) ∈ S × [H]. (C.99)
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Recalling that db
1(s) = ρb(s) = µ(s) for all s ∈ S, one can then show that

db
2(0) = P{s2 = 0 | s1 ∼ db

1;πb}

= µ(0)
[
πb

1(θ1 | 0)P θ11 (0 | 0, θ1) + πb
1(1− θ1 | 0)P θ11 (0 | 0, 1− θ1)

]

+ µ(1)
[
πb

1(0 | 1)P θ11 (0 | 1, 0) + πb
1(1 | 1)P θ11 (0 | 1, 1)

]

=
µ(0)

2

[
P θ11 (0 | 0, θ1) + P θ11 (0 | 0, 1− θ1)

]
+
µ(1)

2

[
P θ11 (0 | 1, 0) + P θ11 (0 | 1, 1)

]

=
µ(0)

2

[
(p+ q) + (2− p− q)µ(0)

]
+
µ(1)

2
µ(0)

2c1

H

=
µ(0)

2

[
2− 2c1

H
+

2c1

H
µ(0)

]
+
µ(1)

2
µ(0)

2c1

H
= µ(0),

where the last inequality holds since µ(1) + µ(0) = 1. Similarly, it can be verified that db
1(1) = µ(1),

thereby implying that db
2 = µ. Repeating this argument recursively for steps h = 2, . . . ,H confirms

that

db
h(s) = µ(s), ∀(s, h) ∈ S × [H]. (C.100)

This further allows one to demonstrate that

db
h(s, a) = db

h(s)πb
h(a | s) = µ(s)πb

h(a | s) = µ(s)/2, ∀(s, a, h) ∈ S ×A× [H]. (C.101)

Proof of claim (E.80). Consider any MDP Mθ, for which we have shown in Lemma 63 that

π?,θh (θh | 0) = 1 for all h ∈ [H]. It is observed that

d?h(0, θh) = d?h(0)π?,θh (θh | 0) = d?h(0) = P
{
sh = 0 | sh−1 ∼ d?h−1;π?,θ

}

≥ d?h−1(0)π?,θh−1(θh−1 | 0)P
θh−1

h−1 (0 | 0, θh−1) = d?h−1(0)P
θh−1

h−1 (0 | 0, θh−1)

≥ · · · ≥ d?1(0)

h−1∏

j=0

P
θj
j (0 | 0, θj) = ρ(0)

h−1∏

j=0

P
θj
j (0 | 0, θj)

≥ ρ(0)

h−1∏

j=0

p ≥
(

1− c1

H

)H
>

1

2
, (C.102)

where the last line makes use of the properties p ≥ 1− c1/H, ρ(0) = 1, and

(
1− c1

H

)H
≥
(

1− 1

2H

)H
>

1

2
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provided that 0 < c1 < 1/2. Combining this with (E.69), we arrive at

max
h∈[H]

min
{
d?h(0, θh), 1

S

}

db
h(0, θh)

=
2

Sµ(0)
= 2C,

max
h∈[H]

min
{
d?h(0, 1− θh), 1

S

}

db
h(0, 1− θh)

= max
h∈[H]

min
{
d?h(0)π?h(1− θh | 0), 1

S

}

db
h(0, 1− θh)

= 0,

max
a∈{0,1},h∈[H]

min
{
d?h(1, a), 1

S

}

db
h(1, a)

(i)

≤ 1/S

µ(1)/2

(ii)
=

2

S
(
1− 1

SC

) ≤ 4

S
≤ 2C,

where (i) arises from (E.69), (ii) relies on the definition in (E.67), and the final two inequalities come

from the assumption in (C.57). Taking this together with the straightforward condition d?h(s) = 0

(s > 1) yields

C?clipped = max
h∈[H]

min
{
d?h(0, θh), 1

S

}

db
h(0, θh)

= 2C. (C.103)

Proof of inequality (E.83). By virtue of (E.77) and (E.79), we see that xπ
?,θ,θ
h = p for all

h ∈ [H], which combined with (E.78) gives

〈
ρ, V ?,θ

h − V π,θ
h

〉
= V ?,θ

h (0)− V π,θ
h (0)

=
(
µ(1)p+ µ(0)

)
V ?,θ
h+1(0) + (1− p)µ(1)V ?,θ

h+1(1)

−
(
µ(1)xπ,θh + µ(0)

)
V π,θ
h+1(0)− (1− xπ,θh )µ(1)V π,θ

h+1(1)

(i)

≥
(
µ(1)xπ,θh + µ(0)

) (
V ?,θ
h+1(0)− V π,θ

h+1(0)
)

+ µ(1)
(
p− xπ,θh

)
V ?,θ
h+1(0)

+ (1− p)µ(1)V ?,θ
h+1(1)−

(
1− xπ,θh

)
µ(1)V ?,θ

h+1(1)

=
(
µ(1)xπ,θh + µ(0)

) (
V ?,θ
h+1(0)− V π,θ

h+1(0)
)

+
(
p− xπ,θh

)
µ(1)

(
V ?,θ
h+1(0)− V ?,θ

h+1(1)
)

(ii)

≥ q
(
V ?,θ
h+1(0)− V π,θ

h+1(0)
)

+
(
p− xπ,θh

)
µ(1)

(
V ?,θ
h+1(0)− V ?,θ

h+1(1)
)

(iii)

≥ q
(
V ?,θ
h+1(0)− V π,θ

h+1(0)
)

+
3

8
(p− q)

∥∥π?,θh (0)− πh(0)
∥∥

1

(
V ?,θ
h+1(0)− V ?,θ

h+1(1)
)

(iv)

≥ q
(
V ?,θ
h+1(0)− V π,θ

h+1(0)
)

+
c2ε

8H2
(H + 1− h)

∥∥π?,θh (· | 0)− πh(· | 0)
∥∥

1
, (C.104)

where (i) holds since V π,θ
h+1(1) ≤ V ?,θ

h+1(1), (ii) follows from the fact that xπh ≥ q for any π and h ∈ [H],

and (iv) arises from the facts (E.79) and the choice (E.61) of (p, q). To see why (iii) is valid, it

suffices to note that µ(1) = 1− 1
CS ≥ 3

4 (as a consequence of (E.67) and (C.57)) and

p−xπ,θh = (p−q)
(
1−πh(θh | 0)

)
=

1

2
(p−q)

(
1−πh(θh | 0)+πh(1−θh | 0)

)
=

1

2
(p−q)

∥∥π?,θh (· | 0)−πh(· | 0)
∥∥

1
.
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To continue, under the condition

H∑

h=1

∥∥πh(· | 0)− π?,θh (· | 0)
∥∥

1
≥ H

8
, (C.105)

applying the relation in (C.104) recursively yields

V ?,θ
1 (0)− V π,θ

1 (0) ≥
H∑

h=1

qh−1 c2ε

8H2
(H + 1− h)

∥∥π?,θh (· | 0)− πh(· | 0)
∥∥

1

=
H∑

h=1

(
1− c1

H
− c2ε

H2

)h−1 c2ε

8H2
(H + 1− h)

∥∥π?,θh (· | 0)− πh(· | 0)
∥∥

1

(i)
>

c2ε

16H2

H∑

h=1

(H + 1− h)
∥∥π?,θh (· | 0)− πh(· | 0)

∥∥
1

=
c2ε

16H2

H∑

h=1

h
∥∥π?,θH+1−h(· | 0)− πH+1−h(· | 0)

∥∥
1

(ii)

≥ c2ε

16H2

bH/16c∑

h=1

2h =
c2ε

8H2

⌊H
16

⌋(⌊H
16

⌋
+ 1
)
. (C.106)

Here, (i) follows since

(
1− c1

H
− c2ε

H2

)h−1
≥
(

1− 2c1

H

)H
>

1

2
, for all h ∈ [H]

holds as long as 0 < c1 ≤ 1/4 and c2ε/H ≤ c1. To see why (ii) is valid, we note that for any

0 ≤ x1, · · · , xH ≤ xmax obeying
∑H

i=1 xi ≥ xsum, the following elementary inequality holds:

H∑

i=1

xiai ≥
bxsum/xmaxc∑

i=1

xmaxai;

this together with
∥∥π?,θh (· | 0) − πh(· | 0)

∥∥
1
≤ 2 and (C.105) reveals that (by taking ah = h and

xh =
∥∥π?,θH+1−h(· | 0)− πH+1−h(· | 0)

∥∥
1
)

H∑

h=1

h
∥∥π?,θH+1−h(· | 0)− πH+1−h(· | 0)

∥∥
1
≥
bH/16c∑

h=1

2h,

thus validating inequality (ii). As a result, we can continue the derivation to obtain

(C.106) ≥ c2ε

8H2

H
16

(
H
16 + 1

)

2
> ε, (C.107)
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provided that c2 ≥ 4096.

C.3 Proof of minimax lower bounds

C.3.1 Preliminary facts

For any two distributions P and Q, we denote by KL(P ‖ Q) the Kullback-Leibler (KL) divergence

of P and Q. Letting Ber(p) be the Bernoulli distribution with mean p, we also introduce

KL(p ‖ q) := p log
p

q
+ (1− p) log

1− p
1− q and χ2(p ‖ q) :=

(p− q)2

q
+

(p− q)2

1− q , (C.108)

which represent respectively the KL divergence and the chi-square divergence of Ber(p) from Ber(q)

(Tsybakov, 2009). We make note of the following useful properties about the KL divergence.

Lemma 33. For any p, q ∈
[

1
2 , 1
)

and p > q, it holds that

KL(p ‖ q) ≤ KL(q ‖ p) ≤ χ2(q ‖ p) =
(p− q)2

p(1− p) . (C.109)

Proof. The second inequality in (E.11) is a well-known relation between KL divergence and chi-

square divergence; see Tsybakov (2009, Lemma 2.7). As a result, it suffices to justify the first

inequality. Towards this end, let us introduce a = p+q
2 ∈

[
1
2 , 1
]

and b = p−q
2 ∈

[
0, 1

4

]
, which allow us

to re-parameterize (p, q) as p = a + b and q = a − b. The definition (E.10) together with a little

algebra gives

KL(p ‖ q)− KL(q ‖ p) = (p+ q) log
p

q
+ (2− p− q) log

1− p
1− q

= 2a log

(
a+ b

a− b

)
+ 2(1− a) log

1− a− b
1− a+ b

=: g(a, b).

Taking the derivative w.r.t. b yields

∂g(a, b)

∂b
= 2a

{
1

a+ b
+

1

a− b

}
− 2 (1− a)

{
1

1− a+ b
+

1

1− a− b

}
= f(a)− f(1− a) ≤ 0,

with f(x) := 2x
x+b + 2x

x−b (for x > b). Here, the last inequality follows since f(·) is a decreasing

function and that a ≥ 1 − a. This implies that g(a, b) is non-increasing in b ≥ 0 for any given a,

which in turn leads to

KL(p ‖ q)− KL(q ‖ p) = g(a, b) ≤ g(a, 0) = 0

as claimed.
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C.3.2 Proof of Theorem 7

We now construct some hard problem instances and use them to establish the minimax lower bounds

claimed in Theorem 7. It is assumed throughout this subchapter that

2

3
≤ γ < 1 and

14(1− γ)ε

γ
≤ 1

2
. (C.110)

C.3.2.1 Construction of hard problem instances

Construction of the hard MDPs. Let us introduce two MDPs {Mθ = (S,A, Pθ, r, γ) | θ ∈ {0, 1}}
parameterized by θ, which involve S states and 2 actions as follows:

S = {0, 1, . . . , S − 1} and A = {0, 1}.

We single out a crucial state distribution (supported on the state subset {0, 1}) as follows:

µ(s) =
1

CS
1{s = 0}+

(
1− 1

CS

)
1{s = 1} (C.111)

for some quantity C > 0 obeying
1

CS
≤ 1

4γ
. (C.112)

We shall make clear the relation between C and the concentrability coefficient C?clipped shortly (see

(C.122)). Armed with this distribution, we are ready to define the transition kernel Pθ of the MDP

Mθ as follows:

Pθ(s
′ | s, a) =





p1{s′ = 0}+ (1− p)µ(s′) for (s, a) = (0, θ),

q1{s′ = 0}+ (1− q)µ(s′) for (s, a) = (0, 1− θ),
1{s′ = 1} for (s, a) = (1, 0),

(2γ − 1)1{s′ = 1}+ 2(1− γ)µ(s′) for (s, a) = (1, 1),

γ1(s′ = s}+ (1− γ)µ(s′) for s > 1,

(C.113)

where the parameters p and q are chosen to be

p = γ +
14(1− γ)2ε

γ
, q = γ − 14(1− γ)2ε

γ
. (C.114)

In view of the assumptions (C.110), one has

p > q ≥ γ − 1− γ
2
≥ 1

2
. (C.115)
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As can be clearly seen from the construction, if the MDP is initialized to either state 0 or state 1,

then it will never leave the state subset {0, 1}. In addition, the reward function for any MDPMθ is

chosen to be

r(s, a) =





1 for s = 0,
1
2 for (s, a) = (1, 0),

0 for (s, a) = (1, 1),

0 for s > 1,

(C.116)

where the reward gained in state 0 is clearly higher than that in other states.

Value functions and optimal policies. Next, let us take a moment to compute the value

functions of the constructed MDPs and identify the optimal policies. For notational clarity, for the

MDP Mθ with θ ∈ {0, 1}, we denote by π?θ the optimal policy, and let V π
θ (resp. V ?

θ ) represent the

value function of policy π (resp. π?θ). The lemma below collects several useful properties about the

value functions and the optimal policies; the proof is deferred to Appendix C.3.2.3.

Lemma 34. Consider any θ ∈ {0, 1} and any policy π. One has

V π
θ (0) =

1 + γ(1− xπ,θ)µ(1)V π
θ (1)

1− γ
(
µ(1)xπ,θ + µ(0)

) = V π
θ (1) +

1− (1− γ)V π
θ (1)

1− γµ(0)− γµ(1)xπ,θ
, (C.117)

where we define

xπ,θ := pπ(θ | 0) + qπ(1− θ | 0). (C.118)

In addition, the optimal policy π?θ and the optimal value function obey

π?θ(θ | 0) = 1, π?θ(0 | 1) = 1, and V ?
θ (1) =

1

2(1− γ)
. (C.119)

Construction of the batch dataset. Given any constructed MDP Mθ, we generate a dataset

containing N i.i.d. samples {(si, ai, s′i)}1≤i≤N according to (5.22), where the initial state distribution

ρb and behavior policy πb are chosen to be:

ρb(s) = µ(s) and πb(a | s) = 1/2, ∀(s, a) ∈ S ×A,

with µ denoting the distribution defined in (E.194). Interestingly, the occupancy state distribution

of this dataset coincides with µ, in the sense that

db(s) = µ(s) and db(s, a) = µ(s)/2, ∀(s, a) ∈ S ×A. (C.120)
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Moreover, letting us choose the test distribution ρ in a way that

ρ(s) =





1, if s = 0

0, if s > 0.
(C.121)

we can also characterize the single-policy clipped concentrability coefficient C?clipped of the dataset

w.r.t. the constructed MDP Mθ as follows

C?clipped = 2C. (C.122)

The proof of the claims (C.120) and (C.122) can be found in Appendix C.3.2.4.

C.3.2.2 Establishing the minimax lower bound

Equipped with the above construction, we are ready to develop our lower bounds. We remind the

reader of the test distribution ρ chosen in (C.121), and hence we need to control 〈ρ, V ?
θ − V π̂

θ 〉 =

V ?
θ (0)− V π̂

θ (0) with π̂ representing a policy estimate (computed based on the batch dataset).

Step 1: converting π̂ into an estimate θ̂ of θ. Consider first an arbitrary policy π. By

combining the definition (E.205) with the properties (C.119), we see that xπ?θ ,θ = p, which together

with (C.117) gives

〈ρ, V ?
θ − V π

θ 〉 = V ?
θ (0)− V π

θ (0) =
1 + γ(1− p)µ(1)V ?

θ (1)

1− γ
(
µ(1)p+ µ(0)

) − 1 + γ(1− xπ,θ)µ(1)V π
θ (1)

1− γ
(
µ(1)xπ,θ + µ(0)

)

≥ 1 + γ(1− p)µ(1)V ?
θ (1)

1− γ
(
µ(1)p+ µ(0)

) − 1 + γ(1− xπ,θ)µ(1)V ?
θ (1)

1− γ
(
µ(1)xπ,θ + µ(0)

)

≥ 21ε

8

(
1− π(θ | 0)

)
. (C.123)

Here, the second line holds since V π
θ ≤ V ?

θ , and the last inequality will be established in Ap-

pendix C.3.2.4.

Denoting by Pθ the probability distribution when the MDP is Mθ, suppose for the moment

that the policy estimate π̂ achieves

Pθ
{〈
ρ, V ?

θ − V π̂
θ

〉
≤ ε
}
≥ 7

8
,

then in view of (C.123), one necessarily has π̂(θ | 0) ≥ 13
21 with probability at least 7/8. If this were

true, then we could then construct the following estimate θ̂ for θ:

θ̂ = arg max
a

π̂(a | 0), (C.124)
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which would necessarily satisfy

Pθ
(
θ̂ = θ

)
≥ Pθ

{
π̂(θ | 0) > 1/2

}
≥ Pθ

{
π̂(θ | 0) ≥ 13

21

}
≥ 7

8
. (C.125)

In what follows, we would like to show that (E.86) cannot happen — i.e., one cannot possibly find

such a good estimator for θ — without a sufficient number of samples.

Step 2: probability of error in testing two hypotheses. The next step lies in studying the

feasibility of differentiating two hypotheses θ = 0 and θ = 1. Define the minimax probability of

error as follows

pe := inf
ψ

max
{
P0(ψ 6= 0), P1(ψ 6= 1)

}
, (C.126)

where the infimum is taken over all possible tests ψ (based on the batch dataset in hand). Letting

µb
θ denote the distribution of a sample (si, ai, s

′
i) under the MDPMθ and recalling that the samples

are independently generated, one can demonstrate that

pe ≥
1

4
exp

(
−NKL

(
µb

0 ‖ µb
1

))

=
1

4
exp

{
− 1

2
Nµ(0)

(
KL
(
P0(· | 0, 0) ‖ P1(· | 0, 0)

)
+ KL

(
P0(· | 0, 1) ‖ P1(· | 0, 1)

))}
. (C.127)

Here, the first inequality results from Tsybakov (2009, Theorem 2.2) and the additivity property of

the KL divergence (cf. Tsybakov (2009, Page 85)), and the second line holds true since

KL(µb
0 ‖ µb

1) =
∑

s,a,s′

µ(s)πb(a | s)P0(s′ | s, a) log
µ(s)πb(a | s)P0(s′ | s, a)

µ(s)πb(a | s)P1(s′ | s, a)

=
1

2
µ(0)

∑

a

∑

s′

P0(s′ | 0, a) log
P0(s′ | 0, a)

P1(s′ | 0, a)

=
1

2
µ(0)

∑

a

KL
(
P0(· | 0, a) ‖ P1(· | 0, a)

)
,

where the second line is valid since P0(· | s, a) and P1(· | s, a) differ only when s = 0.

Next, we turn attention to the KL divergence of interest. Recall that

P0(0 | 0, 0) =

(
1− 1

CS

)
p+

1

CS
, P1(0 | 0, 0) =

(
1− 1

CS

)
q +

1

CS
.

Given that p ≥ q ≥ 1/2 (see (C.115)), we can apply Lemma 60 to arrive at

KL
(
P0(· | 0, 0) ‖ P1(· | 0, 0)

)
= KL

((
1− 1

CS

)
p+

1

CS
‖
(

1− 1

CS

)
q +

1

CS

)
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(i)

≤
(
1− 1

CS

)2
(p− q)2

((
1− 1

CS

)
p+ 1

CS

) (
1− p− (1− p) 1

CS

)

≤
(
1− 1

CS

)2
(p− q)2

p
(
(1− p)

(
1− 1

CS

))

(ii)
=

784(1− γ)4ε2

γ2
(
γ + 14(1−γ)2ε

γ

)(
1− γ − 14(1−γ)2ε

γ

)

(iii)

≤ 1568(1− γ)4ε2

γ3(1− γ)

(iv)

≤ 12544(1− γ)3ε2,

where (i) arises from Lemma 60, (ii) follows from the definitions of p and q (C.114), (iii) holds true

as long as 14(1−γ)2ε
γ ≤ 1−γ

2 , and (iv) results from the assumption γ ∈ [1
2 , 1). Evidently, the same

upper bound holds for KL
(
P0(· | 0, 1) ‖ P1(· | 0, 1)

)
as well. Substitution back into (C.127) reveals

that: if the sample size does not exceed

N ≤ CS log 2

12544(1− γ)3ε2
=

C?clippedS log 2

25088(1− γ)3ε2
, (C.128)

then one necessarily has

pe ≥
1

4
exp

(
− 12544Nµ(0)(1− γ)3ε2

)
=

1

4
exp

(
− 12544N(1− γ)3ε2

CS

)
≥ 1

8
. (C.129)

Step 3: putting all this together. To finish up, suppose that there exists an estimator π̂ such

that

P0

{〈
ρ, V ?

0 − V π̂
0

〉
> ε
}
<

1

8
and P1

{〈
ρ, V ?

0 − V π̂
0

〉
> ε
}
<

1

8
.

Then in view of our arguments in Step 1, the estimator θ̂ defined in (E.85) must satisfy

P0

(
θ̂ 6= θ

)
<

1

8
and P1

(
θ̂ 6= θ

)
<

1

8
.

This, however, cannot possibly happen under the sample size condition (C.128); otherwise it

contradicts the lower bound (E.91).

C.3.2.3 Proof of Lemma 34

To begin with, for any policy π, the value function of state 0 obeys

V π
θ (0) = E

a∼π(· | 0)

[
r(0, a) + γ

∑

s′

Pθ(s
′ | 0, a)V π

θ (s′)

]

= 1 + γπ(θ | 0)
[(
p+ (1− p)µ(0)

)
V π
θ (0) + (1− p)µ(1)V π

θ (1)
]
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+ γπ(1− θ | 0)
[(
q + (1− q)µ(0)

)
V π
θ (0) + (1− q)µ(1)V π

θ (1)
]

= 1 + γ
[
pπ(θ | 0) + qπ(1− θ | 0) + µ(0)− pπ(θ | 0)µ(0)− qπ(1− θ | 0)µ(0)

]
V π
θ (0)

+ γµ(1)
[
1− pπ(θ | 0)− qπ(1− θ | 0)

]
V π
θ (1)

(i)
= 1 + γ

[
xπ,θ + (1− xπ,θ)µ(0)V π

θ (0) + (1− xπ,θ)µ(1)V π
θ (1)

]

(ii)
= 1 + γ

[(
µ(1)xπ,θ + µ(0)

)
V π
θ (0) + (1− xπ,θ)µ(1)V π

θ (1)
]
, (C.130)

where in (i) we have defined the following quantity

xπ,θ = pπ(θ | 0) + qπ(1− θ | 0) = q + (p− q)π(θ | 0), (C.131)

and (ii) relies on the fact that µ(0) + µ(1) = 1. Rearranging terms in (C.130), we are left with

V π
θ (0) =

1 + γ(1− xπ,θ)µ(1)V π
θ (1)

1− γ
(
µ(1)xπ,θ + µ(0)

) = V π
θ (1) +

1− (1− γ)V π
θ (1)

1− γµ(0)− γµ(1)xπ,θ
. (C.132)

Additionally, the value function of state 1 can be calculated as

V π
θ (1) = π(0 | 1)

(
1

2
+ γV π

θ (1)

)
+ π(1 | 1)γ

[(
(2γ − 1) + 2(1− γ)µ(1)

)
V π
θ (1) + 2(1− γ)µ(0)V π

θ (0)
]

= π(0 | 1)

(
1

2
+ γV π

θ (1)

)
+ π(1 | 1)γ

[(
1− 2(1− γ)

CS

)
V π
θ (1) +

2(1− γ)

CS
V π
θ (0)

]
(C.133)

(i)

≤ π(0 | 1)

(
1

2
+ γV π

θ (1)

)
+ π(1 | 1)γ

[(
1− 2(1− γ)

CS

)
V π
θ (1) +

2(1− γ)

CS

1

1− γ

]

(ii)

≤ π(0 | 1)

(
1

2
+ γV π

θ (1)

)
+ π(1 | 1)

[
1

2
+ γ

(
1− 2(1− γ)

CS

)
V π
θ (1)

]

=
1

2
+ γV π

θ (1)− 2γ(1− γ)

CS
V π
θ (1)π(1 | 1), (C.134)

where (i) arises from the elementary property 0 ≤ V π
θ (s) ≤ 1

1−γ for any π and s ∈ S, and (ii) comes

from the assumption (C.112). The above observation reveals several facts:

• If we take π(0 | 1) = 1, then (C.133) tells us that

V π
θ (1) =

1

2
+ γV π

θ (1) =⇒ V π
θ (1) =

1

2(1− γ)
. (C.135)

• It also follows from (C.134) that for any policy π, one has

V π
θ (1) ≤ 1

2
+ γV π

θ (1) =⇒ V π
θ (1) ≤ 1

2(1− γ)
. (C.136)
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These two facts taken collectively imply that the optimal policy and the optimal value function

obey

π?θ(0 | 1) = 1 and V ?
θ (1) =

1

2(1− γ)
. (C.137)

Next, we have learned from (C.132) that

V ?
θ (0) = V ?

θ (1) +
1− (1− γ)V ?

θ (1)

1− γµ(0)− γµ(1)xπ?θ ,θ
.

Note that 1− (1− γ)V ?
θ (1) ≥ 1− (1− γ) 1

1−γ = 0. Since the function

g(x) = V ?
θ (1) +

1− (1− γ)V ?
θ (1)

1− γµ(0)− γµ(1)x

is increasing in x and that xπ,θ (cf. (C.131)) is increasing in π(θ | 0) (given that p ≥ q), one can

easily see that the optimal policy obeys

π?θ(θ | 0) = 1. (C.138)

C.3.2.4 Proof of auxiliary properties

Proof of claim (C.120). We begin by proving the property (C.120). Towards this, let us abuse

the notation by considering a MDP trajectory denoted by {(st, at)}t≥0, and suppose that it starts

from s0 ∼ ρb = µ. It can be straightforwardly calculated that

P {s1 = 0} =
∑

s
µ(s)

{
πb(0 | s)P {s1 = 0 | s0 = s, a0 = 0}+ πb(1 | s)P {s1 = 0 | s0 = s, a0 = 1}

}

= µ(0)

{
1

2
Pθ(0 | 0, 0) +

1

2
Pθ(0 | 0, 1)

}
+ µ(1)

{
1

2
Pθ(0 | 1, 0) +

1

2
Pθ(0 | 1, 1)

}

= µ(0) {γ + (1− γ)µ(0)}+ µ(1) {(1− γ)µ(0)} = µ(0),

where the last identity holds since µ(0) + µ(1) = 1. Similarly, one can derive P {s1 = 1} = µ(1),

thus indicating that s1 ∼ µ. Repeating this analysis reveals that st ∼ µ for any t ≥ 0. Consequently,

one has

db(s) = (1− γ)E

[ ∞∑

t=0

γtP
(
st = s | s0 ∼ ρb;πb

)
]

= µ(s), ∀s ∈ S.

Additionally, it it observed that

db(s, a) = db(s)πb(a | s) = µ(s)/2. (C.139)

Proof of claim (C.122). Consider the MDP Mθ, whose optimal policy π?θ satisfies π?θ(θ | 0) = 1

(see Lemma 34). Let us generate a MDP trajectory denoted by {(st, at)}t≥0 with at ∼ π?θ(· | st),
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where we have again abused notation as long as it is clear from the context. In this case, we can

deduce that

d?(0, θ) = (1− γ)E

[ ∞∑

t=0

γtP
(
st = 0 | s0 ∼ ρ;π?θ

)
π?θ(θ | 0)

]
= (1− γ)E

[ ∞∑

t=0

γtP
(
st = 0 | s0 ∼ ρ;π?θ

)
]

(i)

≥ (1− γ)

∞∑

t=0

γtρ(0)
[
Pθ(0 | 0, θ)

]t (ii)

≥ (1− γ)

∞∑

t=0

ρ(0)γ2t =
1− γ
1− γ2

=
1

1 + γ
≥ 1

2
,

where in (i) we compute, for each t, the probability of a special trajectory with s1 = · · · = st = 0

and a0 = · · · = at−1 = θ, and (ii) holds true since Pθ(0 | 0, θ) ≥ p ≥ γ. Taking this together with

(C.139) yields

min
{
d?(0, θ), 1

S

}

db(0, θ)
=

2

Sµ(0)
= 2C,

min
{
d?(0, 1− θ), 1

S

}

db(0, 1− θ) =
min

{
d?(0, 1− θ), 1

S

}

db(0, θ)
≤ min

{
d?(0, θ), 1

S

}

db(0, θ)
= 2C. (C.140)

In addition, it is easily seen that d?(s, a) = 0 for any s > 1, and that

min
{
d?(1, a), 1

S

}

db(1, a)
≤ 1/S

µ(1)/2
=

2

S(1− 1/CS)
≤ 4

S
≤ 2C,

where the first inequality comes from (C.139), the first identity uses the definition (E.194), and the

last two inequalities result from an immediate consequence of (C.112) and γ ≥ 1/2, i.e.,

1

CS
≤ 1

4γ
≤ 1

2
. (C.141)

As a result, putting the above relations together leads to

C?clipped = max
(s,a)∈S×A

min
{
d?(s, a), 1

S

}

db(s, a)
=

min
{
d?(0, θ), 1

S

}

db(0, θ)
= 2C. (C.142)

Proof of inequality (C.123). Observing the basic identity (using µ(0) + µ(1) = 1)

1 + γ(1− x)µ(1)V ?
θ (1)

1− γ
(
µ(1)x+ µ(0)

) = V ?
θ (1) +

1− (1− γ)V ?
θ (1)

1− γµ(0)− γµ(1)x
,

we can obtain

1 + γ(1− p)µ(1)V ?
θ (1)

1− γ
(
µ(1)p+ µ(0)

) − 1 + γ(1− xπ,θ)µ(1)V ?
θ (1)

1− γ
(
µ(1)xπ,θ + µ(0)

) =
1− (1− γ)V ?

θ (1)

1− γµ(0)− γµ(1)p
− 1− (1− γ)V ?

θ (1)

1− γµ(0)− γµ(1)xπ,θ
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=
(
1− (1− γ)V ?

θ (1)
) γµ(1)(p− xπ,θ)[

1− γ
(
µ(1)p+ µ(0)

)] [
1− γ

(
µ(1)xπ,θ + µ(0)

)]
︸ ︷︷ ︸

=:α

=
γµ(1)(p− xπ,θ)

2α
, (C.143)

where the last relation arises from the fact (C.119).

The remainder of the proof boils down to controlling α. Making use of the definition of p

(cf. (C.114)), µ(s) (cf. (E.194)) and xπ (cf. (E.205)), we can demonstrate that

α =

[
1− γ

((
1− 1

CS

)
p+

1

CS

)][
1− γ

((
1− 1

CS

)
xπ,θ +

1

CS

)]
≤ (1− γp)(1− γxπ,θ)

(i)

≤ (1− γp)(1− γq)
(ii)

≤
(

1− γ p+ q

2

)2

= (1− γ2)2 = (1− γ)2(1 + γ)2 ≤ 4(1− γ)2, (C.144)

where (i) holds true owing to the trivial fact that xπ,θ ≥ q for any policy π (as long as p ≥ q), and

(ii) is a consequence of the AM-GM inequality. Substituting it into (C.143) and using the definition

(E.205) give

1 + γ(1− p)µ(1)V ?
θ (1)

1− γ
(
µ(1)p+ µ(0)

) − 1 + γ(1− xπ,θ)µ(1)V ?
θ (1)

1− γ
(
µ(1)xπ,θ + µ(0)

) =
γµ(1)(p− xπ,θ)

2α
≥ γµ(1)(p− xπ,θ)

8(1− γ)2

=
γµ(1)

8(1− γ)2
(p− q)π(1− θ | 0)

≥ 3γ

32(1− γ)2

28(1− γ)2ε

γ
π(1− θ | 0) =

21ε

8

(
1− π(θ | 0)

)
.

C.4 Discounted infinite-horizon MDPs with Markovian data

In this subchapter, we extend the i.i.d. sampling model (5.22) for discounted infinite-horizon MDPs

to accommodate Markovian data.

C.4.1 Sampling models and assumptions

A single Markovian trajectory. Suppose that we have access to a historical dataset D, which

comprises a single trajectory of samples with length T generated by a behavior policy πb. More

precisely, the sample trajectory starts from an arbitrary state s0 and takes the form

{s0, a0, s1, a1, · · · , sT , aT }, (C.145)
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which is generated by the MDP M (cf. Chapter 5.2.1) in the following manner

at ∼ πb(· | st), s′t = st+1 ∼ P (· | st, at), 0 ≤ t ≤ T. (C.146)

Note that the dataset D here consists of a single trajectory, thus resulting in substantially more

complicated statistical dependency in comparison to the independent sampling model. This model

has also been investigated in our companion paper Yan et al. (2022a), although the focus therein is

on model-free algorithms. With regards to the Markov chain generating the above sample trajectory,

we shall assume it to be uniformly ergodic (see, e.g., Paulin (2015, Definition 1.1)). We denote by

µb the stationary state-action distribution of this chain, and let tmix indicate its mixing time as

follows (Paulin, 2015)

tmix(δ) := min

{
t
∣∣∣ max
s0∈S

dTV

(
µ(st, at | s0), µb

)
≤ δ
}
, (C.147a)

tmix := tmix(1/4), (C.147b)

where µ(st, at | s0) denotes the probability distribution of (st, at) given the initial state s0, and

dTV(µ, ν) indicates the total-variation distance between two distributions µ and ν.

Similar to Definition 4, we introduce the following concentrability to capture the distribution

shift.

Definition 7 (Single-policy clipped concentrability for discounted infinite-horizon MDPs). The

single-policy clipped concentrability coefficient of the dataset D (cf. (C.145)) is given by

C?clipped := max
(s,a)∈S×A

min
{
d?(s, a), 1

S

}

µb(s, a)
. (C.148)

In comparison to Definition 4, the denominator in (C.148) uses the stationary distribution

µb of the underlying Markov chain. In particular, if the initial state s0 is also drawn from this

distribution µb, then it is self-evident that dπ
b

= µb; in such a case, Condition (C.148) can be

alternatively expressed as

C?clipped = max
(s,a)∈S×A

min
{
d?(s, a), 1

S

}

dπb(s, a)
, (C.149)

which is largely dictated by the closeness between the resulting occupancy of the target policy π?

and that of the behavior policy πb.

C.4.2 A subsampling trick

Before continuing, we single out a crucial property that allows us to reuse the algorithmic idea

developed for the i.i.d. sampling model. Imagine that the Markovian trajectory runs until t =∞,
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although only the first T sample transitions are revealed to us. For any given (s, a), denote by

ti(s, a) the time stamp when the trajectory visits this state-action pair (s, a) for the i-th time. As

has been rigorized in Li et al. (2021, Section B.1), for any given (s, a) ∈ S ×A, the following sample

transitions

{
(s, a, sti(s,a)+1) | 1 ≤ i ≤ T

}
(C.150)

are statistically independent, resembling the i.i.d. sampling model in some sense.

On a high level, our algorithm is built upon a two-fold subsampling trick to decouple the

statistical dependence across the sample rollout. Roughly speaking, the main steps are as follows,

with a detailed description provided in Algorithm 15.

i) Split data into two parts: Dmain and Daux, each containing half of the sample trajectory. Let

Nmain(s, a) denote the number of sample transitions in Dmain from state s when action a is

taken.

ii) For each (s, a) ∈ S × A, use Daux to compute lower bounds {N trim(s, a)} on {Nmain(s, a)}.
Subsample the first N trim(s, a) sample transitions from Dmain to construct data subset Dtrim.

iii) Run VI-LCB (i.e., Algorithm 11) on the subsampled dataset Dtrim.

The lemma below states several properties about N trim
k (s, a) that resemble the properties in

Lemma 13.

Lemma 35. With probability at least 1− 2δ, the quantities constructed in (C.151) obey

N trim
k (s, a) ≤ Nmain(s, a), for all k ≥ 665tmix (C.153a)

max

{
N trim
k (s, a), 222tmix log

SA

δ

}
≥ Tµb(s, a)

12
, for all k ≤ 665tmix (C.153b)

simultaneously for all (s, a) ∈ S ×A.

Lemma 35 tells us the following important properties:

• When N trim(s, a) = N trim
665tmix

(s, a), then it follows directly from Lemma 35 that

max

{
N trim(s, a), 222tmix log

SA

δ

}
≥ Tµb(s, a)

12
. (C.154a)

• When N trim(s, a) = N trim
k̂(s,a)

(s, a) (cf. (C.152)), it is easy to show that k̂(s, a) ≤ 665tmix and

max

{
N trim(s, a), 222tmix log

SA

δ

}
≥ Tµb(s, a)

12
. (C.154b)
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Algorithm 15: Subsampled VI-LCB for discounted infinite MDPs with Markovian
data

1 input: Markovian dataset D (cf. (C.145)); reward function r.
2 subsampling: run the following procedure to generate the subsampled dataset Dtrim.

1) Data splitting. Split D into two halves: Dmain = {s0, a0, s1, a1, · · · , sT/2} (which
contains the first T/2 transitions), and Daux = {sT/2, aT/2, sT/2+1, aT/2+1, · · · , sT }
(which contains the remaining T/2 transitions); we let Nmain(s, a) (resp. Naux(s, a))
denote the number of sample transitions in Dmain (resp. Daux) that transition from state
s with action a taken.

2) Lower bounding {Nmain(s, a)} using Daux. For each (s, a) ∈ S ×A, let

N trim
k (s, a) :=

1

3
Naux(s, a)1

(
Naux(s, a) > k log

SA

δ

)
, k ∈ N. (C.151)

If we know tmix, set N trim(s, a) = N trim
665tmix

(s, a); otherwise, set N trim(s, a) = N trim
k̂(s,a)

(s, a)

with

k̂(s, a) = min
{
k : N trim

k (s, a) ≤ Nmain(s, a)
}
. (C.152)

3) Subsampling. Let Dmain′ be the set of all sample transitions (i.e., the tuples taking the
form (s, a, s′)) from Dmain. Subsample Dmain′ to obtain Dtrim, such that for each
(s, a) ∈ S ×A, Dtrim contains the first N trim(s, a) sample transitions from Dmain′.

run VI-LCB: set D0 = Dtrim, and run Algorithm 11 to compute a policy π̂.

To see why this is true, it suffices to combine the fact (C.153a) with the choice (C.152).

Proof of Lemma 35. Since N trim
k (s, a) is non-increasing as k grows, it is sufficient to prove (C.153)

for k = 665tmix. Repeating similar arguments as for Li et al. (2021, Lemma 8) — which concerns

the concentration of measure for the empirical distribution of a uniformly ergodic Markov chain —

implies that: with probability at least 1− δ,
∣∣∣∣Naux(s, a)− Tµb(s, a)

2

∣∣∣∣ ≤
Tµb(s, a)

4
(C.155a)

holds for all (s, a) obeying Tµb(s,a)
2 ≥ 443tmix log SA

δ , and

Naux(s, a) ≤ 665tmix log
SA

δ
(C.155b)

holds for all (s, a) obeying Tµb(s,a)
2 < 443tmix log SA

δ ; we omit the proof for brevity. Recalling the

definition (C.151), we can readily see from (C.155) that when k = 665tmix: N trim
k (s, a) = 0 if
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Tµb(s,a)
2 < 443tmix log SA

δ , and

Tµb(s, a)

12
≤ N trim

k (s, a) ≤ Tµb(s, a)

4
(C.156)

if Tµb(s,a)
2 > 1330tmix log SA

δ . Therefore, we have established (C.153b).

We then prove relation (C.153a). Similar to (C.155a), with probability at least 1− δ we have

∣∣∣∣Nmain(s, a)− Tµb(s, a)

2

∣∣∣∣ ≤
Tµb(s, a)

4
(C.157)

for all (s, a) with Tµb(s,a)
2 ≥ 443tmix log SA

δ . Putting (C.156) and (C.157) together establishes

relation (C.153a).

C.4.3 Performance guarantees

We are now ready to present our theoretical guarantees for Algorithm 15 in the presence of Markovian

data.

Theorem 19. Consider any γ ∈ [1
2 , 1), 0 < δ < 1 and any ε ∈

(
0, 1

1−γ
]
. Suppose that the number

of iterations exceeds τmax >
1

1−γ log T
1−γ . With probability at least 1− 3δ, the policy π̂ returned by

Algorithm 15 obeys

V ?(ρ)− V π̂(ρ) ≤ ε, (C.158)

as long as the penalty terms are chosen according to the Bernstein-style quantity (5.33) for any

constant cb ≥ 144, and the total number of samples exceeds

T ≥
c1SC

?
clipped log 665StmixT

(1−γ)δ

(1− γ)3ε2
+
c1tmixSC

?
clipped log 665StmixT

(1−γ)δ

(1− γ)2ε
(C.159)

for some large enough numerical constant c1 > 0 (e.g., c1 = 22000).

