
Better Inference with Graph Regularization

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Harlin Lee

B.S., Electrical Engineering and Computer Science, Massachusetts Institute of Technology

M.Eng., Electrical Engineering and Computer Science, Massachusetts Institute of

Technology

Carnegie Mellon University

Pittsburgh, PA

August 2021

©Harlin Lee, 2021

All Rights Reserved

Acknowledgments

First of all, I am grateful for the generous support from the Office of Naval Research

(ONR) N00014-19-1-2404, the Army Research Office (ARO) W911NF-18-1-0303, the Na-

tional Institute Of Biomedical Imaging And Bioengineering of the National Institutes of

Health (NIH) R01EB025018, the National Science Foundation (NSF) CCF-1826519, as

well as the David H. Barakat and LaVerne Owen-Barakat Carnegie Institute of Technology

(CIT) Dean’s Fellowship and the CIT Dean’s Fellowship from Carnegie Mellon University.

My thesis committee (Dr. Yuejie Chi, Dr. Jelena Kovačević, Dr. José Moura,

and Dr. Andrea Bertozzi) has been instrumental in shaping this body of work, and I am

fortunate to have received their guidance. In particular, I admire José for his endless energy

and brilliance, and I am glad that a week-long workshop led to a long-term collaboration

with Andrea, which I am very excited to continue during my postdoc at UCLA. Finally,

my advisors, Yuejie— who is also the chair of the committee— and Jelena, are the best

research advisors and life mentors one could ever have. They are everything I aspire to be,

and I am thankful for all the times they put up with my whining.

I can’t thank everyone here because that would be longer than the actual disserta-

tion. Still, I’d like to acknowledge Jelena’s group (Chaojing Duan, Dr. Anuva Kulkarni,

Dr. Rohan Varma, Dr. Siheng Chen, Dr. Filipe Condessa) and Yuejie’s group (Vince

Monardo, Tian Tong, Boyue Li, Laixi Shi, Shicong Cen, Pedro Valdeira, Diogo Cardoso,

Dr. Maxime Ferreira Da Costa) for helpful discussions and office camaraderie. Friends from

Boston/MIT and Pittsburgh/CMU/ECE, none of this would have been possible without

you— and a shoutout to Carmel Fiscko, Vince Monardo and Puppycat for getting me

through the absurdity that was 2020. Finally, I’d like to thank my family for being the

biggest proponents of my education through the years. Thank you all.

Harlin Lee

iii

Abstract

Improved storage, sensing, and automated data collection technology has resulted in a

world full of data that are noisy, incomplete, high-dimensional, and of astronomical size.

This abundance of data motivates data-driven approaches to signal processing, while their

messiness calls for more robust and accurate inference methods, e.g. by leveraging the

structure of the data. Graphs are a natural choice to represent a diversity of structures

inherent in data. Many physical signals are generated from graph-structured objects such

as road and sensor networks, and time-series signals and images can be generalized to

graph signals. Moreover, graphs can encode complex relationships and interactions between

objects, e.g. via similarity graphs.

This thesis studies how graph regularization can help solve challenging inference prob-

lems more accurately and quickly. Graph regularization is a flexible technique that drives

solutions of optimization problems to have desired properties with respect to a graph.

We incorporate graph regularization into various learning tasks (denoising, matrix factor-

ization, and distributed multitask learning) as well as signals of varying data complexity

(scalars, vectors, and matrices). We first analyze the performance of non-convex regu-

larizers in denoising, and observe both theoretically and experimentally that the power

of graph regularization is bounded by how accurately the graph captures the underlying

structure in the data. Next, we propose a fast algorithm to solve matrix factorization with

a total-variation-based regularizer, and illustrate its application to hyperspectral unmix-

ing. Finally, we derive a simple fusion framework for distributed multitask learning that

linearly combines local estimates based on the task similarities and difficulties. This cir-

cumvents the complications around data sharing, e.g. privacy, and requires only one round

of communication. The proposed method is instantiated to linear regression and principal

component analysis (PCA), and is verified on simulated data.

iv

Contents

Acknowledgments iii

Abstract iv

Contents v

List of Figures ix

List of Tables xi

List of Algorithms xii

Chapter 1 Introduction 1

1.1 Motivation for Better Inference with Graph Regularization 1

1.2 Classical Optimization-based Graph Regularization Framework 2

1.3 Thesis Contributions: Graph Regularization and Beyond 3

1.4 Thesis Outline . 6

1.5 Notation . 7

Chapter 2 Denoising with Graph Regularization 10

2.1 Summary . 10

2.2 Introduction . 10

2.3 Related Work and Connections . 13

2.4 Graph Trend Filtering (GTF) . 15

2.4.1 Piecewise Smooth Graph Signals . 16

v

2.4.2 Denoising Piecewise Smooth Graph Signals via GTF 17

2.5 Proposed: Vector-valued GTF with Non-convex Penalties 18

2.5.1 (Non-)convex Penalties . 18

2.5.2 Vector-valued GTF . 20

2.6 Theoretical Guarantees . 22

2.6.1 Error Rates of First-order Stationary Points 22

2.6.2 Comparison with Scalar-GTF using `1 Regularization 25

2.6.3 Error Rates for Erdős-Rényi Graphs 26

2.6.4 Support Recovery . 27

2.7 ADMM Algorithm and its Convergence . 28

2.8 Numerical Experiments . 30

2.8.1 Denoising via GTF with Non-convex Regularizers 31

2.8.2 Denoising Vector-valued Signals via GTF 34

2.8.3 Denoising Trends in Real-world Traffic Data 36

2.8.4 Semi-supervised Classification . 38

2.9 Conclusions . 39

Chapter 3 Matrix Factorization in Remote Sensing 41

3.1 Summary . 41

3.2 Introduction . 42

3.3 Related Work . 45

3.4 Proposed: Graph Total Variation Regularization for Blind Hyperspectral

Unmixing . 47

3.5 Preliminaries . 49

3.5.1 Graph Construction and Nyström Method 49

3.5.2 Ginzburg-Langdau Functional and MBO Scheme 51

vi

3.6 gtvMBO: ADMM Algorithm . 53

3.6.1 Time Complexity of gtvMBO . 58

3.7 Hyperspectral Unmixing Experiments . 58

3.7.1 Synthetic Data . 60

3.7.2 Real Data . 62

3.8 Parameter Selection . 66

3.9 Conclusions . 69

Chapter 4 Distributed Multitask Learning 74

4.1 Summary . 74

4.2 Introduction . 74

4.3 Related Work and Connections . 78

4.4 Multitask Linear Regression . 78

4.4.1 Motivation via Graph Regularization 79

4.4.2 Fusion of Linear Estimators: Proposed Framework 82

4.4.3 Fusion of Linear Estimators: Proposed Algorithms 84

4.4.4 Simulation Experiments . 86

4.5 Multitask Principal Components Analysis (PCA) 89

4.5.1 Multitask Rank-k PCA with Convex Relaxation 92

4.5.2 Motivation via Graph Regularization 94

4.5.3 Fusion of Sample Covariance Matrices: Proposed Framework and

Algorithms . 95

4.5.4 Simulation Experiments . 96

4.6 Conclusions and Future Works . 98

Chapter 5 Conclusions and Future Works 101

vii

Appendix A Proofs for Denoising with Graph Regularization 104

A.1 Proof of Theorem 1 . 104

A.2 Proof of Proposition 1 . 109

A.3 Proof of Theorem 3 . 110

Appendix B Preliminary Results for Online Matrix Factorization in Com-

putational Biology 112

B.1 Computational Biology Motivation . 112

B.2 Online Matrix Factorization with Graph Regularization 114

Appendix C Proofs and Intermediate Results for Distributed Multitask

Learning 117

C.1 Proof of Theorem 4 . 117

C.2 Proof of Proposition 2 . 119

C.3 Proof of Theorem 5 . 120

C.4 Examples of Local Estimators for Theorem 5 121

C.5 Proof of Proposition 3 . 122

C.6 Proof of Theorem 6 . 122

C.7 Intermediate Results: Convex Combination of OLS Estimates 123

C.8 Proof of Proposition 5 . 124

Bibliography 128

viii

List of Figures

1.1 Examples of graph-structured objects. 1

1.2 Block diagram of the classical graph regularization framework as an opti-

mization problem. 3

1.3 High-level block diagram of the new privacy-preserving framework for dis-

tributed inference. 4

1.4 Graph signal diagram. 8

2.1 Illustration of piecewise smooth signals on the Minnesota road graph. . . . 16

2.2 Illustration of the `1, SCAD, and MCP penalty functions. 20

2.3 Demonstration of bias reduction by scalar-GTF with MCP. 31

2.4 Support recovery performance by scalar-GTF. 32

2.5 Denoising performance by scalar-GTF and vector-GTF on simulated piece-

wise constant signals. 33

2.6 Demonstration of scalar-GTF on denoising traffic signal over NYC Manhat-

tan road network during an event (2011 Pride Parade). 37

3.1 Ground truth abundance maps of the synthetic data. 61

3.2 Reconstructed abundance maps of the synthetic data. 61

3.3 Abundance maps of the Samson dataset. 70

3.4 Abundance maps of the Jasper Ridge dataset. 71

3.5 Abundance maps of the Urban dataset. 72

3.6 Endmember profiles of the Samson dataset. 73

3.7 Endmember profiles of the Jasper Ridge dataset. 73

ix

3.8 Endmember profiles of the Urban dataset. 73

4.1 Outline of the proposed fusion method for distributed multitask learning. . 76

4.2 Phase transition diagram for fusion algorithms under the central model. . . 88

4.3 Mixing weights produced by fusion algorithms under the star player model. 90

4.4 MSE reduction by fusion algorithms under the star player model. 90

4.5 Mixing weights produced by fusion algorithms under the community model. 91

4.6 MSE reduction by fusion algorithms under the community model. 91

4.7 Mixing weights produced by fusion algorithms for PCA 99

4.8 Error reduction by fusion algorithms for PCA 99

x

List of Tables

1.1 Summary of each inference problem formulated with graph regularization. . 5

1.2 Summary of graphs and graph signals studied for each application in this

thesis. 5

2.1 Key notations used in Chapter 2. 13

2.2 Time complexity analysis of vector-GTF in Alg. 1. 30

2.3 Denoising performance of vector-GTF in multiple measurement vectors (MMV)

set up. 35

2.4 Performance of vector-GTF on semi-supervised classification. 38

3.1 Key notations used in Chapter 3. 46

3.2 Unmixing results on the synthetic dataset. 61

3.3 Unmixing results on the Samson dataset. 64

3.4 Unmixing results on the Jasper Ridge dataset. 66

3.5 Unmixing results on the Urban dataset. 67

3.6 Unmixing results on real data when using default parameter ratios. 69

4.1 Key notations used in Section 4.4. 79

4.2 Key notations used in Section 4.5. 92

xi

List of Algorithms

1 Vector-Graph Trend Filtering (Vector-GTF) for Denoising 29

2 Graph Total Variation MBO (gtvMBO) for Blind Hyperspectral Unmixing 57

3 One-Shot Fusion? for Mutitask Linear Regression 84

4 Iterative Fusion for Multitask Linear Regression 85

5 One-Shot Fusion? for Multitask PCA . 97

6 Iterative Fusion for Multitask PCA . 97

7 Online Matrix Factorization with Graph Regularization 116

8 Multilevel Water Filling Algorithm for Convex Combination of OLS 127

xii

Chapter 1

Introduction

1.1 Motivation for Better Inference with Graph Regulariza-

tion

Why better inference? We are surrounded by a lot of messy data. Technological

advances— such as improved sensors (e.g. phones can collect our locations every second)

and enhanced storage technology (e.g. even noisy coordinates don’t have to be discarded)—

have resulted in a world full of data that are noisy, incomplete, high-dimensional, and of

astronomical size. This abundance of data offers great potential for data-driven approaches

to signal processing, but it also poses a challenge, as traditional methods for understanding

data were developed for much smaller and more curated data. Therefore, we need more

robust and accurate inference methods, e.g. by leveraging the graph structure in data.

Figure 1.1: Examples of graph-structured objects.

1

Why graphs? First of all, many physical signals are generated from graph-structured

objects to begin with, including social networks, citation networks, biological networks, and

physical infrastructure; see Fig. 1.1. This includes time series signals and images, as their

structures can be abstracted to a line graph and a 2-dimensional grid graph, respectively.

In other situations, graphs can be an intuitive way to represent complex relationships and

interactions between objects, e.g. via similarity graph. The emerging field of graph signal

processing [1, 2, 3, 4] generalizes concepts and tools from classical discrete signal processing

to these graph-structured signals.

Why regularization? Regularization is a widely-used, flexible framework that

drives the solutions of an optimization problem to have desired properties. Graph regular-

ization, in particular, focuses on properties with respect to a graph. In many engineering

problems, we have access to prior information or intuition about the ground truth signal

based on domain knowledge, and would like to incorporate it into the problem formula-

tion. Or sometimes, the problem is ill-posed and simply impossible to solve without extra

assumptions such as sparsity. Additionally, if the output of our inference problem is meant

for downstream or generalized tasks, it could be helpful for the estimate to have certain

characteristics, such as coefficients of small magnitude. All of these information can be

embedded into the optimization problem via a carefully designed regularization term.

1.2 Classical Optimization-based Graph Regularization Frame-

work

Classically, inferences with graph regularization are formulated as the optimization problem

β̂ = argmin
β

f(x,β) + λR(G,β), s.t. β ∈ Ω, (1.1)

2

where we aim to find a signal (or estimator or model) β̂ that is close to the unknown

ground truth β? by achieving a careful balance between the data fidelity term f(x,β) and

the graph regularization term R(G,β). See Fig. 1.2 for a more high-level description.

Figure 1.2: High-level block diagram of the classical graph regularization framework as the
optimization problem in (1.1). The framework takes in graph (G) and data (x) as inputs,
and outputs an estimate (β̂).

Data fidelity f(x,β): Given some observed data x and some constraint set Ω, we

want a solution in Ω that explains the data well according to the function f .

Graph regularization R(G,β): The function R is designed such that the candidate

βs that are more consistent with the given assumptions will output a lower value. By

taking graph G as an input along with candidate βs, R measures how well β aligns with

the structure described by G. In general, βi, the ith element of β, is associated with the

ith node of the graph G.

Parameter λ: The non-negative regularization parameter λ smoothly controls how

much emphasis to put on data fidelity f versus regularization R.

1.3 Thesis Contributions: Graph Regularization and Be-

yond

This thesis tells two connected stories about graph regularization. First, the optimiza-

tion-based graph regularization framework (Section 1.2) can help us make more

3

accurate inference from data. Chapters 2 and 3 further our understanding on this topic

in three directions with two concrete examples:

1. Different tasks f(x,β): denoising and matrix factorization.

2. Different regularizers R(G,β): (non-)convex and (non-)smooth functions.

3. Real-world applications: traffic data analysis and hyperspectral unmixing.

Secondly, graph regularization leads to a new privacy-preserving framework in

distributed inference. Chapter 4 starts off parallel to Chapters 2 and 3, by applying

the classical graph regularization framework from Section 1.2 to the multitask learning

problem; see Table 1.1. However, we observe that a different framework that does not

require data sharing (Fig. 1.3) can achieve the same set of solutions as the classical graph

regularization framework. This new perspective on graph regularization motivates a general

privacy-preserving approach to distributed multitask learning.

Figure 1.3: High-level block diagram of the new privacy-preserving framework for dis-
tributed multitask learning. Unlike the optimization-based graph regularization framework
in Section 1.2, datasets are not shared between machines, nor are graphs given as an in-
put, but the two frameworks achieve the same solutions under certain settings. MTL is
multitask learning.

4

β f(x,β) λR(G,β) Reference

Denoising
β 1

2
‖x− β‖22

∑
i ρ
(
ith element of ∆(k+1)β; λ

)
Ch. 2 [5, 6]

B 1
2
‖X −B‖2F

∑
i ρ
(∥∥∥ith row of ∆(k+1)B

∥∥∥
2

; λ
)

Ch. 2 [6]

Matrix
Factorization

S,A ‖X − SA‖2F λ
∑
i,j

∥∥ai/√Dii − aj/√Djj∥∥2

2
Wij Ch. 3 [7]

λ
∑
i,j

∥∥ai/√Dii − aj/√Djj∥∥1
Wij Ch. 3 [8]

Multitask Linear
Regression

β1, . . . ,βn
∑
i ‖xi −Aiβi‖

2
2 λ

∑
i,j

∥∥βi − βj∥∥2

2
Wij Ch. 4

Multitask PCA P 1, . . . ,P n

∑
i

∥∥∥P i − P̂ i

∥∥∥2

F
λ
∑
i,j ‖P i − P j‖2F Wij Ch. 4

Table 1.1: Summary of each inference problem formulated with graph regularization (1.1).
PCA is Principal Component Analysis; W is the adjacency matrix of graph G; ∆ is the
oriented incidence matrix of G; ρ is MCP, SCAD, or absolute value function; ai is ith
column of A; Dii is degree of node i; P̂ i is a projection matrix onto a subspace of Xi.

G β Reference

Denoising Theory Any given unweighted graph. Any β,B. Ch. 2 [5, 6]

Denoising Simulation 2-dimensional grid. Piecewise constant β, B. Ch. 2 [5, 6]

Minnesota road network. Piecewise constant β, B.

Traffic Trend Filtering Manhattan road network. Taxi pick up/drop off counts. Ch. 2 [6]

Semi-supervised
Classification

Sample similarity graph, derived
from pairwise feature distance.

Partially observed class labels. Ch. 2 [5, 6]

Hyperspectral
Unmixing

Pixel similarity graph, derived
from pairwise spectra distance.

Abundance map ('
material composition).

Ch. 3 [7, 8]

Multitask Learning Similarity graph between tasks. Estimates for each task. Ch. 4

Table 1.2: Summary of graphs and graph signals studied for each application in this thesis.

5

1.4 Thesis Outline

Chapter 1 motivates and introduces graph regularization, and defines both graph and non-

graph notations that are used throughout the document. Chapters 2, 3, and 4 present

three works on inference with graph regularization:

• Chapter 2 examines denoising with graph regularization with a focus on piece-

wise smooth graph signals. We show theoretically and experimentally that adding

graph regularization with a non-convex penalty function can improve the accuracy.

• Chapter 3 studies matrix factorization in remote sensing, specifically in blind

hyperspectral unmixing. We apply a total-variation-based graph regularization and

propose a fast approximation algorithm to solve it. We demonstrate experimentally

that the algorithm can improve computational efficiency without sacrificing accuracy.

• Chapter 4 analyzes distributed multitask learning, where full data cannot be

shared between local machines. First, we derive that graph regularization yields

solutions that are linear combinations of the local estimates. We then build on that

intuition to propose a general fusion framework that takes linear combinations of local

estimates based on task similarity and difficulty, and illustrate how it can improve

accuracy for multitask linear regression and multitask PCA.

We conclude and suggest future works in Chapter 5.

Table 1.1 summarizes how each project relates to the optimization-based graph reg-

ularization framework shown in (1.1), and Table 1.2 describes the graphs and graph signals

used in each application. These chapters are organized to show a clear trend of increase in

task complexity, as well as in data complexity (i.e. βi is a scalar→ vector→ matrix). Fur-

thermore, a unifying thread for the theoretical results on the classical graph regularization

6

framework is that the error between β̂ and β? can be bounded using R(G,β?), confirming

our intuition that the more accurate the graph, the better the inference that uses that

graph.

1.5 Notation

This thesis considers graphs G = (V, E ,W), where V = {v1, . . . , vn} is the set of nodes,

E = {e1, . . . , em} is the set of edges, and W = [Wij] ∈ Rn×n is the adjacency matrix – also

known as the graph shift operator [2]. The edge set E represents the connections of the

graph G, and the non-negative edge weight Wij measures the underlying relation between

the ith and the jth node, such as a similarity, a dependency, or a communication pattern.

Depending on the application, we assume W is given to us, or derive it ourselves from the

dataset, as listed in Table 1.2. The graph-structured data associated with G are referred

to as graph signals. Let a scalar-valued graph signal be defined as

β =

[
β1, β2, . . . , βn

]>
∈ Rn,

where βi denotes the signal coefficient at the ith node. See Fig. 1.4 for an example graph

and its graph signal. A vector-valued graph signal is defined as

B =

[
β1,β2, . . . ,βd

]
∈ Rn×d,

such that the ith row of the matrix B corresponds to the ith node of the graph.

Here, we define important graph notations that can be derived from the adjacency

matrix W . The degree matrix D ∈ Rn×n is a diagonal matrix, where the degree of the ith

node is defined as Dii =
∑n

j=1Wij . Also, let ∆ ∈ Rm×n be the oriented incidence matrix

of G, where each row corresponds to an edge. That is, if the edge ei = (j, k) ∈ E connects

7

Figure 1.4: This graph G = (V, E ,W) has 4 nodes (|V| = 4) and 4 edges (|E| = 4). We
call β = [β1, β2, β3, β4] the graph signal of G. For i = 1, . . . , 4, vi is the ith node, and βi
is the signal value defined on vi. Edge weight Wij indicates the strength of the connection
between vi and vj . For example, W14 > 0, and W34 = 0.

the jth node to the kth node (j < k), the entries in the ith row of ∆ is then given as

∆i` =


−
√
Wjk, ` = j;√
Wjk, ` = k;

0, otherwise

.

Building on these graph properties, the graph Laplacian matrix L ∈ Rn×n and the nor-

malized graph Laplacian matrix Ls ∈ Rn×n are

L = D −W = ∆>∆

Ls = D−
1
2LD−

1
2 = I −D− 1

2WD−
1
2 .

Throughout the thesis, we use boldface letters a and A to represent vectors and matrices

respectively. The transpose of A is denoted as A>, and the pseudo-inverse of A is defined

as A†. The `2 norm of a vector a is defined as ‖a‖2. The spectral norm and the Frobenius

norm of a matrix A are defined as ‖A‖ and ‖A‖F, respectively. We use the standard inner

product on matrices, i.e., 〈A,B〉 = tr(A>B), where tr(·) is the matrix trace operator that

8

returns the sum of all the diagonal elements. Ip is the p× p identity matrix, and 1p is the

p-dimensional all-one vector. The subscript p may be omitted when the dimension is clear

from context.

The cardinality of a set T is denoted as |T |. For any set T ⊆ {1, 2, ..., r} and x ∈ Rr,

we denote (x)T ∈ R|T | such that x` ∈ (x)T if and only if ` ∈ T for ` ∈ {1, 2, ..., r}. Similarly,

we define a submatrix AT · ∈ R|T |×d of A ∈ Rr×d that corresponds to pulling out the rows

of A indexed by T . Unless defined otherwise, the `th row of a matrix A is denoted as A`·,

and the jth column of a matrix A is denoted as A·j .

Expectation is denoted with E, normal distribution with N (µ, σ2), and uniform dis-

tribution with U [a, b]. (·)+ is a shorthand for element-wise max(·, 0). For a function

h(x) : Rp → R, we write ∇xh(x)|x=x∗ to denote the gradient or subdifferential of h(x),

if they exist, evaluated at x = x∗. When the intention is clear, this may be written con-

cisely as ∇h(x∗). We also follow the standard asymptotic notations. If for some constants

C,N > 0, |f(n)| ≤ C|g(n)| for all n ≥ N , then f(n) = O(g(n)); if g(n) = O(f(n)), then

f(n) = Ω(g(n)).

9

Chapter 2

Denoising with Graph

Regularization

2.1 Summary

This chapter studies the denoising of piecewise smooth graph signals that exhibit inhomoge-

neous levels of smoothness over a graph, where the value at each node can be vector-valued.

We extend the graph trend filtering framework to denoising vector-valued graph signals

with a family of non-convex regularizers, which exhibit superior recovery performance over

existing convex regularizers. Using an oracle inequality, we establish the statistical error

rates of first-order stationary points of the proposed non-convex method for generic graphs.

Furthermore, we present an ADMM-based algorithm to solve the proposed method and

establish its convergence. Numerical experiments are conducted on both synthetic and

real-world data for denoising, support recovery, event detection, and semi-supervised clas-

sification.

2.2 Introduction

Signal estimation from noisy observations is a classic problem in signal processing and has

applications in signal inpainting, collaborative filtering, recommendation systems and other

large-scale data completion problems. Since noise can have deleterious, cascading effects

10

in many downstream tasks, being able to efficiently and accurately filter and reconstruct

a signal is of significant importance.

In graph signal processing, a common assumption is that the graph signal is smooth

with respect to the graph, that is, the signal coefficients do not vary much over local neigh-

borhoods of the graph. However, this characterization is insufficient for many real-world

signals that exhibit spatially inhomogeneous levels of smoothness over the graph. In social

networks for example, within a given community or social circle, users’ profiles tend to be

homogeneous, while within a different social circle they will be of different yet homoge-

neous values. Consequently, the signal is often characterized by large variations between

regions and small variations within regions such that there are localized discontinuities and

patterns in the signal. As a result, it is necessary to develop representations and algorithms

to process and analyze such piecewise smooth graph signals.

In this chapter, we study the denoising of the class of piecewise smooth graph signals

(including but not limited to piecewise constant graph signals), which is complementary to

the class of smooth graph signals that exhibit homogeneous levels of smoothness over the

graph. The reconstruction of smooth graph signals has been well-studied in previous work

both within graph signal processing [2, 3, 4, 9, 10, 11, 12, 13] as well as in the context of

Laplacian regularization [14, 15].

The Graph Trend Filtering (GTF) framework [16], which applies total variation

denoising to graph signals [17], is a particularly flexible and attractive approach that reg-

ularizes discrete graph differences using the `1 norm. Although the `1 norm-based regu-

larization has many attractive properties [18], the resulting estimates are biased toward

zero for large coefficients. To alleviate this bias effect, non-convex penalties such as the

Smoothly Clipped Absolute Deviation (SCAD) penalty [19] and the Minimax Concave

Penalty (MCP) [20] have been proposed as alternatives. These penalties behave similarly

11

to the `1 norm when the signal coefficients are small, but tend to a constant when the signal

coefficients are large. Notably, they possess the so-called oracle property : in the asymp-

totics of large dimension, they perform as well as the case where we know in advance the

support of the sparse vectors [21, 22, 23, 24, 25].

