
Super-Resolution Image Reconstruction for Single-Molecule

Localization Microscopy

Dissertation

Presented in Partial Fulfillment of the Requirements for the Degree
Doctor of Philosophy in the Graduate School of The Ohio State

University

By

Jiaqing Huang, B.E.

Graduate Program in Department of Electrical and Computer Engineering

The Ohio State University

2016

Dissertation Committee:

Dr. Yuejie Chi, Advisor

Dr. Jianjie Ma, Co-Advisor

Dr. Philip Schniter

Dr. Mingzhai Sun



c© Copyright by

Jiaqing Huang

2016



Abstract

Single-molecule localization microscopy achieves sub-diffraction-limit resolution

by localizing a sparse subset of stochastically-activated emitters in each frame. The

temporal resolution, determined by the number of frames to acquire a super-resolution

image, is limited by the maximal emitter density that can be handled by image

reconstruction algorithms. Hence to enhance the temporal resolution, we develop

signal processing algorithms for super-resolution image reconstruction.

In two-dimensional (2D) super-resolution image reconstruction, compressive sens-

ing based reconstruction algorithms utilize the sparsity prior of the signal in each

frame and can greatly increase the emitter density. We apply spectrum estimation

methods to achieve comparable performance with a much lower computational cost.

By transforming the images into the frequency domain, the localization of emitters

is equivalent to estimation of 2D frequencies. The Matrix Enhancement and Matrix

Pencil (MEMP) algorithm is applied to extract the emitter locations, resulting in fast

computation and comparable performance with compressive sensing based methods.

In three-dimensional (3D) super-resolution image reconstruction, the point spread

function (PSF) is engineered to encode the axial information, e.g., by introducing a

cylindrical lens. However, the large effective volume of 3D PSF increases the possibil-

ity of overlapping emitters in each frame and makes image reconstruction challenging.

To address this problem, we developed a 3D high-density super-resolution imaging
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system which includes a multi-focus optical platform with astigmatism and a com-

putational framework using compressive sensing. A de-biasing step is introduced to

reduce the intrinsic bias caused by the discretization in compressive sensing. This

framework improves performance over a single-focus platform due to better differen-

tiability along the axial direction.

However, the discrete formulation of compressive sensing for super-resolution im-

age reconstruction suffers from high computational complexity and gridding error

due to model mismatch. We propose a novel super-resolution algorithm for both 2D

and 3D image reconstruction, dubbed TVSTORM, which promotes the sparsity of

activated emitters without discretizing their locations. Several strategies are pur-

sued to improve the reconstruction quality under the Poisson noise model, where the

computational time is reduced by an order-of-magnitude. Numerical results on both

simulated and cell imaging data are provided to validate the favorable performance

of TVSTORM.
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Chapter 1: Introduction

Fluorescence microscopy has been widely used in molecular and cell biological

research and proven to be a powerful tool for a variety of studies. It allows direct ob-

servations of dynamic cellular processes owing to its minimum invasiveness and high

biochemical specificity. However, due to optical diffraction, the resolution of conven-

tional fluorescence light microscopes is limited to ∼200 nm in the lateral direction

and ∼500 nm in the axial direction, preventing them from imaging many subcellular

structures.

In recent years, a number of super-resolution microscopy techniques have been

developed to break the diffraction limit and improve the lateral resolution to ∼20 nm

and the axial resolution to ∼50 nm. These super resolution microscopy techniques

include saturated structured illumination microscopy (SSIM) [1], stimulated emis-

sion depletion (STED) microscopy [2], and single-molecule localization microscopy

(SMLM) such as photoactivated localization microscopy (PALM) [3] and stochastic

optical reconstruction microscopy (STORM) [4]. These super resolution microscopy

techniques, although are still under active development, will revolutionize the biologi-

cal imaging field as they provide the unprecedented optical resolution smaller than the

wavelength of light, thus enabling the observations of previously unresolvable subcel-

lular structures and biological processes. The Nobel Prize in Chemistry was awarded

1



jointly to Eric Betzig, William Moerner and Stefan Hell in 2014 for “the development

of super-resolved fluorescence microscopy”, which brings “optical microscopy into the

nanodimension” [5]. Among these techniques, SMLM utilizes the switching dynam-

ics of fluorophores and achieves sub-diffraction-limit spatial resolution by localizing

a sparse subset of stochastically activated emitters in each frame. This process is

repeated for multiple frames, with each frame having a stochastically different subset

of active fluorophores, and the final super-resolution image is reconstructed by ag-

gregating the localized fluorophore positions. Theoretically, the spatial resolution of

SMLM is only limited by the localization accuracy of the fluorophores.

1.1 Biological Applications of SMLM

SMLM has been used to image numerous cellular structures and provide the un-

precedented resolution that allows observations of fine structures beyond the diffrac-

tion limit. Here, we list a few examples to demonstrate the application of SMLM in

the biological field.

In skeletal muscles, the transverse (T)-tubular invagination of the sarcolemmal

membrane touches the terminal cisternae of the junctional sarcoplasmic reticulum to

form a triad junction structure that provides the structural framework for excitation-

contraction (EC) coupling [6]. Most of the ultrastructural analyses of the triad

junction involve electron microscopy [6]. In [7], we use the antibody mitsugumin29

(MG29), a skeletal muscle-specific protein, to label the T-tubule structure in the rat

FDB fiber and image the MG29-labelled T-tubule network using SMLM in combi-

nation with a spatio-temporal object decomposition and association algorithm. As

shown in Figure 1.1 (a), the traditional epifluorescence microscopy produces striated
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Figure 1.1: SMLM imaging of T-tubule structures in rat FDB fiber. (a) A con-
ventional fluorescence image of the MG29-labelled T-tubule network in rat skeletal
muscle. Scale bar: 2 µm. (b) Overlay of the epifluorescence image (red) of the T-
tubule and the corresponding SMLM image (green). Scale bar: 1 µm. (c). The line
profiles of the selected region in (b) with SMLM (green) and epifluorescence image
(red).
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pattern of MG29-labelled T-tubule network, with a doublet pattern that resembles the

typical membrane structure in rat skeletal muscle. Within each of the doublets, there

are two T-tubule membranes running in parallel that could not be resolved in tradi-

tional optical imaging. With SMLM, we are able to reconstruct the images, clearly

showing the two sides of the T-tubule membrane within a single doublet. Figure 1.1

(b) shows the overlay of the SMLM image (green) and the conventional epifluores-

cence image (red). Figure 1.1 (c) shows the line profiles of the selected region, which

is the intensity distribution along the selected line. The green curve corresponds to

the line profile from the SMLM image, which shows clearly the distance between the

two T-tubule membranes is about 82 nm. The conventional epifluorescence image

completely misses the fine structure (red curve). To our knowledge, this is the first

time that the T-tubule structure in skeletal muscle cells is resolved optically.

In another study [8], Huang et al. investigate the interactions between mito-

chondria and microtubules through multicolor three-dimensional (3D) SMLM imag-

ing. The mitochondria are double membrane-bound organelles found in most cells

that are responsible for biochemical processes of respiration and energy production.

The microtubules are microscopic tubular structures in cytoplasm. The constant

transportation and reorganization of mitochondria are driven by motor proteins on

cytoskeleton, of which the microtubules are components. Their spatial relations,

therefore, are of great interest to biologists who want to study the movement of mi-

tochondria. In [8], two-color SMLM imaging of mitochondria and microtubules in

mammalian cells are performed and the comparison with conventional fluorescence

image is shown in Figure 1.2 (a) and (b). The SMLM image of mitochondria and

microtubules clearly demonstrates greater resolution than conventional fluorescence

4



Figure 1.2: Two-color 3D SMLM images of mitochondria (magenta) and microtubules
(green). (a) A conventional fluorescence image. (b) A SMLM image of the same area.
(c-e) Magnified views of the boxed regions in (b). Adapted from [8].
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image. Figure 1.2 (c-e) show the magnified views of the boxed regions in Figure

1.2 (b). In Figure 1.2 (c), the contact between mitochondria and microtubules are

observed in both conventional fluorescence microscopy and SMLM. However, many

false contacts between mitochondria and microtubules are also observed in the con-

ventional fluorescence microscopy due to the diffraction limit as shown in Figure 1.2

(d). Mitochondria are also often observed to be surrounded by microtubules (Figure

1.2 (e)). The spatial relations between mitochondria and microtubules are further

studied in [8] and a noncontiguous inchworm-like interaction mode is observed, which

may facilitate the movement of mitochondria to maintain a dynamic morphology.

1.2 Motivation: Improving the Temporal Resolution of SMLM

The temporal resolution of SMLM, defined as the time required to generate a

super-resolution image, becomes the limiting factor of this technique due to the it-

erative nature of the imaging procedure. To achieve a super-resolution image with

a spatial resolution of 20 to 50 nm, the image acquisition can take tens of thou-

sands of frames, requiring lengthy acquisition time, on the order of several minutes.

This greatly limits the application of super-resolution techniques from imaging fast

dynamic processes. For example, Mitsugumin 53 (MG53) is a muscle-specific pro-

tein which has been reported to facilitate the repair of membrane damage in muscle

cells [9]. However, the movement of MG53 under cell damage is a fast process and

happens on the order of seconds. Super-resolution techniques with higher temporal

resolution are thus needed in order to resolve and study the movement and clustering

process of MG53 under cell damage in both two-dimensional (2D) and 3D imaging.
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To improve the temporal resolution of SMLM, two different strategies have been

proposed. One is by controlling the photophysical properties of the fluorescence

probes. In a seminal work by Jones et al. [10], a temporal resolution as high as 0.5

second was achieved in live cell imaging by using engineered bright emitters with a

strong activation laser and a sensitive low light detector. However, a strong excitation

laser can induce phototoxicity to cells. The other approach involves increasing the

density of activated emitters in each frame so that the number of frames required to

localize the same number of emitters can be significantly reduced. However, a high

density of activated emitters causes the point spread functions (PSF) of adjacent

emitters to overlap, which results in poor performance of the widely used single

emitter localization methods [4]. In 3D super-resolution imaging where the 3D PSF

is extended along the axial direction, the situation is further exacerbated since the

PSFs of adjacent emitters have more overlapping regions and similarities.

1.3 Contributions and Outline of the Dissertation

In this dissertation, we aim to present fast and high-performance super-resolution

image reconstruction algorithms that can analyze images of high emitter density

reliably in both 2D and 3D cases, as well as new imaging modalities that can improve

the super-resolution imaging performance. These innovations not only improve the

temporal resolution and reconstruction quality of super-resolution microscopy, but

also provide a better tool for biological researchers.

We start with 2D image reconstruction. The state-of-the-art reconstruction algo-

rithm for SMLM is based on compressive sensing. However, it requires discretization

7



over a continuous 2D space and solving a large-scale optimization problem, thus suf-

fering from high computational complexity. Such discretization also produces intrin-

sic gridding error in the reconstruction. To address this, we transform the imaging

process of SMLM into the frequency domain. The problem of emitter localization

then can be formulated as a 2D frequency estimation problem. We develop Memp-

STORM [11] based on 2D spectrum analysis which is able to achieve similar per-

formance with compressive sensing based reconstruction but is over two orders of

magnitude faster.

In 3D super-resolution imaging, due to the extended PSF shape, nearby emitters

have more overlapping regions and similarities, increasing the difficulty to distinguish

emitters along the axial direction. We propose a multi-focus astigmatism compres-

sive sensing based 3D imaging platform which enhances the asymmetry of system

PSF along the axial direction by combining astigmatic optics and multi-camera tech-

niques. An algorithm based on compressive sensing is developed which reduces the

bias introduced by gridding and increases the emitter density.

Motivated by the need to reduce the extreme long analysis time required in 3D

image reconstruction due to discretization, we consider the notion of total-variation

norm, which can be seen as a generalization of the `1 norm for finite-dimensional

vectors to the continuous space without imposing a discrete grid for the locations

of the emitters. We propose TVSTORM, a penalized maximum likelihood estima-

tor under the Poisson noise regularized by the total variation norm of the activated

emitters. TVSTORM demonstrates an order-of-magnitude improvement on the com-

putational cost over compressive sensing based reconstruction due to the elimination

of optimizing over a fine-grained grid. It also shows a significant improvement on the
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localization accuracy in terms of detection rate, false discovery rate and precision,

without adding post-processing steps.

The outline of the dissertation is as follows. Chapter 2 reviews the background in-

formation of SMLM as well as other super-resolution imaging techniques. In Chapter

3, we describe the signal model of SMLM used across this dissertation as well as ex-

isting reconstruction algorithms based on single emitter localization and compressive

sensing. Chapter 4 presents a fast 2D image reconstruction algorithm - MempSTORM

(based on the publication [11]). In Chapter 5, we propose a multi-focus astigmatism

and compressive sensing based 3D imaging platform (based on the publication [12]).

Next, we present TVSTORM for both 2D and 3D image reconstruction in Chapter 6

(based on the publication [13] and [14]). Finally, we conclude in Chapter 7.
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Chapter 2: Background

Image contrast, the difference in the color or brightness, is essential for humans to

distinguish objects. Scientists have been pursuing to increase the contrast of micro-

scopic images for a long time by various means. These techniques include dark field

microscopy, phase contrast microscopy [15], polarized light microscopy [16], differen-

tial interference contrast (DIC) microscopy [17], etc. However, the most popular and

probably the best technique by far to create contrast is through fluorescence.

2.1 Fluorescence Excitation and Emission

Illuminated by excitation light of specific wavelength, fluorophores can emit light

with lower energy (longer wavelength). This phenomenon, called Stokes shift, is

named after Sir George Stokes who first discovered that fluorspar and uranium glass

could convert invisible ultra-violet light into visible radiation that is of longer wave-

length in 1852 [18]. In 1945, Aleksander Jab lonśki formulated the physical and

molecular mechanism [19] of fluorescence excitation and emission; the correspond-

ing diagram showing the transitions of electronic states is therefore called Jab lonśki

diagram.

The principle of fluorescence excitation (absorption) and emission is shown in

Figure 2.1. The upper part of Figure 2.1 is a Jab lonśki diagram where S0 is the ground
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Figure 2.1: Spectral properties of fluorophore excitation and emission. Adapted
from [20].

state and represents the energy of a fluorescent molecule without the excitation of

light. S1 and S2 are excited states and they occur when an outer electron is boosted

to a different orbital which is farther away from the nucleus. When a fluorophore

absorbs the energy of a photon that is greater than the difference between S0 and

the lowest energy level of S1, it will transfer from the ground state S0 to an excited

state of either S1 or S2, depending on the absorbed energy. Therefore, a range of

spectrum can excite a fluorophore, as shown in the bottom half of Figure 2.1 as
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the absorption spectrum. Due to the minimum energy required for excitation, the

absorption spectrum typically has a sharp cutoff on the long-wavelength side.

There are several pathways that an excited fluorophore can return to the ground

state. First, a process called internal conversion typically transfers the excited flu-

orophore to the lowest energy level of S1. The energy difference is released through

vibrational relaxation which does not involve the emission of photons. The internal

conversion from the excited state to S0 is also possible but for most fluophores this

conversion is not preferred due to the large energy gap. From the lowest energy level

of S1, the typical energy pathway to the ground state is through the emission of a

photon. Since S0 has multiple energy levels, there is a range of the spectrum for the

emitted photons, as shown in the bottom half of Figure 2.1 as the emission spectrum.

The time for both excitation and emission are very short, with excitation time on the

order of femtoseconds and emission time on the order of nanoseconds.

Due to the lost energy during the process of internal conversion and vibrational

relaxation, the emission wavelength typically is higher than the excitation wavelength,

creating a difference in the peak spectrums, i.e., the Stokes shift. The overlap of

absorption spectrum and emission spectrum depends on the magnitude of the Stoke

shift. A larger Stokes shift results in a smaller overlap and vice versa.

Another pathway for excited fluorophores to return to the ground state is by phos-

phorescence, which involves intersystem crossing between singlet states and triplet

states. This process will not be described here and the interested readers may refer

to [20] for details.
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2.2 Fluorescence Microscopy

The use of fluorophores in the biological field was first initiated in the 1930s and

has gained much popularity since then. Thousands of fluorescence probes have been

created to label almost every biological structure. Furthermore, the development

of genetic engineering allows genetic modification of proteins to carry a fluorescent

reporter, bringing enormous growth to cell biology as well as optical microscopy.

In 2008, the Nobel Prize in Chemistry was awarded jointly to Osamu Shimomura,

Martin Chalfie and Roger Y. Tsien “for the discovery and development of the green

fluorescent protein, GFP” [21]. Because fluorophores are highly sensitive, specific and

provide very high contrast, fluorescence microscopy has found numerous applications

in the field of cell biology, including but not limited to, discovering patterns of certain

proteins, tracking the movement of molecules, studying intracellular signaling, etc.

We describe the principle of fluorescence microscopy in this section.