Theorem 19 provides a sample complexity bound that is very similar to the i.i.d. sampling

case (i.e., Theorem 6), except that the length T of the sample trajectory also needs to exceed some

linear scaling in the mixing time. This is unavoidable though (see also other related works Li et al.

(2021); Yan et al. (2022a)); unless the sample trajectory mixes well, in general one would not be

able to obtain enough information associated with all states given only this sample trajectory. In

comparison to the variance-reduced offline model-free algorithm proposed in Yan et al. (2022a), our

sample complexity (C.159) is strictly better (more precisely, the sample complexity in Yan et al.

(2022a) has two additional terms SC?

(1−γ)4ε
+ tmixC

?

(1−γ)3ε
and hence incurs a longer burn-in phase than the

one derived herein).
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Proof of Theorem 19. The proof follows very similar arguments as for Theorem 9, although we need

to replace Lemma 19 by Lemma 35. For brevity, we shall only point out the parts of the analysis

that need modification.

To begin with, we shall suppose for the moment that

N(s, a) = N trim(s, a) = N trim
k (s, a), ∀(s, a) ∈ S ×A

for a fixed integer k ≤ 665tmix, and assume that the two parts Daux and Dmain are statistically

independent. We will come back to remove these two assumptions towards the end of this proof.

This analysis mainly differs from that of Theorem 9 in its Step 4 when controlling 〈d?, b?〉,
which we shall detail now. Let us first divide S into the following two disjoint state subsets:

Ssmall :=

{
s ∈ S | Tµb

(
s, π?(s)

)
≤ 2660tmix log

SA

δ

}
; (C.160a)

S large :=

{
s ∈ S | Tµb

(
s, π?(s)

)
> 2660tmix log

SA

δ

}
. (C.160b)

• Firstly, for any state s ∈ Ssmall, combine Definition 7 with the definition of Ssmall to give

min
{
d?(s),

1

S

}
≤ C?clippedµ

b
(
s, π?(s)

)
≤

2660C?clippedtmix log T
(1−γ)δ

T
<

1

S
, (C.161)

provided that T > 2660SC?clippedtmix log T
(1−γ)δ . An immediate consequence of this result is

that

d?(s) ≤
2660C?clippedtmix log T

(1−γ)δ

T
<

1

S
. (C.162)

Taking this inequality together with the fact below (see the definition (5.33))

b?(s) := b
(
s, π?(s); V̂

)
≤ 1

1− γ +
5

T
, (C.163)

we can demonstrate that

∑

s∈Ssmall

d?(s)b?(s) ≤
∑

s∈Ssmall

(
2660C?clippedtmix log T

(1−γ)δ

(1− γ)T
+ d?(s)

5

T

)

≤
2660SC?clippedtmix log T

(1−γ)δ

(1− γ)T
+

5

T
. (C.164)
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• Secondly, we look at any state s ∈ S large. From the definition (5.33) of b(s, a;V ), one obtains

b?(s) ≤

√√√√cb log T
(1−γ)δ

N
(
s, π?(s)

)Var
P̂s,π?(s)

(
V̂
)

+
2cb log T

(1−γ)δ

(1− γ)N
(
s, π?(s)

) +
5

T

(i)

≤

√√√√cb log T
(1−γ)δ

N
(
s, π?(s)

)
(

2VarPs,π?(s)

(
V̂
)

+
41 log 2T

(1−γ)δ

(1− γ)2N
(
s, π?(s)

)
)

+
2cb log T

(1−γ)δ

(1− γ)N
(
s, π?(s)

) +
5

T

(ii)

≤

√√√√2cb log T
(1−γ)δ

N
(
s, π?(s)

) VarPs,π?(s)

(
V̂
)

+
4cb log T

(1−γ)δ

(1− γ)N
(
s, π?(s)

) , (C.165)

where (i) comes from Lemma 20 and inequality (5.71), (ii) follows since
√
x+ y ≤ √x+

√
y

for any x, y ≥ 0 and T ≥ N(s, a) for cb large enough. Moreover, it is seen that

1

N
(
s, π?(s)

)
(i)

≤ 12

Tµb
(
s, π?(s)

)
(ii)

≤
12C?clipped

T min
{
d?(s), 1

S

} ≤
12C?clipped

T

(
1

d?(s)
+ S

)
, (C.166)

where (i) follows from (C.154), and (ii) invokes Definition 7. Plugging this inequality into

(C.165) gives

b?(s) ≤

√√√√2cb log T
(1−γ)δ

N
(
s, π?(s)

) VarPs,π?(s)

(
V̂
)

+
4cb log T

(1−γ)δ

(1− γ)N
(
s, π?(s)

)

≤

√
24cbC

?
clipped log T

(1−γ)δ

T
VarPs,π?(s)

(
V̂
)
(

1√
d?(s)

+
√
S

)

︸ ︷︷ ︸
=:α1(s)

+
48cbC

?
clipped log T

(1−γ)δ

(1− γ)T

(
1

d?(s)
+ S

)

︸ ︷︷ ︸
=:α2(s)

,

(C.167)

where the last line also applies the elementary inequality
√
x+ y ≤ √x+

√
y for any x, y ≥ 0.

To continue, observe that summing the first terms in (C.167) over s ∈ S large satisfies

∑

s∈S large

d?(s)α1(s)

=

√
24cbC

?
clipped log T

(1−γ)δ

T


 ∑

s∈S large

√
d?(s)VarPs,π?(s)

(
V̂
)

+
∑

s∈S large

√
d?(s)

√
Sd?(s)VarPs,π?(s)

(
V̂
)



(i)

≤

√
24cbC

?
clipped log T

(1−γ)δ

T

(
√
S

√ ∑

s∈S large

d?(s)VarPs,π?(s)

(
V̂
)

+

√ ∑

s∈S large

d?(s)SVarPs,π?(s)

(
V̂
)
)
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=

√
96cbSC

?
clipped log T

(1−γ)δ

T

√ ∑

s∈S large

d?(s)VarPs,π?(s)

(
V̂
)
, (C.168)

where (i) comes from Cauchy-Schwarz and the fact
∑

s d
?(s) = 1. In addition, the sum of the

second terms in (C.167) over s ∈ S large obeys

∑

s∈S large

d?(s)α2(s) ≤
96cbSC

?
clipped log T

(1−γ)δ

(1− γ)T
, (C.169)

which follows since
∑

s d
?(s) = 1. Combine (C.168) and (C.169) with (C.167) to yield

∑

s∈S large

d?(s)b?
(
s, π?(s)

)
≤

∑

s∈S large

d?(s)α1(s) +
∑

s∈S large

d?(s)α2(s)

≤

√
96cbSC

?
clipped log T

(1−γ)δ

T

√ ∑

s∈S large

d?(s)VarPs,π?(s)

(
V̂
)

+
96cbSC

?
clipped log T

(1−γ)δ

(1− γ)T
.

(C.170)

The above results (C.164) and (C.170) taken collectively give

〈
d?, b?

〉
=

∑

s∈S large

d?(s)b?(s) +
∑

s∈Ssmall

d?(s)b?(s)

≤

√
96cbSC

?
clipped log T

(1−γ)δ

T

√ ∑

s∈S large

d?(s)VarPs,π?(s)

(
V̂
)

+
96cbSC

?
clipped log T

(1−γ)δ

(1− γ)T

+
2660SC?clippedtmix log T

(1−γ)δ

(1− γ)T
+

5

T

(i)

≤

√
96cbSC

?
clipped log T

(1−γ)δ

T

√∑

s∈S
d?(s)VarPs,π?(s)

(
V̂
)

+
192cbtmixSC

?
clipped log T

(1−γ)δ

(1− γ)T

(ii)

≤ 2

γ

√
96cbSC

?
clipped log T

(1−γ)δ

(1− γ)T

〈
d?, b?

〉
+

1

γ

√
192cbSC

?
clipped log T

(1−γ)δ

(1− γ)T
+

192cbtmixSC
?
clipped log T

(1−γ)δ

(1− γ)T
,

(iii)

≤ 4

√
96cbSC

?
clipped log T

(1−γ)δ

(1− γ)T

〈
d?, b?

〉
+ 2

√
192cbSC

?
clipped log T

(1−γ)δ

(1− γ)T
+

192cbtmixSC
?
clipped log T

(1−γ)δ

(1− γ)T
,

(iv)

≤ 1

2

〈
d?, b?

〉
+

768cbSC
?
clipped log T

(1−γ)δ

(1− γ)T
+

√
768cbSC

?
clipped log T

(1−γ)δ

(1− γ)T
+

192cbtmixSC
?
clipped log T

(1−γ)δ

(1− γ)T
.

Here, (i) follows when cb is sufficiently large, tmix ≥ 1 and C?clipped ≥ 1/S (see (5.26)), (ii) holds by
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recalling (5.105) that

∑

s∈S
d?(s)VarPs,π?(s)

(
V̂
)
≤ 2

γ2(1− γ)
+

4

γ2(1− γ)

〈
d?, b?

〉
;

(iii) is valid since γ ∈ [1
2 , 1), and (iv) follows since 2xy ≤ x2 + y2. Rearrange terms to yield

〈
d?, b?

〉
≤

√
3072cbSC

?
clipped log T

(1−γ)δ

(1− γ)T
+

1920cbtmixSC
?
clipped log T

(1−γ)δ

(1− γ)T
,

which in turn leads to

〈
ρ, V ? − V π̂

〉
≤ 2

〈
d?, b?

〉

1− γ ≤ 120

√
cbSC

?
clipped log T

(1−γ)δ

(1− γ)3T
+

3840cbtmixSC
?
clipped log T

(1−γ)δ

(1− γ)2T
, (C.171)

where the first inequality follows from relation (5.91).

Finally, we explain how to relax the two strong assumptions imposed at the beginning of this

proof.

• Note that when tmix is not known a priori, the choice k̂(s, a) is not a fixed integer independent

from the data. Fortunately, we have already demonstrated right after Lemma 35 that

k̂(s, a) ≤ 665tmix. Taking the union bound over all integers 1 ≤ k ≤ 665tmix suffices to handle

this statistical dependency.

• In general, Daux and Dmain are statistically dependent as they are two parts of the same

trajectory. To resolve this issue, consider an additional collection of S independent Markovian

trajectories each of length T/2 (denoted by Daux(1),Daux(2), · · · ,Daux(S)), where the Daux(s)

starts from state s (note that these trajectories are introduced merely to assist in the proof).

Taking the union bound over all s ∈ S, we can establish the desired result, for every s ∈ S, if

the second dataset is Daux(s). Additionally, due to the Markovian property, we know that the

true Daux must be statistically equivalent to one of these trajectories Daux(1), · · · ,Daux(S);

this in turn establishes the claimed results for the true dataset.

Putting everything together ensures the desired sample complexity as stated in Theorem 19.
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Appendix D

Proofs for Chapter 6

D.1 Preliminaries

For any vector x, we overload the notation by letting x◦2 =
[
x(s, a)2

]
(s,a)∈S×A (resp. x◦2 =[

x(s)2
]
s∈S). With slight abuse of notation, we denote 0 (resp. 1) as the all-zero (resp. all-one) vector,

and drop the subscript ρ to write Uσ(·) = Uσρ (·) whenever the argument holds for all divergence ρ.

Matrix notation. To continue, we recall or introduce some additional matrix notation that is

useful throughout the analysis.

• P 0 ∈ RSA×S : the matrix of the nominal transition kernel with P 0
s,a as the (s, a)-th row.

• P̂ 0 ∈ RSA×S : the matrix of the estimated nomimal transition kernel with P̂ 0
s,a as the (s, a)-th

row.

• r ∈ RSA: a vector representing the reward function r (so that r(s,a) = r(s, a) for all (s, a) ∈
S ×A).

• Ππ ∈ {0, 1}S×SA: a projection matrix associated with a given deterministic policy π taking

the following form

Ππ =




e>
π(1)

0> · · · 0>

0> e>
π(2)

· · · 0>

...
...

. . .
...

0> 0> · · · e>
π(S)


, (D.1)

where e>π(1), e
>
π(2), . . . , e

>
π(S) ∈ RA are standard basis vectors.

• rπ ∈ RS : a reward vector restricted to the actions chosen by the policy π, namely, rπ(s) =

r(s, π(s)) for all s ∈ S (or simply, rπ = Ππr).

• VarP (V ) ∈ RSA: for any transition kernel P ∈ RSA×S and vector V ∈ RS , we denote the

(s, a)-th row of VarP (V ) as

VarP (s, a) := VarPs,a(V ). (D.2)
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• P V ∈ RSA×S , P̂ V ∈ RSA×S : the matrices representing the probability transition kernel in the

uncertainty set that leads to the worst-case value for any vector V ∈ RS . We denote P Vs,a

(resp. P̂ Vs,a) as the (s, a)-th row of the transition matrix P V (resp. P̂ V ). In truth, the (s, a)-th

rows of these transition matrices are defined as

P Vs,a = argminP∈Uσ(P 0
s,a)PV, and P̂ Vs,a = argminP∈Uσ(P̂ 0

s,a)
PV. (D.3a)

Furthermore, we make use of the following short-hand notation:

P π,Vs,a := P V
π,σ

s,a = argminP∈Uσ(P 0
s,a)PV π,σ, P π,V̂s,a := P V̂

π,σ

s,a = argminP∈Uσ(P 0
s,a)PV̂ π,σ,

(D.3b)

P̂ π,Vs,a := P̂ V
π,σ

s,a = argmin
P∈Uσ(P̂ 0

s,a)
PV π,σ, P̂ π,V̂s,a := P̂ V̂

π,σ

s,a = argmin
P∈Uσ(P̂ 0

s,a)
PV̂ π,σ.

(D.3c)

The corresponding probability transition matrices are denoted by P π,V ∈ RSA×S , P π,V̂ ∈
RSA×S , P̂ π,V ∈ RSA×S and P̂ π,V̂ ∈ RSA×S , respectively.

• P π ∈ RS×S , P̂ π ∈ RS×S , P π,V ∈ RS×S , P π,V̂ ∈ RS×S , P̂
π,V ∈ RS×S and P̂

π,V̂ ∈ RS×S : six

square probability transition matrices w.r.t. policy π over the states, namely

P π := ΠπP 0, P̂ π := ΠπP̂ 0, P π,V := ΠπP π,V , P π,V̂ := ΠπP π,V̂ ,

P̂
π,V

:= ΠπP̂ π,V , and P̂
π,V̂

:= ΠπP̂ π,V̂ . (D.4)

We denote P πs as the s-th row of the transition matrix P π; similar quantities can be defined

for the other matrices as well.

D.1.1 Basic facts

Kullback-Leibler (KL) divergence. First, for any two distributions P and Q, we denote by

KL(P ‖ Q) the Kullback-Leibler (KL) divergence of P and Q. Letting Ber(p) be the Bernoulli

distribution with mean p, we also introduce

KL(p ‖ q) := p log
p

q
+ (1− p) log

1− p
1− q and χ2(p ‖ q) :=

(p− q)2

q
+

(p− q)2

1− q =
(p− q)2

q(1− q) ,

(D.5)

which represent respectively the KL divergence and the χ2 divergence of Ber(p) from Ber(q) (Tsy-

bakov, 2009). We make note of the following useful property about the KL divergence in Tsybakov

(2009, Lemma 2.7).
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Lemma 36. For any p, q ∈ (0, 1), it holds that

KL(p ‖ q) ≤ (p− q)2

q(1− q) . (D.6)

Variance. For any probability vector P ∈ R1×S and vector V ∈ RS , we denote the variance

VarP (V ) := P (V ◦ V )− (PV ) ◦ (PV ). (D.7)

The following lemma bounds the Lipschitz constant of the variance function.

Lemma 37. Consider any 0 ≤ V1, V2 ≤ 1
1−γ obeying ‖V1 − V2‖∞ ≤ x and any probability vector

P ∈ ∆(S), one has

|VarP (V1)−VarP (V2)| ≤ 2x

(1− γ)
. (D.8)

Proof. It is immediate to check that

|VarP (V1)−VarP (V2)| = |P (V1 ◦ V1)− (PV1) ◦ (PV1)− P (V2 ◦ V2) + (PV2) ◦ (PV2)|
≤
∣∣P
(
V1 ◦ V1 − V2 ◦ V2

)∣∣+ |(PV1 + PV2)P (V1 − V2)|

≤ 2‖V1 + V2‖∞‖V1 − V2‖∞ ≤
2x

(1− γ)
. (D.9)

where the penultimate inequality holds by the triangle inequality.

D.1.2 Properties of the robust Bellman operator

γ-contraction of the robust Bellman operator. It is worth noting that the robust Bellman

operator (cf. (2.29)) shares the nice γ-contraction property of the standard Bellman operator, stated

as below.

Lemma 38 (γ-Contraction). (Iyengar, 2005, Theorem 3.2) For any γ ∈ [0, 1), the robust Bellman

operator T σ(·) (cf. (2.29)) is a γ-contraction w.r.t. ‖ · ‖∞. Namely, for any Q1, Q2 ∈ RSA s.t.

Q1(s, a), Q2(s, a) ∈
[
0, 1

1−γ
]

for all (s, a) ∈ S ×A, one has

‖T σ(Q1)− T σ(Q2)‖∞ ≤ γ ‖Q1 −Q2‖∞ . (D.10)

Additionally, Q?,σ is the unique fixed point of T σ(·) obeying 0 ≤ Q?,σ(s, a) ≤ 1
1−γ for all (s, a) ∈

S ×A.

Dual equivalence of the robust Bellman operator. Fortunately, the robust Bellman operator

can be evaluated efficiently by resorting to its dual formulation (Iyengar, 2005). In what follows, we

293



shall illustrate this for the two choices of the divergence ρ of interest. Before continuing, for any

V ∈ RS , we denote [V ]α as its clipped version by some non-negative value α, namely,

[V ]α(s) :=




α, if V (s) > α,

V (s), otherwise.
(D.11)

• TV distance, where the uncertainty set is Uσρ (P̂ 0
s,a) := UσTV(P̂ 0

s,a) := UσρTV
(P̂ 0

s,a) w.r.t. the TV

distance ρ = ρTV defined in (6.1). In particular, we have the following lemma due to strong

duality, which is a direct consequence of Iyengar (2005, Lemma 4.3).

Lemma 39 (Strong duality for TV). Consider any probability vector P ∈ ∆(S), any fixed

uncertainty level σ and the uncertainty set Uσ(P ) := UσTV(P ). For any vector V ∈ RS obeying

V ≥ 0, recalling the definition of [V ]α in (D.11), one has

inf
P∈Uσ(P )

PV = max
α∈[mins V (s),maxs V (s)]

{
P [V ]α − σ

(
α−min

s′
[V ]α (s′)

)}
. (D.12)

In view of the above lemma, the following dual update rule is equivalent to (6.8) in DRVI:

Q̂t(s, a) = r(s, a) + γ max
α∈[mins V̂t−1(s),maxs V̂t−1(s)]

{
P̂ 0
s,a

[
V̂t−1

]
α
− σ

(
α−min

s′

[
V̂t−1

]
α

(s′)

)}
.

(D.13)

• χ2 divergence, where the uncertainty set is Uσρ (P̂ 0
s,a) := Uσχ2(P̂ 0

s,a) := Uσρχ2
(P̂ 0

s,a) w.r.t. the χ2

divergence ρ = ρχ2 defined in (6.2). We introduce the following lemma which directly follows

from (Iyengar, 2005, Lemma 4.2).

Lemma 40 (Strong duality for χ2). Consider any probability vector P ∈ ∆(S), any fixed

uncertainty level σ and the uncertainty set Uσ(P ) := Uσχ2(P ). For any vector V ∈ RS obeying

V ≥ 0, one has

inf
P∈Uσ(P )

PV = max
α∈[mins V (s),maxs V (s)]

{
P [V ]α −

√
σVarP ([V ]α)

}
, (D.14)

where VarP (·) is defined as (D.7).

In view of the above lemma, the update rule (6.8) in DRVI can be equivalently written as:

Q̂t(s, a) = r(s, a) + γ max
α∈[mins V̂t−1(s),maxs V̂t−1(s)]

{
P̂ 0
s,a

[
V̂t−1

]
α
−
√
σVar

P̂ 0
s,a

([
V̂t−1

]
α

)}
.

(D.15)
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The proofs of Lemma 39 and Lemma 40 are provided as follows.

Proof of Lemma 39. To begin with, applying (Iyengar, 2005, Lemma 4.3), the term of interest obeys

inf
P∈Uσ(P )

PV = max
µ∈RS ,µ≥0

{
P (V − µ)− σ

(
max
s′

{
V (s′)− µ(s′)

}
−min

s′

{
V (s′)− µ(s′)

})}
, (D.16)

where µ(s′) represents the s′-th entry of µ ∈ RS . Denoting µ? as the optimal dual solution, taking

α = maxs′ {V (s′)− µ?(s′)}, it is easily verified that µ? obeys

µ?(s) =




V (s)− α, if V (s) > α

0, otherwise.
(D.17)

Therefore, (D.16) can be solved by optimizing α as below (Iyengar, 2005, Lemma 4.3):

inf
P∈Uσ(P )

PV = max
α∈[mins V (s),maxs V (s)]

{
P [V ]α − σ

(
α−min

s′
[V ]α (s′)

)}
. (D.18)

Proof of Lemma 40. Due to strong duality (Iyengar, 2005, Lemma 4.2), it holds that

inf
P∈Uσ(P )

PV = max
µ∈RS ,µ≥0

{
P (V − µ)−

√
σVarP (V − µ)

}
, (D.19)

and the optimal µ? obeys

µ?(s) =




V (s)− α, if V (s) > α

0, otherwise.
(D.20)

for some α ∈ [mins V (s),maxs V (s)]. As a result, solving (D.19) is equivalent to optimizing the

scalar α as below:

inf
P∈Uσ(P )

PV = max
α∈[mins V (s),maxs V (s)]

{
P [V ]α −

√
σVarP ([V ]α)

}
. (D.21)

D.1.3 Additional facts of the empirical robust MDP

Bellman equations of the empirical robust MDP M̂rob. To begin with, recall that the

empirical robust MDP M̂rob = {S,A, γ,Uσ(P̂ 0), r} based on the estimated nominal distribution

P̂ 0 constructed in (6.5) and its corresponding robust value function (resp. robust Q-function) V̂ π,σ

(resp. Q̂π,σ).
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Note that Q̂?,σ is the unique fixed point of T̂ σ(·) (see Lemma 38), the empirical robust Bellman

operator constructed using P̂ 0. Moreover, similar to (2.27), for M̂rob, the Bellman’s optimality

principle gives the following robust Bellman consistency equation (resp. robust Bellman optimality

equation):

∀(s, a) ∈ S ×A : Q̂π,σ(s, a) = r(s, a) + γ inf
P∈Uσ(P̂ 0

s,a)
PV̂ π,σ, (D.22a)

∀(s, a) ∈ S ×A : Q̂?,σ(s, a) = r(s, a) + γ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σ. (D.22b)

With these in mind, combined with the matrix notation, for any policy π, we can write the

robust Bellman consistency equations as

Qπ,σ = r + γ inf
P∈Uσ(P 0)

PV π,σ and Q̂π,σ = r + γ inf
P∈Uσ(P̂ 0)

PV̂ π,σ, (D.23)

which leads to

V π,σ = rπ + γΠπ inf
P∈Uσ(P 0)

PV π,σ (i)
= rπ + γP π,V V π,σ,

V̂ π,σ = rπ + γΠπ inf
P∈Uσ(P̂ 0)

PV̂ π,σ (ii)
= rπ + γP̂

π,V̂
V̂ π,σ, (D.24)

where (i) and (ii) holds by the definitions in (D.1), (D.3) and (D.4).

Encouragingly, the above property of the robust Bellman operator ensures the fast convergence

of DRVI. We collect this consequence in the following lemma.

Lemma 41. Let Q̂0 = 0. The iterates {Q̂t}, {V̂t} of DRVI obey

∀t ≥ 0 :
∥∥Q̂t − Q̂?,σ

∥∥
∞ ≤

γt

1− γ and
∥∥V̂t − V̂ ?,σ

∥∥
∞ ≤

γt

1− γ . (D.25)

Furthermore, the output policy π̂ obeys

∥∥V̂ ?,σ − V̂ π̂,σ
∥∥
∞ ≤

2γεopt

1− γ , where
∥∥V̂ ?,σ − V̂T−1

∥∥
∞ =: εopt. (D.26)

Proof of Lemma 41. Applying the γ-contraction property in Lemma 38 directly yields that for any

t ≥ 0,

‖Q̂t − Q̂?,σ‖∞ =
∥∥T̂ σ(Q̂t−1)− T̂ σ(Q̂?,σ)

∥∥
∞ ≤ γ

∥∥Q̂t−1 − Q̂?,σ
∥∥
∞

≤ · · · ≤ γt
∥∥Q̂0 − Q̂?,σ

∥∥
∞ = γt

∥∥Q̂?,σ
∥∥
∞ ≤

γt

1− γ ,
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where the last inequality holds by the fact ‖Q̂?,σ‖∞ ≤ 1
1−γ (see Lemma 38). In addition,

∥∥V̂t − V̂ ?,σ
∥∥
∞ = max

s∈S

∥∥∥max
a∈A

Q̂t(s, a)−max
a∈A

Q̂?,σ(s, a)
∥∥∥
∞
≤
∥∥Q̂t − Q̂?,σ

∥∥
∞ ≤

γt

1− γ ,

where the penultimate inequality holds by the maximum operator is 1-Lipschitz. This completes

the proof of (D.25).

We now move to establish (D.26). Note that there exists at least one state s0 ∈ S that is

associated with the maximum of the value gap, i.e.,

∥∥V̂ ?,σ − V̂ π̂,σ
∥∥
∞ = V̂ ?,σ(s0)− V̂ π̂,σ(s0) ≥ V̂ ?,σ(s)− V̂ π̂,σ(s), ∀s ∈ S.

Recall π̂? is the optimal robust policy for the empirical RMDP M̂rob. For convenience, we denote

a1 = π̂?(s0) and a2 = π̂(s0). Then, since π̂ is the greedy policy w.r.t. Q̂T , one has

r(s0, a1) + γ inf
P∈Uσ(P̂ 0

s0,a1
)
PV̂T−1 = Q̂T (s0, a1) ≤ Q̂T (s0, a2) = r(s0, a2) + γ inf

P∈Uσ(P̂ 0
s0,a2

)
PV̂T−1.

(D.27)

Recalling the notation in (D.3), the above fact and (D.26) altogether yield

r(s0, a1) + γP̂
V̂T−1
s0,a1

(
V̂ ?,σ − εopt1

)
≤ r(s0, a1) + γP̂

V̂T−1
s0,a1 V̂T−1

≤ r(s0, a2) + γ inf
P∈Uσ(P̂ 0

s0,a2
)
PV̂T−1

(i)

≤ r(s0, a2) + γP̂ V̂
π̂,σ

s0,a2
V̂T−1

≤ r(s0, a2) + γP̂ V̂
π̂,σ

s0,a2

(
V̂ ?,σ + εopt1

)
, (D.28)

where (i) follows from the optimality criteria. The term of interest can be controlled as

∥∥V̂ ?,σ − V̂ π̂,σ
∥∥
∞ = V̂ ?,σ(s0)− V̂ π̂,σ(s0)

= r(s0, a1) + γ inf
P∈Uσ(P̂ 0

s0,a1
)
PV̂ ?,σ −

(
r(s0, a2) + γ inf

P∈Uσ(P̂ 0
s0,a2

)
PV̂ π̂,σ

)

= r(s0, a1)− r(s0, a2) + γ

(
inf

P∈Uσ(P̂ 0
s0,a1

)
PV̂ ?,σ − inf

P∈Uσ(P̂ 0
s0,a2

)
PV̂ π̂,σ

)

(i)

≤ 2γεopt + γ

(
P̂ V̂

π̂,σ

s0,a2
V̂ ?,σ − P̂ V̂T−1

s0,a1 V̂
?,σ + inf

P∈Uσ(P̂ 0
s0,a1

)
PV̂ ?,σ − inf

P∈Uσ(P̂ 0
s0,a2

)
PV̂ π̂,σ

)

= 2γεopt + γ

(
P̂ V̂

π̂,σ

s0,a2
V̂ ?,σ − inf

P∈Uσ(P̂ 0
s0,a2

)
PV̂ π̂,σ

)
+ γ

(
inf

P∈Uσ(P̂ 0
s0,a1

)
PV̂ ?,σ − P̂ V̂T−1

s0,a1 V̂
?,σ

)
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(ii)

≤ 2γεopt + γP̂ V̂
π̂,σ

s0,a2

(
V̂ ?,σ − V̂ π̂,σ

)
+ γ

(
P̂
V̂T−1
s0,a1 V̂

?,σ − P̂ V̂T−1
s0,a1 V̂

?,σ

)

≤ 2γεopt + γ
∥∥V̂ ?,σ − V̂ π̂,σ

∥∥
∞, (D.29)

where (i) holds by plugging in (D.28), and (ii) follows from infP∈Uσ(P̂ 0
s0,a1

)
PV̂ ?,σ ≤ PV̂ ?,σ for any

P ∈ Uσ(P̂ 0
s0,a1

). Rearranging (D.29) leads to

∥∥V̂ ?,σ − V̂ π̂,σ
∥∥
∞ ≤

2γεopt

1− γ .

D.2 Proof of the upper bound with TV distance: Theorem 10

Throughout this subchapter, for any transition kernel P , the uncertainty set is taken as (see (6.1))

Uσ(P ) := UσTV(P ) = ⊗ UσTV(Ps,a), UσTV(Ps,a) :=
{
P ′s,a ∈ ∆(S) :

1

2

∥∥P ′s,a − Ps,a
∥∥

1
≤ σ

}
. (D.30)

D.2.1 Technical lemmas

We begin with a key lemma concerning the dynamic range of the robust value function V π,σ

(cf. (2.25)), which produces tighter control when σ is large; the proof is deferred to Appendix D.2.3.1.

Lemma 42. For any nominal transition kernel P ∈ RSA×S, any fixed uncertainty level σ, and any

policy π, its corresponding robust value function V π,σ (cf. (2.25)) satisfies

max
s∈S

V π,σ(s)−min
s∈S

V π,σ(s) ≤ 1

γmax{1− γ, σ} .

Next, we introduce the following lemma, whose proof is postponed in Appendix D.2.3.2.

Lemma 43. Consider an MDP with transition kernel matrix P and reward function 0 ≤ r ≤ 1. For

any policy π and its associated state transition matrix Pπ := ΠπP and value function 0 ≤ V π,P ≤ 1
1−γ

(cf. (2.20)), one has

(I − γPπ)−1
√

VarPπ(V π,P ) ≤
√

8(maxs V π,P (s)−mins V π,P (s))

γ2(1− γ)2
1.

D.2.2 Proof of Theorem 10

The main proof idea of Theorem 10 is similar to that of Agarwal et al. (2020a) and Li et al. (2023c)

while the argument needs essential adjustments in order to adapt to the robustness setting. Before
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proceeding, applying Lemma 41 yields that for any εopt > 0, as long as T ≥ log( 1
(1−γ)εopt

), one has

∥∥V̂ ?,σ − V̂ π̂,σ
∥∥
∞ ≤

2γεopt

1− γ , (D.31)

allowing us to justify the more general statement in Remark 4. To control the performance gap∥∥V ?,σ − V π̂,σ
∥∥
∞, the proof is divided into several key steps.

Step 1: decomposing the error. Recall the optimal robust policy π? w.r.t. Mrob and the

optimal robust policy π̂?, the optimal robust value function V̂ ?,σ (resp. robust value function Q̂π,σ)

w.r.t. M̂rob. The term of interest V ?,σ − V π̂,σ can be decomposed as

V ?,σ − V π̂,σ =
(
V π?,σ − V̂ π?,σ

)
+
(
V̂ π?,σ − V̂ π̂?,σ

)
+
(
V̂ π̂?,σ − V̂ π̂,σ

)
+
(
V̂ π̂,σ − V π̂,σ

)

(i)

≤
(
V π?,σ − V̂ π?,σ

)
+
(
V̂ π̂?,σ − V̂ π̂,σ

)
+
(
V̂ π̂,σ − V π̂,σ

)

(ii)

≤
(
V π?,σ − V̂ π?,σ

)
+

2γεopt

1− γ 1 +
(
V̂ π̂,σ − V π̂,σ

)
(D.32)

where (i) holds by V̂ π?,σ − V̂ π̂?,σ ≤ 0 since π̂? is the robust optimal policy for M̂rob, and (ii) comes

from the fact in (D.31).

To control the two important terms in (D.32), we first consider a more general term V̂ π,σ−V π,σ

for any policy π. Towards this, plugging in (D.24) yields

V̂ π,σ − V π,σ = rπ + γP̂
π,V̂

V̂ π,σ −
(
rπ + γP π,V V π,σ

)

=
(
γP̂

π,V̂
V̂ π,σ − γP π,V̂ V̂ π,σ

)
+
(
γP π,V̂ V̂ π,σ − γP π,V V π,σ

)

(i)

≤ γ
(
P π,V V̂ π,σ − P π,V V π,σ

)
+
(
γP̂

π,V̂
V̂ π,σ − γP π,V̂ V̂ π,σ

)
,

where (i) holds by observing

P π,V̂ V̂ π,σ ≤ P π,V V̂ π,σ

due to the optimality of P π,V̂ (cf. (D.3)). Rearranging terms leads to

V̂ π,σ − V π,σ ≤ γ
(
I − γP π,V

)−1
(
P̂
π,V̂

V̂ π,σ − P π,V̂ V̂ π,σ
)
. (D.33)

Similarly, we can also deduce

V̂ π,σ − V π,σ = rπ + γP̂
π,V̂

V̂ π,σ −
(
rπ + γP π,V V π,σ

)
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=
(
γP̂

π,V̂
V̂ π,σ − γP π,V̂ V̂ π,σ

)
+
(
γP π,V̂ V̂ π,σ − γP π,V V π,σ

)

≥ γ
(
P π,V̂ V̂ π,σ − P π,V̂ V π,σ

)
+
(
γP̂

π,V̂
V̂ π,σ − γP π,V̂ V̂ π,σ

)

≥ γ
(
I − γP π,V̂

)−1 (
P̂
π,V̂

V̂ π,σ − P π,V̂ V̂ π,σ
)
. (D.34)

Combining (D.33) and (D.34), we arrive at

∥∥V̂ π,σ − V π,σ
∥∥
∞ ≤ γmax

{∥∥∥
(
I − γP π,V

)−1
(
P̂
π,V̂

V̂ π,σ − P π,V̂ V̂ π,σ
)∥∥∥
∞
,

∥∥∥
(
I − γP π,V̂

)−1 (
P̂
π,V̂

V̂ π,σ − P π,V̂ V̂ π,σ
)∥∥∥
∞

}
. (D.35)

By decomposing the error in a symmetric way, we can similarly obtain

∥∥V̂ π,σ − V π,σ
∥∥
∞ ≤ γmax

{∥∥∥
(
I − γP̂ π,V

)−1 (
P̂
π,V

V π,σ − P π,V V π,σ
)∥∥∥
∞
,

∥∥∥
(
I − γP̂ π,V̂

)−1(
P̂
π,V

V π,σ − P π,V V π,σ
)∥∥∥
∞

}
. (D.36)

With the above facts in mind, we are ready to control the two terms
∥∥V̂ π?,σ − V π?,σ

∥∥
∞ and∥∥V̂ π̂,σ − V π̂,σ

∥∥
∞ in (D.32) separately. More specifically, taking π = π?, applying (D.36) leads to

∥∥V̂ π?,σ − V π?,σ
∥∥
∞ ≤ γmax

{∥∥∥
(
I − γP̂ π

?,V
)−1(

P̂
π?,V

V π?,σ − P π?,V V π?,σ
)∥∥∥
∞
,

∥∥∥
(
I − γP̂ π

?,V̂
)−1(

P̂
π?,V

V π?,σ − P π?,V V π?,σ
)∥∥∥
∞

}
. (D.37)

Similarly, taking π = π̂, applying (D.35) leads to

∥∥V̂ π̂,σ − V π̂,σ
∥∥
∞ ≤ γmax

{∥∥∥
(
I − γP π̂,V̂

)−1 (
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)∥∥∥
∞
,

∥∥∥
(
I − γP π̂,V

)−1 (
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)∥∥∥
∞

}
. (D.38)

Step 2: controlling ‖V̂ π?,σ − V π?,σ‖∞: bounding the first term in (D.37). To control

the two terms in (D.37), we first introduce the following lemma whose proof is postponed to

Appendix D.2.3.3.

Lemma 44. Consider any δ ∈ (0, 1). Setting N ≥ log(18SAN
δ ), with probability at least 1− δ, one

has

∣∣∣P̂ π
?,V
V π?,σ − P π?,V V π?,σ

∣∣∣ ≤ 2

√
log(18SAN

δ )

N

√
VarPπ? (V ?,σ) +

log(18SAN
δ )

N(1− γ)
1
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≤ 3

√
log(18SAN

δ )

(1− γ)2N
1, (D.39)

where VarPπ? (V ?,σ) is defined in (D.2).

Armed with the above lemma, now we control the first term on the right hand side of (D.37)

as follows:

(
I − γP̂ π

?,V
)−1(

P̂
π?,V

V π?,σ − P π?,V V π?,σ
)

(i)

≤
(
I − γP̂ π

?,V
)−1∥∥∥P̂ π

?,V
V π?,σ − P π?,V V π?,σ

∥∥∥
∞

(ii)

≤
(
I − γP̂ π

?,V
)−1

(
2

√
log(18SAN

δ )

N

√
VarPπ? (V ?,σ) +

log(18SAN
δ )

N(1− γ)
1

)

≤ log(18SAN
δ )

N(1− γ)

(
I − γP̂ π

?,V
)−1

1 + 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V
)−1√

Var
P̂
π?,V (V ?,σ)

︸ ︷︷ ︸
=:C1

+ 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V
)−1

√∣∣∣Var
P̂π?

(V ?,σ)−Var
P̂
π?,V (V ?,σ)

∣∣∣
︸ ︷︷ ︸

=:C2

+ 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V
)−1(√

VarPπ? (V ?,σ)−
√

Var
P̂π?

(V ?,σ)
)

︸ ︷︷ ︸
=:C3

, (D.40)

where (i) holds by
(
I − γP̂ π

?,V
)−1
≥ 0, (ii) follows from Lemma 44, and the last inequality arise

from

√
VarPπ? (V ?,σ) =

(√
VarPπ? (V ?,σ)−

√
Var

P̂π?
(V ?,σ)

)
+
√

Var
P̂π?

(V ?,σ)

≤
(√

VarPπ? (V ?,σ)−
√

Var
P̂π?

(V ?,σ)

)
+

√∣∣∣Var
P̂π?

(V ?,σ)−Var
P̂
π?,V (V ?,σ)

∣∣∣+
√

Var
P̂
π?,V (V ?,σ)

by applying the triangle inequality.

To continue, observing that each row of P̂
π?,V

is a probability distribution obeying that the

sum is 1, we arrive at

(
I − γP̂ π

?,V
)−1

1 =
(
I +

∞∑

t=1

γt
(
P̂
π?,V

)t)
1 =

1

1− γ 1. (D.41)

Armed with this fact, we shall control the other three terms C1, C2, C3 in (D.40) separately.
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• Consider C1. We first introduce the following lemma, whose proof is postponed to Ap-

pendix D.2.3.4.

Lemma 45. Consider any δ ∈ (0, 1). With probability at least 1− δ, one has

(
I − γP̂ π

?,V
)−1√

Var
P̂
π?,V (V ?,σ) ≤ 4

√√√√√√

(
1 +

√
log( 18SAN

δ
)

(1−γ)2N

)

γ3(1− γ)2 max{1− γ, σ}1 ≤ 4

√√√√√√

(
1 +

√
log( 18SAN

δ
)

(1−γ)2N

)

γ3(1− γ)3
1.

Applying Lemma 45 and inserting back to (D.40) leads to

C1 = 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V
)−1√

Var
P̂
π?,V (V ?,σ)

≤ 8

√√√√ log(18SAN
δ )

γ3(1− γ)2 max{1− γ, σ}N

(
1 +

√
log(18SAN

δ )

(1− γ)2N

)
1. (D.42)

• Consider C2. First, denote V ′ := V ?,σ −mins′∈S V
?,σ(s′)1, by Lemma 42, it follows that

0 ≤ V ′ ≤ 1

γmax{1− γ, σ}1. (D.43)

Then, we have for all (s, a) ∈ S ×A, and Ps,a ∈ ∆(S), and P̃s,a ∈ Uσ(Ps,a):

∣∣Var
P̃s,a

(V ?,σ)− VarPs,a(V ?,σ)
∣∣ =

∣∣Var
P̃s,a

(V ′)− VarPs,a(V ′)
∣∣

≤
∥∥P̃s,a − Ps,a

∥∥
1

∥∥V ′
∥∥2

∞

≤ 2σ

γ2(max{1− γ, σ})2
1 ≤ 2

γ2 max{1− γ, σ}1. (D.44)

Applying the above relation we obtain

C2 = 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V
)−1

√∣∣∣Var
P̂π?