Work presented in this chapter strengthens the GTF framework in [16] by considering

a large family of possibly non-convex regularizers (including SCAD and MCP) that exhibit

superior reconstruction performance over `1 minimization for the denoising of piecewise

smooth graph signals. Furthermore, we extend the GTF framework to allow vector-valued

signals, e.g. time series [26], on each node of the graph, which greatly broadens the appli-

cability of GTF to applications in social networks [27], gene networks, and semi-supervised

classification [28, 29, 30]. Through theoretical analyses and empirical performance, we

demonstrate that the use of non-convex penalties improves the performance of GTF in

terms of both reduced reconstruction error and improved support recovery, i.e. how accu-

rately we can localize the discontinuities of the piecewise smooth signals. Our contributions

can be summarized as follows:

• Theoretically, we derive the statistical error rates of the signal estimates, defined as

first-order stationary points of the proposed GTF estimator. We derive the rates in

terms of the noise level and the alignment of the ground truth signal with respect to

the underlying graph, without making assumptions on the piecewise smoothness of

the ground truth signal. The better the alignment, the more accurate the estimates.

Importantly, the estimators do not need to be the global minima of the proposed

non-convex problem, which are much milder requirements and important for the

success of optimization. For denoising vector-valued signals, the GTF estimate is

more accurate when each dimension of the signal shares similar patterns across the

graph.

12

• Algorithmically, we propose an ADMM-based algorithm that is guaranteed to con-

verge to a critical point of the proposed GTF estimator.

• Empirically, we demonstrate the performance improvements of the proposed GTF

estimators with non-convex penalties on both synthetic and real data for signal esti-

mation, support recovery, event detection, and semi-supervised classification.

Table 2.1 summarizes some key notations used in this chapter for convenience.

Symbol Description Dimension

∆ oriented incidence matrix m× n
∆(k+1) kth order graph difference operator r × n
β scalar-valued graph signal n
B vector-valued graph signal n× d
x noisy observation of β n
X noisy observation of B n× d
∆`· `th row of ∆ n
B·j jth column of B n

‖∆(k+1)‖ spectral norm of ∆(k+1) 1

Table 2.1: Key notations used in Chapter 2.

2.3 Related Work and Connections

Estimators that adapt to spatial inhomogeneities have been well studied in the literature

via regularized regression, total variation and splines [31, 32, 33]. Most of these methods

involve locating change points or knots that denote a distinct change in the behavior of

the function or the signal.

Our work is most related to the spatially adaptive GTF estimator introduced in [16]

that smoothens or filters noisy signals to promote piecewise smooth behavior with respect

to the underlying graph structure; see also [34]. In the same spirit as [31], the fused

LASSO and univariate trend filtering framework developed in [17, 35, 36] use discrete

13

difference operators to fit a time series signal using piecewise polynomials. The GTF

framework generalizes univariate trend filtering by generalizing a path graph to arbitrarily

complex graphs. Specifically, by appropriately defining the discrete difference operator, we

can enforce piecewise constant, piecewise linear, and more generally piecewise polynomial

behaviors over the graph structure. In comparison to previous work [16], in this paper, we

have significantly expanded its scope by allowing vector-valued data over the graph nodes

and a broader family of possibly non-convex penalties.

We note that while a significant portion of the relevant literature on GTF or the fused

LASSO has focused on the sparsistency or support recovery conditions under which we can

ensure the recovery of the location of the discontinuities or knots [37, 38], in this work,

we study the asymptotic error rates of our estimator with respect to the mean squared

error. Our analysis of error rates leverages techniques in [39, 40] that result in sharp error

rates of total variation denoising via oracle inequalities, which we have carefully adapted

to allow non-convex regularizers. The obtained error rates can be translated into bounds

on support recovery or how well we can localize the boundary by leveraging techniques in

[41].

Employing a graph-based regularizer that promotes similarities between the signal

values at connected nodes has been investigated by many communities, such as graph signal

processing, machine learning, applied mathematics, and network science. The Network

LASSO proposed in [27], which is similar to the GTF framework with multi-dimensional

or vector-valued data, focused on the development of efficient algorithms without any

theoretical guarantees. The recent works by Jung et al. [29, 30, 42] have analyzed the

performance of Network LASSO for semi-supervised learning when the graph signal is

assumed to be clustered according to the labels using the network null space property and

the network compatibility condition inspired by related concepts in compressed sensing [43].

14

In contrast, our analysis does not make assumptions on the graph signal, and the error

rate is adaptive to the alignment of the signal and the graph structure used in denoising.

A well-studied generalization of the sparse linear inverse problem is when there are

multiple measurement vectors (MMV), and the solutions are assumed to have a common

sparsity pattern [44, 45, 46]. Sharing information across measurements, and thereby ex-

ploiting the conformity of the sparsity pattern, has been shown to significantly improve the

performance of sparse recovery in compressive sensing and sparse coding [47, 48, 49, 50, 51].

Motivated by these works, we consider vector-valued graph signals that are regarded as

multiple measurements of scalar-valued graph signals sharing discontinuity patterns.

There are a few variants of non-convex penalties that promote sparsity such as SCAD,

MCP, weakly convex penalties, and `q (0 ≤ q < 1) minimization [21, 52, 53, 54, 55]. Here,

we develop theory for a family of non-convex penalties parametrized similarly to that in

[21, 53] with SCAD and MCP as our prime examples, although it is valid for other non-

convex penalties.

2.4 Graph Trend Filtering (GTF)

For ease in derivation and clarity in presentation, theoretical results in this chapter assumes

we are given an unweighted graph G = (V, E ,W), i.e. the elements of the adjacency matrix

W are either 0 or 1. However, the results should be easily extendable to weighted graphs.

Recall the definition of oriented incidence matrix ∆ and scalar-valued graph signal β

from Section 1.5. The entries of the signal ∆β = [(βk − βj)](j,k)∈E specify the unweighted

pairwise differences of the graph signal over each edge. As a result, ∆ can be interpreted

as a graph difference operator. In graph signal processing, a signal is called smooth over a

graph G if ‖∆β‖22 =
∑

(j,k)∈E(βk − βj)2 is small.

15

Figure 2.1: Illustration of piecewise smooth signals on the Minnesota road graph. From
left to right: piecewise constant (k = 0), piecewise linear (k = 1), and piecewise quadratic
(k = 2) graph signals. Note that the highlighted change points, i.e. the support of
∆(k+1)β?, are edges for even k and nodes for odd k.

2.4.1 Piecewise Smooth Graph Signals

In practice, the graph signal may not be necessarily smooth over the entire graph, but only

locally within different pieces of the graph. To model inhomogeneous levels of smoothness

over a graph, we say that a graph signal β is piecewise constant over a graph G if many

of the differences βk − βj are zero for (j, k) ∈ E . Consequently, the difference signal ∆β is

sparse and ‖∆β‖0 is small.

We can characterize piecewise kth order polynomial signals on a graph, where the

piecewise constant case corresponds to k = 0, by generalizing the notion of graph difference

operators. Specifically, we use the following recursive definition of the kth order graph

difference operator ∆(k+1) [16]. Let ∆(1) = ∆ for k = 0. For k ≥ 1, let

∆(k+1) =


∆(1)>∆(k) ∈ Rn×n, odd k

∆(1)∆(k) ∈ Rm×n, even k

. (2.1)

16

The signal β is said to be a piecewise kth order polynomial graph signal if ‖∆(k+1)β‖0
is small. To further illustrate, let us consider the piecewise linear graph signal, correspond-

ing to k = 1, as a signal whose value at a node can be linearly interpolated from the

weighted average of the values at neighboring nodes. It is easy to see that this is the

same as requiring the second-order differences ∆>∆β to be sparse. Similarly, we say

that a signal has a piecewise quadratic structure over a graph if the differences between

the second-order differences defined for piecewise linear signals are mostly zero, that is, if

∆∆>∆β is sparse. Fig. 2.1 illustrates various orders of piecewise graph smooth signals

over the Minnesota road network graph.

2.4.2 Denoising Piecewise Smooth Graph Signals via GTF

Assume we observe a noisy signal x over the graph under i.i.d Gaussian noise:

x = β? + ε, ε ∼ N (0, σ2I), (2.2)

and seek to reconstruct β? from x by leveraging the graph structure. When β is a smooth

graph signal, Laplacian smoothing [14, 15, 56, 57, 58] can be used, which solves the following

problem:

min
β∈Rn

1

2
‖x− β‖22 + λ‖∆β‖22,

where λ > 0. However, it cannot localize abrupt changes in the graph signal when the

signal is piecewise smooth.

Graph trend filtering (GTF) [16] is a flexible framework for estimation on graphs

that is adaptive to inhomogeneity in the level of smoothness of an observed signal across

17

nodes. The kth order GTF estimate is defined as:

min
β∈Rn

1

2
‖x− β‖22 + λ‖∆(k+1)β‖1, (2.3)

which can be regarded as applying total variation or fused LASSO with the graph difference

operator ∆(k+1) [17, 59]. The sparsity-promoting properties of the `1 norm have been

well-studied [60]. Consequently, applying the `1 penalty in GTF sets many of the (higher-

order) graph differences to zero while keeping a small fraction of non-zero values. GTF

is then adaptive over the graph; its estimate at a node adapts to the smoothness in its

localized neighborhood.

2.5 Proposed: Vector-valued GTF with Non-convex Penal-

ties

In this section, we first extend GTF to allow a broader family of non-convex penalties, and

then extend it to handle vector-valued signals over the graph.

2.5.1 (Non-)convex Penalties

The `1 norm penalty considered in (2.3) is well-known to produce biased estimates [61],

which motivates us to extend the GTF framework to a broader class of sparsity-promoting

regularizers that are not necessarily convex. We wish to minimize the following generalized

kth order GTF loss function:

f(β) =
1

2
‖x− β‖22 + g(∆(k+1)β;λ, γ), β ∈ Rn, (2.4)

18

where

g(∆(k+1)β) , g(∆(k+1)β;λ, γ) =
r∑
`=1

ρ((∆(k+1)β)`;λ, γ)

is a regularizer defined as the sum of the penalty function ρ(·;λ, γ) : R→ R applied element-

wise to ∆(k+1)β. Here, r = m for even k and r = n for odd k to account for different

dimensions of ∆(k+1); see (2.1). We will refer to the GTF estimator that minimizes f(β)

as scalar-GTF.

Similarly to [21, 23, 53], we consider a family of penalty functions ρ(·;λ, γ) that

satisfies the following assumptions.

Assumption 1. Assume ρ(·;λ, γ) satisfies the following:

(a) ρ(t;λ, γ) satisfies ρ(0;λ, γ) = 0, is symmetric around 0, and is non-decreasing on the

real non-negative line.

(b) For t ≥ 0, the function t 7→ ρ(t;λ,γ)
t is non-increasing in t. Also, ρ(t;λ, γ) is differen-

tiable for all t 6= 0 and sub-differentiable at t = 0, with limt→0+ ρ′(t;λ, γ) = λ. This

upper bounds ρ(t;λ, γ) ≤ λ|t|.

(c) There exists µ > 0 such that ρ(t;λ, γ) + µ
2 t

2 is convex.

Many penalty functions satisfy these assumptions. Besides the `1 penalty, the non-

convex SCAD [19] penalty

ρSCAD(t;λ, γ) = λ

∫ |t|
0

min

(
1,

(γ − u/λ)+

γ − 1

)
du, γ ≥ 2,

and the MCP [20]

ρMCP(t;λ, γ) = λ

∫ |t|
0

(
1− u

λγ

)
+

du, γ ≥ 1, (2.5)

19

−10 −5 0 5 10
t

0

5

10

15

20

ρ
(t

;λ
,γ

)

Penalty Functions

penalty

L1

SCAD

MCP

Figure 2.2: Illustration of ρ(·;λ, γ) for `1, SCAD (γ = 3.7), and MCP (γ = 1.4), where
λ = 2. Both SCAD and MCP move towards `1 as γ increases.

also satisfy them. We note that Assumption 1 (c) is satisfied for SCAD with µ ≥ µSCAD =

1
γ−1 and for MCP with µ ≥ µMCP = 1

γ . Fig. 2.2 illustrates the `1, SCAD and MCP penalties

for comparison. While the non-convexity means that in general, we may not always find

the global optimum of f(β), it often affords us many other advantages. SCAD and MCP

both taper off to a constant value, and hence apply less shrinkage for higher values. As

a result, they mitigate the bias effect while promoting sparsity. Further, they are smooth

and differentiable for t ≥ 0 and are both upper bounded by the `1 penalty for all t.

2.5.2 Vector-valued GTF

In many applications, the signals on each node are in fact multi-dimensional or vector-

valued, e.g. time series in social networks, multi-class labels in semi-supervised learning,

and feature vectors of different objects in feature selection. Therefore, it is natural to

consider an extension to the graph signal denoising problem, where the graph signal on

each node is a d-dimensional vector instead of a scalar. In this scenario, we define a

20

vector-valued graph signal to be piecewise smooth if it is piecewise smooth in each of its d

dimensions, and assume their discontinuities to coincide over the same small set of edges or

nodes. Consistent with the notation introduced in Section 1.5, we denote the vector-valued

signal of interest as B? ∈ Rn×d. The noise model for the observation matrix X ∈ Rn×d is

defined as

X = B? +E,

where each element of E ∈ Rn×d is drawn i.i.d from N (0, σ2). A naive approach is to

estimate each column B·j of B separately via scalar-GTF:

min
B∈Rn×d

d∑
j=1

f(B·j). (2.6)

However, this formulation does not take full advantage of the multi-dimensionality

of the graph signal. Instead, when the columns of B are correlated, coupling them can be

beneficial such that we encourage the sharing of information across dimensions or features.

For example, if one column B·i exhibits strong piecewise smoothness over the graph, and

therefore has compelling evidence about the relationship between nodes, sharing that infor-

mation to a related columnB·j can improve the overall denoising and filtering performance.

As a result, we formulate a vector-GTF problem as follows:

min
B∈Rn×d

1

2
‖X −B‖2F + h(∆(k+1)B;λ, γ), (2.7)

where the new penalty function h(∆(k+1)B) , h(∆(k+1)B;λ, γ) : Rr×d → R is the sum of

ρ(·;λ, γ) applied to the `2 norm of each row of ∆(k+1)B ∈ Rr×d:

h(∆(k+1)B ;λ, γ) =

r∑
`=1

ρ
(
‖(∆(k+1)B)`·‖2;λ, γ

)
.

21

By enforcing sparsity on
{
‖(∆(k+1)B)`·‖2

}
1≤l≤r

, we are coupling ∆(k+1)B·j to have similar

sparsity patterns across j = 1, . . . , d. Note the difference from (2.6), where elements of

(∆(k+1)B)`· can be set to zero or non-zero independently.

2.6 Theoretical Guarantees

In this section, we present the error rates and support recovery guarantees of the generalized

GTF estimators, namely scalar-GTF (2.4) and vector-GTF (2.7), under the AWGN noise

model. Before continuing, we define a few useful quantities. Let CG be the number of

connected components in the graph G, or equivalently, the dimension of the null space of

∆(k+1). Further, let r be the number of rows of ∆(k+1), and ζk be the maximum `2 norm

of the columns of ∆(k+1)†.

2.6.1 Error Rates of First-order Stationary Points

Due to non-convexity, global minima of the proposed GTF estimators may not be at-

tainable. Therefore, it is more desirable to understand the statistical performance of any

first-order stationary points of the GTF estimators. We call β̂ ∈ Rn a stationary point of

f(β), if it satisfies

0 ∈ ∇βf(β)|β=β̂.

We further introduce the compatibility factor, which generalizes the notion used in

[39] to allow vector-valued signals.

Definition 1 (Compatibility factor). Let ∆(k+1) be fixed. The compatibility factor κT,d of

a set T ⊆ {1, 2, . . . , r} is defined as κ∅,d = 1, and for nonempty set T ,

κT,d(∆
(k+1)) = inf

B∈Rn×d

{ √
|T | · ‖B‖F∑

`∈T ‖(∆(k+1)B)`·‖2

}
.

22

To further build intuition, consider
√
|T |κT,1(∆)−1 = supβ∈R{‖(∆)Tβ‖1/‖β‖2}.

This is precisely the definition of ‖(∆)T ‖1,2, an induced norm of the |T | × n submatrix of

∆. If we consider signals with fixed power ‖β‖22 = 1, ‖(∆)Tβ‖1 will depend on how much

the T edges are connected to each other. Together with ‖(∆)Tβ‖1 ≤
√
|T |‖(∆)Tβ‖2,

κT,1(∆) can be related to the restricted eigenvalue condition, which is often used to bound

the performance of LASSO [43]. With slight abuse of notation, we write κT := κT,d.

We have the following oracle inequality that is applicable to the stationary points

of the GTF estimators. The proof in Appendix A.1 follows a construction that is similar

to Theorem 2 in [39]. The oracle inequality holds for any β̂ that satisfies the first-order

optimality condition, allowing the use of non-convex penalties. This mild condition on β̂ is

a key difference from [16, Theorem 3] and [5, Theorem 1] that are applicable to the global

minimizer, which is difficult to guarantee when using non-convex penalties. We also stress

that although GTF was motivated by piecewise smooth graph signals, Theorem 1 holds

for any graph G and graph signal β?.

Theorem 1 (Oracle Inequality of GTF Stationary Points). Assume µ < 1/‖∆(k+1)‖2. Fix

δ ∈ (0, 1). For scalar-GTF (2.4), let β̂ be a stationary point. Set λ = σζk

√
2 log

(
er
δ

)
, then

‖β̂ − β?‖22
n

≤ inf
β∈Rn

{
‖β − β?‖22 + 4g((∆(k+1)β)T c)

n

}

+
2σ2

[
CG + 2

√
2CG log(1

δ) +
8ζ2
k |T |
κ2
T

log(erδ)
]

n(1− µ‖∆(k+1)‖2)
(2.8)

with probability at least 1 − 2δ for any T ⊆ {1, 2, ..., r}. Similarly, for vector-GTF (2.7),

23

let B̂ be a stationary point. Set λ = σζk

√
2d log(edrδ), then

‖B̂ −B?‖2F
dn

≤ inf
B∈Rn×d

{
‖B −B?‖2F + 4h((∆(k+1)B)T c)

dn

}

+

2σ2

[
CG + 2

√
2CG log(dδ) +

8ζ2
k |T |
κ2
T

log(edrδ)

]
n(1− µ‖∆(k+1)‖2)

(2.9)

with probability at least 1− 2δ for any T ⊆ {1, 2, ..., r}.

Remark 1. Recall that µ is defined in Assumption 1 (c), which characterizes how “non-

convex” the regularizer is, and dictates the inflection point in Fig. 2.2. The assumption

µ < 1/‖∆(k+1)‖2 in Theorem 1 therefore implicitly constrains the level of non-convexity

of the regularizer. Take MCP in (2.5) for example: since µ ≥ 1/γ, we can guarantee the

existence of a valid µ such that µ < 1/‖∆(k+1)‖2 as long as we set γ > ‖∆(k+1)‖2.

Theorem 1 allows one to select β and T to optimize the error bounds on the right

hand side of (2.8) and (2.9). For example, pick β = β? in (2.8) (hence an “oracle”) to have

‖β̂ − β?‖22
n

≤ 4g((∆(k+1)β?)T c)

n
+

2σ2
[
CδG + 8ζ2

kκ
−2
T |T | log(erδ)

]
n(1− µ‖∆(k+1)‖2)

,

where CδG = CG + 2
√

2CG log(1
δ).

• By setting T as an empty set, we have

‖β̂ − β?‖22
n

≤ 4g(∆(k+1)β?)

n
+

2σ2CδG

n(1− µ‖∆(k+1)‖2)
, (2.10)

which suggest that the reconstruction accuracy improves when the ground truth β?

is better aligned with the graph structure, and consequently the value of g(∆(k+1)β?)

is small.

24

• On the other hand, by setting T as the support of ∆(k+1)β?, we achieve

‖β̂ − β?‖22
n

≤
2σ2

[
CδG + 8ζ2

kκ
−2
T ‖∆(k+1)β?‖0 log(erδ)

]
n(1− µ‖∆(k+1)‖2)

,

which grows linearly as we increase the sparsity level ‖∆(k+1)β?‖0.

Similar discussions can be conducted for vector-GTF by choosing B = B? in (2.9).

More importantly, we can directly compare the performance of vector-GTF with scalar-

GTF, which was formulated for vector-valued graph signals in (2.6). The error bound

of vector-GTF pays a small price in the order of log d, but is tighter than scalar-GTF if

h((∆(k+1)B?)T c)�
∑d

j=1 g((∆(k+1)B?
·j)T c). This suggests that vector-GTF is much more

advantageous when the support sets of ∆(k+1)B?
·j for j = 1, . . . , d overlap, i.e. when the

local discontinuities and patterns in B?
·j are shared.

2.6.2 Comparison with Scalar-GTF using `1 Regularization

We compare our error bound for scalar-GTF that is on ‖β̂−β?‖22/n with [16, Theorem 3],

which is obtained for GTF with the `1 penalty, reproduced below for convenience.

Theorem 2 (Basic Error Bound of `1 GTF Minimizer). If λ = Θ(σζk
√

log r), then β̂, the

minimizer of (2.3), satisfies

‖β̂ − β?‖22
n

= O

(
λ‖∆(k+1)β?‖1

n
+
σ2CG
n

)
.

The above bound is comparable to our bound in the special case of setting T to an

empty set, i.e. (2.10). The first term of the bound in (2.10) is upper bounded by that of

Theorem 2. The non-convex regularization yields especially tighter bounds when ∆(k+1)β?

25

contains large coefficients, so that g(∆(k+1)β?)� λ‖∆(k+1)β?‖1. On the other hand, the

second term of (2.10) contains 1−µ‖∆(k+1)‖2 in the denominator, which makes it an upper

bound of the second term in Theorem 2. This gap can be brought down by choosing a

larger γ, which allows one to pick a smaller µ, as mentioned in Remark 1. However, as

γ →∞, non-convex SCAD and MCP also tends to `1, which erases the improvement from

using non-convex regularizers in the first term of the bound. This indicates a trade-off in

the overall error bound based on γ, or the “non-convexity” of the regularizers chosen for

scalar-GTF.

To sum up, despite being non-convex, we can guarantee that any stationary point of

the proposed GTF estimator possesses strong statistical guarantees.

2.6.3 Error Rates for Erdős-Rényi Graphs

We next specialize Theorem 1 to the Erdős-Rényi random graphs using spectral graph

theory [62]. Let dmax and d0 respectively be the maximum and expected degree of the

graph. It is known that for any graph it holds [16]

ζk ≤ λmin(∆(2))−
k+1

2 ,

where λmin(∆(2)) is the smallest non-zero eigenvalue of the graph Laplacian matrix ∆(2).

Moreover, we have ‖∆(k+1)‖2 = (λmax(∆(2)))k+1, and dmax +1 ≤ λmax(∆(2)) ≤ 2dmax [63].

Next, we present a simple lower bound on κT , which is proved in Appendix A.2.

Proposition 1 (Bound on κT). κT is bounded for any T and d as

κT (∆(k+1)) ≥ (2dmax)−
k+1

2 .

For an Erdős-Rényi random graph, if d0 = Ω (log(n)), we have dmax = O(d0) almost

26

surely [64, Corollary 8.2] and CG = 1. Furthermore, λmin(∆(2)) = Ω(d0−
√
d0) [16, 62, 65],

and r = n for odd k and r = O(nd0) for even k. Therefore, with probability at least

1− n−10, we have

‖β̂ − β?‖22
n

.
σ2
√

log n

n
+ min

{
g(∆(k+1)β?)

n
,
σ2‖∆(k+1)β?‖0 log n

n

}
,

where g(∆(k+1)β?) . σ‖∆(k+1)β?‖1
√

logn

d
(k+1)/2
0

by plugging in g(∆(k+1)β?) ≤ λ‖∆(k+1)β?‖1.

These results are also applicable to d0-regular Ramanujan graphs [65].

2.6.4 Support Recovery

An alternative yet important metric for gauging the success of the proposed GTF estimators

is support recovery, which aims to localize the discontinuities in the piecewise smooth graph

signals, i.e. the support set of ∆(k+1)β?, that is

Sk(β
?) =

{
t ∈ {1, · · · , r} : (∆(k+1)β?)t 6= 0

}
.

In particular, for odd k, the discontinuities correspond to graph nodes; and for even k,

they correspond to the edges. Let β̂ be the GTF estimate of the graph signal. The quality

of the support recovery can be measured using the graph screening distance [41]. For any

t1 ∈ Sk(β?) and t2 ∈ Sk(β̂), let dG(t1, t2) denote the length of the shortest path between

them. The distance of Sk(β̂) from Sk(β
?) is then defined as

dG(Sk(β̂)|Sk(β?)) =


max

t1∈Sk(β?)
min

t2∈Sk(β̂)
dG(t1, t2), if Sk(β

?) 6= ∅

∞ otherwise

.

Interestingly, Lin et.al. [41] showed recently that under mild assumptions, one can

27

translate the error bound into a support recovery guarantee. Specifically, letting Rn be the

RHS of (2.8) that bounds the error ‖β̂ − β?‖22/n in Theorem 1, we have

dG(Sk(β̂)|Sk(β?)) =


O
(
RnH

−2
r

)
, k = 0

O
(
R

1/3
n H

−2/3
r

)
, k = 1

,

where Hr quantifies the minimum level of discontinuity, defined as the minimum absolute

value of the non-zero values of ∆(k+1)β?, i.e.

Hr = min
t∈Sk(β?)

|(∆(k+1)β?)t|.

Consequently, this leads to support recovery guarantees of the proposed GTF estimators.

Numerical experiment in Section 2.8.1 verifies the superior performance of the non-convex

regularizers over the `1 regularizer for support recovery.

2.7 ADMM Algorithm and its Convergence

There are many algorithmic approaches to optimize the vector-GTF formulation in (2.7),

since scalar-GTF (2.4) can be regarded as a special case with d = 1. In this section, we

illustrate the approach adopted in this work, which is the Alternating Direction Method

of Multipliers (ADMM) framework for solving separable optimization problems [66].