There are a few key components of fluorescence microscopy: light source of specific

wavelength, objective, emission filter and detector. To begin with, samples are first

stained with fluorophores and illuminated with light of certain wavelength. Then

the Stokes-shifted emission light of fluorophores are separated from illumination light

through the use of a spectral emission filter and collected by an advanced electronic

light detection device such as a charge-coupled device (CCD) camera. Typically

epifluorescence illumination is used where the illumination light and emission light

share the objective and part of light path. The emission filter should filter out most

of the illumination light while keeping as much energy from emission as possible.

Contemporary light detectors enable the detection of even a single molecule’s behavior

such as blinking, providing extremely high sensitivity.
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Figure 2.2: Schematic diagram of a typical inverted epifluorescence microscope. HL:
halogen lamp; SP: specimen; OB: objective lens; OC: ocular (eyepiece); DC: digital
camera; EXL: excitation light source; CL: collector lens; EXF: excitation filter; DM:
dichroic mirror; EM: emission filter; EXC: exciting light incident on the specimen.
Adapted from [22].

Figure 2.2 shows the schematic diagram of a typical inverted epifluorescence mi-

croscope, where the objective is below the sample and pointing upwards. Such con-

figuration is useful for imaging live cells maintained in standard growth medium. The

excitation light source, often in the region of short wavelength, first passes through

excitation filter to allow only selected wavelength corresponding to the absorption

spectrum of fluorophores. The filtered excitation light then reflects from a dichroic

mirror, via the objective to irradiate the samples. After the sample fluoresces through
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the process of excitation and emission, the emission light is gathered by the objec-

tive, passed through the dichroic mirror and filtered by the emission filter. A digital

camera collects the filtered emission light and produces a fluorescence image.

2.3 Diffraction Limit

Due to optical diffraction, the image of an infinitesimal object, after any optical

system, will become a finite-sized spot. The PSF is used to describe the response

of a point source to an optical imaging system. Mathematically, let w,v ∈ R2

index the spatial coordinates in the object plane and the detector plane, respectively,

χ(w) represent the light intensity emitted by the object, and s(v) represent the

light intensity received at the detector plane, then the input-output relation of a

fluorescence microscope can be characterized as [23]:

s(v) = κ

∫
f(v −w)χ(w)dw, (2.1)

where κ is a normalization constant. Notice that (2.1) is a linear convolution of χ(w)

with the low-frequency PSF f(v) induced by diffraction [23]:

f(v) =

[
2
J1(kemNA‖v‖2)

kemNA‖v‖2

]2

, (2.2)

where kem = 2π/λ is the emission wavenumber, λ is the wavelength of emission

light, NA is the numerical aperture of the objective lens and J1(·) is the first-order

Bessel function of the first kind. Numerical aperture is a dimension-less number

that characterizes the range of angles that can be accepted or emitted by the optical

system, defined as NA = 2n · sinα, where n is the refractive index of surrounding

medium and α is the maximum half-angle under which cone of light can enter or exit
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(c)

rAbbe

rRayleigh

Figure 2.3: (a) Surface plot of diffraction-limited imaging system PSF (Airy disk).
Minimum separation according to (b) Abbe criterion and (c) Rayleigh criterion.

the lens. The pattern of a diffraction-limited system PSF, characterized in (2.2), is

also called Airy disk, the surface plot of which is shown in Figure 2.3 (a).

To characterize the resolution of a diffraction-limited system, two different criteria,

i.e., the Abbe and Rayleigh criteria [24, 25], have been proposed. They both define

the resolution as the minimum physical distance in space that two point sources need

to be apart in order for them to be distinguished as individuals. The distinction

between the two is their slightly different definitions of resolvability of two objects

after diffraction. According to the Abbe criterion, the resolution is defined as

rAbbe =
λ

2NA
, (2.3)
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while Rayleigh defines the resolution as

rRayleigh =
0.61λ

NA
. (2.4)

The surface plots of the intensity distribution of two point sources placed with a

separation of rAbbe and rRayleigh are shown in Figure 2.3 (b) and (c).

For the axial direction, the width of PSF is 2-3 times the width in the lateral

direction [26]. Therefore, with visible light and a high-end fluorescence microscope

equipped with an oil immersion objective of NA ≈ 1.4, the lateral resolution is ∼ 200

nm and the axial resolution is ∼ 500 nm. Such resolution is sufficient for resolving

structures on the tissue or cell level where the desired object of interest is of the scale

above 200 nm. However, for subcellular imaging where the scale of many structures

of interest is well below 100 nm, traditional fluorescence microscopy is no longer a

feasible technique. By using electrons instead of photons for imaging, electron mi-

croscopy (EM) achieves nanometer-scale or even higher resolution. However, it loses

the labelling specificity and requires a very sophisticated sample preparation proce-

dure which damages the sample permanently, prohibiting live cell or tissue imaging.

Therefore, it is desirable to develop imaging techniques which still possess the advan-

tage of fluorescence microscopy, i.e., minimum invasiveness, sensitivity, selectivity,

specificity and high contrast, but has a higher resolution beyond the diffraction limit.

2.4 Sub-Wavelength Imaging Techniques

To improve the diffraction-limited resolution of conventional microscopy, a number

of sub-wavelength imaging techniques have been proposed. They include total internal

reflection fluorescence (TIRF) microscopy [27], confocal microscopy [28], multiphoton
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microscopy [29], 4Pi microscopy [30], and structured illumination microscopy (SIM)

[31]. Their mechanism and realization are summarized here:

• TIRF microscopy: When the incidence angle of excitation light is under the

critical angle, the excitation light is totally internally reflected, creating a very

thin layer of exponentially decaying wave (evanescent wave). This evanescent

wave can excite only the fluorophores near the glass-water (or glass-oil) surface,

enhancing the resolution in the axial direction. Usually a layer of less than 200

nm depth can be observed. This technique is especially useful for observing

molecular events close to the cell surface.

• Confocal microscopy: By placing a spatial pinhole at the conjugate focal (con-

focal) plane of the sample, out-of-focus light excited by the sample is reduced,

sharpening the system PSF. After a 2D plane is scanned, an optical slice of the

sample is detected, enabling reconstruction of 3D structures by scanning the

axial direction. Confocal microscopy has become one of the most widely used

imaging techniques in the biological field.

• Multiphoton microscopy: Bu using more than one photon to excite a fluo-

rophore, it not only minimizes the scattering in the tissue, but also suppresses

the background signal. Multiphoton microscopy provides a much deeper pen-

etration and reduces the effective size of excitation PSF, allowing optical sec-

tioning in 3D imaging.

• 4Pi microscopy: As Abbe’s diffraction limit (2.3) indicates, the PSF size of

diffraction-limited imaging system decreases as the NA increases. By using two

opposing objective lenses focused to the same spot, light emitted by the sample
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can be collected coherently from both sides, leading to a theoretically maximal

solid angle of 4π. This effectively increases NA and substantially improves

the axis resolution as well. A similar technique, I5M microscopy [32], which

features a high-speed data acquisition has been proposed later. Both 4Pi and

I5M microscopes achieve an axial resolution of ∼100 nm.

• SIM: A periodic high-frequency sinusoidal illumination pattern, created in the

lateral direction, the axial direction, or both by interference, is used in SIM to

modulate the spectral frequencies of the image. Information at higher frequency,

which previously is unobservable, is shifted to lower frequency which can be

observed by the microscope. Images modulated at different orientations are

acquired and demodulated to its original high frequency to synthesize the high-

resolution image. A theoretical resolution improvement by a factor of 2 can be

achieved in both lateral and axial directions.

The above introduced techniques modify the optical imaging setup and achieve

significant resolution improvement especially in the axial direction. However, their

resolution is still limited by the diffraction of light. The best resolution achieved

by these techniques is 100 nm in both lateral and axial directions as reported by

I5S [33], a combination of I5M and SIM. Such resolution improvement, although very

significant, is still not enough for nanometer-scale structures visualization.

2.5 Spatially Pattern Excited Super-Resolution Microscopy

In the past few years, a number of breakthroughs have been made in the far-field

microscopy field to bypass the diffraction limit in both lateral and axial directions

[1–4, 34]. These techniques, which modulate the excitation or emission nonlinearly
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either in the spatial domain or in the temporal domain, can be divided into two

categories: spatially pattern excited super-resolution microscopy and SMLM. In this

section, we introduce spatially pattern excited super-resolution microscopy.

2.5.1 Saturated Structured Illumination Microscopy

As discussed earlier, SIM makes use of a spatially varying illumination to ren-

der high frequency information. However, the resolution limit induced by diffraction

also applies to the patterned illumination, resulting in a mere factor of two in the

improvement of highest detectable frequency if the sample responds linearly to the

illumination intensity. Therefore, the key to further improve the resolution is to break

the linearity between illumination and excitation. Such nonlinearity can be achieved

when fluorophores are illuminated with a strong illumination and reach saturation. As

shown in Figure 2.4 (a), the illumination light distribution follows a sinusoidal signal

with a strong peak intensity. The excitation responds nonlinearly with the illumi-

nation and reaches to saturation level when illumination is above certain threshold.

Such saturated excitation pattern can modulate the sample with higher order of fre-

quencies which can be recovered with frequency analysis. Figure 2.4 (b) shows the

generated pattern after regular and saturated excitation pattern.

In SSIM, the fundamental resolution limit no longer comes from the diffraction

of light, rather, it is due to the saturation level of excitation. A resolution of 50

nm in the lateral direction has been demonstrated in [1]. In principle, it can also be

applied to 3D imaging where the saturated excitation pattern is applied along the

axial direction.
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(a)

(b)

Figure 2.4: The principle of SSIM. (a) The generation of illumination pattern and
nonlinear response due to saturation. (b) Generated moiré pattern after regular and
saturated excitation pattern. Adapted from [26].
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2.5.2 Stimulated Emission Depletion Microscopy

STED microscopy shares similar concepts with SSIM as they both make use of the

nonlinear interaction between sample and illumination. In STED microscopy, the key

effect is stimulated emission which was discovered by Einstein in 1916. Stimulated

emission describes the phenomenon of an excited molecule (fluorophore) releasing a

photon upon illumination with light of energy that matches the difference between

the excitation state and the ground state. Such effect can be used to deplete targeted

excited fluorophores. Figure 2.5 (a) shows the process of stimulated emission.

Unlike SSIM where the nonlinear saturation is used for excitation, STED mi-

croscopy uses nonlinear saturation for de-excitation (depletion). Such saturated de-

pletion is achieved with a laser of appropriate wavelength which is called STED laser.

An excitation laser first excites the fluorophores to the excited state S1. The STED

laser, after passing through a specially designed phase mask, generates a doughnut-

shaped pattern with a zero intensity in the center and deplete the fluorophores off the

center to the ground state S0. Figure 2.5 (b) shows the schematic drawing of STED

microscopy. Note that the STED laser pattern is still subject to the diffraction limit.

However, similar to SSIM, the nonlinear relationship between the depletion and STED

pattern can be achieved when the STED laser intensity reaches saturation level of de-

pletion. Fluorophores illuminated with STED laser intensity higher than a threshold

will be depleted. Therefore, the saturated depletion pattern has a nonzero intensity

area that is smaller than the diffraction limit, shrinking the effective PSF width. The

shrunk PSF is then scanned over the sample to generate a super-resolution image.

Figure 2.5 (c) shows the process of saturated depletion shrinking the effective PSF

width.
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(c)

Figure 2.5: The principle of STED microscopy. (a) Illustration of stimulated emission.
(b) System setup of STED microscopy. (c) Saturated depletion shrinking the effective
PSF width. Adapted from [26].

In STED microscopy, the resolution is determined by the effective PSF width

which is limited by the saturation level of depletion, i.e., the achievable power of

STED laser, instead of the diffraction. In practice, a lateral resolution of ∼30 nm has

been reported in [35].
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2.6 Single-Molecule Localization based Super-Resolution Mi-
croscopy

Single-molecule localization microscopy relies on the precise localization of the

activated single emitters. Stochastic optical reconstruction microscopy (STORM) [4],

direct STORM (dSTORM) [36,37], photo-activated localization microscopy (PALM)

[3], and fluorescence photoactivation localization microscopy (fPALM) [38] all belong

to this category. The concept was proposed around the same time in 2006 by three

independent groups of Samuel Hess [38], Xiaowei Zhuang [4] and Eric Betzig [3],

respectively, and such super-resolution method holds superior capability of achieving

a typical lateral resolution of ∼20 nm [39–41]. In this dissertation, emitters and

fluorophores are used interchangeably.

2.6.1 Principle

Single molecule localization based super-resolution microscopy improves the spa-

tial resolution significantly by combining two techniques: single-molecule localization

and photoswitchable fluorescence. Although the use of single-molecule techniques to

precisely localize and track molecules to a much higher precision than the diffraction

limit has been known for a long time [42–44], they were only applied to imaging a few

separated fluorophores. This is because when multiple fluorophores are located within

the diffraction limit, their PSFs become overlapping, preventing precise localization:

for general fluorescently labelled samples, hundreds of fluorophores may be located

within a diffraction-limited region. The key to overcome this barrier is to separate

the fluorophores in time instead of space. This can be realized by photoswitch-

able fluorophores, which are fluorophores that can be switched between activated
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and inactivated states upon illumination of light. PALM and fPALM use photo-

activable fluorescent proteins which irreversibly photobleach after emission; STORM

and dSTORM use photoswitchable fluorescent dyes which have multiple switching

cycles. The emission of all these fluorescent dyes or proteins can be controlled to

allow only a random sparse subset of fluorophores to be activated at a time. Mathe-

matically, in each frame the signal at the object plane χ(w) consists only a few Dirac

spikes:

χ(w) =
∑
i

ciδ(w −wi), (2.5)

where wi represents the location of emitter i and ci ≥ 0 is the corresponding bright-

ness. Super-resolution is achieved by the precise localization of sparsely activated

emitters and repeated activation to allow different subsets of emitters to be activated

for localization. The final super-resolution image is reconstructed as a superposi-

tion of the localized emitter positions from thousands of frames. This principle is

illustrated in Figure 2.6.

2.6.2 Data Analysis

The images acquired by SMLM are very different from those by the traditional

fluorescence microscopy and require sophisticated reconstruction algorithms to gen-

erate the final super-resolution image. A number of different reconstruction algo-

rithms have been proposed and we will summarize two most popular choices, i.e.,

single emitter algorithm and compressive sensing based reconstruction, in Chapter

3. These algorithms take raw images of blinking fluorophores as input and output a

list of localized emitter positions. Some algorithms may also produce the associated

localization accuracy for each emitter.
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Figure 2.6: SMLM imaging principle. (a) Schematic drawing of a cell within which
the gray filaments are labelled with photoswitchable fluorophores. (b) One typical
acquired frame where only a sparse subset of fluorophores are activated. (c) A subse-
quent frame where a different random subset of fluorophores are activated. (d) The
high-resolution image reconstructed from the localized fluorophore positions after suf-
ficient number of frames are acquired. Adapted from [45].
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2.6.3 Drift Correction

Typically SMLM requires a relatively long acquisition time due to its iterative

nature. Therefore, considering the high localization accuracy, any drift in the lateral

or axial direction will deteriorate the final reconstruction quality significantly. In

practice, there are many factors that could cause the sample to drift during the

acquisition, including but not limited to, thermal variance of the microscope, vibration

of the optical table, air flow in the room, etc. To reduce the effect of sample drift to

the minimum, several drift correction methods have been proposed.

Lateral Drift

The drift in the lateral direction is typically corrected offline. One method involves

adding fiducial markers such as fluorescent beads, quantum dots, or gold particles in

the sample and they are visible during the acquisition and stay stationary relative to

the sample. These markers serve as reference points and their positions over time can

be determined and used to offset the movement of the sample in a post-processing

step.

The second method is to calculate the sample movement as a function of time using

the acquired SMLM images themselves. The acquired SMLM images are divided into

small chunks and reconstruction of each chunk can be analyzed by image alignment

algorithms to determine the sample drift of each chunk. The calculated drift can then

be subtracted from the localization of each chunk. Another similar approach is to

acquire a non-fluorescence image such as DIC image every few seconds. The sample

drift can be calculated using these non-fluorescence images.
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Axial Drift

The drift in the axial direction is more difficult to correct in the post-processing

step than the lateral drift due to the lower axial resolution. Therefore, active cor-

rection mechanism is needed during the acquisition. Typically, a weak infrared laser

beam is directed to pass the objective and reflect back at the glass-oil (or glass-air)

interface. The reflection is focused on a 2D position sensitive detector which can

detect the centroid of the beam. The movement of laser beam on QPD represents

axial movement of sample and can be used to correct the focus drift in real time [46].

2.6.4 Visualization

The output of SMLM is a list of localized fluorophore positions and cannot be

directly visualized. The most common approach of visualization is to create an over-

sampled grid with the value of each grid pixel representing the number of emitters

within. One can also take into account the localization accuracy and render the recon-

struction as a sum of 2D Gaussian kernels where each kernel represents a localization

with its width representing the corresponding localization uncertainty. Other ap-

proaches include quadtree-based adaptive histogram and Delaunay triangulation [47].