(V ?,σ)−Var
P̂
π?,V (V ?,σ)

∣∣∣

= 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V
)−1√∣∣Ππ?

(
Var

P̂ 0(V ?,σ)−Var
P̂π?,V

(V ?,σ)
)∣∣

≤ 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V
)−1√∥∥Var

P̂ 0(V ?,σ)−Var
P̂π?,V

(V ?,σ)
∥∥
∞ 1

≤ 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V
)−1

√
2

γ2 max{1− γ, σ}1 = 2

√
2 log(18SAN

δ )

γ2(1− γ)2 max{1− γ, σ}N 1,

(D.45)
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where the last equality uses
(
I − γP̂ π

?,V
)−1

1 = 1
1−γ (cf. (D.41)).

• Consider C3. The following lemma plays an important role.

Lemma 46. (Panaganti and Kalathil, 2022, Lemma 6) Consider any δ ∈ (0, 1). For any

fixed policy π and fixed value vector V ∈ RS, one has with probability at least 1− δ,

∣∣∣
√

Var
P̂π

(V )−
√

VarPπ(V )
∣∣∣ ≤

√
2‖V ‖2∞ log(2SA

δ )

N
1.

Applying Lemma 46 with π = π? and V = V ?,σ leads to

√
VarPπ? (V ?,σ)−

√
Var

P̂π?
(V ?,σ) ≤

√
2‖V ?,σ‖2∞ log(2SA

δ )

N
1,

which can be plugged in (D.40) to verify

C3 = 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V
)−1

(√
VarPπ? (V ?,σ)−

√
Var

P̂π?
(V ?,σ)

)

≤ 4

(1− γ)

log(SANδ )‖V ?,σ‖∞
N

1 ≤ 4 log(18SAN
δ )

(1− γ)2N
1, (D.46)

where the last line uses
(
I − γP̂ π

?,V
)−1

1 = 1
1−γ (cf. (D.41)).

Finally, inserting the results of C1 in (D.42), C2 in (D.45), C3 in (D.46), and (D.41) back into

(D.40) gives

(
I − γP̂ π

?,V
)−1(

P̂
π?,V

V π?,σ − P π?,V V π?,σ
)
≤ 8

√√√√ log(18SAN
δ )

γ3(1− γ)2 max{1− γ, σ}N

(
1 +

√
log(18SAN

δ )

(1− γ)2N

)
1

+ 2

√
2 log(18SAN

δ )

γ2(1− γ)2 max{1− γ, σ}N 1 +
4 log(18SAN

δ )

(1− γ)2N
1 +

log(18SAN
δ )

N(1− γ)2
1

≤ 10

√√√√ 2 log(18SAN
δ )

γ3(1− γ)2 max{1− γ, σ}N

(
1 +

√
log(SANδ )

(1− γ)2N

)
1 +

5 log(18SAN
δ )

(1− γ)2N
1

≤ 160

√
log(18SAN

δ )

(1− γ)2 max{1− γ, σ}N 1 +
5 log(18SAN

δ )

(1− γ)2N
1, (D.47)

where the last inequality holds by the fact γ ≥ 1
4 and letting N ≥ log(SAN

δ
)

(1−γ)2 .
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Step 3: controlling ‖V̂ π?,σ − V π?,σ‖∞: bounding the second term in (D.37). To proceed,

applying Lemma 44 on the second term of the right hand side of (D.37) leads to

(
I − γP̂ π

?,V̂
)−1(

P̂
π?,V

V π?,σ − P π?,V V π?,σ
)

≤ 2
(
I − γP̂ π

?,V̂
)−1

(√
log(18SAN

δ )

N

√
VarPπ? (V ?,σ) +

log(18SAN
δ )

N(1− γ)
1

)

≤ 2 log(18SAN
δ )

N(1− γ)

(
I − γP̂ π

?,V̂
)−1

1 + 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V̂
)−1

√
Var

P̂
π?,V̂ (V̂ π?,σ)

︸ ︷︷ ︸
=:C4

+ 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V̂
)−1

(√
Var

P̂
π?,V̂ (V π?,σ − V̂ π?,σ)

)

︸ ︷︷ ︸
=:C5

+ 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V̂
)−1

(√∣∣∣∣Var
P̂π?

(V ?,σ)−Var
P̂
π?,V̂ (V ?,σ)

∣∣∣∣

)

︸ ︷︷ ︸
=:C6

+ 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V̂
)−1

(√
VarPπ? (V ?,σ)−

√
Var

P̂π?
(V ?,σ)

)

︸ ︷︷ ︸
=:C7

, (D.48)

where the last term C̃3 can be controlled the same as C3 in (D.46). We now bound the above terms

separately.

• Applying Lemma 43 with P = P̂ π
?,V̂ , π = π? and taking V = V̂ π?,σ which obeys V̂ π?,σ =

rπ? + γP̂
π?,V̂

V̂ π?,σ, and in view of (D.41), the term C4 in (D.48) can be controlled as follows:

C4 = 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V̂
)−1

√
Var

P̂
π?,V̂ (V̂ π?,σ)

≤ 2

√
log(18SAN

δ )

N

√
8(maxs V̂ π?,σ(s)−mins V̂ π?,σ(s))

γ2(1− γ)2
1

≤ 8

√
log(18SAN

δ )

γ3(1− γ)2 max{1− γ, σ}N 1, (D.49)

where the last inequality holds by applying Lemma 42.
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• To continue, considering C5, we directly observe that (in view of (D.41))

C5 = 2

√
log(18SAN

δ )

N

(
I − γP̂ π

?,V̂
)−1

√
Var

P̂
π?,V̂ (V π?,σ − V̂ π?,σ)

≤ 2

√
log(18SAN

δ )

(1− γ)2N

∥∥∥V ?,σ − V̂ π?,σ
∥∥∥
∞

1. (D.50)

• Then, it is easily verified that C6 can be controlled similarly as (D.45) as follows:

C6 ≤ 2

√
2 log(18SAN

δ )

γ2(1− γ)2 max{1− γ, σ}N 1. (D.51)

• Similarly, C7 can be controlled the same as (D.46) shown below:

C7 ≤
4 log(18SAN

δ )

(1− γ)2N
1. (D.52)

Combining the results in (D.49), (D.50), (D.51), and (D.52) and inserting back to (D.48)

leads to

(
I − γP̂ π

?,V̂
)−1(

P̂
π?,V

V π?,σ − P π?,V V π?,σ
)
≤ 8

√
log(18SAN

δ )

γ3(1− γ)2 max{1− γ, σ}N 1

+ 2

√
log(18SAN

δ )

(1− γ)2N

∥∥∥V ?,σ − V̂ π?,σ
∥∥∥
∞

1 + 2

√
2 log(18SAN

δ )

γ2(1− γ)2 max{1− γ, σ}N 1 +
4 log(18SAN

δ )

(1− γ)2N
1

≤ 80

√
log(18SAN

δ )

(1− γ)2 max{1− γ, σ}N 1 + 2

√
log(18SAN

δ )

(1− γ)2N

∥∥∥V ?,σ − V̂ π?,σ
∥∥∥
∞

1 +
4 log(18SAN

δ )

(1− γ)2N
1, (D.53)

where the last inequality follows from the assumption γ ≥ 1
4 .

Finally, inserting (D.47) and (D.53) back to (D.37) yields

∥∥∥V̂ π?,σ − V π?,σ
∥∥∥
∞
≤ max

{
160

√
log(18SAN

δ )

(1− γ)2 max{1− γ, σ}N +
5 log(18SAN

δ )

(1− γ)2N
,

80

√
log(18SAN

δ )

(1− γ)2 max{1− γ, σ}N + 2

√
log(18SAN

δ )

(1− γ)2N

∥∥∥V ?,σ − V̂ π?,σ
∥∥∥
∞

+
4 log(18SAN

δ )

(1− γ)2N

}

≤ 160

√
log(18SAN

δ )

(1− γ)2 max{1− γ, σ}N +
8 log(18SAN

δ )

(1− γ)2N
, (D.54)

where the last inequality holds by taking N ≥ 16 log(SAN
δ

)

(1−γ)2 .
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Step 4: controlling ‖V̂ π̂,σ − V π̂,σ‖∞: bounding the first term in (D.38). Unlike the earlier

term, we now need to deal with the complicated statistical dependency between π̂ and the empirical

RMDP. To begin with, we introduce the following lemma which controls the main term on the right

hand side of (D.38), which is proved in Appendix D.2.3.5.

Lemma 47. Consider any δ ∈ (0, 1). Taking N ≥ log
(

54SAN2

(1−γ)δ

)
, with probability at least 1 − δ,

one has

∣∣∣P̂ π̂,V̂ V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
∣∣∣ ≤ 2

√
log(54SAN2

(1−γ)δ )

N

√
VarP 0

s,a
(V̂ ?,σ)1 +

8 log(54SAN2

(1−γ)δ )

N(1− γ)
1 +

2γεopt

1− γ 1

≤ 10

√√√√ log(54SAN2

(1−γ)δ )

(1− γ)2N
1 +

2γεopt

1− γ 1. (D.55)

With Lemma 47 in hand, we have

(
I − γP π̂,V̂

)−1(
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)

(i)

≤
(
I − γP π̂,V̂

)−1
∣∣∣∣P̂

π̂,V̂
V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

∣∣∣∣

≤ 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V̂

)−1
√

VarP π̂(V̂ ?,σ) +
(
I − γP π̂,V π̂Q

)−1
(

8 log(54SAN2

(1−γ)δ )

N(1− γ)
+

2γεopt

1− γ

)
1

(ii)

≤
(

8 log(54SAN2

(1−γ)δ )

N(1− γ)2
+

2γεopt

(1− γ)2

)
1 + 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ)

︸ ︷︷ ︸
=:D1

+ 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V̂

)−1
√∣∣∣Var

P π̂,V̂
(V̂ ?,σ)−Var

P π̂,V̂
(V̂ π̂,σ)

∣∣∣
︸ ︷︷ ︸

=:D2

+ 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂(V̂ ?,σ)−Var

P π̂,V̂
(V̂ ?,σ)

∣∣∣
︸ ︷︷ ︸

=:D3

, (D.56)

where (i) and (ii) hold by the fact that each row of (1− γ)
(
I − γP π̂,V̂

)−1
is a probability vector

that falls into ∆(S).

The remainder of the proof will focus on controlling the three terms in (D.56) separately.

• For D1, we introduce the following lemma, whose proof is postponed to D.2.3.6.

Lemma 48. Consider any δ ∈ (0, 1). Taking N ≥ log( 54SAN2

(1−γ)δ
)

(1−γ)2 and εopt ≤ 1−γ
γ , one has with
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probability at least 1− δ,

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ) ≤ 6

√
1

γ3(1− γ)2 max{1− γ, σ}1 ≤ 6

√
1

(1− γ)3γ2
1.

Applying Lemma 48 and (D.41) to (D.56) leads to

D1 = 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ)

≤ 12

√√√√ log(54SAN2

(1−γ)δ )

γ3(1− γ)2 max{1− γ, σ}N 1. (D.57)

• Applying Lemma 37 with ‖V̂ ?,σ − V̂ π̂,σ‖∞ ≤ 2γεopt

1−γ and (D.41), D2 can be controlled as

D2 = 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V̂

)−1
√∣∣∣Var

P π̂,V̂
(V̂ ?,σ)−Var
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(V̂ π̂,σ)

∣∣∣

≤ 4

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V̂

)−1
√
γεopt

1− γ ≤ 4

√√√√γεopt log(54SAN2

(1−γ)δ )

(1− γ)4N
1. (D.58)

• D3 can be controlled similar to C2 in (D.45) as follows:

D3 = 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂(V̂ ?,σ)−Var

P π̂,V̂
(V̂ ?,σ)

∣∣∣

≤ 4

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V̂

)−1
√

1

γ2 max{1− γ, σ}1 ≤ 4

√√√√ log(54SAN2

(1−γ)δ )

γ2(1− γ)2 max{1− γ, σ}N 1

(D.59)

Finally, summing up the results in (D.57), (D.58), and (D.59) and inserting them back to (D.56)

yields: taking N ≥ log( 54SAN2

(1−γ)δ
)

(1−γ)2 and εopt ≤ 1−γ
γ , with probability at least 1− δ,

(
I − γP π̂,V̂

)−1
(
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

)
≤


8 log(54SAN2

(1−γ)δ )

N(1− γ)2
+

2γεopt

(1− γ)2


 1

+ 12

√√√√ log(54SAN2

(1−γ)δ )

γ3(1− γ)2 max{1− γ, σ}N 1 + 4

√√√√γεopt log(54SAN2

(1−γ)δ )

(1− γ)4N
1 + 4

√√√√ log(54SAN2

(1−γ)δ )

γ2(1− γ)2 max{1− γ, σ}N 1

307



≤ 16

√√√√ log(54SAN2

(1−γ)δ )

γ3(1− γ)2 max{1− γ, σ}N 1 +
14 log(54SAN2

(1−γ)δ )

N(1− γ)2
1, (D.60)

where the last inequality holds by taking εopt ≤ min

{
1−γ
γ ,

log( 54SAN2

(1−γ)δ
)

γN

}
=

log( 54SAN2

(1−γ)δ
)

γN .

Step 5: controlling ‖V̂ π̂,σ − V π̂,σ‖∞: bounding the second term in (D.38). Towards this,

applying Lemma 47 leads to

(
I − γP π̂,V

)−1(
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)
≤
(
I − γP π̂,V

)−1∣∣∣P̂ π̂,V̂ V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
∣∣∣

≤ 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V

)−1
√

VarP π̂(V̂ ?,σ) +
(
I − γP π̂,V

)−1
(

8 log(54SAN2

(1−γ)δ )

N(1− γ)
+

2γεopt

1− γ

)
1

≤
(

8 log(54SAN2

(1−γ)δ )

N(1− γ)2
+

2γεopt

(1− γ)2

)
1 + 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V

)−1√
VarP π̂,V (V π̂,σ)

︸ ︷︷ ︸
=:D4

+ 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V

)−1√
VarP π̂,V (V̂ π̂,σ − V π̂,σ)

︸ ︷︷ ︸
=:D5

+ 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂,V (V̂ ?,σ)−VarP π̂,V (V̂ π̂,σ)

∣∣∣
︸ ︷︷ ︸

=:D6

+ 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V̂

)−1
√∣∣∣VarP π̂(V̂ ?,σ)−VarP π̂,V (V̂ ?,σ)

∣∣∣
︸ ︷︷ ︸

=:D7

. (D.61)

We shall bound each of the terms separately.

• Applying Lemma 43 with P = P π̂,V , π = π̂, and taking V = V π̂,σ which obeys V π̂,σ =

rπ̂ + γP π̂,V V π̂,σ, the term D4 can be controlled similar to (D.49) as follows:

D4 ≤ 8

√
log(54SAN2

δ )

γ3(1− γ)2 max{1− γ, σ}N 1. (D.62)

• For D5, it is observed that

D5 = 2

√
log(54SAN2

(1−γ)δ )

N

(
I − γP π̂,V

)−1√
VarP π̂,V (V̂ π̂,σ − V π̂,σ)
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≤ 2

√
log(54SAN2

δ )

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥
∞

1. (D.63)

• Next, observing that D6 and D7 are almost the same as the terms D2 (controlled in (D.58))

and D3 (controlled in (D.59)) in (D.56), it is easily verified that they can be controlled as

follows

D6 ≤ 4

√√√√γεopt log(54SAN2

(1−γ)δ )

(1− γ)4N
1, D7 ≤ 4

√√√√ log(54SAN2

(1−γ)δ )

γ2(1− γ)2 max{1− γ, σ}N 1. (D.64)

Then inserting the results in (D.62), (D.63), and (D.64) back to (D.61) leads to

(
I − γP π̂,V

)−1(
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)
≤
(

8 log(54SAN2

(1−γ)δ )

N(1− γ)2
+

2γεopt

(1− γ)2

)
1 + 8

√
log(54SAN2

δ )

γ3(1− γ)2 max{1− γ, σ}N 1

+ 2

√
log(54SAN2

δ )

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥
∞

1 + 4

√√√√γεopt log(54SAN2

(1−γ)δ )

(1− γ)4N
1 + 4

√√√√ log(54SAN2

(1−γ)δ )

γ2(1− γ)2 max{1− γ, σ}N 1

≤ 12

√√√√ 2 log(8SAN2

(1−γ)δ )

γ3(1− γ)2 max{1− γ, σ}N 1 +
14 log(54SAN2

(1−γ)δ )

N(1− γ)2
1 + 2

√
log(54SAN2

δ )

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥
∞

1,

(D.65)

where the last inequality holds by letting εopt ≤
log( 54SAN2

(1−γ)δ
)

γN , which directly satisfies εopt ≤ 1−γ
γ by

letting N ≥ log( 54SAN2

δ
)

1−γ .

Finally, inserting (D.60) and (D.65) back to (D.38) yields: taking εopt ≤
log( 54SAN2

(1−γ)δ
)

γN and

N ≥ 16 log( 54SAN2

δ
)

(1−γ)2 , with probability at least 1− δ, one has

∥∥∥V̂ π̂,σ − V π̂,σ
∥∥∥
∞
≤ max

{
16

√√√√ log(54SAN2

(1−γ)δ )

γ3(1− γ)2 max{1− γ, σ}N +
14 log(54SAN2

(1−γ)δ )

N(1− γ)2
,

12

√√√√ 2 log(8SAN2

(1−γ)δ )

γ3(1− γ)2 max{1− γ, σ}N +
14 log(54SAN2

(1−γ)δ )

N(1− γ)2
+ 2

√
log(54SAN2

δ )

(1− γ)2N

∥∥∥V π̂,σ − V̂ π̂,σ
∥∥∥
∞

}

≤ 24

√√√√ log(54SAN2

(1−γ)δ )

γ3(1− γ)2 max{1− γ, σ}N +
28 log(54SAN2

(1−γ)δ )

N(1− γ)2
. (D.66)
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Step 6: summing up the results. Summing up the results in (D.54) and (D.66) and inserting

back to (D.32) complete the proof as follows: taking εopt ≤
log( 54SAN2

(1−γ)δ
)

γN and N ≥ 16 log( 54SAN2

δ
)

(1−γ)2 , with

probability at least 1− δ,

∥∥V ?,σ − V π̂,σ
∥∥
∞ ≤

∥∥V π?,σ − V̂ π?,σ
∥∥
∞ +

2γεopt

1− γ +
∥∥V̂ π̂,σ − V π̂,σ

∥∥
∞

≤ 2γεopt

1− γ + 160

√
log(18SAN

δ )

(1− γ)2 max{1− γ, σ}N +
8 log(18SAN

δ )

(1− γ)2N

+ 24

√√√√ log(54SAN2

(1−γ)δ )

γ3(1− γ)2 max{1− γ, σ}N +
28 log(54SAN2

(1−γ)δ )

N(1− γ)2

≤ 184

√√√√ log(54SAN2

(1−γ)δ )

γ3(1− γ)2 max{1− γ, σ}N +
36 log(54SAN2

(1−γ)δ )

N(1− γ)2

≤ 1508

√√√√ log(54SAN2

(1−γ)δ )

(1− γ)2 max{1− γ, σ}N , (D.67)

where the last inequality holds by γ ≥ 1
4 and N ≥ 16 log( 54SAN2

δ
)

(1−γ)2 .

D.2.3 Proof of the auxiliary lemmas

D.2.3.1 Proof of Lemma 42

To begin, note that there at leasts exist one state s0 for any V π,σ such that V π,σ(s0) = mins∈S V
π,σ(s).

With this in mind, for any policy π, one has by the definition in (2.25) and the Bellman’s equation

(2.27a),

max
s∈S

V π,σ(s) = max
s∈S

Ea∼π(· | s)

[
r(s, a) + γ inf

P∈Uσ(Ps,a)
PV π,σ

]

≤ max
(s,a)∈S×A

(
1 + γ inf

P∈Uσ(Ps,a)
PV π,σ

)
,

where the second line holds since the reward function r(s, a) ∈ [0, 1] for all (s, a) ∈ S × A. To

continue, note that for any (s, a) ∈ S × A, there exists some P̃s,a ∈ RS constructed by reducing

the values of some elements of Ps,a to obey Ps,a ≥ P̃s,a ≥ 0 and
∑

s′(Ps,a(s
′) − P̃s,a(s

′)) = σ.

This implies P̃s,a + σe>s0 ∈ Uσ(Ps,a), where es0 is the standard basis vector supported on s0, since
1
2‖P̃s,a + σe>s0 − Ps,a‖1 ≤ 1

2‖P̃s,a − Ps,a‖1 + σ
2 = σ. Consequently,

inf
P∈Uσ(Ps,a)

PV π,σ ≤
(
P̃s,a + σe>s0

)
V π,σ ≤

∥∥P̃s,a
∥∥

1

∥∥V π,σ
∥∥
∞ + σV π,σ(s0)
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≤ (1− σ) max
s∈S

V π,σ(s) + σmin
s∈S

V π,σ(s), (D.68)

where the second inequality holds by
∥∥P̃s,a

∥∥
1

=
∑

s′ P̃s,a(s
′) = −∑s′

(
Ps,a(s

′)− P̃s,a(s′)
)

+∑
s′ Ps,a(s

′) = 1− σ. Plugging this back to the previous relation gives

max
s∈S

V π,σ(s) ≤ 1 + γ (1− σ) max
s∈S

V π,σ(s) + γσmin
s∈S

V π,σ(s),

which, by rearranging terms, immediately yields

max
s∈S

V π,σ(s) ≤ 1 + γσmins∈S V
π,σ(s)

1− γ (1− σ)

≤ 1

(1− γ) + γσ
+ min

s∈S
V π,σ(s) ≤ 1

γmax{1− γ, σ} + min
s∈S

V π,σ(s).

D.2.3.2 Proof of Lemma 43

Observing that each row of Pπ belongs to ∆(S), it can be directly verified that each row of

(1− γ) (I − γPπ)−1 falls into ∆(S). As a result,

(I − γPπ)−1
√

VarPπ(V π,P ) =
1

1− γ (1− γ) (I − γPπ)−1
√

VarPπ(V π,P )

(i)

≤ 1

1− γ

√
(1− γ) (I − γPπ)−1 VarPπ(V π,P )

=

√
1

1− γ

√√√√
∞∑

t=0

γt (Pπ)t VarPπ(V π,P ), (D.69)

where (i) holds by Jensen’s inequality.

To continue, denoting the minimum value of V as Vmin = mins∈S V
π,P (s) and V ′ := V π,P −

Vmin1. We control VarPπ(V π,P ) as follows:

VarPπ(V π,P )

(i)
= VarPπ(V ′) = Pπ

(
V ′ ◦ V ′

)
−
(
PπV

′) ◦
(
PπV

′)

(ii)
= Pπ

(
V ′ ◦ V ′

)
− 1

γ2

(
V ′ − rπ + (1− γ)Vmin1

)
◦
(
V ′ − rπ + (1− γ)Vmin1

)

= Pπ
(
V ′ ◦ V ′

)
− 1

γ2
V ′ ◦ V ′ + 2

γ2
V ′ ◦ (rπ − (1− γ)Vmin1)− 1

γ2
(rπ − (1− γ)Vmin1) ◦ (rπ − (1− γ)Vmin1)

≤ Pπ
(
V ′ ◦ V ′

)
− 1

γ
V ′ ◦ V ′ + 2

γ2
‖V ′‖∞1, (D.70)

where (i) holds by the fact that VarPπ(V π,P − b1) = VarPπ(V π,P ) for any scalar b and V π,P ∈ RS ,

(ii) follows from V ′ = rπ + γPπV
π,P − Vmin1 = rπ − (1− γ)Vmin1 + γPπV

′, and the last line arises
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from 1
γ2V

′ ◦ V ′ ≥ 1
γV
′ ◦ V ′ and ‖rπ − (1− γ)Vmin1‖∞ ≤ 1. Plugging (D.70) back to (D.69) leads to

(I − γPπ)−1
√

VarPπ(V π,P ) ≤
√

1

1− γ

√√√√
∞∑

t=0

γt (Pπ)t
(
Pπ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ + 2

γ2
‖V ′‖∞1

)

(i)

≤
√

1

1− γ

√√√√
∣∣∣∣
∞∑

t=0

γt (Pπ)t
(
Pπ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

) ∣∣∣∣+

√
1

1− γ

√√√√
∞∑

t=0

γt (Pπ)t
2

γ2
‖V ′‖∞1

≤
√

1

1− γ

√√√√
∣∣∣∣
( ∞∑

t=0

γt (Pπ)t+1 −
∞∑

t=0

γt−1 (Pπ)t
)

(V ′ ◦ V ′)
∣∣∣∣+

√
2‖V ′‖∞1

γ2(1− γ)2

(ii)

≤
√
‖V ′‖2∞1

γ(1− γ)
+

√
2‖V ′‖∞1

γ2(1− γ)2

≤
√

8‖V ′‖∞1

γ2(1− γ)2
, (D.71)

where (i) holds by the triangle inequality, (ii) holds by following recursion, and the last inequality

holds by ‖V ′‖∞ ≤ 1
1−γ .

D.2.3.3 Proof of Lemma 44

Step 1: controlling the point-wise concentration. We first consider a more general term

w.r.t. any fixed (independent from P̂ 0) value vector V obeying 0 ≤ V ≤ 1
1−γ1 and any policy π.

Invoking Lemma 39 leads to that for any (s, a) ∈ S ×A,

∣∣∣P̂ π,Vs,a V − P π,Vs,a V
∣∣∣ ≤

∣∣∣ max
α∈[mins V (s),maxs V (s)]

{
P̂ 0
s,a [V ]α − σ

(
α−min

s′
[V ]α (s′)

)}

− max
α∈[mins V (s),maxs V (s)]

{
P 0
s,a [V ]α − wσ

(
α−min

s′
[V ]α (s′)

)} ∣∣∣

≤ max
α∈[mins V (s),maxs V (s)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V ]α

∣∣∣
︸ ︷︷ ︸

=:gs,a(α,V )

, (D.72)

where the last inequality holds by that the maximum operator is 1-Lipschitz.

Then for a fixed α and any vector V that is independent with P̂ 0, using the Bernstein’s

inequality, one has with probability at least 1− δ,

gs,a(α, V ) =
∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V ]α

∣∣∣ ≤

√
2 log(2

δ )

N

√
VarP 0

s,a
([V ]α) +

2 log(2
δ )

3N(1− γ)

≤

√
2 log(2

δ )

N

√
VarP 0

s,a
(V ) +

2 log(2
δ )

3N(1− γ)
. (D.73)
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Step 2: deriving the uniform concentration. To obtain the union bound, we first notice that

gs,a(α, V ) is 1-Lipschitz w.r.t. α for any V obeying ‖V ‖∞ ≤ 1
1−γ . In addition, we can construct an

ε1-net Nε1 over [0, 1
1−γ ] whose size satisfies |Nε1 | ≤ 3

ε1(1−γ) (Vershynin, 2018). By the union bound

and (D.73), it holds with probability at least 1− δ
SA that for all α ∈ Nε1 ,

gs,a(α, V ) ≤

√
2 log(

2SA|Nε1 |
δ )

N

√
VarP 0

s,a
(V ) +

2 log(
2SA|Nε1 |

δ )

3N(1− γ)
. (D.74)

Combined with (D.72), it yields that,

∣∣∣P̂ π,Vs,a V − P π,Vs,a V
∣∣∣ ≤ max

α∈[mins V (s),maxs V (s)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V ]α

∣∣∣

(i)

≤ ε1 + sup
α∈Nε1

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V ]α

∣∣∣

(ii)

≤ ε1 +

√
2 log(

2SA|Nε1 |
δ )

N

√
VarP 0

s,a
(V ) +

2 log(
2SA|Nε1 |

δ )

3N(1− γ)
(D.75)

(iii)

≤

√
2 log(

2SA|Nε1 |
δ )

N

√
VarP 0

s,a
(V ) +

log(
2SA|Nε1 |

δ )

N(1− γ)

(iv)

≤ 2

√
log(18SAN

δ )

N

√
VarP 0

s,a
(V ) +

log(18SAN
δ )

N(1− γ)
(D.76)

≤ 2

√
log(18SAN

δ )

N
‖V ‖∞ +

log(18SAN
δ )

N(1− γ)

≤ 3

√
log(18SAN

δ )

(1− γ)2N
(D.77)

where (i) follows from that the optimal α? falls into the ε1-ball centered around some point inside

Nε1 and gs,a(α, V ) is 1-Lipschitz, (ii) holds by (D.74), (iii) arises from taking ε1 =
log(

2SA|Nε1 |
δ

)

3N(1−γ) , (iv)

is verified by |Nε1 | ≤ 3
ε1(1−γ) ≤ 9N , and the last inequality is due to the fact ‖V ?,σ‖∞ ≤ 1

1−γ and

letting N ≥ log(18SAN
δ ).

To continue, applying (D.76) and (D.77) with π = π? and V = V ?,σ (independent with P̂ 0)

and taking the union bound over (s, a) ∈ S ×A gives that with probability at least 1− δ, it holds

simultaneously for all (s, a) ∈ S ×A that

∣∣∣P̂ π?,Vs,a V ?,σ − P π?,Vs,a V ?,σ
∣∣∣ ≤ 2

√
log(18SAN

δ )

N

√
VarP 0

s,a
(V ?,σ) +

log(18SAN
δ )

N(1− γ)

≤ 3

√
log(18SAN

δ )

(1− γ)2N
. (D.78)

313



By converting (D.78) to the matrix form, one has with probability at least 1− δ,

∣∣∣P̂ π
?,V
V π?,σ − P π?,V V π?,σ

∣∣∣ ≤ 2

√
log(18SAN

δ )

N

√
VarPπ? (V ?,σ) +

log(18SAN
δ )

N(1− γ)
1

≤ 3

√
log(18SAN

δ )

(1− γ)2N
1. (D.79)

D.2.3.4 Proof of Lemma 45

Following the same argument as (D.69), it follows

(
I − γP̂ π

?,V
)−1√

Var
P̂
π?,V (V ?,σ) =

√
1

1− γ

√√√√
∞∑

t=0

γt
(
P̂
π?,V

)t
Var

P̂
π?,V (V ?,σ). (D.80)

To continue, we first focus on controlling Var
P̂
π?,V (V ?,σ). Towards this, denoting the minimum

value of V ?,σ as Vmin := mins∈S V
?,σ(s) and V ′ := V ?,σ−Vmin1, we arrive at (see the robust Bellman’s

consistency equation in (D.24))

V ′ = V ?,σ − Vmin1 = rπ? + γP π
?,V V ?,σ − Vmin1

= rπ? + γP̂
π?,V

V ?,σ + γ
(
P π

?,V − P̂ π
?,V
)
V ?,σ − Vmin1

= rπ? − (1− γ)Vmin1 + γP̂
π?,V

V ′ + γ
(
P π

?,V − P̂ π
?,V
)
V ?,σ

= r′π? + γP̂
π?,V

V ′ + γ
(
P π

?,V − P̂ π
?,V
)
V ?,σ, (D.81)

where the last line holds by letting r′π? := rπ? − (1− γ)Vmin1 ≤ rπ? . With the above fact in hand,

we control Var
P̂
π?,V (V ?,σ) as follows:

Var
P̂
π?,V (V ?,σ)

(i)
= Var

P̂
π?,V (V ′) = P̂

π?,V (
V ′ ◦ V ′

)
−
(
P̂
π?,V

V ′
)
◦
(
P̂
π?,V

V ′
)

(ii)
= P̂

π?,V (
V ′ ◦ V ′

)
− 1

γ2

(
V ′ − r′π? − γ

(
P π

?,V − P̂ π
?,V
)
V ?,σ

)◦2

= P̂
π?,V (

V ′ ◦ V ′
)
− 1

γ2
V ′ ◦ V ′ + 2

γ2
V ′ ◦

(
r′π? + γ

(
P π

?,V − P̂ π
?,V
)
V ?,σ

)

− 1

γ2

(
r′π? + γ

(
P π

?,V − P̂ π
?,V
)
V ?,σ

)◦2

(iii)

≤ P̂
π?,V (

V ′ ◦ V ′
)
− 1

γ
V ′ ◦ V ′ + 2

γ2
‖V ′‖∞1 +

2

γ
‖V ′‖∞

∣∣∣
(
P π

?,V − P̂ π
?,V
)
V ?,σ

∣∣∣

(D.82)

≤ P̂ π
?,V (

V ′ ◦ V ′
)
− 1

γ
V ′ ◦ V ′ + 2

γ2
‖V ′‖∞1 +

6

γ
‖V ′‖∞

√
log(18SAN

δ )

(1− γ)2N
1, (D.83)
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where (i) holds by the fact that VarPπ(V − b1) = VarPπ(V ) for any scalar b and V ∈ RS , (ii) follows

from (D.81), (iii) arises from 1
γ2V

′ ◦ V ′ ≥ 1
γV
′ ◦ V ′ and −1 ≤ rπ? − (1− γ)Vmin1 = r′π? ≤ rπ? ≤ 1,

and the last inequality holds by Lemma 44.

Plugging (D.83) into (D.80) leads to

(
I − γP̂ π

?,V
)−1√

Var
P̂
π?,V (V ?,σ)

≤
√

1

1− γ

√√√√
∞∑

t=0

γt
(
P̂
π?,V

)t
(
P̂
π?,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′ + 2

γ2
‖V ′‖∞1 +

6

γ
‖V ′‖∞

√
log(18SAN

δ )

(1− γ)2N
1

)

(i)

≤
√

1

1− γ

√√√√
∣∣∣∣
∞∑

t=0

γt
(
P̂
π?,V

)t(
P̂
π?,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

)∣∣∣∣

+

√
1

1− γ

√√√√
∞∑

t=0

γt
(
P̂
π?,V

)t
(

2

γ2
‖V ′‖∞1 +

6

γ
‖V ′‖∞

√
log(18SAN

δ )

(1− γ)2N
1

)

≤
√

1

1− γ

√√√√
∣∣∣∣
∞∑

t=0

γt
(
P̂
π?,V

)t [
P̂
π?,V

(V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

]∣∣∣∣+

√√√√√√

(
2 + 6

√
log( 18SAN

δ
)

(1−γ)2N

)
‖V ′‖∞

(1− γ)2γ2
1,

(D.84)

where (i) holds by the triangle inequality. Therefore, the remainder of the proof shall focus on the

first term, which follows

∣∣∣∣
∞∑

t=0

γt
(
P̂
π?,V

)t(
P̂
π?,V (

V ′ ◦ V ′
)
− 1

γ
V ′ ◦ V ′

)∣∣∣∣

=

∣∣∣∣
( ∞∑

t=0

γt
(
P̂
π?,V

)t+1
−
∞∑

t=0

γt−1
(
P̂
π?,V

)t)(
V ′ ◦ V ′

) ∣∣∣∣ ≤
1

γ
‖V ′‖2∞1 (D.85)

by recursion. Inserting (D.85) back to (D.84) leads to

(
I − γP̂ π

?,V
)−1√

Var
P̂
π?,V (V ?,σ)

≤
√
‖V ′‖2∞
γ(1− γ)

1 + 3

√√√√√
(

1 +

√
log( 18SAN

δ
)

(1−γ)2N

)
‖V ′‖∞

(1− γ)2γ2
1

≤ 4

√√√√√
(

1 +

√
log( 18SAN

δ
)

(1−γ)2N

)
‖V ′‖∞

(1− γ)2γ2
1 ≤ 4

√√√√√
(

1 +

√
log( 18SAN

δ
)

(1−γ)2N

)

γ3(1− γ)2 max{1− γ, σ}1 ≤ 4

√√√√√
(

1 +

√
log( 18SAN

δ
)

(1−γ)2N

)

γ3(1− γ)3
1,

(D.86)
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where the penultimate inequality follows from applying Lemma 42 with P = P 0 and π = π?:

‖V ′‖∞ = max
s∈S

V ?,σ(s)−min
s∈S

V ?,σ(s) ≤ 1

γmax{1− γ, σ} .

D.2.3.5 Proof of Lemma 47

To begin with, for any (s, a) ∈ S ×A, invoking the results in (D.72), we have

∣∣∣P̂ π̂,V̂s,a V̂
π̂,σ − P π̂,V̂s,a V̂

π̂,σ
∣∣∣ ≤ max

α∈[mins V̂ π̂,σ(s),maxs V̂ π̂,σ(s)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
α

∣∣∣

(i)

≤ max
α∈[mins V̂ π̂,σ(s),maxs V̂ π̂,σ(s)]

(∣∣∣
(
P 0
s,a − P̂ 0

s,a

) [
V̂ ?,σ

]
α

∣∣∣+
∣∣∣
(
P 0
s,a − P̂ 0

s,a

)([
V̂ π̂,σ

]
α
−
[
V̂ ?,σ

]
α

)∣∣∣
)

≤ max
α∈[mins V̂ π̂,σ(s),maxs V̂ π̂,σ(s)]

( ∣∣∣
(
P 0
s,a − P̂ 0

s,a

) [
V̂ ?,σ

]
α

∣∣+
∥∥∥P 0

s,a − P̂ 0
s,a

∥∥∥
1

∥∥∥
[
V̂ π̂,σ

]
α
−
[
V̂ ?,σ

]
α

∥∥
∞

)

(ii)

≤ max
α∈[mins V̂ π̂,σ(s),maxs V̂ π̂,σ(s)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

) [
V̂ ?,σ

]
α

∣∣∣+ 2
∥∥∥V̂ π̂,σ − V̂ ?,σ

∥∥∥
∞

(iii)

≤ max
α∈[mins V̂ π̂,σ(s),maxs V̂ π̂,σ(s)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

) [
V̂ ?,σ

]
α

∣∣∣+
2γεopt

1− γ , (D.87)

where (i) holds by the triangle inequality, and (ii) follows from
∥∥P 0

s,a − P̂ 0
s,a

∥∥
1
≤ 2 and

∥∥[V̂ π̂,σ
]
α
−[

V̂ ?,σ
]
α

∥∥
∞ ≤

∥∥V̂ π̂,σ − V̂ ?,σ
∥∥
∞, and (iii) follows from (D.31).

To control
∣∣∣
(
P 0
s,a − P̂ 0

s,a

) [
V̂ ?,σ

]
α

∣∣∣ in (D.87) for any given α ∈
[
0, 1

1−γ
]
, and tame the de-

pendency between V̂ ?,σ and P̂ 0, we resort to the following leave-one-out argument motivated by

(Agarwal et al., 2020a; Li et al., 2022a; Shi and Chi, 2022). Specifically, we first construct a set of

auxiliary RMDPs which simultaneously have the desired statistical independence between robust

value functions and the estimated nominal transition kernel, and are minimally different from the

original RMDPs under consideration. Then we control the term of interest associated with these

auxiliary RMDPs and show the value is close to the target quantity for the desired RMDP. The

process is divided into several steps as below.

Step 1: construction of auxiliary RMDPs with deterministic empirical nominal tran-

sitions. Recall that we target the empirical infinite-horizon robust MDP M̂rob with the nominal

transition kernel P̂ 0. Towards this, we can construct an auxiliary robust MDP M̂s,u
rob for each state s

and any non-negative scalar u ≥ 0, so that it is the same as M̂rob except for the transition properties

in state s. In particular, we define the nominal transition kernel and reward function of M̂s,u
rob as

P s,u and rs,u, which are expressed as follows




P s,u(s′ | s, a) = 1(s′ = s) for all (s′, a) ∈ S ×A,
P s,u(· | s̃, a) = P̂ 0(· | s̃, a) for all (s̃, a) ∈ S ×A and s̃ 6= s,

(D.88)
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and




rs,u(s, a) = u for all a ∈ A,
rs,u(s̃, a) = r(s̃, a) for all (s̃, a) ∈ S ×A and s̃ 6= s.

(D.89)

It is evident that the nominal transition probability at state s of the auxiliary M̂s,u
rob, i.e. it never

leaves state s once entered. This useful property removes the randomness of P̂ 0
s,a for all a ∈ A in

state s, which will be leveraged later.

Correspondingly, the robust Bellman operator T̂ σs,u(·) associated with the RMDP M̂s,u
rob is

defined as

∀(s̃, a) ∈ S ×A : T̂ σs,u(Q)(s̃, a) = rs,u(s̃, a) + γ inf
P∈Uσ(P s,u

s̃,a
)
PV, with V (s̃) = max

a
Q(s̃, a).