Via a change of variable as Z = ∆(k+1)B, we can transform (2.7) to

min
B∈Rn×d

1

2
‖X −B‖2F + h(Z;λ, γ) s.t. Z = ∆(k+1)B.

28

Algorithm 1 ADMM for solving (2.7)

1: inputs data X, graph difference operator ∆(k+1), and parameters λ, γ, τ .
2: initialize

B ←X or Binit if given.
D ←∆(k+1), Z ←DB, U ←DB −Z
Y ← (I + τD>D)−1

3: repeat
4: for j ← 1 to num cols(B) do
5: B·j ← Y (τD>(Z ·j −U ·j) +X ·j)
6: end for
7: for `← 1 to num rows(DB) do
8: Z`· ← Proxρ(‖D`·B +U `·‖2;λ/τ)
9: end for

10: U ← U +DB −Z
11: until termination
12: outputs signal estimate B.

Its corresponding Lagrangian can be written as:

L(B,Z,U) =
1

2
‖X −B‖2F + h(Z;λ, γ) +

τ

2
‖∆(k+1)B −Z +U‖2F −

τ

2
‖U‖2F, (2.11)

where U ∈ Rr×d is the Lagrangian multiplier, and τ is the parameter. Alg. 1 shows

the ADMM updates based on the Lagrangian in (2.11). Recall the proximal operator is

defined as Proxf (v;α) = argminy
1
2‖y − v‖22 + αf(y) for a function f(·). `1, SCAD and

MCP all admit closed-form solutions of Prox, which are simple thresholding operations

[67]. Furthermore, we have the following convergence guarantee for Alg. 1, whose proof is

provided in Appendix A.3. Theorem 3 implies that the output of Alg. 1 satisfies Theorem 1.

Theorem 3. Let τ ≥ µ. Then Alg. 1 converges to a stationary point of (2.7).

In addition, we provide a detailed time complexity analysis of Alg. 1 in Table 2.2.

Note that since ∆ is a sparse matrix with exactly 2m non-zero entries, Alg. 1 can run

29

much faster when k = 0. As a preprocessing step for each D1, we compute V ∈ Rn×n and

S ∈ Rn×n, the eigenvectors and eigenvalues of D>D, exactly once. Y = V (I + τS)−1V >

can then be initialized very efficiently for all experiments that use D.

k ≥ 1 k = 0

D>D eigen decomposition O(rn2 + n3) O(m2 + n3)

Z initialization O(rnd) O(md)

Y initialization O(n2) O(n2)

B update O(d(nr + n2)) O(d(m+ n2))

DB calculation O(rnd) O(md)

Z,U update O(rd) O(rd)

Total after t iterations O(tdrn+ tdn2) O(tdm+ tdn2)

Table 2.2: Time complexity analysis of vector-GTF in Alg. 1.

2.8 Numerical Experiments

For the following experiments, we fixed γ = 3.7 for SCAD, and γ = 1.4 for MCP. The

graphs we use in the following experiments satisfy Assumption 1 for this choice of γ. Unless

explicitly mentioned, we tuned λ and τ
λ for each experiment using the Hyperopt toolbox

[68]. To meet the convergence criteria in Theorem 3, we enforced τ ≥ 1/γ. SCAD/MCP

were warm-started with the GTF estimate with `1 penalty. Python packages PyGSP [69]

and NetworkX [70] were used to construct and plot graphs. The input signal SNR was

calculated as 10 log10(‖B?‖F/σ2nd), while the reconstructed signal SNR was calculated

as 10 log10(‖B?‖F/‖B̂ −B?‖F), where B̂ was the reconstruction. Computation time was

measured with MacBook Pro 2017 with an 2.9 GHz Intel Core i7 and 16GB RAM. Our

code is available at https://github.com/HarlinLee/nonconvex-GTF-public.

1In this section, we are overloading the variable D by D := ∆(k+1), since D was first introduced as the
degree matrix in Section 1.5. However, this chapter does not mention the degree matrix, so instances of D
in Alg. 1 and Appendix A proofs clearly refer to shorthand of ∆(k+1).

30

https://github.com/HarlinLee/nonconvex-GTF-public

Figure 2.3: Scalar-GTF with MCP (orange) has much lower bias than scalar-GTF with
`1 (blue) when estimating a piecewise constant signal over a 12 × 12 grid graph. See
highlighted regions pointed by red arrows in A and B. The scatter points correspond to a
noisy signal with 5dB SNR.

2.8.1 Denoising via GTF with Non-convex Regularizers

We first highlight via synthetic examples two important advantages that non-convex reg-

ularizers provide over the `1 penalty.

• Bias Reduction: We demonstrate the reduction in signal bias in Fig. 2.3 for the

graph signal defined over a 12× 12 2D-grid graph, using both the `1 penalty and the

MCP penalty. Clearly, the MCP estimate (orange) has less bias than the `1 estimate

(blue), and can recover the ground truth surface (purple) more closely.

• Support Recovery: We illustrate the improved support recovery performance of

non-convex penalties on localizing the boundaries for a piecewise constant signal on

the Minnesota road graph, shown in Fig. 2.5. Particularly, we look at how well our

estimator localizes the support of ∆(k+1)β?, that is, the discontinuity of the piecewise

constant graph signal by looking at how well we can classify an edge as connecting

31

0.0 0.2 0.4 0.6
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

ROC Curve

penalty

L1

SCAD

MCP

Figure 2.4: The ROC curve for classifying whether an edge lies on a boundary for the
Minnesota road graph signal shown in Fig. 2.5. Non-convex penalty SCAD/MCP shows
improved support recovery performance compared to `1. The input SNR of the noisy
piecewise constant signal is 7.8dB.

two nodes in the same piece or being a cut edge across two pieces. By sweeping

the regularization parameter λ, we obtain the ROC curve in Fig. 2.4, i.e. the true

positive rate versus the false positive rate of classifying a cut edge correctly, and

see that scalar-GTF with MCP and SCAD consistently outperforms the scalar-GTF

with `1 penalty.

Then, we more rigorously compare the performance of GTF using non-convex reg-

ularizers such as SCAD and MCP with that using the `1 norm. For the ground truth

signal β?, we construct a piecewise constant signal on a 20 × 20 2D-grid graph and the

Minnesota road graph [69] as shown in the left panel of Fig. 2.5, and add different levels of

32

4

2

0

2

4

6

8

10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

−10 −5 0 5 10 15 20 25 30

Noisy Signal SNR (dB)

10

20

30

40

50

60

R
ec

on
st

ru
ct

ed
S

ig
na

l
S

N
R

(d
B

)

scalar-GTF+L1

scalar-GTF+SCAD

scalar-GTF+MCP

vector-GTF+L1

vector-GTF+SCAD

vector-GTF+MCP

−10 −5 0 5 10 15 20 25 30

Noisy Signal SNR (dB)

10

20

30

40

50

R
ec

on
st

ru
ct

ed
S

ig
na

l
S

N
R

(d
B

)

scalar-GTF+L1

scalar-GTF+SCAD

scalar-GTF+MCP

vector-GTF+L1

vector-GTF+SCAD

vector-GTF+MCP

15 16 17 18 19 20 21 22 23

Gain in SNR (dB)

0.2

0.3

0.4

0.5

0.6

R
un

ti
m

e
(s

ec
)

vector-GTF+L1

vector-GTF+SCAD

vector-GTF+MCP

14 16 18 20 22 24 26 28

Gain in SNR (dB)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

R
un

ti
m

e
(s

ec
)

vector-GTF+L1

vector-GTF+SCAD

vector-GTF+MCP

Figure 2.5: The left panel shows the ground truth piecewise constant signals on 20 × 20
2D-grid graph (top), and Minnesota road graph (bottom). The middle panel shows their
corresponding plots of input signal SNR versus reconstructed signal SNR, averaged over
10 and 20 realizations, respectively. The non-convex penalty SCAD/MCP consistently
outperforms convex `1, and vector-GTF denoises better than scalar-GTF. Finally, the right
panel plots the computation time against gain in SNR from denoising via vector-GTF. 10
trials were performed for each regularizer, where the input signal SNR was fixed at 20dB.

33

noise following (2.2). We recover the signal by scalar-GTF with Alg. 1, and plot the SNR

of the reconstructed signal versus the SNR of the input signal in solid lines in the middle

panel of Fig. 2.5, averaged over 10 and 20 realizations, respectively. SCAD/MCP consis-

tently outperforms `1 in denoising graph signals defined over both regular and irregular

structures.

2.8.2 Denoising Vector-valued Signals via GTF

We compare the performance of vector-GTF in (2.7) with (2.6), which applies scalar-GTF

to each column of the vector-valued graph signal. The convex `1 norm and the non-convex

SCAD and MCP are employed. We reuse the same ground truth graph signals over the

2D-grid graph and the Minnesota road graph constructed in Section 2.8.1 in Fig. 2.5. d

independent noisy realizations of the graph signal are concatenated to construct a noisy

vector-valued graph signal with dimension d = 10 on the 2D-grid graph and with d = 20 on

the Minnesota road graph. We recover the vector-valued signal by minimizing vector-GTF

(2.7) with Alg. 1.

The middle panel of Fig. 2.5 plots the average SNR of the reconstructed signal versus

the average SNR of the input signal in dotted lines. We emphasize that the performance

of (2.6) is the same as applying scalar-GTF to each realization, which is shown in the

middle panel of Fig. 2.5 in solid lines. As before, SCAD/MCP consistently outperforms

`1 in denoising signals over both regular and irregular graphs. Furthermore, as expected,

due to the sharing of information across realizations, vector-GTF consistently outperforms

scalar-GTF, especially in the low SNR regime.

The right panel of Fig. 2.5 plots the computation time versus the gain in SNR from

denoising via vector-GTF. 10 trials are performed for each regularizer with the input signal

SNR fixed at 20dB. Parameter tuning and eigen decomposition of ∆(2) are preprocessing

34

steps, and hence they are not included in the time measurement; but for reference, the eigen

decomposition took 0.025 and 2.5 seconds for 2D-grid and Minnesota graphs, respectively.

Since GTF with non-convex regularizers are warm-started by the `1 estimate, the runtime

for `1 GTF is added to the SCAD/MCP runtime. Overall, running vector-GTF with

SCAD/MCP after once with `1 takes more time, but with large benefits in the denoising

performance. Even with the additional computation time, vector-GTF runs reasonably

fast; computation takes less than 25 seconds with the Minnesota road network, where

n = 2642 and m = 3304.

Average #1 #2 #3 #4 #5 #6 #7 #8

Input SNR (dB) 8.7 -14 0 0 3.5 5.8 12 29 34

Vector-GTF + `1 29 10 20 23 26 36 37 39 38

Scalar-GTF + `1 21 0 11 13 16 18 26 41 45

Vector-GTF + SCAD 32 10 20 22 25 36 35 49 61

Scalar-GTF + SCAD 29 0 15 17 25 35 34 47 60

Vector-GTF + MCP 32 10 20 22 25 36 35 49 61

Scalar-GTF + MCP 29 0 15 22 24 30 33 49 60

Table 2.3: Noisy input and reconstructed signal SNRs for eight measurements of varying
input SNRs, rounded to two significant figures. Highest reconstructed signal SNR for each
measurement is in bold. Vector-GTF outperforms scalar-GTF, and SCAD/MCP achieves
better SNR than `1 on average. In low SNR settings, information about the boundaries of
the graph signal is borrowed from higher SNR signals to improve the estimation.

We further investigate the benefit of sharing information across measurements or

realizations in the following experiment, using the same ground truth signal on the 2D-

grid graph. We stack eight noisy realizations of this same piecewise constant signal to

build a vector-valued signal. We construct these noisy measurements by scaling each one

of them differently and randomly such that each will have SNR ∼ U [−10, 30]dB under

(2.2). This has the effect of rendering some measurements more informative than others,

and potentially allowing vector-GTF to reap the benefits of sharing information across

35

measurements. We recover the 8-dimensional graph signal via Alg. 1 using `1, SCAD, and

MCP regularizers, and in Table 2.3, report the input signal and reconstructed signal SNRs

for each measurement in addition to the average SNRs. λ is fixed at 0.5σ2.

First of all, notice that as before, using SCAD/MCP generally achieves results with

higher SNR than using `1, and that on average, minimizing (2.7) outperforms minimizing

(2.6). The effect of sharing information across measurements is most apparent in low SNR

settings, when information about the boundaries of the graph signal can be borrowed from

higher SNR signals to improve the estimation. On the other hand, sharing information

with noisier signals does not help denoising signals with high input SNR. However, it is

worth noting that, unlike `1, SCAD/MCP does not see decrease in its performance in the

high SNR settings.

2.8.3 Denoising Trends in Real-world Traffic Data

To further illustrate graph trend filtering on a real-world dataset, we consider the road

network of Manhattan where the nodes correspond to junctions [71]. We map the pickups

and dropoffs of the NYC taxi trip dataset [72, 73] to the nearest road junctions, and define

the total count at that junction to be the signal value on the corresponding graph node.

The signal of interest, plotted on the top left panel of Fig. 2.6, is the difference between the

event graph signal on the day of NYC Gay Pride parade, 12-2pm on June 26, 2011, and

the seasonal average graph signal at the same time during the 8 nearest Sundays. During

the event, no pickups and dropoffs could occur in the areas shown in the top right panel

of Fig. 2.6 [74]. We denoise the signal via GTF using both `1 and MCP, where we chose λ

such that ‖∆β̂‖0 ≈ 200. Once again, we observe the GTF estimate with MCP produces

sharper traces around the parade route, indicating better capabilities of event detection

and localization.

36

Figure 2.6: Top left: the noisy signal on the Manhattan road network is the change in the
taxi pickup and dropoff count during the 2011 NYC Gay Pride. Top right: areas of Pride
events, where the traffic was blocked off. Bottom: the GTF estimates using `1 and MCP.
The GTF estimate with MCP better detects and localizes the event, compared to the one
using `1 penalty.

37

2.8.4 Semi-supervised Classification

Heart Wine quality Wine Iris Breast Car

of samples (n) 303 1599 178 150 569 1728
of classes (K) 2 6 3 3 2 4

k = 0

`1 0.148 0.346 0.038 0.036 0.042 0.172

SCAD

p-value

0.148 0.353 0.038 0.033 0.042 0.149

1. 0.06 1. 0.27 1. 0.06

MCP

p-value

0.144 0.351 0.037 0.035 0.040 0.148

0.23 0.18 0.34 0.34 0.35 0.05

k = 1

`1 0.143 0.351 0.034 0.039 0.035 0.104

SCAD

p-value

0.144 0.350 0.034 0.039 0.035 0.104

0.30 0.43 0.34 1. 0.71 0.66

MCP

p-value

0.146 0.350 0.034 0.039 0.034 0.103

0.05 0.44 0.34 1. 0.02 0.23

Table 2.4: Misclassification rates averaged over 10 trials, with p-values from running sam-
pled t-tests between SCAD/MCP misclassification rates and the corresponding rates using
`1. Cases where non-convex penalties perform better than `1 with p-value below 0.1 are
highlighted in bold, and where they perform worse are in italic.

Graph-based learning provides a flexible and attractive way to model data in semi-

supervised classification problems when vast amounts of unlabeled data are available com-

pared to labeled data, and labels are expensive to acquire [14, 15, 58]. One can construct a

nearest-neighbor graph based on the similarities between each pair of samples, and hope to

propagate the label information from labeled samples to unlabeled ones. We move beyond

our original problem in (2.4) to a K-class classification problem in a semi-supervised learn-

ing setting, where for a given dataset with n samples, we observe a subset of the one-hot

encoded class labels, X ∈ Rn×K , such that Xij = 1 if ith sample has been observed to be

in jth class, and Xij = 0 otherwise. A diagonal indicator matrix M ∈ Rn×n denotes sam-

ples whose class labels have been observed. Then, we can define the modified absorption

38

problem [15, 16, 58] using a variation of GTF to estimate the unknown class probabilities

B ∈ Rn×K :

B̃ = argmin
B∈Rn×K

1

2
‖M(X −B)‖2F +

K∑
j=1

g(∆(k+1)B·j ;λ, γ) + ε‖R−B‖2F,

where R ∈ Rn×K (set to be uniform in the experiment) is a fixed prior belief, and ε > 0

determines how much emphasis to be given to the prior belief. The labels X̃ can be

estimated using B̃ such that X̃ij = 1 if and only if j = arg max1≤`≤K B̃i`, and otherwise

X̃ij = 0. Note that this can be completely separated into K scalar-GTF problems, one

corresponding to each class.

We applied the algorithm in (2.8.4) to 6 popular UCI classification datasets [75]

with ε = 0.01. For each dataset, we normalized each feature to have zero mean and

unit variance, and constructed a 5-nearest-neighbor graph of the samples based on the

Euclidean distance between their features, with edge weights from the Gaussian radial

basis kernel. We observed the labels of 20% of samples in each class randomly. Table

2.4 shows the misclassification rates averaged over 10 repetitions, which demonstrates that

the performance using non-convex penalties such as SCAD/MCP are at least competitive

with, and often better than, those with the `1 penalty.

2.9 Conclusions

We presented a framework for denoising piecewise smooth signals on graphs that gener-

alizes the graph trend filtering framework to handle vector-valued signals using a family

of non-convex regularizers. We provided theoretical guarantees on the error rates of our

framework, and derived a general ADMM-based algorithm to solve this generalized graph

trend filtering problem. Furthermore, we demonstrated the superior performance of these

39

non-convex regularizers in terms of reconstruction error, bias reduction, and support re-

covery on both synthetic and real-world data. In particular, its performance on filtering

trend in traffic and semi-supervised classification is investigated.

40

Chapter 3

Matrix Factorization in Remote

Sensing

3.1 Summary

Remote sensing data from hyperspectral cameras suffer from limited spatial resolution,

in which a single pixel of a hyperspectral image may contain information from several

materials in the field of view. Blind hyperspectral image unmixing identifies the pure

spectra of individual materials (i.e., endmembers) and their proportions (i.e., abundances)

at each pixel. We propose a novel blind hyperspectral unmixing model based on the graph

total variation (gTV) regularization, which can be solved efficiently by the alternating

direction method of multipliers (ADMM). To further alleviate the computational cost, we

apply the Nyström method to approximate a fully-connected graph from a small subset

of sampled points. Furthermore, we adopt the Merriman-Bence-Osher (MBO) scheme to

solve the gTV-involved subproblem in ADMM by decomposing a grayscale image into a bit-

wise form. A variety of numerical experiments on synthetic and real hyperspectral images

are conducted, showcasing the potential of the proposed method in terms of identification

accuracy and computational efficiency.

41

3.2 Introduction

Hyperspectral imaging is an important and useful tool to acquire high resolution data in the

electromagnetic spectrum with many applications in remote sensing, including surveillance,

agriculture, environmental monitoring, and astronomy. With hundreds to thousands of

spectral bands, a hyperspectral image provides a detailed description of a scene. However,

due to limited spatial resolution of imaging sensors, the acquired hyperspectral data at each

pixel represents a collection of material signatures in the field of view of each pixel. The

signature corresponding to one pure material is called an endmember in hyperspectral data

analysis [76]. Given the endmembers of all materials present in the scene, hyperspectral

unmixing aims to estimate the proportions of constituent endmembers at each single pixel,

called the abundance map. If the spectral information of endmembers is unavailable, then

the problem becomes a blind hyperspectral unmixing problem that requires simultaneously

identifying the endmembers and estimating the abundance map. There are a large number

of hyperspectral mixing and unmixing methods [77, 78], including linear and non-linear

models, depending on assumptions about the interaction of the light with the observed

scene.

We focus on the linear mixing model in this project. Specifically, by assuming that

each light ray interacts with only one endmember in the field of view before reaching the

sensor, we model the spectrum at each pixel as a linear combination of all endmembers.

Due to the physical interpretation of the hyperspectral mixing model, it is also reasonable

to assume that each element of endmembers and abundances is non-negative. Another

commonly used constraint is that abundances from all the endmembers at each pixel sum

up to one, which implies that all abundance vectors belong to the probability simplex,

determined by the standard unit vectors in a Euclidean space. One can remove the sum-

42

to-one constraint for physically motivated reasons, e.g., when illumination conditions or

the topography of the scene change locally in the image [79], but we adopt the sum-to-one

constraint for interpretability of the abundances.

Non-negative matrix factorization (NMF) [80], which decomposes a given matrix into

a product of two matrices with non-negative entries, is widely used in blind hyperspectral

unmixing [81, 82, 83]. Suppose the given hyperspectral image X is of size w× n, where w

is the number of spectral bands and n is the number of spatial pixels. One aims to write

X as a product of two non-negative matrices S ∈ Rw×k and A ∈ Rk×n with k being the

total number of the endmembers. Note that the rank of the matrix SA is at most k, and

k is usually much smaller than w and n. Then the hyperspectral unmixing problem can

be formulated as a non-negative least squares problem,

min
S∈Ωw×k
A∈Ωk×n

1

2
‖X − SA‖2F, (3.1)

where Ωr×c denotes the set of all non-negative real matrices of size r × c, i.e.,

Ωr×c := {X ∈ Rr×c |Xij ≥ 0, i = 1, . . . , r, j = 1, . . . , c}. (3.2)

However, non-convexity of the objective function in (3.1) may lead to multiple local minima.

To address this issue, various regularization techniques have been developed to enforce some

desirable properties on the endmembers or abundance matrices. For example, methods

based on the spatial sparsity of abundances include the use of the `0 norm [84], the `1

norm [85], the `2 norm in fully constrained least squares unmixing (FCLSU) [86], the `1/2

norm [87], and the mixed `p,q norm for group sparsity [88].

In this work, we propose an efficient framework for blind hyperspectral unmixing

based on an approximation of graph total variation (gTV) to exploit the similarity of

43

spectral information at different pixels, and preserve sharp edges of the abundance map.

By treating the spectral vector at each pixel as a vertex, the given hyperspectral data can

be modeled as a graph, whose adjacency matrix is determined by the pairwise similarity

between any two vertices. Instead of using the incidence matrix to define the discrete graph

derivative operator and thereby gTV [3, 89, 90, 91], we approximate gTV by the graph

Laplacian. This approach is inspired by a theoretical result in [92]: the TV semi-norm of

a binary function defined on a graph is well-approximated by the graph Ginzburg-Landau

(GL) functional involving the graph Laplacian and a double-well potential. In order to

relax the restriction on binary data, we adopt a bitwise decomposition [93] to deal with

grayscale images. Specifically, we decompose the input data into eight bits, solve the

optimization problem at each bit channel, and aggregate all bits into grayscale values.

Our framework incorporates several techniques to increase the computational ef-

ficiency. To avoid a direct calculation of the graph Laplacian, we adopt the Nyström

method [94] in graph clustering to approximate the eigenvalues and eigenvectors of the

graph Laplacian. The Nyström method is a low-rank approximation of the weight ma-

trix that does not require the computation of all pairwise comparisons between feature

vectors. Rather, it uses random sampling to construct a low rank approximation that

is roughly O(n) for the number of feature vectors rather than computing the full matrix

which is O(n2). This is a reasonable assumption in cases where the image is thought to be

representable by a relatively small number of features, as would be the case with a mod-

est number of endmembers. This approximation significantly reduces the computational

costs in both time and storage, which makes our approach scalable to high-dimensional

data. Moreover, we design an efficient numerical algorithm to solve the proposed model

via ADMM [66, 95, 96]. In particular, the gTV-related subproblem can be solved efficiently

by the Merriman-Bence-Osher (MBO) scheme [97, 98] at each bit channel. We can readily

44

incorporate an accelerated version [99] of the MBO scheme and the Nyström method into

the proposed framework. To demonstrate the effectiveness of these approximations, we

conduct extensive experiments on various synthetic and real hyperspectral datasets, show-

ing the great potential of the proposed method in terms of accuracy and computational

efficiency.

The main contributions of this work are three-fold:

• We propose a novel data-driven type of graph regularization, i.e., gTV based on the

similarity of spectral information, imposed on the abundance map. To the best of

our knowledge, this is the first time that the graph total variation regularization has

been applied to solve a hyperspectral unmixing problem.

• We apply the Nyström method to efficiently approximate eigenvalues and eigenvectors

of a normalized graph Laplacian, which significantly improves the scalability of our

approach.

• We present an effective graph-based framework that integrates the Nyström method

and the MBO scheme into blind hyperspectral unmixing. We also provide a thor-

ough discussion of computational complexity and parameter selection of the proposed

algorithm.

Table 3.1 summarizes some key notations used in this chapter for convenience.

3.3 Related Work

Due to the success of the total variation (TV) [100] in the image processing community, the

TV regularization has been applied to hyperspectral unmixing to preserve the piecewise

constant structure of the abundance map for each material. For example, sparse unmix-

ing via variable splitting augmented Lagrangian and total variation (SUnSAL-TV) [101]

45

Symbol Description Dimension

n number of spatial pixels 1
w number of spectral bands 1
k number of endmembers 1
X hyperspectral image data w × n
S endmember spectra w × k
A abundance map k × n
ai ith column of A k × 1
âi ai normalized by node degree k × 1
Ls normalized graph Laplacian n× n

Table 3.1: Key notations used in Chapter 3.

involves a two-dimensional TV regularization. Other TV-based variants include TV with

`1 [102], TV with sparse NMF [103], TV with non-negative tensor factorization [104], and

an improved collaborative NMF with TV (ICoNMF-TV) [105] that combines robust col-

laborative NMF (R-CoNMF) [106] and TV. A recent work referred to as NMF-QMV [107]

considers TV as a quadratic regularization promoting minimum volume in the NMF frame-

work. An extension of TV to non-local spatial operators [108, 109] has led to non-local TV

being considered for the blind hyperspectral unmixing problem [110, 111].