2.6.5 Resolution

The resolution of SMLM is determined by many factors such as localization preci-

sion, drift correction accuracy, labelling density, etc, and is not easily derived. Here,

for simplicity, we only consider the localization accuracy in the case of non-overlapping

fluorophores. The localization problem can be viewed as determining the position of

a fluorophore given I independent measurements, where I is the number of collected

photons. Each measurement has an uncertainty σ due to diffraction, where σ is the
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standard deviation of the system PSF. Therefore, if the positions of I photons can be

determined exactly, according to the central limit theorem, when I is large enough,

the mean of I photons’ positions approximately follows a normal distribution with

mean of the fluorophore position and standard deviation of σ/
√
I. So roughly speak-

ing, the localization accuracy of the fluorophore is limited by σ/
√
I. This precision,

although still depending on the PSF width, is scaled by the number of collected

photons, resulting in a resolution not limited by the diffraction of light.

Thompson et al. [44] further take into account the pixelation of camera image and

noise effect to propose a resolution limit for localization of a single fluorophore as

σloc =

√
σ2 +G/12

I
+

8πσ4b2

GI2
, (2.6)

where G is the area of a camera pixel and b is the background noise level. Another

estimation of the resolution limit given by Mortensen et al. [48] is represented as

σloc =

√
σ2
a

I

(
16

9
+

8πσ2
ab

2

IG

)
, (2.7)

where σ2
a = σ2 +G/12.

2.6.6 Three-Dimensional Imaging

Most structures of interest to biologists have a 3D morphology in nature while most

3D microscopy imaging techniques have the lowest resolution in the axial direction.

Therefore, there has been a growing interest to extend SMLM to 3D. The first method

that is capable of 3D single-molecule imaging is proposed by Huang et al. [49] based

on optical astigmatism. By placing a weak cylindrical lens into the optical path,

a difference of focus in the x and y direction is created. Thus, the ellipticity and

orientation of the emitter’s PSF varies along the z direction, as shown in Fig. 2.7(a),
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(a) (b)
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Figure 2.7: The scheme of 3D SMLM. (a) The optical diagram illustrates the principle
of 3D localization microscope by introducing a cylindrical lens. The z position of the
emitter can be localized according to the ellipticity of the image. The right panel
shows the image of an emitter in different z locations. (b) Calibration curve of
system PSF width σx and σy as a function of z location. Adapted from [49].

making it possible to differentiate emitters in different z locations. When the emitter

is located on the average focal plane, the PSF is round shaped. When the emitter

is located above the average focal plane, the PSF becomes elliptical and is elongated

in the y direction and vice versa. Fig. 2.7(b) shows the calibration curve of system

PSF width σx and σy as a function of z location. It is clear that the symmetry of

system PSF in z direction is violated. The dependence of σx and σy on the emitter

axial position z0 can be formulated as

σx(z0) = σx,0

√√√√1 +
4∑
i=2

Ax,i

(
z0 − cx
dx

)i
,

σy(z0) = σy,0

√√√√1 +
4∑
i=2

Ay,i

(
z0 − cy
dy

)i
,

(2.8)
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(b)

(c)

Figure 2.8: DH-PSF imaging principle. (a) The optical setup of single-molecule DH-
PSF imaging. (b) The calibration curve of the angle between two lobes as a function
of z position. (c) Images of an emitter in different z locations. Adapted from [50].

where σx,0 and σy,0 are the width of PSF in the x and y directions at focus, cx and

cy are the offsets from the focal plane, dx and dy are the focus depths, Ax,i and Ay,i,

i = 2, 3, 4, are used to correct the non-linearity of the optical system. Astigmatism

based 3D imaging is relatively easy to implement and achieves an axial resolution of

∼ 50 nm [49].

31



Another method is proposed by Pavania et al. [50] where the system PSF is

engineered to have two lobes using a spatial light modulator. The angle of two lobes

changes at different axial locations. It is termed double-helix PSF (DH-PSF) as the

PSF over z positions resembles a double-helix. Therefore, the emitter lateral position

can be determined as the center of two lobes while its axial location is determined by

the angle between two lobes with a calibrated lookup table. The imaging principle of

DH-PSF based 3D SMLM is shown in Figure 2.8. DH-PSF is able to image samples

with a large field of depth (over 2 µm).

2.7 Home-Built SMLM System

We have set up a SMLM system (Fig. 2.9) based on an inverted microscope (IX71,

Olympus America Inc.) with 1.49 NA 100× oil immersion TIRF objective. Four

lasers, 405 nm, 488 nm, and 647 nm diode lasers (Vortran Laser Technology Inc.)

and 561 nm diode-pumped solid-state laser (CrystaLaser), covering the spectrum of

the most commonly used fluorophores, are combined in a single optical path using

dichroic mirrors. These four laser beams are then expanded and focused onto the back

focal plane of the objective lens, where the focus point is allowed to move through

the use of a translational stage. Therefore, the illumination light can be controlled at

a high incidence angle, narrowing the depth of illumination to improve the signal-to-

noise ratio (SNR). A multi-band dichroic mirror (FF405/496/593/649, Semrock) is

used to separate emission from excitation laser. Multiple emission filters are placed

before cameras to further reduce the contamination from the excitation laser to a

negligible level.
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Three thermoelectrically cooled electron multiplying CCD (EMCCD) cameras

(iXon Ultra 897, Andor Technologies PLC.) are used for imaging with the electron-

multiplying (EM) gain set to 255 to provide multi-focus astigmatism based 3D imag-

ing platform (Chapter 5). For regular 2D imaging, only one camera is used. EMCCD

uses on-chip signal amplification technology to raise the signal level via a process

called impact ionization in order to reduce the effect of camera readout noise and

dark current for better SNR.

The sample holder is mounted on a 3D piezo stage (Nano-LPS, Mad City Lab).

An infrared 980 nm laser is used in combination with the piezo stage for the axial

drift correction [49]. A computer streams the continuously read data from cameras

directly to a hard disk. All instruments and acquisition are controlled by home-written

LabVIEW programs (National Instruments Corp.).

Several pictures of our home-built system setup are shown in Figure 2.10 (a -

d). Figure 2.10 (a) shows a portion of the excitation section where four lasers are

expanded combined to a single optical path. Figure 2.10 (b) shows the rest portion of

excitation section as well as the axial drift correction system. The inverted microscopy

and sample stage are shown in Figure 2.10 (c). Figure 2.10 (d) shows the detection

section. A screenshot of the LabVIEW programs for laser, stage and camera control

and image acquisition is shown in Figure 2.10 (e).

2.8 Cell Culture and Immuno-Fluorescence Staining

To test our system on experimental data, we prepare samples for our imaging

system and the procedure is described here. Dulbeccos modified Eagles medium

(DMEM, Invitrogen) is supplemented with 10% FBS, 100 U/mL penicillin and 100
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Figure 2.9: Diagram of the home-built SMLM setup composed of Excitation, Micro-
scope, Focus lock, Detection and Software. PSD: position sensitive detector; DM:
dichroic mirror; SP: short-pass.
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Figure 2.10: Pictures of the home-built SMLM system. (a) A portion of excita-
tion. (b) Axial drift correction system and the rest portion of excitation. (c) The
inverted microscope and sample stage. (d) Detection system. (e) A screenshot of the
LabVIEW programs for laser, stage and camera control and image acquisition.

35



µg/ml streptomycin and warmed to 37 oC before adding to cells. 250,000 HeLa cells

are seeded onto a 35 mm, No. 1.5 glass window dish (MatTek Corp) at 37 oC with

5% CO2. After culturing cells for 24 hours, cells are fixed at room temperature

in a fixation buffer (3% paraformaldehyde and 0.1% glutaraldehyde in PBS) for 10

minutes, and then rapidly washed 3 times with PBS. Cells are blocked in blocking

buffer (3% bovine serum albumin (BSA) and 0.2% Triton X-100) for 1 hour at room

temperature. After blocking, α-tubulin (Sigma Aldrich) is diluted in blocking buffer

and applied to cells for 1 hour at room temperature. Cells are washed 3 times 5

minutes each in PBS on a rocking platform and subsequently treated with appropriate

secondary antibody, in this instance Mouse-IgG, conjugated to AlexaFluor647 for 30

minutes. Antibodies are secured through a post-fixation step using the fixation buffer

for 5 minutes. Imaging buffer (10% glucose, 50 mM Tris pH 8.5, 10 mM NaCl, 14

mg Glucose Oxidase, 50 µL 20 mg/mL catalase, and 1X β-mercaptoethanol (Sigma

Aldrich)) is used throughout experimentation.
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Chapter 3: Signal Model and Existing Algorithms

The success of SMLM depends on many factors such as sample labelling density

and axial drift correction. Nonetheless, the most important components of SMLM are:

(i) photoswitchable fluorophores which can switch between the activated state and in-

activated state stochastically upon illumination with light of specific wavelength; (ii)

high-performance reconstruction algorithms that can localize fluorophores’ positions

precisely. In the last chapter we have introduced the principle of photoswitchable

fluorophores which make single-molecule localization possible. In this chapter we

present existing reconstruction algorithms for SMLM. The growing use of SMLM in

the biological imaging field has led to substantial development of localization algo-

rithms for both 2D and 3D reconstruction, extending from isolated emitter PSFs to

the analysis of overlapping PSFs.

3.1 Two-Dimensional Signal Model

We begin by introducing the signal model of SMLM in 2D imaging. In each frame,

a sparse subset of emitters are activated. Let θ(i) = [θ
(i)
x , θ

(i)
y , θ

(i)
I ] = [θ

(i)
L , θ

(i)
I ] be the

parameters for the ith emitter, where θ
(i)
L = [θ

(i)
x , θ

(i)
y ] ∈ S are the coordinates in the

x and y dimensions, respectively,

S =
{
θL = [θx, θy]

∣∣∣θx ∈ [xmin, xmax], θy ∈ [ymin, ymax]
}
, (3.1)
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and θ
(i)
I > 0 denotes its intensity. Let Θ = {θ(1), θ(2), · · · , θ(P )} be the set of param-

eters, where P is the total number of emitters. We can write the set of activated

emitters χ = χ(x, y|Θ) as a sparse superposition of point sources, given as

χ = χ(x, y|Θ) =
P∑
i=1

θ
(i)
I δ(x− θ

(i)
x , y − θ(i)

y ), (3.2)

where δ(x− x0, y − y0) is a Dirac measure located at (x0, y0). For notational conve-

nience, we also use χ(Θ) to denote χ(x, y|Θ).

Due to diffraction, the point source signal χ is low-pass filtered by the microscope

PSF before forming the image, as illustrated by (2.1). Accurate PSF modelings such

as Richards-Worf model [51] and Gibson-Lanni model [52] require taking account

of many factors including the vector nature of light waves and interfaces between

the sample and objective lens. However, the numerical evaluation of these models are

computationally inefficient. Accurate approximation using Airy PSF is used by many

researchers [53], as shown earlier in (2.2), which is the squared modulus of the Fourier

transform of the circular aperture. To further reduce the evaluation complexity and

simplify the calculations, an isometric Gaussian function is often used to approximate

the system PSF [54]:

f(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (3.3)

where σ is the standard deviation in the lateral direction. Such approximation can be

very accurate when the emitter is in focus. However, when the emitter is out-of-focus,

the PSF shape can become more complicated and such case will be discussed later.

Therefore the signal received at the detector plane can be written as

s(x, y|χ) = (f ∗ χ)(x, y) =
P∑
i=1

θ
(i)
I f(x− θ(i)

x , y − θ(i)
y ). (3.4)
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The signal is captured by a camera, a pixelated light detection device that measures

the number of photons striking each pixel. If the pixel size is sufficiently small, uniform

intensity within each pixel can be assumed and the measurement at each pixel can be

approximated as the multiplication between the PSF intensity at the pixel center and

the pixel area. However, due to physical constraints and noise, the pixel size cannot

be infinitesimal. Therefore, the expected number of photons received at the (m,n)th

camera pixel, denoted as µ[m,n|χ], can be written as an integration of s(x, y) over

the area of a pixel:

µ[m,n|χ] =

∫ m+ 1
2

m− 1
2

∫ n+ 1
2

n− 1
2

s(x, y|χ) dxdy,

=
P∑
i=1

θ
(i)
I

4

[
Q

(
m− θ(i)

x + 1
2√

2σ

)
−Q

(
m− θ(i)

x − 1
2√

2σ

)]

×

[
Q

(
n− θ(i)

y + 1
2√

2σ

)
−Q

(
n− θ(i)

y − 1
2√

2σ

)]
, (3.5)

where Q(x) = 2√
π

∫ x
0
e−t

2
dt.

(a) (b) (c)

Figure 3.1: The effect of pixelation and noise. (a) Noise-free and pixel-free signal at
detector plane. (b) Pixelated image without noise. (c) Pixelated image after noise.
The blue cross represents the true emitter location.

39



The actual number of photons hitting the camera at the (m,n)th pixel, denoted

as y[m,n], follows an independent Poisson distribution with the parameter µ[m,n|χ],

given as

y[m,n|χ] ∼ Poisson(µ[m,n|χ]). (3.6)

The effect of pixelation and noise is shown in Figure 3.1. Figure 3.1 shows the signal

of a single emitter at the detector plane. The pixelated image is shown in Figure 3.1

(b) and Figure 3.1 (c) is the actual acquired image after noise.

3.2 Three-Dimensional Signal Model

In 3D imaging, the parameter for the ith emitter becomes θ(i) = [θ
(i)
x , θ

(i)
y , θ

(i)
z , θ

(i)
I ] =

[θ
(i)
L , θ

(i)
I ], where θ

(i)
L = [θ

(i)
x , θ

(i)
y , θ

(i)
z ] ∈ S are the coordinates in x, y and z dimensions,

respectively and

S =
{
θL = [θx, θy, θz]

∣∣∣θx ∈ [xmin, xmax], θy ∈ [ymin, ymax], θz ∈ [zmin, zmax]
}
. (3.7)

Then the set of activated emitters χ = χ(x, y, z|Θ) can also be written as a sparse

superposition of point sources, given as

χ = χ(x, y, z|Θ) =
P∑
i=1

θ
(i)
I δ(x− θ

(i)
x , y − θ(i)

y , z − θ(i)
z ), (3.8)

where δ(x− x0, y − y0, z − z0) is a Dirac measure located at (x0, y0, z0).

For different 3D imaging schemes the system PSF varies. In this dissertation we

focus on astigmatism based 3D imaging configuration. Herein, the system PSF can be

approximated as an asymmetric 2D Gaussian function with the ellipticity determined

by the emitter location along the z direction:

f(x, y|z0) =
1

2πσx(z0)σy(z0)
e
−
(

x2

2σx(z0)
2 + y2

2σy(z0)
2

)
, (3.9)
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where σx(z0) and σy(z0) are the standard deviations in the x and y directions and

their dependence on the emitter axial location z0 is formulated in (2.8).

Therefore the signal at the detector plane is given as

s(x, y|χ) =
P∑
i=1

θ
(i)
I f(x− θ(i)

x , y − θ(i)
y |θ(i)

z ). (3.10)

Integrating s(x, y|χ) over the pixel area, we have the expected number of photons

received at the (m,n)th camera pixel written as

µ[m,n|χ] =

∫ m+ 1
2

m− 1
2

∫ n+ 1
2

n− 1
2

s(x, y|χ) dxdy,

=
P∑
i=1

θ
(i)
I

4

[
Q

(
m− θ(i)

x + 1
2√

2σx(θ
(i)
z )

)
−Q

(
m− θ(i)

x − 1
2√

2σx(θ
(i)
z )

)]

×

[
Q

(
n− θ(i)

y + 1
2√

2σy(θ
(i)
z )

)
−Q

(
n− θ(i)

y − 1
2√

2σy(θ
(i)
z )

)]
. (3.11)

The actual camera signal at the (m,n)th camera pixel also suffers from the intrinsic

shot noise and follows a Poisson distribution with parameter µ[m,n|χ] as shown in

(3.6).

Denote the camera image as y = {y[m,n]}. The objective of both 2D and 3D

super-resolution image reconstruction, therefore, is to estimate the point source signal

χ(Θ) (or Θ), given the observed image y.

3.3 Single Emitter Algorithm

A number of super-resolution image reconstruction algorithms have been proposed

for SMLM since its invention. Though they vary in the underlying assumptions

and optimization objectives, they can be roughly divided into two categories: single

emitter fitting based and multiple emitters localization based methods. Single emitter

fitting based reconstruction, also known as the Single Emitter Algorithm (SEA) [4],
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first identifies candidate emitters that are well separated from others. Since the

system’s PSF can be well approximated by a Gaussian function, fitting to a Gaussian

function is then performed on a small area surrounding the candidate emitters. For

2D image reconstruction, emitters not on focus are eliminated according to the fitted

PSF width and intensity. In 3D case, the PSF widths are used to calculate emitters’

axial positions. This procedure is repeated for all the frames and can be implemented

in parallel with a multi-core central processing unit (CPU) or a graphics processing

unit (GPU) efficiently [55].