(D.90)

Step 2: fixed-point equivalence between M̂rob and the auxiliary RMDP M̂s,u
rob. Recall

that Q̂?,σ is the unique fixed point of T̂ σ(·) with the corresponding robust value V̂ ?,σ. We assert

that the corresponding robust value function V̂ ?,σ
s,u? obtained from the fixed point of T̂ σs,u(·) aligns

with the robust value function V̂ ?,σ derived from T̂ σ(·), as long as we choose u in the following

manner:

u? := u?(s) = V̂ ?,σ(s)− γ inf
P∈Uσ(es)

PV̂ ?,σ. (D.91)

where es is the s-th standard basis vector in RS . Towards verifying this, we shall break our arguments

in two different cases.

• For state s: One has for any a ∈ A:

rs,u
?
(s, a) + γ inf

P∈Uσ(P s,u
?

s,a )

PV̂ ?,σ = u? + γ inf
P∈Uσ(es)

PV̂ ?,σ

= V̂ ?,σ(s)− γ inf
P∈Uσ(es)

PV̂ ?,σ + γ inf
P∈Uσ(es)

PV̂ ?,σ = V̂ ?,σ(s),

(D.92)

where the first equality follows from the definition of P s,u
?

s,a in (E.164), and the second equality

follows from plugging in the definition of u? in (E.169).

• For state s′ 6= s: It is easily verified that for all a ∈ A,

rs,u
?
(s′, a) + γ inf

P∈Uσ(P s,u
?

s′,a )

PV̂ ?,σ = r(s′, a) + γ inf
P∈Uσ(P̂ 0

s′,a)
PV̂ ?,σ
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= T̂ σ(Q̂?,σ)(s′, a) = Q̂?,σ(s′, a), (D.93)

where the first equality follows from the definitions in (E.165) and (E.164), and the last line

arises from the definition of the robust Bellman operator in (6.7), and that Q̂?,σ is the fixed

point of T̂ σ(·) (see Lemma 38).

Combining the facts in the above two cases, we establish that there exists a fixed point Q̂?,σs,u?

of the operator T̂ σs,u?(·) by taking




Q̂?,σs,u?(s, a) = V̂ ?,σ(s) for all a ∈ A,
Q̂?,σs,u?(s

′, a) = Q̂?,σ(s′, a) for all s′ 6= s and a ∈ A.
(D.94)

Consequently, we confirm the existence of a fixed point of the operator T̂ σs,u?(·). In addition, its

corresponding value function V̂ ?,σ
s,u? also coincides with V̂ ?,σ. Note that the corresponding facts

between M̂rob and M̂s,u
rob in Step 1 and step 2 holds in fact for any uncertainty set.

Step 3: building an ε-net for all reward values u. It is easily verified that

0 ≤ u? ≤ V̂ ?,σ(s) ≤ 1

1− γ . (D.95)

We can construct a Nε2-net over the interval
[
0, 1

1−γ
]
, where the size is bounded by |Nε2 | ≤ 3

ε2(1−γ)

(Vershynin, 2018). Following the same arguments in the proof of Lemma 38, we can demonstrate

that for each u ∈ Nε2 , there exists a unique fixed point Q̂?,σs,u of the operator T̂ σs,u(·), which

satisfies 0 ≤ Q̂?,σs,u ≤ 1
1−γ · 1. Consequently, the corresponding robust value function also satisfies∥∥∥V̂ ?,σ

s,u

∥∥∥
∞
≤ 1

1−γ .

By the definitions in (E.164) and (E.165), we observe that for all u ∈ Nε2 , M̂s,u
rob is statistically

independent from P̂ 0
s,a. This independence indicates that [V̂ ?,σ

s,u ]α and P̂ 0
s,a are independent for a

fixed α. With this in mind, invoking the fact in (D.76) and (D.77) and taking the union bound

over all (s, a, α) ∈ S ×A×Nε1 , u ∈ Nε2 yields that, with probability at least 1− δ, it holds for all

(s, a, u) ∈ S ×A×Nε2 that

max
α∈[0,1/(1−γ)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

) [
V̂ ?,σ
s,u

]
α

∣∣∣ ≤ ε2 + 2

√
log(

18SAN |Nε2 |
δ )

N

√
VarP 0

s,a
(V̂ ?,σ
s,u ) +

2 log(
18SAN |Nε2 |

δ )

3N(1− γ)

≤ ε2 + 3

√
log(

18SAN |Nε2 |
δ )

(1− γ)2N
, (D.96)

where the last inequality holds by the fact VarP 0
s,a

(V̂ ?,σ
s,u ) ≤ ‖V̂ ?,σ

s,u ‖∞ ≤ 1
1−γ and letting N ≥

log
(

18SAN |Nε2 |
δ

)
.
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Step 4: uniform concentration. Recalling that u? ∈
[
0, 1

1−γ
]

(see (D.95)), we can always find

some u ∈ Nε2 such that |u−u?| ≤ ε2. Consequently, plugging in the operator T̂ σs,u(·) in (D.90) yields

∀Q ∈ RSA :
∥∥∥T̂ σs,u(Q)− T̂ σs,u?(Q)

∥∥∥
∞

= |u− u?| ≤ ε2

With this in mind, we observe that the fixed points of T̂ σs,u(·) and T̂ σs,u?(·) obey

∥∥∥Q̂?,σs,u − Q̂
?,σ
s,u?

∥∥∥
∞

=
∥∥∥T̂ σs,u(Q̂?,σs,u)− T̂ σs,u?(Q̂?,σs,u?)

∥∥∥
∞

≤
∥∥∥T̂ σs,u(Q̂?,σs,u)− T̂ σs,u(Q̂?,σs,u?)

∥∥∥
∞

+
∥∥∥T̂ σs,u(Q̂?,σs,u?)− T̂ σs,u?(Q̂?,σs,u?)

∥∥∥
∞

≤ γ
∥∥∥Q̂?,σs,u − Q̂

?,σ
s,u?

∥∥∥
∞

+ ε2,

where the last inequality holds by the fact that T̂ σs,u(·) is a γ-contraction. It directly indicates that

∥∥∥Q̂?,σs,u − Q̂
?,σ
s,u?

∥∥∥
∞
≤ ε2

(1− γ)
and

∥∥∥V̂ ?,σ
s,u − V̂

?,σ
s,u?

∥∥∥
∞
≤
∥∥∥Q̂?,σs,u − Q̂

?,σ
s,u?

∥∥∥
∞
≤ ε2

(1− γ)
. (D.97)

Armed with the above facts, to control the first term in (D.87), invoking the identity V̂ ?,σ =

V̂ ?,σ
s,u? established in Step 2 gives that: for all (s, a) ∈ S ×A,

max
α∈[mins V̂ π̂,σ(s),maxs V̂ π̂,σ(s)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V̂ ?,σ]α

∣∣∣

≤ max
α∈[0,1/(1−γ)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V̂ ?,σ]α

∣∣∣ = max
α∈[0,1/(1−γ)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V̂ ?,σ
s,u? ]α

∣∣∣

(i)

≤ max
α∈[0,1/(1−γ)]

{∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V̂ ?,σ
s,u ]α

∣∣∣+
∣∣∣
(
P 0
s,a − P̂ 0

s,a

)(
[V̂ ?,σ
s,u ]α − [V̂ ?,σ

s,u? ]α

)∣∣∣
}

(ii)

≤ max
α∈[0,1/(1−γ)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V̂ ?,σ
s,u ]α

∣∣∣+
2ε2

(1− γ)

(iii)

≤ 2ε2

(1− γ)
+ ε2 + 2

√
log(

18SAN |Nε2 |
δ )

N

√
VarP 0

s,a
(V̂ ?,σ
s,u ) +

2 log(
18SAN |Nε2 |

δ )

3N(1− γ)

≤ 3ε2

(1− γ)
+ 2

√
log(

18SAN |Nε2 |
δ )

N

√
VarP 0

s,a
(V̂ ?,σ) +

2 log(
18SAN |Nε2 |

δ )

3N(1− γ)

+ 2

√
log(

18SAN |Nε2 |
δ )

N

√∣∣∣VarP 0
s,a

(V̂ ?,σ)−VarP 0
s,a

(V̂ ?,σ
s,u )

∣∣∣

(iv)

≤ 3ε2

(1− γ)
+ 2

√
log(

18SAN |Nε2 |
δ )

N

√
VarP 0

s,a
(V̂ ?,σ) +

2 log(
18SAN |Nε2 |

δ )

3N(1− γ)
+ 2

√
2ε2 log(

18SAN |Nε2 |
δ )

N(1− γ)2

≤ 2

√
log(54SAN2

(1−γ)δ )

N

√
VarP 0

s,a
(V̂ ?,σ) +

8 log(54SAN2

(1−γ)δ )

N(1− γ)
(D.98)
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≤ 10

√√√√ log(54SAN2

(1−γ)δ )

(1− γ)2N
, (D.99)

where (i) holds by the triangle inequality, (ii) arises from (the last inequality holds by (E.181))

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)(
[V̂ ?,σ
s,u ]α − [V̂ ?,σ

s,u? ]α

)∣∣∣ ≤
∥∥∥P 0

s,a − P̂ 0
s,a

∥∥∥
1

∥∥∥[V̂ ?,σ
s,u ]α − [V̂ ?,σ

s,u? ]α

∥∥∥
∞

≤ 2
∥∥∥V̂ ?,σ

s,u − V̂
?,σ
s,u?

∥∥∥
∞
≤ 2ε2

(1− γ)
, (D.100)

(iii) follows from (D.96), (iv) can be verified by applying Lemma 37 with (E.181). Here, the

penultimate inequality holds by letting ε2 =
log(

18SAN|Nε2 |
δ

)

N , which leads to |Nε2 | ≤ 3
ε2(1−γ) ≤ 3N

1−γ , and

the last inequality holds by the fact VarP 0
s,a

(V̂ ?,σ) ≤ ‖V̂ ?,σ‖∞ ≤ 1
1−γ and letting N ≥ log

(
54SAN2

(1−γ)δ

)
.

Step 5: finishing up. Inserting (D.98) and (D.99) back into (D.87) and combining with (D.99)

give that with probability at least 1− δ,
∣∣∣P̂ π̂,V̂s,a V̂

π̂,σ − P π̂,V̂s,a V̂
π̂,σ
∣∣∣ ≤ max

α∈[mins V̂ π̂,σ(s),maxs V̂ π̂,σ(s)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V̂ ?,σ]α

∣∣∣+
2γεopt

1− γ

≤ max
α∈[0,1/(1−γ)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V̂ ?,σ]α

∣∣∣+
2γεopt

1− γ

≤ 2

√
log(54SAN2

(1−γ)δ )

N

√
VarP 0

s,a
(V̂ ?,σ) +

8 log(54SAN2

(1−γ)δ )

N(1− γ)
+

2γεopt

1− γ

≤ 10

√√√√ log(54SAN2

(1−γ)δ )

(1− γ)2N
+

2γεopt

1− γ (D.101)

holds for all (s, a) ∈ S ×A.

Finally, we complete the proof by compiling everything into the matrix form as follows:

∣∣∣∣P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ

∣∣∣∣ ≤ 2

√
log(54SAN2

(1−γ)δ )

N

√
VarP 0

s,a
(V̂ ?,σ)1 +

8 log(54SAN2

(1−γ)δ )

N(1− γ)
1 +

2γεopt

1− γ 1

≤ 10

√√√√ log(54SAN2

(1−γ)δ )

(1− γ)2N
1 +

2γεopt

1− γ 1. (D.102)
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D.2.3.6 Proof of Lemma 48

The proof can be achieved by directly applying the same routine as Appendix D.2.3.4. Towards

this, similar to (D.80), we arrive at

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ) ≤

√
1

1− γ

√√√√
∞∑

t=0

γt
(
P π̂,V̂

)t
Var

P π̂,V̂
(V̂ π̂,σ). (D.103)

To control Var
P π̂,V̂

(V̂ π̂,σ), we denote the minimum value of V̂ π̂,σ as Vmin = mins∈S V̂
π̂,σ(s)

and V ′ := V̂ π̂,σ − Vmin1. By the same argument as (D.82), we arrive at

Var
P π̂,V̂

(V̂ π̂,σ) ≤ P π̂,V̂
(
V ′ ◦ V ′

)
− 1

γ
V ′ ◦ V ′ + 2

γ2
‖V ′‖∞1 +

2

γ
‖V ′‖∞

∣∣∣∣
(
P̂
π̂,V̂ − P π̂,V̂

)
V̂ π̂,σ

∣∣∣∣

≤ P π̂,V̂
(
V ′ ◦ V ′

)
− 1

γ
V ′ ◦ V ′ + 2

γ2
‖V ′‖∞1 +

2

γ
‖V ′‖∞

(
10

√√√√ log(54SAN2

(1−γ)δ )

(1− γ)2N
+

2γεopt

1− γ

)
1,

(D.104)

where the last inequality makes use of Lemma 47. Plugging (D.104) back into (D.103) leads to

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ)

(i)

≤
√

1

1− γ

√√√√
∣∣∣∣
∞∑

t=0

γt
(
P π̂,V̂

)t (
P π̂,V̂ (V ′ ◦ V ′)− 1

γ
V ′ ◦ V ′

)∣∣∣∣

+

√√√√√ 1

(1− γ)2γ2

(
2 + 20

√√√√ log(54SAN2

(1−γ)δ )

(1− γ)2N
+

2γεopt

1− γ

)
‖V ′‖∞1

(ii)

≤
√
‖V ′‖2∞
γ(1− γ)

1 +

√√√√√√

(
2 + 20

√
log( 54SAN2

(1−γ)δ
)

(1−γ)2N
+

2γεopt

1−γ

)
‖V ′‖∞

(1− γ)2γ2
1

(iii)

≤
√
‖V ′‖2∞
γ(1− γ)

1 +

√
24‖V ′‖∞

(1− γ)2γ2
1 ≤ 6

√
‖V ′‖∞

(1− γ)2γ2
1, (D.105)

where (i) arises from following the routine of (D.84), (ii) holds by repeating the argument of

(D.85), (iii) follows by taking N ≥ log( 54SAN2

(1−γ)δ
)

(1−γ)2 and εopt ≤ 1−γ
γ , and the last inequality holds by

‖V ′‖∞ ≤ ‖V ?,σ‖∞ ≤ 1
1−γ .

Finally, applying Lemma 42 with P = P̂ 0 and π = π̂ yields

‖V ′‖∞ ≤ max
s∈S

V̂ π̂,σ(s)−min
s∈S

V̂ π̂,σ(s) ≤ 1

γmax{1− γ, σ} ,
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which can be inserted into (D.105) and gives

(
I − γP π̂,V̂

)−1√
Var

P π̂,V̂
(V̂ π̂,σ) ≤ 6

√
1

γ3(1− γ)2 max{1− γ, σ}1 ≤ 6

√
1

(1− γ)3γ2
1.

D.3 Proof of the lower bound with TV distance: Theorem 11

To prove Theorem 11, we shall first construct some hard instances and then characterize the sample

complexity requirements over these instances. Note that the hard instances for robust MDPs are

different from those for standard MDPs, due to the asymmetric structure induced by the robust RL

problem formulation to consider the worst-case performance. By constructing a new class of hard

instances inspired by the asymmetric structure of the RMDP, we develop a new lower bound in

Theorem 11 that is tighter than prior art (Yang et al., 2022).

D.3.1 Construction of the hard problem instances

Construction of two hard MDPs. Suppose there are two standard MDPs defined as below:

{
Mφ =

(
S,A, P φ, r, γ

)
|φ = {0, 1}

}
.

Here, γ is the discount parameter, S = {0, 1, . . . , S − 1} is the state space. Given any state

s ∈ {2, 3, · · · , S − 1}, the corresponding action space are A = {0, 1, 2, · · · , A− 1}. While for states

s = 0 or s = 1, the action space is only A′ = {0, 1}. For any φ ∈ {0, 1}, the transition kernel P φ of

the constructed MDP Mφ is defined as

P φ(s′ | s, a) =





p1(s′ = 1) + (1− p)1(s′ = 0) if (s, a) = (0, φ)

q1(s′ = 1) + (1− q)1(s′ = 0) if (s, a) = (0, 1− φ)

1(s′ = 1) if s ≥ 1

, (D.106)

where p and q are set to satisfy

0 ≤ p ≤ 1 and 0 ≤ q = p−∆ (D.107)

for some p and ∆ > 0 that shall be introduced later. The above transition kernel P φ implies that

state 1 is an absorbing state, namely, the MDP will always stay after it arrives at 1.

Then, we define the reward function as

r(s, a) =

{
1 if s = 1

0 otherwise
. (D.108)
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Additionally, we choose the following initial state distribution:

ϕ(s) =





1, if s = 0

0, otherwise
. (D.109)

Here, the constructed two instances are set with different probability transition from state 0

with reward 0 but not state 1 with reward 1 (which were used in standard MDPs (Li et al., 2022a)),

yielding a larger gap between the value functions of the two instances.

Uncertainty set of the transition kernels. Recalling the uncertainty set assumed throughout

this subchapter is defined as Uσ(P φ) with TV distance:

Uσ(P ) := UσTV(P ) = ⊗ UσTV(Ps,a), UσTV(Ps,a) :=
{
P ′s,a ∈ ∆(S) :

1

2

∥∥P ′s,a − Ps,a
∥∥

1
≤ σ

}
,

(D.110)

where P φs,a := P φ(· | s, a) is defined similar to (2.24). In addition, without loss of generality, we recall

the radius σ ∈ (0, 1− c0] with 0 < c0 < 1. With the uncertainty level in hand, taking c1 := c0
2 , p

and ∆ which determines the instances obey

p = (1 + c1) max{1− γ, σ} and ∆ ≤ c1 max{1− γ, σ}, (D.111)

which ensure 0 ≤ p ≤ 1 as follows:

(1 + c1)σ ≤ 1− c0 + c1σ ≤ 1− c0

2
< 1, (1 + c1) (1− γ) ≤ 3

2
(1− γ) ≤ 3

4
< 1. (D.112)

Consequently, applying (E.190) directly leads to

p ≥ q ≥ max{1− γ, σ}. (D.113)

To continue, for any (s, a, s′) ∈ S ×A× S, we denote the infimum probability of moving to

the next state s′ associated with any perturbed transition kernel Ps,a ∈ Uσ(P φs,a) as

P φ(s′ | s, a) := inf
Ps,a∈Uσ(Pφs,a)

P (s′ | s, a) = max{P (s′ | s, a)− σ, 0}, (D.114)

where the last equation can be easily verified by the definition of Uσ(P φ) in (D.110). As shall be

seen, the transition from state 0 to state 1 plays an important role in the analysis, for convenience,

we denote

p := P φ(1 | 0, φ) = p− σ, q := P φ(1 | 0, 1− φ) = q − σ, (D.115)
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which follows from the fact that p ≥ q ≥ σ in (E.192).

Robust value functions and robust optimal policies. To proceed, we are ready to derive

the corresponding robust value functions, identify the optimal policies, and characterize the optimal

values. For any MDP Mφ with the above uncertainty set, we denote π?φ as the optimal policy, and

the robust value function of any policy π (resp. the optimal policy π?φ) as V π,σ
φ (resp. V ?,σ

φ ). Then,

we introduce the following lemma which describes some important properties of the robust (optimal)

value functions and optimal policies. The proof is postponed to Appendix D.3.3.1.

Lemma 49. For any φ = {0, 1} and any policy π, the robust value function obeys

V π,σ
φ (0) =

γ
(
zπφ − σ

)

(1− γ)

(
1 +

γ(zπφ−σ)
1−γ(1−σ)

)
(1− γ (1− σ))

, (D.116)

where zπφ is defined as

zπφ := pπ(φ | 0) + qπ(1− φ | 0). (D.117)

In addition, the robust optimal value functions and the robust optimal policies satisfy

V ?,σ
φ (0) =

γ (p− σ)

(1− γ)
(

1 + γ(p−σ)
1−γ(1−σ)

)
(1− γ (1− σ))

, (D.118a)

π?φ(φ | s) = 1, for s ∈ S. (D.118b)

D.3.2 Establishing the minimax lower bound

Note that our goal is to control the quantity w.r.t. any policy estimator π̂ based on the chosen

initial distribution ϕ in (E.197) and the dataset consisting of N samples over each state-action pair

generated from the nominal transition kernel P φ, which gives

〈
ϕ, V ?,σ

φ − V π̂,σ
φ

〉
= V ?,σ

φ (0)− V π̂,σ
φ (0).

Step 1: converting the goal to estimate φ. We make the following useful claim which shall

be verified in Appendix D.3.3.2: With ε ≤ c1
32(1−γ) , letting

∆ = 32(1− γ) max{1− γ, σ}ε ≤ c1 max{1− γ, σ} (D.119)

which satisfies (D.111), it leads to that for any policy π̂,

〈
ϕ, V ?,σ

φ − V π̂,σ
φ

〉
≥ 2ε

(
1− π̂(φ | 0)

)
. (D.120)
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With this connection established between the policy π̂ and its sub-optimality gap as depicted

in (D.120), we can now proceed to build an estimate for φ. Here, we denote Pφ as the probability

distribution when the MDP is Mφ, where φ can take on values in the set {0, 1}.
Let’s assume momentarily that an estimated policy π̂ achieves

Pφ
{〈
ϕ, V ?,σ

φ − V π̂,σ
φ

〉
≤ ε
}
≥ 7

8
, (D.121)

then in view of (D.120), we necessarily have π̂(φ | 0) ≥ 1
2 with probability at least 7

8 . With this in

mind, we are motivated to construct the following estimate φ̂ for φ ∈ {0, 1}:

φ̂ = arg max
a∈{0,1}

π̂(a | 0), (D.122)

which obeys

Pφ
{
φ̂ = φ

}
≥ Pφ

{
π̂(φ | 0) > 1/2

}
≥ 7

8
. (D.123)

Subsequently, our aim is to demonstrate that (E.86) cannot occur without an adequate number of

samples, which would in turn contradict (D.120).

Step 2: probability of error in testing two hypotheses. Equipped with the aforementioned

groundwork, we can now delve into differentiating between the two hypotheses φ ∈ {0, 1}. To

achieve this, we consider the concept of minimax probability of error, defined as follows:

pe := inf
ψ

max
{
P0(ψ 6= 0), P1(ψ 6= 1)

}
. (D.124)

Here, the infimum is taken over all possible tests ψ constructed from the samples generated from

the nominal transition kernel P φ.

Moving forward, let us denote µφ (resp. µφ(s)) as the distribution of a sample tuple (si, ai, s
′
i)

under the nominal transition kernel P φ associated with Mφ and the samples are generated indepen-

dently. Applying standard results from Tsybakov (2009, Theorem 2.2) and the additivity of the KL

divergence (cf. Tsybakov (2009, Page 85)), we obtain

pe ≥
1

4
exp

(
−NSAKL

(
µ0 ‖ µ1

))

=
1

4
exp

{
−N

(
KL
(
P 0(· | 0, 0) ‖ P 1(· | 0, 0)

)
+ KL

(
P 0(· | 0, 1) ‖ P 1(· | 0, 1)

))}
, (D.125)

where the last inequality holds by observing that

KL
(
µ0 ‖ µ1

)
=

1

SA

∑

s,a,s′

KL
(
P 0(s′ | s, a) ‖ P 1(s′ | s, a)

)
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=
1

SA

∑

a∈{0,1}

KL
(
P 0(· | 0, a) ‖ P 1(· | 0, a)

)
,

Here, the last equality holds by the fact that P 0(· | s, a) and P 1(· | s, a) only differ when s = 0.

Now, our focus shifts towards bounding the terms involving the KL divergence in (E.88).

Given p ≥ q ≥ max{1− γ, σ} (cf. (E.192)), applying Lemma 60 (cf. (E.11)) gives

KL
(
P 0(· | 0, 1) ‖ P 1(· | 0, 1)

)
= KL (p ‖ q) ≤ (p− q)2

(1− p)p
(i)
=

∆2

p(1− p)
(ii)
=

1024(1− γ)2 max{1− γ, σ}2ε2

p(1− p)

≤ 1024(1− γ)2 max{1− γ, σ}ε2

1− p ≤ 4096

c1
(1− γ)2 max{1− γ, σ}ε2,

(D.126)

where (i) stems from the definition in (E.190), (ii) follows by the expression of ∆ in (E.82), and the

last inequality arises from 1− q ≥ 1− p ≥ c0
4 (see (D.112)).

Note that it can be shown that KL
(
P 0(· | 0, 0) ‖ P 1(· | 0, 0)

)
can be upper bounded in a same

manner. Substituting (E.89) back into (E.88) demonstrates that: if the sample size is selected as

N ≤ c1 log 2

8192(1− γ)2 max{1− γ, σ}ε2
, (D.127)

then one necessarily has

pe ≥
1

4
exp

{
−N 8192

c1
(1− γ)2 max{1− γ, σ}ε2

}
≥ 1

8
, (D.128)

Step 3: putting the results together. Lastly, suppose that there exists an estimator π̂ such

that

P0

{〈
ϕ, V ?,σ

0 − V π̂,σ
0

〉
> ε
}
<

1

8
and P1

{〈
ϕ, V ?,σ

1 − V π̂,σ
1

〉
> ε
}
<

1

8
.

According to Step 1, the estimator φ̂ defined in (E.85) must satisfy

P0

(
φ̂ 6= 0

)
<

1

8
and P1

(
φ̂ 6= 1

)
<

1

8
.

However, this cannot occur under the sample size condition (E.90) to avoid contradiction with

(E.91). Thus, we have completed the proof.
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D.3.3 Proof of the auxiliary facts

D.3.3.1 Proof of Lemma 49

Deriving the robust value function over different states. For any Mφ with φ ∈ {0, 1}, we

first characterize the robust value function of any policy π over different states. Before proceeding,

we denote the minimum of the robust value function over states as below:

V π,σ
φ,min := min

s∈S
V π,σ
φ (s). (D.129)

Clearly, there exists at least one state sπφ,min that satisfies V π,σ
φ (sπφ,min) = V π,σ

φ,min.

With this in mind, it is easily observed that for any policy π, the robust value function at

state s = 1 obeys

V π,σ
φ (1) = Ea∼π(· | 1)

[
r(1, a) + γ inf

P∈Uσ(Pφ1,a)
PV π,σ

φ

]

(i)
= 1 + γEa∼π(· | 1)

[
P φ(1 | 1, a)V π,σ

φ (1)
]

+ γσV π,σ
φ,min

(ii)
= 1 + γ(1− σ)V π,σ

φ (1) + γσV π,σ
φ,min,

(D.130)

where (i) holds by r(1, a) = 1 for all a ∈ A′ and (E.201), and (ii) follows from P φ(1 | 1, a) = 1 for all

a ∈ A′.
Similarly, for any s ∈ {2, 3, · · · , S − 1}, we have

V π,σ
φ (s) = 0 + γEa∼π(· | s)

[
P φ(1 | s, a)V π,σ

φ (1)
]

+ γσV π,σ
φ,min

= γ (1− σ)V π,σ
φ (1) + γσV π,σ

φ,min, (D.131)

since r(s, a) = 0 for all s ∈ {2, 3, · · · , S − 1} and the definition in (E.201).

Finally, we move onto compute V π,σ
φ (0), the robust value function at state 0 associated with

any policy π. First, it obeys

V π,σ
φ (0) = Ea∼π(· | 0)

[
r(0, a) + γ inf

P∈Uσ(Pφ0,a)
PV π,σ

φ

]

= 0 + γπ(φ | 0) inf
P∈Uσ(Pφ0,φ)

PV π,σ
φ + γπ(1− φ | 0) inf

P∈Uσ(Pφ0,1−φ)
PV π,σ

φ . (D.132)

Recall the transition kernel defined in (E.189) and the fact about the uncertainty set over state 0 in

(E.202), it is easily verified that the following probability vector P1 ∈ ∆(S) obeys P1 ∈ Uσ(P φ0,φ),

which is defined as

P1(0) = 1− p+ σ 1
(
0 = sπφ,min

)
, P1(1) = p = p− σ,
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P1(s) = σ 1
(
s = sπφ,min

)
, ∀s ∈ {2, 3, · · · , S − 1}, (D.133)

where p = p− σ due to (E.202). Similarly, the following probability vector P2 ∈ ∆(S) also falls into

the uncertainty set Uσ(P φ0,1−φ):

P2(0) = 1− q + σ 1
(
0 = sπφ,min

)
, P2(1) = q = q − σ,

P2(s) = σ 1
(
0 = sπφ,min

)
∀s ∈ {2, 3, · · · , S − 1}. (D.134)

It is noticed that P0 and P1 defined above are the worst-case perturbations, since the probability

mass at state 1 will be moved to the state with the least value. Plugging the above facts about

P1 ∈ Uσ(P φ0,φ) and P2 ∈ Uσ(P φ0,1−φ) into (D.132), we arrive at

V π,σ
φ (0) ≤ γπ(φ | 0)P1V

π,σ
φ + γπ(1− φ | 0)P2V

π,σ
φ

= γπ(φ | 0)
[

(p− σ)V π,σ
φ (1) + (1− p)V π,σ

φ (0) + σV π,σ
φ,min

]

+ γπ(1− φ | 0)
[

(q − σ)V π,σ
φ (1) + (1− q)V π,σ

φ (0) + σV π,σ
φ,min

]

(i)
= γ

(
zπφ − σ

)
V π,σ
φ (1) + γσV π,σ

φ,min + γ(1− zπφ)V π,σ
φ (0), (D.135)

where the last equality holds by the definition of zπφ in (E.205). To continue, recursively applying

(D.135) yields

V π,σ
φ (0) ≤ γ

(
zπφ − σ

)
V π,σ
φ (1) + γσV π,σ

φ,min + γ(1− zπφ)
[
γ
(
zπφ − σ

)
V π,σ
φ (1) + γσV π,σ

φ,min + γ(1− zπφ)V π,σ
φ (0)

]

(i)

≤ γ
(
zπφ − σ

)
V π,σ
φ (1) + γσV π,σ

φ,min + γ(1− zπφ)
[
γzπφV

π,σ
φ (1) + γ(1− zπφ)V π,σ

φ (0)
]

≤ ...

≤ γ
(
zπφ − σ

)
V π,σ
φ (1) + γσV π,σ

φ,min + γzπφ

∞∑

t=1

γt(1− zπφ)tV π,σ
φ (1) + lim

t→∞
γt(1− zπφ)tV π,σ

φ (0)

(ii)

≤ γ
(
zπφ − σ

)
V π,σ
φ (1) + γσV π,σ

φ,min + γ(1− zπφ)
γzπφ

1− γ(1− zπφ)
V π,σ
φ (1) + 0

< γ
(
zπφ − σ

)
V π,σ
φ (1) + γσV π,σ

φ,min + γ(1− zπφ)V π,σ
φ (1)

= γ (1− σ)V π,σ
φ (1) + γσV π,σ

φ,min, (D.136)

where (i) uses V π,σ
φ,min ≤ V π,σ

φ (1), (ii) follows from γ(1− zπφ) < 1, and the penultimate line follows

from the trivial fact that
γzπφ

1−γ(1−zπφ) < 1.

Combining (D.130), (D.131), and (D.136), we have that for any policy π,

V π,σ
φ (0) = V π,σ

φ,min, (D.137)
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which directly leads to

V π,σ
φ (1) = 1 + γ (1− σ)V π,σ

φ (1) + γσV π,σ
φ,min =

1 + γσV π,σ
φ (0)

1− γ (1− σ)
. (D.138)

Let’s now return to the characterization of V π,σ
φ (0). In view of (D.137), the equality in (D.135)

holds, and we have

V π,σ
φ (0) = γ

(
zπφ − σ

)
V π,σ
φ (1) + γ

(
1− zπφ + σ

)
V π,σ
φ (0)

(i)
= γ

(
zπφ − σ

) 1 + γσV π,σ
φ (0)

1− γ (1− σ)
+ γ

(
1− zπφ + σ

)
V π,σ
φ (0)

=
γ
(
zπφ − σ

)

1− γ (1− σ)
+ γ

(
1 +

(
zπφ − σ

) γσ − (1− γ (1− σ))

1− γ (1− σ)

)
V π,σ
φ (0)

=
γ
(
zπφ − σ

)

1− γ (1− σ)
+ γ

(
1−

(1− γ)
(
zπφ − σ

)

1− γ (1− σ)

)
V π,σ
φ (0),

where (i) arises from (D.138). Solving this relation gives

V π,σ
φ (0) =

γ(zπφ−σ)
1−γ(1−σ)

(1− γ)

(
1 +

γ(zπφ−σ)
1−γ(1−σ)

) . (D.139)

The optimal robust policy and optimal robust value function. We move on to characterize

the robust optimal policy and its corresponding robust value function. To begin with, denoting

z :=
γ
(
zπφ − σ

)

1− γ (1− σ)
, (D.140)

we rewrite (D.139) as

V π,σ
φ (0) =

z

(1− γ)(1 + z)
=: f(z).

Plugging in the fact that zπφ ≥ q ≥ σ > 0 in (E.192), it follows that z > 0. So for any z > 0, the

derivative of f(z) w.r.t. z obeys

(1− γ)(1 + z)− (1− γ)z

(1− γ)2(1 + z)2
=

1

(1− γ)(1 + z)2
> 0. (D.141)
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Observing that f(z) is increasing in z, z is increasing in zπφ , and zπφ is also increasing in π(φ | 0) (see

the fact p ≥ q in (E.192)), the optimal policy in state 0 thus obeys

π?φ(φ | 0) = 1. (D.142)

Considering that the action does not influence the state transition for all states s > 0, without loss

of generality, we choose the robust optimal policy to obey

∀s > 0 : π?φ(φ | s) = 1. (D.143)

Taking π = π?φ, we complete the proof by showing that the corresponding robust optimal

robust value function at state 0 as follows:

V ?,σ
φ (0) =

γ
(
zπ
?

φ −σ
)

1−γ(1−σ)

(1− γ)

(
1 +

γ(zπ?φ −σ)
1−γ(1−σ)

) =

γ(p−σ)
1−γ(1−σ)

(1− γ)
(

1 + γ(p−σ)
1−γ(1−σ)

) . (D.144)

D.3.3.2 Proof of the claim (D.120)

Plugging in the definition of ϕ, we arrive at that for any policy π,

〈
ϕ, V ?,σ

φ − V π,σ
φ

〉
= V ?,σ

φ (0)− V π,σ
φ (0) =

γ(p−zπφ)
1−γ(1−σ)

(1− γ)
(

1 + γ(p−σ)
1−γ(1−σ)

)(
1 +

γ(zπφ−σ)
1−γ(1−σ)

) , (D.145)

which follows from applying (E.204) and basic calculus. Then, we proceed to control the above

term in two cases separately in terms of the uncertainty level σ.

• When σ ∈ (0, 1− γ]. Then regarding the important terms in (D.145), we observe that

1− γ < 1− γ (1− σ) ≤ 1− γ (1− (1− γ)) = (1− γ)(1 + γ) ≤ 2(1− γ), (D.146)

which directly leads to

γ
(
zπφ − σ

)

1− γ (1− σ)

(i)

≤ γ (p− σ)

1− γ (1− σ)
≤ γc1(1− γ)

1− γ (1− σ)

(ii)
< c1γ, (D.147)

where (i) holds by zπφ < p, and (ii) is due to (D.146). Inserting (D.146) and (D.147) back into

(D.145), we arrive at

〈
ϕ, V ?,σ

φ − V π,σ
φ

〉
≥

γ(p−zπφ)
2(1−γ)

(1− γ)(1 + c1γ)2
≥
γ
(
p− zπφ

)

8(1− γ)2
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=
γ (p− q)

(
1− π(φ | 0)

)

8(1− γ)2
=
γ∆
(
1− π(φ | 0)

)

8(1− γ)2
≥ 2ε

(
1− π(φ | 0)

)
, (D.148)

where the last inequality holds by setting (γ ≥ 1/2)

∆ = 32(1− γ)2ε. (D.149)

Finally, it is easily verified that

ε ≤ c1

32(1− γ)
=⇒ ∆ ≤ c1(1− γ).

• When σ ∈ (1− γ, 1− c1]. Regarding (D.145), we observe that

γσ < 1− γ (1− σ) = 1− γ + γσ ≤ (1 + γ)σ ≤ 2σ, (D.150)

which directly leads to

γ
(
zπφ − σ

)

1− γ (1− σ)
≤ γ (p− σ)

1− γ (1− σ)
≤ γc1σ

1− γ (1− σ)

(i)
< c1, (D.151)

where (i) holds by (D.150). Inserting (D.150) and (D.151) back into (D.145), we arrive at

〈
ϕ, V ?,σ

φ − V π,σ
φ

〉
≥

γ(p−zπφ)
2σ

(1− γ)(1 + c1)2
≥
γ
(
p− zπφ

)

8(1− γ)σ
=
γ (p− q)

(
1− π(φ | 0)

)

8(1− γ)σ

=
γ∆
(
1− π(φ | 0)

)

8(1− γ)σ
≥ 2ε

(
1− π(φ | 0)

)
, (D.152)

where the last inequality holds by letting (γ ≥ 1/2)

∆ = 32(1− γ)σε. (D.153)

Finally, it is easily verified that

ε ≤ c1

32(1− γ)
=⇒ ∆ ≤ c1σ. (D.154)

D.4 Proof of the upper bound with χ2 divergence: Theorem 12

The proof of Theorem 12 mainly follows the structure of the proof of Theorem 10 in Appendix D.2.

Throughout this subchapter, for any nominal transition kernel P , the uncertainty set is taken as
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(see (6.2))

Uσ(P ) = Uσχ2(P ) := ⊗ Uσχ2(Ps,a), Uσχ2(Ps,a) :=

{
P ′s,a ∈ ∆(S) :

∑

s′∈S

(P ′(s′ | s, a)− P (s′ | s, a))2

P (s′ | s, a)
≤ σ

}
.

(D.155)

D.4.1 Proof of Theorem 12

In order to control the performance gap
∥∥V ?,σ − V π̂,σ

∥∥
∞, recall the error decomposition in (D.32):

V ?,σ − V π̂,σ ≤
(
V π?,σ − V̂ π?,σ

)
+

2γεopt

1− γ 1 +
(
V̂ π̂,σ − V π̂,σ

)
, (D.156)

where εopt (cf. (D.31)) shall be specified later (which justifies Remark 5). To further control (D.156),

we bound the remaining two terms separately.

Step 1: controlling
∥∥V̂ π?,σ − V π?,σ

∥∥
∞. Towards this, recall the bound in (D.37) which holds

for any uncertainty set:

∥∥V̂ π?,σ − V π?,σ
∥∥
∞ ≤ γmax

{∥∥∥
(
I − γP̂ π

?,V̂
)−1(

P̂
π?,V

V π?,σ − P π?,V V π?,σ
)∥∥∥
∞
,

∥∥∥
(
I − γP̂ π

?,V
)−1(

P̂
π?,V

V π?,σ − P π?,V V π?,σ
)∥∥∥
∞

}
. (D.157)

To control the main term P̂
π?,V

V π?,σ−P π?,V V π?,σ in (D.157), we first introduce an important

lemma whose proof is postponed to Appendix D.4.2.1.

Lemma 50. Consider any σ > 0 and the uncertainty set Uσ(·) := Uσχ2(·). For any δ ∈ (0, 1) and

any fixed policy π, one has with probability at least 1− δ,

∥∥∥P̂ π,V V π,σ − P π,V V π,σ
∥∥∥
∞
≤ 4

√
2(1 + σ) log(24SAN

δ )

(1− γ)2N
.

Applying Lemma 50 by taking π = π? gives

∥∥∥P̂ π
?,V
V π?,σ − P π?,V V π?,σ

∥∥∥
∞
≤ 4

√
2(1 + σ) log(24SAN

δ )

(1− γ)2N
, (D.158)

which directly leads to

∥∥∥
(
I − γP̂ π

?,V̂
)−1(

P̂
π?,V

V π?,σ − P π?,V V π?,σ
)∥∥∥
∞

≤
∥∥∥P̂ π

?,V
V π?,σ − P π?,V V π?,σ

∥∥∥
∞
·
∥∥∥
(
I − γP̂ π

?,V̂
)−1

1
∥∥∥
∞
≤ 4

√
2(1 + σ) log(24SAN

δ )

(1− γ)4N
. (D.159)
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Similarly, we have

∥∥∥
(
I − γP̂ π

?,V
)−1(

P̂
π?,V

V π?,σ − P π?,V V π?,σ
)∥∥∥
∞
≤ 4

√
2(1 + σ) log(24SAN

δ )

(1− γ)4N
. (D.160)

Inserting (D.159) and (D.160) back to (D.157) yields

∥∥V̂ π?,σ − V π?,σ
∥∥
∞ ≤ 4

√
2(1 + σ) log(24SAN

δ )

(1− γ)4N
. (D.161)

Step 2: controlling
∥∥∥V̂ π̂,σ − V π̂,σ

∥∥∥
∞

. Recall the bound in (D.38) which holds for any uncertainty

set:

∥∥V̂ π̂,σ − V π̂,σ
∥∥
∞ ≤ γmax

{∥∥∥
(
I − γP π̂,V

)−1(
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)∥∥∥
∞
,

∥∥∥
(
I − γP π̂,V̂

)−1(
P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
)∥∥∥
∞

}
. (D.162)

We introduce the following lemma which controls P̂
π̂,V̂

V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ in (D.162); the proof is

deferred to Appendix D.4.2.2.