TV has also been extended from vectors in Euclidean space to signals defined on a

graph. For example, gTV [91] is a special case of the p-Dirichlet form [3, 89] in graph

signal processing. Some graph regularization techniques for hyperspectral imaging include

graph NMF (GNMF) [112], structured sparse-regularized NMF (SS-NMF) [113], graph-

regularized `1/2-NMF (GLNMF) [114], and graph-regularized multilinear mixing model (G-

MLM) based on superpixels [115]. By considering only the sparsity of spatial gradients, the

spatial TV regularization has a tendency to oversmooth the abundance map [116]. On the

contrary, the proposed gTV regularization considers the similarity of spectral information

at different pixels and hence it can preserve fine spatial features in the abundance map.

Most of these graph-based approaches suffer from intensive computation, especially

46

when computing the pairwise similarity between all pixels. As one of the methods to reduce

the computational cost, the Nyström method [94] generates a low-rank approximation of

the graph Laplacian, which can be incorporated into unmixing.

3.4 Proposed: Graph Total Variation Regularization for Blind

Hyperspectral Unmixing

Let X ∈ Rw×n be a hyperspectral image, where w is the number of spectral bands and n

is the number of pixels in the image. We denote the spectral signature of pure materials,

called endmembers, as {sj}kj=1 with k being the number of endmembers. Assume that the

spectral signature at each pixel, namely each column of X, follows the standard linear

mixing model, i.e.,

xi =

k∑
j=1

ajisj , i = 1, . . . , n, (3.3)

where aji is the proportion of the jth material at the ith pixel. By concatenating all

spectral signatures sj ’s, we obtain a matrix S ∈ Rw×k, which is called the mixing matrix.

Similarly, by assembling all weights aji’s, we obtain a matrix A ∈ Rk×n, which is called the

abundance map. Thus we can rewrite (3.3) as X = SA. Different from [117], our method

does not require the presence of pure pixels, rather just to assume the linear unmixing

model (3.3).

By taking the noise into consideration, the blind unmixing problem is to estimate

both S and A simultaneously from the noisy hyperspectral data X, i.e.,

X = SA+E,

where E ∈ Rw×n is an additive noise term typically assumed to be Gaussian. This is

47

a highly ill-posed problem, and hence additional assumptions and regularizations are re-

quired. First, due to the physical interpretation of (3.3), both S and A are assumed to be

non-negative matrices, i.e., S ∈ Ωw×k and A ∈ Ωk×n with Ω defined in (3.2). In addition,

since each element of A is the proportion of one of the pure materials in a single pixel, it

is natural to impose the sum-to-one assumption, i.e., 1>kA = 1>n , where 1m denotes the

all-one (column) vector of length m. The sum-to-one constraint on the abundance map is

commonly used in hyperspectral unmixing [77]; it implicitly enforces sparsity because it

is related to the `1 norm. We use the above two assumptions as constraints to refine the

solution space.

In order to apply graph regularization, we use the given hyperspectral data X to

generate a weighted graph by assuming that spectral signatures and abundance maps share

the same spatial smoothness. In particular, we adopt the cosine similarity as the distance

function for hyperspectral data in (3.6), which is physically motivated by the fact that

illumination effects change the scaling of spectra but not their overall shape in the spectral

domain [98, 99, 118].

In our previous work [7], we considered a graph Laplacian regularization for hyper-

spectral unmixing, i.e.,

JH1(A) =
1

2

n∑
i,j=1

‖âi − âj‖22Wij , (3.4)

where ai is the i-th column of A, Dii is the degree of node i, and âi = ai/
√
Dii. However,

the graph Laplacian regularization usually causes oversmoothing due to the presence of `2

norm in (3.4). To mitigate the oversmoothing artifacts, we propose graph total variation

(gTV) regularization on the abundance map, i.e.,

JTV (A) =
1

2

n∑
i,j=1

‖âi − âj‖1Wij .

48

Minimizing JTV can preserve edges of the abundance map for each material in a non-local

fashion. The proposed gTV-regularized model for blind hyperspectral unmixing can be

formulated as

min
S∈Ωw×k

A∈Ωk×n,1
>
k
A=1>n

1

2
‖X − SA‖2F + λJTV (A), (3.5)

where λ is a positive tuning parameter.

3.5 Preliminaries

In this section, we provide preliminary knowledge for a set of building blocks that are

used in this work, including the graph construction, the Nyström method for efficiently

approximating the similarity weight matrix, and the GL functional with a fast solver to

find its minimizer via MBO.

3.5.1 Graph Construction and Nyström Method

Recall the definitions of adjacency matrix W , degree matrix D, graph Laplacian matrix

L, and (symmetric) normalized graph Laplacian Ls from Section 1.5.

Similarity graphs are an important mathematical tool to describe directed/undirected

pairwise connections between objects. Consider a collection of data points {xi}ni=1 ⊆ Rw.

One simple way to construct a graph is to treat each point as a vertex of the graph. Then

the adjacency matrix W ∈ Rn×n is defined by

Wij = e−d(xi,xj)
2/σ, i, j = 1, . . . , n, (3.6)

where d(xi,xj) is the distance between the two vertices xi and xj , and σ > 0 controls how

similar they are. There are two distance metrics widely used in graph-based applications:

49

1. Euclidean distance: d(xi,xj) = ‖xi − xj‖2;

2. Cosine similarity: d(xi,xj) = 1− 〈xi,xj〉
‖xi‖2‖xj‖2 .

Computing and storing pairwise similarities of a fully-connected graph is usually a

bottleneck of many graph-based algorithms. In order to reduce the time/space complexity,

we apply the Nyström method [94] to approximate the eigenvalues and eigenvectors of W

by using only p sampled data points with p� n. Up to permutations, the similarity matrix

W can be expressed in a block-matrix form,

W =

W 11 W 12

W 21 W 22

 ,
where W 11 ∈ Rp×p is the similarity matrix of the sampled data points, W 12 = W>

21

is the one of the sampled points and the unsampled points, and W 22 is the one of the

unsampled points. Assume that the symmetric matrix W 11 has the eigen decomposition

W 11 = UΛ̃U>, where U has orthonormal eigenvectors as columns and Λ̃ is a diagonal

matrix whose diagonal entries are eigenvalues of W 11. The Nyström extension gives an

approximation of W by using U and Λ̃ as follows,

W ≈ ŨΛ̃Ũ
>
, where Ũ =

 U

W 21UΛ̃−1

 . (3.7)

Note that the columns of Ũ require further orthogonalization. See [94, 99] for more details.

In this work, we apply the Nyström method to calculate the weight matrix for the

sampled data and then use the approximated eigen decomposition (3.7) to approximate

50

the normalized graph Laplacian, i.e.,

Ls ≈D−
1
2 Ũ(I − Λ̃)Ũ

>
D−

1
2 := V ΛV >, (3.8)

where V = D−
1
2 Ũ ∈ Rn×p and Λ = I − Λ̃ ∈ Rp×p. This way, computation of pairwise

similarities is significantly reduced from the whole dataset to a small portion. We chose

to use Ls over L due to its outstanding performance in the graph-based data classification

[98, 119]. Using Ls, we can rewrite the graph Laplacian regularizer (3.4) as

JH1(A) =
1

2

n∑
i,j=1

‖âi − âj‖22Wij =
1

2
〈A>,LsA>〉.

3.5.2 Ginzburg-Langdau Functional and MBO Scheme

The classic Ginzburg-Landau (GL) energy [119, 120] for diffuse interface models is

ε

2

∫
Ω
|∇u|2dx+

1

ε

∫
Ω

Φ(u)dx,

where Φ(u) := 1
4u

2(u− 1)2 is a double-well potential to enforce u to take binary values of

{0, 1} on a domain Ω. The term “diffuse interface” refers to a smooth transition between

two phases of u, where the smoothness is modeled by the H1-semi norm and the scale

of the transition is controlled by the parameter ε > 0. It is proven in [121] that the GL

functional Γ-converges to the TV semi-norm, i.e., as ε→ 0,

ε

2

∫
Ω
|∇u|2dx+

1

ε

∫
Ω

Φ(u)dx→ C

∫
Ω
‖∇u‖dx,

for some constant C > 0.

In a series of works including [98, 118, 122, 123, 124], the GL functional has been

51

extended to graphs, defined as

GL(u) = ε〈u,Lu〉+
1

ε
Φ(u), (3.9)

where u = [u1, . . . , un]> ∈ Rn is a signal defined on a graph G with ui being the state of

vertex i and L is the graph Laplacian of G or its variant. Here Φ(u) =
∑n

i=1 Φ(ui), which

can be extended to the matrix case, i.e., Φ(U) =
∑

i,j Φ(Uij) for any matrix U . Thanks to

the double-well potential, the GL functional has been successfully applied to binary data

classification [98] and multiclass classification [99, 122]. We employ the binary model here.

By adding a fidelity term to the GL energy, one obtains the following minimization

problem

E(u) = GL(u) + λF (u),

where F (u) is a differentiable functional that fits the unknown variable u to the given data

x, e.g., F (u,x) = 1
2‖x− u‖22. The parameter λ > 0 balances the contributions between

the GL regularization term and the data fidelity term. When u is binary, the energy E

can be efficiently minimized via the MBO scheme [97, 98]. In particular, the MBO scheme

alternates a gradient descent step that minimizes 〈u,Lu〉+λF (u) and a hard thresholding

that minimizes the double-well potential term. More precisely, the updated solution ut+1

from the tth iteration is given by


ut+1/2 = ut − dt

(
Lut + λ∇F (ut)

)
ut+1 = H1/2(ut+1/2),

(3.10)

where ∇F is the gradient of F , dt > 0 is a time stepsize, and H1/2(·) is a hard thresholding

52

operator defined as

(H1/2(u))i =


1, if ui ≥ 1/2

0, if ui < 1/2,

for i = 1, . . . , n. To circumvent the restriction on binary solutions in the MBO scheme, we

use a bitwise scheme to deal with grayscale images in Section 3.4.

3.6 gtvMBO: ADMM Algorithm

We are now ready to optimize our gTV-regularized model (3.5), reproduced below:

min
S∈Ωw×k

A∈Ωk×n,1
>
k
A=1>n

1

2
‖X − SA‖2F + λJTV (A)

= min
S∈Ωw×k

A∈Ωk×n,1
>
k
A=1>n

1

2
‖X − SA‖2F +

λ

2

n∑
i,j=1

‖âi − âj‖1Wij .

In order to apply the ADMM framework, we rewrite the constraints using indicator func-

tions. In general, the indicator function χ∆ of a set ∆ is defined as

χ∆(Z) =


0, Z ∈ ∆;

∞, otherwise.

By denoting Π := {Z ∈ Rk×n : Z ∈ Ωk×n,1
>
k Z = 1>n }, we can rewrite the model (3.5) as

an unconstrained problem,

min
S,A

1

2
‖X − SA‖2F + λJTV (A) + χΩw×k(S) + χΠ(A). (3.11)

53

We introduce two auxiliary variables B ∈ Rk×n, C ∈ Rw×k and rewrite the objective

function (3.11) as its equivalent form,

min
S,A,B,C

1

2
‖X −CA‖2F + λJTV (B) + χΩw×k(S) + χΠ(A)

s.t. A = B, S = C.

The corresponding augmented Lagrangian is

L(C,S,A,B) =
1

2
‖X −CA‖2F + λJTV (B) + χΩw×k(S) + χΠ(A)

+
ρ

2
‖A−B + B̃‖2F +

γ

2
‖S −C + C̃‖2F,

where B̃, C̃ are dual variables and ρ, γ are two positive parameters. Then the ADMM

algorithm requires solving four subproblems at each iteration, i.e., minimizing L with

respect to C,S,A and B individually while fixing the others. The C-subproblem reads as

argmin
C

1

2
‖X −CA‖2F +

γ

2
‖S −C + C̃‖2F,

which has a closed-form solution. The S-subproblem seeks the projection of C − C̃ onto

the set of all non-negative matrices, which can be solved by hard thresholding. As for the

A-subproblem, the solution can be obtained by projecting a least squares solution onto the

convex set Π, i.e.,

A = PΠ

(
(S>S + ρI)−1

(
S>X + ρ(B − B̃)

))
,

where PΠ is the projection operator on the set Π that can be implemented by a fast

algorithm [125].

54

For the B-subproblem, we approximate the non-differentiable gTV by the graph GL

functional,

argmin
B

λε〈B>,LsB>〉+
λ

ε
Φ (B) +

ρ

2
‖A−B + B̃‖2F,

where Φ are defined in Section 3.5. To remove the binary restriction of MBO, we approxi-

mate any real number in [0, 1] by its best M -bit binary representation [93]. We apply the

MBO scheme on each channel separately, which can be implemented in parallel. Finally,

we combine all the channels to get an approximated solution with elements in [0, 1] for the

B-subproblem. In all our experiments, we set M = 8. Specifically, we approximate the

matrix B by a set of M binary matrices Bm ∈ Rk×n with m = 1, · · · ,M such that

Bij ≈
M∑
m=1

2−m[Bm]ij ,

where M is the total number of bits being considered and Bm is the mth bit channel of the

matrix B, i.e., [Bm]ij ∈ {0, 1}. Likewise, we approximate A and B̃ in the same manner

and get two sets of binary matrices {Am}Mm=1 and {B̃m}Mm=1. Then for each channel, we

approximate the gTV regularization JTV by the graph GL functional (3.9). Hence, we

obtain the following minimization problem for each Bm,

argmin
Bm

λεtr
(
BmLsB

>
m

)
+
λ

4ε

n∑
i=1

k∑
`=1

[Bm]2i` ([Bm]i` − 1)2 +
ρ

2
‖Am −Bm + B̃m‖2F.

(3.12)

Note that we assume that the graph structure at each channel is consistent with the one

that is defined by the given hyperspectral data X.

We apply the MBO scheme (3.10) to minimize (3.12), which is a two-step iterative

55

algorithm. The first step requires solving for B>m from

LsB
>
m +

ρ

λ
(B>m −A>m − B̃

>
m) = 0. (3.13)

Motivated by [99], we further accelerate the MBO by taking advantage of the approximated

eigendecomposition of Ls given in (3.8). Multiplying both sides of (3.13) with V > from

the left, we get ΛV >B>m + ρ
λ

(
V >B>m − V >(A>m + B̃

>
m)
)

= 0, or equivalently

BmV Λ +
ρ

λ

(
BmV − (Am + B̃m)V

)
= 0, (3.14)

since V >V = I. As a result, we only need to solve for BmV ∈ Rk×p with a reduced

problem size. Denote Zm = BmV and Nm = ρ
λ

(
BmV − (Am + B̃m)V

)
. At the (τ + 1)th

iteration, we have the following algorithm to update Bm:



Zτ+1
m = Zτ

m(I − dτΛ)− dτ ·N τ
m

Bτ+1/2
m = V Zτ+1

m

N τ+1
m =

ρ

λ

(
Bτ+1/2
m − (Am + B̃m)

)
V

Bτ+1
m = H1/2(Bτ+1/2

m).

(3.15)

The first three equations in (3.15) are obtained by applying fixed-point iteration to solve

(3.14), and the last equation in (3.15) is from the MBO scheme in (3.10). Our numerical

experiments show that five iterations of (3.15) for each Bm-subproblem are sufficient to

produce reasonable results. If the B-subproblem can be solved within certain accuracy,

then the convergence of ADMM can be guaranteed [126].

In summary, each subproblem in the ADMM algorithm can be solved efficiently

either through a closed-form solution or within a few iterations. The entire algorithm is

56

presented in Alg. 2, which terminates when maximum number of iterations is reached, or

either the relative error between two subsequent mixing matrices, i.e., ‖St+1 − St‖F/‖St‖F,

or the relative error between two subsequent abundance maps, i.e., ‖At+1 −At‖F/‖At‖F,

is smaller than a given tolerance.

Algorithm 2 gtvMBO: ADMM algorithm with MBO inner loop to solve (3.5)

1: inputs data X, parameters ρ, λ, γ, dτ .
2: initialize

Use the Nyström method on X to get the p-rank
eigendecomposition form of the graph Laplacian Ls = V ΛV >.
S ← Sinit, A← Ainit

B ← A, C ← S
B̃ ← 0, C̃ ← 0

3: repeat

4: C ←
(
XA> + γ

(
S + C̃

)) (
AA> + γIk

)−1
.

5: S ← max(C − C̃, 0).

6: A← PΠ

((
S>S + ρIk

)−1
(
S>X + ρ

(
B − B̃

)))
.

7: Split B,A, B̃ bitwise.
8: for m← 1, . . . , 8 do
9: Zm ← BmV

10: Nm ← ρ
λ

(
Bm −

(
Am + B̃m

))
V

11: repeat
12: Zm ← Zm(Ip − dτΛ)− dτ ·Nm

13: Bm ← V Zm

14: Nm ← ρ
λ

(
Bm − (Am + B̃m)

)
V

15: Bm ← H1/2(Bm)
16: until termination
17: end for
18: Combine Bm,Am, B̃m bitwise.
19: B̃ ← B̃ + (A−B).
20: C̃ ← C̃ + (S −C).
21: until termination
22: outputs endmember spectra estimate S, abundance map estimate A.

57

3.6.1 Time Complexity of gtvMBO

Here we discuss the complexity of the proposed algorithm and compare it with related

methods. The computational complexity of the Nyström method is O(wpn+ p2n), mainly

for computing W 12 and singular value decomposition in (3.7). This is much smaller than

calculating the graph Laplacian matrix directly as described in Section 3.5.1, which is

O(wn2). As for the space complexity, using the approximated graph Laplacian requires

storing only O(pn) numbers, while using the full graph Laplacian would need to store

O(n2) numbers.

The time complexity of each step in Alg. 2 is summarized as follows:

• C update: O(wkn);

• S update: O(wk);

• A update: O(wkn+ nk log k) = O(wkn);

• B update per bit channel: O(kpn);

• B̃, C̃ update: O(kn).

Therefore, the time complexity for our algorithm per iteration is O(kn(w + p)) in total.

Given p � n and k < w, this is faster than the other two related methods: SUnSAL-TV

[101] and GLNMF [114], which are in the order of O(wn(w + log n)) and O(kn(w + kn)),

respectively.

3.7 Hyperspectral Unmixing Experiments

In this section, we conduct extensive experiments on synthetic and real data to demonstrate

the performance of the proposed approach, referred to as gtvMBO, in comparison with the

58

state-of-the-art methods in blind and non-blind hyperspectral unmixing. Methods that

we compare include FCLSU [86], SUnSAL-TV [101] (denoted by STV), GLNMF [114],

fractional `q norm-regularized unmixing method with q = 0.1 (denoted by FRAC) [88],

NMF-QMV [107] (denoted by QMV), and our earlier unmixing work based on the graph

Laplacian [7] (denoted by GraphL).

To quantitatively measure the performance, we adopt the following metrics to calcu-

late the error between an estimation Ŷ ∈ Rr×c and the reference Y ∈ Rr×c.

1. Root-mean-square error (RMSE)

RMSE(Y , Ŷ) =
1

c

√√√√1

r

r∑
i=1

‖yi − ŷi‖22,

where yi ∈ Rc is the ith row of Y .

2. Normalized mean-square error (nMSE)

nMSE(Y , Ŷ) =
‖Y − Ŷ ‖F
‖Y ‖F

.

3. Spectral angle mapper (SAM) in degrees

SAM(Y , Ŷ) =
1

c

c∑
j=1

arccos

(
y>j ŷj

‖yj‖2‖ŷj‖2

)
,

where yj ∈ Rr is the jth column of Y . The index j is skipped in the sum when

‖yj‖2‖ŷj‖2 = 0.

In order to make a fair comparison, we use the initialization steps in [88] for all

the methods considered in this paper. VCA [127] returns 10k endmember candidates

that are clustered into k groups. This is directly used as S for FCLSU and FRAC,

59

while we use the mean spectrum within each group and the sum of the abundances es-

timated by FCLSU within each group as the initial guesses Sinit and Ainit, respectively,

for all compared methods. We set σ = 5 in the weight computation (3.6) and randomly

select 0.1% samples from the entire pixel list in the Nyström method to approximate

the graph Laplacian. As for γ, ρ and λ, we choose the optimal parameters that min-

imize nMSE(A, Â). We first perform a coarse grid search with parameter candidates

evenly spaced over the interval on a log scale, then do a finer grid search around the

best parameters, e.g., search for an optimal λ in {102.5, 102.75, . . . , 103.5} given λ = 103

from the coarse grid search. For GraphL and gtvMBO, the coarse grid search is over

λ ∈ {10−5, 10−4, . . . , 105}, ρ/λ ∈ {10−3, 10−2, . . . , 103}, and γ ∈ {102, 103, . . . , 105}. For

FRAC, we fix ρ = 10 as suggested in [88] and search for λ among {10−5, 10−4, . . . , 105}.

For QMV, we search for λ (denoted by β in [107]) ∈ {10−5, 10−4, . . . , 105}. For GLNMF

and STV, we search for λ, µ ∈ {10−5, 10−4, . . . , 105}. See Section 3.8 for a detailed dis-

cussion on parameter selection and sensitivity of our method. Our Matlab source codes

are available at https://github.com/HarlinLee/gtvMBO-public. All experiments are

performed in Matlab 2018b on a MacBook Pro 2017 with an 2.9 GHz Intel Core i7 and

16GB RAM in double precision.

3.7.1 Synthetic Data

To evaluate the performance of all methods, we construct a set of synthetic data X with

ground truth mixing matrix S and endmember matrix A. Fig. 3.1 shows the ground

truth abundance maps. We adopt the same simulation procedure as in [101], where an

endmember library is generated by randomly selecting 240 materials from the USGS 1995

library with 224 spectral bands. The noise-free hyperspectral image with 75× 75 pixels is

generated by a random selection of 5 spectral signatures from the library. The respective

60

https://github.com/HarlinLee/gtvMBO-public

Figure 3.1: Ground truth abundance maps of the synthetic data (five endmembers).

STV GLNMF QMV GraphL gtvMBO

Figure 3.2: Reconstructed abundance maps of the fifth element (i.e. ground truth is the
right most image of Fig. 3.1). gtvMBO estimate achieves a balance between high-contrast
items in the front and the background noise. Input data had noise added with SNR 10dB.
All images are visualized over the range [0, 1].

FCLSU FRAC STV GLNMF QMV GraphL gtvMBO

SNR = 10dB

RMSE(A, Â) 0.242 0.157 0.248 0.24 0.093 0.0513 0.051

nMSE(A, Â) 1.05 0.696 1.07 1.03 0.435 0.364 0.327

RMSE(S, Ŝ) 0.14 − − 0.211 0.612 0.16 0.16

nMSE(S, Ŝ) 0.205 − − 0.321 0.881 0.244 0.241

SAM(S, Ŝ) 10.2 − − 14.8 40.5 8.65 8.57

SNR= 20dB

RMSE(A, Â) 0.106 0.106 0.065 0.107 0.048 0.043 0.065

nMSE(A, Â) 0.523 0.523 0.314 0.521 0.227 0.242 0.314

RMSE(S, Ŝ) 0.055 − − 0.067 0.037 0.095 0.054

nMSE(S, Ŝ) 0.092 − − 0.104 0.053 0.13 0.091

SAM(S, Ŝ) 2.67 − − 3.18 2.69 6.88 2.65

Table 3.2: Unmixing results on the synthetic dataset.

61

ground truth abundances are randomly fixed as 0.1149, 0.0741, 0.2003, 0.2055, and 0.4051.

The noisy hyperspectral data is then obtained by adding zero-mean Gaussian noise with a

signal-to-noise ratio (SNR) of 10db and 20db, respectively.

Table 3.2 compares all methods on the noisy data quantitatively. To get a visual

comparison, we present the case of SNR= 10dB in Fig. 3.2. In particular, we show all

the reconstructed abundance maps corresponding to the fifth ground truth abundance in

Fig. 3.1. We exclude the results of FCLSU and FRAC in Fig. 3.2, as both fail to recover the

abundance maps under such a low SNR scenario. One can see that STV and GLNMF have

a different color range on the background comparing to other methods, while the QMV

background is still noisy. The proposed gtvMBO achieves a balance between recognizable

objects and background noise, while the result of GraphL is slightly oversmoothed. Note

that the proposed gtvMBO only considers the regularization on A, while QMV uses the

minimum-volume-based regularization on S, but our method still gives comparable results

in recovering S compared to QMV, and has an advantage on reconstructing A, especially

when the underlying abundance map has spectral geometries. In addition, gtvMBO can

reconstruct A well within a few iterations but it takes more iterations to get a good

reconstruction of S. In the preprocessing step, both GraphL and gtvMBO take less than

a second to estimate the eigenvalues and eigenvectors of the low-rank approximation to

the graph Laplacian by the Nyström method, while GLNMF typically takes a minute to

calculate the graph Laplacian. In terms of running time, gtvMBO is slower than FRAC

and GraphL, but much faster than the other competing methods.

3.7.2 Real Data

We use the real hyperspectral data X with the references S and A from [128], including

Samson, Jasper Ridge and Urban datasets. In particular, the endmembers are manually

62

selected from the image data by assuming k distinct materials with one signature per

material and neglecting possible spectral variability issues. The reference abundances are

obtained via FCLSU. This way of generating references for endmembers/abundances has

been widely used for assessing the performance of various unmixing algorithms. As no

ground truth is available for the real data, it is common to compare the unmixing results

to the reference endmembers/abundances.

Samson

In the first experiment, we use the Samson data with 95×95 pixels and 156 spectral bands

after preprocessing, whose reference has three endmembers. The unmixing results are

given in Figs. 3.3 and 3.6 and Table 3.3 for abundance maps, endmembers and quantitative

metrics, respectively. In Fig. 3.6, all endmember plots can capture the rough shape and

discontinuities in the ground truth but with different heights. The gtvMBO result has many

endmember elements that are close to zero since we enforce the non-negative constraint on

the endmember S by using the hard thresholding operator in the S-subproblem. For the

abundance maps, the STV results look blurry when trying to preserve spatial smoothness

and the GLNMF results are noisy in the homogeneous areas, as its graph Laplacian is

based on the entire data that may contain certain amount of noise. Both blurring and

noisy artifacts can be mitigated by the low-rank approximation of graph Laplacian in

the Nyström method as in GraphL and gtvMBO. On the other hand, gtvMBO yields

sharper edges than GraphL, thanks to the graph TV regularization. Table 3.3 reports that

GLNMF gives the best estimations in S at the cost of high computational costs, whereas

the proposed method is the best in reconstructing the abundance maps. Note that “graph

time” in Table 3.3 is referred to as the time needed to compute the adjacency matrix (for

GLNMF) and the graph Laplacian matrix (for GraphL and gtvMBO), while “algorithm

63

time,” or “alg. time” in short, refers to the time needed to run the unmixing algorithm

after initialization and graph construction. The overall computation time of gtvMBO is

the sum of “graph time” and “time,” which is comparable to QMV and much faster than

GLNMF.