3.3.1 Peak Identification

The identification of candidate emitters serves as the first step in SEA. A Gaussian

filtering is applied to the image to remove high-frequency noise and low-frequency

background variations. The Gaussian kernel should have the same width as the

system PSF and integrate to zero. Let ý represent the filtered image and we have

ý[u, v] = (f ∗ y)[u, v], (3.12)

where f [u, v] is the discrete representation of system PSF. Another filter commonly

used for candidate emitters detection is Laplacian of Gaussian (LoG) filter. After

filtering, the image is then searched for local maxima above a given threshold ζ, i.e.,

(θ́(i)
x , θ́

(i)
y ) = (u, v) if ý[u, v] > ý[u+ 1, v] & ý[u, v] > ý[u− 1, v] &

ý[u, v] > ý[u, v + 1] & ý[u, v] > ý[u, v − 1] &

ý[u, v] > ζ. (3.13)
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These local maxima {(θ́(i)
x , θ́

(i)
y )} are considered to be peak positions and their sur-

rounding boxes S(i) are extracted as candidates:

S(i) = {(u, v) | |u− θ́(i)
x | <

blockwidth

2
& |v − θ́(i)

y | <
blockwidth

2
}. (3.14)

Figure 3.2 (a) and (b) show a typical SMLM image and identified candidate emitters

in the red boxes. Figure 3.2 (c) shows the images of a few extracted emitters.

(a) (b)

(c)

Figure 3.2: (a) A typical SMLM image. (b) Identified candidate emitters shown in
red boxes. (c) Images of a few extracted emitters.

3.3.2 Localization

After images of candidate emitters are extracted, the position of these extracted

emitters are further refined with sub-pixel resolution using localization algorithms.
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There are a number of localization algorithms that have been proposed and we sum-

marize them here.

QuickPALM

The most straightforward and intuitive localization algorithm is probably to cal-

culate the weighted centroid of extracted image (center of mass) as the estimated

position of emitters [56], i.e.,

θ̂(i)
x =

∑
(m,n)∈S(i) m · y[m,n]∑

(m,n)∈S(i) y[m,n]
,

θ̂(i)
y =

∑
(m,n)∈S(i) n · y[m,n]∑

(m,n)∈S(i) y[m,n]
,

(3.15)

where S(i) is the set of pixels corresponding to the extracted square region of ith

emitter, as defined in (3.14). The spot shape can also be characterized using four

parameters: left radius σ̂
(i)
l , right radius σ̂

(i)
r , top radius σ̂

(i)
t and bottom radius σ̂

(i)
b ,

defined as:

σ̂
(i)
l =

∑
(m,n)∈S(i)l

y[m,n](θ̂
(i)
x −m)∑

(m,n)∈S(i)l
y[m,n]

, σ̂(i)
r =

∑
(m,n)∈S(i)r

y[m,n](m− θ̂(i)
x )∑

(m,n)∈S(i)r
y[m,n]

,

σ̂
(i)
t =

∑
(m,n)∈S(i)t

y[m,n](θ̂
(i)
y − n)∑

(m,n)∈S(i)t
y[m,n]

, σ̂
(i)
b =

∑
(m,n)∈S(i)b

y[m,n](n− θ̂(i)
y )∑

(m,n)∈S(i)b
y[m,n]

,

(3.16)

where

S(i)
l = {(m,n)|m < θ̂(i)

x & (m,n) ∈ S(i)},

S(i)
r = {(m,n)|m ≥ θ̂(i)

x & (m,n) ∈ S(i)},

S(i)
t = {(m,n)|n < θ̂(i)

y & (m,n) ∈ S(i)},

S(i)
b = {(m,n)|n ≥ θ̂(i)

y & (m,n) ∈ S(i)}.

(3.17)

When the emitter PSF is isotropic (such as in 2D case), σ̂
(i)
l ≈ σ̂

(i)
r ≈ σ̂

(i)
t ≈ σ̂

(i)
b .

However, when there are multiple PSFs overlapping, violating the single emitter pre-

sumption, such symmetry is no longer valid and the symmetry level in the x and y
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direction, defined as Sx and Sy, can be used to as a filtering criteria in a later step:

Sx = 1−

∣∣∣σ̂(i)
l − σ̂

(i)
r

∣∣∣
σ̂

(i)
l + σ̂

(i)
r

,

Sy = 1−

∣∣∣σ̂(i)
t − σ̂

(i)
b

∣∣∣
σ̂

(i)
t + σ̂

(i)
b

.

(3.18)

Higher values of Sx and Sy represent higher symmetry along the corresponding axis.

Least-Squares Fitting

Another commonly used localization algorithm seeks to minimize the mismatch

between the data and the emitter PSF by varying the parameters of the emitter [4].

We seek the parameters of the emitter that minimize the least-squares error:

θ̂(i) = argmin
θ

∑
(m,n)∈S(i)

(y[m,n]− µ[m,n|{θ}])2, (3.19)

where S(i), as defined in (3.14), is the set of pixels in the extracted square region of

ith emitter. This minimization problem can be solved by many optimization routines

efficiently, such as the widely used Levenberg-Marquadt algorithm [48,57]. However,

ordinary least-squares fitting assumes a uniform variance in the errors (homoscedas-

ticity). As described earlier, for photon count images, the noise for each pixel follows

a Poisson distribution where the variance is the expected number of photons hitting

each pixel, causing a nonuniform noise variance (heteroscedasticity). Therefore, a

weighted least-squares minimization can be used:

θ̂(i) = argmin
θ

∑
(m,n)∈S(i)

(y[m,n]− µ[m,n|{θ}])2

σ2
(m,n)

, (3.20)

where σ2
(m,n) is the variance of the pixel (m,n), typically estimated as max(y[m,n], 1)

to avoid division by zero. One can also substitute the denominator with µ[m,n|{θ}].
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If a pixel value is expected to have a large variance, then the squared error of that

pixel should have less contribution to the total error than the error of a pixel whose

variance is small. Therefore, more emphasis is put on the tail of PSF.

Radial Symmetry

In another study, Parthasarathy [58] utilizes the radially symmetric property of

system PSF and determines the position of an emitter as the point of maximal radial

symmetry. For each pixel of a radially symmetric image without noise, its gradient

will point towards the center. For noisy images, the radial center is estimated to be

the point that has the smallest total distance to the intensity gradients of all pixels.

Parthasarathy provides an analytic solution to this problem without iterative fitting,

so that this method is 100 times faster than fitting-based methods. However, it can

not be readily applied to 3D emitter localization where both lateral position and the

axial position of emitters need to be estimated.

3.3.3 Filtering

Since the sparse activation of emitters is a stochastic process, there may be multi-

ple nearby fluorophores activated at the same time, resulting in overlapping PSFs. In

such a scenario, their PSFs will be regarded as a single peak and only one position will

be returned, resulting in a higher localization error. This can be reduced by adding

a subsequent filtering step where the width of PSF returned by the localization algo-

rithm can be used as a criteria to filter out overlapping emitters. Other criteria also

exist such as the symmetry level Sx and Sy calculated in (3.18). Out-of-focus emitters

can also be filtered out at this step by using the fitted width and background.
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3.4 CSSTORM

Despite its simplicity and efficiency, SEA can only handle images of low emitter

density (< 1 emitter/µm2) and suffers from low temporal resolution. With low emitter

density images, tens of thousands of frames are needed to achieve a super-resolution

image of 20 to 50 nm resolution. This greatly limits its application in live cell imaging

and other fast dynamic processes, where the temporal resolution required is often

within one minute. In order for faster super-resolution image acquisition, algorithms

that can handle higher density than SEA are in urgent need. Several algorithms have

been proposed to analyze emitters of intermediate to high density [7,59–61]. Among

these algorithms, compressive sensing based reconstruction algorithm, also known as

CSSTORM [59], utilizes the sparsity prior of the signal in each frame and achieves

the state-of-the-art recall rate and localization accuracy when the density is high (>5

emitters/µm2).

3.4.1 Background

The Nyquist-Shannon theorem states that the sampling rate should be at least

twice the maximum bandwidth of the signal to avoid losing information. In 2004, Em-

manuel Candès, Justin Romberg, Terence Tao [62] and David Donoho [63] proposed

that given the signal is sparse in certain basis, it can be reconstructed with much less

number of measurements than what the Nyquist-Shannon theorem requires. This

sampling technique is known as compressive sensing (CS).

47



Sparsity

Let a real-valued, one-dimensional vector x ∈ Rn1 be the signal of interest and

{ψi}n1
i=1 be a set of orthonormal basis vectors, where ψi ∈ Rn1 , 1 ≤ i ≤ n1. A basis

matrix Ψ ∈ Rn1×n1 is defined as Ψ = [ψ1, ψ2, · · · , ψn1 ] and can be used to represent x

as

x = Ψs, (3.21)

where s = [s1, · · · , sn1 ]
T ∈ Rn1 with si = 〈x, ψi〉. Therefore, s can be seen as a

representation of x in the Ψ domain. If at most K coefficients of s are non-zero, x is

defined as K-sparse and can be represented as a linear combination of only K basis

vectors of {ψi}n1
i=1. We are interested in the case when K � n1.

In practice, the signal of interest may not be strictly K-sparse. Instead, the

coefficients of s may decay rapidly, having only a few large coefficients and many

small coefficients. In such a case, we define sK as the best K-term approximation of

s:

sK = argmin
z∈ΣK

‖s− z‖1 (3.22)

and xK := ΨsK , where ΣK = {z ∈ Rn1 : |supp(z)| ≤ K} and supp(z) is the support

of z. Since Ψ is an orthonormal basis, we have ‖xK − x‖2 = ‖sK − s‖2, where ‖ · ‖2

represents the `2 norm. Therefore, the approximation error of xK is negligible as

long as ‖sK − s‖2 is small enough. If x is K-sparse or the coefficients of x in the Ψ

domain decay quickly (in other words, compressible), it can be represented without

much information loss by preserving only the large coefficients and their locations

of s. This yields a sparse approximation of the signal x, an idea underlying many

compression algorithms such as JPEG, JPEG2000, MP3 and MPEG. Figure 3.3 shows

48



the comparison between an original image and its wavelet representation. Most of

the wavelet coefficients are close to zero, demonstrating a high compressibility in the

wavelet domain.

(a)

(b)

Figure 3.3: Illustration of the sparse representation. (a) Original image. (b) Wavelet
transform.

Noiseless Measurements

Consider a linear measurement system that collects n2 < n1 measurements {yj}n2
j=1,

where yj = 〈φj, x〉, 1 ≤ j ≤ n2. Let Φ = [φ1, φ2, · · · , φn2 ]
T ∈ Rn2×n1 and y ∈ Rn2
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where y = [y1, · · · , yn2 ]
T , we have

y = Φx = ΦΨs = As, (3.23)

where A = ΦΨ ∈ Rn2×n1 . The goal of CS, therefore, is to infer s given the knowledge

of y and A. This is very common in practice such as when the sensors are expensive

and therefore limited, or when the sensing process is slow as in magnetic resonance

imaging. Since A is a matrix of size n2 × n1, this problem is underdetermined: there

are an infinite number of s̃ that satisfy y = As̃.

`1 minimization

Given the prior knowledge that s is sparse, probably the most intuitive solution

to (3.23) is to find the sparsest s̃ that satisfies y = As̃, i.e.,

ŝ = argmin
s̃
‖s̃‖0 subject to y = As̃, (3.24)

where ‖ · ‖0 is the `0 norm and is calculated as the number of nonzero elements. In

principle, an impressively small number of measurements is required to achieve perfect

reconstruction under mild condition on Φ and Ψ. In fact, only K + 1 random mea-

surements are needed for reconstructing a K-sparse signal with `0 minimization [64].

Unfortunately, solving `0 minimization (3.24) is a combinatorial problem and compu-

tationally inefficient. It is known to be NP-complete [65], requiring enumerating
(
n1

K

)
possible locations of the nonzero entries of s.

On the other hand, minimization of the `1 norm has been used as a sparsity-

promoting function for decades [66, 67]. Substituting the `0 norm with the `1 norm

yields the following minimization problem:

ŝ = argmin
s̃
‖s̃‖1 subject to y = As̃. (3.25)
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This algorithm is also known as Basis Pursuit [68] and can be solved efficiently via

linear programming. The geometric interpretation of using the `1 norm versus the

more commonly used `2 norm as in least-squares reconstruction is shown in Figure

3.4. We define the solution space H := N (A) + s, where N (A) is the null space of

A. Therefore, y = As̃ for any s̃ ∈ H. It can be seen that the `1 norm ball is pointing

towards the coordinate axes. Therefore, when the value of it increases, it has a higher

chance contacting the solution space at the axes, resulting in a sparser solution than

`2 norm.

(a) (b)

Figure 3.4: Comparison of (a) `2 minimization and (b) `1 minimization solutions.
The green line H is the solution space and the red line is the `1 or `2 norm ball.

Restricted Isometry Property

To evaluate the reconstruction performance using `1 minimization (3.25), a notion

called Restricted Isometry Property (RIP) [69] is introduced. For K = 1, 2, · · · , n1,
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the isometry constant δK of a matrix A is defined as the smallest number that satisfies

(1− δK)‖s‖2
2 ≤ ‖As‖2

2 ≤ (1 + δK)‖s‖2
2 (3.26)

for all K-sparse vectors s. The value of δ2K is of special interest and if δ2K is not close

to 1, A preserves the Euclidean length of any 2K-sparse signals. This implies that

the distance between any two K-sparse vectors is well preserved after measurements,

i.e., for all K-sparse vectors s1 and s2, we have (1− δK)‖s1− s2‖2
2 ≤ ‖As1−As2‖2

2 ≤

(1+δK)‖s1−s2‖2
2. This is important for reliable reconstruction of (3.25) as described

below.

Assume δ2K <
√

2 − 1, it can be shown that [69] the solution ŝ to the `1 mini-

mization problem (3.25) obeys

‖ŝ− s‖1 ≤ C0‖s− sK‖1,

‖ŝ− s‖2 ≤ C0K
−1/2‖s− sK‖1,

(3.27)

for some constant C0, where sK is the best K-sparse approximation of s as described

earlier. Therefore,

1. if s is K-sparse, i.e., s = sK , and in combination with (3.27), we have exact

recovery because ŝ = s;

2. if s is not K-sparse, the `1 error of reconstruction is linearly bounded by the

`1 error of the best K-sparse approximation. For `2 error, the bound is scaled

down by K1/2.

Noisy Measurements

In practice, the measurements are typically corrupted with noise such as shot noise

or white noise. Consider the measurement system of the form:

y = As+ z, (3.28)
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where z is unknown but bounded noise, with ‖z‖2 ≤ ε.

The constraint in the `1 minimization problem (3.25) can be relaxed to accom-

modate the noise term introduced in (3.28). Therefore, we have the reconstruction

problem

ŝ = argmin
s̃
‖s̃‖1 subject to ‖y − As̃‖2 ≤ ε, (3.29)

where ε is an upper bound on the noise level. This problem can be solved efficiently

with linear programming.

Again, assume δ2K <
√

2 − 1, it has be shown [69] that the solution to the

optimization problem (3.29) obeys

‖ŝ− s‖2 ≤ C0K
−1/2‖s− sK‖1 + C1ε, (3.30)

for some constants C0 and C1. Compared with the bound in the noiseless case (3.27),

only a term proportional to the noise level is added. Besides, the constants C0 and

C1 are typically very small. This result guarantees the robustness of `1 minimization

for all sparse and compressible signals when the measurement matrix obeys the RIP

condition.

The natural question to raise is, how to design the measurement matrix so the RIP

condition holds? One way is to design the measurement matrix randomly. One can

choose the element of Φ by sampling independent and identically distributed random

variables from a normal distribution with zero mean and variance 1/n1. Then with an

overwhelming probability, the matrix A obeys the RIP condition given that [63,70,71]

n2 ≥ C ·Klog(n1/K), (3.31)

where C is a small constant.
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In summary, the theory of compressive sensing states that a signal can be recon-

structed robustly from onlyO(Klog(n1/K)) measurements by finding sparse solutions

to underdetermined linear systems. The recovery is possible under two conditions:

(a) the signal is sparse in some domain; and (b) the measurements are highly inco-

herent with respect to the representation domain, which can be enforced by the RIP

condition.

3.4.2 Formulation in Super Resolution

In SMLM, only a sparse subset of emitters are activated and the image acquired

at the camera is a linear combination of the sparsely activated emitters’ PSFs. This

can be formulated as inverting an underdetermined linear system where the sparsity

of the signal is exploited. The goal of CSSTORM for SMLM image reconstruction, is

to robustly recover the emitters’ locations under high emitter density.

In CS, the notion of sparsity is essential and generally the signal is sparse with

respect to a finite dictionary. In SMLM, the observed signal y is a mixture of a few

continuously parameterized PSFs. Thus y has a sparse representation with respect

to a continuously-parameterized dictionary, where the dictionary contains the PSFs

located at different positions. A straightforward strategy to solve the sparse recovery

problem with a continuously parameterized dictionary is to discretize the parameter

space [72]. As first described in [59], a discrete grid with spacing 4 much smaller

than the camera pixel size is introduced to represent the discrete parameter space.

