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Low-Rank Matrix Completion

Imagine one observes a small subset of 
entries in a large matrix and aims to 
recover the entire matrix. Without a 

priori knowledge of the matrix, this prob-
lem is highly ill-posed. Fortunately, data 
matrices often exhibit low-dimensional 
structures that can be used effectively to 
regularize the solution space. The cel-
ebrated effectiveness of principal com-
ponent analysis (PCA) in science and 
engineering suggests that most variabil-
ity of real-world data can be accounted 
for by projecting the data onto a few di-
rections known as the principal compo-
nents. Correspondingly, the data matrix 
can be modeled as a low-rank matrix, 
at least approximately. Is it possible to 
complete a partially observed matrix if 
its rank, i.e., its maximum number of 
linearly independent row or column vec-
tors, is small?

Low-rank matrix completion arises 
in a variety of applications in recom-
mendation systems, computer vision, 
and signal processing. As a motivat-
ing example, consider users’ ratings of 
products arranged in a rating matrix. 
Each rating may only be affected by a 
small number of factors—such as price, 
quality, and utility—and how they are 
reflected on the products’ specifications 
and users’ expectations. Naturally, this 
suggests that the rating matrix is low 
rank, since the numbers of users and 
products are much higher than the num-
ber of factors. Often, the rating matrix is 
sparsely observed, and it is of great inter-
est to predict the missing ratings to make 
targeted recommendations.

Relevance
The theory and algorithms of low-rank 
matrix completion have been signifi-

cantly expanded in the last decade with 
converging efforts from signal process-
ing, applied mathematics, statistics, 
optimization, and machine learning. 
This lecture note provides an introduc-
tory exposition of some key results in 
this rapidly developing field.

Prerequisites
We expect the readers to be familiar 
with basic concepts in linear algebra, 
optimization, and probability.

Problem statement
Let M Rn n1 2! #  be a rank-r matrix, 
whose thin singular value decomposi-
tion (SVD) is given as

 ,M U VR= <  (1)

where ,U VR Rn r n r1 2! !# #  are com-
posed of orthonormal columns, and R  
is an r-dimensional 
diagonal matrix with 
the singular values  
arranged in a non   -
increasing order, i.e., 
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, , } { , , , }.n n2 1 21 2#f f  To concisely 
put it, define the observation operator 

:R RP n n n n1 2 1 2"
# #

X  as

( )
,

,
( , )

.
otherwise

M
M i j
0

P ij

ij ! X
=X6 @ '

Our goal is to recover M  from 
( ),MPX  when the number of ob -

servation m n n1 2%X=  i s  m u c h 
smaller than the number of entries 

in ,M  under the assumption that M  is 
low rank, i.e., { , } .minr n n1 2%  For 
notational simplicity in the sequel, let 

, .maxn n n1 2= " ,

Solution

Which low-rank matrices  
can we complete?
To begin, we ask the following question: 
What kind of low-rank matrices can we 
complete? As motivation, consider the 
following 4 4#  rank-1 matrices M1  
and ,M2  given as
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The matrix M1  is more difficult to 
complete, since most of its entries are 

zero, and we need 
to collect more mea -
surements to make  
sure enough mass 
comes from its non-
zero entries. In con-
trast, the mass of M2  
is more uniformly 

distributed across all entries, making it 
easier to propagate information from one 
entry to another.

To put it differently, a low-rank 
matrix is easier to complete if its en -
ergy spreads evenly across different 
coordinates. This property is captured 
by the notion of coherence [1], which 
measures the alignment between the 
column/row spaces of the low-rank 
matrix with standard basis vectors. 
For a matrix U Rn r1! #  with ortho-
normal columns, let PU  be the orthog-
onal projection onto the column space 
of .U  The coherence parameter of U  is 
defined as
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To put it differently, a 
low-rank matrix is easier 
to complete if its energy 
spreads evenly across 
different coordinates.
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where ei  is the ith standard basis vector. 
Figure 1 provides a geometric illustra-
tion of the coherence parameter ( ) .Un

For a low-matrix M  whose SVD 
is given in (1), the coherence of M  is 
defined as

 ( ), ( ) .max U Vn n n= " ,  (3)

Notably, the coherence n  is deter-
mined by the singular vectors of M  and 
independent of its singular values. Since 

( ) /U n r1 1# #n  and ( ) / ,V n r1 2# #n  
we have / .n r1 # #n  In the previous 
example, the coherence of M1  matches 
the upper bound / ,n r  while the coher-
ence of M2  matches the lower bound 
one. The smaller n  is, the easier it is to 
complete the matrix.

Which observation patterns  
can we handle?
Low-rank matrix completion can still be 
hopeless even when most of the entries 
are revealed. Consider, for example, 
the following observation pattern for a 
4 4#  matrix:

?
?
?
?