FCLSU FRAC STV GLNMF QMV GraphL gtvMBO

RMSE(S, Ŝ) 0.044 − − 0.036 0.073 0.052 0.070

nMSE(S, Ŝ) 0.169 − − 0.153 0.302 0.203 0.296

SAM(S, Ŝ) 3.64 − − 4.49 12.8 7.86 9.84

RMSE(A, Â) 0.18 0.165 0.165 0.187 0.148 0.139 0.096

nMSE(A, Â) 0.455 0.429 0.375 0.502 0.428 0.302 0.243

Graph time (sec) − − − 66.4 − 0.082 0.082

Alg. time (sec) 2.34 0.052 4.08 8.73 1.6 0.094 0.609

λ − 1 0.01 1 102.75 10−5.25 10−3.75

ρ − 10 − − − 10−1.75 10−2.25

γ − − − − − 105 104

µ − − − 1 − − −
Iterations − 2 1000 1000 101 30 30

Table 3.3: Unmixing results on the Samson dataset.

Jasper Ridge

In the second experiment, we test the Jasper Ridge data which has 100 × 100 pixels and

198 spectral bands. The unmixing results for abundance maps and endmembers are shown

in Figs. 3.4 and 3.7. In Fig. 3.4, the FRAC abundance maps have the highest image

contrast, while mistakenly identifying trees and roads in some areas, especially the top

right part. The STV abundance maps are over-smoothed, especially in the Dirt abundance

map. Since only the five nearest neighbors are considered when calculating the pairwise

weight of a fully-connected graph, GLNMF may miss some global features while preserving

fine details. For example, some variations in the water are captured but some roads are not

64

identified in the GLNMF abundance maps. One can see that both GraphL and gtvMBO

perform very well at identifying Water and Road abundance maps because of the learned

graph structure in the Nyström method. Specifically for the road abundance, these two

methods can recover the road on the rightmost part of the image. This phenomenon could

be explained by the fact that it is a very narrow structure, and the non-local similarity with

road pixels across all bands plays an important role, illustrating an advantage of using graph

TV over spatial TV. The gtvMBO results are even better than GraphL in preserving the

sharpness especially in the Dirt abundance map. The endmember spectral plot in Fig. 3.7

also confirms that the methods failing for the road extract a very poor signatures compared

to the reference. Table 3.4 compares all the methods quantitatively. It is true that QMV

gives the best results on this dataset, which is probably because that the assumptions

made by QMV hold on Jasper, but not on the other datasets. The proposed gtvMBO can

recover endmembers and abundance maps in a balanced manner. The comparison results

imply that a good RMSE on the reconstructed data can not guarantee a good unmixing

performance.

Urban

Lastly, we test a relatively large dataset, i.e. the Urban dataset with 307× 307 pixels and

162 spectral bands, whose reference has four endmembers. The results for all methods

are presented in Figs. 3.5 and 3.8. In Fig. 3.5, most methods, including FCLSU, FRAC,

STV, GLNMF, and QMV, yield abundance maps in low image contrast due to the initial

guess, especially in the abundance maps for the asphalt and roof. As a by-product, the

proposed gtvMBO can greatly improve the image contrast of the abundance map due to the

graph TV regularization. In addition, all the methods have a hard time extracting a good

roof endmember, but the graph-based approaches are able to compensate this with more

65

FCLSU FRAC STV GLNMF QMV GraphL gtvMBO

RMSE(S, Ŝ) 0.144 − − 0.133 0.031 0.18 0.083

nMSE(S, Ŝ) 0.608 − − 0.598 0.107 0.629 0.288

SAM(S, Ŝ) 16.8 − − 14.9 3.54 14.6 12.8

RMSE(A, Â) 0.148 0.109 0.142 0.111 0.073 0.145 0.136

nMSE(A, Â) 0.472 0.46 0.47 0.437 0.221 0.38 0.353

Graph time (sec) − − − 126 − 0.225 0.225

Alg. time (sec) 4.27 9.52 4.56 10.4 3.89 0.34 3.32

λ − 1 10−1.25 10−0.5 102.25 10−4.5 10−4.25

ρ − 10 − − − 0.1 10−2.75

γ − − − − − 104 103.75

µ − − − 10−2.5 − − −
Iterations − 300 1000 1000 101 100 100

Table 3.4: Unmixing results on the Jasper Ridge dataset.

features preserved. Also note that because QMV does not enforce non-negativity on S, the

resulting spectrum for Asphalt in QMV goes below zero. In the Roof abundance maps, only

GraphL and gtvMBO can capture those sporadic roof tops since the approximated graph

Laplacian considers the pairwise similarity across spectral bands in the original data with

dimension w much greater than the dimension k for the column space of the abundance

map A. In Table 3.5, we list all quantitative metric comparisons where gtvMBO reaches

the smallest residual error and get comparable reconstruction errors for the abundance map

and endmember with GraphL. Overall, the proposed method can reconstruct abundance

maps and endmember matrices with high accuracy in a short time.

3.8 Parameter Selection

Due to heavy computations involved in these tasks, all the results presented in this section

are performed on a workstation of DELL R7425 Dual Processor AMD Epyc 32 core 2.2

66

FCLSU FRAC STV GLNMF QMV GraphL gtvMBO

RMSE(S, Ŝ) 0.109 − − 0.188 0.211 0.099 0.099

nMSE(S, Ŝ) 0.635 − − 1.35 1.2 0.636 0.639

SAM(S, Ŝ) 19.5 − − 17.9 46.4 14.8 14.9

RMSE(A, Â) 0.145 0.153 0.289 0.175 0.245 0.134 0.136

nMSE(A, Â) 0.438 0.45 0.756 0.554 0.655 0.384 0.393

Graph time (sec) − − − 10800 − 9.09 9.09

Alg. time (sec) 34.7 0.85 142 86.1 29 0.353 22.4

λ − 10−0.5 10−2.25 10−1.5 101.75 10−3.25 10−6

ρ − 10 − − − 10−1.25 10−5.5

γ − − − − − 104.75 104.75

µ − − − 10−5.5 − − −
Iterations − 2 1000 1000 101 10 10

Table 3.5: Unmixing results on the Urban dataset.

GHz machines with 512GB RAM each.

There are several tuning parameters in our approach: the filtering parameter σ in

computing pairwise weights of the graph, the regularization parameter λ associated with

the graph TV in the proposed unmixing model, the penalty parameters ρ and γ in the

proposed algorithm based on ADMM, and time step size dt for the diffusion step in the

modified MBO scheme. The value of σ could be changed proportionally according to the

number of spectral bands w. Since all the test datasets have 100∼200 spectral bands,

we find that σ = 5 typically gives good results, so we fix it throughout the experimental

section. To solve the B-subproblem, we fix the step size dt = 0.01 and run 5 iterations of

(3.15) in the modified MBO scheme.

To find optimal or sub-optimal values of λ, ρ, and γ, we consider a skillful strategy

which alleviates the time-consuming parameter tuning. If the value of λ increases, the

recovered abundance map A has a graph structure more similar to that of the given data

X but with larger residual error and vice versa. The penalty parameters ρ and γ both

67

control the convergence of the proposed algorithm according to the ADMM framework. In

other words, λ is a model parameter that affects the performance, and ρ, γ are algorithmic

parameters that affect the convergence. Therefore, we suggest a set of default parameters

by fixing the ratios as ρ/λ = 1, γ/λ = 107 and only tuning the regularization parameter

λ. In fact, the B-subproblem is determined by the ratio ρ/λ. Table 3.6 shows that using

these default algorithmic parameters still ensures comparable unmixing performance on

the datasets to when we tune all the three parameters together. Note that the optimal

parameters indeed yield better results than the default parameters in terms of SAM(S, Ŝ),

which is due to the fact that our regularization is formulated on A and the optimal pa-

rameters are determined according to nMSE(A, Â), resulting in more deviations in S. In

future work, we might consider choosing optimal parameters based on a combination of

evaluation metrics on S and A.

In addition, learning a graph Laplacian or its low-rank approximation is an important

preprocessing step in our proposed method. In the Nyström method, the sampling rate

is fixed as 0.1% in all our experiments. Our empirical results show that this is sufficient

for preserving the graph structure of the original hyperspectral data. In fact, there is a

trade-off between the number of samples corresponding to the rank of the approximated

Laplacian and the orthogonality of columns in the approximated eigenvectors: more sam-

ples can improve accuracy in approximating the graph Laplacian but may result in loss

of orthogonality of the resulting eigenvectors, which is also desired in our modified MBO

scheme (3.15). Other adaptive sampling schemes for the Nyström extension [129] will be

explored in our future work. For high performance computing applications, the Nyström

loop can be optimized for specific architectures as in [130].

68

Samson Jasper Urban

RMSE(S, Ŝ) 0.07 / 0.062 0.083 / 0.13 0.099 / 0.10

nMSE(S, Ŝ) 0.3 / 0.23 0.29 / 0.44 0.64 / 0.67

SAM(S, Ŝ) 9.84 / 16.1 12.8 / 17.8 14.9 / 15.8

RMSE(A, Â) 0.096 / 0.12 0.14 / 0.13 0.14 / 0.2

nMSE(A, Â) 0.24 / 0.27 0.35 / 0.35 0.39 / 0.41

λ 10−3.5 10−8 10−2.5

Table 3.6: Unmixing results of gtvMBO in A/B format, where A is the previous result
using optimally tuned λ, ρ, γ, and B is the result of using default ratios ρ/λ, γ/λ and only
tuning the λ value (given in the last row.)

3.9 Conclusions

We propose a gTV-regularized approach for blind hyperspectral unmixing to estimate

both the abundance map and the mixing matrix under the assumption that the underlying

abundance map and the given hyperspectral data share the same graph structure. In

particular, we applied the Nyström method to approximate the eigenvalues and eigenvectors

of a normalized graph Laplacian. To solve the proposed gTV-regularized unmixing problem

with probability simplex constraints, we derived an efficient algorithm based on ADMM.

One of the subproblems is decomposed into bits and then solved by the fast MBO scheme at

each bit channel. Extensive experiments were conducted to demonstrate that the proposed

framework is effective and efficient, especially when the hyperspectral data have similarities

across spectral bands. In the future, one could integrate robust graph learning methods

and minimum-volume-based regularizations into hyperspectral unmixing.

69

Rock Tree Water

R
ef

er
en

ce
F

C
L

S
U

F
R

A
C

S
T

V
G

L
N

M
F

Q
M

V
G

ra
p
h
L

g
tv

M
B

O

Figure 3.3: Abundance maps (A) of the Samson dataset.

70

Tree Water Dirt Road

R
ef

er
en

ce
F

C
L

S
U

F
R

A
C

S
T

V
G

L
N

M
F

Q
M

V
G

ra
p
h
L

g
tv

M
B

O

Figure 3.4: Abundance maps (A) of the Jasper Ridge dataset.

71

Asphalt Grass Tree Roof

R
ef

er
en

ce
F

C
L

S
U

F
R

A
C

S
T

V
G

L
N

M
F

Q
M

V
G

ra
p
h
L

g
tv

M
B

O

Figure 3.5: Abundance maps (A) of the Urban dataset.

72

Reference VCA GLNMF QMV GraphL gtvMBO

Figure 3.6: Endmember profiles (S) of the Samson dataset.

Reference VCA GLNMF QMV GraphL gtvMBO

Figure 3.7: Endmember profiles (S) of the Jasper Ridge dataset.

Reference VCA GLNMF QMV GraphL gtvMBO

Figure 3.8: Endmember profiles (S) of the Urban dataset.

73

Chapter 4

Distributed Multitask Learning

4.1 Summary

This chapter investigates mulitiask learning (MTL), where multiple learning tasks are per-

formed together rather than separately to leverage their similarities. We focus on the

distributed setting, where sharing the full local data between machines is prohibited. Mo-

tivated by graph regularization, we propose a novel fusion framework that only requires

a one-shot communication of local estimates. Our method linearly combines the local es-

timates to produce an improved estimate for each task, and the ideal mixing weight for

fusion is a function of task similarity and task difficulty. Practical algorithms for multitask

linear regression and principal components analysis (PCA) are developed and are shown

to significantly reduce mean squared error (MSE) on simulated data.

4.2 Introduction

A learning task rarely exists alone in the void; one often has to solve other related tasks

as well. Instead of solving them independently, multitask learning tackles these related

tasks together to take advantage of their similarities while respecting their differences.

Furthermore, if they have varying levels of difficulty, e.g. sample complexity, it would be

advantageous for the harder problem to borrow information from the easier problem. We

describe below a few motivating examples where multitask learning can help.

74

Example 1 (Healthcare System). A major metropolitan city has multiple neighborhoods

that are potentially segregated by race and socioeconomic class. Multiple hospitals, spread

across the city, are each building a risk model for predicting heart attack based on their

in-house data. Despite the common goal, their optimal risk models may not be identical,

since these hospitals serve different subpopulations of the area.

Example 2 (Housing Price Prediction). Housing price models reflect people’s priority,

and therefore cannot be identical across neighborhoods, cities, and countries. For instance,

distance to the closest elementary school might majorly affect the housing price at an area

for young families, but it will not weigh as much in retirement towns.

Example 3 (Precision Medicine). This is a more granular version of Example 1. Tra-

ditional machine learning in medicine aims to fit a model that works well for the average

target population. However, the emerging field of precision medicine [131] moves away from

one-size-fits-all solutions and designs personalized treatment from genetic information.

Example 4 (Word Prediction in Mobile Phones). As the user types in a word, the phone

should predict and display what the next word might be. For n phone users, there are n

extremely personalized datasets, but they share commonalities that can be exploited. Fed-

erated learning [132] is a popular edge computing method used for this problem, with some

additional constraints such as unreliable hardware.

In the examples above, we attempt to solve different, yet closely related learning

tasks. It is thus natural to hypothesize that some sort of collaboration will help everyone get

better estimates. A naive approach would be to give all n sets of full data to one machine for

centralized processing. However, this is discouraged or simply impossible, due to HIPAA,

privacy concerns, ownership, communication cost, or storage constraints. Therefore, this

work focuses on privacy-preserving distributed multitask learning. We consider a scenario of

75

n machines, where the ith machine observes the ith local dataset Xi, and Xi in its original

form cannot be shared between the machines. Our goal is then to share information from

{Xi}ni=1 in a meaningful and feasible way such that we can successfully estimate the ground

truth signals {β?i }ni=1.

Figure 4.1: Outline of the proposed fusion method. Note that 1) it shares the local estimates
and not the full data, and 2) there is only one communication round between the machines.

Our proposed fusion approach, motivated by graph regularization, is summarized

in Fig. 4.1. First, n datasets {Xi}ni=1 are distributed in a network of n machines. For

i = 1, . . . , n, the ith machine calculates a local estimate β̂i and sends it to the central server.

The central server then linearly combines the local estimates {β̂i}ni=1 according to a mixing

matrix, and produces the improved multitask learning estimates
{
β̂
MTL

i

}n
i=1

, i.e. β̂
MTL

i =∑n
j=1Wijβ̂j for some matrix W ∈ Rn×n. This approach addresses the aforementioned

concerns regarding data sharing, and only calls for a one-shot communication between the

machines.

At the heart of this fusion approach is the mixing matrix W . We show that the

optimal mixing matrix for MSE reduction depends on exactly three quantities: similarity

between the local estimates, how close a given local estimate is to the n different ground

truth signals, and the variances of local estimates. Qualitatively, the first two measures

relate to task similarity, and the last measure correlates to task difficulty such as noise level

76

and sample complexity. Additionally, if the local estimates are unbiased, then the first two

quantities become exactly 〈β?i ,β?j 〉.

The appeal of our framework lies in its generality and simplicity, explained below:

• It is not limited to a particular local estimate, e.g. ordinary least squares, or even a

particular task, e.g. linear regression. For multitask linear regression, we show that

under very mild assumptions on the noise (zero-mean, additive, independent between

tasks), the expression for ideal mixing matrix holds for any linear estimator β̂i. For

multitask PCA, we show that this framework applies to fusion of sample covariance

matrices.

• It does not rely on any assumptions on the ground truth signal β?. However, it

has the potential to be specialized as appropriate for each application. For example,

assuming a generative model with fewer parameters for β?, e.g. random-effects model

as in [133], will simplify estimation of the mixing matrix.

• It unifies all averaging-based methods in distributed (consensus) learning literature

as a special case of distributed multitask learning with identical tasks.

• It is straightforward. Only one round of communication is needed, and the concept

of taking a linear combination is easy to understand. No tricky hyper-parameters are

introduced. In fact, not much has changed from a single machine’s point of view. The

fusion step is a layer added on top of an existing network of machines— a “post-hoc”

algorithm for the system.

In the following sections, we motivate, define, and demonstrate the framework on multitask

linear regression (Section 4.4) and multitask PCA (Section 4.5).

77

4.3 Related Work and Connections

Taking a linear combination of local estimates is not a new idea in distributed learning.

However, existing literature focus on reaching a consensus, which is a special case of our

distributed multitask learning setup. They also tend to force the weights to sum to 1 (i.e.

weighted average) [134], or simply take the naive average [135, 136, 137]. [133] eliminates

the unity constraint, but the scope is still limited to distributed consensus, ridge regression

local estimates, and assumes random-effects model for β?, which is integral to their analysis

based on random matrix theory. Model interpolation for personalized federated learning

in [138] is also related to our method, but the local machine only takes a weighted average

of a central model and its own model.

Another popular body of work for multitask learning is shared architecture or shared

representation learning [139, 140, 141]. These approaches require joint optimization, and

are fundamentally different from our “post-hoc” method. Graph regularization methods

also fall under this category [142, 143, 144, 145, 146, 147]. While we use graph regularization

to motivate the fusion approach, the resulting method diverges significantly.

Meta-learning-based methods differ from ours in that they assume sequential learn-

ing. Their origins are closer to transfer learning, where model from the source task is used

to initialize the target task. Similarly, [148] focuses on finding a good initialization model—

a central model that can go through a few gradient updates at the local machines.

4.4 Multitask Linear Regression

We define the multitask linear regression problem as follows. Imagine a system of n ma-

chines, each trying to solve a similar linear regression problem. In other words, at each

78

machine i = 1, . . . , n,

xi = Aiβ
?
i + εi, εi ∼ N (0, σ2

i Im) (4.1)

where observation signal xi and noise εi ∈ Rm, ground truth signal or model β?i ∈ Rd,

and the sensing matrix Ai ∈ Rm×d. Noise level σi > 0, and εi, εj are independent for

i 6= j. m can be different for each task, i.e. can be written as mi, but we assume

m1 = m2 = . . . ,= mn for simplicity. The goal of linear regression is to estimate β?i given

xi and Ai, which is arguably one of the most fundamental problems in signal processing

and machine learning.

In Section 4.4.1, we apply graph regularization to multitask linear regression and

inspect the resultant solutions. Then, inspired by our findings, we propose a fusion frame-

work for multitask linear regression in Section 4.4.2, and test them with simulation exper-

iments in Section 4.4.4. Table 4.1 summarizes some key notations used in this section for

convenience.

Symbol Description Dimension

β?i Ground truth signal at ith machine d

Ai Sensing matrix for β?i m× d
xi Observation at ith machine m

β̂i Local estimate at ith machine d

Eβ̂i Expectation of β̂i w.r.t. data xi d

W Mixing matrix for fusion step n× n

β̂
MTL

i The ith MTL estimate
∑n
j=1Wijβ̂j d

Table 4.1: Key notations used in Section 4.4.

4.4.1 Motivation via Graph Regularization

Graph regularization is an intuitive approach to multitask learning as it can easily integrate

the task relationship information into the problem formulation [149]. There is also a clear

79

connection between graphs and communication networks. Let us assume that we have

access to (or derived) the similarity information between n tasks as an adjacency matrix

W ∈ Rn×n with no self-loops, where
∑n

j=1Wij = 1, Wii = 0, and Wij ≥ 0 for all i, j.

Then, given some regularization parameter λ > 0, the graph-regularized multitask learning

problem solves for

(β̂
λ

1 , . . . , β̂
λ

n) = argmin
βi

n∑
i=1

‖xi −Aiβi‖22 + λ
∑
i,j

Wij‖βi − βj‖22. (4.2)

In this subsection, assume Ai is tall and orthogonal, i.e. m ≥ d and A>i Ai = I, for easier

derivation. Then somewhat surprisingly, Theorem 4 states that β̂
λ

i s are in fact convex

combinations of local ordinary least squares (OLS) estimates. In other words, there are

two ways to obtain these multitask learning solutions under this setting. On one hand, we

can solve (4.2) which uses the classical optimization-based graph regularization framework.

On the other hand, we can arrive at the same answers by taking convex combinations of

local OLS estimates, which no longer requires data sharing. This new perspective on graph

regularization motivates a general privacy-preserving approach to distributed multitask

learning.

Theorem 4 (Graph-regularized Multitask Linear Regression: Solutions). In addition to

the observation model (4.1), assume m ≥ d, A>i Ai = Id, and W is a right stochastic

matrix with no self-loops, i.e.
∑n

j=1Wij = 1, Wii = 0, and Wij ≥ 0 for all i, j. Denote the

local OLS estimate

β̂
OLS

i = argmin
β
‖xi −Aiβ‖22 =

(
A>i Ai

)−1
A>i xi = A>i xi. (4.3)

Then {β̂λi }ni=1, the minimizers of graph-regularized linear regression (4.2) for λ > 0, are

80

convex combinations of local OLS estimates {β̂OLSi }ni=1 (4.3). More precisely,

β̂
λ

i =
n∑
j=1

Wλ
ij β̂

OLS

j (4.4)

for mixing matrix Wλ ∈ Rn×n, which is a right stochastic matrix and defined as

Wλ =
1

λ+ 1

(
In −

λ

λ+ 1
W

)−1

=
1

λ+ 1

∞∑
k=0

(
1− 1

λ+ 1

)k
W k. (4.5)

Proof of Theorem 4 is deferred to Appendix C.1.

It is worth discussing how the convex combination relationship described in (4.5)

matches with our intuitions from the original optimization problem (4.2). Since W is an

adjacency matrix whose rows sum to 1, we can also consider W to be a transition matrix:

that is, an agent moves from node i to node j with Wij probability. Then,
[
W k

]
ij

is the

probability that an agent starts at node i and end at node j in k hops. If nodes i and node

j are well-connected, it should be easier to reach j from i, so β̂
OLS

j should have a larger

weight on β̂
λ

i . This is consistent with what we expect to see with large Wij in (4.2). λ

comes into play as the discount factor 1
λ+1 . For example, if λ is small, information from W

is ignored faster as k grows large, which is consistent with the behavior of regularization

parameter in (4.2).

Building on the results of Theorem 4, Proposition 2 states a performance bound on

multitask linear regression with graph regularization. Proof is deferred to Appendix C.2.

Proposition 2 (Graph-regularized Multitask Linear Regression: Performance). Assume

Theorem 4. Then, the MSE of β̂
λ

i (4.4) is bounded by

E
∥∥∥β̂λi − β?i ∥∥∥2

2
≤

n∑
j=1

Wλ
ij

∥∥β?i − β?j∥∥2

2
+ d

n∑
j=1

(Wλ
ijσj)

2. (4.6)

81

The RHS of (4.6) has a nice form to analyze. It decomposes into a roughly bias2 +

variance format, which aligns with task dis-similarity ‖β?i − β?j‖22 + task difficulty dσ2
j in

this multitask learning problem. Also, note the parallel between
∑n

j=1Wλ
ij

∥∥β?i − β?j∥∥2

2
and

the graph regularization term
∑n

j=1Wij

∥∥βi − βj∥∥2

2
in (4.2). Similar to what we observed

in denoising (Chapter 2), this suggests that graph regularization leads to better inference

when the graph describes the ground truth task relationship more accurately.

4.4.2 Fusion of Linear Estimators: Proposed Framework

Theorem 4 and Proposition 2 suggest that linearly combining local estimates is a valid

approach to combining information without combining data. Building on that intuition,

we propose MTL estimates

β̂
MTL

i =
n∑
j=1

Wijβ̂j , i = 1, . . . , n (4.7)

which are linear combinations of local estimates {β̂j}nj=1 according to a mixing matrix

W ∈ Rn×n. Theorem 5 specifies the mixing matrix W with maximum MSE reduction for

any linear local estimates {β̂j}nj=1, and Corollary 1 then specializes the result to unbiased

linear estimates. Details are deferred to Appendix C.3, but the proof of Theorem 5 follows

from directly minimizing the MSE of β̂
MTL

with respect to W .

Theorem 5 (Fusion of Linear Estimators for Multitask Linear Regression). Assume ob-

servation model (4.1). Let β̂i be any linear, potentially biased, local estimator of β?i , which

has an expected value Eβ̂i and variance E
∥∥∥β̂i − Eβ̂i

∥∥∥2

2

1. For β̂
MTL

i as defined in (4.7), the

MSE E
∥∥∥β̂MTL

i − β?i
∥∥∥2

2
is minimized for all i = 1, . . . , n by the mixing matrix

W = K (C + V)−1 , (4.8)

1Expectation is taken with respect to randomness in the ith dataset.

82

where

K =
[
〈β?i ,Eβ̂j〉

]
i,j
, C =

[
〈Eβ̂i,Eβ̂j〉

]
i,j
, V = diag

([
E
∥∥∥β̂i − Eβ̂i

∥∥∥2

2

]n
i=1

)
.

Moreover, the fusion estimate β̂
MTL

i will always be at least as accurate as β̂i in terms of

MSE. For each i = 1, . . . , n,

E
∥∥∥β̂MTL

i − β?i
∥∥∥2

2
≤ E

∥∥∥β̂i − β?i ∥∥∥2

2
.