In 2D case, we define the grid locations as a finite set Sm:

Sm =
{
θL = [θx, θy]

∣∣∣θx ∈ Sx, θy ∈ Sy}, (3.32)
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where

Sx = {xmin, xmin +4, xmin + 24, · · · , xmax}, (3.33)

Sy = {ymin, ymin +4, ymin + 24, · · · , ymax}. (3.34)

Then we define x ∈ R|Sx||Sy |×1 as the emitter signal, where each entry of x representing

the brightness of an emitter located at the point. Since only a sparse number of

emitters are active at a time, x is sparse. The observed camera image y is a linear

measurement of the underlying sparse emitters that locate approximately on the

discrete grid. Mathematically,

y ∼ Poisson(Ax). (3.35)

Poisson(·) represents the Poisson distribution with the variance determined to be

its parameter. The matrix A is the column-wise concatenation of shifted PSF at

corresponding locations on the discrete grid. Define the location of an emitter cor-

responding to the jth entry of x as θjL, we have the jth column of A determined as

Aj = {µ[m,n|{θjL, 1}]}, where µ(·) is defined in (3.5). Thus the signal x can be

reconstructed by solving the following `1 minimization problem:

minimize ‖x‖1

subject to x ≥ 0

‖y − Ax‖2 ≤ ξ ·
√
‖y‖1,

(3.36)

where ξ is a regularization parameter that controls the trade-off between the fidelity

to the observation and the sparsity of the signal. The quadratic constraints are intro-

duced to accommodate the inherent Poisson noise. A large ξ enhances the sparsity

level of x and allows larger deviation from the acquired data, while a small ξ results

55



in higher fidelity to the acquired data and less sparse x. In practice, a value of ξ be-

tween 1.5 and 2 is used. The optimization problem (3.36) can be solved using linear

programming with quadratic constraints [59].

Unfortunately, the matrix A does not satisfy the RIP due to the high correlations

between its columns. In [59], a simplified case is considered to estimate the limit of

emitter density for robust reconstruction. It is shown that the smallest distance of

two emitters for them to be “perfectly” detected is ∼2.5 σ, resulting in a maximal

emitter density of ∼7.8 µm−2.

CSSTORM has been proven as a robust and high-performance algorithm for high-

density super-resolution image reconstruction [59]. It allows an order of higher emitter

density than what the SEA algorithm can handle and greatly increases its temporal

resolution. It also achieves a significant improvement of the localization precision.

The principle of CSSTORM can also be applied to 3D SMLM image reconstruction,

where a 3D grid can be introduced to represent emitters locations.
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Chapter 4: 2D Fast Reconstruction Algorithm via Frequency

Estimation

As described in the last chapter, CSSTORM achieves state-of-the-art recall rate

and precision when it was first proposed. However, it requires solving a large-scale

optimization problem and suffers from high computational complexity. It also suffers

from the intrinsic gridding error as it discretizes the 2D space. We notice that the

mathematical formulation of the imaging process of super-resolution microscopy can

be transformed into the frequency domain and the problem of emitter localization can

be turned into a 2D frequency estimation problem. We have developed a method,

dubbed MempSTORM [11], based on a 2D spectrum estimation method called Matrix

Enhancement and Matrix Pencil (MEMP) [73] and extract the number of emitters and

positions by estimating the 2D frequencies. By verification through simulations and

experiments, this method is proven to handle the same level of density as CSSTORM

and at the same time achieves much faster computation speed. The most time-

consuming computations for the proposed method are a truncated singular value

decomposition (SVD) and two generalized eigenvalue decomposition operations.
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4.1 Signal Model

We start with the model of 2D SMLM. Recall that Θ = {θ(1), θ(2), · · · , θ(P )} is the

set of parameters, where P is the total number of emitters and θ(i) = [θ
(i)
x , θ

(i)
y , θ

(i)
I ] =

[θ
(i)
L , θ

(i)
I ] is the parameters for the ith emitter. We then rewrite the signal s(x, y|χ)

received at camera position (x, y) as

s(x, y|χ) =
P∑
i=1

θ
(i)
I f(x− θ(i)

x , y − θ(i)
x ), (4.1)

where f(·) is the system PSF. The 2D Continuous-Time Fourier Transform (CTFT)

of the image can be written as:

S(u, v|χ) =

∫ ∞
−∞

∫ ∞
−∞

s(x, y|χ)e−j2π(xu+yv)dxdy (4.2)

= F(u, v)
P∑
i=1

θ
(i)
I e
−j2π(θ

(i)
x u+θ

(i)
y v), (4.3)

where F(u, v) is the CTFT of f(x, y).

The image µ = {µ[m,n|χ]} acquired by the camera is a matrix of size M × N ,

where µ[m,n|χ] represents the intensity value of the pixel at (m,n) obtained by

integrating s(x, y|χ) over the pixel area, approximated as:

µ[m,n|χ] =

∫ m+0.5

m−0.5

∫ n+0.5

n−0.5

s(x, y|χ)dxdy ≈ G · s(m,n|χ), (4.4)

where 1 ≤ m ≤ M , 1 ≤ n ≤ N , and G is the area of a pixel. The Discrete Fourier

Transform (DFT) Γ = {Γ[k, l]} of µ can be approximated as

Γ[k, l] ≈ F [k, l]
P∑
i=1

Gθ
(i)
I e
−j2π(

kθ
(i)
x
M

+
lθ

(i)
y
N

), (4.5)

where F [k, l] = F(k/M, l/N), for 1 ≤ k ≤ M and 1 ≤ l ≤ N . Denote f1i = θ
(i)
x

M
,

f2i =
θ
(i)
y

N
, and divide both sides of (4.5) by F [k, l], we obtain

R[k, l] =
Γ[k, l]

F [k, l]
≈

P∑
i=1

Gθ
(i)
I e
−j2π(kf1i+lf2i). (4.6)
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After these transformations, the problem of emitter localization becomes a 2D

frequency estimation problem in (4.6). We apply the MEMP method [73] for the

frequency estimation step, considering its low computational cost and capability to

resolve high-density signals.

4.2 Matrix Enhancement and Matrix Pencil

We further rewrite (4.6) into

R[k, l] ≈
P∑
i=1

Gθ
(i)
I b

k
i d

l
i, (4.7)

where bi = e−j2πf1i , di = e−j2πf2i are called the 2D poles. With this notation we can

write R = {R[k, l]} as an M ×N matrix with the following factorization:

R ≈ BCD, (4.8)

where

B =


1 1 · · · 1
b1 b2 · · · bP
...

...
. . .

...
bM−1

1 bM−1
2 · · · bM−1

P

 ∈ CM×P , (4.9)

C = G ·


θ

(1)
I 0 · · · 0

0 θ
(2)
I · · · 0

...
...

. . .
...

0 0 · · · θ
(P )
I

 ∈ RP×P , (4.10)

D =


1 d1 · · · dN−1

1

1 d2 · · · dN−1
2

...
...

. . .
...

1 dP · · · dN−1
P

 ∈ CP×N . (4.11)

From (4.8)-(4.11), in principle one can obtain {bi; i = 1, · · · , P} and {di; i =

1, · · · , P} from the left and right principal singular vectors of R. However, bi and di

cannot be obtained from the SVD when either set of {bi; i = 1, · · · , P} or {di; i =
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1, · · · , P} does not contain distinct elements, due to the rank deficiency of R, i.e.

rank(R)< P .

To solve this problem, a partition-and-stacking process, referred to as matrix

enhancement [73], is applied before SVD. The enhanced matrix Re is defined as a

block Hankel matrix of size K × (M −K + 1):

Re =


R0 R1 · · · RM−K
R1 R2 · · · RM−K+1
...

...
. . .

...
RK−1 RK · · · RM−1

 , (4.12)

where each block Rm, 0 ≤ m ≤ M − 1, is a Hankel matrix of size L × (N − L + 1)

defined as:

Rm =


R[m, 0] R[m, 1] · · · R[m,N − L]
R[m, 1] R[m, 2] · · · R[m,N − L+ 1]
...

...
. . .

...
R[m,L− 1] R[m,L] · · · R[m,N − 1]

 .
It is shown in [73] that rank(Re)=P as long as the two pencil parameters K and L

satisfy

M − I + 1 ≥ K ≥ I, and N − I + 1 ≥ L ≥ I, (4.13)

eliminating the earlier described rank deficiency issue.

In the noise-free case, the SVD of Re can be given as:

Re =
P∑
i=1

σiuiv
H
i = UΣV H , (4.14)

where U = [u1, · · · , uP ] ∈ CKL×P , Σ = diag(σ1, · · · , σP ) ∈ RP×P , V = [v1, · · · , vP ] ∈

C(M−K+1)(N−L+1)×P , respectively. In the case when Re is noisy, we can similarly

define U , Σ and V as the top P left singular vectors, singular values, and right

singular vectors of Re.
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Denote the ith column of UH as wi, then UH = [w1, w2, · · · , wKL]. Further define

Up ∈ CKL×P by permuting the rows of U as:

UH
p = [w1, wL+1, · · · , w(K−1)L+1,

w2, wL+2, · · · , w(K−1)L+2, · · · ,

wL, w2L, · · · , wKL].

(4.15)

Define U1 ∈ C(K−1)L×P as the submatrix of U by deleting its last L rows, UH
1 =

[w1, · · · , w(K−1)L], and U2 ∈ C(K−1)L×P as the submatrix of U by deleting its first L

rows, U2 = [wL+1, · · · , wKL], then the matrix pencil U2 − λU1 can be written as [73]:

U2 − λU1 = E(Yd − λI)T, (4.16)

where Yd = diag(b1, · · · , bP ) is a diagonal matrix of the poles {bi; i = 1, · · · , P}, E

and T are full-rank matrices. Thus the poles {bi; i = 1, · · · , P} can be found as the

rank-reducing numbers λ such that the matrix pencil U2−λU1 is rank-deficient. This

can be achieved by solving a generalized eigenvalue decomposition.

Similarly, {di; i = 1, · · · , P} can be found as the rank-reducing numbers of the

matrix pencil U4 − λU3, where U3 ∈ CK(L−1)×P is the submatrix of Up by deleting its

last K rows, UH
3 = [w1, wL+1, · · · , wKL−1], and U4 ∈ CK(L−1)×P is the submatrix of Up

by deleting its first K rows, UH
4 = [w2, wL+2, · · · , wKL]. This again can be achieved

by solving a generalized eigenvalue decomposition problem.

After extracting {bi; i = 1, · · · , P} and {di; i = 1, · · · , P} separately, we need

to further determine the one-to-one (or one-to-more, if there’re multiplicity in the

retrieved poles) correspondence between the poles to fully determine the set of 2D

poles. First, we consider all the possible pairings between {bi; i = 1, · · · , P} and

{di; i = 1, · · · , P}, with a total of no more than P 2 pairs. We then pose a non-

negative least-squares problem, by minimizing the quadratic loss between the data
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matrix R and the fitting using all possible pairs, given in (4.8), under the constraint

that the coefficient of each pair is non-negative. We then select P pairs corresponding

to the highest coefficients. From the paired 2D poles {(bi, di); i = 1, · · · , P}, the set

of 2D frequencies (f1i, f2i) as well as the positions (θ
(i)
x , θ

(i)
y ) of the P emitters can be

calculated.

In implementing the above MempSTORM method, a pair of pencil parameters K

and L need to be chosen for matrix enhancement. (4.13) is a sufficient condition for

the rank of enhanced matrix Re to be P . Under this condition, the rule of thumb

is to choose K and L such that the enhanced matrix Re is as square as possible,

i.e., choose K to be close to (M + 1)/2 and L to be close to (N + 1)/2. Moreover,

since the number of emitters I is not known a priori, we choose a threshold value

and determine the number of emitters as the number of singular values of Re that is

larger than the threshold. The threshold value is chosen such that the sum energy of

the selected singular vectors is 80-90% of the total.

For super-resolution image reconstruction, the noise in the frequency domain has

similar energy across different frequencies due to the Poisson noise in the spatial do-

main. However, the energy of the signal is not uniformly distributed in the frequency

domain due to the shape of the PSF. Instead, most of the energy is concentrated

in the low frequency with the high frequency components dominated by noise. In

practice, we only use entries that correspond to the low frequency region of R and

apply MEMP on a truncated data matrix. For an image of size 30× 30, we only use

the submatrix of size 11× 11 of (4.6) that corresponds to the low-frequency region of

the image to generate the matrix enhancement.
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4.3 Performance
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Figure 4.1: Performance comparisons of (a) the identified density, (b) false discovery
rate, (c) precision and (d) execution time between MempSTORM and CSSTORM
under different emitter densities.

To evaluate the performance of MempSTORM, we generate a series of simulated

STORM movies of size 30× 30 across a range of emitter densities (0.5 emitter/µm2

to 9 emitters/µm2). An average photon number of 1500 per emitter is used in
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Figure 4.2: The bias of single emitter localization using MempSTORM in (a) x
direction and (b) y direction.

the simulation. The images are comparatively analyzed using MempSTORM and

CSSTORM [59]. We implement CSSTORM using `1-homotopy, which has been

proven to be two orders of magnitude faster than CVX implementation [74]. An

up-sampling factor of 8 is used in CSSTORM. As shown in Fig. 4.1, MempSTORM

achieves the same level of identified density and false discovery rate as CSSTORM,

and maintains similar precision with CSSTORM. The false discovery rate is defined

as the percentage of incorrectly detected emitters in all detected emitters. Most im-

portantly, MempSTORM is more than 100 times faster than CSSTORM in most

densities (Fig. 4.1 (d)).

To examine the bias of MempSTORM, we simulate a stack of images of size 30×30

with a single emitter positioned randomly. The photon number of the emitter is set

to be 1500. The localization bias is plotted as a function of the emitter location in

both x and y directions. As shown in Fig. 4.2, there is no obvious bias associated

with the MempSTORM method.
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Figure 4.3: Performance comparisons of (a) false negative, (b) false discovery rate
and (c) precision when the emitter photon varies under different densities.

We then evaluate the performance of MempSTORM when the number of pho-

tons varies. A series of STORM images with different emitter photon numbers are

generated and analyzed. The performance of MempSTORM deteriorates when the

number of photons decreases, but within a tolerable range (Fig. 4.3). Even when the

photon number is as low as 500, MempSTORM can still detect a reasonable amount

of emitters with high precision (<50 nm).

To further test the practical applicability of MempSTORM, we analyze STORM

images of microtubules stained with Alexa 647 in HeLa cells. In total, 5000 frames are

acquired at 56 frames per second. Figure. 4.4 shows the comparison of reconstructed

microtubule images using the MempSTORM and CSSTORM methods, where Memp-

STORM achieves similar performance with CSSTORM. However, the reconstruction

time using MempSTORM is only 20 minutes; while with the same computational

configurations, CSSTORM requires more than 100 hours.
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4.4 Summary

In summary, we have developed the MempSTORM method for super-resolution

image reconstruction with high emitter densities. MempSTORM converts the prob-

lem of emitter localization into frequency estimation and is computational efficient.

It achieves the same performance as the current state-of-the-art method, CSSTORM,

but is more than 100 times faster.

The experiments in this chapter were performed on the compute nodes of the Ohio

Supercomputing Center Oakley cluster. Each node has one Intel Xeon X5650 CPU

clocked at 2.66GHz and 48 GB of memory. Currently, the algorithm is implemented

in MATLAB. By porting the algorithm to C/C++ and using GPU parallelism, we

expect to further accelerate the analysis and put online reconstruction of dense images

into practice.
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(a)

(b)

Figure 4.4: Reconstructed microtubule image using 5000 raw frames with (a) Memp-
STORM and (b) CSSTORM.
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Chapter 5: 3D Multi-Focus Astigmatism and Compressive

Sensing based Super-Resolution Image Reconstruction

For 3D super-resolution imaging, the challenge arises from the fact that the 3D

PSF is extended along the axial direction, and the PSFs of nearby emitters have more

overlapping regions and similarities, causing ambiguity to distinguish the emitter z

locations. Traditional 3D image reconstruction algorithm follows a similar strategy

as SEA algorithm. First, isolated emitters are extracted and fitted to a Gaussian

function on a small area surrounding the candidate emitters. The axial location of

the emitter is then determined according to the fitted width σx and σy of Gaussian

function using the calibration curve. Such procedure is repeated for all the frames

and is referred to as 3D-SEA. 3D-SEA suffers the same shortcoming as SEA as it can

only handle images of low emitter density.

In this chapter, we propose a multi-focus astigmatism compressive sensing based

3D imaging platform (3D MACS) [12] that allows us to efficiently locate high-density

emitters. A multi-focus technique, in combination with astigmatic optics is applied

to enhance the asymmetry of the PSF along the axial direction. Accordingly, we

develop a new algorithm which takes advantage of compressive sensing with a fast `1-

Homotopy optimization method. More importantly, a debiasing method is developed,

which not only reduces the bias introduced by gridding, an intrinsic drawback of
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compressive sensing based methods, but also significantly increases the computational

speed. With 3D MACS, we are able to reconstruct super-resolution images with as

high as 10 emitters/µm2 density and reconstruct 3D microtubule images within a

couple of seconds, which makes this method suitable for live cell imaging.

5.1 Imaging System

Our 3D multi-plane astigmatism STORM system (Fig. 5.1(a)) is based on the

setup introduced in Section 2.7. Three identical EMCCD cameras (iXon Ultra 897,

Andor Technologies PLC.) are used to image three different focus planes with all

of the EM gains set to 255 and the distance between each focus plane is 180 nm.