Lemma 51. Consider the uncertainty set Uσ(·) := Uσχ2(·) and any δ ∈ (0, 1). With probability at

least 1− δ, one has

∥∥∥P̂ π̂,V̂ V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
∥∥∥
∞
≤ 12

√
2(1 + σ) log(36SAN2

δ )

(1− γ)2N
+

2γεopt

1− γ + 4

√
σεopt

(1− γ)2
. (D.163)

Repeating the arguments from (D.158) to (D.161) yields

∥∥V̂ π̂,σ − V π̂,σ
∥∥
∞ ≤ 12

√
2(1 + σ) log(36SAN2

δ )

(1− γ)4N
+

2γεopt

(1− γ)2
+ 4

√
σεopt

(1− γ)4
. (D.164)

Finally, inserting (D.161) and (D.164) back to (D.156) complete the proof

∥∥V ?,σ − V π̂,σ
∥∥
∞ ≤

∥∥V π?,σ − V̂ π?,σ
∥∥
∞ +

2γεopt

1− γ +
∥∥V̂ π̂,σ − V π̂,σ

∥∥
∞

≤ 4

√
2(1 + σ) log(24SAN

δ )

(1− γ)4N
+

2γεopt

1− γ + 12

√
2(1 + σ) log(36SAN2

δ )

(1− γ)4N
+

2γεopt

(1− γ)2
+ 4

√
σεopt

(1− γ)4

≤ 24

√
2(1 + σ) log(36SAN2

δ )

(1− γ)4N
, (D.165)
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where the last line holds by taking εopt ≤ min

{√
32(1+σ) log( 36SAN2

δ
)

N ,
4 log( 36SAN2

δ
)

N

}
.

D.4.2 Proof of the auxiliary lemmas

D.4.2.1 Proof of Lemma 50

Step 1: controlling the point-wise concentration. Consider any fixed policy π and the

corresponding robust value vector V := V π,σ (independent from P̂ 0). Invoking Lemma 40 leads to

that for any (s, a) ∈ S ×A,

∣∣∣P̂ π,Vs,a V
π,σ − P π,Vs,a V

π,σ
∣∣∣ =

∣∣∣∣ max
α∈[mins V (s),maxs V (s)]

{
P 0
s,a[V ]α −

√
σVarP 0

s,a
([V ]α)

}

− max
α∈[mins V (s),maxs V (s)]

{
P̂ 0
s,a[V ]α −

√
σVar

P̂ 0
s,a

([V ]α)

} ∣∣∣∣

≤ max
α∈[mins V (s),maxs V (s)]

∣∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V ]α +

√
σVar

P̂ 0
s,a

([V ]α)−
√
σVarP 0

s,a
([V ]α)

∣∣∣∣

≤ max
α∈[mins V (s),maxs V (s)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V ]α

∣∣∣+

+ max
α∈[mins V (s),maxs V (s)]

√
σ

∣∣∣∣
√

Var
P̂ 0
s,a

([V ]α)−
√

VarP 0
s,a

([V ]α)

∣∣∣∣ ,

(D.166)

where the first inequality follows by that the maximum operator is 1-Lipschitz, and the second

inequality follows from the triangle inequality. Observing that the first term in (D.166) is exactly

the same as (D.72), recalling the fact in (D.77) directly leads to: with probability at least 1− δ,

max
α∈[mins V (s),maxs V (s)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V ]α

∣∣∣ ≤ 2

√
log(2SAN

δ )

(1− γ)2N
(D.167)

holds for all (s, a) ∈ S ×A. Then the remainder of the proof focuses on controlling the second term

in (D.166).

Step 2: controlling the second term in (D.166). For any given (s, a) ∈ S × A and fixed

α ∈ [0, 1
1−γ ], applying the concentration inequality (Panaganti and Kalathil, 2022, Lemma 6) with

‖[V ]α‖∞ ≤ 1
1−γ , we arrive at

∣∣∣∣
√

Var
P̂ 0
s,a

([V ]α)−
√

VarP 0
s,a

([V ]α)

∣∣∣∣ ≤
√

2 log(2
δ )

(1− γ)2N
(D.168)
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holds with probability at least 1− δ. To obtain a uniform bound, we first observe the follow lemma

proven in Appendix D.4.2.3.

Lemma 52. For any V obeying ‖V ‖∞ ≤ 1
1−γ , the function Js,a(α, V ) :=

∣∣∣
√

Var
P̂ 0
s,a

([V ]α) −
√

VarP 0
s,a

([V ]α)
∣∣∣ w.r.t. α obeys

|Js,a(α1, V )− Js,a(α2, V )| ≤ 4

√
|α1 − α2|

1− γ .

In addition, we can construct an ε3-net Nε3 over [0, 1
1−γ ] whose size is |Nε3 | ≤ 3

ε3(1−γ) (Ver-

shynin, 2018). Armed with the above, we can derive the uniform bound over α ∈ [mins V (s),maxs V (s)] ⊂
[0, 1/(1− γ)]: with probability at least 1− δ

SA , it holds that for any (s, a) ∈ S ×A,

max
α∈[mins V (s),maxs V (s)]

∣∣∣∣
√

Var
P̂ 0
s,a

([V ]α)−
√

VarP 0
s,a

([V ]α)

∣∣∣∣

≤ max
α∈[0,1/(1−γ)]

∣∣∣∣
√

Var
P̂ 0
s,a

([V ]α)−
√

VarP 0
s,a

([V ]α)

∣∣∣∣
(i)

≤ 4

√
ε3

1− γ + sup
α∈Nε3

∣∣∣∣
√

Var
P̂ 0
s,a

([V ]α)−
√

VarP 0
s,a

([V ]α)

∣∣∣∣

(ii)

≤ 4

√
ε3

1− γ +

√
2 log(

2SA|Nε3 |
δ )

(1− γ)2N

(iii)

≤ 2

√
2 log(

2SA|Nε3 |
δ )

(1− γ)2N
≤ 2

√
2 log(24SAN

δ )

(1− γ)2N
, (D.169)

where (i) holds by the property of Nε3 , (ii) follows from (D.168), (iii) arises from taking ε3 =
log(

2SA|Nε3 |
δ

)

8N(1−γ) , and the last inequality is verified by |Nε3 | ≤ 3
ε3(1−γ) ≤ 24N .

Inserting (D.167) and (D.169) back to (D.166) and taking the union bound over (s, a) ∈ S×A,

we arrive at that for all (s, a) ∈ S ×A, with probability at least 1− δ,
∣∣∣P̂ π,Vs,a V − P π,Vs,a V

∣∣∣ ≤ max
α∈[mins V (s),maxs V (s)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

)
[V ]α

∣∣∣+

+ max
α∈[mins V (s),maxs V (s)]

∣∣∣∣
√
σVar

P̂ 0
s,a

([V ]α)−
√
σVarP 0

s,a
([V ]α)

∣∣∣∣

≤
√

2 log(2SAN
δ )

(1− γ)2N
+ 2

√
2σ log(24SAN

δ )

(1− γ)2N
≤ 4

√
2(1 + σ) log(24SAN

δ )

(1− γ)2N
.

Finally, we complete the proof by recalling the matrix form as below:

∥∥∥P̂ π,V V π,σ − P π,V V π,σ
∥∥∥
∞
≤ max

(s,a)∈S×A

∣∣∣P̂ π,Vs,a V − P π,Vs,a V
∣∣∣ ≤ 4

√
2(1 + σ) log(24SAN

δ )

(1− γ)2N
.

335



D.4.2.2 Proof of Lemma 51

Step 1: decomposing the term of interest. The proof follows the routine of the proof of

Lemma 47 in Appendix D.2.3.5. To begin with, for any (s, a) ∈ S×A, following the same arguments

of (D.166) yields

∣∣∣P̂ π̂,V̂s,a V̂
π̂,σ − P π̂,V̂s,a V̂

π̂,σ
∣∣∣ ≤ max

α∈[mins V̂ π̂,σ(s),maxs V̂ π̂,σ(s)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
α

∣∣∣+

+ max
α∈[mins V̂ π̂,σ(s),maxs V̂ π̂,σ(s)]

√
σ

∣∣∣∣∣

√
Var

P̂ 0
s,a

([
V̂ π̂,σ

]
α

)
−
√

VarP 0
s,a

([
V̂ π̂,σ

]
α

)∣∣∣∣∣ . (D.170)

Invoking the fact in (D.101) (for proving Lemma 47), the first term in (D.170) obeys

max
α∈[mins V̂ π̂,σ(s),maxs V̂ π̂,σ(s)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
α

∣∣∣ ≤ max
α∈[0,1/(1−γ)]

∣∣∣
(
P 0
s,a − P̂ 0

s,a

) [
V̂ π̂,σ

]
α

∣∣∣

≤ 4

√√√√ log(3SAN3/2

(1−γ)δ )

(1− γ)2N
+

2γεopt

1− γ . (D.171)

The remainder of the proof will focus on controlling the second term of (D.170).

Step 2: controlling the second term of (D.170). Towards this, we recall the auxiliary robust

MDP M̂s,u
rob defined in Appendix D.2.3.5. Taking the uncertainty set Uσ(·) := Uσχ2(·) for both M̂s,u

rob

and M̂rob, we recall the corresponding robust Bellman operator T̂ σs,u(·) in (D.90) and the following

definition in (E.169)

u? := V̂ ?,σ(s)− γ inf
P∈Uσ(es)

PV̂ ?,σ. (D.172)

Following the arguments in Appendix D.2.3.5, it can be verified that there exists a unique fixed

point Q̂?,σs,u of the operator T̂ σs,u(·), which satisfies 0 ≤ Q̂?,σs,u ≤ 1
1−γ 1. In addition, the corresponding

robust value function coincides with that of the operator T̂ σ(·), i.e., V̂ ?,σ
s,u = V̂ ?,σ.

We recall the Nε2-net over
[
0, 1

1−γ

]
whose size obeying |Nε2 | ≤ 3

ε2(1−γ) (Vershynin, 2018).

Then for all u ∈ Nε2 and a fixed α, M̂s,u
rob is statistically independent from P̂ 0

s,a, which indicates the

independence between [V̂ ?,σ
s,u ]α and P̂ 0

s,a. With this in mind, invoking the fact in (D.169) and taking

the union bound over all (s, a) ∈ S ×A and u ∈ Nε2 yields that, with probability at least 1− δ,

max
α∈[0,1/(1−γ)]

∣∣∣∣
√

Var
P̂ 0
s,a

(
[V̂ ?,σ
s,u ]α

)
−
√

VarP 0
s,a

(
[V̂ ?,σ
s,u ]α

)∣∣∣∣ ≤ 2

√
2 log(

24SAN |Nε2 |
δ )

(1− γ)2N
(D.173)

holds for all (s, a, u) ∈ S ×A×Nε2 .
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To continue, we decompose the term of interest in (D.170) as follows:

max
α∈[mins V̂ π̂,σ(s),maxs V̂ π̂,σ(s)]

∣∣∣∣
√

Var
P̂ 0
s,a

([
V̂ π̂,σ

]
α

)
−
√

VarP 0
s,a

([
V̂ π̂,σ

]
α

)∣∣∣∣

≤ max
α∈[0,1/(1−γ)]

∣∣∣∣
√

Var
P̂ 0
s,a

([
V̂ π̂,σ

]
α

)
−
√

VarP 0
s,a

([
V̂ π̂,σ

]
α

)∣∣∣∣
(i)

≤ max
α∈[0,1/(1−γ)]

∣∣∣∣
√

Var
P̂ 0
s,a

([
V̂ ?,σ

]
α

)
−
√

VarP 0
s,a

([
V̂ ?,σ

]
α

)∣∣∣∣

+ max
α∈[0,1/(1−γ)]

[√∣∣∣Var
P̂ 0
s,a

([
V̂ π̂,σ

]
α

)
− Var

P̂ 0
s,a

([
V̂ ?,σ

]
α

)∣∣∣+

√∣∣∣VarP 0
s,a

([
V̂ π̂,σ

]
α

)
− VarP 0

s,a

([
V̂ ?,σ

]
α

)∣∣∣
]

(ii)

≤ max
α∈[0,1/(1−γ)]

∣∣∣∣
√

Var
P̂ 0
s,a

([
V̂ ?,σ

]
α

)
−
√

VarP 0
s,a

([
V̂ ?,σ

]
α

)∣∣∣∣+ max
α∈[0,1/(1−γ)]

2

√
2

(1− γ)

∥∥∥
[
V̂ π̂,σ

]
α
−
[
V̂ ?,σ

]
α

∥∥∥
∞

≤ max
α∈[0,1/(1−γ)]

∣∣∣∣∣

√
Var

P̂ 0
s,a

([
V̂ ?,σ

]
α

)
−
√

VarP 0
s,a

([
V̂ ?,σ

]
α

)∣∣∣∣∣+ 4

√
εopt

(1− γ)2
, (D.174)

where (i) holds by the triangle inequality, (ii) arises from applying Lemma 37, and the last inequality

holds by (D.31).

Armed with the above facts, invoking the identity V̂ ?,σ = V̂ ?,σ
s,u? leads to that for all (s, a) ∈

S ×A, with probability at least 1− δ,

max
α∈[0,1/(1−γ)]

∣∣∣∣
√

Var
P̂ 0
s,a

([
V̂ ?,σ

]
α

)
−
√

VarP 0
s,a

([
V̂ ?,σ

]
α

)∣∣∣∣

= max
α∈[0,1/(1−γ)]

∣∣∣∣
√

Var
P̂ 0
s,a

([
V̂ ?,σ
s,u?

]
α

)
−
√

VarP 0
s,a

([
V̂ ?,σ
s,u?

]
α

)∣∣∣∣
(i)

≤ max
α∈[0,1/(1−γ)]

∣∣∣∣
√

Var
P̂ 0
s,a

([
V̂ ?,σ
s,u

]
α

)
−
√

VarP 0
s,a

([
V̂ ?,σ
s,u

]
α

)∣∣∣∣

+ max
α∈[0,1/(1−γ)]

[√∣∣∣Var
P̂ 0
s,a

([
V̂ ?,σ
s,u?

]
α

)
− Var

P̂ 0
s,a

([
V̂ ?,σ
s,u

]
α

)∣∣∣+

√∣∣∣VarP 0
s,a

([
V̂ ?,σ
s,u?

]
α

)
− VarP 0

s,a

([
V̂ ?,σ
s,u

]
α

)∣∣∣
]

(ii)

≤ max
α∈[0,1/(1−γ)]

∣∣∣∣
√

Var
P̂ 0
s,a

([
V̂ ?,σ
s,u

]
α

)
−
√

VarP 0
s,a

([
V̂ ?,σ
s,u

]
α

)∣∣∣∣+ 4

√
ε2

(1− γ)

(iii)

≤ 2

√
2 log(

24SAN |Nε2 |
δ )

(1− γ)2N
+ 4

√
ε2

(1− γ)

≤ 6

√
2 log(

36SAN2|Nε2 |
δ )

(1− γ)2N
, (D.175)

where (i) holds by the triangle inequality, (ii) arises from applying Lemma 37 and the fact∥∥∥V̂ ?,σ
s,u − V̂

?,σ
s,u?

∥∥∥
∞
≤ ε2

(1−γ) (see (E.181)), (iii) follows from (D.173), and the last inequality holds by

letting ε2 =
2 log(

24SAN|Nε2 |
δ

)

(1−γ)N , which leads to |Nε2 | ≤ 3
ε2(1−γ) ≤ 3N

2 .
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In summary, inserting (D.175) back to (D.174) and (D.174) leads to with probability at least

1− δ,

max
α∈[mins V̂ π̂,σ(s),maxs V̂ π̂,σ(s)]

∣∣∣∣
√

Var
P̂ 0
s,a

([
V̂ π̂,σ

]
α

)
−
√

VarP 0
s,a

([
V̂ π̂,σ

]
α

)∣∣∣∣

≤ 6

√
2σ log(

36SAN2|Nε2 |
δ )

(1− γ)2N
+ 4

√
σεopt

(1− γ)2
(D.176)

holds for all (s, a) ∈ S ×A.

Step 4: finishing up. Inserting (D.176) and (D.171) back to (D.170), we complete the proof:

with probability at least 1− δ,

∥∥∥P̂ π̂,V̂ V̂ π̂,σ − P π̂,V̂ V̂ π̂,σ
∥∥∥
∞
≤ 4

√√√√ log(3SAN3/2

(1−γ)δ )

(1− γ)2N
+

2γεopt

1− γ + 6

√
2σ log(

36SAN2|Nε2 |
δ )

(1− γ)2N
+ 4

√
σεopt

(1− γ)2

≤ 12

√
2(1 + σ) log(36SAN2

δ )

(1− γ)2N
+

2γεopt

1− γ + 4

√
σεopt

(1− γ)2
. (D.177)

D.4.2.3 Proof of Lemma 52

For any 0 ≤ α1, α2 ≤ 1/(1− γ), one has

|Js,a(α1, V )− Js,a(α2, V )|

=

∣∣∣∣
∣∣∣∣
√

Var
P̂ 0
s,a

([V ]α1)−
√

VarP 0
s,a

([V ]α1)

∣∣∣∣−
∣∣∣∣
√

Var
P̂ 0
s,a

([V ]α2)−
√

VarP 0
s,a

([V ]α2)

∣∣∣∣
∣∣∣∣

(i)

≤
∣∣∣∣
√

Var
P̂ 0
s,a

([V ]α1)−
√

VarP 0
s,a

([V ]α1)−
√

Var
P̂ 0
s,a

([V ]α2) +
√

VarP 0
s,a

([V ]α2)

∣∣∣∣

≤
∣∣∣∣
√

Var
P̂ 0
s,a

([V ]α1)−
√

Var
P̂ 0
s,a

([V ]α2)

∣∣∣∣+
∣∣∣
√

VarP 0
s,a

([V ]α1)−
√

VarP 0
s,a

([V ]α2)
∣∣∣

(ii)

≤
√

Var
P̂ 0
s,a

([V ]α2)− Var
P̂ 0
s,a

([V ]α1) +
√

VarP 0
s,a

([V ]α2)− VarP 0
s,a

([V ]α1)

(iii)

≤
√∣∣∣P̂ 0

s,a [([V ]α1) ◦ ([V ]α1)− ([V ]α2) ◦ ([V ]α2)]
∣∣∣+
∣∣∣P̂ 0
s,a ([V ]α1 + [V ]α2) · P̂ 0

s,a ([V ]α1 − [V ]α2)
∣∣∣

+
√∣∣P 0

s,a [([V ]α1) ◦ ([V ]α1)− ([V ]α2) ◦ ([V ]α2)]
∣∣+
∣∣P 0
s,a ([V ]α1 + [V ]α2) · P 0

s,a ([V ]α1 − [V ]α2)
∣∣

≤ 2
√

2(α1 + α2)|α1 − α2| ≤ 4

√
|α1 − α2|

1− γ . (D.178)

where (i) holds by the fact ||x| − |y|| ≤ |x − y| for all x, y ∈ R, (ii) follows from the fact that
√
x − √y ≤ √x− y for any x ≥ y ≥ 0 and VarP ([V ]α2) ≥ VarP ([V ]α1) for any transition kernel
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P ∈ ∆(S), (iii) holds by the definition of VarP (·) defined in (D.7), and the last inequality arises

from 0 ≤ α1, α2 ≤ 1/(1− γ).

D.5 Proof of the lower bound with χ2 divergence: Theorem 13

To prove Theorem 13, we shall first construct some hard instances and then characterize the sample

complexity requirements over these instances. The structure of the hard instances are the same as

the ones used in the proof of Theorem 11.

D.5.1 Construction of the hard problem instances

First, note that we shall use the same MDPs defined in Appendix D.3.1 as follows

{
Mφ =

(
S,A, P φ, r, γ

)
|φ = {0, 1}

}
.

In particular, we shall keep the structure of the transition kernel in (E.189), reward function in

(E.193) and initial state distribution in (E.197), while p and ∆ shall be specified differently later.

Uncertainty set of the transition kernels. Recalling the uncertainty set associated with χ2

divergence in (D.155), for any uncertainty level σ, the uncertainty set throughout this subchapter is

defined as Uσ(P φ):

Uσ(P φ) := ⊗ Uσχ2(P φs,a), Uσχ2(P φs,a) :=

{
Ps,a ∈ ∆(S) :

∑

s′∈S

(
P (s′ | s, a)− P φ(s′ | s, a)

)2

P φ(s′ | s, a)
≤ σ

}
.

(D.179)

Clearly, Uσ(P φs,a) = P φs,a whenever the state transition is deterministic for χ2 divergence. Here, q and

∆ (whose choice will be specified later in more detail) which determine the instances are specified as

0 ≤ q =





1− γ if σ ∈
(

0, 1−γ
4

)

σ
1+σ if σ ∈

[
1−γ

4 ,∞
) , p = q + ∆, (D.180)

and

0 < ∆ ≤





1
4(1− γ) if σ ∈

(
0, 1−γ

4

)

min
{

1
4(1− γ), 1

2(1+σ)

}
if σ ∈

[
1−γ

4 ,∞
) . (D.181)
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This directly ensures that

p = ∆ + q ≤ max

{
1
2 + σ

1 + σ
,
5

4
(1− γ)

}
≤ 1

since γ ∈
[

3
4 , 1
)
.

To continue, for any (s, a, s′) ∈ S ×A× S, we denote the infimum probability of moving to

the next state s′ associated with any perturbed transition kernel Ps,a ∈ Uσ(P φs,a) as

P φ(s′ | s, a) := inf
Ps,a∈Uσ(Pφs,a)

P (s′ | s, a). (D.182)

In addition, we denote the transition from state 0 to state 1 as follows, which plays an important

role in the analysis,

p := P φ(1 | 0, φ), q := P φ(1 | 0, 1− φ). (D.183)

Before continuing, we introduce some facts about p and q which are summarized as the

following lemma; the proof is postponed to Appendix D.5.3.1.

Lemma 53. Consider any σ ∈ (0,∞) and any p, q,∆ obeying (D.180) and (D.181), the following

properties hold





1−γ
2 < q < 1− γ, q + 3

4∆ ≤ p ≤ q + ∆ ≤ 5(1−γ)
4 if σ ∈

(
0, 1−γ

4

)
,

q = 0, σ+1
2 ∆ ≤ p ≤ (3 + σ)∆ if σ ∈

[
1−γ

4 ,∞
)
.

(D.184)

Value functions and optimal policies. Armed with above facts, we are positioned to derive

the corresponding robust value functions, the optimal policies, and its corresponding optimal robust

value functions. For any RMDP Mφ with the uncertainty set defined in (D.179), we denote the

robust optimal policy as π?φ, the robust value function of any policy π (resp. the optimal policy π?φ)

as V π,σ
φ (resp. V ?,σ

φ ). The following lemma describes some key properties of the robust (optimal)

value functions and optimal policies whose proof is postponed to Appendix D.5.3.2.

Lemma 54. For any φ = {0, 1} and any policy π, one has

V π,σ
φ (0) =

γzπφ

(1− γ)
(

1− γ
(
1− zπφ

)) , (D.185)

where zπφ is defined as

zπφ := pπ(φ | 0) + qπ(1− φ | 0). (D.186)
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In addition, the optimal value functions and the optimal policies obey

V ?,σ
φ (0) =

γp

(1− γ)
(
1− γ

(
1− p

)) , (D.187a)

π?φ(φ | s) = 1, for s ∈ S. (D.187b)

D.5.2 Establishing the minimax lower bound

Our goal is to control the performance gap w.r.t. any policy estimator π̂ based on the generated

dataset and the chosen initial distribution ϕ in (E.197), which gives

〈
ϕ, V ?,σ

φ − V π̂,σ
φ

〉
= V ?,σ

φ (0)− V π̂,σ
φ (0). (D.188)

Step 1: converting the goal to estimate φ. To achieve the goal, we first introduce the

following fact which shall be verified in Appendix D.5.3.3: given

ε ≤





1
72(1−γ) if σ ∈

(
0, 1−γ

4

)
,

1
256(1+σ)(1−γ) if σ ∈

[
1−γ

4 , 1
3(1−γ)

)
,

3
32 if σ > 1

3(1−γ) .

(D.189)

choosing

∆ =





18(1− γ)2ε if σ ∈
(

0, 1−γ
4

)
,

64(1 + σ)(1− γ)2ε if σ ∈
[

1−γ
4 , 1

3(1−γ)

)
,

16
3(1+σ)ε if σ > 1

3(1−γ) .

(D.190)

which satisfies the requirement of ∆ in (D.180), it holds that for any policy π̂,

〈
ϕ, V ?,σ

φ − V π̂,σ
φ

〉
≥ 2ε

(
1− π̂(φ | 0)

)
. (D.191)

Step 2: arriving at the final results. To continue, following the same definitions and argument

in Appendix D.3.2, we recall the minimax probability of the error and its property as follows:

pe ≥
1

4
exp

{
−N

(
KL
(
P 0(· | 0, 0) ‖ P 1(· | 0, 0)

)
+ KL

(
P 0(· | 0, 1) ‖ P 1(· | 0, 1)

))}
, (D.192)

then we can complete the proof by showing pe ≥ 1
8 given the bound for the sample size N . In the

following, we shall control the KL divergence terms in (D.192) in three different cases.
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• Case 1: σ ∈
(

0, 1−γ
4

)
. In this case, applying γ ∈ [3

4 , 1) yields

1− q > 1− p = 1− q −∆ > γ − 1− γ
4

>
3

4
− 1

16
>

1

2
,

p ≥ q = 1− γ. (D.193)

Armed with the above facts, applying Lemma 60 (cf. (E.11)) yields

KL
(
P 0(· | 0, 1) ‖ P 1(· | 0, 1)

)
= KL (p ‖ q) ≤ (p− q)2

(1− p)p
(i)
=

∆2

p(1− p)
(ii)
=

324(1− γ)4ε2

p(1− p)
(iii)

≤ 648(1− γ)3ε2, (D.194)

where (i) follows from the definition in (D.180), (ii) holds by plugging in the expression

of ∆ in (D.190), and (iii) arises from (D.193). The same bound can be established for

KL
(
P 0

1 (· | 0, 0) ‖ P 1
1 (· | 0, 0)

)
. Substituting (D.194) back into (D.192) demonstrates that: if the

sample size is chosen as

N ≤ log 2

1296(1− γ)3ε2
, (D.195)

then one necessarily has

pe ≥
1

4
exp

{
−N · 1296(1− γ)3ε2

}
≥ 1

8
. (D.196)

• Case 2: σ ∈
[

1−γ
4 , 1

3(1−γ)

)
. Applying the facts of ∆ in (D.181), one has

1− q > 1− p = 1− q −∆ ≥ 1

1 + σ
− 1

2(1 + σ)
=

1

2(1 + σ)
,

p ≥ q =
σ

1 + σ
. (D.197)

Given (D.197), applying Lemma 60 (cf. (E.11)) yields

KL
(
P 0(· | 0, 1) ‖ P 1(· | 0, 1)

)
= KL (p ‖ q) ≤ (p− q)2

(1− p)p
(i)
=

∆2

p(1− p)
(ii)
=

4096(1 + σ)2(1− γ)4ε2

p(1− p)
(iii)

≤ 4096(1 + σ)2(1− γ)4ε2

σ
2(1+σ)2

≤ 8192(1− γ)4(1 + σ)4ε2

σ
, (D.198)
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where (i) follows from the definition in (D.180), (ii) holds by plugging in the expression

of ∆ in (D.190), and (iii) arises from (D.197). The same bound can be established for

KL
(
P 0

1 (· | 0, 0) ‖ P 1
1 (· | 0, 0)

)
.

Substituting (D.198) back into (E.88) demonstrates that: if the sample size is chosen as

N ≤ σ log 2

16384(1− γ)4(1 + σ)4ε2
, (D.199)

then one necessarily has

pe ≥
1

4
exp

{
−N 16384(1− γ)4(1 + σ)4ε2

σ

}
≥ 1

8
. (D.200)

• Case 3: σ > 1
3(1−γ) ≥ 1

3 . Regarding this, one gives

1− q > 1− p = 1− q −∆ ≥ 1

1 + σ
− 1

4(1 + σ)
≥ 1

2(1 + σ)
,

p ≥ q ≥ 1

4
. (D.201)

Given p ≥ q ≥ 1/2 and (D.201), applying Lemma 60 (cf. (E.11)) yields

KL
(
P 0(· | 0, 1) ‖ P 1(· | 0, 1)

)
= KL (p ‖ q) ≤ (p− q)2

(1− p)p
(i)
=

∆2

p(1− p)
(ii)

≤
64

(1+σ)2 ε
2

p(1− p)
(iii)

≤ 492ε2

σ
, (D.202)

where (i) follows from the definition in (D.180), (ii) holds by plugging in the expression

of ∆ in (D.190), and (iii) arises from (D.201). The same bound can be established for

KL
(
P 0

1 (· | 0, 0) ‖ P 1
1 (· | 0, 0)

)
. Substituting (D.202) back into (E.88) demonstrates that: if the

sample size is chosen as

N ≤ σ log 2

984ε2
, (D.203)

then one necessarily has

pe ≥
1

4
exp

{
−N 984ε2

σ

}
≥ 1

8
. (D.204)
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Step 3: putting things together. Finally, summing up the results in (D.195), (D.199), and

(D.203), combined with the requirement in (D.189), one has when

ε ≤ c1





1
1−γ if σ ∈

(
0, 1−γ

4

)

max
{

1
(1+σ)(1−γ) , 1

}
if σ ∈

[
1−γ

4 ,∞
) , (D.205)

taking

N ≤ c2





1
(1−γ)3ε2

if σ ∈
(

0, 1−γ
4

)

σ
min{1,(1−γ)4(1+σ)4}ε2 if σ ∈

[
1−γ

4 ,∞
) (D.206)

leads to pe ≥ 1
8 , for some universal constants c1, c2 > 0.

D.5.3 Proof of the auxiliary facts

We begin with some basic facts about the χ2 divergence defined in (E.10) for any two Bernoulli

distributions Ber(w) and Ber(x), denoted as

f(w, x) := χ2(x ‖ w) =
(w − x)2

w
+

(1− w − (1− x))2

1− w =
(w − x)2

w(1− w)
. (D.207)

For x ∈ [0, w), it is easily verified that the partial derivative w.r.t. x obeys ∂f(w,x)
∂x = 2(x−w)

w(1−w) < 0,

implying that

∀ x1 < x2 ∈ [0, w), f(w, x1) > f(w, x2). (D.208)

In other words, the χ2 divergence f(w, x) increases as x decreases from w to 0.

Next, we introduce the following function for any fixed σ ∈ (0,∞) and any x ∈
[

σ
1+σ , 1

)
:

fσ(x) := inf
{y:χ2(y‖x)≤σ,y∈[0,x]}

y
(i)
= max

{
0, x−

√
σx(1− x)

}
= x−

√
σx(1− x), (D.209)

where (i) has been verified in Yang et al. (2022, Corollary B.2), and the last equality holds since

x ≥ σ
1+σ . The next lemma summarizes some useful facts about fσ(·), which again has been verified

in Yang et al. (2022, Lemma B.12 and Corollary B.2).

Lemma 55. Consider any σ ∈ (0,∞). For x ∈ [ σ
1+σ , 1), fσ(x) is convex and differentiable, which

obeys

f ′σ(x) = 1 +

√
σ(2x− 1)

2
√
x(1− x)

.
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D.5.3.1 Proof of Lemma 53

Let us control q and p respectively.

Step 1: controlling q. We shall control q in different cases w.r.t. the uncertainty level σ.

• Case 1: σ ∈
(

0, 1−γ
4

)
. In this case, recall that q = 1− γ defined in (D.180), applying (D.209)

with x = q leads to

1− γ = q > q = fσ(q) = 1− γ −
√
σγ(1− γ) ≥ 1− γ −

√
1− γ

4
γ(1− γ) >

1− γ
2

. (D.210)

• Case 2: σ ∈
[

1−γ
4 ,∞

)
. Note that it suffices to treat P φ0,1−φ as a Bernoulli distribution Ber(q)

over states 1 and 0, since we do not allow transition to other states. Recalling q = σ
1+σ in

(D.180) and noticing the fact that

f(q, 0) =
q2

q
+

(1− (1− q))2

1− q =
q

(1− q) = σ, (D.211)

one has the probability Ber(0) falls into the uncertainty set of Ber(q)) of size σ. As a result,

recalling the definition (D.183) leads to

q = P φ(1 | 0, 1− φ) = 0, (D.212)

since q ≥ 0.

Step 2: controlling p. To characterize the value of p, we also divide into several cases separately.

• Case 1: σ ∈
(

0, 1−γ
4

)
. In this case, note that p > q = 1− γ ≥ σ

1+σ . Therefore, applying that

fσ(·) is convex and the form of its derivative in Lemma 55, one has

p = fσ(p) ≥ fσ(q) + f ′σ(q)(p− q)

= q +

(
1 +

√
σ(2q − 1)

2
√
q(1− q)

)
∆ ≥ q +

(
1−

√
1−γ

4 (1− 2(1− γ))

2
√

(1− γ)γ

)
∆ ≥ q +

3∆

4
. (D.213)

Similarly, applying Lemma 55 leads to

p = fσ(p) ≤ fσ(q) + f ′σ(p)(p− q)

= q +

(
1−
√
σ(1− 2p)

2
√
p(1− p)

)
∆ ≤ q + ∆, (D.214)
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where the last inequality holds by 1−2p > 0 due to the fact p = q+∆ ≤ 5
4(1−γ) ≤ 5

16 <
1
2 (cf.

(D.181) and γ ∈ [3
4 , 1)). To sum up, given σ ∈

(
0, 1−γ

4

)
, combined with (D.210), we arrive at

q +
3

4
∆ ≤ p ≤ q + ∆ ≤ 5(1− γ)

4
, (D.215)

where the last inequality holds by ∆ ≤ 1
4(1− γ) (see (D.180)).

• Case 2: σ ∈
[

1−γ
4 ,∞

)
. We recall that p = q + ∆ > q = σ

1+σ in (D.180). To derive the lower

bound for p in (D.183), similar to (D.213), one has

p = fσ(p) ≥ fσ(q) + f ′σ(q)(p− q)

= q +

(
1 +

√
σ(2q − 1)

2
√
q(1− q)

)
∆

(i)
= 0 +


1 +

√
σ σ−1

1+σ

2
√

σ
1+σ

1
1+σ


∆ =

(
1 +

σ − 1

2

)
∆ =

(
σ + 1

2

)
∆, (D.216)

where (i) follows from q = σ
1+σ and q = 0 (see (D.212)). For the other direction, similar to

(D.214), we have

p = fσ(p) ≤ fσ(q) + f ′σ(p)(p− q) = q +

(
1 +

√
σ(2p− 1)

2
√
p(1− p)

)
∆

(i)
=

(
1 +

√
σ(2p− 1)

2
√
p(1− p)

)
∆

(ii)
=


1 +

√
σ
(
σ−1
1+σ + 2∆

)

2

√(
σ

1+σ + ∆
)(

1
1+σ −∆

)


∆

(iii)

≤


1 +

√
σ(1 + 2∆)

2
√

σ
1+σ · 1

2(1+σ)


∆

(iv)

≤
(

1 + (1 + σ)

(
1 +

1

1 + σ

))
∆ = (3 + σ)∆, (D.217)

where (i) holds by q = 0 (see (D.212)), (ii) follows from plugging in p = q + ∆ = σ
1+σ + ∆,

and (iii) and (iv) arises from ∆ = min
{

1
4(1− γ), 1

2(1+σ)

}
≤ 1 in (D.181). Combining (D.216)

and (D.217) yields

σ + 1

2
∆ ≤ p ≤ (3 + σ)∆. (D.218)

Step 3: combining all the results. Finally, summing up the results for both q (in (D.210) and

(D.212)) and p (in (D.215) and (D.218)), we arrive at the advertised bound.
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D.5.3.2 Proof of Lemma 54

The robust value function for any policy π. For anyMφ with φ ∈ {0, 1}, we first characterize

the robust value function of any policy π over different states.

Towards this, it is easily observed that for any policy π, the robust value functions at state

s = 1 or any s ∈ {2, 3, · · · , S − 1} obey

V π,σ
φ (1)

(i)
= 1 + γV π,σ

φ (1) =
1

1− γ (D.219a)

and

∀s ∈ {2, 3, · · · , S} : V π,σ
φ (s)

(ii)
= 0 + γV π,σ

φ (1) =
γ

1− γ , (D.219b)

where (i) and (ii) is according to the facts that the transitions defined over states s ≥ 1 in (E.189) give

only one possible next state 1, leading to a non-random transition in the uncertainty set associated

with χ2 divergence, and r(1, a) = 1 for all a ∈ A′ and r(s, a) = 0 holds all (s, a) ∈ {2, 3, · · · , S−1}×A.

To continue, the robust value function at state 0 with policy π satisfies

V π,σ
φ (0) = Ea∼π(· | 0)

[
r(0, a) + γ inf

P∈Uσ(Pφ0,a)
PV π,σ

φ

]

= 0 + γπ(φ | 0) inf
P∈Uσ(Pφ0,φ)

PV π,σ
φ + γπ(1− φ | 0) inf

P∈Uσ(Pφ0,1−φ)
PV π,σ

φ (D.220)

(i)

≤ γ

1− γ , (D.221)

where (i) holds by that ‖V π,σ
φ ‖∞ ≤ 1

1−γ . Summing up the results in (D.219b) and (D.221) leads to

∀s ∈ {2, 3, · · · , S}, V π,σ
φ (1) > V π,σ

φ (s) ≥ V π,σ
φ (0). (D.222)

With the transition kernel in (E.189) over state 0 and the fact in (D.222), (D.220) can be rewritten

as

V π,σ
φ (0) = γπ(φ | 0) inf

P∈Uσ(Pφ0,φ)
PV π,σ

φ + γπ(1− φ | 0) inf
P∈Uσ(Pφ0,1−φ)

PV π,σ
φ

(i)
= γπ(φ | 0)

[
pV π,σ

φ (1) +
(
1− p

)
V π,σ
φ (0)

]
+ γπ(1− φ | 0)

[
qV π,σ

φ (1) +
(
1− q

)
V π,σ
φ (0)

]

(ii)
= γzπφV

π,σ
φ (1) + γ

(
1− zπφ

)
V π,σ
φ (0)

=
γzπφ

(1− γ)
(

1− γ
(
1− zπφ

)) , (D.223)
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where (i) holds by the definition of p and q in (D.183), (ii) follows from the definition of zπφ in

(D.186), and the last line holds by applying (D.219a) and solving the resulting linear equation for

V π,σ
φ (0).

Optimal policy and its optimal value function. To continue, observing that V π,σ
φ (0) =: f(zπφ)

is increasing in zπφ since the derivative of f(zπφ) w.r.t. zπφ obeys

f ′(zπφ) =
γ(1− γ)

(
1− γ

(
1− zπφ

))
− γ2zπφ(1− γ)

(1− γ)2
(

1− γ
(
1− zπφ

))2 =
γ

(
1− γ

(
1− zπφ

))2 > 0,

where the last inequality holds by 0 ≤ zπφ ≤ 1. Further, zπφ is also increasing in π(φ | 0) (see the fact

p ≥ q in (D.183)), the optimal robust policy in state 0 thus obeys

π?φ(φ | 0) = 1. (D.224)

Considering that the action does not influence the state transition for all states s > 0, without loss

of generality, we choose the optimal robust policy to obey

∀s > 0 : π?φ(φ | s) = 1. (D.225)

Taking π = π?φ and z
π?φ
φ = p in (D.223), we complete the proof by showing the corresponding

optimal robust value function at state 0 as follows:

V ?,σ
φ (0) =

γz
π?φ
φ

(1− γ)
(

1− γ
(

1− zπ
?
φ

φ

)) =
γp

(1− γ)
(
1− γ

(
1− p

)) .

D.5.3.3 Proof of the claim (D.191)

Plugging in the definition of ϕ, we arrive at that for any policy π,

〈
ϕ, V ?,σ

φ − V π,σ
φ

〉
= V ?,σ

φ (0)− V π,σ
φ (0)

(i)
=

γp

(1− γ)
(
1− γ

(
1− p

)) −
γzπφ

(1− γ)
(

1− γ
(
1− zπφ

))

=
γ
(
p− zπφ

)

(
1− γ

(
1− p

)) (
1− γ

(
1− zπφ

))
(ii)

≥
γ
(
p− zπφ

)

(
1− γ

(
1− p

))2
(iii)
=

γ(p− q)
(
1− π(φ | 0)

)
(
1− γ

(
1− p

))2 ,

(D.226)
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where (i) holds by applying Lemma 54, (ii) arises from zπφ ≤ p (see the definition of zπφ in (D.186)

and the fact p ≥ q + 3∆
4 in (D.183)), and (iii) follows from the definition of zπφ in (D.186).