Theorem 5 states that the ideal mixing weights W depend on task difficulties and

task similarities. For one, Vii = E
∥∥∥β̂i − Eβ̂i

∥∥∥2

2
is precisely the variance of the local estimate

β̂i. This captures information about the randomness in the ith dataset, e.g. noise level σi

and number of samples m. Therefore we describe V as the task difficulty term. Meanwhile,

we categorize K and C as task similarity terms. Cij = 〈Eβ̂i,Eβ̂j〉 is clearly proportional

to the cosine similarity or angle between Eβ̂i and Eβ̂j , and Kij = 〈β?i ,Eβ̂j〉 is negatively

correlated with the bias of β̂j with respect to β?i :

bias2 = ‖Eβ̂j − β?i ‖22 = ‖Eβ̂j‖22 + ‖β?i ‖22 − 2〈β?i ,Eβ̂j〉 = ‖Eβ̂j‖22 + ‖β?i ‖22 − 2Kij .

In fact, Corollary 1 shows that Kij = Cij = 〈β?i ,β?j 〉 for unbiased local estimates.

Corollary 1 (Fusion of Linear Unbiased Estimators for Multitask Linear Regression).

Assume observation model (4.1). Let β̂i be any linear, unbiased, local estimator of β?i ,

which has an expected value β?i and variance E
∥∥∥β̂i − β?i ∥∥∥2

2
by definition. For β̂

MTL

i as

defined in (4.7), the MSE E
∥∥∥β̂MTL

i − β?i
∥∥∥2

2
is minimized for all i = 1, . . . , n by the mixing

matrix

W = C (C + V)−1 ,

83

where

C =
[
〈β?i ,β?j 〉

]
i,j
, V = diag

([
E
∥∥∥β̂i − β?i ∥∥∥2

2

]n
i=1

)
.

C in Corollary 1 is exactly the cosine similarity matrix between the ground truth

signals, while V remains the task difficulty term. If C is full rank and V is a zero matrix,

then the ideal mixing weights W = CC−1 = I. This matches with the noiseless— or zero

task difficulty— case where the unbiased estimators should be able to recover the ground

truth signals completely.

4.4.3 Fusion of Linear Estimators: Proposed Algorithms

Based on the results of Theorem 5, we designed One-Shot Fusion? (Alg. 3) that calculates

the ideal mixing matrix W and computes the MTL estimates accordingly.

Algorithm 3 One-Shot Fusion? for Mutitask Linear Regression

1: inputs local datasets {xi}ni=1, {Ai}ni=1.
2: Each machine locally calculates a linear estimate β̂i from xi and Ai.
3: Each machine locally estimates E‖β̂i − Eβ̂i‖22, e.g. by bootstrapping.

4: V ← diag
([

E‖β̂i − Eβ̂i‖22
]n
i=1

)
5: C ←

[
〈Eβ̂i,Eβ̂j〉

]
i,j

6: K ←
[
〈β?i ,Eβ̂j〉

]
i,j

7: W ←K (C + V)−1

8: β̂
MTL

i ←∑n
j=1Wijβ̂j

9: outputs MTL estimates {β̂MTL

i }ni=1.

This algorithm avoids concerns about data sharing by compressing the necessary

information from each dataset into β̂i and Vii. For example, if we have tall and orthogonal

Ais and decide to combine OLS local estimates, then each machine will estimate σi from

their dataset, and pass dσ2
i with β̂i to the central server; see Appendix C.4 for more

84

examples. Note that the communication between the local machines and the central server,

as well as the fusion step in the central server, is limited to one round in this algorithm.

However, an obvious shortcoming of One-Shot Fusion? (Alg. 3) is that calculating

K requires access to the inner product with the ground truth signal, i.e. 〈β?i , ·〉, which is

impossible to implement in real life. Therefore, we adopt an iterative approach to address

this issue in Iterative Fusion (Alg. 4).

Algorithm 4 Iterative Fusion for Multitask Linear Regression (Practical Version of Alg.
3)

1: inputs local datasets {xi}ni=1, {Ai}ni=1.
2: Each machine locally calculates a linear estimate β̂i from xi and Ai, such that Eβ̂i =
M iβ

?
i for some matrix M i, e.g. M i = I for unbiased estimates.

3: Each machine locally estimates E‖β̂i − Eβ̂i‖22, e.g. by bootstrapping.

4: V ← diag
([

E‖β̂i − Eβ̂i‖22
]n
i=1

)
5: repeat

6: C ←
[
〈M iβ̂i,M jβ̂j〉

]
i,j

7: K ←
[
〈β̂i,M jβ̂j〉

]
i,j

8: W ←K (C + V)−1

9: (Optional) Threshold elements of W .
10: β̂i ←

∑n
j=1Wijβ̂j .

11: until termination
12: (Optional) Project β̂i onto a constraint set.

13: β̂
MTL

i ← β̂i.

14: outputs MTL estimates {β̂MTL

i }ni=1.

Iterative Fusion (Alg. 4) differs from One-Shot Fusion? (Alg. 3) in three points.

First, since we do not have access to 〈β?, ·〉 nor the true 〈Eβ̂, ·〉 in real life, we approximate

β?i ≈ β̂i, and Eβ̂i = M iβ
?
i ≈M iβ̂i to calculate the key matrices C and K for W . Note

that such M i must exist since we are only considering linear estimates for this framework

and assume zero mean and additive noise. Secondly, the communication between local

machines and the central server is still one-shot, but the fusion step at the central server

85

alternates between updating the weights W and the local estimates {β̂i}ni=1. The number

of iterations for the fusion step can be fixed2, or chosen for the specific dataset via cross

validation. Lastly, we added optional steps to threshold the elements of W or project the

final MTL outputs onto a constraint set.

Remark 2. We emphasize that while Alg. 4 is designed for the most general case, where

we don’t have additional information besides xi and Ai, it has the potential to be spe-

cialized for each application and problem model as needed. In fact, linear combination of

ridge regression estimators proposed in [133] can be considered a special case of our frame-

work. Specifically, [133] assumes a random-effects model3 on the ground truth signal, and

also makes certain random-matrix-theoretic assumptions on the sensing matrix Ai. These

assumptions allow them to estimate the key matrices in Alg. 4 in the asymptotic regime.

4.4.4 Simulation Experiments

We test our algorithms by combining local OLS estimates according to our mixing matrix.

We simulate tall and orthogonal sensing matrix Ai ∈ Rm×d by sampling each element from

N (0, 1) i.i.d, and orthogonalizing the matrix. For convenience, we fix m = d = 20 unless

otherwise specified, and gather observation data via (4.1). The remaining variables β?i , σi,

and n are determined as follows for different experiments.

Central model This model assumes that all tasks are similar to each other by roughly

the same degree. More concretely put,

β?i ∼ N (β?, σ2
?Id), β? ∼ N (0, Id), σ = σ1 = σ2 = . . . ,= σn (4.9)

2Simulations suggest that maximum MSE reduction is achieved in less than 5 iterations of the algorithm.
3Each coordinate of β?i is a random variable of zero-mean and σ2

i α
2/d variance. α2 is some scalar

variable that represents signal-to-noise ratio. These coordinates are independent from each other and noise.

86

such that ground truth task similiarity is uniformly determined by σ?, and task difficulty

σ is identical across i. Note that σ? = 0 reduces the model to a distributed consensus

scenario. We define task similarity SNR = 10 log10(‖β?‖22/dσ?2) ≈ −20 log10(σ?) dB, noisy

input SNR = 10 log10(‖β?‖22/dσ2) ≈ −20 log10(σ) dB, output MSE = 1
nd

∑n
i=1 ‖β̂i −β?i ‖2,

and output SNR = −10 log10(output MSE) dB.

To understand the effect of task similarity SNR, input SNR, and n on the proposed

method, we varied σ? ∈ {10−1.5, . . . 101}, σi ∈ {10−1.5, . . . 101}, and n ∈ {1, . . . , 30}. Then

under each set of parameters, we simulated data under the central model, combined local

OLS estimates via Algs. 3 and 4, and solved ridge regression for each local dataset with

optimal λi (C.2) for comparison. In particular, Iterative Fusion (Alg. 4) is run for 10 steps,

and the lowest MSE in hindsight is reported as the output MSE.

The SNR gain, averaged over 10 trials, is summarized as phase transition diagrams in

Fig. 4.2. We stress that while our methods combined the local OLS estimates, the output

SNRs of our methods are compared against the output SNRs of the optimal local ridge

regression estimates: when compared to the local OLS estimates, SNR gain is even more

substantial. Furthermore, these results suggest that fusion algorithms are beneficial when

• ground truth signals are more similar to each other than they are to noise (task

similarity SNR ≥ input SNR);

• tasks are more similar to each other (task similarity SNR ↑);

• tasks are not too difficult that there is no useful information to be borrowed from

others (mid-to-low range input SNR);

• tasks are not too easy that there is no need to borrow information from others (mid-

to-low range input SNR);

• there are more tasks (n ↑).

87

30.0-20.0
Task similarity SNR (dB)

30.0

-20.0

In
pu

t S
NR

 (d
B)

One-Shot Fusion* SNR Gain (dB)

2

4

6

8

10

12

30.0-20.0
Task similarity SNR (dB)

30.0

-20.0

In
pu

t S
NR

 (d
B)

Iterative Fusion SNR Gain (dB)

2

4

6

8

10

12

(a) Fusion helps when tasks are more similar to each other (task similarity SNR ↑), and if ground
truth signals are more similar to each other than they are to noise (task similarity SNR ≥ input
SNR). n = d = 20.

1 30
n

30.0

-20.0

In
pu

t S
NR

 (d
B)

0

1

2

3

4

5

6

7

1 30
n

30.0

-20.0

In
pu

t S
NR

 (d
B)

0

1

2

3

4

5

6

7

(b) Fusion helps when tasks are hard enough that collaboration helps, but not too hard that there
are no useful information to share (mid-to-low input SNR). Task similarity SNR = 10dB, σ? =

√
0.1.

1 30
n

30.0

-20.0

Ta
sk

 si
m

ila
rit

y
SN

R
(d

B)

0

2

4

6

8

10

12

1 30
n

30.0

-20.0

Ta
sk

 si
m

ila
rit

y
SN

R
(d

B)

0

2

4

6

8

10

12

(c) Fusion helps when there are more tasks (n ↑). Input SNR = 0dB, σi = 1.

Figure 4.2: SNR gain compared to the optimal local ridge regression estimates. Data are
simulated under the central model (4.9). These phase diagrams visualize the regimes where
the fusion method is effective.

88

Star player model Building on the central model, we imagine a situation where the

first task has significantly more information than the rest of the tasks:

β?i ∼ N (β?, σ2
?Id), β? ∼ N (0, Id), σ = 10σ1 = σ2 = . . . ,= σn. (4.10)

For fair comparison, output MSE is updated to 1
(n−1)d

∑n
i=2 ‖β̂i − β?i ‖2. As expected, Fig.

4.3 confirms that other tasks take advantage of the “star player” during fusion, indicated

by the high values in the first column. Fig. 4.4 shows that such strategy leads to reduction

in MSE for the other tasks.

Community model In this experiment, we impose a community structure on the tasks.

The n tasks are divided into 3 groups (20%, 30%, and 50%), and within each group, data

are simulated under the central model (4.9). It is notable that the community structure

is captured by the mixing weights in Fig. 4.3, since the algorithm does not make that

assumption a priori, nor take in parameters such as the number of clusters. Fig. 4.6

demonstrates the successful MSE reduction by the fusion algorithms.

4.5 Multitask Principal Components Analysis (PCA)

In this section, we tackle multitask PCA, which is a different problem from multitask linear

regression. We start by briefly discussing (single-task) PCA and the task of finding the

subspace of a single dataset. Consider a zero-mean random variable x ∈ Rd drawn from

an unknown but fixed distribution D. Given m i.i.d. observations of x, {xt}mt=1, we are

interested in finding its underlying k-dimensional subspace S, where k is assumed to be

known and fixed, and k < d. Note that a subspace S can be represented by any orthogonal

matrix U such that span(U) = S.

89

Fusion*

0.2

0.0

0.2

0.4

0.6

0.8

Iterative Fusion

0.2

0.0

0.2

0.4

0.6

0.8

Figure 4.3: The high values in the first column indicate everyone’s reliance on the first
task (i.e. the “star player”), which is significantly less noisy by design. Mixing weights
produced by fusion algorithms under the star player model. MSE of fusion estimates is 0.2
and 0.35, respectively.

0 2 4 6 8 10
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
SE

Iterative Fusion
Fusion*
Local OLS Estimates
Local Optimal Ridge Estimates

Figure 4.4: Combining OLS estimates can yield better estimates than local optimal ridge
regression estimates. MSE reduction by fusion algorithms under the star player model
(4.10). σ? = 0.5, σ = 1, σ1 = 0.1, n = d = 20. Averaged over 50 trials.

90

Fusion*

0.05

0.00

0.05

0.10

0.15

0.20

Iterative Fusion

0.05

0.00

0.05

0.10

0.15

0.20

Figure 4.5: Mixing weights produced by fusion algorithms under the community model
recover the community structure among the tasks, which were not provided a priori. MSE
of fusion estimates is 0.14 and 0.25, respectively.

0 2 4 6 8 10
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
SE

Iterative Fusion
Fusion*
Local OLS Estimates
Local Optimal Ridge Estimates

Figure 4.6: Combining OLS estimates can yield better estimates than local optimal ridge
regression estimates. MSE reduction by fusion algorithms under the community model.
σ? = 0.1, σ = 1, n = d = 20. Averaged over 50 trials.

91

PCA is a celebrated method for finding subspaces under these assumptions. It is

an invaluable tool in many applications that require dimensionality reduction, including

data visualization, image processing and gene expression analysis. It finds a subspace

that maximizes the variation of the projected data samples, or equivalently, minimizes the

projection error.

We start by defining multitask PCA and formulating it in the projection matrices

space in Section 4.5.1. We then apply graph regularization to multitask PCA in Section

4.5.2, and use insights from that process to propose a fusion framework in Section 4.5.3.

Finally, we show some simulation experiment results in Section 4.5.4. Table 4.2 summarizes

some key notations used in this section for convenience.

Symbol Description Dimension

U?
i Ground truth orthogonal matrix at ith machine d× k

Xi Observation at ith machine d×m
Σ̂i Sample covariance matrix at ith machine, Σ̂i = 1

m
XiX

>
i d× d

Σi True covariance matrix, EΣ̂i w.r.t. data Xi d× d
W Mixing matrix for fusion step n× n
Σ̂MTL
i The ith MTL estimate

∑n
j=1WijΣ̂j d× d

Û
MTL

i Top k eigenvectors of Σ̂MTL
i d× k

Table 4.2: Key notations used in Section 4.5.

4.5.1 Multitask Rank-k PCA with Convex Relaxation

Multitask PCA is simply an extension of the problem above to multiple distributions.

Finding the subspaces of multiple datasets can be useful in many applications that in-

volve dimensionality reduction and multi-source information fusion, like the analysis of

multi-sensor physiological signals or multi-country financial trends. Specifically, we take n

92

machines and assume the spiked covariance model for each i = 1, . . . , n:

xi,t = U?
iαi,t + εi,t, αi,t ∼ N (0, Ik), εi,t ∼ N (0, σ2

i Id), (4.11)

and aim to find the ground truth rank-k subspace U?
i ∈ Rd×k, U?

i
>U?

i = Ik from the

observed local dataset Xi = [xi,1,xi,2, . . . ,xi,m] ∈ Rd×m. Similar to the linear regression

set up, m can be different for each task, i.e. is in fact mi, but we assume m1 = . . . ,= mn

for simplicity.

When we perform rank-k PCA on the local observation Xi, we solve:

Û i = argmax
U∈Rd×k;U>U=Ik

tr(U>Σ̂U) (4.12)

using the sample covariance matrix Σ̂i = 1
mXiX

>
i ∈ Rd×d. True covariance matrix Σi =

EΣ̂i = U?
iU

?
i
>+ σ2

i Id. (4.12) is minimized by performing eigenvalue decomposition on Σ̂i

and choosing the top k eigenvectors.

One interesting way to re-formulate PCA (4.12) is to lift the problem space from

rank-k orthogonal matrices to d × d projection matrix space, and relax some constraints

to be convex. In other words, each local server solves the following optimization problem

on projection matrices for each i = 1, . . . , n:

P̂ i = argmax
P∈Rd×d, P=P>

tr(P>Σ̂i) s.t. tr(P) ≤ k, ‖P ‖ ≤ 1, P � 0

= argmin
P∈Rd×d, P=P>

‖P − Σ̂i‖2F s.t. tr(P) ≤ k, ‖P ‖ ≤ 1, P � 0 (4.13)

and take the top k eigenvectors of P̂ i. Interestingly, [136, Lemma 5] has shown that Û iÛ
>
i

from (4.12) is an optimal solution of (4.13), P̂ i.

93

4.5.2 Motivation via Graph Regularization

As we saw in previous multitask learning scenarios, if there is evidence that there is some

similarity between the true subspaces, it would make sense to take advantage of that

relationship. This would be especially helpful if there aren’t enough observations in the

local dataset to get an accurate estimate on its own. In order to nudge similar tasks to

get similar results, one might add graph regularization [147] to (4.13) to get the following

formulation:

(P̂
λ
1 , . . . , P̂

λ
n) = argmin

P i∈Rd×d, P i=P>i

n∑
i=1

‖P i − P̂ i‖2F + λ
∑
i,j

Wij‖P i − P j‖2F (4.14)

s.t. tr (P i) ≤ k, ‖P i‖ ≤ 1, P i � 0

where W ∈ Rn×n is the adjacency matrix for the similarity graph and
∑n

j=1Wij = 1,

Wii = 0, Wij ≥ 0 for all i, j. Again, P̂ i is the optimal solution of (4.13). Note that P̂
λ
i

may not be k-rank and require a projection step at the end.

Proposition 3 makes a similar observation as Theorem 4 did in multitask linear

regression with graph regularization. This motivates the extension of our proposed fusion

method from linear regression to PCA. Proof is deferred to Appendix C.5.

Proposition 3 (Graph-regularized Multitask PCA). Assume W is a right stochastic ma-

trix with no self-loops, i.e.
∑n

j=1Wij = 1, Wii = 0, Wij ≥ 0 for all i, j. Then P̂
λ
i , the

minimizers of graph-regularized multitask PCA (4.14) for λ > 0, are convex combinations

of local estimates P̂ j (4.13). Specifically,

P̂
λ
i =

n∑
j=1

Wλ
ij P̂ j

94

for mixing matrix Wλ ∈ Rn×n, which is a right stochastic matrix and defined as

Wλ =
1

λ+ 1

(
In −

λ

λ+ 1
W

)−1

.

4.5.3 Fusion of Sample Covariance Matrices: Proposed Framework and

Algorithms

In light of Proposition 3, we suggest MTL estimates of covariance matrices

Σ̂MTL
i =

n∑
j=1

WijΣ̂j , i = 1, . . . , n (4.15)

from which we produce Û
MTL
i ∈ Rd×k by taking the top k eigenvectors of Σ̂MTL

i ∈ Rd×d.

The ideal mixing matrix W ∈ Rn×n for MSE reduction is stated in Theorem 6, parallel to

multitask linear regression methods. Proof is deferred to Appendix C.6. We then delineate

One-Shot Fusion? (Alg. 5) and Iterative Fusion (Alg. 6) for Multitask PCA. Although we

assumed the subspace rank k to be identical across tasks so far, note that these proposed

algorithms can handle different ks, i.e. ki 6= kj for i 6= j.

Remark 3. One might have expected linear fusion of P̂— and not Σ̂— to follow Proposi-

tion 3. That algorithm needs to be developed more carefully, so we defer it to future works.

Furthermore, the sample covariance matrix is a known sufficient statistic that contains

more information than the projection matrix, which may help future theoretical analysis.

Theorem 6 (Fusion of Sample Covariance Matrices for Multitask PCA). Assume observa-

tion model (4.11). For Σ̂MTL
i as defined in (4.15), the MSE E

∥∥∥Σ̂MTL
i −Σi

∥∥∥2

F
is minimized

for all i = 1, . . . , n by the mixing matrix

W = C (C + V)−1 ,

95

where

C = [〈Σi,Σj〉]i,j ∈ Rn×n, and V = diag

([
E
∥∥∥Σ̂j −Σj

∥∥∥2

F

]n
j=1

)
∈ Rn×n.

Moreover, the fusion estimate Σ̂MTL
i will always be at least as accurate as Σ̂i in terms of

MSE. For each i = 1, . . . , n,

E
∥∥∥Σ̂MTL

i −Σi

∥∥∥2

F
≤ E

∥∥∥Σ̂i −Σi

∥∥∥2

F
.

4.5.4 Simulation Experiments

We validate Algs. 5 and 6 on data generated according to the spiked covariance model

(4.11). To enforce similarity between the ground truth subspaces, we additionally use the

slowly rotating subspace model and code from [150], i.e.

U? ∼ N (0, 1) i.i.d, U?
1 = orth(U?), U?

i = exp(δ0R)U?
i−1 i = 2, . . . , n (4.16)

where a skew-symmetric matrix R ∈ Rd×d is sampled with independent, normally dis-

tributed entries, and exp is the matrix exponential. We set the rotation parameter δ0 =

0.01, which is large enough to prevent our experiment from becoming reduced to the dis-

tributed consensus case. Other parameters are set as n = 20, d = 100, k = 20, σ1 = σ2 =

. . . , σn = 0.9, and m = d/2 = 50, which makes the local estimation problem quite challeng-

ing. We measure the covariance matrix error, which is defined as 1
dn

∑n
i=1 ‖Σ̂i −Σi‖2F, as

well as the subspace error 1
dn

∑n
i=1 ‖ÛiÛ>i − U?

i U
?
i
>‖2F. E

∥∥∥Σ̂j −Σj

∥∥∥2

F
is estimated with

2kσ2
j + dσ4

j (1 + k
m) under the spiked covariance model (4.11).

The left image in Fig. 4.7 corresponds to C in Alg. 5, that is, the true similarity

96

Algorithm 5 One-Shot Fusion? for Multitask PCA

1: inputs local datasets {Xi}ni=1, (estimated or given) subspace ranks {ki}ni=1.
2: Each machine locally computes sample covariance matrix Σ̂ = 1

mXiX
>
i .

3: Each machine locally estimates E
∥∥∥Σ̂j −Σj

∥∥∥2

F
, e.g. by matrix perturbation theory.

4: V ← diag

([
E
∥∥∥Σ̂j −Σj

∥∥∥2

F

]n
j=1

)
5: C ← [〈Σi,Σj〉]i,j
6: W ← C (C + V)−1

7: Σ̂MTL
i ←∑n

j=1WijΣ̂j

8: Û
MTL
i ← top ki eigenvectors of Σ̂MTL

i .

9: outputs updated fusion estimates {ÛMTL
i }ni=1.

Algorithm 6 Iterative Fusion for Multitask PCA (Practical Version of Alg. 5)

1: inputs local datasets {Xi}ni=1, (estimated or given) subspace ranks {ki}ni=1.
2: Each machine locally computes sample covariance matrix Σ̂ = 1

mXiX
>
i .

3: Each machine locally estimates E
∥∥∥Σ̂j −Σj

∥∥∥2

F
, e.g. by matrix perturbation theory.

4: V ← diag

([
E
∥∥∥Σ̂j −Σj

∥∥∥2

F

]n
j=1

)
5: repeat

6: C ←
[
〈Σ̂i, Σ̂j〉

]
i,j

7: W ← C (C + V)−1

8: (Optional) Threshold elements of W
9: Σ̂i ←

∑n
j=1WijΣ̂j

10: until termination
11: Σ̂MTL

i ← Σ̂i

12: Û
MTL
i ← top ki eigenvectors of Σ̂MTL

i .

13: outputs updated fusion estimates {ÛMTL
i }ni=1.

97

matrix whose (i, j)th element is 〈Σi,Σj〉. This confirms that the rotating subspace model

(4.16) produces a set of similar but not identical tasks. The mixing weights from fusion

algorithms in Fig. 4.7 seem to mirror the trends of the similarity matrix. Finally, Fig. 4.8

summarizes the estimation error reductions by the PCA fusion algorithms.

4.6 Conclusions and Future Works

We proposed a novel fusion framework for distributed multitask learning that linearly com-

bines local estimates to get improved estimates for each task, while bypassing the restric-

tions on data sharing. Motivated by graph regularization solutions, we developed concrete

algorithms for multitask linear regression (with guarantee for any linear estimators), and

for multitask PCA. When tested on simulated data, combining local OLS estimates accord-

ing to our proposed methods significantly surpassed the performance of optimal local ridge

regression estimates under a wide range of conditions. Fusion of local sample covariance

matrices for multitask PCA was also verified on simulated data. The following works will

be explored in the future:

• Applications - There’s a lot left to explore in this direction. First and foremost, we

want to test our multitask linear regression and PCA algorithms on real data. Then,

we want to validate our linear regression algorithms on biased estimators, e.g. ridge

regression estimators, as well as under more complex community data models.

• Theory - We want to more quantitatively describe when this multitask learning

approach helps, and by how much. For example, can we find out how much MSE

reduction is guaranteed by our algorithms by plugging in task similarity and task

difficulty variables? Can we prove that our approach is more sample efficient?

• Algorithm - When n = O(d) (e.g. federated learning setting), the matrix calculation

98

< i, j >

122

124

126

128

130

132

134

136

Fusion*

0.02

0.04

0.06

0.08

0.10

0.12 Iterative Fusion

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 4.7: (left) Slowly rotating subspace model (4.16) induces similarity between true
covariance matrices that taper off as |i− j| become large. Mixing matrices from One-Shot
Fusion? (Alg. 5) (middle) and the Iterative Fusion (Alg. 6) (right) mirror the general trend
of the task similarity matrix.