The three cameras are synchronized by an external hardware trigger. Three identical

plano-convex cylindrical lenses (Thorlabs) with focus length of 1000 mm are placed

on the emission paths to introduce asymmetry to the 3D PSF. Such system can be

easily transformed into a single-focus astigmatism imaging system (3D SACS) without

change of the reconstruction algorithm.

5.2 3D Astigmatic PSF and Multi-Plane Alignment

To acquire the calibration curves of all the three cameras, we imaged the 100 nm

fluorescent beads at different z positions by moving the piezo stage along the axial

direction. Figure 5.1(b) shows images of the beads where each camera is focused on a

different z plane. For each focus plane, the bead images are fitted to an asymmetric

2D Gaussian function (3.9) to acquire σx and σy.

To align the three cameras, we took images of fluorescent beads that are sparsely

attached to a coverslip. For a typical 512 × 512 image, the average number of beads
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Figure 5.1: (a) Images of an emitter on the three cameras with various z focuses (b)
Calibration curves of the PSFs. σx and σy are functions of the focus position z for
different cameras.

is about 50. We moved the piezo stage along the z direction 100 steps with a step size

of 10 nm. The total travel distance (1000 nm) covers the whole depth of the image

(800 nm). The centers, (x0, y0), of the fluorescence bead images are determined by

fitting to 3.9. All the bead centers from the second and third cameras are paired

with those on the first camera. Local weighted mean transformation [75] is applied

to register the three camera images. The registration error, σloc, for the second and

third cameras using the first camera as the reference is within 6 nm (Fig. 5.2).

5.3 Signal Model and `1-Homotopy

As mentioned in Section 3.4, the use of compressive sensing in 2D super-resolution

image reconstruction has been well studied. In the case of 3D single-focus astigmatic
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Figure 5.2: The image registration error distribution. The image from the first camera
is used as the reference and the second and third camera images are registered to the
first camera image. The standard deviation of the registration error for the second
and third cameras are 5.94 nm and 5.54 nm respectively.

configuration, (3.9) is used to approximate the system PSF, with σx and σy as a

function of the axial position z. Here, y is vectorized from the measured image to form

a one-dimensional vector, and the true emitter location x is also a one-dimensional

vector. In case of the 3D multi-focus astigmatic imaging, y is concatenated from the

three camera images. The true emitter location x is also a one-dimensional vector

that is concatenated from a 3D high-resolution grid, and the measurement matrix

A is of size n2 × n1 where n2 is the number of pixels in y and n1 is the number of

pixels in x. The measurement matrix is determined by the system PSF. Typically n2

is much smaller than n1 which means the number of measurements are much smaller

than the signal dimension.

Several methods have been developed to reconstruct the original signal x through

the `1 minimization (3.36). The interior point method was used in [59,76] and utilized

the implementation of the CVX package [77]. Another method is the `1-Homotopy
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algorithm that was used by Babcock et al. in [74]. The authors show that the `1-

Homotopy algorithm is roughly 10-250 fold faster than the CVX method without

sacrificing the localization accuracy [74]. We apply the `1-Homotopy algorithm in

our 3D image reconstruction to make use of the rapid reconstruction rate compared

to other methods. Here, the choice of the ξ in (3.36) is critical. For simulated images,

ξ of value 1.5 is used to account for the Poisson noise. For real data acquired by the

cameras, a factor of
√

2 is applied due to the noise introduced by the gain registers

and hence ξ of value 2.1 is used [48].

To reduce the computational complexity of the large optimization problem of 3D

image reconstruction, which grows exponentially with the image size, we divide the

image into small blocks and perform the optimization on these blocks individually.

Since the cylindrical lens introduces de-focusing, the system PSF now spans a larger

area than in the 2D case. Hence, we use block size of 20 × 20 and have 4 pixels

overlapping with neighboring blocks on each side. For each pixel, we divide it into a

8× 8× 11 voxel, which spans from -0.4 µm to 0.4 µm in the z direction. Therefore,

the measurement matrix A is of size (20×20×3, 20×20×8×8×11), which is (1200,

281600). Using floating-point numbers, A takes 1.35 GB of memory, which can easily

fit into the memory of a modern computer. In our experiment, we used a Nvidia

Tesla K40 GPU that has a global memory of 12 GB. The acquired x represents a 3D

up-sampled grid with the value at each entry representing the intensity of the emitter

located at the corresponding grid. Algorithm 5.3 shows the detailed implementation

of 3D MACS.
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Algorithm 1 3D MACS
Input: y
Output: x and pos
Select ξ (= 1.5)
A = GeneratePSF() /* according to (3.9) */

ε = ξ · ‖y‖1

x = homotopy(y, A, ε) /* `1-Homotopy */

x = Debias(y, A, x) /* 3D Local Debiasing */

S0 = {i| |xi| > tol} /* support set */

pos = weightedcentroid(S0, x) /* 3D weighted centroid of each */

/* connected components */

5.4 Debiasing

The finite discrete grid formulation in compressive sensing introduces bias to the

estimation of the emitter locations and reduces the resolution of the final recon-

structed super-resolution image [78]. Here we introduce a debiasing step followed by

a 3D centroid calculation, which significantly reduces the bias and improves localiza-

tion accuracy.

After the `1 minimization step, we extract the support of the reconstructed x

(denote as xS0) and the corresponding measurement matrix AS0 . The support of a

vector is the set of all the non-zero elements of the vector. First, we dilate xS0 and

then minimize the least-squares objective ‖y −AS0xS0‖2
2 to obtain the best fit to the

data over the dilated support of x under non-negative constraint [79]. In the dilation

step, we use a total of 75 voxels, 5 along the x and y directions and 3 along the z

direction. The physical size of the dilated volume is 45 nm × 45 nm × 240 nm. We

used a larger physical length (240 nm) to compensate the lower resolution along the

z direction. We also tested other dilation sizes and found that the performance is
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not sensitive to the dilation sizes. The 3D weighted centroids of the optimized xS are

returned as the estimated positions of the emitters. Algorithm 5.4 shows the detailed

implementation of the 3D local debiasing.

Algorithm 2 3D Local Debiasing

Input: A, y, x from `1 homotopy
Output: debiased x
S0 = {i| |xi| > tol} /* support set */

if S0 6= ∅ then
B = ones(a1, a2, a3) /* 3D structuring element */

S0 = S0 ⊕B /* dilate support set */

Z = {1, · · · , n} \ S0 /* non-support set */

xZ = 0 /* set non-support set to zero */

xS0 = argminx≥0‖AS0x− b‖2
2 /* optimize over dilated support set */

5.5 Single-Focal SEA and Multi-Focal SEA

To compare 3D SACS with single emitter fitting based methods, we implement the

SEA method that is developed for single focal plane reconstruction (SF-SEA) [4,80].

Briefly, wavelet based de-noising followed by thresholding is used to find the candidate

emitters. Then the candidate emitters are fitted with a 2D Gaussian function (3.9)

to get σx and σy, which are used to determine the z location using the calibration

curve defined in (2.8). SF-SEA is not designed to work for the multi-focal system.

To compare with the 3D MACS, we develop and optimize a SEA method for the

multi-focal system (MF-SEA). Specifically, the following optimization is performed.

θ̂ = argmin
θ̃

∑
t

∑
m

∑
n

(yt[m,n]− ft[m,n|{θ̃}])2, (5.1)
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where fθ,m(i, j) is defined by (3.9). i, j, and m are the indices of the pixel and the

focal plane, respectively. yt represents the image from the focal plane t. The essence

of the MF-SEA is that we optimize the cost function (5.1) with all the focal planes

taken into consideration simultaneously instead of optimizing the cost function for

each focal plane individually.

Following the optimization is the filtering step. We use the ratio of the residual

to the original image to characterize the quality of fitting. We define,

β =

∑
t

∑
m

∑
n(yt[m,n]− ft[m,n|{θ̂}])2√∑
t

∑
m

∑
n |yt[m,n]|

(5.2)

which is used to determine whether the candidate emitter would be kept. A low β

value represents higher fidelity to the data. We keep candidate emitters with β less

than 2.1 to be consistent with the criterion of ξ used in 3D MACS and 3D SACS.

5.6 Results and Discussion

5.6.1 3D SACS and 3D MACS

To test our 3D SACS and 3D MACS methods, we simulate P molecules that were

randomly distributed in a volume of 0.9 µm × 0.9 µm × 0.8 µm. These molecules are

imaged either on one camera (3D SACS) or on three cameras (3D MACS) with the

experimentally measured PSF model ((3.9) and (2.8)). In all the simulations, the pixel

size is 75 nm, which matches our experimental pixel size. In the case of 3D MACS,

the distance between two consecutive focus planes is 180 nm. All the parameters

are chosen to match the measured experimental values. An average photon number

of 1500 per emitter is used in the simulation. In the case of 3D MACS, the total

number of photons is evenly distributed on the three cameras. Both Poisson noise

and Gaussian noise are added to model the photon noise and the camera readout noise
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Figure 5.3: Comparison of the performance of 3D SACS and 3D MACS at low (a,
b) and high density (c, d) of emitters. C1, C2, and C3 label the images formed on
the three different cameras. At low emitter density, both 3D SACS and MACS can
identify all the emitters with similar accuracy (lower right panel of (a) and lower panel
of (b)). We use an ellipsoid to represent the x, y and z locations of an emitter. The
center of ellipsoid is determined by the x and y positions and the shape is determined
by the z position. Red represents the results from our calculation and white represents
the actual location from the simulation. When the emitter density increases (c,
d), 3D MACS (lower right panel of (c)) correctly identified all the emitters, while
SACS clearly show ambiguity (lower panel of (d)) with two wrongly detected emitters
(colored yellow).
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respectively. By adjusting the number of emitters N per frame, we are able to control

the emitter density. As shown in Fig. 5.3(a) and 5.3(b), at a low emitter density (3

emitters/µm2), both 3D SACS and 3D MACS are able to correctly identify all the

emitters with similar localization accuracy. However, when the density is increased

(8 emitters/µm2), 3D MACS performs markedly better. As shown in Fig. 5.3(c)

and 5.3(d), 3D MACS is able to recover all the emitters without any false positive;

while 3D SACS gives two false positive emitters. When the density is increased even

more, the differential behavior of 3D MACS and 3D SACS becomes more obvious.

Astigmatism induced by the cylindrical lens breaks the symmetry of the PSF,

providing depth information. However, as noticed in [76], the oval shape of the PSF

caused by astigmatism makes it more difficult to distinguish overlapping emitters.

For example, an off-focus emitter forms an elliptical spot on the camera, while two

overlapping on-focus emitters can also form an elliptical image. In this case, it is

impossible to differentiate whether the observed spot is formed by an off-focus emitter

or two overlapping on-focus emitters, unless extra information is provided. Since we

apply three different focuses in 3D MACS, the two on-focus emitters will look different

from the off-focus emitter on the other two focus planes. Therefore, we are able to

eliminate ambiguity and improve 3D MACS performance over 3D SACS, as shown in

Fig. 5.3(c) and 5.3(d), by using additional information provided by extra cameras at

a cost of lower photons per camera.

In our study, we use a Gaussian PSF model to generate the measurement matrix

A. Due to the aberration induced by the refractive index mismatch, particularly

at deeper site in the sample, the Gaussian PSF model can have limitations. The

Gibson-Lanni [81,82] PSF model could be applied when the astigmatism induced by
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the cylindrical lens is taken into consideration. Adaptation of the Gibson-Lanni PSF

model to our 3D MACS can potentially lead to an improvement in 3D resolution.

5.6.2 Debiasing

As discussed in Section 3.4, CS is based on a discrete formulation although the

emitters locate over a continuum. This formulation intrinsically introduces bias and

reduces the localization accuracy. In [59], the authors use geometry centroids from

the reconstructed high resolution images as the coordinates of the emitters, which

partially resolves the bias issue. The bias introduced by the discrete grid becomes

dominant when the grid size gets bigger. In our 3D MACS, the up-sampling factors

in the x, y, and z direction are 8, 8 and 11 respectively, which gives rise to a 9 nm×9

nm×80 nm voxel. Due to the larger length along the z direction, the bias is much

bigger along the axial direction.

Figure 5.4(a) and 5.4(b) show localization error along the axial direction before

and after the debiasing step respectively. Before debiasing, the periodic bias is ev-

ident. This is introduced by the finite size of a voxel. Emitters that are closer to

the borders of a voxel tend to fall onto the edges of the voxel. After debiasing, the

periodic bias is reduced significantly as shown in Fig. 5.4(b).

We also assess how debiasing improves localization accuracy along the x and y

directions. As shown in Fig. 5.4(c), debiasing provides limited improvement along

the lateral directions, consistent with the observation in [59], because of the much

smaller length scale (9 nm). In contrast, the improvement along the axial direction

is apparent due to the larger length of the voxel along the z direction. As expected,

decreasing the voxel length along z by increasing the up-sampling factor improves
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Figure 5.4: Bias at different z locations (a) without and (b) with debiasing step. (c)
Localization accuracy increases with debiasing step, particularly for the axial direction
(green solid and dashed lines). For the x and y directions, debiasing barely improves
the localization accuracy. (d) z localization accuracy improves with the increase of
the z sampling factor.
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the localization accuracy (Fig. 5.4(d)). However, the improvement curve levels off

when the up-sampling factor gets to about 10, in which case the voxel size along

z direction is small enough to minimize the bias. Debiasing not only improves the

ξ ξ

ξξ

Figure 5.5: (a) The execution time of both 3D MACS and 3D SACS decreases with
the increase of ξ. (b) The x, y, and z direction localization error only slightly increase
with the increase of ξ. The false negative (c) and false discovery rate (d) stay relatively
constant as ξ increases from 1.5 to 2.5.

localization accuracy but also speeds up the reconstruction process. The most time

consuming part of the reconstruction process is the `1 optimization step, which heavily

depends on the choice of the value of ξ. Choosing a lower value of ξ increases the

optimization fidelity, minimizing the error between the estimated emitters and the
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true locations of the emitters, but at the cost of a longer computation time. On

the other hand, a higher value of ξ accelerates the computational speed at the cost

of a larger localization error. We test the effect of ξ on the computation time and

performance. As shown in Fig. 5.5(a), the computation time reduces significantly

with the increase of ξ, while the localization errors (Fig. 5.5(b)) slightly increase but

still within the acceptable range (<30 nm in x, y and z directions). In the simulation,

the emitter density we use is 8 emitters/µm2. We also test the false negative and

false discovery rate (Fig. 5.5(c) and 5.5(d)) both of which stay below 20% when

epsilon increases from 1.5 to 2.5. All these results suggest that we are able to gain

computational speed without sacrificing performance.

5.6.3 Performance Evaluation of 3D SACS and 3D MACS

To demonstrate the performance of our 3D SACS and 3D MACS methods, we

generate a series of simulated 20 × 20 camera pixel STORM movies across a range

of emitter densities (0.1 emitter/µm2 to 10 emitters/µm2) and analyze them with

SF-SEA, MF-SEA, 3D SACS, and 3D MACS. Figure 5.6(a) demonstrates that both

3D SACS and 3D MACS could be used to identify as high as 10 emitter/µm2 density

of emitters with acceptable lateral and axial localization accuracy. Both SF-SEA

and MF-SEA could not be used when emitter density is higher than 1 emitter/µm2.

In addition, 3D MACS shows superior performance in identifying high density emit-

ters and better x, y and z localization accuracy than 3D SACS. Figure 5.6(b) also

shows that the false discovery rate of 3D MACS is much lower than 3D SACS. It is

important to note that in Fig. 5.6(b), the false discovery rate of both SF-SEA and

MF-SEA are lower than the 3D MACS. This lower false discovery rate is due to SEA
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eliminating any ambiguous detection, resulting in a low identified emitter density as

shown in Fig. 5.6(a). Figure 5.6(c) and 5.6(d) show the localization error in x, y and

z directions for 3D MACS, 3D SACS, SF-SEA and MF-SEA. 3D MACS achieves the

lowest localization error with 3D SACS performing slightly worse.

Id
en

tif
ie

d 
em

itt
er

 d
en

si
ty

 (μ
m

-2
)

 Emitter density (μm-2)

0
2

4
6

8
10

0 2 4 6 8 10 0 2 4 6 8 10
 Emitter density (μm-2)

0

0.2

0.4

0.6

0.8

1

Fa
ls

e 
D

is
co

ve
ry

 R
at

e

50

100

150

X
Y

 L
oc

al
iz

at
io

n 
E

rr
or

 (n
m

)

0
0 2 4 6 8 10

 Emitter density (μm-2)

50

100

150

Z 
Lo

ca
liz

at
io

n 
E

rr
or

 (n
m

)

0
0 2 4 6 8 10

 Emitter density (μm-2)

(a)

(c) (d)

(b)

3D MACS
3D SACS
SF-SEA
MF-SEA

3D MACS
3D SACS
SF-SEA
MF-SEA

3D MACS
3D SACS
SF-SEA
MF-SEA

3D MACS
3D SACS
SF-SEA
MF-SEA

Figure 5.6: (a) A comparison of the identified emitter densities using 3D SACS, 3D
MACS, SF-SEA and MF-SEA methods. (b) False discovery rates of the emitters
using the three different methods. (c) XY and (d) Z localization precision at various
emitter densities.