,
*

*

*

*

*

*

*

*

*

*

*

*R

T

S
S
S
SS

V

X

W
W
W
WW

where *  indicates an observed entry, 
and ?  indicates a missing entry. The last 
column of the matrix cannot be recov-
ered since it can lie anywhere in the 

column space of the low-rank matrix. 
Therefore, we require at least r  obser-
vations per column/row. To bypass 
such pessimistic observation patterns, 
it is useful to think of random obser-
vation patterns. A popular choice is 
the Bernoulli model, where each entry 
is observed independently and identi-
cally with probability : / ( ).p m n n1 2=  
By a coupon-collecting argument [2], 
under the Bernoulli model, it is impos-
sible to recover a low-rank matrix with 
less than some constant times lognr nn  
measurements using any algorithm, 
which is referred to as the information-
theoretic lower bound. Compared with 
the degrees of freedom, which is on the 
order of ,nr  we pay a price in sample 
complexity by a factor of ,log nn  high-
lighting again the role of coherence in 
low-rank matrix completion.

Matrix completion via  
convex optimization
We present the first algorithm based 
on convex optimization. To promote 
the low-rank structure of the solution, 
a natural heuristic is to find the matrix 
with the minimum rank that is consis-
tent with the observations, leading to
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However, since rank minimization 
is NP-hard, the above formulation is 
intractable. Motivated by the success 
of 1,  norm minimization for sparse 
recovery in compressed sensing [3], we 
consider convex relaxation for the rank 

heuristic. Observing that the rank of 
U  equals to the number of its nonzero 
singular values, we replace ( )rank U  by 
the sum of its singular values, denoted 
as the nuclear norm:
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where ( )iv U  is the ith singular value 
of .U  The nuclear norm is the tight-
est convex relaxation of the rank con-
straint, i.e., the nuclear norm ball 

: 1#U U )" , is the convex hull of the 
collection of unit-norm rank-1 matrices: 

: .uv u v 122 = =<" ,  Notably, the 
nuclear norm is also unitarily invariant, 
and can be represented as the solution 
to a semidefinite program,
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Hence, instead of solving (4) direct-
ly, we solve nuclear norm minimization, 
which searches for a matrix with the 
minimum nuclear norm that satisfies all 
the measurements:

( ) ( ) .min Ms.t. P P
Rn n2

U U =)
!

X X
U #1

 (5)

This gives a convex program that can 
be solved efficiently in polynomial time. 
Moreover, it doesn’t require knowledge 
of the rank a priori.

The performance of nuclear norm 
minimization has been investigated in 
a recent line of elegant works [2]–[5], 
which suggests it can exactly recover a 
low-rank matrix as soon as the number 
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Figure 1. An illustration of the coherence parameter ( ) .Un  ( )Un  is small when all the standard basis vectors e i  have approximately the same projections 
onto the subspace ,U  as shown in (a); ( )Un  is large if U  is too aligned with certain standard basis vector, as shown in (b).
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of measurements is slightly larger than  
the information-theoretic lower bound 
by a logarithmic factor. Suppose that 
each entry of M  is observed indepen-
dently with probability ( , ) .p 0 1!  If 
p  satisfies

 ,
log

p C
n

r n2

$
n

for some large enough constant ,C 0>
then with high probability, the nuclear 
norm minimization algorithm (5) exact-
ly recovers M  as the unique optimal 
solution of (5). Figure 2 illustrates the 
geometry of nuclear norm minimiza-
tion when the number of measurements 

is sufficiently large. When both n  and 
r  are much smaller than ,n  this means 
we can recover a low-rank matrix even 
when the proportion of observations is 
vanishingly small.

Matrix completion via  
nonconvex optimization
The computational and memory com-
plexities of nuclear norm minimization 
can be quite expensive for large-scale 
problems, even with first-order meth-
ods, due to optimizing over and stor-
ing the matrix variable .U  Therefore, 
it is necessary to consider alternative 
approaches whose complexities scale 
more favorably in .n  This leads to the 
second algorithm based on gradient 
descent using a proper initialization. If 
the rank of the matrix M  is known, it 
is natural to incorporate this knowledge 
and consider a rank-constrained least-
squares problem
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where · F  is the Frobenius norm of a 
matrix. Invoking the low-rank factor-
ization ,XYU = <  where X Rn r1! #  
and ,Y Rn r2! #  we can rewrite (6) as an 
unconstrained, yet nonconvex optimiza-
tion problem:

  ( , ) : .( )min X Y XY Mf P F
2

,X Y
= -<X  (7)

On one end, the memory com-
plexities of X  and Y  are linear in n  
instead of quadratic in n  when deal-
ing with .U   On the other end, we can 
only determine X  and Y  up to invert-
ible transforms in (7), since for any 
invertible matrix ,Q Rr r! #  we have 

( ) ( ) .YXY XQ Q= < << -  To fix the scal-
ing ambiguity, it is useful to consider a 
modified loss function

( , ) ( )

,

,X Y X Y

X YX Y

F
p

f
4
1

16
1

F
2

=

+ - <<

where the second term is introduced to 
motivate solutions where X  and Y  have 
balanced norms. The observation prob-
ability p, if not known, can be faithfully 
estimated by the sample proportion 
| | / ( )n n21X . 