To further control (D.226), we consider it in two cases separately:

• Case 1: σ ∈
(

0, 1−γ
4

)
. In this case, applying Lemma 53 to (D.226) yields

〈
ϕ, V ?,σ

φ − V π,σ
φ

〉
≥
γ(p− q)

(
1− π(φ | 0)

)
(
1− γ

(
1− p

))2 ≥ γ 3∆
4

(
1− π(φ | 0)

)
(

1− γ
(

1− 5(1−γ)
4

))2

≥ ∆
(
1− π(φ | 0)

)

9(1− γ)2
= 2ε

(
1− π(φ | 0)

)
, (D.227)

where the penultimate inequality follows from γ ≥ 3/4, and the last inequality holds by taking

the specification of ∆ in (D.190) as follows:

∆ = 18(1− γ)2ε. (D.228)

It is easily verified that taking ε ≤ 1
72(1−γ) as in (D.189) directly leads to meeting the

requirement in (D.181), i.e., ∆ ≤ 1
4(1− γ).

• Case 2: σ ∈
[

1−γ
4 ,∞

)
. Similarly, applying Lemma 53 to (D.226) gives

〈
ϕ, V ?,σ

φ − V π,σ
φ

〉
≥
γ(p− q)

(
1− π(φ | 0)

)
(
1− γ

(
1− p

))2 ≥ γ σ+1
2 ∆

(
1− π(φ | 0)

)

min
{

1, (1− γ (1− (3 + σ)∆))2
} (D.229)

Before continuing, it can be verified that

1− γ (1− (3 + σ)∆) = 1− γ + γ(3 + σ)∆
(i)

≤ 1− γ + (3 + σ) min

{
1

4
(1− γ),

1

2(σ + 1)

}

≤ min

{
2(1 + σ)(1− γ),

3

2

}
, (D.230)

where (i) is obtained by ∆ ≤ min
{

1
4(1− γ), 1

2(1+σ)

}
(see (D.180)). Applying the above fact

to (D.229) gives

〈
ϕ, V ?,σ

φ − V π,σ
φ

〉
≥ γ σ+1

2 ∆
(
1− π(φ | 0)

)

min
{

1, (1− γ (1− (3 + σ)∆))2
}

(i)

≥ 3(σ + 1)∆
(
1− π(φ | 0)

)

8 min {4(1 + σ)2(1− γ)2, 1}

≥ ∆
(
1− π(φ | 0)

)

min
{

32(1 + σ)(1− γ)2, 8
3(1+σ)

} = 2ε
(
1− π(φ | 0)

)
, (D.231)

where (i) holds by γ ≥ 3
4 and (D.229), and the last equality holds by the specification in
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(D.190):

∆ =





64(1 + σ)(1− γ)2ε if σ ∈
[

1−γ
4 , 1

3(1−γ)

)
,

16
3(1+σ)ε if σ > 1

3(1−γ) .
(D.232)

As a result, it is easily verified that the requirement in (D.181)

∆ ≤ min

{
1

4
(1− γ),

1

2(1 + σ)

}
(D.233)

is met if we let

ε ≤





1
256(1+σ)(1−γ) if σ ∈

[
1−γ

4 , 1
3(1−γ)

)
,

3
32 if σ > 1

3(1−γ) ,
(D.234)

as in (D.189).

The proof is then completed by summing up the results in the above two cases.
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Appendix E

Proofs for Chapter 7

E.1 Preliminaries

Before starting, let us introduce some additional notation useful throughout the theoretical analysis.

Let ess inf X denote the essential infimum of a function/variable X.

E.1.1 Properties of the robust Bellman operator

To begin with, we introduce the following strong duality lemma which is widely used in distributionally

robust optimization when the uncertainty set is defined with respect to the KL divergence.

Lemma 56 ((Hu and Hong, 2013), Theorem 1). Suppose f(x) has a finite moment generating

function in some neighborhood around x = 0, then for any σ > 0 and a nominal distribution P 0, we

have

sup
P∈Uσ(P 0)

EX∼P [f(X)] = inf
λ≥0

{
λ logEX∼P 0

[
exp

(
f(X)

λ

)]
+ λσ

}
. (E.1)

Armed with the above lemma, it is easily verified that for any positive constant M and a

nominal distribution vector P 0 ∈ R1×S supported over the state space S, if X(s) ∈ [0,M ] for all

s ∈ S, then

inf
P∈Uσ(P 0)

PX = sup
λ≥0

{
−λ log

(
P 0 exp

(
−X
λ

))
− λσ

}
. (E.2)

For convenience, we introduce the following lemma, paraphrased from Zhou et al. (2021,

Lemma 4) and its proof, to further characterize several essential properties of the optimal dual

value.

Lemma 57 ((Zhou et al., 2021)). Let X ∼ P be a bounded random variable with X ∈ [0,M ]. Let

σ > 0 be any uncertainty level and the corresponding optimal dual variable be

λ? ∈ arg max
λ≥0

f(λ, P ), where f(λ, P ) :=

{
−λ logEX∼P

[
exp

(−X
λ

)]
− λσ

}
. (E.3)

Then the optimal value λ? obeys

λ? ∈
[
0,
M

σ

]
, (E.4)

351



where λ? = 0 if and only if

log
(
P(X = essinfX)

)
+ σ ≥ 0. (E.5)

Moreover, when λ? = 0, we have

lim
λ→0

f(λ, P ) = lim
λ→0

{
−λ logEX∼P

[
exp

(−X
λ

)]
− λσ

}
= essinfX. (E.6)

E.1.2 Concentration inequalities

In light of Lemma 57 (cf. E.6), we are interested in comparing the values of essinfX when X is

drawn from the population nominal distribution or its empirical estimate. This is supplied by the

following lemma from Zhou et al. (2021).

Lemma 58 ((Zhou et al., 2021)). Let X ∼ P be a discrete bounded random variable with X ∈ [0,M ].

Let Pn denote the empirical distribution constructed from n independent samples X1, X2, · · · , Xn,

and let X̂ ∼ Pn. Denote Pmin,X as the smallest positive probability Pmin,X := min{P(X = x) : x ∈
supp(X)}, where supp(X) is the support of X. Then for any δ ∈ (0, 1), with probability at least

1− δ, we have

min
i∈[n]

Xi = essinfX̂ = essinfX, (E.7)

as long as

n ≥ − log(2/δ)

log(1− Pmin,X)
. (E.8)

We next gather a elementary fact about the Binomial distribution, which will be useful

throughout the proof.

Lemma 59 (Chernoff’s inequality). Suppose N ∼ Binomial(n, p), where n ≥ 1 and p ∈ [0, 1). For

some universal constant cf > 0, we have

P (|N/n− p| ≥ pt) ≤ exp
(
−cfnpt

2
)
, ∀t ∈ [0, 1]. (E.9)

E.1.3 Kullback-Leibler (KL) divergence

We next introduce some useful facts about the Kullback-Leibler (KL) divergence for two distributions

P and Q, denoted as KL(P ‖ Q). Denoting Ber(p)(resp. Ber(q)) as the Bernoulli distribution with

mean p (resp. q), we introduce

KL
(
Ber(p) ‖ Ber(q)

)
:= p log

p

q
+ (1− p) log

1− p
1− q , (E.10)
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which represents the KL divergence from Ber(p) to Ber(q). We now introduce the following lemma.

Lemma 60. For any p, q ∈
[

1
2 , 1
)

and p > q, it holds that

KL
(
Ber(p) ‖ Ber(q)

)
≤ KL

(
Ber(q) ‖ Ber(p)

)
≤ (p− q)2

p(1− p) . (E.11)

Moreover, for any 0 ≤ x < y < q, it holds

KL (Ber (x) ‖ Ber(q)) > KL (Ber (y) ‖ Ber(q)) . (E.12)

Proof. The first half of this lemma is proven in Li et al. (2022a, Lemma 10). For the latter half, it

follows from that the function

f(x, q) := KL (Ber (x) ‖ Ber(q))

is monotonically decreasing for all x ∈ (0, q], since its derivative with respect to x satisfies ∂f(x,q)
∂x =

log x
q + log 1−q

1−x < 0.

E.2 Analysis: episodic finite-horizon RMDPs

E.2.1 Proof of Theorem 14

Before starting, we introduce several additional notation that will be useful in the analysis. First,

we denote the state-action space covered by the behavior policy πb in the nominal model P 0 as

Cb =
{

(h, s, a) : db,P 0

h (s, a) > 0
}
. (E.13)

Moreover, we recall the definition in (7.15) and define a similar one based on the exact nominal

model P 0 as

Pmin,h(s, a) := min
s′

{
P 0
h (s′ | s, a) : P 0

h (s′ | s, a) > 0
}
. (E.14)

Clearly, by comparing with the definitions (7.16) and (7.17), it holds that

P ?min = min
h,s

Pmin,h(s, π?h(s)), P b
min = min

(h,s,a)∈Cb
Pmin,h(s, a). (E.15)

For any time step h ∈ [H], we denote the set of possible state occupancy distributions associated

with the optimal policy π? in a model within the uncertainty set P ∈ Uσ
(
P 0
)

as

D?h :=
{[
d?,Ph (s)

]
s∈S

: P ∈ Uσ
(
P 0
)}

=
{[
d?,Ph

(
s, π?h(s)

)]
s∈S

: P ∈ Uσ
(
P 0
)}
, (E.16)
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where the second equality is due to the fact that π? is chosen to be deterministic.

With these in place, the proof of Theorem 14 is separated into several key steps, as outlined

below.

Step 1: establishing the pessimism property. To achieve this claim, we heavily count on the

following lemma whose proof can be found in Appendix E.2.2.

Lemma 61. Instate the assumptions in Theorem 14. Then for all (h, s, a) ∈ [H]×S ×A, consider

any vector V ∈ RS independent of P̂ 0
h,s,a obeying ‖V ‖∞ ≤ H. With probability at least 1− δ, one has

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV
∣∣∣∣∣ ≤ bh(s, a) (E.17)

with bh(s, a) given in (7.14). Moreover, for all (h, s, a) ∈ Cb, with probability at least 1− δ, one has

Pmin,h(s, a)

8 log(KHS/δ)
≤ P̂min,h(s, a) ≤ e2Pmin,h(s, a). (E.18)

Armed with the above lemma, with probability at least 1 − δ, we shall show the following

relation holds

∀(s, a, h) ∈ S ×A× [H + 1] : Q̂h(s, a) ≤ Qπ̂,σh (s, a), V̂h(s) ≤ V π̂,σ
h (s), (E.19)

which means that Q̂h (resp. V̂h) is a pessimistic estimate of Qπ̂,σh (resp. V π̂,σ
h ). Towards this, it is

easily verified that the latter assertion concerning V π̂,σ
h is implied by the former, since

V̂h(s) = max
a

Q̂h(s, a) ≤ max
a

Qπ̂,σh (s, a) = V π̂,σ
h (s). (E.20)

Therefore, the remainder of this step focuses on verifying the former assertion in (E.19) by induction.

• To begin, the claim (E.19) holds at the base case when h = H + 1, by invoking the trivial fact

Q̂H+1(s, a) = Qπ̂,σH+1(s, a) = 0.

• Then, suppose that Q̂h+1(s, a) ≤ Qπ̂,σh+1(s, a) holds for all (s, a) ∈ S × A at some time step

h ∈ [H], it boils down to show Q̂h(s, a) ≤ Qπ̂,σh (s, a).

By the update rule of Q̂h(s, a) in Algorithm 13 (cf. line 7), the above relation holds immediately

if Q̂h(s, a) = 0 since Q̂h(s, a) = 0 ≤ Qπ̂,σh (s, a). Otherwise, Q̂h(s, a) is updated via

Q̂h(s, a) = rh(s, a) + sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a · exp

(
−V̂h+1

λ

))
− λσ

}
− bh(s, a)

(i)
= rh(s, a) + inf

P∈Uσ(P̂ 0
h,s,a)

PV̂h+1 − bh(s, a)
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≤ rh(s, a) + inf
P∈Uσ(P 0

h,s,a)
PV̂h+1 +

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV̂h+1 − inf

P∈Uσ(P 0
h,s,a)

PV̂h+1

∣∣∣∣∣− bh(s, a)

(ii)

≤ rh(s, a) + inf
P∈Uσ(P 0

h,s,a)
PV π̂,σ

h+1 + 0
(iii)
= Qπ̂,σh (s, a), (E.21)

where (i) rewrites the update rule back to its primal form (cf. (7.11)), (ii) holds by applying

(E.17) with the condition (7.20) satisfied and the induction hypothesis V̂h+1 ≤ V π̂,σ
h+1, and

lastly, (iii) follows by the robust Bellman consistency equation (2.18).

Putting them together, we have verified the claim (E.19) by induction.

Step 2: bounding V ?,σ
h (s)− V π̂,σ

h (s). With the pessimism property (E.19) in place, we observe

that the following relation holds

0 ≤ V ?,σ
h (s)− V π̂,σ

h (s) ≤ V ?,σ
h (s)− V̂h(s) ≤ Q?,σh

(
s, π?h(s)

)
− Q̂h

(
s, π?h(s)

)
, (E.22)

where the last inequality follows from Q̂h
(
s, π?h(s)

)
≤ maxa Q̂h(s, a) = V̂h(s). Then, by the robust

Bellman optimality equation in (2.19) and the primal version of the update rule (cf. (7.11))

Q?,σh
(
s, π?h(s)

)
= rh

(
s, π?h(s)

)
+ inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σ
h+1,

Q̂h
(
s, π?h(s)

)
= rh

(
s, π?h(s)

)
+ inf
P∈Uσ

(
P̂ 0
h,s,π?

h
(s)

)PV̂h+1 − bh (s, π?h(s)) ,

we arrive at

V ?,σ
h (s)− V̂h(s) ≤ Q?,σh

(
s, π?h(s)

)
− Q̂h

(
s, π?h(s)

)

= inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σ
h+1 − inf

P∈Uσ
(
P̂ 0
h,s,π?

h
(s)

)PV̂h+1 + bh
(
s, π?h(s)

)

≤ inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σ
h+1 − inf

P∈Uσ
(
P 0
h,s,π?

h
(s)

)PV̂h+1

+

∣∣∣∣∣∣
inf

P∈Uσ
(
P̂ 0
h,s,π?

h
(s)

)PV̂h+1 − inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV̂h+1

∣∣∣∣∣∣
+ bh

(
s, π?h(s)

)

(i)

≤ inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σ
h+1 − inf

P∈Uσ
(
P 0
h,s,π?

h
(s)

)PV̂h+1 + 2bh
(
s, π?h(s)

)

(ii)

≤ P̂ inf
h,s,π?h(s)

(
V ?,σ
h+1 − V̂h+1

)
+ 2bh

(
s, π?h(s)

)
, (E.23)

355



where (i) holds by applying Lemma 2 (cf. (E.17)) since V̂h+1 is independent of P 0
h,s,π?h(s) by

construction, and (ii) arises from introducing the notation

P̂ inf
h,s,π?h(s) := argmin

P∈Uσ
(
P 0
h,s,π?

h
(s)

) PV̂h+1 (E.24)

and consequently,

inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σ
h+1 ≤ P̂ inf

h,s,π?h(s)V
?,σ
h+1, and inf

P∈Uσ
(
P 0
h,s,π?

h
(s)

)PV̂h+1 = P̂ inf
h,s,π?h(s)V̂h+1.

To continue, let us introduce some additional notation for convenience. Define a sequence of

matrices P̂ inf
h ∈ RS×S and vectors b?h ∈ RS for h ∈ [H], where their s-th rows (resp. entries) are

given by

[
P̂ inf
h

]
s,·

= P̂ inf
h,s,π?h(s), and b?h(s) = bh

(
s, π?h(s)

)
. (E.25)

Applying (E.23) recursively over the time steps h, h+ 1, · · · , H using the above notation gives

0 ≤ V ?,σ
h − V̂h ≤ P̂ inf

h

(
V ?,σ
h+1 − V̂h+1

)
+ 2b?h

≤ P̂ inf
h P̂ inf

h+1

(
V ?,σ
h+2 − V̂h+2

)
+ 2P̂ inf

h b?h+1 + 2b?h ≤ · · · ≤ 2
H∑

i=h



i−1∏

j=h

P̂ inf
j


 b?i , (E.26)

where we let
(∏i−1

j=i P̂
inf
j

)
= I for convenience.

For any d?h ∈ D?h (cf. (E.16)), taking inner product with (E.26) leads to

〈
d?h, V

?,σ
h − V̂h

〉
≤
〈
d?h, 2

H∑

i=h



i−1∏

j=h

P̂ inf
j


 b?i

〉
= 2

H∑

i=h

〈d?i , b?i 〉 , (E.27)

where

d?i :=


(d?h

)>


i−1∏

j=h

P̂ inf
j





>

∈ D?i (E.28)

by the definition of D?i (cf. (E.16)) for all i = h+ 1, · · · , H.

Step 3: controlling 〈d?i , b?i 〉 using concentrability. Since 〈d?i , b?i 〉 =
∑

s∈S d
?
i (s)b

?
i (s), we shall

divide the discussion in two different cases.

• For s ∈ S where maxP∈Uσ(P 0) d
?,P
i

(
s, π?i (s)

)
= maxP∈Uσ(P 0) d

?,P
i (s) = 0, it follows from the
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definition (cf. (E.16)) that for any d?i ∈ D?i , it satisfies that

d?i (s) = 0. (E.29)

• For s ∈ S where maxP∈Uσ(P 0) d
?,P
i

(
s, π?i (s)

)
= maxP∈Uσ(P 0) d

?,P
i (s) > 0, by the assumption

in (7.5)

max
P∈Uσ(P 0)

min
{
d?,Pi

(
s, π?i (s)

)
, 1
S

}

db,P 0

i

(
s, π?i (s)

) = max
P∈Uσ(P 0)

min
{
d?,Pi (s), 1

S

}

db,P 0

i

(
s, π?i (s)

) ≤ C?rob <∞,

it implies that

db,P 0

i

(
s, π?i (s)

)
> 0 and

(
i, s, π?i (s)

)
∈ Cb. (E.30)

Lemma 21 tells that with probability at least 1− 8δ,

Ni

(
s, π?i (s)

)
≥ Kdb,P 0

i

(
s, π?i (s)

)

8
− 5

√
Kdb,P 0

i

(
s, π?i (s)

)
log

KH

δ

(i)

≥ Kdb,P 0

i

(
s, π?i (s)

)

16

(ii)

≥
K maxP∈Uσ(P 0) min

{
d?,Pi

(
s, π?i (s)

)
, 1
S

}

16C?rob

≥ K min
{
d?i (s),

1
S

}

16C?rob

, (E.31)

where (i) holds due to

Kdb,P 0

i

(
s, π?i (s)

)
≥ c1

db,P 0

i

(
s, π?i (s)

)
log(KHS/δ)

db
minP

b
min

≥ c1 log KH
δ

P b
min

≥ c1 log
KH

δ
(E.32)

for some sufficiently large c1, where the first inequality follows from Condition (7.20), the

second inequality follows from

db
min = min

h,s,a

{
db,P 0

h (s, a) : db,P 0

h (s, a) > 0
}
≤ db,P 0

i

(
s, π?i (s)

)
(E.33)

and the last inequality follows from P b
min ≤ 1. In addition, (ii) follows from Assumption 5.

With this in place, we observe that the pessimistic penalty (see (7.14)) obeys

b?i (s) ≤ cb
H

σ

√√√√ log(KHSδ )

P̂min,i

(
s, π?i (s)

)
Ni

(
s, π?i (s)

)
(i)

≤ 4cb
H

σ

√
log2(KHSδ )

Pmin,i

(
s, π?i (s)

)
Ni

(
s, π?i (s)

)

≤ 16cb
H

σ

√
C?rob log2 KHS

δ

Pmin,i

(
s, π?i (s)

)
K min

{
d?i (s),

1
S

} , (E.34)

where (i) holds by applying (E.18) in view of the fact that
(
i, s, π?i (s)

)
∈ Cb by (E.30), and
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the last inequality holds by (E.31).

Combining the results in the above two cases leads to

∑

s∈S
d?i (s)b

?
i (s) ≤

∑

s∈S
16d?i (s)cb

H

σ

√
C?rob log2 KHS

δ

Pmin,i

(
s, π?i (s)

)
K min

{
d?i (s),

1
S

}

(i)

≤ 16cb
H

σ

√√√√∑

s∈S
d?i (s)

C?rob log2 KHS
δ

Pmin,i

(
s, π?i (s)

)
K min

{
d?i (s),

1
S

}
√∑

s∈S
d?i (s)

≤ 32cb
H

σ

√
SC?rob log2 KHS

δ

Pmin,i

(
s, π?i (s)

)
K
, (E.35)

where (i) follows from the Cauchy-Schwarz inequality and the last inequality hold by the trivial fact

∑

s∈S

d?i (s)

min
{
d?i (s),

1
S

} ≤
∑

s∈S
d?i (s)

(
1

d?i (s)
+

1

1/S

)
=
∑

s∈S
1 +

1

S

∑

s∈S
d?i (s) ≤ 2S. (E.36)

Step 4: finishing up the proof. Then, inserting (E.35) back into (E.27) with h = 1 shows

〈
d?1, V

?,σ
1 − V̂1

〉
≤ 2

H∑

i=1

〈d?i , b?i 〉 ≤
H∑

i=1

64cb
H

σ

√
SC?rob log2 KH

δ

Pmin,i

(
s, π?i (s)

)
K
≤ c2

H2

σ

√
SC?rob log2 KH

δ

P ?minK
,

(E.37)

where the last inequality holds by plugging in the relation P ?min ≤ Pmin,i

(
s, π?i (s)

)
for i = 1, . . . ,H

by the definition in (7.16) (see also (E.15)), and choosing c2 to be large enough. The proof is

completed.

E.2.2 Proof of Lemma 61

To begin, we shall introduce the following fact that

∀(h, s, a) ∈ Cb : Nh(s, a) ≥ c1 log KHS
δ

16Pmin,h(s, a)
≥ − log 2KHS

δ

log(1− Pmin,h(s, a))
, (E.38)

as long as Condition (7.20) holds. The proof is postponed to Appendix E.2.2.3. With this in mind,

we shall first establish the simpler bound (E.18) and then move on to show (E.17).
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E.2.2.1 Proof of (E.18)

To begin, recall that (E.38) is satisfied for all (h, s, a) ∈ Cb. By Lemma 27 and the union bound, it

holds that with probability at least 1− δ that for all (h, s, a) ∈ Cb:

∀s′ ∈ S : P 0
h (s′ | s, a) ≥ P̂ 0

h (s′ | s, a)

e2
≥ P 0

h (s′ | s, a)

8e2 log(KHSδ )
. (E.39)

To characterize the relation between Pmin,h(s, a) and P̂min,h(s, a) for any (h, s, a) ∈ Cb, we suppose—

without loss of generality—that Pmin,h(s, a) = P 0
h (s1 | s, a) and P̂min,h(s, a) = P̂ 0

h (s2 | s, a) for some

s1, s2 ∈ S. Then, it follows that

Pmin,h(s, a) = P 0
h (s1 | s, a)

(i)

≥ P̂ 0
h (s1 | s, a)

e2
≥ P̂min,h(s, a)

e2
=
P̂ 0
h (s2 | s, a)

e2

(ii)

≥ P 0
h (s2 | s, a)

8e2 log(KHSδ )
≥ Pmin,h(s, a)

8e2 log(KHSδ )
,

where (i) and (ii) follow from (E.39).

E.2.2.2 Proof of (E.17)

The main goal of (E.17) is to control the gap between robust Bellman operations based on the

nominal transition kernel P 0
h,s,a and the estimated kernel P̂ 0

h,s,a by the constructed penalty term.

Towards this, first consider (h, s, a) /∈ Cb, which corresponds to the state-action pairs (s, a) that

haven’t been visited at step h by the behavior policy. In other words, Nh(s, a) = 0. In this case,

(E.17) can be easily verified that

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV
∣∣∣∣∣

(i)
= inf
P∈Uσ(P 0

h,s,a)
PV ≤ ‖V ‖∞

(ii)

≤ H
(iii)
= bh(s, a), (E.40)

where (i) follows from the fact P̂ 0
h,s,a = 0 when Nh(s, a) = 0 (see (7.8)), (ii) arises from the assumption

‖V ‖∞ ≤ H, and (iii) holds by the definition of bh(s, a) in (7.14). Therefore, the remainder of the

proof will focus on verifying (E.17) for (h, s, a) ∈ Cb. Rewriting the term of interest via duality

(cf. Lemma 56) yields

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV
∣∣∣∣∣

=

∣∣∣∣∣sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(−V
λ

))
− λσ

}
− sup

λ≥0

{
−λ log

(
P 0
h,s,a exp

(−V
λ

))
− λσ

}∣∣∣∣∣ . (E.41)
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Denoting

λ̂?h,s,a := arg max
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(−V
λ

))
− λσ

}
, (E.42a)

λ?h,s,a := arg max
λ≥0

{
−λ log

(
P 0
h,s,a exp

(−V
λ

))
− λσ

}
, (E.42b)

Lemma 57 (cf. (E.4)) then gives that

λ?h,s,a ∈
[
0,
H

σ

]
, λ̂?h,s,a ∈

[
0,
H

σ

]
, (E.43)

due to ‖V ‖∞ ≤ H. We shall control (E.41) in three different cases separately: (a) λ?h,s,a = 0 and

λ̂?h,s,a = 0; (b) λ?h,s,a > 0 and λ̂?h,s,a = 0 or λ?h,s,a = 0 and λ̂?h,s,a > 0; and (c) λ?h,s,a 6= 0 or λ̂?h,s,a 6= 0.

Case (a): λ?h,s,a = 0 and λ̂?h,s,a = 0. Applying Lemma 57 and Lemma 58 to (E.41) gives that,

with probability at least 1− δ
KH ,

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV
∣∣∣∣∣

(i)
=
∣∣∣essinf

s∼P̂ 0
h,s,a

V (s)− essinfs∼P 0
h,s,a

V (s)
∣∣∣

(ii)
=
∣∣∣essinfs∼P 0

h,s,a
V (s)− essinfs∼P 0

h,s,a
V (s)

∣∣∣

= 0 ≤ bh(s, a). (E.44)

where (i) holds by Lemma 57 (cf. (E.6)) and (ii) arises from Lemma 58 (cf. (E.7)) given (E.38).

Case (b): λ?h,s,a > 0 and λ̂?h,s,a = 0 or λ?h,s,a = 0 and λ̂?h,s,a > 0. Towards this, note that two

trivial facts are implied by the definition (E.42):

sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(−V
λ

))
− λσ

}
≥ −λ̂?h,s,a log

(
P 0
h,s,a · exp

(
−V
λ̂?h,s,a

))
− λ̂?h,s,aσ,

(E.45a)

sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(−V
λ

))
− λσ

}
≥ −λ?h,s,a log

(
P̂ 0
h,s,a · exp

(
−V
λ?h,s,a

))
− λ?h,s,aσ.

(E.45b)

To continue, first, we consider a subcase when λ?h,s,a = 0 and λ̂?h,s,a > 0. With probability at least

1− δ
KH , it follows from Lemma 57 (cf. (E.6)) and Lemma 58 (cf. (E.7)) that

sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(−V
λ

))
− λσ

}
≥ lim

λ→0

{
−λ log

(
P̂ 0
h,s,a exp

(−V
λ

))
− λσ

}
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= essinf
s∼P̂ 0

h,s,a
V (s) = essinfs∼P 0

h,s,a
V (s)

= sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(−V
λ

))
− λσ

}
, (E.46)

leading to

∣∣∣∣∣sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(−V
λ

))
− λσ

}
− sup

λ≥0

{
−λ log

(
P 0
h,s,a exp

(−V
λ

))
− λσ

}∣∣∣∣∣
(i)

≤
(
−λ̂?h,s,a log

(
P̂ 0
h,s,a · exp

(
−V
λ̂?h,s,a

))
− λ̂?h,s,aσ

)
−
(
−λ̂?h,s,a log

(
P 0
h,s,a · exp

(
−V
λ̂?h,s,a

))
− λ̂?h,s,aσ

)

≤ λ̂?h,s,a

∣∣∣∣∣log

(
P̂ 0
h,s,a · exp

(
−V
λ̂?h,s,a

))
− log

(
P 0
h,s,a · exp

(
−V
λ̂?h,s,a

))∣∣∣∣∣ , (E.47)

where (i) follows from the definition of λ̂?h,s,a in (E.42) and the fact in (E.45a).

We pause to claim that with probability at least 1− δ, the following bound holds

∀(h, s, a) ∈ Cb, V ∈ RS :

∣∣∣
(
P̂ 0
h,s,a − P 0

h,s,a

)
· exp

(−V
λ

)∣∣∣
P 0
h,s,a · exp

(−V
λ

) ≤
√

log(KHSδ )

cfNh(s, a)Pmin,h(s, a)
≤ 1

2
. (E.48)

The proof is postponed to Appendix E.2.2.4. With (E.48) in place, we can further bound (E.47)

(which is plugged into (E.41)) as

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV
∣∣∣∣∣ ≤ λ̂

?
h,s,a

∣∣∣∣∣∣
log


1 +

(
P̂ 0
h,s,a − P 0

h,s,a

)
· exp

(−V
λ

)

P 0
h,s,a · exp

(−V
λ

)



∣∣∣∣∣∣

(i)

≤ 2λ̂?h,s,a

∣∣∣
(
P̂ 0
h,s,a − P 0

h,s,a

)
· exp

(−V
λ

)∣∣∣
P 0
h,s,a · exp

(−V
λ

)

(ii)

≤ 2H

σ

√
log(KHSδ )

cfNh(s, a)Pmin,h(s, a)

≤ 2eH

σ

√
log(KHSδ )

cfNh(s, a)P̂min,h(s, a)
≤ cb

H

σ

√
log(KHSδ )

P̂min,h(s, a)Nh(s, a)
,

(E.49)

where (i) follows from log(1 + x) ≤ 2|x| for any |x| ≤ 1
2 in view of (E.48), (ii) follows from (E.43) as

well as (E.48), and the last line follows from (E.18) and choosing cb to be sufficiently large.
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Moreover, note that it can be easily verified that

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV
∣∣∣∣∣ ≤ H

due to the assumption ‖V ‖∞ ≤ H. Plugging in the definition of bh(s, a) in (7.14), combined with

the above bounds, we have that with probability at least 1− δ,
∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV
∣∣∣∣∣ ≤ min

{
cb
H

σ

√
log(KHSδ )

Nh(s, a)P̂min,h(s, a)
, H

}
=: bh(s, a). (E.50)

The other subcase when λ?h,s,a > 0 and λ̂?h,s,a = 0 follows similarly from the bound

∣∣∣∣∣sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(−V
λ

))
− λσ

}
− sup

λ≥0

{
−λ log

(
P 0
h,s,a exp

(−V
λ

))
− λσ

}∣∣∣∣∣

≤ λ?h,s,a

∣∣∣∣∣log

(
P̂ 0
h,s,a · exp

(
−V
λ?h,s,a

))
− log

(
P 0
h,s,a · exp

(
−V
λ?h,s,a

))∣∣∣∣∣ , (E.51)

and therefore, will be omitted for simplicity.

Case (c): λ?h,s,a > 0 and λ̂?h,s,a > 0. It follows that

∣∣∣∣∣sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(−V
λ

))
− λσ

}
− sup

λ≥0

{
−λ log

(
P 0
h,s,a exp

(−V
λ

))
− λσ

}∣∣∣∣∣
(i)

≤ max

{(
−λ̂?h,s,a log

(
P̂ 0
h,s,a · e

−V
λ̂?
h,s,a

)
− λ̂?h,s,aσ

)
−
(
−λ̂?h,s,a log

(
P 0
h,s,a · e

−V
λ̂?
h,s,a

)
− λ̂?h,s,aσ

)
,

(
−λ?h,s,a log

(
P 0
h,s,a · e

−V
λ?
h,s,a

)
− λ?h,s,aσ

)
−
(
−λ?h,s,a log

(
P̂ 0
h,s,a · e

−V
λ?
h,s,a

)
− λ?h,s,aσ

)}

≤ max
λ∈{λ?h,s,a,λ̂

?
h,s,a}

λ

∣∣∣∣log

(
P̂ 0
h,s,a · exp

(−V
λ

))
− log

(
P 0
h,s,a · exp

(−V
λ

))∣∣∣∣ , (E.52)

where (i) can be verified by applying the facts in (E.45). Hence, the above term (E.52) can be

controlled again in a similar manner as (E.47); we omit the details for simplicity.

Summing up. Combining the previous results in different cases by the union bound, with

probability at least 1− 10δ, it is satisfied that for all (h, s, a) ∈ Cb:

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV
∣∣∣∣∣ ≤ bh(s, a),
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which concludes the proof.

E.2.2.3 Proof of (E.38)

Observe that for all (h, s, a) ∈ Cb:

Kdb,P 0

h

(
s, a
) (i)

≥ c1d
b,P 0

h

(
s, a
)

log(KHS/δ)

db
minP

b
min

(ii)

≥ c1 log(KHS/δ)

P b
min

(iii)

≥ c1 log(KHS/δ)

Pmin,h(s, a)
, (E.53)

where (i) follows from Condition (7.20), (ii) follows from the definition that db
min ≤ d

b,P 0

h (s, a) for

(h, s, a) ∈ Cb, and (iii) comes from (E.15).

Lemma 21 then tells that with probability at least 1− 8δ,

Nh(s, a) ≥ Kdb,P 0

h

(
s, a
)

8
− 5

√
Kdb,P 0

h

(
s, a
)

log
KH

δ

≥ Kdb,P 0

i

(
s, a
)

16
≥ c1 log KH

δ

16Pmin,h(s, a)
, (E.54)

where the second line follows from the above relation as long as c1 is sufficiently large. The last

inequality of (E.38) then follows from

c1 log KHS
δ

16Pmin,h(s, a)
≥ − log 2KHS

δ

log(1− Pmin,h(s, a))
, (E.55)

since x ≤ − log(1− x) for all x ∈ [0, 1].

E.2.2.4 Proof of (E.48)

Denoting

supp
(
P 0
h,s,a

)
:=
{
s′ ∈ S : P 0

h (s′ | s, a) > 0
}

as the support of P 0
h,s,a, we observe that

∣∣∣
(
P̂ 0
h,s,a − P 0

h,s,a

)
· exp

(−V
λ

)∣∣∣
P 0
h,s,a · exp

(−V
λ

) ≤

∑
s′∈supp

(
P 0
h,s,a

)
∣∣∣P̂ 0
h (s′ | s, a)− P 0

h (s′ | s, a)
∣∣∣ exp

(
−V (s′)
λ

)

∑
s′∈supp

(
P 0
h,s,a

) P 0
h (s′ | s, a) exp

(
−V (s′)
λ

)

≤ max
s′∈supp

(
P 0
h,s,a

)

∣∣∣P̂ 0
h (s′ | s, a)− P 0

h (s′ | s, a)
∣∣∣

P 0
h (s′ | s, a)

, (E.56)

where the second line follows from
∑

i ai =
∑

i bi
ai
bi
≤ (maxi

ai
bi

)
∑

i bi for any positive sequences

{ai, bi}i obeying ai, bi > 0.
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To continue, note that for any (h, s, a) ∈ Cb and s′ ∈ supp
(
P 0
h,s,a

)
, Nh(s, a)P̂ 0

h (s′ | s, a) follows

the binomial distribution Binomial
(
Nh(s, a), P 0

h (s′ | s, a)
)
. Thus, applying Lemma 59 with t =√

log(KHSδ )
cfNh(s,a)P 0

h (s′ | s,a)
yields

P
(∣∣∣P̂ 0

h (s′ | s, a)− P 0
h (s′ | s, a)

∣∣∣ ≥ P 0
h (s′ | s, a)t

)
≤ exp

(
−cfNh(s, a)P 0

h (s′ | s, a)t2
)
≤ δ

KHS
, (E.57)

as soon as t ≤ 1
2 , which can be verified by the fact (E.38) and Pmin,h(s, a) ≤ P 0

h (s′ | s, a) (cf. (E.14)),

namely,

Nh(s, a) ≥ c1 log KHS
δ

16Pmin,h(s, a)
≥ log

(
KHS
δ

)

4cfPmin,h(s, a)
≥ log

(
KHS
δ

)

4cfP
0
h (s′ | s, a)

(E.58)

as long as c1 is sufficiently large.

Applying (E.57) and taking the union bound over s ∈ supp
(
P 0
h,s,a

)
lead to that with probability

at least 1− δ
KH ,

max
s′∈supp

(
P 0
h,s,a

)

∣∣∣P̂ 0
h (s′ | s, a)− P 0

h (s′ | s, a)
∣∣∣

P 0
h (s′ | s, a)

≤ max
s′∈supp

(
P 0
h,s,a

)
P 0
h (s′ | s, a)

√
log(KHSδ )

cfNh(s,a)P 0
h (s′ | s,a)

P 0
h (s′ | s, a)

= max
s′∈supp

(
P 0
h,s,a

)

√
log(KHSδ )

cfNh(s, a)P 0
h (s′ | s, a)

≤
√

log(KHSδ )

cfNh(s, a)Pmin,h(s, a)
≤ 1

2
,

where the last line uses again (E.58). Plugging this back into (E.56) and applying the union bound

over (h, s, a) ∈ Cb then completes the proof.

E.2.3 Proof of Theorem 15

The proof of Theorem 15 is inspired by the construction in Li et al. (2022a) for standard MDPs,

but is considerably more involved to handle the uncertainty set unique in robust MDPs. We shall

first construct some hard instances and then characterize the sample complexity requirements over

these instances.

E.2.3.1 Construction of hard problem instances

Construction of a collection of hard MDPs. Let us introduce two MDPs

{
Mφ =

(
S,A, P φ = {P φh }Hh=1, {rh}Hh=1, H

)
|φ = {0, 1}

}
, (E.59)
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where the state space is S = {0, 1, . . . , S − 1}, and the action space is A = {0, 1}. The transition

kernel P φ of the constructed MDP Mφ is defined as

P φ1 (s′ | s, a) =





p1(s′ = 0) + (1− p)1(s′ = 1) if (s, a) = (0, φ)

q1(s′ = 0) + (1− q)1(s′ = 1) if (s, a) = (0, 1− φ)

1(s′ = 1) if s = 1

q1(s′ = s) + (1− q)1(s′ = 1) if s > 1

(E.60a)

and

P φh (s′ | s, a) = 1(s′ = s), ∀(h, s, a) ∈ {2, . . . ,H} × S ×A. (E.60b)

In words, except at step h = 1, the MDP always stays in the same state. Additionally, the MDP

will always stay in the state subset {0, 1} if the initial distribution is supported only on {0, 1}, in

view of (E.60). Here, p and q are set to be

p = 1− α and q = 1− α−∆ (E.61)

for some H ≥ 2e8, α and ∆ obeying

0 < α ≤ 1

H
≤ 1

2e8
and ∆ ≤ α

2
≤ 1

2H
≤ 1

4e8
, (E.62)

where β is set as

β :=
log 1

α+∆

2
≥ log(2H/3)

2
≥ 4. (E.63)

The assumption (E.62) immediately indicates the facts

1 > p > q ≥ 1

2
. (E.64)

Moreover, for any (h, s, a) ∈ [H]× S ×A, the reward function is defined as

rh(s, a) =

{
1 if s = 0

0 otherwise
. (E.65)

Construction of the history/batch dataset. In the nominal environmentMφ, a batch dataset

is generated consisting of K independent sample trajectories each of length H, where each trajectory

is generated according to (7.3), based on the following initial state distribution ρb and behavior
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policy πb = {πb
h}Hh=1:

ρb(s) = µ(s) and πb
h(a | s) =

1

2
, ∀(s, a, h) ∈ S ×A× [H]. (E.66)

Here, µ(s) is defined as the following state distribution supported on the state subset {0, 1}:

µ(s) =
1

CS
1(s = 0) +

(
1− 1

CS

)
1(s = 1), (E.67)

where 1(·) is the indicator function, and C > 0 is some constant that will determine the concentra-

bility coefficient C?rob (as we shall detail momentarily) and obeys

1

CS
≤ 1

4
. (E.68)

As it turns out, for any MDP Mφ, the occupancy distributions of the above batch dataset

are the same (due to symmetry) and admit the following simple characterization:

db,Pφ

1 (0, a) =
1

2
µ(0), ∀a ∈ A, (E.69a)

µ(s)

2
≤ db,Pφ

h (s) ≤ 2µ(s),
µ(s)

4
≤ db,Pφ

h (s, a) ≤ µ(s), ∀(s, a, h) ∈ S ×A× [H]. (E.69b)

In addition, we choose the following initial state distribution

ρ(s) =





1, if s = 0

0, if s > 0
. (E.70)

The proof of the claim (E.69) is postponed to Appendix E.2.3.3.