0 2 4 6 8 10
Iteration

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
va

ria
nc

e
M

at
rix

 E
rro

r Iterative Fusion
Local Estimate
Fusion*

0 2 4 6 8 10
Iteration

0.14

0.16

0.18

0.20

0.22

0.24

Su
bs

pa
ce

 E
rro

r

Iterative Fusion
Local Estimate
Fusion*

Figure 4.8: Both the covariance matrix estimation error and subspace estimation error are
greatly reduced by the PCA fusion algorithms. Interestingly, under this set of simulation
parameters, Iterative Fusion (Alg. 6) reaches the performance of One-Shot Fusion? (Alg.
5) (top). Averaged over 20 trials. 99

step (e.g. line 8 of Alg. 4) becomes a bottleneck. It will be interesting to explore

potential tradeoff between accuracy and computation cost via iterative methods or

matrix approximation methods. Better understanding of convergence or stopping

criteria will be beneficial as well. The PCA algorithm in particular can be sped up

with fast eigenvector finding methods.

100

Chapter 5

Conclusions and Future Works

This thesis studied several examples of how graph regularization can improve the ac-

curacy, computational efficiency and/or sample efficiency of inference problems, specifically

graph-regularized denoising, matrix factorization for remote sensing, and distributed mul-

titask learning. Chapter 2: For denoising, we generalized the convex graph trend filtering

(GTF) framework to certain non-convex regularizers (e.g. SCAD, MCP), which signifi-

cantly reduced the bias and improved the accuracy of the denoiser on piecewise smooth

graph signals. Moreover, theoretical analysis confirmed our intuition that the strength

of graph regularization is bounded by the alignment of the given graph and the signal.

Chapter 3: Next, we formulated the blind hyperspectral unmixing problem in remote

sensing as a non-negative matrix factorization problem with graph total variation (gTV)

regularization. The graph structure was based on the pixel similarity graph, which we

approximated fast with the Nyström method. We then approximated gTV with smooth

functions, i.e. the Ginzburg-Landau (GL) functional, and used the Merriman-Bence-Osher

(MBO) scheme for fast optimization. Our proposed algorithm showed improved computa-

tional efficiency and comparable accuracy in experiments. Chapter 4: Last, we proposed a

privacy-conserving and easy-to-understand approach to distributed multitask learning that

requires only one round of communication to share local estimates. Fusing local estimates

based on the task similarities and difficulties to improve the accuracy and sample efficiency

was motivated by the results of graph regularization. We demonstrated the framework on

101

linear regression and PCA.

We list potential directions for future works below:

• Fill in the gaps for distributed multitask learning (Chapter 4). See Section 4.6.

• Extend matrix factorization with graph regularization (Chapter 3) to online learn-

ing setting. Online matrix factorization has applications in computational biology,

specifically in single-cell RNA analysis [151]. See Appendix B.

• Some loosely connected ideas:

– Learn the regularizer: The core of all graph regularization methods presented

here is in selecting the “best” function for the specific problem. However, [152]

recently explored the idea of using a learned graph regularization for sparse

coding and denoising, instead of hand-picking them ahead of time. This is a

promising area that warrants more investigation.

– Learn the graph: The graph regularization problems presented in this thesis

assumed that a graph is given, or is derived beforehand. For example, we as-

sumed that a graph is given when theoretically analyzing denoising with graph

regularization (Chapter 2), and supplied physical graphs (road networks, grid

graph) for denoising experiments. And for semi-supervised classification exper-

iment (Chapter 2) and matrix factorization in remote sensing (Chapter 3), we

derived similarity graphs from the data before applying our algorithms. Can we

merge the two-staged approach (derive graph → use graph regularization) into

one? Can we go beyond iteratively updating the graph and the signal?

– Plug and Play [153] and Regularization by Denoising [154] are recent frameworks

that use blackbox image denoisers to solve more complicated inverse problems.

102

Can we extend this to a graph setting? Can we learn the graph or regularizer

at the same time?

• Active learning on graph: Instead of observing the data all at once, what if we sample

the graph signal one node at a time? Which sampling strategy is ideal for each task,

and what role can regularization play in this setting?

103

Appendix A

Proofs for Denoising with Graph

Regularization

A.1 Proof of Theorem 1

Proof. We denoteD = ∆(k+1). Define R as the row space ofD, and R⊥ the null space. Let

PR = D†D, the projection onto R, and ‖y‖R = ‖PRy‖2. Additionally, PR⊥ = I −D†D,

the projection onto R⊥. Since β̂ is a stationary point of f(β), it follows that

0 ∈ ∇βf(β)|β=β̂ = (β̂ − x) +∇βg(Dβ)|β=β̂. (A.1)

By the chain rule, ∇βg(Dβ)|β=β̂ = {D>z : z ∈ ∇yg(y)|y=Dβ̂}. Then by (A.1), there

exists z ∈ ∇yg(y)|y=Dβ̂, such that

0 = (β̂ − x) +D>z.

In particular, ∀β ∈ Rn, we have

β>(x− β̂) = (Dβ)>z, (A.2)

104

and, specializing to β̂,

β̂
>

(x− β̂) = (Dβ̂)>z. (A.3)

Subtract (A.3) from (A.2), and use the definition of subgradient to get ∀β ∈ Rn,

β>(x− β̂)− β̂>(x− β̂) = (Dβ −Dβ̂)>z

≤ g(Dβ)− g(Dβ̂). (A.4)

By the measurement model x = β? + ε and the polarization equality, i.e. 2a>b = ‖a‖22 +

‖b‖22 − ‖a− b‖22, the left-hand side of (A.4) can be rewritten as

β>(x− β̂)− β̂>(x− β̂)

= (β − β̂)>(β? − β̂) + ε>(β − β̂)

=
1

2
‖β − β̂‖22 +

1

2
‖β? − β̂‖22 −

1

2
‖β − β?‖22 + ε>(β − β̂). (A.5)

Combining (A.4) and (A.5) gives us ∀β ∈ Rn

‖β̂ − β‖22 + ‖β̂ − β?‖22

≤ ‖β − β?‖22 + 2ε>(β̂ − β) + 2g(Dβ)− 2g(Dβ̂). (A.6)

Let us first consider ε>(β̂ − β). From Hölder’s inequality,

ε>(β̂ − β) = (D†Dε)>(β̂ − β) + (PR⊥ε)
>(β̂ − β)

≤ ‖(D†)>ε‖∞‖D(β̂ − β)‖1 + ‖PR⊥ε‖2‖β̂ − β‖2. (A.7)

105

By standard tail bounds for independent Gaussian random variables, we have with proba-

bility at least 1− δ,

‖(D†)>ε‖∞ ≤ σζk
√

2 log
(er
δ

)
. (A.8)

Additionally, recognize that ‖ε‖2
R⊥

is a chi-squared random variable with CG degrees of

freedom. We can then invoke the one-sided tail bound for chi-squared random variables

(c.f. [155, Example 2.5]) such that for any 0 ≤ t ≤ 1,

P
(
‖ε‖2R⊥ ≥ σ2CG(1 + t)

)
≤ exp

(−CGt2
8

)
.

Consequently, with probability at least 1− δ,

‖ε‖2R⊥ ≤ σ2
(
CG + 2

√
2CG log(1/δ)

)
. (A.9)

The inequalities (A.8) and (A.9) hold simultaneously with probability at least 1−2δ. Then,

using λ‖y‖1 ≤ g(y) + µ
2‖y‖22 and λ = σζk

√
2 log(erδ) ≥ ‖(D†)>ε‖∞, we can bound (A.7)

further as

ε>(β̂ − β) ≤ ‖PR⊥ε‖2‖β̂ − β‖2 + λ‖D(β̂ − β)‖1

≤ ‖PR⊥ε‖2‖β̂ − β‖2 + g(D(β̂ − β)) +
µ

2
‖D(β̂ − β)‖22.

Together with ‖D(β̂ − β)‖22 ≤ ‖D‖2‖(β̂ − β)‖22, we can upper bound (A.6) as

‖β̂ − β‖22 + ‖β̂ − β?‖22 ≤ ‖β − β?‖22 + 2‖PR⊥ε‖2‖β̂ − β‖2 + µ‖D‖2‖β̂ − β‖22

+ 2g(D(β̂ − β)) + 2g(Dβ)− 2g(Dβ̂). (A.10)

106

Note that for any set T , g(y) =
∑

i∈T ρ(yi)+
∑

j∈T c ρ(yj) = g((y)T)+g((y)T c). Therefore,

using the triangle inequality and subadditivity and symmetry of ρ,

g(D(β̂ − β)) + g(Dβ)− g(Dβ̂)

≤g((D(β̂ − β))T) + g((Dβ)T c) + g((Dβ̂)T c) + g(Dβ)− g((Dβ̂)T)− g((Dβ̂)T c)

=g((D(β̂ − β))T) + 2g((Dβ)T c) + g((Dβ)T)− g((Dβ̂)T)

≤2g((D(β̂ − β))T) + 2g((Dβ)T c). (A.11)

We bound (A.11) further by the compatibility factor,

g((D(β̂ − β))T) ≤ λ‖(D(β̂ − β))T ‖1

≤ λ
√
|T |κ−1

T ‖β̂ − β‖2. (A.12)

Now combining (A.10), (A.11), and (A.12), we then have

‖β̂ − β‖22 + ‖β̂ − β?‖22 ≤ ‖β − β?‖22 + 4g((Dβ)T c)

+ 2
(
‖PR⊥ε‖2 + 2λ

√
|T |κ−1

T

)
‖β̂ − β‖2 + µ‖D‖2‖β̂ − β‖22.

Apply Young’s inequality 2ab ≤ a2/ε+ εb2 with a = ‖PR⊥ε‖2 + 2λ
√
|T |κ−1

T , b = ‖β̂−β‖2,

and ε = 1− µ‖D‖2 > 0. We then have

2
(
‖PR⊥ε‖2 + 2λ

√
|T |κ−1

T

)
‖β̂ − β‖2

≤1

ε

(
‖PR⊥ε‖2 + 2λ

√
|T |κ−1

T

)2
+ ε‖β̂ − β‖22

≤ 2

(1− µ‖D‖2)

(
‖PR⊥ε‖22 + 4λ2|T |κ−2

T

)
+ (1− µ‖D‖2)‖β̂ − β‖22.

107

Therefore,

‖β̂ − β‖2 + ‖β̂ − β?‖22

≤‖β − β?‖22 + 4g((Dβ)T c) + ‖β̂ − β‖22 +
2

(1− µ‖D‖2)

(
‖PR⊥ε‖22 + 4λ2|T |κ−2

T

)
.

Cancel ‖β̂ − β‖22 on both sides, apply the infimum over β, and plug in the bounds (A.9)

to get

‖β̂ − β?‖22 ≤ inf
β

{
‖β − β?‖22 + 4g((Dβ)T c)

}
+

2σ2

(1− µ‖D‖2)

(
CG + 2

√
2CG log

(
1

δ

)
+

8ζ2
k |T |
κ2
T

log
(er
δ

))
.

The proof extends for the vector-GTF (2.7) in a similar manner. We need to replace

(A.7) by

〈E, B̂ −B〉 = 〈D†DE, B̂ −B〉+ 〈PR⊥E, B̂ −B〉

≤ λ
r∑
`=1

∥∥D`·(B̂ −B)
∥∥

2
+ ‖PR⊥E‖F‖B̂ −B‖F,

where ‖PR⊥E‖2F ≤ dσ2
(
CG + 2

√
2CG log(d/δ)

)
with probability at least 1− δ. Similarly,

for (A.12), we use the generalized definition of the compatibility factor κT , given as

h((D(B̂ −B))T) ≤ λ
∑
`∈T
‖(D(B̂ −B))`·‖2

≤ λ
√
|T |κ−1

T ‖B̂ −B‖F,

which will lead to the claimed bound in the theorem.

108

A.2 Proof of Proposition 1

Proof. By Cauchy-Schwartz inequality, we have

∑
`∈T
‖(∆(k+1)B)`·‖2 ≤

√
|T |‖(∆(k+1)B)T ‖F,

and note that given two matrices U and V , (UV)T = (U)TV where T is a subset of rows

indices. We also use the fact that ‖UV ‖F ≤ ‖U‖‖V ‖F. We consider two cases:

• For even k, we have

‖(∆(k+1)B)T ‖F = ‖(∆)T∆(k)B‖F

≤ ‖(∆)T ‖‖∆(k)B‖F =
√
λmax((∆)>T (∆)T))‖∆(k)B‖F.

Note that (∆)T is equivalent to the incidence matrix of a subgraph with only T edges,

which allows us to bound,

λmax([(∆)T]>(∆)T)) ≤ max
(u,v)∈T

{du + dv} ≤ 2dmax

where di is the degree of node i.

• For odd k, we have

‖(∆(k+1)B)T ‖F = ‖(∆>)T∆(k)B‖F

≤ ‖(∆>)T ‖‖∆(k)B‖F =

√
λmax(∆

(2)
T×T)‖∆(k)B‖F,

where ∆
(2)
T×T ∈ R|T |×|T | is the principal submatrix of ∆(2) indexed by T . By Cauchy’s

109

interlacing theorem, the maximum eigenvalue of the submatrix is upper bounded, so

λmax(∆
(2)
T×T) ≤ λmax(∆(2)) ≤ 2dmax.

Therefore, for all k, ‖(∆(k+1)B)T ‖F ≤
√

2dmax‖∆(k)B‖F. To conclude the proof, note

∑
`∈T
‖(∆(k+1)B)`·‖2 ≤

√
|T |
√

2dmax‖∆(k)B‖F

≤
√
|T |
√

2dmax‖∆(k)‖‖B‖F ≤ (2dmax)
k+1

2

√
|T |‖B‖F.

A.3 Proof of Theorem 3

We show the convergence of Alg. 1 by proving a modified version of [25, Proposition 1].

The superscript (m) denotes the values of B,Z,U at the mth iteration of the loop inside

Alg. 1.

Proposition 4 (Convergence to a feasible solution). If τ ≥ µ, then the primal residual

r(m) = ‖∆(k+1)B(m) − Z(m)‖F and the dual residual s(m+1) = ‖τ(∆(k+1))>(Z(m+1) −

Z(m))‖F of Alg. 1 satisfy that limm→∞ r
(m) = 0 and limm→∞ s

(m) = 0.

Proof. Denote D = ∆(k+1), and ρλ(·) = ρ(·;λ, γ). Recall from Assumption 1 (c) that

there exists µ > 0 such that ρλ(‖x‖2) + µ
2‖x‖22 is convex. Now consider the Lagrangian

L(B,Z,U) with regard to the `th row z` of Z = [z>1 , ...z
>
r]>, assuming all other variables

110

are fixed:

ρλ(‖z`‖2) +
τ

2
‖z` − c1‖22 + c2

=ρλ(‖z`‖2) +
τ

2
‖z`‖22 − τ〈z`, c1〉+

τ

2
‖c1‖22 + c2

where c1 and c2 represent terms of L(B,Z,U) that do not depend on z`. With our choice

of τ ≥ µ, then L(B,Z,U) is convex with regard to each of B, U , and for each row of

Z, allowing us to apply [156, Theorem 5.1]. Therefore, Alg. 1 converges to limit points

B\,Z\,U \.

Then it follows that the dual residual limm→∞ s
(m) = ‖τD>(Z\ − Z\)‖F = 0. For

the primal residual, notice that the U update step in line 10 of Alg. 1 also shows that

∀m, t ≥ 0,

U (m+t) = U (m) +

t∑
i=1

(DB(m+i) −Z(m+i)).

Fixing t and setting m→∞, we have

U \ = U \ + t(DB\ −Z\)

holds ∀t ≥ 0. Hence, DB\−Z\ = 0, and therefore limm→∞ r
(m) = ‖DB\−Z\‖F = 0.

This proposition shows that the algorithm in the limit achieves primal and dual

feasibility, and that the Augmented Lagrangian in (2.11) with Z\ and U \ becomes the

original GTF formulation in (2.7). B that is produced by every iteration of Alg. 1 is a

stationary point of (2.11) with fixed Z and U . As a result, B\ is a stationary point of

(2.7).

111

Appendix B

Preliminary Results for Online

Matrix Factorization in

Computational Biology

B.1 Computational Biology Motivation

Single cell RNA sequencing (scRNA-seq) is a powerful technique that can measure the gene

expression levels of each cell in a population of cells. Access to gene expression levels at

such high resolution allows us to study new biological questions about cell identity, e.g.

uncover cell types (especially rare populations), determine changes in regulatory networks

across cells, identify heterogeneity of gene expression, and track trajectories of cell lineages

in development. Since these datasets are very noisy and high dimensional, i.e. thousands

of genes are measured, one common approach in scRNA-seq analysis is to first project each

cell onto a significantly lower dimensional latent space and perform further analysis such

as clustering.

Given a scRNA-seq dataset X, a matrix of number of genes × number of cells, this

can be formulated into a matrix factorization (MF) problem with noise model X = S?A?+

112

gaussian noise:

MF: (Ŝ, Â) = argmin
S,A

1

2
‖X − SA‖2F

where S is number of genes × latent space dimension and A is number of cells × latent

space dimension. Roughly, S can be interpreted as a matrix that linearly projects from the

high dimensional gene space to the low dimensional latent space, and ai, the ith column of

A, can be interpreted as the position of the ith cell in the latent space. Recent works such

as [157] have suggested that adding prior knowledge on the gene co-expression network as

graph regularization can help:

netNMF-sc [157]: (Ŝ, Â) = argmin
S≥0, A≥0

‖ΦΩ (X − SA) ‖2F + λ
∑
i,j

‖si − sj‖22Wij (B.1)

where W is the adjacency matrix derived from the gene-gene interactions, si is the ith row

of S corresponding to the ith gene, and ΦΩ is a binary mask such that zero entries of X

are ignored in (B.1).

Thanks to new protocols developed in the past decade, we are able to acquire scRNA-

seq datasets at a low cost with unprecendented throughput, measuring up to 106 cells at

a time. Applying batch methods like (B.1) on data of this size puts enormous pressure

on the computer memory, and are computationally costly. Therefore, online methods that

can process a small number of cells at a time have started emerging [158]. We propose an

online version of the graph-regularized problem:

min
S,A

1

2
‖X − SA‖2F +

α

2

(
‖S‖2F + ‖A‖2F

)
+
∑
i,j

‖si − sj‖22Wij +
∑
i,j

‖ai − aj‖22Uij

where ai is the ith column of A, and U is a cell-cell graph that can potentially be derived

113

from prior knowledge about the cells’ physical location or experimental setup, e.g. cells

collected from the same organism, cells sequenced in the same batch, etc. We expect that

the online algorithm will improve memory and computation efficiencies for large scRNA-seq

datasets.

B.2 Online Matrix Factorization with Graph Regularization

In the online setting, we do not observe the full data right away, but instead observe xt,

the tth column of X, at every time step t. Let Xt = [x1, . . . ,xt] ∈ Rn×t (size changes,

but elements of Xt−1 are unchanged), St ∈ Rn×r (size does not change, but elements are

updated), and At = [a1, . . . ,at] ∈ Rr×t (column at is added and size changes, but elements

of At−1 are unchanged).1 Then, after tth observation, we iteratively update St and at:

at = argmin
a

1

2
‖xt − St−1a‖22 +

α

2
‖a‖22 +

∑
i<t

‖a` − a‖22Uti (B.2)

St = argmin
S

1

2
‖Xt − SAt‖2F +

α

2
‖S‖2F +

∑
i,j

‖si − sj‖22Wij (B.3)

at: At stationarity, (B.2) equals

0 = S>t−1 (St−1at − xt) + αat + 2
∑
i<t

Uit (at − ai)

=⇒

S>t−1St−1 +

α+ 2
∑

i∈N (at)

Uit

 I
at = S>t−1xt + 2

∑
i∈N (at)

Uitai

=⇒ at =

S>t−1St−1 +

α+ 2
∑

i∈N (at)

Uit

 I
−1S>t−1xt + 2

∑
i∈N (at)

Uitai


1At−1 can be fixed, and we just need to update at and S. Since we go through multiple epochs of the

data, S will be relatively stable by the last epoch, and columns of AT will be comparable with each other
for downstream tasks.

114

N (at) are the neighbors of at that we have seen until t. The r× r matrix inversion should

be quick.

St: Rewrite (B.3) using graph Laplacian matrix L ∈ Rn×n derived from the adja-

cency matrix W , which doesn’t change with time.

St = argmin
S

1

2
‖Xt − SAt‖2F +

α

2
‖S‖2F + tr

(
S>LS

)
=⇒ 0 = (StAt −Xt)A

>
t + αSt + 2LSt

=⇒ StAtA
>
t + (αI + 2L)St = XtA

>
t (B.4)

=⇒
(
I ⊗ (αI + 2L) +AtA

>
t ⊗ I

)
vec(St) = vec(XtA

>
t)

(B.4) is a Sylvester equation, and can be solved by many existing programs such as

Matlab. The obvious problem here is that we need to keep Xt in memory. But since

Xt = [Xt−1,xt], and At = [At−1,at], we can write XtA
>
t = Xt−1A

>
t−1 + xta

>
t , i.e. we

can simply keep a running sum. We can also update AtA
>
t = At−1A

>
t−1+ata

>
t in a similar

fashion.

115

Algorithm 7 Online Matrix Factorization with Graph Regularization

1: Inputs: Data stream x1, . . . ,xT , graph U , graph W .
2: Initialize: S1, A1 in a batch fashion based on the first t0 samples, Xt0 .
3: Calculate L from W , and M = αI + 2L.
4: for epoch ← 1 to num epoch do
5: Shuffle x1, . . . ,xT .
6: for t← 1 to T do
7: Observe xt.
8: Query the neighbors N (at) and the edge weights U it for i ∈ N (at).

9: at ←
(
S>t−1St−1 +

(
α+ 2

∑
i∈N (at)

Uit

)
I
)−1 (

S>t−1xt + 2
∑

i∈N (at)
Uitai

)
10: Bt ← Bt−1 + xta

>
t

11: Ct ← Ct−1 + ata
>
t .

12: St ←Solve for Y in Sylvester equation Y Ct +MY = Bt

13: end for
14: end for
15: Outputs: ST , AT

116

Appendix C

Proofs and Intermediate Results

for Distributed Multitask Learning

C.1 Proof of Theorem 4

Proof. At stationarity, for each i = 1, . . . , n,

0 = A>i

(
Aiβ̂

λ

i − xi
)

+ λ
n∑
j=1

Wij

(
β̂
λ

i − β̂
λ

j

)

=⇒

λ n∑
j=1

Wij + 1

 β̂λi = A>i xi + λ

n∑
j=1

Wijβ̂
λ

j

=⇒ β̂
λ

i =
1

λ+ 1
β̂
OLS

i +
λ

λ+ 1

n∑
j=1

Wijβ̂
λ

j .

117

We can rewrite this set of linear equations concisely in matrix form:

=⇒



−1 λW12
λ+1 . . . λW1n

λ+1

λW21
λ+1 −1 . . . λW2n

λ+1

...
...

. . .
...

λWn1
λ+1

λWn2
λ+1 . . . −1





β̂
λ

1

β̂
λ

2

...

β̂
λ

n


= − 1

λ+ 1



β̂
OLS

1

β̂
OLS

2

...

β̂
OLS

n



=⇒



β̂
λ

1

β̂
λ

2

...

β̂
λ

n


=

1

λ+ 1

(
In −

λ

λ+ 1
W

)−1



β̂
OLS

1

β̂
OLS

2

...

β̂
OLS

n


.

It remains to show that each row of Wλ adds to 1. We assumed W is a right stochastic

matrix, which implies 1) for all integer k > 1, W k is also a right stochastic matrix, and 2)

the maximum eigenvalue of λ
λ+1W must be < 1. Therefore

Wλ =
1

λ+ 1

(
In −

λ

λ+ 1
W

)−1

=
1

λ+ 1

∞∑
k=0

(
λ

λ+ 1

)k
W k.

118

by Neumann series expansion. Then, the sum of ith row follows

n∑
j=1

Wλ
ij =

n∑
j=1

[
1

λ+ 1

(
In −

λ

λ+ 1
W

)−1
]
ij

=
n∑
j=1

1

λ+ 1

∞∑
k=0

(
λ

λ+ 1

)k [
W k

]
ij

=
1

λ+ 1

∞∑
k=0

(
λ

λ+ 1

)k n∑
j=1

[
W k

]
ij

=
1

λ+ 1

∞∑
k=0

(
λ

λ+ 1

)k
= 1.

C.2 Proof of Proposition 2

Proof. The proof follows from assumptions on noise (zero-mean, independent between

tasks),
∑n

j=1Wλ
ij = 1, and Jensen’s inequality.

E
∥∥∥β̂λi − β?i ∥∥∥2

2
=

∥∥∥∥∥∥
 n∑
j=1

Wλ
ijβ

?
j

− β?i
∥∥∥∥∥∥

2

2

+ E

∥∥∥∥∥∥
n∑
j=1

Wλ
ijA
>
j εj

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
n∑
j=1

Wλ
ij

(
β?j − β?i

)∥∥∥∥∥∥
2

2

+

n∑
j=1

(Wλ
ij)

2E
∥∥∥A>j εj∥∥∥2

2

≤
n∑
j=1

Wλ
ij

∥∥β?i − β?j∥∥2

2
+

n∑
j=1

(Wλ
ij)

2E
∥∥∥A>j εj∥∥∥2

2

=

n∑
j=1

Wλ
ij

∥∥β?i − β?j∥∥2

2
+ d

n∑
j=1

(Wλ
ijσj)

2.

119

C.3 Proof of Theorem 5

Proof. Under the observation model (4.1), noise is zero-mean, additive, and independent

between tasks. Then from linearity of expectation,

E
∥∥∥β̂MTL

i − β?i
∥∥∥2

2

=E

∥∥∥∥∥∥
n∑
j=1

Wij

(
Eβ̂j + β̂j − Eβ̂j

)
− β?i

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
n∑
j=1

WijEβ̂j − β?i

∥∥∥∥∥∥
2

2

+

n∑
j=1

(Wij)
2E
∥∥∥β̂j − Eβ̂j

∥∥∥2

2

=

∥∥∥∥∥∥
n∑
j=1

WijEβ̂j

∥∥∥∥∥∥
2

2

− 2β?i
>

n∑
j=1

WijEβ̂j +
n∑
j=1

(Wij)
2E
∥∥∥β̂j − Eβ̂j

∥∥∥2

2
+ ‖β?i ‖22 . (C.1)

To minimize (C.1), ignore ‖β?i ‖22, and denote the ith row of W as y> for a fixed i = 1, . . . , n.