How do we optimize the nonconvex 
loss ( , )?F X Y  A plausible strategy pro-
ceeds in two steps.
1) The first step aims to find an initial-

ization that is close to the ground 
truth, which can be provided via the 
so-called spectral method [6]. 
Consider the partially observed 
matrix ( ),Mp1 PX^ h  which is an 
unbiased estimate of M  with ex-
pectation ( ) .M Mp1E P =X^ h6 @  
Therefore, its best rank-r appro-
ximation produces a reasonably 
good initial guess. Let U V0 0 0R <  
b e  t h e  b e s t  r a n k - r  approxi-
ma tion of ( ),Mp1 PX^ h  where 

,U VR Rn r n r
0 0

1 2! !# #  contain or-
thonormal columns and 0R  is an 
r r#  diagonal matrix. The spec-
tral initialization sets X U /

0 0 0
1 2R=  

and .Y V /
0 0 0

1 2R=

2) The second step aims to refine the ini-
tial estimate locally via simple itera-
tive methods, such as gradient descent 
[7], [8], following the update rule
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where th  is the step size, and ,(F XXd  
, ,)Y X YFYd ^ h are the partial deriva-

tives with respect to X  and Y  that can 
be derived easily.

Iteration
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Figure 3. The normalized error of low-rank matrix completion with respect to the iteration count via 
gradient descent with the spectral initialization for a 10 104 4#  matrix of rank-10 using about 5% 
observations.

M

Figure 2. A geometric illustration of nuclear 
norm minimization: the cylinder represents 
level sets of the nuclear norm, and the hyper-
plane represents the measurement constraint. 
The two sets intersect at the thickened edges, 
which correspond to low-rank solutions.
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Recall the SVD of M  in (1),  and 
denote X U /1 2R=C  and ;Y V /1 2R=C  
this allows us to write the factor-
ization as M X Y= C C<  and call Z =C  

,X Y R( )n n r1 2! #C < C < < +6 @  t h e  g r o u n d  
truth. Since ZC  is only identifiable up 
to orthonormal transforms, let the op-
timal transform between the tth iterate 

[ , ]Z X Y R( )
t t t

n n r1 2!= #< << +  and ZC  as

: .argminH Z R Z Ft t
,R RR IRr r

= - C

! =# <

Assume the condition number 
: / r1l v v=  of M  is a bounded constant, 

then as long as
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for some sufficiently large constant 
,C 01 2  with high probability, the iter-

ates satisfy [8]
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where ,C 0 0 12 2 1 1t  a re some 
constants, provided that the step size 

.0 2 25t 11 / #h h lv^ h  Hence, gra-
dient descent converges at a geometric 
rate, as soon as the number of measure-
ments is on the order of ,logr n n3 3 3n  
which scales linearly in n  up to loga-
rithmic factors. To reach e -accuracy, 
i.e., ,Z H Z Z Ft t F # e- C C  gradi-
ent descent needs an order of ( / )log 1 e  
iterations. The number of iterations is 
independent of the problem size and 
therefore the computational cost is 
much cheaper in conjunction with low 
cost per iteration.

Summary
Table 1 summarizes the figures-of-
merit of the discussed algorithms using 
state-of-the-art theory.

Numerical example
Let M  be a rank-10 matr ix  of size 
10 104 4#  with about 5% of observed 
entries, i.e., . ,p 0 05=  where XC  and 
YC  are generated with i.i.d. standard 
Gaussian entries. We implement gradi-
ent descent with spectral initialization to 
recover .M  Figure 3 plots the normalized 

error X Y MM F Ft t -
<  with respect 

to the iteration counts, which verifies the 
geometric convergence predicted by the 
theory. Indeed, the normalized error is 
below 10 5-  within 30 iterations!

What we have learned
Under mild statistical models, low-rank 
matrix completion admits efficient algo-
rithms with provable near-optimal per-
formance guarantees, using both convex 
and nonconvex optimization techniques. 
The theory and algorithms discussed 
herein can be extended to recover matri-
ces that are approximately low rank 
using noisy measurements. Low-rank 
matrix completion can be viewed as a spe-
cial case of low-rank matrix estimation 
using an underdetermined set of linear 
equations. Other linear measurement pat-
terns are also actively studied, motivated 
by applications such as sensor network 
localization, phase retrieval, quantum 
state tomography, and so on. Furthermore, 
low-rank matrix completion can be made 
robust even when many of the observa-
tions are corrupted by outliers of arbitrary 
magnitudes, known as the sparse and low-
rank decomposition problem [9].

Low-rank structures are ubiquitous 
in modern data science problems and 
becoming increasingly popular as a 
modeling tool. Understanding the algo-
rithmic and theoretical properties of 
estimation of low-rank structures is still 
an active area of research that will have 
a growing impact in future years. For a 
recent survey on low-rank matrix esti-
mation, please see [10].
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Table 1. Figure-of-merits for low-rank matrix completion in terms of order-wise sample 
complexity and computational complexity.

sample complexity computational complexity
information-theoretic lower bound lognr nn NP-hard 
Nuclear norm minimization lognr n2n Polynomial time 
Gradient descent with spectral initialization lognr n3 3 3n Linear time 