Uncertainty set of the transition kernels. Denote the transition kernel vector as

P φh,s,a := P φh (· | s, a) ∈ [0, 1]1×S . (E.71)

For any (s, a, h) ∈ S ×A× [H], the perturbation of the transition kernels in Mφ is restricted to the

following uncertainty set

Uσ(P φ) := ⊗ Uσ
(
P φh,s,a

)
, Uσ(P φh,s,a) :=

{
Ph,s,a ∈ ∆(S) : KL

(
Ph,s,a ‖ P φh,s,a

)
≤ σ

}
, (E.72)

where the radius of the uncertainty set σ obeys

(
1− 3

β

)
log

(
1

α+ ∆

)
≤ σ ≤

(
1− 2

β

)
log

(
1

α+ ∆

)
. (E.73)
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Before continuing, we shall introduce some notation for convenience. For any P φh (· | s, a) in

(E.60), we define the limit of the perturbed kernel transiting to the next state s′ from the current

state-action pair (s, a) by

P φh(s′ | s, a) := inf
Ph,s,a∈Uσ(Pφh,s,a)

Ph(s′ | s, a), (E.74)

and in particular, denote

p := P φ1 (0 | 0, φ), q = P φ1 (0 | 0, 1− φ). (E.75)

Armed with the above definitions, we introduce the following lemma which implies some useful

properties of the uncertainty set.

Lemma 62. When β satisfies (E.63) and the uncertainty level σ satisfies (E.73), the perturbed

transition kernels obey

p ≥ q ≥ 1

β
. (E.76)

Proof. See Appendix E.2.3.4.

Value functions and optimal policies. We take a moment to derive the corresponding value

functions and identify the optimal policies. With some abuse of notation, for any MDP Mφ, we

denote π?,φ = {π?,φh }Hh=1 as the optimal policy, and let V π,σ,φ
h (resp. V ?,σ,φ

h ) represent the robust

value function of policy π (resp. π?,φ) at step h with uncertainty radius σ. Armed with these

notation, we introduce the following lemma which collects the properties concerning the value

functions and optimal policies.

Lemma 63. For any φ = {0, 1} and any policy π, defining

zπφ := pπ1(φ | 0) + qπ1(1− φ | 0), (E.77)

it holds that

V π,σ,φ
1 (0) = 1 + zπφ(H − 1). (E.78)

In addition, the optimal policies and the optimal value functions obey

V ?,σ,φ
1 (0) = 1 + p(H − 1), (E.79a)

∀h ∈ [H] \ {1} : V ?,σ,φ
h (0) = H − h+ 1, (E.79b)

∀h ∈ [H] : π?,φh (φ | 0) = 1, π?,φh (φ | 1) = 1, V ?,σ,φ
h (1) = 0. (E.79c)
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The robust single-policy clipped concentrability coefficient C?rob obeys

2C ≤ C?rob ≤ 4C. (E.80)

Proof. See Appendix E.2.3.5.

In view of Lemma 63, we note that the smallest positive state transition probability of the

optimal policy π? under any MDP Mφ with φ ∈ {0, 1} thus can be given by

P ?min := min
h,s,s′

{
P φh

(
s′|s, π?,φh (s)

)
: P φh

(
s′|s, π?,φh (s)

)
> 0
}

= P φ1 (1|0, 1− φ) = 1− p, (E.81)

which obeys

α = P ?min ∈ (0, 1/H]

according to (E.61) and (E.62).

E.2.3.2 Establishing the minimax lower bound

We are now ready to establish the sample complexity lower bound. With the choice of the initial

distribution ρ in (E.70), for any policy estimator π̂ computed based on the batch dataset, we plan

to control the quantity 〈
ρ, V ?,σ,φ

1 − V π̂,σ,φ
1

〉
= V ?,σ,φ

1 (0)− V π̂,σ,φ
1 (0).

Step 1: converting the goal to estimate φ. We make the following claim which shall be

verified in Appendix E.2.3.6: given ε ≤ H
384e6 log( 1

α)
≤ H

384e6 log( 1
α+∆)

, choosing

∆ =
128e6σ(1− q)ε

H
=

128e6σ(α+ ∆)ε

H
≤

128e6(α+ ∆)ε log
(

1
α+∆

)

H
≤ α

2
, (E.82)

which satisfies (E.62) with the aid of (E.73) and (E.61), it holds that for any policy π̂,

〈
ρ, V ?,σ,φ

1 − V π̂,σ,φ
1

〉
≥ 2ε

(
1− π̂1(φ | 0)

)
. (E.83)

Armed with this relation between the policy π̂ and its sub-optimality gap, we are positioned to

construct an estimate of φ. We denote Pφ as the probability distribution when the MDP is Mφ, for

any φ ∈ {0, 1}.
Suppose for the moment that a policy estimate π̂ achieves

Pφ
{〈
ρ, V ?,σ,φ

1 − V π̂,σ,φ
1

〉
≤ ε
}
≥ 7

8
, (E.84)
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then in view of (E.83), we necessarily have π̂1(φ | 0) ≥ 1
2 with probability at least 7

8 . With this in

mind, we are motivated to construct the following estimate φ̂ for φ ∈ {0, 1}:

φ̂ = arg max
a∈{0,1}

π̂1(a | 0), (E.85)

which obeys

Pφ
{
φ̂ = φ

}
≥ Pφ

{
π̂1(φ | 0) > 1/2

}
≥ 7

8
. (E.86)

In what follows, we would like to show (E.86) cannot happen without enough samples, which would

in turn contradict (E.83).

Step 2: probability of error in testing two hypotheses. Armed with the above preparation,

we shall focus on differentiating the two hypotheses φ ∈ {0, 1}. Towards this, consider the minimax

probability of error defined as follows:

pe := inf
ψ

max
{
P0(ψ 6= 0), P1(ψ 6= 1)

}
, (E.87)

where the infimum is taken over all possible tests ψ constructed from the batch dataset.

Let µb,φ (resp. µb,φ
h (sh)) be the distribution of a sample trajectory {sh, ah}Hh=1 (resp. a sample

(ah, sh+1) conditional on sh) for the MDP Mφ. Following standard results from Tsybakov (2009,

Theorem 2.2) and the additivity of the KL divergence (cf. Tsybakov (2009, Page 85)), we obtain

pe ≥
1

4
exp

(
−KKL

(
µb,0 ‖ µb,1

))

≥ 1

4
exp

{
− 1

2
Kµ(0)

(
KL
(
P 0

1 (· | 0, 0) ‖ P 1
1 (· | 0, 0)

)
+ KL

(
P 0

1 (· | 0, 1) ‖ P 1
1 (· | 0, 1)

))}
, (E.88)

where we also use the independence of the K trajectories in the batch dataset in the first line. Here,

the second line arises from the chain rule of the KL divergence (Duchi, 2018, Lemma 5.2.8) and the

Markov property of the sample trajectories (recall that db,P 0

h = db,P 1

h ) according to

KL
(
µb,0 ‖ µb,1

)
=

H∑

h=1

E
sh∼db,P0

h

[
KL
(
µb,0
h (sh) ‖ µb,1

h (sh)
)]

=
∑

a∈{0,1}

db,P 0

1 (0, a)KL
(
P 0

1 (· | 0, a) ‖ P 1
1 (· | 0, a)

)

=
1

2
µ(0)

∑

a∈{0,1}

KL
(
P 0

1 (· | 0, a) ‖ P 1
1 (· | 0, a)

)
,

where the penultimate equality holds by the fact that P 0
h (· | s, a) and P 1

h (· | s, a) only differ when
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h = 1 and s = 0, and the last equality follows from (E.69).

It remains to control the KL divergence terms in (E.88). Given p ≥ q ≥ 1/2 (cf. (E.64)),

applying Lemma 60 (cf. (E.11)) yields

KL
(
P 0

1 (· | 0, 0) ‖ P 1
1 (· | 0, 0)

)
= KL (p ‖ q) ≤ (p− q)2

(1− p)p
(i)
=

∆2

p(1− p)
(ii)
=

1282e12σ2(1− q)2ε2

H2p(1− p)
(iii)

≤ c1σ
2P ?minε

2

H2
, (E.89)

where (i) follows from the definition (E.61), (ii) holds by plugging in the expression of ∆ in (E.82),

(iii) arises from 1 − q ≤ 2(1 − p) = 2P ?min (see (E.62) and (E.81)), p > 1
2 , as long as c1 is a large

enough constant. It can be shown that KL
(
P 0

1 (· | 0, 1) ‖ P 1
1 (· | 0, 1)

)
can be upper bounded in the

same way. Substituting (E.89) back into (E.88) demonstrates that: if the sample size is chosen as

KH ≤ H3SC?rob log 2

4c1P ?minσ
2ε2

, (E.90)

then one necessarily has

pe ≥
1

4
exp

{
− 1

2
Kµ(0) · 2c1σ

2P ?minε
2

H2

}
(i)
=

1

4
exp

{
−Kc1σ

2P ?minε
2

SCH2

}

(ii)

≥ 1

4
exp

{
−K 4c1σ

2P ?minε
2

SC?robH
2

}
≥ 1

8
, (E.91)

where (i) follows from (E.67) and (ii) holds by (E.80).

Step 3: putting things together. Finally, suppose that there exists an estimator π̂ such that

P0

{〈
ρ, V ?,σ,0

1 − V π̂,σ,0
1

〉
> ε
}
<

1

8
and P1

{〈
ρ, V ?,σ,1

1 − V π̂,σ,1
1

〉
> ε
}
<

1

8
.

Then Step 1 tells us that the estimator φ̂ defined in (E.85) must satisfy

P0

(
φ̂ 6= 0

)
<

1

8
and P1

(
φ̂ 6= 1

)
<

1

8
,

which cannot happen under the sample size condition (E.90) to avoid contradition with (E.91). The

proof is thus finished.
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E.2.3.3 Proof of (E.69)

With the initial state distribution and behavior policy defined in (E.66), we have for any MDP Mφ

with φ ∈ {0, 1},

db,Pφ

1 (s) = ρb(s) = µ(s),

which leads to

∀a ∈ A : db,Pφ

1 (0, a) =
1

2
µ(0). (E.92)

In view of (E.60a), the state occupancy distribution at step h = 2 obeys

db,Pφ

2 (0) = P
{
s2 = 0 | s1 ∼ db,Pφ

1 ;πb
}

= µ(0)
[
πb

1(φ | 0)p+ πb
1(1− φ | 0)q

]
=

(p+ q)µ(0)

2
,

and

db,Pφ

2 (1) = P
{
s2 = 1 | s1 ∼ db,Pφ

1 ;πb
}

= µ(0)
[
πb

1(φ | 0)(1− p) + πb
1(1− φ | 0)(1− q)

]
+ µ(1) = µ(1) +

(2− p− q)µ(0)

2
.

With the above result in mind and recalling the assumption in (E.64), we arrive at

µ(0)

2
≤ db,Pφ

2 (0) ≤ µ(0), µ(1) ≤ db,Pφ

2 (1)
(i)

≤ 2µ(1), (E.93)

where (i) holds by applying (E.64) and (E.68) (which implies µ(0) ≤ µ(1) by the assumption in

(E.68))

db,Pφ

2 (1) = µ(1) +
(2− p− q)µ(0)

2
≤ µ(1) + µ(0) ≤ 2µ(1).

Finally, from the definitions of P φh (· | s, a) in (E.60b) and the Markov property, we arrive at for any

(h, s) ∈ [H]× S,

µ(s)

2
≤ db,Pφ

h (s) ≤ 2µ(s), (E.94)

which directly leads to

µ(s)

4
≤ db,Pφ

h (s, a) = πb
1(a | s)db,Pφ

h (s) ≤ µ(s). (E.95)
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E.2.3.4 Proof of Lemma 62

Note that p ≥ q can be easily verified since p > q, which indicates that the first assertion is true. So

we will focus on the second assertion in (E.76). Towards this, invoking the definition in (E.10), let

σ′ be the KL divergence from Ber
(

1
β

)
to Ber(q), defined as follows

σ′ := KL

(
Ber

(
1

β

)
‖ Ber(q)

)
=

1

β
log

1
β

q
+

(
1− 1

β

)
log

(
1− 1

β

)

1− q

=

(
1

β

)
log

(
1

β

)
−
(

1

β

)
log(q) +

(
1− 1

β

)
log

(
1

α+ ∆

)
+

(
1− 1

β

)
log

(
1− 1

β

)
, (E.96)

where the second line uses the definition of q in (E.61). We claim that σ′ satisfies the following

relation with σ, which will be proven at the end of this proof:

(
1− 3

β

)
log

(
1

α+ ∆

)
≤ σ ≤

(
1− 2

β

)
log

(
1

α+ ∆

)
≤ σ′ ≤

(
1− 1

β

)
log

(
1

α+ ∆

)
. (E.97)

Recalling the definition of the transition kernel in (E.60a)

P φ1 (0 | 0, 1− φ) = q, P φ1 (1 | 0, 1− φ) = 1− q, P φ1 (s | 0, 1− φ) = 0, ∀s ∈ S \ {0, 1},

the uncertainty set of the transition kernel with radius σ is thus given as

Uσ(P φ1,0,1−φ) =
{
P1,0,1−φ ∈ ∆(S) : P (0 | 0, 1− φ) = q′, P (1 | 0, 1− φ) = 1− q′,KL

(
Ber

(
q′
)
‖ Ber(q)

)
≤ σ

}
.

(E.98)

Recalling the definition of q in (E.75), we can bound

q = inf
P1,0,1−φ∈Uσ(Pφ1,0,1−φ)

P (0 | 0, 1− φ) = inf
q′:KL(Ber(q′)‖Ber(q))≤σ

q′

(i)

≥ inf
q′:KL(Ber(q′)‖Ber(q))≤σ′

q′ =
1

β
,

where (i) holds by σ ≤ σ′ (cf. (E.97)) and the last equality follows from applying Lemma 60

(cf. (E.12)) and (E.96) to arrive at

∀0 ≤ q′ < 1

β
: KL

(
Ber

(
q′
)
‖ Ber(q)

)
> KL

(
Ber

(
1

β

)
‖ Ber(q)

)
= σ′.
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Proof of (E.97). To control σ′, we plug in the assumptions in (E.64) and β ≥ 4 and arrive at the

trivial facts

(
1

β

)
log

(
1

β

)
−
(

1

β

)
log(q) < 0,

(
1− 1

β

)
log

(
1− 1

β

)
< 0.

The above facts directly lead to

σ′ ≤
(

1− 1

β

)
log

(
1

α+ ∆

)
. (E.99)

Similarly, observing

−1 ≤
(

1

β

)
log

(
1

β

)
+

(
1− 1

β

)
log

(
1− 1

β

)
≤ 0, −

(
1

β

)
log(q) ≥ 0,

we arrive at

σ′ ≥ −1 +

(
1− 1

β

)
log

(
1

α+ ∆

)
≥
(

1− 2

β

)
log

(
1

α+ ∆

)
(E.100)

as long as log
(

1
α+∆

)
≥ β (cf. (E.63)). With (E.99) and (E.100) in hand, it is straightforward to

see that the choice of the uncertainty radius σ in (E.73) obeys the advertised bound (E.97).

E.2.3.5 Proof of Lemma 63

For notational conciseness, we shall drop the superscript φ and use the shorthand V π,σ
h = V π,σ,φ

h

and V ?,σ
h = V ?,σ,φ

h whenever it is clear from the context. We begin by deriving the robust value

function for any policy π. Starting with state 1, at any step h ∈ [H], it obeys

V π,σ
h (1) = Ea∼πh(· | 1)

[
rh(1, a) + inf

P∈Uσ(Pφh,1,a)
PV π,σ

h+1

]
= 0 + V π,σ

h+1(1),

where the first equality follows from the robust Bellman consistency equation (cf. (2.18)), and the

second equality follows from the observation that the distribution P φh,1,a is supported solely on state

1 in view of (E.60a), therefore Uσ(P φh,1,a) = P φh,1,a. Leveraging the terminal condition V π,σ
H+1(1) = 0,

and recursively applying the previous relation, we have

V ?,σ
h (1) = V π,σ

h (1) = 0, ∀h ∈ [H]. (E.101)

Similarly, turning to state 0, at any step h > 1, the robust value function satisfies

V π,σ
h (0) = Ea∼πh(· | 0)

[
rh(0, a) + inf

P∈Uσ(Pφh,0,a)
PV π,σ

h+1

]
= 1 + V π,σ

h+1(0),
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which again uses the fact that the distribution P φh,0,a is supported solely on state 0 in view of

(E.60b), therefore Uσ(P φh,0,a) = P φh,0,a. Leveraging the terminal condition V π,σ
H+1(0) = 0, and

recursively applying the previous relation, we have

V ?,σ
h (0) = V π,σ

h (0) = H − h+ 1, 2 ≤ h ≤ H. (E.102)

Taking (E.101) and (E.102) together, it follows that

∀ 2 ≤ h ≤ H : V π,σ
h (0) > V π,σ

h (1). (E.103)

Consequently, the robust value function of state 0 at step h = 1 satisfies

V π,σ
1 (0) = Ea∼π1(· | 0)

[
r1(0, a) + inf

P∈Uσ(Pφ1,0,a)
PV π,σ

2

]

(i)
= 1 + π1(φ | 0)

(
inf

P∈Uσ(Pφ1,0,φ)
PV π,σ

2

)
+ π1(1− φ | 0)

(
inf

P∈Uσ(Pφ1,0,1−φ)
PV π,σ

2

)

(ii)
= 1 + π1(φ | 0)

[
pV π,σ

2 (0) +
(
1− p

)
V π,σ

2 (1)
]

+ π1(1− φ | 0)
[
qV π,σ

2 (0) +
(
1− q

)
V π,σ

2 (1)
]

(iii)
= 1 + V π,σ

2 (1) + zπφ [V π,σ
2 (0)− V π,σ

2 (1)]

= 1 + zπφV
π,σ

2 (0) (E.104)

where (i) uses the definition of the reward function in (E.65), (ii) uses (E.103) so that the infimum

is attained by picking the choice specified in (E.75) with a smallest probability mass imposed on

the transition to state 0. Finally, we plug in the definition (E.77) of zπφ in (iii), and the last line

follows from (E.101).

Therefore, taking π = π?,φ in the previous relation directly leads to

V ?,σ
1 (0) = 1 + zπ

?,φ

φ V ?,σ
2 (0) = 1 + zπ

?,φ

φ (H − 1), (E.105)

where the second equality follows from (E.102). Observing that the function (H − 1)z is increasing

in z and that zπφ is increasing in π1(φ | 0) (due to the fact p ≥ q in (E.76)). As a result, the optimal

policy obeys

π?,φ1 (φ | 0) = 1 (E.106)

at state 0, and plugging back to (E.105) gives

V ?,σ
1 (0) = 1 + zπ

?,φ

φ (H − 1) = 1 + p(H − 1),

where zπ
?,φ

φ = pπ?,φ1 (φ | 0) + qπ?,φ1 (1− φ | 0) = p. For the rest of the states, without loss of generality,
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we choose the optimal policy obeying

∀h ∈ [H] : π?,φh (φ | 0) = 1, π?,φh (φ | 1) = 1. (E.107)

Proof of claim (E.80). Given that π?,φh (φ | 0) = 1 for all h ∈ [H] and ρ(0) = 1, for any P ∈ Uσ(P φ),

we have

d?,P2 (0, φ) = d?,P2 (0)π?,φ2 (φ | 0) = d?,P2 (0) = P
s2∼P (· | s1,π?,φ1 (s1))

{
s2 = 0 | s1 ∼ ρ;π?,φ

}

= P1(0 | 0, φ)
(i)

≥ P φ1 (0 | 0, φ)
(ii)
= p ≥ 1

β
, (E.108)

which (i) holds by plugging in the definition (E.74), (ii) follows from the definition (E.75), and the

final inequality arises from Lemma 62. Hence, for all 2 ≤ h ≤ H, by the Markov property and

P φh (0 | 0, φ) = 1, we have

d?,Ph (0, φ) = d?,P2 (0, φ) ≥ 1

β
. (E.109)

Examining the definition of C?rob in (7.5), we make the following observations.

• For h = 1, we have

max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P1 (s, a), 1

S

}

db,Pφ

1 (s, a)

(i)
= max

P∈Uσ(Pφ)

min
{
d?,P1 (0, φ), 1

S

}

db,Pφ

1 (0, φ)

(ii)
= max

P∈Uσ(Pφ)

1

Sdb,Pφ

1 (0, φ)

(iii)
=

2

Sµ(0)
= 2C, (E.110)

where (i) holds by d?,P1 (s) = ρ(s) = 0 for all s ∈ S \ {0} (see (E.70)) and π?,φh (φ | 0) = 1 for

all h ∈ [H], (ii) follows from the fact d?,P1 (0, φ) = 1, (iii) is verified in (E.69), and the last

equality arises from the definition in (E.67).

• Similarly, for h = 2, we arrive at

max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P2 (s, a), 1

S

}

db,Pφ

2 (s, a)

(i)
= max

s∈{0,1},P∈Uσ(Pφ)

min
{
d?,P2 (s, φ), 1

S

}

db,Pφ

2 (s, φ)

≤ max
s∈{0,1},P∈Uσ(Pφ)

1

Sdb,Pφ

2 (s, φ)

(ii)

≤ 4

Sµ(0)
= 4C,

(E.111)

where (i) holds by the optimal policy in (E.79) and the trivial fact that d?,P2 (s) = 0 for all

s ∈ S \ {0, 1} (see (E.70) and (E.60a)), (ii) arises from (E.69), and the last equality comes

from (E.67).
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• For all other steps h = 3, . . . ,H, observing from the deterministic transition kernels in (E.60b),

it can be easily verified that

max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,Ph (s, a), 1

S

}

db,Pφ

h (s, a)
= max

(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P2 (s, a), 1

S

}

db,Pφ

2 (s, a)
≤ 4C.

(E.112)

Combining the above cases, we complete the proof by

2C ≤ C?rob = max
(h,s,a,P )∈[H]×S×A×Uσ(Pφ)

min
{
d?,Ph (s, a), 1

S

}

db,Pφ

h (s, a)
≤ 4C.

E.2.3.6 Proof of the claim (E.83)

Recall that by virtue of (E.77) and (E.79), we arrive at

z?φ := zπ
?,φ

φ = pπ?,φ1 (φ | 0) + qπ?,φ1 (1− φ | 0) = p.

Applying (E.78) yields

〈
ρ, V ?,σ,φ

1 − V π,σ,φ
1

〉
= V ?,σ,φ

h (0)− V π,σ,φ
h (0) =

(
p− zπφ

)
(H − 1) =

(
p− q

)
(H − 1) (1− π1(φ | 0)) ,

(E.113)

where the last equality uses the definition (E.77). Therefore, it boils down to control p− q.
To continue, we define an auxiliary value function vector V ∈ RS×1 obeying

V (0) = H − 1 and V (s) = 0, ∀s ∈ S \ {0}. (E.114)

With this in hand, applying Lemma 56 gives

(H − 1)
(
p− q

)

(i)
= inf
P∈Uσ(Pφ1,0,φ)

PV − inf
P∈Uσ(Pφ1,0,1−φ)

PV

= sup
λ≥0

{
−λ log

(
P φ1,0,φ · exp

(−V
λ

))
− λσ

}
− sup

λ≥0

{
−λ log

(
P φ1,0,1−φ · exp

(−V
λ

))
− λσ

}

(ii)

≥
{
−λ? log

(
P φ1,0,φ · exp

(−V
λ?

))
− λ?σ

}
−
{
−λ? log

(
P φ1,0,1−φ · exp

(−V
λ?

))
− λ?σ

}

= −λ?
[
log

(
P φ1,0,φ · exp

(−V
λ?

))
− log

(
P φ1,0,1−φ · exp

(−V
λ?

))]
, (E.115)

376



where (i) follows from (see the definition of p in (E.75))

inf
P∈Uσ(Pφ1,0,φ)

PV = P φ1 (0 | 0, φ)V (0) = (H − 1)p,

inf
P∈Uσ(Pφ1,0,1−φ)

PV = P φ1 (0 | 0, 1− φ)V (0) = (H − 1)q.

Here, (ii) holds by letting

λ? := arg max
λ≥0

f(λ) := arg max
λ≥0

{
−λ log

(
P φ1,0,1−φ · exp

(−V
λ

))
− λσ

}
. (E.116)

The rest of the proof is then to control (E.115). We start with the observation that λ? > 0; this is

because in view of Lemma 57 (cf. (E.5)), it suffices to verify that

log(1− q) + σ
(i)

≤ log(α+ ∆) +

(
1− 2

β

)
log

(
1

α+ ∆

)
= − 2

β
log

(
1

α+ ∆

)
< 0, (E.117)

where (i) holds by (E.73). We now claim the following bound for λ? holds, whose proof is postponed

to the end:

H

16σ
≤ H − 1

log
(

β
α+∆

) ≤ λ? ≤ H − 1(
1− 3

β

)
log
(

1
α+∆

) , (E.118)

which immediately implies the following by taking exponential maps given λ? > 0:

α+ ∆

β
≤ e−(H−1)/λ? ≤ (α+ ∆)1−3/β. (E.119)

Moving to the second term of (E.115), it follows that

log

(
P φ1,0,φ · exp

(−V
λ?

))
− log

(
P φ1,0,1−φ · exp

(−V
λ?

))
(i)
= log

pe−(H−1)/λ? + (1− p)
qe−(H−1)/λ? + (1− q)

= log

(
1 +

(p− q)
(
e−(H−1)/λ? − 1

)

qe−(H−1)/λ? + (1− q)

)

(ii)
< − ∆

(
1− e−(H−1)/λ?

)

qe−(H−1)/λ? + (1− q)
(iii)

≤ −1

2

∆
(

1
α+∆

) 3
β

(1− q) + (1− q)

≤ − ∆

4e6(1− q) , (E.120)
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where (i) follows from the definitions in (E.60) and (E.114), (ii) holds by log(1 + x) < x for

x ∈ (−1,∞), (iii) can be verified by (E.119), β ≥ 4, and (E.62):

1− e−(H−1)/λ? ≥ 1− (α+ ∆)1−3/β ≥ 1− (α+ ∆)1/4 ≥ 1−
(

3

2H

)1/4

≥ 1

2
,

and the last line uses
(

1
α+∆

) 3
β

=
(

1
α+∆

)6/ log( 1
α+∆)

= e6 by the definition of β in (E.63). Plugging

(E.118) and (E.120) back into (E.115) and (E.113), we arrive at

〈
ρ, V ?,σ,φ

1 − V π,σ,φ
1

〉
= (H − 1)

(
p− q

)
(1− π1(φ | 0))

(i)

≥ H∆

64e6σ(1− q) (1− π1(φ | 0)) = 2ε (1− π1(φ | 0)) ,

where (i) holds by (E.118) and the last equality follows directly from the choice of ∆ in (E.82).

Proof of inequality (E.118). Applying (E.4) in Lemma 57 to λ? in (E.116) leads to the upper

bound in (E.118):

λ? ≤ H − 1

σ
≤ H − 1(

1− 3
β

)
log
(

1
α+∆

) , (E.121)

where the last inequality holds by (E.73). As a result, we shall focus on showing the lower bounds

in (E.118) in the remainder of the proof.

Recalling the definition of q in (E.61), we can reparameterize 1− q using two positive variables

cq and λq (whose choices will be made clearer soon) as follows:

1− q = α = cqe
−(H−1)/λq . (E.122)

Deriving the first derivative of the function of interest f(λ) in (E.116) as follows:

∇λf(λ) = ∇λ
(
−λ log

(
P φ1,0,1−φ · exp

(−V
λ

))
− λσ

)

(i)
= ∇λ

(
−λ log

(
qe−(H−1)/λ + 1− q

)
− λσ

)

= −σ − log
(
qe−(H−1)/λ + 1− q

)
− 1

λ
· q(H − 1)e−(H−1)/λ

qe−(H−1)/λ + 1− q , (E.123)

where (i) holds by the chosen transition kernels in (E.60) and the last line arises from basic calculus.
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To continue, when λ = λq, the derivative of the function f(λ) can be expressed as

∇λf(λ) | λ=λq = −σ − log

(
(1− q) q

cq
+ 1− q

)
+

(1− q) qcq log 1−q
cq

(1− q) qcq + 1− q

= −σ − log(1− q)− log

(
1 +

q

cq

)
+

q
cq

log 1−q
cq

q
cq

+ 1

= −σ − log(1− q)
(

1− q/cq
q/cq + 1

)
− log

(
1 +

q

cq

)
−

q
cq

log(cq)

1 + q/cq

(i)
= −σ + log

(
1

α+ ∆

)(
1− q/cq

q/cq + 1

)
− log

(
1 +

q

cq

)
−

q
cq

log(cq)

1 + q/cq
(E.124)

(ii)

≥ log

(
1

α+ ∆

)(
2

β
− q/cq
q/cq + 1

)
− log

(
1 +

q

cq

)
−

q
cq

log(cq)

1 + q/cq
(iii)

≥ 1

β
log

(
1

α+ ∆

)
− log(1 +

1

β
)− 1

≥ 1

β
log

(
1

α+ ∆

)
− 2 = 0, (E.125)

where (i) holds by (E.122), (ii) follows from the bound of σ in (E.73), (iii) arises from letting

cq = β ≥ 4 and noting the fact 1/2 ≤ q < 1 (see (E.64)), leading to

1

2β
≤ q

cq
<

1

β
,

q/cq
q/cq + 1

≤ 1

β
,

q
cq

log(cq)

1 + q/cq
< 1. (E.126)

Finally, the last line holds by 1/β ≤ 1
4 and log

(
1

α+∆

)
= 2β (see (E.63)).

To proceed, note that the function f(λ) is concave with respect to λ. Therefore, observing

∇λf(λ) | λ=λq ≥ 0 with cq = β, we have λq ≤ λ?, which implies (see (E.122))

1− q = α+ ∆ = βe−(H−1)/λq ≤ βe−(H−1)/λ? . (E.127)

The above assertion directly gives

λ? ≥ H − 1

log
(

β
α+∆

) .

The proof is completed by noticing

H − 1

log
(

β
α+∆

) =
H − 1

log
(

1
α+∆

)
+ log β

(i)

≥ H − 1

2 log
(

1
α+∆

) ≥ H

16σ
,

where (i) follows from (E.63), and the last inequality follows from (E.73) and the fact β ∈ [4,∞).
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E.3 Analysis: discounted infinite-horizon RMDPs

E.3.1 Proof of Lemma 38

We shall first show that the operator T̂ σpe(·) (cf. (7.30)) is a γ-contraction, which will in turn imply

the existence of the unique fixed point of T̂ σpe(·). Before starting, suppose that the entries of

Q1, Q2 ∈ RSA are all bounded in
[
0, 1

1−γ
]

for all (s, a) ∈ S ×A. Denote that

∀s ∈ S : V1(s) := max
a

Q1(s, a), V2(s) := max
a

Q2(s, a). (E.128)

Proof of γ-contraction. We first show that T̂ σpe(·) is a γ-contraction. Towards this, instead of

T̂ σpe(·), we begin with a simpler operator T̃ σpe(·), defined as follows:

∀(s, a) ∈ S ×A : T̃ σpe(Q)(s, a) = r(s, a) + γ inf
P∈Uσ(P̂ 0

s,a)
PV − b

(
s, a
)
, (E.129)

which consequently leads to

∀(s, a) ∈ S ×A : T̂ σpe(Q)(s, a) = max
{
T̃ σpe(Q)(s, a), 0

}
. (E.130)

It follows straightforwardly that

∥∥∥T̂ σpe(Q1)− T̂ σpe(Q2)
∥∥∥
∞
≤
∥∥∥T̃ σpe(Q1)− T̃ σpe(Q2)

∥∥∥
∞
, (E.131)

and hence it suffices to establish the γ-contraction of T̃ σpe(·). With this in mind, we observe that

∥∥∥T̃ σpe(Q1)− T̃ σpe(Q2)
∥∥∥
∞

= γ

∥∥∥∥∥ inf
P∈Uσ(P̂ 0

s,a)
PV1 − inf

P∈Uσ(P̂ 0
s,a)
PV2

∥∥∥∥∥
∞

(i)

≤ γ ‖V1 − V2‖∞

(ii)
= γmax

s

∣∣∣max
a

Q1(s, a)−max
a

Q2(s, a)
∣∣∣

≤ γmax
(s,a)
|Q1(s, a)−Q2(s, a)| = γ ‖Q1 −Q2‖∞ , (E.132)

where the first equality holds by the definition of T̃ σpe(·) (cf. (E.129)), (i) follows from that the

infimum operator is a 1-contraction w.r.t. ‖ · ‖∞ and ‖PV1−PV2‖∞ ≤ ‖V1−V2‖∞ for all P ∈ ∆(S),

(ii) arises from the definitions in (E.128), and the last inequality is due to the maximum operator

is also a 1-contraction w.r.t. ‖ · ‖∞. Combining the above two inequalities establish the desired

statement.

Existence of the unique fixed point. To continue, we shall first claim that there exists at least

one fixed point of T̂ σpe(·). This is a standard argument, which we omit for brevity; interested readers
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are encouraged to refer to, e.g. Li et al. (2022a), for details.

To prove the uniqueness of the fixed points of T̂ σpe(·), suppose that there exist two fixed points

Q′ and Q′′ obeying obeying Q′ = T̂ σpe(Q
′) and Q′′ = T̂ σpe(Q

′′). Moreover, the definition of T̂ σpe(·)
directly implies 0 ≤ Q′, Q′′ ≤ 1

1−γ , since for any 0 ≤ Q ≤ 1
1−γ , it follows that 0 ≤ T̂ σpe(Q) ≤ 1

1−γ . By

the γ-contraction property, it follows that

∥∥Q′ −Q′′
∥∥
∞ =

∥∥∥T̂ σpe(Q
′)− T̂ σpe(Q

′′)
∥∥∥
∞
≤ γ

∥∥Q′ −Q′′
∥∥
∞ . (E.133)

However, (E.133) can’t happen given γ ∈
[

1
2 , 1
)
, indicating the uniqueness of the fixed points of

T̂ σpe(·).

E.3.2 Proof of Lemma 41

To begin with, considering any Q,Q′ obeying Q ≤ Q′, and 0 ≤ Q,Q′ ≤ 1
1−γ . We observe that the

operator T̂ σpe(·) (cf. (7.30)) has the monotone non-decreasing property, namely,

T̂ σpe(Q)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV − b

(
s, a
)
, 0

}

= max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
Pmax

a′
Q(·, a′)− b

(
s, a
)
, 0

}

≤ max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
Pmax

a′
Q′(·, a′)− b

(
s, a
)
, 0

}
= T̂ σpe(Q

′)(s, a), (E.134)

where the last line uses Q ≤ Q′. Recalling the fixed point Q̂?,σpe of T̂ σpe(·), armed with (E.134) and

the initialization Q̂0 = 0, we arrive at

Q̂1 = T̂ σpe(Q̂0) ≤ T̂ σpe(Q̂
?,σ
pe ) = Q̂?,σpe ,

where the inequality follows from Q̂0 = 0 ≤ Q̂?,σpe . Implementing the above result recursively gives

∀ m ≥ 0 : Q̂m ≤ Q̂?,σpe .

Applying the γ-contraction property in Lemma 38 thus yields that for any m ≥ 0,

‖Q̂m − Q̂?,σpe ‖∞ =
∥∥∥T̂ σpe(Q̂m−1)− T̂ σpe(Q̂

?,σ
pe )
∥∥∥
∞
≤ γ‖Q̂m−1 − Q̂?,σpe ‖∞

≤ · · · ≤ γm‖Q̂0 − Q̂?,σpe ‖∞ = γm‖Q̂?,σpe ‖∞ ≤
γm

1− γ ,

where the last inequality holds by the fact ‖Q̂?,σpe ‖∞ ≤ 1
1−γ (see Lemma 38).
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E.3.3 Proof of Theorem 16

To begin, we introduce some additional notation that will be useful throughout the analysis. We

denote the state-action space covered by the batch dataset D as

Cb =
{

(s, a) : db,P 0
(s, a) > 0

}
. (E.135)

In addition, recalling the definition in (7.31), we define a similar one based on the true nominal

model P 0 as

Pmin(s, a) := min
s′

{
P 0(s′ | s, a) : P 0(s′ | s, a) > 0

}
, (E.136)

which directly indicates that

P ?min = min
s

Pmin(s, π?(s)), P b
min = min

(s,a)∈Cb
Pmin(s, a). (E.137)

Next, we denote the set of possible state occupancy distributions associated with the optimal policy

π? in a model within the uncertainty set P ∈ Uσ
(
P 0
)

as

D? :=
{[
d?,P (s)

]
s∈S : P ∈ Uσ

(
P 0
)}

=
{[
d?,P

(
s, π?(s)

)]
s∈S : P ∈ Uσ

(
P 0
)}
, (E.138)

where the second equality is due to the fact that π? is chosen to be deterministic.

We are now ready to embark on the proof of Theorem 16. We first introduce a fact that is

used throughout the proof; the proof is postponed to Appendix E.3.3.2:

∀(s, a) ∈ Cb : N(s, a) ≥ Ndb,P 0
(s, a)

12
≥ c1 log(NS/δ)

12Pmin(s, a)
≥ − log 2NS

δ

log(1− Pmin(s, a))
(E.139)

as long as (7.42) holds.

For notation simplicity, denote the output Q-function and value function from Algorithm 14

as Q̂ = Q̂M and V̂ = V̂M . Invoking Lemma 41 with M ≥ log σN
1−γ

log 1
γ

directly leads to

∥∥Q̂− Q̂?,σpe

∥∥
∞ ≤

1

σN
(E.140)

and therefore

∥∥V̂ − V̂ ?,σ
pe

∥∥
∞ ≤ max

s

∣∣∣max
a

Q̂(s, a)−max
a

Q̂?,σpe (s, a)
∣∣∣ ≤

∥∥Q̂− Q̂?,σpe

∥∥
∞ ≤

1

σN
. (E.141)

The proof of Theorem 16 is separated into several key steps as follows.
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Step 1: controlling the uncertainty via leave-one-out analysis. Given access to only a

finite number of samples for estimating the nominal transition kernel P 0, we need to efficiently

control ∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ − inf

P∈Uσ(P 0
s,a)
PV̂
∣∣∣∣∣

across the robust value iterations, where V̂ is statistically dependent on P̂ 0
s,a (since P̂ 0

s,a will be

reused in the update rule (cf. (7.35)) for all the iterations). A naive treatment via the standard

covering arguments will unfortunately lead to rather loose bounds (Panaganti and Kalathil, 2022;

Yang et al., 2022; Zhou et al., 2021). To overcome this challenge, we resort to the leave-one-out

analysis—pioneered by Agarwal et al. (2020b); Li et al. (2022a, 2023c) in the context of model-based

RL—to decouple the statistical dependency. The results are summarized in the following lemma,

with the proof provided in Appendix E.3.3.1.

Lemma 64. Instate the assumptions in Theorem 16. Then for all vector Ṽ obeying
∥∥Ṽ − V̂ ?,σ

pe

∥∥
∞ ≤

1
σN and ‖Ṽ ‖∞ ≤ 1

1−γ , with probability at least 1− δ, one has

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PṼ
∣∣∣∣∣ ≤ min





cb

σ(1− γ)

√√√√ log(2(1+σ)N3S
(1−γ)δ )

P̂min(s, a)N(s, a)
+

4

Nσ(1− γ)
,

1

1− γ





(E.142)

for all (s, a) ∈ S ×A. In addition, for all (s, a) ∈ Cb, with probability at least 1− δ, one has

Pmin(s, a)

8 log(NS/δ)
≤ P̂min(s, a) ≤ e2Pmin(s, a). (E.143)

Step 2: establishing the pessimism property. Armed with Lemma 64, we aim to show the

key property that

∀(s, a) ∈ S ×A : Q̂(s, a) ≤ Qπ̂,σ(s, a), V̂ (s) ≤ V π̂,σ(s). (E.144)

Similar to the finite-horizon setting, it suffices to focus on verifying the former assertion in (E.144).

Towards this, we first recall that the fixed point Q̂?,σpe of the pessimistic robust Bellman operator

T̂ σpe(·) (cf. (7.30)) obeys

Q̂?,σpe = T̂ σpe(Q̂
?,σ
pe ) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σ

pe − b
(
s, a
)
, 0

}
. (E.145)
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If Q̂?,σpe (s, a) = 0. Given the initialization Q̂0 = 0, invoking Lemma 41 gives

Q̂(s, a) = Q̂M (s, a) ≤ Q̂?,σpe (s, a) = 0.