We also study the computation time as a function of emitter density using 3D

MACS and 3D SACS methods implemented on a GPU (Nvidia Tesla K40). Table 5.1

shows that the computation time per block (20 × 20) increases as the emitter density

increases. Due to the increased computational complexity, 3D MACS takes about
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density (µm−2) 3D SACS (s) 3D MACS (s)
2 1.14 2.31
3 1.79 3.08
4 2.56 5.23
5 3.27 6.45
6 4.44 9.40
7 5.40 10.91
8 5.86 12.56

Table 5.1: Change of the execution time with 3D SACS and 3D MACS under different
emitter densities.

double the time of 3D SACS. However, when the improved localization accuracy and

detection rates are considered (Fig. 5.6), in general, we recommend using 3D MACS

rather than 3D SACS wherever practical. In addition, the computation time can

be further decreased with the use of multiple GPUs in parallel, such as the Nvidia

Maximus multi-GPU system.

To evaluate the performance of 3D MACS on structures with variable emitter

densities, we simulate three different types of structures: a sphere, three crossed

lines, and a 3D stellate (Fig. 5.7). The radius of the sphere is 60 nm, the minimum

distance in the z direction between the two crossed lines is 460 nm and the distance

between two consecutive branches of the stellate is 57 nm. In the simulation, the

densities used are all 8 emitters/µm2. The number of frames used is 3000. For MF-

SEA, due to the low detection rate under high emitter density, the reconstruction

of all the structures are not satisfactory. On the other hand, 3D MACS is able to

resolve their structures clearly. For the sphere (Fig. 5.7(a)), the XY, XZ, and YZ

cross sections clearly show that the spherical structure is resolved. The three crossed

lines (Fig. 5.7(b)) simulate linear structures that are frequently observed in biological
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Figure 5.7: The XY, XZ, and YZ projection images of (a) simulated spheres, (b) 3-
crossinged lines, and (c) 3D stellate with MF-SEA and 3D MACS using 3000 frames.
Scale bar: 100 nm.
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experiments, such as the microtubule structures. The artificial 3D stellate structure

(Fig. 5.7(c)) demonstrates the ability of 3D MACS in resolving gradually changing

structures.

In this study we use either one or three focal planes, however, our method can

be applicable to other multifocal microscopy system [85, 86]. With the increase of

the number of focal planes, the coverage of the sample depth increases. For exam-

ple, Abrahamsson et al. [87] have developed a system using a 9-plane setup to track

molecules with depth of 2.25-18 µm. Since the total number of photons of a flu-

orophore is limited, the number of photons collected at each focal plane decreases

with the increase of number of focal planes, which will compromise the localization

accuracy. Therefore, it is important to balance the number of focal planes and their

spacing toward achieving an optimum spatial resolution [88].

5.6.4 Reconstruction of 3D microtubule STORM images us-
ing 3D MACS

Fig. 5.8(a) shows the reconstructed 3D microtubule image of a fixed HeLa cell

using 1000 raw frames with our 3D MACS method. The frame rate used in our

experiment is 56 frames per second (fps), which means that we are able to acquire

the image in less than 20 seconds. Even with only 1000 frames, we are able to

reconstruct very continuous 3D microtubule images. Figures 5.8(b) through 5.8(d)

show the zoom-in region, averaged image, and one typical raw frame, respectively.

Fig. 5.8(e) shows the YZ cross section of the region specified by the selected region in

(b). The overlay of two microtubules is clearly seen in the cross section and Fig. 5.8(f)

is the line profile along z direction. We observe 35 nm and 36 nm of full width at
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half maximum (FWHM) in z direction with the distance between two microtubules

as 112 nm.
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Figure 5.8: (a) Reconstructed Microtubule image (bar: 1000 nm). (b) Zoom in of the
selected region in (a) (bar: 500 nm). (c) Averaged image. (d) One typical raw frame.
(e) YZ projection view of the selected region in (b) (bar: 100 nm). (f) Line profile of
(e).
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5.7 Summary

In summary, we have developed a multi-focus astigmatism imaging system for 3D

SMLM imaging (3D MACS and 3D SACS). The designed optical system, in combi-

nation with `1-Homotopy procedure followed by `2 debiasing, allows us to acquire 3D

super-resolution images in a much shorter time span with high emitter densities, as

high as 10 emitters/µm2. The introduced `2 debiasing step and the 3D weighted cen-

troid refinement allow us to reduce the stringency of ξ to achieve faster reconstruction

speed. We also implement the algorithm on a GPU to reduce reconstruction time.

Currently, we implement our algorithm mostly using Matlab. By porting the algo-

rithm completely to C/C++, we expect to further accelerate the reconstruction.
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Chapter 6: Total-Variation Norm Regularized

Reconstruction under Poisson Noise

In this chapter, we propose a novel super-resolution image reconstruction algo-

rithm, dubbed TVSTORM, for 3D image reconstruction under the Poisson noise

model, which is more appropriate for photon count data. The camera image is treated

as an observation drawn from a Poisson distribution whose parameters are determined

by the 3D PSF profile and the locations of activated emitters. The reconstruction

is performed by minimizing a negative Poisson log-likelihood penalized by the total-

variation norm [89] of the point source signal composed of the activated emitters.

The total-variation norm can be viewed as a continuous analog of the `1 norm for

finite-dimensional vectors to promote emitter sparsity without discretizing their loca-

tions. We solve the proposed optimization problem efficiently following a variant of

the alternating descent conditional gradient method in [90] and [91]. Specifically, in

each iteration, TVSTORM first selects a new point source and adds it to the current

estimate, whose location is determined by a first-order linearization of the Poisson

log-likelihood function over a coarse grid, and then refines the estimate of all included

point sources by gradient descent using backtracking line search. Through numer-

ical experiments, TVSTORM demonstrates an order-of-magnitude improvement on

the computational cost over CSSTORM due to the elimination of optimizing over a
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fine-grained grid. It also shows a significant improvement on the localization accuracy

over CSSTORM in terms of detection rate, false discovery rate and precision, without

adding post-processing steps.

The rest of this chapter is organized as follows. Section 6.1 describes the signal

model of super-resolution image reconstruction. We present the proposed TVSTORM

algorithm in Section 6.2. Numerical experiments on both synthetic and real data are

demonstrated in Section 6.3. Finally, we conclude in Section 6.4.

6.1 Signal Model

The image formulation process of 3D SMLM has been described in detail in Section

3.2. Here we rewrite a few key definitions for reference.

Let Θ = {θ(1), θ(2), · · · , θ(P )} be the set of parameters, where θ(i) = [θ
(i)
x , θ

(i)
y , θ

(i)
z , θ

(i)
I ] =

[θ
(i)
L , θ

(i)
I ] is the parameter for the ith emitter and θ

(i)
L = [θ

(i)
x , θ

(i)
y , θ

(i)
z ] ∈ S are the

coordinates in x, y and z dimensions, respectively. The set of activated emitters

χ = χ(x, y, z|Θ) is written as a sparse superposition of point sources, given as

χ = χ(x, y, z|Θ) =
P∑
i=1

θ
(i)
I δ(x− θ

(i)
x , y − θ(i)

y , z − θ(i)
z ), (6.1)

We denote the admissible set of χ as

G = {χ = χ(Θ)|Θ = {θ(i)}Pi=1, P ∈ Z+, θ
(i)
L ∈ S, θ

(i)
I ≥ 0, 1 ≤ i ≤ P}. (6.2)

The expected number of photons received at the (m,n)th camera pixel is written as

µ[m,n|χ] =
P∑
i=1

θ
(i)
I

4

[
Q

(
m− θ(i)

x + 1
2√

2σx(θ
(i)
z )

)
−Q

(
m− θ(i)

x − 1
2√

2σx(θ
(i)
z )

)]

×

[
Q

(
n− θ(i)

y + 1
2√

2σy(θ
(i)
z )

)
−Q

(
n− θ(i)

y − 1
2√

2σy(θ
(i)
z )

)]
. (6.3)
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The number of photons hitting the camera at the (u, v)th pixel, denoted as y[u, v],

follows an independent Poisson distribution with the parameter µ[u, v|χ], given as

Pr(y[m,n] = ω|χ) =
µ[u, v|χ]ωe−µ[u,v|χ]

ω!
, ω ∈ Z+. (6.4)

Denote the camera image as y = {y[u, v]}. The objective of super-resolution image

reconstruction is to estimate the point source signal χ(Θ), given the observed image

y.

6.2 Proposed Approach

In this section, we describe the proposed TVSTORM algorithm for high-density

3D super-resolution imaging under the Poisson noise model.

6.2.1 Theoretical Framework

We first define the loss function, `(y|χ), as the negative Poisson log-likelihood of

observing y given χ. According to (6.4),

`(y|χ) = −log

(∏
u

∏
v

Pr(y[u, v]|χ)

)
=
∑
u

∑
v

(µ[u, v|χ]− y[u, v]log(µ[u, v|χ])) + C,

where C is a constant that does not depend on χ. As suggested in [92], for Poisson

log-likelihood, it is advantageous to introduce a small offset 0 < η � 1 to improve

stability, where we modify `(y|χ) as

`(y|χ) =
∑
u

∑
v

(µ[u, v|χ]− y[u, v]log(µ[u, v|χ] + η)) . (6.5)

On the other hand, we wish to motivate the underlying sparsity of the activated

emitters. To this end, we define the total-variation norm of the point source signal χ,
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‖χ‖TV, whose measure-theoretic definition can be found in [89]. The total-variation

norm can be seen as a generalization of the `1 norm for finite-dimensional vectors to

the continuous space without imposing a discrete grid for the location of the emitters.

For the point source signal in (6.1), ‖χ‖TV =
∑P

i=1 θ
(i)
I .

We propose to seek the point source signal χ that minimizes the loss function

`(y|χ) penalized by its total-variation norm, given as

χ̂ = argmin
χ̃∈G

`(y|χ̃) + ξ‖χ̃‖TV, (6.6)

where ξ is a regularization parameter that controls the trade-off between the fidelity

to the observation and the sparsity of the emitters. We denote this approach as

TVSTORM.

6.2.2 Implementation

Unfortunately, the algorithm (6.6) is in general non-convex for 3D imaging due

to the likelihood term, and challenging to solve. Nonetheless, we develop an iterative

algorithm that can be regarded as a variant of the alternating descent conditional

gradient method in [90] and [91]. The description is given in Algorithm 3. TVS-

TORM is an iterative algorithm, where in each iteration, a new point source is first

selected and added to the current estimate of χ, and then the estimate of χ is refined

by gradient descent using backtracking line search. The algorithm stops when the

intensity of the most recently added point source falls below a given threshold.

Let χ̂(t) = χ(x, y, z|Θ̂(t)) be the estimate of the emitter object at the tth iteration,

where Θ̂(t) represents the parameters of the point sources in χ̂(t). At the (t+ 1)th

iteration, the SELECT step aims to add one point source (with parameter θ̂(t+1)) to

the emitter object of the previous iteration, χ̂(t), by minimizing the first-order Taylor
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Algorithm 3 TVSTORM

1: Input Parameter: threshold γ
2: t← 0
3: Θ̂(0) ← ∅
4: χ̂(0) ← χ(x, y, z|Θ̂(0))
5: repeat
6: . SELECT
7: θ̂

(t+1)
L ← argmin

θ∈Scoarse

〈
∂`(y|χ̂(t))

∂µ(χ̂(t))
, µ(χ(x, y, z|θ))

〉
.

8: Θ̂(t+1) ← Θ̂(t) ∪ {θ̂(t+1)
L }

9: . REFINE
10: Θ̂(t+1) ← REFINE(y, Θ̂(t+1))
11: χ̂(t+1) ← χ(x, y, z|Θ̂(t+1))
12: t← t+ 1
13: until θ̂

(t)
I < γ

series approximation of `(y|χ̂) around χ̂(t), which is

`
(
y
∣∣∣χ̂(t) + χ (x, y, z|θ)

)
≈ `(y|χ̂(t)) +

〈
∂`(y|χ̂(t))

∂χ̂(t)
, χ(x, y, z|θ)

〉
. (6.7)

Let µ(χ) = {µ(u, v|χ)} denote the noise-free image generated from χ. It can be shown

that [90] 〈
∂`(y|χ̂(t))

∂χ̂(t)
, χ(x, y, z|θ)

〉
=

〈
∂`(y|χ̂(t))

∂µ(χ̂(t))
, µ(χ(x, y, z|θ))

〉
, (6.8)

which does not depend on the intensity. Therefore, the location of the new point

source is selected as

θ̂
(t+1)
L = argmin

θ∈Scoarse

〈
∂`(y|χ̂(t))

∂µ(χ̂(t))
, µ(χ(x, y, z|θ))

〉
, (6.9)

where Scoarse is a coarse grid over S. We only require a coarse grid since the locations

will be refined afterwards.

The REFINE step aims to find the maximum likelihood estimate of χ(t+1) with the

number of point sources fixed by minimizing the loss function using iterative gradient

descent over Θ̂(t+1). For each parameter θ ∈ Θ̂(t+1), we first find the direction that
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decreases the loss function by calculating the partial derivative of the loss function

with respect to θ, whose expressions are given in Appendix A. The step size is then

determined using backtracking line search to speed up convergence. The details of

this step are described in Algorithm 4.

Algorithm 4 REFINE(y,Θ)

1: Input Parameters: α0, τ ∈ (0, 1), c ∈ (0, 1)
2: repeat
3: for every θ(i) in Θ do
4: for every θ

(i)
j in θ(i) do

5: α← α0

6: Θ̃← Θ
7: repeat
8: θ̃

(i)
j ← θ

(i)
j − α

∂`(y|χ(Θ))

∂θ
(i)
j

9: α← α× τ
10: until `(y|χ(Θ̃)) ≤ `(y|χ(Θ))− αc‖∂`(y|χ(Θ))

∂θ
(i)
j

‖2
2

11: Θ← Θ̃
12: end for
13: end for
14: until convergence

6.2.3 Discussions

Since a coarse grid is used in the SELECT step to find the starting locations of

emitters, the main computation is committed in the REFINE step, specifically, in the

re-evaluation of `(y|χ(Θ̃)) each time Θ̃ is altered (line 10 in Algorithm 4). Assume

the image size is n × n. According to (6.3), the re-evaluation of `(y|χ(Θ̃)) requires

O(|Θ̃| ·n2) calculations. Since each time the re-evaluation only requires changing the

parameters of one emitter (line 8 in Algorithm 4), efficient implementation of this
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step requires only O(n2) calculations by maintaining χ(Θ̃ \ {θ̃(i)}) when refining the

parameters of the ith emitter.

The stopping criteria of TVSTORM is determined by threshold λ in Algorithm 3.

Fortunately, we find the performance of TVSTORM relatively insensitive to the se-

lection of λ. In our implementation, we set λ to half of the expected emitter intensity.

In the REFINE step, the selection of α0 determines the maximum step size, while

τ regulates the shrinking factor of the step size and c involves the Armijo-Goldstein

condition [93] (line 10 in Algorithm 4). To avoid evaluating χ(Θ̃) at too many points,

we set α0 = 103, τ = 10−1 and c = 10−6.

6.3 Numerical Experiments

We conduct numerical simulations and real experiments to demonstrate the prefer-

able performance of TVSTORM. The images used for numerical simulations are gen-

erated by randomly distributing certain amount of emitters in a 3D or 2D space.

The number of emitters is determined by the required density of each simulation; the

volume of 3D space is 0.8 µm × 0.8 µm × 0.8 µm and the volume of 2D space is

0.8 µm × 0.8 µm unless otherwise stated. The pixel size of the generated images is

75 nm × 75 nm, which matches our real system setting. Equations (3.9) and (2.8)

are used to generate the PSF model for simulation whose parameters are calibrated

in [12]. The simulated images are then corrupted with Poisson noise with the means

of the detected photon number determined by the expected number of photons of

each pixel, as described in Section 6.1.
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(a) Original image (b) CSSTORM before de-biasing

(c) CSSTORM after de-biasing (d) TVSTORM

Figure 6.1: Emitter localization using CSSTORM and TVSTORM. (a) Original im-
age; (b) CSSTORM before debiasing; (c) CSSTORM after debiasing; and (d) TVS-
TORM.

6.3.1 Comparisons with CSSTORM on 3D Image Recon-
struction

We first examine the reconstruction quality using CSSTORM and TVSTORM on a

single frame. We generate an image with four emitters that are randomly distributed

in a 3D space, with intensity of 300 photons each, as shown in Fig. 6.1 (a). For

CSSTORM, an up-sampling factor of 8 in the lateral direction and 9 in the axial
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direction is used in the discretization. The output from CSSTORM typically requires

post-processing such as de-biasing [12] in order to mitigate the gridding error, while

TVSTORM does not include post-processing steps. Fig. 6.1 (b) and (c) show the

image reconstruction from CSSTORM before and after de-biasing, where we use an

ellipsoid to represent the spatial locations of an emitter with the center representing

its lateral position and the shape representing its axial position. The reconstruction

is shown in red, while the ground truth is shown in white. As seen from Fig. 6.1 (b),

the reconstruction from CSSTORM before de-biasing contains many false positives.