As a result, Qπ̂,σ(s, a) ≥ 0 = Q̂(s, a) as desired. Therefore, it boils down to examine the case when

Q̂?,σpe (s, a) > 0. One has

Q̂(s, a)
(i)

≤ Q̂?,σpe (s, a) +
1

σN
= r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σ

pe − b
(
s, a
)

+
1

σN

≤ r(s, a) + γ inf
P∈Uσ(P̂ 0

s,a)
PV̂ − b(s, a) +

1

σN
+ γ

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σ

pe − inf
P∈Uσ(P̂ 0

s,a)
PV̂

∣∣∣∣∣
(ii)

≤ r(s, a) + γ inf
P∈Uσ(P̂ 0

s,a)
PV̂ − b(s, a) +

2

σN

≤ r(s, a) + γ inf
P∈Uσ(P 0

s,a)
PV̂ − b(s, a) +

2

σN
+ γ

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ − inf

P∈Uσ(P 0
s,a)
PV̂
∣∣∣∣∣

≤ r(s, a) + γ inf
P∈Uσ(P 0

s,a)
PV̂ , (E.146)

where (i) follows from (E.140), (ii) arises from (E.141) and the basic fact that infimum operator is

1-contraction w.r.t ‖ · ‖∞, and the last inequality holds by the definition of b(s, a) (cf. (7.32)) and

Lemma 64. Putting the above inequality together with the robust Bellman equation (cf. (2.27a))

pertaining to Qπ̂,σ(s, a), we arrive at

Qπ̂,σ(s, a)− Q̂(s, a) ≥ r(s, a) + γ inf
P∈Uσ(P 0

s,a)
PV π̂,σ −

(
r(s, a) + γ inf

P∈Uσ(P 0
s,a)
PV̂
)

= γ

(
inf

P∈Uσ(P 0
s,a)
PV π̂,σ − inf

P∈Uσ(P 0
s,a)
PV̂
)

(i)
= γ

(
P̃s,aV

π̂,σ − inf
P∈Uσ(P 0

s,a)
PV̂
)
≥ γP̃s,a

(
V π̂,σ − V̂

)
,

where (i) holds by setting P̃s,a = argminP∈Uσ(P 0
s,a)PV π̂,σ. Consequently, one has

min
s,a

[
Qπ̂,σ(s, a)− Q̂(s, a)

]
≥ min

s,a

[
γP̃s,a

(
V π̂,σ − V̂

)] (i)

≥ γmin
s

[
V π̂,σ(s)− V̂ (s)

]

= γmin
s

[
Qπ̂,σ

(
s, π̂(s)

)
− Q̂

(
s, π̂(s)

)]

≥ γmin
s,a

[
Qπ̂,σ

(
s, a
)
− Q̂

(
s, a
)]
, (E.147)
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where (i) follows from P̃s,a ∈ ∆(S) for all (s, a) ∈ S × A. Noting that 0 ≤ γ < 1, we conclude

Qπ̂,σ(s, a)− Q̂(s, a) ≥ 0 for all (s, a) ∈ S ×A. This establishes the claim (E.144).

Step 3: bounding V ?,σ(ρ)− V π̂,σ(ρ). In view of the pessimistic property (cf. (E.144)), it follows

that

V ?,σ(s)− V π̂,σ(s) ≤ V ?,σ(s)− V̂ (s). (E.148)

Towards this, note that

V̂ (s) = max
a

Q̂(s, a) ≥ Q̂
(
s, π?(s)

) (i)

≥ Q̂?,σpe

(
s, π?(s)

)
− 1

σN
(ii)

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P̂ 0
s,π?(s)

)PV̂ ?,σ
pe − b

(
s, π?(s)

)
− 1

σN

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P̂ 0
s,π?(s)

)PV̂ − b(s, π?(s))− 1

σN
− γ

∣∣∣∣∣∣
inf

P∈Uσ
(
P̂ 0
s,π?(s)

)PV̂ ?,σ
pe − inf

P∈Uσ
(
P̂ 0
s,π?(s)

)PV̂
∣∣∣∣∣∣

(iii)

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P̂ 0
s,π?(s)

)PV̂ − b(s, π?(s))− 2

σN

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P 0
s,π?(s)

)PV̂ − b(s, π?(s))− 2

σN
− γ

∣∣∣∣∣∣
inf

P∈Uσ
(
P̂ 0
s,π?(s)

)PV̂ − inf
P∈Uσ

(
P 0
s,π?(s)

)PV̂
∣∣∣∣∣∣

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P 0
s,π?(s)

)PV̂ − 2b
(
s, π?(s)

)
, (E.149)

where (i) follows from (E.140), (ii) holds by applying (E.145), (iii) arises from (E.141), and the

basic fact that the infimum operator is a 1-contraction w.r.t. ‖ · ‖∞, and the final inequality holds

by the definition of b(s, a) (see (7.32)) and Lemma 64.

To continue, invoking the robust Bellman optimality equation in (2.27b) gives

V ?,σ(s) = Q?,σ
(
s, π?(s)

)
= r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P 0
s,π?(s)

)PV ?,σ.

Combining the above relation with (E.149), we arrive at

V ?,σ(s)− V̂ (s) ≤ γ inf
P∈Uσ

(
P 0
s,π?(s)

)PV ?,σ − γ inf
P∈Uσ

(
P 0
s,π?(s)

)PV̂ + 2b
(
s, π?(s)

)

≤ γP̂ inf
s,π?(s)

(
V ?,σ − V̂

)
+ 2b

(
s, π?(s)

)
, (E.150)
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where the final inequality holds evidently, by introducing

P̂ inf
s,π?(s) := argmin

P∈Uσ
(
P 0
s,π?(s)

) PV̂ . (E.151)

Before continuing, for convenience, let us introduce a matrix P̂ inf ∈ RS×S and a vector

b? ∈ RS , where their s-th rows (resp. entries) are defined as

[
P̂ inf

]
s,·

= P̂ inf
s,π?(s), and b?(s) = b

(
s, π?(s)

)
. (E.152)

With these notation in hand, averaging (E.150) over the initial state distribution ρ leads to

V ?,σ(ρ)− V̂ (ρ) =
∑

s∈S
ρ(s)

(
V ?,σ(s)− V̂ (s)

)

≤ γ
∑

s∈S
ρ(s)P̂ inf

s,π?(s)

(
V ?,σ − V̂

)
+ 2

∑

s∈S
ρ(s)b

(
s, π?(s)

)

= γρ>P̂ inf
(
V ?,σ − V̂

)
+ 2ρ>b?. (E.153)

Applying the above result recursively gives

V ?,σ(ρ)− V̂ (ρ) ≤ γρ>P̂ inf
(
V ?,σ − V̂

)
+ 2ρ>b?

≤ γ
(
γρ>P̂ inf

)
P̂ inf

(
V ?,σ − V̂

)
+ 2

(
γρ>P̂ inf

)
b? + 2ρ>b?

≤ · · · ≤
{

lim
i→∞

γiρ>
(
P̂ inf

)i (
V ?,σ − V̂

)}
+ 2ρ>

∞∑

i=0

γi
(
P̂ inf

)i
b?

(i)

≤ 2ρ>
∞∑

i=0

γi
(
P̂ inf

)i
b? = 2ρ>

(
I − γP̂ inf

)−1
b?, (E.154)

where (i) holds by
∣∣ρ>

(
P̂ inf

)i (
V ?,σ − V̂

) ∣∣ ≤ 1
1−γ for all i ≥ 0, and that limi→∞ γ

iρ>
(
P̂ inf

)i (
V ?,σ − V̂

)
=

0 since limi→∞ γ
i = 0 for all 0 ≤ γ < 1.

To further characterize the above performance gap, invoking the definition of d?,P (cf. (2.22)

and (2.28a)), we arrive at

(
d?,P̂

inf
)>

= (1− γ)ρ>
∞∑

t=0

γt
(
P̂ inf

)t
= (1− γ)ρ>

(
I − γP̂ inf

)−1
. (E.155)

Plugging the above expression back into (E.154), and combining with(E.148), yields

V ?,σ(ρ)− V π̂,σ(ρ) ≤ V ?,σ(ρ)− V̂ (ρ) ≤ 2

1− γ
〈
d?,P̂

inf
, b?
〉
. (E.156)
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Step 4: controlling
〈
d?,P̂

inf
, b?
〉

using concentrability. Note that P̂ inf ∈ Uσ(P 0) (see (E.151)

and (E.152)), which in words means P̂ inf is some transition kernel inside Uσ(P 0) — the uncertainty

set around the nominal kernel P 0. Similar to the finite-horizon case, observing that we can express〈
d?,P̂

inf
, b?
〉

=
∑

s∈S d
?,P̂ inf

(s)b?(s), we divide the states into two cases and control them separately.

• Case 1: s ∈ S where max
P∈Uσ

(
P 0
) d?,P

(
s, π?(s)

)
= 0. Since P̂ inf ∈ Uσ(P 0), one has

0 ≤ d?,P̂ inf
(s) = d?,P̂

inf(
s, π?(s)

)
≤ max

P∈Uσ
(
P 0
) d?,P

(
s, π?(s)

)
= 0,

which consequently indicates

d?,P̂
inf

(s) = 0. (E.157)

• Case 2: s ∈ S where max
P∈Uσ

(
P 0
) d?,P

(
s, π?(s)

)
> 0. For any such state s, we claim that

db,P 0(
s, π?(s)

)
> 0 and

(
s, π?(s)

)
∈ Cb. (E.158)

This is due to Assumption 6, which requires C?rob to be finite given the numerator is positive:

max
P∈Uσ(P 0)

min
{
d?,P

(
s, π?(s)

)
, 1
S

}

db,P 0
(
s, π?(s)

) = max
P∈Uσ(P 0)

min
{
d?,P (s), 1

S

}

db,P 0(s, a)
≤ C?rob <∞. (E.159)

To continue, invoking the fact in (E.139) with
(
s, π?(s)

)
∈ Cb gives

N
(
s, π?(s)

)
≥ Ndb,P 0(

s, π?(s)
)

12

(i)

≥
N maxP∈Uσ(P 0) min

{
d?,P

(
s, π?(s)

)
, 1
S

}

12C?rob

≥ N min
{
d?,P̂

inf
(s), 1

S

}

12C?rob

, (E.160)

where (i) holds by Assumption 6, and the last inequality holds by P̂ inf ∈ Uσ(P 0). With this

in mind, we can control the pessimistic penalty b?(s) (cf. (7.32)) by

b?(s) ≤ cb

σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)

P̂min

(
s, π?(s)

)
N
(
s, π?(s)

) +
4

σN(1− γ)
+

2

σN

(i)

≤ 4cb

σ(1− γ)

√√√√ log2
(

2(1+σ)N3S
(1−γ)δ

)

Pmin

(
s, π?(s)

)
N
(
s, π?(s)

) +
4

σN(1− γ)
+

2

σN
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≤ 16cb

σ(1− γ)

√√√√√ C?rob log2
(

2(1+σ)N3S
(1−γ)δ

)

Pmin

(
s, π?(s)

)
N min

{
d?,P̂ inf (s), 1

S

} +
6

σN(1− γ)

≤ 20cb

σ(1− γ)

√√√√√ C?rob log2
(

2(1+σ)N3S
(1−γ)δ

)

Pmin

(
s, π?(s)

)
N min

{
d?,P̂ inf (s), 1

S

} ,

where (i) arises from (E.143), the penultimate inequality follows from (E.160), and the last

inequality holds as long as cb is large enough.

Summing up the above two cases, we arrive at

〈
d?,P̂

inf
, b?
〉

=
∑

s∈S
d?,P̂

inf
(s)b?(s)

≤
∑

s∈S
d?,P̂

inf
(s)

20cb

σ(1− γ)

√√√√√ C?rob log2
(

2(1+σ)N3S
(1−γ)δ

)

Pmin

(
s, π?(s)

)
N min

{
d?,P̂ inf (s), 1

S

}

(i)

≤ 20cb

σ(1− γ)

√√√√√∑

s∈S
d?,P̂ inf (s)

C?rob log2
(

2(1+σ)N3S
(1−γ)δ

)

Pmin

(
s, π?(s)

)
N min

{
d?,P̂ inf (s), 1

S

}
√∑

s∈S
d?,P̂ inf (s)

≤ 40cb

σ(1− γ)

√√√√SC?rob log2
(

2(1+σ)N3S
(1−γ)δ

)

P ?minN
, (E.161)

where (i) arises from Cauchy-Schwarz inequality, and the last inequality holds since Pmin

(
s, π?(s)

)
≥

P ?min for all s ∈ S (see (E.137)) and the following fact (which has been established in (E.36)):

∑

s∈S

d?,P̂
inf

(s)

min
{
d?,P̂ inf (s), 1

S

} ≤ 2S.

Finally, inserting (E.161) back into (E.156), with probability at least 1− 2δ, one has

V ?,σ(ρ)− V π̂,σ(ρ) ≤ 2

1− γ
〈
d?,P̂

inf
, b?
〉
≤ 80cb

σ(1− γ)2

√√√√SC?rob log2
(

2(1+σ)N3S
(1−γ)δ

)

P ?minN
,

which concludes the proof.

E.3.3.1 Proof of Lemma 64

We first note that the second assertion in (E.143) is the counterpart of (E.18), which can be verified

following the same argument in Appendix E.2.2.1. For brevity, we omit its proof, and shall focus on
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verifying (E.142).

To begin with, we consider the situation when N(s, a) = 0. In this case, (E.142) can be easily

verified since

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV − inf

P∈Uσ(P 0
s,a)
PV
∣∣∣∣∣

(i)
= inf
P∈Uσ(P 0

s,a)
PV ≤ ‖V ‖∞

(ii)

≤ 1

1− γ , (E.162)

where (i) follows from the fact P̂ 0
s,a = 0 when N(s, a) = 0 (see (7.28)), and (ii) arises from the

assumption ‖V ‖∞ ≤ 1
1−γ . Consequently, in the remainder of the proof, we focus on verifying (E.142)

when N(s, a) > 0. Let us first introduce the counterpart of the claim (E.17) in Lemma 61 as follows.

Lemma 65. For all (s, a) ∈ S ×A with N(s, a) > 0, consider any vector V ∈ RS independent of

P̂ 0
s,a obeying ‖V ‖∞ ≤ 1

1−γ . With probability at least 1− δ, one has

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV − inf

P∈Uσ(P 0
s,a)
PV
∣∣∣∣∣ ≤

cb

σ(1− γ)

√
log(NSδ )

P̂min(s, a)N(s, a)
. (E.163)

Proof. The proof follows from the same arguments in Appendix E.2.2.2, with small modifications to

adapt to the infinite-horizon setting; we omit the details for conciseness.

Armed with the above point-wise concentration bound, we are now ready to derive the uniform

concentration bound desired as in Lemma 64, counting on a leave-one-out argument divided into

the following steps. The crux of the analysis is to construct a set of auxiliary RMDPs, each different

from the empirical RMDP only at a single state but possessing crucial statistical independence that

facilitates the concentration arguments, which can then be transferred back to the empirical RMDP

via a simple triangle inequality.

Step 1: construction of auxiliary RMDPs with state-absorbing empirical nominal tran-

sitions. Denote the empirical infinite-horizon robust MDP with the nominal transition kernel P̂ 0

as M̂rob. Then, for each state s and each scalar u ≥ 0, we can construct an auxiliary robust MDP

M̂s,u
rob so that it is the same as M̂rob except the properties in state s. To be precise, let the nominal

transition kernel and reward function of M̂s,u
rob be P s,u and rs,u, which are given respectively as




P s,u(s′ | s, a) = 1(s′ = s) for all (s′, a) ∈ S ×A,
P s,u(· | s̃, a) = P̂ 0(· | s̃, a) for all (s̃, a) ∈ S ×A and s̃ 6= s,

(E.164)

and




rs,u(s, a) = u for all a ∈ A,
rs,u(s̃, a) = r(s̃, a) for all (s̃, a) ∈ S ×A and s̃ 6= s.

(E.165)
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Clearly, state s of the auxiliary M̂s,u
rob is absorbing, meaning that the state stays at s once entering it.

This removes the randomness of P̂ 0
s,a for all a ∈ A in state s, a key property we will leverage later.

With the robust MDP M̂s,u
rob in hand, we still need to complete the design by defining the

corresponding penalty term for all (s̃, a) ∈ S ×A, which is given as follows

bs,u(s̃, a) :=





min

{
cb

σ(1−γ)

√
log
(

2(1+σ)N3S
(1−γ)δ

)
P s.umin (s,a)N(s̃,a) + 4

Nσ(1−γ) ,
1

1−γ

}
+ 2

σN if N(s̃, a) > 0,

1
1−γ + 2

σN otherwise,

(E.166)

where P s,umin(s̃, a) is defined as the smallest positive state transition probability over the nominal

kernel P s,u(· | s̃, a):

∀(s̃, a) ∈ S ×A : P s,umin(s̃, a) := min
s′

{
P s,u(s′ | s̃, a) : P s,u(s′ | s̃, a) > 0

}
. (E.167)

In view of (E.164) and (7.31), it holds that P s,umin(s̃, a) = P̂min(s̃, a), and therefore bs,u(s̃, a) = b(s̃, a),

when s̃ 6= s for any u ≥ 0. Armed with the above definitions, the pessimistic robust Bellman

operator T̂ σs,u(Q)(·) of the RMDP M̂s,u
rob is defined as

∀(s, a) ∈ S ×A : T̂ σs,u(Q)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P s,us,a )
PV − bs,u(s, a), 0

}
. (E.168)

Step 2: fixed-point equivalence between M̂rob and the auxiliary RMDP M̂s,u
rob. Recall

that Q̂?,σpe is the unique fixed point of T̂ σpe(·) with the corresponding value V̂ ?,σ
pe . We claim that

there exists some choice of u such that the fixed point of T̂ σs,u(Q)(·) coincides with that of T̂ σpe(·). In

particular, given a state s, we show the following choice of u suffices:

u? := (1− γ)V̂ ?,σ
pe (s) + min





cb

σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)

P s.umin(s, a)N(s, a)
+

4

Nσ(1− γ)
,

1

1− γ





+
2

σN
.

(E.169)

Towards this, we shall break our arguments in two different cases.

• For state s′ 6= s. In this case, for any a ∈ A, it can be verified that

max



r

s,u?(s′, a) + γ inf
P∈Uσ(P s,u

?

s′,a )

PV̂ ?,σ
pe − bs,u

?
(s′, a), 0





= max



r(s

′, a) + γ inf
P∈Uσ(P̂ 0

s′,a)
PV̂ ?,σ

pe − b(s′, a), 0




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= T̂ σpe(Q̂
?,σ
pe )(s′, a) = Q̂?,σpe (s′, a), (E.170)

where the second line follows from the definitions in (E.165) and (E.164) as well as bs,u
?
(s′, a) =

b(s′, a) when s′ 6= s, the last line arises from the definition of the pessimistic Bellman operator

(7.30), and that Q̂?,σpe is the fixed point.

• For state s. In this case, for any u and a ∈ A, observing that P s,u(s′ | s, a) has only one

positive entry equal to 1 (cf. (E.164)), applying (E.167) yields

P s,umin(s, a) = 1. (E.171)

Plugging the above fact into (E.166) leads to

bs,u(s, a) =





min

{
cb

σ(1−γ)

√
log
(

2(1+σ)N3S
(1−γ)δ

)
N(s,a) + 4

Nσ(1−γ) ,
1

1−γ

}
+ 2

σN if N(s, a) > 0,

1
1−γ otherwise

(E.172)

for all a ∈ A. As a result, we have for any a ∈ A:

max

{
rs,u

?
(s, a) + γ inf

P∈Uσ(P s,u
?

s,a )

PV̂ ?,σ
pe − bs,u

?
(s, a), 0

}

= max
{
u? + γV̂ ?,σ

pe (s)− bs,u?(s, a), 0
}

= max
{

(1− γ)V̂ ?,σ
pe (s) + γV̂ ?,σ

pe (s), 0
}

= V̂ ?,σ
pe (s), (E.173)

where the second line follows from the fact that P s,u
?

s,a is a singleton distribution at state s,

and hence Uσ(P s,u
?

s,a ) = P s,u
?

s,a by the definition of the KL uncertainty set, and the second line

follows from plugging in the definition of u? in (E.169) and bs,u
?
(s, a) in (E.172).

Summing up the above two cases, we establish that there exists a fixed point Q̂?,σs,u? of the operator

T̂ σs,u?(·) if we let




Q̂?,σs,u?(s, a) = V̂ ?,σ

pe (s) for all a ∈ A,
Q̂?,σs,u?(s

′, a) = Q̂?,σpe (s′, a) for all s′ 6= s and a ∈ A.
(E.174)

Consequently, we confirm the existence of a fixed point of the operator T̂ σs,u?(·). In addition, its

corresponding value function V̂ ?,σ
s,u? also coincides with V̂ ?,σ

pe .
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Step 3: building an ε-net for all reward values u. It is easily verified that the reward u?

obeys

u? ≤ 1 + min





cb

σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)

P s,umin(s, a)N(s, a)
+

4

σN(1− γ)
,

1

1− γ





+
2

σN
≤ 2

σ
+

2

1− γ .

(E.175)

As a result, we construct an ε-net (Vershynin, 2018) of the line segment within the range
[
0, 2

σ + 2
1−γ
]

with ε = 1
σN as follows:

Uε :=

{
i

σN
| 1 ≤ i ≤

⌊
σN

(
2

σ
+

2

1− γ

)⌋}
. (E.176)

Armed with this covering net Uε, we can construct an auxiliary robust MDP M̂s,u
rob and its

corresponding pessimistic robust Bellman operator for each u ∈ Uε (see Step 1). Following the same

arguments in the proof of Lemma 38 (cf. Appendix E.3.1), for each u ∈ Uε, it can be verified that

there exists a unique fixed point Q̂?,σs,u of the operator T̂ σs,u(·), which satisfies 0 ≤ Q̂?,σs,u ≤ 1
1−γ · 1. In

turn, the corresponding value function also satisfies ‖V̂ ?,σ
s,u ‖∞ ≤ 1

1−γ .

In view of the definitions in (E.164) and (E.165), for all u ∈ Uε, M̂s,u
rob is statistically indepen-

dent from P̂ 0
s,a, which indicates the independence between V̂ ?,σ

s,u and P̂ 0
s,a. This makes it possible

to invoke Lemma 65, and taking the union bound over all samples N and u ∈ Uε give that, with

probability at least 1− δ,

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σ

s,u − inf
P∈Uσ(P 0

s,a)
PV̂ ?,σ

s,u

∣∣∣∣∣ ≤
cb

σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)

P̂min(s, a)N(s, a)
(E.177)

hold simultaneously for all (s, a, u) ∈ S ×A× Uε with N(s, a) > 0.

Step 4: a covering argument. Recalling that u? ∈
[
0, 2

σ + 2
1−γ
]

(see (E.175)), we can always

find some ũ ∈ Uε such that |ũ− u?| ≤ 1
σN . Consequently, plugging in the operator in (E.168) yields

∀Q ∈ RSA :
∥∥∥T̂ σs,ũ(Q)− T̂ σs,u?(Q)

∥∥∥
∞

(i)

≤ |ũ− u?| ≤ 1

σN
, (E.178)

where (i) holds by bs,ũ(s, a) = bs,u
?
(s, a) for s (see (E.172)) and bs,ũ(s′, a) = bs,u

?
(s′, a) = b(s′, a) for

all s′ 6= s.

With this in mind, we observe that the fixed points of T̂ σs,ũ(·) and T̂ σs,u?(·) obey

∥∥∥Q̂?,σs,ũ − Q̂
?,σ
s,u?

∥∥∥
∞

=
∥∥∥T̂ σs,ũ(Q̂?,σs,ũ)− T̂ σs,u?(Q̂?,σs,u?)

∥∥∥
∞
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≤
∥∥∥T̂ σs,ũ(Q̂?,σs,ũ)− T̂ σs,ũ(Q̂?,σs,u?)

∥∥∥
∞

+
∥∥∥T̂ σs,ũ(Q̂?,σs,u?)− T̂ σs,u?(Q̂?,σs,u?)

∥∥∥
∞

≤ γ
∥∥∥Q̂?,σs,ũ − Q̂

?,σ
s,u?

∥∥∥
∞

+
1

σN
, (E.179)

which directly indicates that

∥∥∥Q̂?,σs,ũ − Q̂
?,σ
s,u?

∥∥∥
∞
≤ 1

(1− γ)σN
(E.180)

and

∥∥∥V̂ ?,σ
s,ũ − V̂

?,σ
s,u?

∥∥∥
∞
≤
∥∥∥Q̂?,σs,ũ − Q̂

?,σ
s,u?

∥∥∥
∞
≤ 1

(1− γ)σN
. (E.181)

Armed with the above facts, invoking the identity V̂ ?,σ
pe = V̂ ?,σ

s,u? established in Step 2 gives

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σ

pe − inf
P∈Uσ(P 0

s,a)
PV̂ ?,σ

pe

∣∣∣∣∣ =

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σ

s,u? − inf
P∈Uσ(P 0

s,a)
PV̂ ?,σ

s,u?

∣∣∣∣∣
(i)

≤
∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σ

s,ũ − inf
P∈Uσ(P 0

s,a)
PV̂ ?,σ

s,ũ

∣∣∣∣∣

+

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σ

s,ũ − inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σ

s,u?

∣∣∣∣∣+

∣∣∣∣∣ inf
P∈Uσ(P 0

s,a)
PV̂ ?,σ

s,ũ − inf
P∈Uσ(P 0

s,a)
PV̂ ?,σ

s,u?

∣∣∣∣∣
(ii)

≤
∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σ

s,ũ − inf
P∈Uσ(P 0

s,a)
PV̂ ?,σ

s,ũ

∣∣∣∣∣+
2

Nσ(1− γ)

≤ cb

σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)

P̂min(s, a)N(s, a)
+

2

Nσ(1− γ)
, (E.182)

where (i) holds by applying the triangle inequality, (ii) arises from (E.181) and the basic fact that

infimum operator is a 1-contraction w.r.t. ‖ · ‖∞, and the final inequality follows from (E.177).

Step 5: finishing up. Now we are positioned to finish up the proof. For all vector Ṽ obeying∥∥Ṽ − V̂ ?,σ
pe

∥∥
∞ ≤

1
σN and ‖Ṽ ‖∞ ≤ 1

1−γ , we apply the triangle inequality and invoke (E.182) to reach

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PṼ
∣∣∣∣∣ ≤

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σ

pe − inf
P∈Uσ(P 0

s,a)
PV̂ ?,σ

pe

∣∣∣∣∣

+

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σ

pe

∣∣∣∣∣+

∣∣∣∣∣ inf
P∈Uσ(P 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σ

pe

∣∣∣∣∣

≤ cb

σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)

P̂min(s, a)N(s, a)
+

4

Nσ(1− γ)
. (E.183)
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Finally, we complete the proof by verifying that

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PṼ
∣∣∣∣∣ ≤

∥∥∥Ṽ
∥∥∥
∞
≤ 1

1− γ . (E.184)

E.3.3.2 Proof of (E.139)

For all (s, a) ∈ Cb, one has

Ndb,P 0(
s, a
) (i)

≥ c1d
b,P 0(

s, a
)

log(NS/δ)

db
minP

b
min

(ii)

≥ c1 log(NS/δ)

P b
min

(iii)

≥ c1 log(NS/δ)

Pmin(s, a)
, (E.185)

where (i) follows from the condition (7.42), (ii) arises from the definition that db
min ≤ db,P 0

(s, a) for

all (s, a) ∈ Cb, and (iii) follows from the definition in (E.137). In particular, when c1 is large enough,

one has 2
3 log NS

δ < Ndb,P0
(s,a)

12 . To continue, we recall a key property of N(s, a) (cf. (7.27)) in the

following lemma.

Lemma 66 ((Li et al., 2022a, Lemma 7)). Fix δ ∈ (0, 1). With probability at least 1 − δ, the

quantities {N(s, a)} in (7.27) obey

max

{
N(s, a),

2

3
log

NS

δ

}
≥ Ndb,P 0

(s, a)

12
(E.186)

simultaneously for all (s, a) ∈ S ×A.

Consequently, Lemma 66 tells us that with probability at least 1− δ,

N(s, a) ≥ Ndb,P 0
(s, a)

12
≥ c1 log(NS/δ)

12Pmin(s, a)
(E.187)

as long as c1 is large enough. Last but not least, taking the basic fact x ≤ − log(1 − x) for all

x ∈ [0, 1], the last inequality of (E.139) can be verified by

c1 log(NS/δ)

12Pmin(s, a)
≥ − log 2NS

δ

log(1− Pmin(s, a))
. (E.188)

E.3.4 Proof of Theorem 17

Similar to the finite-horizon case, we shall first construct some hard discounted infinite-horizon

RMDP instances and then characterize the sample complexity requirements over these instances.
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E.3.4.1 Construction of hard problem instances

Construction of a collection of hard MDPs. Suppose there are two MDPs

{
Mφ =

(
S,A, P φ, r, γ

)
|φ = {0, 1}

}
.

Here, γ is the discount parameter, S = {0, 1, . . . , S − 1} is the state space, and A = {0, 1} is the

action space. The transition kernel P φ of either constructed MDP Mφ is defined as

P φ(s′ | s, a) =





p1(s′ = 2) + (1− p)1(s′ = 1) if (s, a) = (0, φ)

q1(s′ = 2) + (1− q)1(s′ = 1) if (s, a) = (0, 1− φ)

1(s′ = s) if s = 1 or s = 2

q1(s′ = s) + (1− q)1(s′ = 1) if s > 2

, (E.189)

where p and q are set as

p = 1− α and q = 1− α−∆ (E.190)

for some γ, α and ∆ obeying

0 < α ≤ 1− γ ≤ 1/(2e8) ≤ 1

2
and ∆ ≤ α

2
. (E.191)

Here, α and ∆ are some values that will be introduced later. Consequently, applying (E.190) directly

leads to

1 ≥ p ≥ q ≥ γ ≥ 1

2
. (E.192)

Note that state 1 and 2 are absorbing states. In addition, if the initial distribution is supported on

states {0, 1, 2}, the MDP will always stay in the state {1, 2} after the first transition.

Finally, we define the reward function as

r(s, a) =

{
1 if s = 0 or s = 2

0 otherwise
. (E.193)

Construction of the history/batch dataset. Define a useful state distribution (only supported

on the state subset {0, 1, 2}) as

µ(s) =
1

CS
1(s = 0) +

1

CS
1(s = 2) +

(
1− 2

CS

)
1(s = 1), (E.194)
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where C > 0 is some constant that determines the robust concentrability coefficient C?rob (which will

be made clear soon) and obeys

1

CS
≤ 1

4
. (E.195)

A batch dataset—consists of N i.i.d samples {(si, ai, s′i)}1≤i≤N—is generated over the nominal

environment Mφ according to (7.24), with the behavior distribution chosen to be:

∀(s, a) ∈ S ×A : db(s, a) =
µ(s)

2
. (E.196)

Additionally, we choose the following initial state distribution:

ρ(s) =





1, if s = 0

0, otherwise
. (E.197)

Uncertainty set of the transition kernels. We next describe the radius σ of the uncertainty

set in our construction of the robust MDPs, along with some useful properties, which are similar to

the finite-horizon case. To begin with, with slight abuse of notation, we introduce an important

constant β defined as

β :=
1

2
log

1

α+ ∆
≥ 4. (E.198)

The perturbed transition kernels in Mφ is limited to the following uncertainty set

Uσ(P φ) := ⊗ Uσ
(
P φs,a

)
, Uσ(P φs,a) :=

{
Ps,a ∈ ∆(S) : KL

(
Ps,a ‖ P φs,a

)
≤ σ

}
, (E.199)

where P φs,a := P φ(· | s, a) ∈ [0, 1]1×S . Moreover, the radius of the uncertainty set σ obeys

(
1− 3

β

)
log

1

α+ ∆
≤ σ ≤

(
1− 2

β

)
log

1

α+ ∆
. (E.200)

For any (s, a, s′) ∈ S ×A×S, we denote the infimum entry of the perturbed transition kernel

Ps,a ∈ Uσ(P φs,a) moving to the next state s′ as

P φ(s′ | s, a) := inf
Ps,a∈Uσ(Pφs,a)

P (s′ | s, a). (E.201)

As shall be seen, the transition from state 0 to state 2 plays an important role in the analysis, for

convenience, we denote

p := P φ(2 | 0, φ), q := P φ(2 | 0, 1− φ). (E.202)
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With these definitions in place, we summarize some useful properties of the uncertainty set in the

following lemma, which parallels Lemma 62 in the finite-horizon case.

Lemma 67. Suppose β satisfies (E.198) and the uncertainty level σ satisfies (E.200). The perturbed

transition kernels obey

p ≥ q ≥ 1

β
. (E.203)

Proof. The proof follows from the same arguments as Appendix E.2.3.4 by replacing H with 1
1−γ ;

we omit the details for brevity.

Value functions and optimal policies. Now we are positioned to derive the corresponding

robust value functions and identify the optimal policies. For any MDPMφ with the above uncertainty

set, denote π?φ as the optimal policy. In addition, we denote the robust value function of any policy

π (resp. the optimal policy π?φ) as V π,σ
φ (resp. V ?,σ

φ ). Then, we introduce the following lemma which

describes some important properties of the robust value functions and optimal policies.

Lemma 68. For any φ = {0, 1} and any policy π, one has

V π,σ
φ (0) = 1 +

γ

1− γ z
π
φ , (E.204)

where zπφ is defined as

zπφ := pπ(φ | 0) + qπ(1− φ | 0). (E.205)

In addition, the optimal value functions and the optimal policies obey

V ?,σ
φ (0) = 1 +

γ

1− γ p, V ?,σ
φ (2) =

1

1− γ , V ?,σ
φ (s) = 0 for s = 1 or s > 2, (E.206a)

π?φ(φ | s) = 1, for s ∈ S. (E.206b)

Moreover, choosing S ≥ 2β, the robust single-policy clipped concentrability coefficient C?rob obeys

C?rob = 2C. (E.207)

Proof. See Appendix E.3.4.3.

E.3.4.2 Establishing the minimax lower bound

Now we are positioned to provide the sample complexity lower bound. In view of Lemma 68, the

smallest positive state transition probability of the optimal policy π?φ under any nominal transition

397



kernel P φ with φ ∈ {0, 1} satisfies:

P ?min := min
s,s′

{
P φ
(
s′ | s, π?φ(s)

)
: P φ

(
s′ | s, π?φ(s)

)
> 0
}

= P φ (1|0, φ) = 1− p. (E.208)

Our goal is to control the quantity w.r.t. any policy estimator π̂ based on the batch dataset

and the chosen initial distribution ρ in (E.197), which gives

V ?,σ
φ (ρ)− V π̂,σ

φ (ρ) = V ?,σ
φ (0)− V π̂,σ

φ (0). (E.209)

Towards this, we first introduce the following lemma, which parallels the claim in (E.82)-(E.83) in

the finite-horizon case.

Lemma 69. Given ε ≤ 1
384e6(1−γ) log( 1

α)
≤ 1

384e6(1−γ) log( 1
α+∆)

, choosing ∆ = 128e6σ(1−q)ε(1−γ) ≤

128e6(α+ ∆)ε log
(

1
α+∆

)
(1− γ) ≤ α

2 , one has for any policy π̂,

V ?,σ
φ (0)− V π̂,σ

φ (0) ≥ 2ε
(
1− π̂(φ | 0)

)
.

Proof. This lemma follows from the same arguments as Appendix E.2.3.6 except replacing H with
1

1−γ under the additional condition γ ≥ 1
2 ; we omit the details for brevity.

Armed with this lemma, following the same arguments in Appendix E.2.3.2, we can complete

the proof by observing that: let c1 be some sufficient large constant, as long as the sample size is

beneath

N ≤ SC?rob log 2

4c1P ?minσ
2(1− γ)2ε2

, (E.210)

then we necessarily have

inf
π̂

max
φ∈{0,1}

Pφ
{
V ?,σ
φ (ρ)− V π̂,σ

φ (ρ) ≥ ε
}
≥ 1

8
, (E.211)

where Pφ denote the probability conditioned on that the MDP is Mφ. We omit the details for

brevity and complete the proof.

E.3.4.3 Proof of Lemma 68

For any Mφ with φ ∈ {0, 1}, we first characterize the robust value function for any policy π over

different states. due to state absorbing, the uncertainty set becomes a singleton containing the

nominal distribution at state s = 1 and s = 2. It is easily observed that for any policy π, the robust
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value functions at state s = 1 and s = 2 obey

V π,σ
φ (1) =

∞∑

t=0

γt · 0 = 0, (E.212a)

V π,σ
φ (2) =

∞∑

t=0

γt · 1 =
1

1− γ , (E.212b)

since r(1, a) = 0 and r(2, a) = 1. In addition, for state s > 2, the perturbed transition kernel is

supported on itself and state 1, both of which receive a reward of 0 by design (E.193), leading to

V π,σ
φ (s) =

∞∑

t=0

γt · 0 = 0, for s > 2. (E.212c)

Moving onto the remaining states, the robust value function of state 0 satisfies

V π,σ
φ (0) = Ea∼π(· | 0)

[
r(0, a) + γ inf

P∈Uσ(Pφ0,a)
PV π,σ

φ

]

(i)
= 1 + γπ(φ | 0) inf

P∈Uσ(Pφ0,φ)
PV π,σ

φ + γπ(1− φ | 0) inf
P∈Uσ(Pφ0,1−φ)

PV π,σ
φ

(ii)
= 1 + γπ(φ | 0)

[
pV π,σ

φ (2) +
(
1− p

)
V π,σ
φ (1)

]
+ γπ(1− φ | 0)

[
qV π,σ

φ (2) +
(
1− q

)
V π,σ
φ (1)

]

(iii)
= 1 + γV π,σ

φ (1) + γzπφ

[
V π,σ
φ (2)− V π,σ

φ (1)
]

= 1 +
γ

1− γ z
π
φ , (E.213)

where (i) holds by the reward function defined in (E.193). To see (ii), note that (E.212) indicates

V π,σ
φ (2) ≥ V π,σ

φ (1), so that the infimum is obtained by picking the smallest possible mass on the

transition to state 2, provided by the definition in (E.202). Last but not least, (iii) follows by

plugging in the definition of zπφ in (E.205), and the last identity is due to (E.212). Consequently,

taking π = π?φ, we directly arrive at

V ?,σ
φ (0) = 1 +

γ

1− γ z
π?

φ . (E.214)

Observing that the function z γ
1−γ is increasing in z and zπφ is also increasing in π(φ | 0) (see the fact

p ≥ q in (E.203)), the optimal policy in state 0 thus obeys

π?φ(φ | 0) = 1. (E.215)
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Finally, plugging the above fact back into (E.205) leads to

z?φ := zπ
?

φ = pπ?φ(φ | 0) + qπ?φ(1− φ | 0) = p, (E.216)

which combined with (E.214) yields

V ?,σ
φ (0) = 1 +

γ

1− γ p. (E.217)

Regarding the optimal policy for the remaining states s > 0, since the action does not influence the

state transition, without loss of generality, we choose the optimal policy to obey

∀s > 0 : π?φ(φ | s) = 1. (E.218)

Proof of (E.207). To begin with, for any MDP Mφ with φ ∈ {0, 1}, recall the definition of C?rob

as

C?rob = max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P (s, a), 1

S

}

db(s, a)
. (E.219)

Given π?φ(φ | s) = 1 for all s ∈ S and the initial distribution ρ(0) = 1, for any P ∈ Uσ(P φ), we arrive

at

d?,P (0, φ) = (1− γ)ρ(0)π?φ(φ | 0) = (1− γ), (E.220)

which holds due to that the agent transits from state 0 to other states at the first step and then will

never go back to state 0. In addition, one has for any P ∈ Uσ(P φ),

d?,P (2, φ) = (1− γ)P (2 | 0, φ)

∞∑

t=1

γt
(
P (2 | 2, φ)

)t

= (1− γ)P (2 | 0, φ)
∞∑

t=1

γt
(i)

≥ γp ≥ 1

2β
, (E.221)

where (i) holds by (E.202) and the final inequality follows from (E.203) and γ ≥ 1/2. Armed with

the above facts, we observe that

max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P (s, a), 1

S

}

db(s, a)
= max

s∈{0,1,2},P∈Uσ(Pφ)

min
{
d?,P (s, φ), 1

S

}

db(s, φ)
(E.222)

which follows from the properties of the optimal policy in (E.218) and consequently d?,P (s) =

d?,P (s, φ) = 0 for all s > 2 and all P ∈ Uσ(P φ).
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To continue, we control the term in states {0, 1, 2} separately:

max
P∈Uσ(Pφ)

min
{
d?,P (2, φ), 1

S

}

db(2, φ)

(i)
=

1

Sdb(2, φ)

(ii)
=

2

Sµ(2)
= 2C, (E.223a)

max
P∈Uσ(Pφ)

min
{
d?,P (0, φ), 1

S

}

db(0, φ)
≤ 1

Sdb(0, φ)

(iii)
=

2

Sµ(0)
= 2C, (E.223b)

max
P∈Uσ(Pφ)

min
{
d?,P (1, φ), 1

S

}

db(1, φ)
≤ 1

Sdb(1, φ)

(iv)
=

2

S
(
1− 2

CS

)
(v)

≤ 4

S

(vi)

≤ C, (E.223c)

where (i) holds by (E.221) and S ≥ 2β, (ii), (iii) and (iv) follow from the definitions in (E.196) and

(E.194), (v) and (vi) arise from the assumption in (E.195). Plugging the above results back into

(E.222) directly completes the proof of

C?rob = max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P (s, a), 1

S

}

db(s, a)
= 2C.
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