After de-biasing, nearby output emitters are clustered together but one emitter is

missing, as shown in Fig. 6.1 (c). Contrarily, the reconstruction from TVSTORM,

as shown in Fig. 6.1 (d), identifies all emitters correctly with high precision.

Next, to evaluate the average performance of TVSTORM, we generate a series of

SMLM images under different densities (0.75 emitter/µm3 to 11.25 emitters/µm3).

The emitters are randomly distributed in a 3D volume with the intensity set as 500.

The images are then corrupted with Poisson noise. Fig. 6.2 compares the performance

of TVSTORM with CSSTORM in terms of identified density, false discovery rate,

precision and execution time with respect to the emitter density. The identified

density is defined as the number of correctly detected emitters per area. The precision

is defined as the standard deviation of localization errors. Indeed, TVSTORM is able

to detect more emitters with an improved precision while maintaining a lower false

discovery rate than CSSTORM. Additionally, the execution time of TVSTORM is

much faster than that of CSSTORM due to the elimination of a fine-grained grid

during optimization.
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Figure 6.2: Performance comparisons of 3D image reconstruction between TVSTORM
and CSSTORM: (a) identified density, (b) false discovery rate, (c) precision and (d)
execution time with respect to the emitter density.
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6.3.2 Performance under Different Photon Levels

We then evaluate the performance of TVSTORM as the SNR varies. We generate

a series of SMLM images with emitters randomly distributed in a 3D volume under

different SNR levels by varying the emitter photon numbers from 100 to 1000, cov-

ering the photon levels of normal fluorescent proteins and fluorescent dyes. Fig. 6.3

shows that the performance of TVSTORM deteriorates with the decrease of the SNR.

However, even with an emitter photon number as low as 100, TVSTORM is still able

to detect a large portion of emitters with small false discovery rate at an acceptable

precision, as shown by the identified density, false discovery rate, and precision with

respect to the emitter density at different photon numbers in Fig. 6.3 (a), (b) and (c),

respectively. By explicitly considering Poisson noise model, TVSTORM is relatively

insensitive to the SNR and allows the use of fluorophores with a lower photon yield.

6.3.3 Block Width Selection

The image acquired at the camera is very large and cannot be handled as a whole.

It is typically divided into small overlapping blocks which are analyzed independently

to improve the computation time. To avoid compromising the performance, blocks

are overlapped and the block width is set to be larger than the PSF width. Here

we study the effect of block width on the performance of TVSTORM by simulating

an image of size 45 µm × 45 µm and analyzing the image under different block

widths. The photon number is set to 500 and the density is 6 emitters/µm3. In

our simulation, we first divide the total image into non-overlapping blocks of size

w × w, where w is the block width. For each block, a margin of 3 pixels in each

direction is added, creating an extended block of size (w + 6) × (w + 6). Then we
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Figure 6.3: Performance of 3D image reconstruction across different photon levels:
(a) identified density, (b) false discovery rate, (c) precision and (d) execution time
with respect to the emitter density.

99



Block width
4 8 12 16 20 24Id

en
tif

ie
d 

D
en

si
ty

 (e
m

itt
er

s/
µ

m
3 )

0

1

2

3

4

5

6
(a)

Block width
4 8 12 16 20 24

Fa
ls

e 
D

is
co

ve
ry

 R
at

e

0

0.2

0.4

0.6

0.8

1
(b)

Block width
4 8 12 16 20 24

Pr
ec

is
io

n 
(n

m
)

0

20

40

60

80

100
(c)

Block width
4 8 12 16 20 24

Ti
m

e 
Pe

r P
ix

el
 (s

)

0.04

0.06

0.08

0.1

0.12

0.14
(d)

Figure 6.4: Performance of 3D image reconstruction across different block widths:
(a) identified density, (b) false discovery rate, (c) precision and (d) execution time
per pixel.

apply TVSTORM on the extended block and only emitters within the central w×w

region are kept to avoid the duplicate emitter identification. Fig. 6.4 (a), (b) and (c)

show that the identified density, false discovery rate and precision maintain stable as

the block width changes. However, the execution time per pixel decreases first and

then increases with the block width, as shown in Fig. 6.4 (d). The lowest execution

time per pixel occurs when the block width is 8.
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Figure 6.5: 3D image reconstruction performance comparisons across different mis-
match level: (a) identified density, (b) false discovery rate, (c) precision.

6.3.4 Model Mismatch

In practice, due to the misalignment and lens imperfection, the center coordinate

of the emitter’s PSF suffers from small drifts as the emitter moves along the axial

direction [94]. In specific, (6.3) becomes

µ[u, v|χ] =
P∑
i=1

θ
(i)
I

4

[
Q

(
u− θ(i)

x −∆x(θ
(i)
z ) + 1

2√
2σx(θ

(i)
z )

)
−Q

(
u− θ(i)

x −∆x(θ
(i)
z )− 1

2√
2σx(θ

(i)
z )

)]

×

[
Q

(
v − θ(i)

y −∆y(θ
(i)
z ) + 1

2√
2σy(θ

(i)
z )

)
−Q

(
v − θ(i)

y −∆y(θ
(i)
z )− 1

2√
2σy(θ

(i)
z )

)]
,

where ∆x(θ
(i)
z ) and ∆y(θ

(i)
z ) are not known. To study the effect of this model mismatch

on TVSTORM, we generate images under different mismatch level and analyze them

using TVSTORM. The deviation of the emitter lateral coordinate is generated as

∆x(z) = I sin(5z) and ∆y(z) = I cos(5z), where we vary I as different mismatch

level. As shown in Fig. 6.5, as I increases, the performance of TVSTORM decreases

within a tolerable range until I reaches about 75 nm. This indicates that calibration

of the deviation along the axial direction is essential for accurate performance of
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super-resolution algorithms, which can be performed using techniques for example

in [94], and extra care should be taken when a large deviation is expected.

6.3.5 Performance Comparisons of 2D Image Reconstruction

Although TVSTORM is designed for 3D image reconstruction, it can be easily

modified for the 2D setting. Here we study the performance of TVSTORM for 2D

image reconstruction. We generate a series of simulated SMLM images across a

range of emitter densities (1 emitter/µm2 to 9 emitters/µm2). The average number of

photons for each emitter is 500. We also apply CSSTORM [59] and MempSTORM [11]

on the same images for comparison. An up-sampling factor of 8 is used in CSSTORM.

Fig. 6.6 compares the performance of TVSTORM with CSSTORM and Memp-

STORM in terms of identified density, false discovery rate, precision and execution

time with respect to the emitter density. TVSTORM demonstrates the best perfor-

mance in terms of identified density, false discovery rate and precision. It is also an

order-of-magnitude faster than CSSTORM but is slower than MempSTORM, which

is known for its extreme fast execution time.

6.3.6 Real Experiments

To demonstrate the practical applicability of TVSTORM, both 2D and 3D SMLM

images of microtubules stained with Alexa 647 in HeLa cells are acquired with the

same system setup and imaging condition described earlier and analyzed with TVS-

TORM. Since typically the image is not homogenous in certain areas, e.g., center
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Figure 6.6: Performance comparisons of 2D image reconstruction between TVS-
TORM, CSSTORM and MempSTORM: (a) identified density, (b) false discovery
rate, (c) precision and (d) execution time with respect to the emitter density.
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region of the cell, a background term is added in our model (6.3) to take this inho-

mogeneity into account, i.e.,

µ[u, v|χ] =
P∑
i=1

θ
(i)
I

4

[
Q

(
u− θ(i)

x + 1
2√

2σx(θ
(i)
z )

)
−Q

(
u− θ(i)

x − 1
2√

2σx(θ
(i)
z )

)]

×

[
Q

(
v − θ(i)

y + 1
2√

2σy(θ
(i)
z )

)
−Q

(
v − θ(i)

y − 1
2√

2σy(θ
(i)
z )

)]
+ θb, (6.10)

where θb is an extra parameter to be estimated. This change accounts for various

background across different blocks. It also results in a straightforward modification

in Algorithm 4, where we apply gradient descent using backtracking line search to

refine θb.

Fig. 6.7 (a) shows the averaged image from 10000 frames of SMLM images and

Fig. 6.7 (b) is the 3D super-resolution image reconstructed using TVSTORM, where

the structure of 3D microtubule can be well resolved with the axial coordinate rep-

resented in different colors. Similarly, the averaged image and reconstructed super-

resolution image for 2D STORM imaging are shown in Fig. 6.8 (a) and (b), respec-

tively, and demonstrate high quality reconstruction and fine details that cannot be

resolved in the averaged low-resolution image.

6.4 Summary

In this chapter, TVSTORM is proposed for 3D super-resolution image reconstruc-

tion, which is a penalized maximum likelihood estimator under the Poisson noise by

the total variation norm of the activated emitters. TVSTORM avoids the intrinsic

bias of CSSTORM due to gridding, and is computationally more efficient, with better

detection rate, false discovery rate, and precision. Furthermore, TVSTORM can be

easily adapted to 2D super-resolution image reconstruction or other single-molecule
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Figure 6.7: (a) Averaged image from 10000 frames and (b) 3D image reconstruction
result of microtubules stained with Alexa 647. (bar: 3 µm)
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Figure 6.8: (a) Averaged image from 10000 frames and (b) 2D image reconstruction
result of microtubules stained with Alexa 647. (bar: 3 µm)
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microscopy with different PSF configurations. Extensive simulation results are pro-

vided to demonstrate the superior performance of TVSTORM. Experimental results

are also present to show its practical applicability.
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Chapter 7: Conclusions

The ability to observe finer structures have been advancing the biological field for

a long time and will continue to do so. The invention of single-molecule based super-

resolution microscopy provides a new means to study cellular processes at the single

molecule level. As this technique continues to be adopted by more and more labs,

it becomes increasingly important to develop reconstruction algorithms and imaging

platforms that can improve the super-resolution image quality.

7.1 Summary of the Work

In this dissertation, we presented fast and high-performance super-resolution im-

age reconstruction algorithms that can analyze images of high emitter density reliably

in both 2D and 3D cases, as well as new imaging modality that can improve the super-

resolution imaging performance. These innovations not only improve the temporal

resolution and reconstruction quality of super-resolution microscopy, but also provide

a better tool for biological researchers.

For 2D image reconstruction, we transformed the super-resolution imaging model

to the frequency domain and turned the problem of emitter localization into 2D

spectrum estimation, a problem often encountered in signal processing. We developed

an algorithm (MempSTORM) based on a 2D spectrum-estimation method to extract
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the number of emitters and their positions by determining the 2D frequencies, which

speeds up the execution time over two orders of magnitude.

For 3D imaging platform, we developed a multi-focus astigmatism compressive

sensing based 3D imaging platform that allows us to efficiently locate high density

emitters. We applied a multi-focus technique, in combination with astigmatic optics

to enhance the asymmetry of the PSF along the axial direction. Accordingly, we

developed a new algorithm that combines `1 minimization and a debiasing method,

which not only reduces the bias introduced by gridding but also significantly increases

computation speed.

For 3D image reconstruction, we proposed TVSTORM, a penalized maximum

likelihood estimator under the Poisson noise regularized by the total variation norm

of the activated emitters. TVSTORM avoids the intrinsic bias caused by gridding,

and is computationally more efficient, with better detection rate, false discovery rate,

and precision. Furthermore, TVSTORM can be easily adapted to 2D super-resolution

image reconstruction or other single-molecule microscopy with different PSF config-

urations.

7.2 Possible Future Research

Possible future research directions include incorporating the temporal information

of SMLM images across neighboring frames into reconstruction algorithms. The time-

varying signal in super-resolution microscopy has more structure than mere sparsity.

The signals of two consecutive frames have a strong correlation due to the short

exposure time. Most of the positions of emitters do not change across frames and
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such structure has not been utilized by previous researches. The incorporation of

such information could potentially further improve the image reconstruction quality.

Another direction is to study the reconstruction algorithms for adaptive optics

based 3D SMLM imaging. In practice, due to optical imperfections and sample

scattering, aberrations of the system PSF exist, deteriorating the image quality and

reconstruction accuracy. Adaptive optics uses a deformable mirror to actively correct

the wavefront distortion, allowing reshaping the system PSF and correcting aberra-

tions. With adaptive optics, the ideal PSF shape for optimal localization accuracy

could be achieved and the imaging depth could be further improved.
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Appendix A: Derivation in TVSTORM

In this appendix, we derive the partial derivatives of `(y|χ(Θ)) over every param-

eter θ
(i)
j , which is required for the REFINE procedure as described in Algorithm 4.

To begin with, we have
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We then derive the partial derivative of µ[m,n|Θ] over θ
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Similarly,
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ñ
(i)
+

)2
]
. (A.3)

110



Additionally, using the chain rule, ∂µ[m,n|Θ]
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can be written as:
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Similarly,

∂µ[m,n|Θ]

∂σy(θ
(i)
z )

=
θ

(i)
I

2
√
πσx(θ

(i)
z )

[
Q
(
m̃

(i)
+

)
−Q

(
m̃

(i)
−

)]
×
[
e−(ñ
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Lastly, it is easy to derive ∂µ[m,n|Θ]

∂θ
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I

as:
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Plugging (A.2), (A.3), (A.4) and (A.8) into (A.1), we obtain the partial derivative

of the loss function `(y|χ(Θ)) over θ
(i)
x , θ

(i)
y , θ

(i)
z , and θ

(i)
I as in (A.9), (A.10), (A.11)

and (A.12), respectively.
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A. T. Brunger, T. C. Südhof, and S. Chu, “Ultrahigh-resolution imaging re-
veals formation of neuronal snare/munc18 complexes in situ,” Proceedings of the
National Academy of Sciences, vol. 110, no. 30, pp. E2812–E2820, 2013.

[41] A. Pertsinidis, Y. Zhang, and S. Chu, “Subnanometre single-molecule localiza-
tion, registration and distance measurements,” Nature, vol. 466, no. 7306, pp.
647–651, 2010.

[42] L. S. Barak and W. W. Webb, “Fluorescent low density lipoprotein for obser-
vation of dynamics of individual receptor complexes on cultured human fibrob-
lasts,” The Journal of cell biology, vol. 90, no. 3, pp. 595–604, 1981.

[43] ——, “Diffusion of low density lipoprotein-receptor complex on human fibrob-
lasts,” The Journal of cell biology, vol. 95, no. 3, pp. 846–852, 1982.

[44] R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer local-
ization analysis for individual fluorescent probes,” Biophysical journal, vol. 82,
no. 5, pp. 2775–2783, 2002.

[45] M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale
localization of photo-switchable fluorescent probes,” Current opinion in chemical
biology, vol. 12, no. 5, pp. 505–514, 2008.

[46] M. Bates, S. A. Jones, and X. Zhuang, “Stochastic optical reconstruction mi-
croscopy (STORM): a method for superresolution fluorescence imaging,” Cold
Spring Harbor Protocols, vol. 2013, no. 6, pp. pdb–top075 143, 2013.

116



[47] D. Baddeley, M. B. Cannell, and C. Soeller, “Visualization of localization mi-
croscopy data,” Microscopy and Microanalysis, vol. 16, no. 01, pp. 64–72, 2010.

[48] K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Opti-
mized localization analysis for single-molecule tracking and super-resolution mi-
croscopy,” Nature methods, vol. 7, no. 5, pp. 377–381, 2010.

[49] B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-
resolution imaging by stochastic optical reconstruction microscopy,” Science, vol.
319, no. 5864, pp. 810–813, 2008.

[50] S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg,
R. Piestun, and W. Moerner, “Three-dimensional, single-molecule fluorescence
imaging beyond the diffraction limit by using a double-helix point spread func-
tion,” Proceedings of the National Academy of Sciences, vol. 106, no. 9, pp.
2995–2999, 2009.

[51] B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. ii.
structure of the image field in an aplanatic system,” in Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, vol. 253,
no. 1274. The Royal Society, 1959, pp. 358–379.

[52] S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aber-
ration in an oil-immersion objective lens used in three-dimensional light mi-
croscopy,” JOSA A, vol. 8, no. 10, pp. 1601–1613, 1991.

[53] A. V. Abraham, S. Ram, J. Chao, E. Ward, and R. J. Ober, “Quantitative study
of single molecule location estimation techniques,” Optics express, vol. 17, no. 26,
pp. 23 352–23 373, 2009.

[54] B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of flu-
orescence microscope point-spread function models,” Applied Optics, vol. 46,
no. 10, pp. 1819–1829, 2007.

[55] C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule local-
ization that achieves theoretically minimum uncertainty,” Nature methods, vol. 7,
no. 5, pp. 373–375, 2010.

[56] R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mh-
langa, “QuickPALM: 3D real-time photoactivation nanoscopy image processing
in imagej,” Nature methods, vol. 7, no. 5, pp. 339–340, 2010.
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