Then (4.8) follows from

min
y

y>Cy − 2Ki·y + y>V y

=⇒ (C + V)y = K>i·

=⇒ y = (C + V)−1K>i·

=⇒W> = (C + V)−1K>.

120

C.4 Examples of Local Estimators for Theorem 5

Example 5 (OLS). OLS with tall Ai ∈ Rm×d, m ≥ d:

β̂i = (A>i Ai)
−1A>i xi, Eβ̂i = β?i , E

∥∥∥β̂i − Eβ̂i
∥∥∥2

2
= σ2

i tr

((
A>i Ai

)−1
)

When Ai is also orthogonal, i.e. A>i Ai = Id:

β̂i = A>i xi, Eβ̂i = β?i , E
∥∥∥β̂i − Eβ̂i

∥∥∥2

2
= dσ2

i

Example 6 (Ridge Regression). Ridge regression with Ai, parameter λi > 0:

β̂i = argmin
βi

‖xi −Aiβi‖22 + λi ‖βi‖22

=
(
A>i Ai + 2λiI

)−1
A>i xi

Eβ̂i =
(
A>i Ai + 2λiI

)−1
A>i β

?
i

E
∥∥∥β̂i − Eβ̂i

∥∥∥2

2
= σ2

i tr

((
A>i Ai + 2λiI

)−1
A>i Ai

(
A>i Ai + 2λiI

)−1
)

When Ai is tall and orthogonal, and λi is chosen to be optimal, i.e. minimizes MSE of β̂i:

λi =
dσ2

i

2 ‖β?i ‖22
(C.2)

Eβ̂i =
1

1 + 2λi
β?i

E
∥∥∥β̂i − Eβ̂i

∥∥∥2

2
=

dσ2
i

(1 + 2λi)2

121

C.5 Proof of Proposition 3

Proof. Proof is parallel to the proof of Theorem 4. Stationarity leads to the following linear

equation



P̂
λ
1

P̂
λ
2

...

P̂
λ
n


=

1

λ+ 1

(
In −

λ

λ+ 1
W

)−1



P̂ 1

P̂ 2

...

P̂ n


,

where 1
λ+1

(
In − λ

λ+1W
)−1

is a known right stochastic matrix. It is easy to check that

P̂
λ
i , convex combinations of P̂ js, remain in the constraint set: trace is a linear operator,

spectral norm follows triangle inequality, and sum of positive semi-definite matrices is

positive semi-definite.

C.6 Proof of Theorem 6

Proof. Proof is very similar to the proof of Theorem 5.

E‖Σ̂MTL
i −Σi‖2F

=E

∥∥∥∥∥∥
n∑
j=1

WijΣj −Σi +
n∑
j=1

Wij

(
Σ̂j −Σj

)∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
n∑
j=1

WijΣj −Σi

∥∥∥∥∥∥
2

F

+ E

∥∥∥∥∥∥
n∑
j=1

Wij

(
Σ̂j −Σj

)∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
n∑
j=1

WijΣj

∥∥∥∥∥∥
2

F

− 2
n∑
j=1

Wij〈Σi,Σj〉+ ‖Σi‖2F +

n∑
j=1

(Wij)
2E
∥∥∥Σ̂j −Σj

∥∥∥2

F

122

C.7 Intermediate Results: Convex Combination of OLS Es-

timates

Theorem 4 motivates us to consider estimates that are convex combinations of local OLS

estimates. In this section, we investigate the MSE of estimates that can be represented as

β̂
cvx

i =

n∑
j=1

W cvx
ij β̂

OLS

j =

n∑
j=1

W cvx
ij β?j +

n∑
j=1

W cvx
ij A>j εj (C.3)

for any right stochastic matrix W cvx ∈ Rn×n. Note that the graph-regularized solutions

β̂
λ

i are a special case of β̂
cvx

i , where W cvx = Wλ. In fact, the only property of Wλ that

was used in the proof of Proposition 2 is that Wλ is a right stochastic matrix. Corollary

2 thus follows immediately.

Corollary 2. Assume m ≥ d, A>i Ai = Id, and W cvx is a right stochastic matrix, i.e.∑n
j=1W

cvx
ij = 1 for all i. Then, MSE of β̂

cvx

i (C.3) is upper-bounded by

E
∥∥∥β̂cvxi − β?i

∥∥∥2

2
≤

n∑
j=1

W cvx
ij

∥∥β?i − β?j∥∥2

2
+ d

n∑
j=1

(W cvx
ij σj)

2. (C.4)

Given Corollary 2, one might be interested in finding a right stochastic matrix W cvx

such that the MSE surrogate in (C.4) is minimized, as shown in (C.5).

min
W cvx

n∑
j=1

W cvx
ij

∥∥β?i − β?j∥∥2

2
+ d

n∑
j=1

(W cvx
ij σj)

2 s.t. W cvx
ij ≥ 0,

n∑
j=1

W cvx
ij = 1. (C.5)

123

Proposition 5. For each i = 1, . . . , n, (C.5) is minimized by

W cvx
ij =

(
µi

1

2dσ2
j

−
∥∥β?j − β?i ∥∥2

2

2dσ2
j

)
+

,
n∑
j=1

W cvx
ij = 1. (C.6)

where µi and W cvx
ij for a fixed i can be calculated by Alg. 8.

See Appendix C.8 for the proof of Proposition 5 and Alg. 8. Note that β̂
cvx

i con-

structed based on Proposition 5 will achieve lower MSE than the graph regularization solu-

tions β̂
λ

i and the local OLS estimates β̂
OLS

i , but not compared to the proposed MTL esti-

mates β̂
MTL

. The mixing matrix described in (C.6) depends on task similarity
∥∥β?j − β?i ∥∥2

2

and task difficulty dσ2
j .

C.8 Proof of Proposition 5

W cvx = argmin
W

n∑
j=1

Wij

∥∥β?i − β?j∥∥2

2
+ d

n∑
j=1

(Wijσj)
2 s.t. Wij ≥ 0,

n∑
j=1

Wij = 1

is equivalent to optimizing the following for each wi, the ith row of W cvx:

min
wi

w>i bi +
1

2
w>i Σwi s.t. 1>wi = 1,wi ≥ 0

where wi =
[
W cvx
ij

]n
j=1

, bi =
[∥∥β?i − β?j∥∥2

2

]n
j=1

, Σ = diag(
[
2dσ2

j

]n
j=1

)

Let’s introduce the dual variables U i ≥ 0, and µi, and temporarily drop the i subscript,

i.e. overload w := wi, b := bi, U := U i, µ := µi. The corresponding Lagrangian is

L(w,U , µ) =
1

2
w>Σw +w>b−U>w + µ(1− 1>w),

124

which has the following KKT conditions. Stationarity:

Σw + b−U − µ1 = 0

=⇒ w = −Σ−1 (b−U − µ1)

=⇒ wj = − 1

2dσ2
j

(bj − uj − µ)

complementary slackness:

ujwj = 0,

primal feasibility:

1>w = 1, w ≥ 0,

and dual feasibility:

U ≥ 0.

Substitute uj from stationarity into complementary slackness and dual feasibility:

uj = 2dσ2
jwj + bj − µ

wj
(
2dσ2

jwj + bj − µ
)

= 0

2dσ2
jwj + bj − µ ≥ 0

Note that

µ > bj =⇒ wj > 0 =⇒ wj =
µ− bj
2dσ2

j

µ ≤ bj =⇒ wj = 0

125

Therefore,

wj = max

{
0,
µ− bj
2dσ2

j

}
,

where µ depends on the last condition, primal feasibility:

n∑
j=1

wj = 1 =⇒
n∑
j=1

(
µ− bj
2dσ2

j

)
+

= 1

Finally, substituting back the original variables show that

W cvx
ij =

(
µ

1

2dσ2
j

−
∥∥β?j − β?i ∥∥2

2

2dσ2
j

)
+

,
n∑
j=1

W cvx
ij = 1.

This can be optimized by the multilevel water-filling algorithm [159, Algorithm 2]. For

every ith row of W cvx, the setup is identical to the example in [159, Section V-A-2] with

the variables

aj =
1

2dσ2
j

, bj =

∥∥β?j − β?i ∥∥2

2

2dσ2
j

, g(µ) = µ

ñ∑
j=1

1

2dσ2
j

−
ñ∑
j=1

∥∥β?j − β?i ∥∥2

2

2dσ2
j

− 1 = 0.

Alg. 8 summarizes this procedure nicely.

126

Algorithm 8 Multilevel Water Filling Algorithm to solve (C.5)

1: inputs i is fixed.
∥∥β?j − β?i ∥∥2

2
, dσ2

j for j = 1, . . . , n.

2: Sort such that
∥∥β?j − β?i ∥∥2

2
are in increasing order.

3: Set ñ← n.

4: if ‖β?i − β?ñ‖22 ≥
1+

∑ñ
j=1

‖β?i−β?j‖2

2
2dσ2

j∑ñ
j=1

1

2dσ2
j

then

5: Set ñ← ñ− 1.
6: Go back to line 4.
7: end if

8: Set µi =
1+

∑ñ
j=1

‖β?j−β?i ‖2

2
2dσ2

j∑ñ
j=1

1

2dσ2
j

.

9: Undo sorting.

10: Calculate W cvx
ij =

(
µi

1
2dσ2

j
− ‖β

?
j−β?i ‖2

2

2dσ2
j

)
+

11: outputs W cvx
ij for j = 1, . . . , n.

127

Bibliography

[1] M. Newman, Networks. Oxford University Press, 2018. 2

[2] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs,” IEEE

Transactions on Signal Processing, vol. 61, no. 7, pp. 1644–1656, 2013. 2, 7, 11

[3] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The

emerging field of signal processing on graphs: Extending high-dimensional data anal-

ysis to networks and other irregular domains,” IEEE Signal Processing Magazine,

vol. 30, no. 3, pp. 83–98, 2013. 2, 11, 44, 46

[4] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst, “Graph

signal processing: Overview, challenges, and applications,” Proceedings of the IEEE,

vol. 106, no. 5, pp. 808–828, 2018. 2, 11

[5] R. Varma*, H. Lee*, Y. Chi, and J. Kovačević, “Improving graph trend filtering with

non-convex penalties,” in ICASSP 2019 - 2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 5391–5395, IEEE, 2019. 5,

23

[6] R. Varma*, H. Lee*, J. Kovačević, and Y. Chi, “Vector-valued graph trend filtering

with non-convex penalties,” IEEE Transactions on Signal and Information Process-

ing over Networks, vol. 6, pp. 48–62, 2020. 5

[7] J. Qin, H. Lee, J. T. Chi, Y. Lou, J. Chanussot, and A. L. Bertozzi, “Fast blind

hyperspectral unmixing based on graph laplacian,” in 2019 10th Workshop on Hyper-

128

spectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS),

pp. 1–5, 2019. 5, 48, 59

[8] J. Qin, H. Lee, J. T. Chi, L. Drumetz, J. Chanussot, Y. Lou, and A. L. Bertozzi,

“Blind hyperspectral unmixing based on graph total variation regularization,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 59, no. 4, pp. 3338–3351, 2021.

5

[9] S. Chen, R. Varma, A. Singh, and J. Kovačević, “Signal representations on graphs:

Tools and applications,” arXiv preprint arXiv:1512.05406, 2015. 11

[10] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal processing on

graphs: Sampling theory,” IEEE Transactions on Signal Processing, vol. 63, no. 24,

pp. 6510–6523, 2015. 11

[11] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovačević, “Signal recovery on graphs:

Variation minimization,” IEEE Transactions on Signal Processing, vol. 63, no. 17,

pp. 4609–4624, 2015. 11

[12] D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based reconstruction of graph

signals,” IEEE Transactions on Signal Processing, vol. 65, no. 3, pp. 764–778, 2016.

11

[13] A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal discrete regularization on

weighted graphs: a framework for image and manifold processing,” IEEE Transac-

tions on Image Processing, vol. 17, no. 7, pp. 1047–1060, 2008. 11

[14] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-supervised learning

on large graphs,” in International Conference on Computational Learning Theory,

pp. 624–638, Springer, 2004. 11, 17, 38

129

[15] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using gaussian

fields and harmonic functions,” in Proceedings of the 20th International Conference

on Machine Learning, pp. 912–919, AAAI Press, 2003. 11, 17, 38, 39

[16] Y.-X. Wang, J. Sharpnack, A. J. Smola, and R. J. Tibshirani, “Trend filtering on

graphs,” Journal of Machine Learning Research, vol. 17, no. 1, pp. 3651–3691, 2016.

11, 12, 13, 14, 16, 17, 23, 25, 26, 27, 39

[17] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “`1 Trend Filtering,” SIAM Review,

vol. 51, no. 2, pp. 339–360, 2009. 11, 13, 18

[18] P. Bühlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods,

Theory and Applications. Springer Science & Business Media, 2011. 11

[19] J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood and its

oracle properties,” Journal of the American Statistical Association, vol. 96, no. 456,

pp. 1348–1360, 2001. 11, 19

[20] C.-H. Zhang, “Nearly unbiased variable selection under minimax concave penalty,”

The Annals of Statistics, vol. 38, no. 2, pp. 894–942, 2010. 11, 19

[21] P.-L. Loh and M. J. Wainwright, “Regularized M-estimators with nonconvexity: Sta-

tistical and algorithmic theory for local optima,” Journal of Machine Learning Re-

search, vol. 16, no. 1, pp. 559–616, 2015. 12, 15, 19

[22] P.-L. Loh, “Statistical consistency and asymptotic normality for high-dimensional

robust M-estimators,” The Annals of Statistics, vol. 45, no. 2, pp. 866–896, 2017. 12

[23] C.-H. Zhang and T. Zhang, “A general theory of concave regularization for high-

dimensional sparse estimation problems,” Statistical Science, vol. 27, no. 4, pp. 576–

593, 2012. 12, 19

130

[24] P. Breheny and J. Huang, “Coordinate descent algorithms for nonconvex penalized

regression, with applications to biological feature selection,” The Annals of Applied

Statistics, vol. 5, no. 1, pp. 232–253, 2011. 12

[25] S. Ma and J. Huang, “A concave pairwise fusion approach to subgroup analysis,”

Journal of the American Statistical Association, vol. 112, no. 517, pp. 410–423, 2017.

12, 110

[26] S. Chen, F. Cerda, P. Rizzo, J. Bielak, J. H. Garrett, and J. Kovačević, “Semi-

supervised multiresolution classification using adaptive graph filtering with applica-

tion to indirect bridge structural health monitoring,” IEEE Transactions on Signal

Processing, vol. 62, no. 11, pp. 2879–2893, 2014. 12

[27] D. Hallac, J. Leskovec, and S. Boyd, “Network lasso: Clustering and optimization

in large graphs,” in Proceedings of the 21st ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 387–396, ACM, 2015. 12, 14

[28] A. Jung, A. O. Hero III, A. Mara, and S. Jahromi, “Semi-supervised learning via

sparse label propagation,” arXiv preprint arXiv:1612.01414, 2016. 12

[29] A. Jung, N. Tran, and A. Mara, “When is network lasso accurate?,” Frontiers in

Applied Mathematics and Statistics, vol. 3, pp. 1–11, 2018. 12, 14

[30] N. Tran, S. Basirian, and A. Jung, “When is network lasso accurate: The vector

case,” arXiv preprint arXiv:1710.03942, 2017. 12, 14

[31] E. Mammen and S. van de Geer, “Locally adaptive regression splines,” The Annals

of Statistics, vol. 25, no. 1, pp. 387–413, 1997. 13

[32] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal

131

algorithms,” Physica D: nonlinear phenomena, vol. 60, no. 1-4, pp. 259–268, 1992.

13

[33] T. F. Chan, S. Osher, and J. Shen, “The digital TV filter and nonlinear denoising,”

IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 231–241, 2001. 13

[34] F. Mahmood, N. Shahid, U. Skoglund, and P. Vandergheynst, “Adaptive graph-based

total variation for tomographic reconstructions,” IEEE Signal Processing Letters,

vol. 25, no. 5, pp. 700–704, 2018. 13

[35] R. J. Tibshirani, “Adaptive piecewise polynomial estimation via trend filtering,” The

Annals of Statistics, vol. 42, no. 1, pp. 285–323, 2014. 13

[36] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smooth-

ness via the fused lasso,” Journal of the Royal Statistical Society: Series B (Statistical

Methodology), vol. 67, no. 1, pp. 91–108, 2005. 13

[37] J. Sharpnack, A. Singh, and A. Rinaldo, “Sparsistency of the edge lasso over graphs,”

in Proceedings of the 15th International Conference on Artificial Intelligence and

Statistics, vol. 22, pp. 1028–1036, PMLR, 2012. 14

[38] Z. Harchaoui and C. Lévy-Leduc, “Multiple change-point estimation with a total

variation penalty,” Journal of the American Statistical Association, vol. 105, no. 492,

pp. 1480–1493, 2010. 14

[39] J.-C. Hütter and P. Rigollet, “Optimal rates for total variation denoising,” in 29th

Annual Conference on Learning Theory, vol. 49, pp. 1115–1146, PMLR, 2016. 14,

22, 23

[40] A. S. Dalalyan, M. Hebiri, and J. Lederer, “On the prediction performance of the

lasso,” Bernoulli, vol. 23, no. 1, pp. 552–581, 2017. 14

132

[41] K. Lin, J. Sharpnack, A. Rinaldo, and R. J. Tibshirani, “Approximate Recov-

ery in Changepoint Problems, from `2 Estimation Error Rates,” arXiv preprint

arXiv:1606.06746, 2016. 14, 27

[42] A. Jung and M. Hulsebos, “The network nullspace property for compressed sensing

of big data over networks,” Frontiers in Applied Mathematics and Statistics, vol. 4,

p. 9, 2018. 14

[43] S. A. van de Geer and P. Bühlmann, “On the conditions used to prove oracle results

for the lasso,” Electronic Journal of Statistics, vol. 3, pp. 1360–1392, 2009. 14, 23

[44] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solutions to

linear inverse problems with multiple measurement vectors,” IEEE Transactions on

Signal Processing, vol. 53, no. 7, pp. 2477–2488, 2005. 15

[45] J. Chen and X. Huo, “Theoretical results on sparse representations of multiple-

measurement vectors,” IEEE Transactions on Signal Processing, vol. 54, no. 12,

pp. 4634–4643, 2006. 15

[46] Y. C. Eldar, P. Kuppinger, and H. Bolcskei, “Block-sparse signals: Uncertainty rela-

tions and efficient recovery,” IEEE Transactions on Signal Processing, vol. 58, no. 6,

pp. 3042–3054, 2010. 15

[47] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online Learning for Matrix Factoriza-

tion and Sparse Coding,” Journal of Machine Learning Research, vol. 11, pp. 19–60,

Mar. 2010. 15

[48] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral Image Classification

Using Dictionary-Based Sparse Representation,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 49, pp. 3973–3985, Oct. 2011. 15

133

[49] Y. Li and Y. Chi, “Off-the-Grid Line Spectrum Denoising and Estimation With

Multiple Measurement Vectors,” IEEE Transactions on Signal Processing, vol. 64,

pp. 1257–1269, Mar. 2016. 15

[50] Y. C. Eldar and M. Mishali, “Robust Recovery of Signals From a Structured Union

of Subspaces,” IEEE Transactions on Information Theory, vol. 55, pp. 5302–5316,

Nov. 2009. 15

[51] M. E. Davies and Y. C. Eldar, “Rank Awareness in Joint Sparse Recovery,” IEEE

Transactions on Information Theory, vol. 58, pp. 1135–1146, Feb. 2012. 15

[52] P.-L. Loh and M. J. Wainwright, “Support recovery without incoherence: A case for

nonconvex regularization,” The Annals of Statistics, vol. 45, no. 6, pp. 2455–2482,

2017. 15

[53] L. Chen and Y. Gu, “The convergence guarantees of a non-convex approach for sparse

recovery,” IEEE Transactions on Signal Processing, vol. 62, no. 15, pp. 3754–3767,

2014. 15, 19

[54] R. Chartrand and V. Staneva, “Restricted isometry properties and nonconvex com-

pressive sensing,” Inverse Problems, vol. 24, no. 3, pp. 20–35, 2008. 15

[55] K. Ji, J. Tan, J. Xu, and Y. Chi, “Learning latent features with pairwise penalties

in low-rank matrix completion,” IEEE Transactions on Signal Processing, vol. 68,

pp. 4210–4225, 2020. 15

[56] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embed-

ding and clustering,” in Proceedings of the 14th International Conference on Neural

Information Processing Systems: Natural and Synthetic, pp. 585–591, MIT Press,

2001. 17

134

[57] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and

data representation,” Neural Computation, vol. 15, no. 6, pp. 1373–1396, 2003. 17

[58] P. P. Talukdar and K. Crammer, “New regularized algorithms for transductive learn-

ing,” in Joint European Conference on Machine Learning and Knowledge Discovery

in Databases, pp. 442–457, Springer, 2009. 17, 38, 39

[59] R. J. Tibshirani, The Solution Path of the Generalized Lasso. Stanford University,

2011. 18

[60] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the

Royal Statistical Society: Series B (Methodological), pp. 267–288, 1996. 18

[61] C.-H. Zhang and J. Huang, “The sparsity and bias of the lasso selection in high-

dimensional linear regression,” The Annals of Statistics, vol. 36, no. 4, pp. 1567–1594,

2008. 18

[62] F. Chung and M. Radcliffe, “On the spectra of general random graphs,” The Elec-

tronic Journal of Combinatorics, vol. 18, no. 1, p. 215, 2011. 26, 27

[63] F. R. Chung and F. C. Graham, Spectral Graph Theory. American Mathematical

Society, 1997. 26

[64] A. Blum, J. Hopcroft, and R. Kannan, “Foundations of data science,” Cambridge

University Press, 2020. 27

[65] A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,” Combinatorica, vol. 8,

no. 3, pp. 261–277, 1988. 27

[66] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization

135

and statistical learning via the alternating direction method of multipliers,” Founda-

tions and Trends in Machine learning, vol. 3, no. 1, pp. 1–122, 2011. 28, 44

[67] J. Huang, P. Breheny, and S. Ma, “A selective review of group selection in high-

dimensional models,” Statistical science: a review journal of the Institute of Mathe-

matical Statistics, vol. 27, no. 4, 2012. 29

[68] J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model search: Hy-

perparameter optimization in hundreds of dimensions for vision architectures,” in

Proceedings of the 30th International Conference on Machine Learning, pp. I–115–I–

123, JMLR.org, 2013. 30

[69] M. Defferrard, L. Martin, R. Pena, and N. Perraudin, “PyGSP: Graph Signal Pro-

cessing in Python.” 30, 32

[70] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and

function using NetworkX,” in Proceedings of the 7th Python in Science Conference

(SciPy 2008), pp. 11–16, 2008. 30

[71] G. Boeing, “OSMnx: New methods for acquiring, constructing, analyzing, and vi-

sualizing complex street networks,” Computers, Environment and Urban Systems,

vol. 65, pp. 126–139, 2017. 36

[72] Taxi and Limousine Commission (TLC), “2011 yellow taxi trip data.” 36

[73] Socrata API, “2011 yellow taxi trip data.” 36

[74] “2011 Pride Guide.” 36

[75] D. Dua and C. Graff, “UCI machine learning repository,” 2017. 39

136

[76] C. A. Bateson, G. P. Asner, and C. A. Wessman, “Endmember bundles: A new

approach to incorporating endmember variability into spectral mixture analysis,”

IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 2, pp. 1083–

1094, 2000. 42

[77] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and

J. Chanussot, “Hyperspectral unmixing overview: Geometrical, statistical, and

sparse regression-based approaches,” IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, vol. 5, no. 2, pp. 354–379, 2012. 42, 48

[78] R. Heylen, M. Parente, and P. Gader, “A review of nonlinear hyperspectral unmix-

ing methods,” IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, vol. 7, no. 6, pp. 1844–1868, 2014. 42

[79] L. Drumetz, M. A. Veganzones, S. Henrot, R. Phlypo, J. Chanussot, and C. Jut-

ten, “Blind hyperspectral unmixing using an extended linear mixing model to ad-

dress spectral variability,” IEEE Transactions on Image Processing, vol. 25, no. 8,

pp. 3890–3905, 2016. 43

[80] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix

factorization,” Nature, vol. 401, no. 6755, p. 788, 1999. 43

[81] P. Sajda, S. Du, T. Brown, L. Parra, and R. Stoyanova, “Recovery of constituent

spectra in 3D chemical shift imaging using nonnegative matrix factorization,” in

4th International Symposium on Independent Component Analysis and Blind Signal

Separation, pp. 71–76, 2003. 43

[82] V. P. Pauca, J. Piper, and R. J. Plemmons, “Nonnegative matrix factorization for

137

spectral data analysis,” Linear Algebra and its Applications, vol. 416, no. 1, pp. 29–

47, 2006. 43

[83] A. Cichocki, R. Zdunek, A. H. Phan, and S. I. Amari, Nonnegative matrix and tensor

factorizations: applications to exploratory multi-way data analysis and blind source

separation. John Wiley & Sons, 2009. 43

[84] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Sparse unmixing of hyperspec-

tral data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 6,

pp. 2014–2039, 2011. 43

[85] W. He, H. Zhang, and L. Zhang, “Sparsity-regularized robust non-negative matrix

factorization for hyperspectral unmixing,” IEEE Journal of Selected Topics in Ap-

plied Earth Observations and Remote Sensing, vol. 9, no. 9, pp. 4267–4279, 2016.

43

[86] D. C. Heinz and C. I. Chang, “Fully constrained least squares linear spectral mixture

analysis method for material quantification in hyperspectral imagery,” IEEE Trans-

actions on Geoscience and Remote Sensing, vol. 39, no. 3, pp. 529–545, 2001. 43,

59

[87] Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, “Hyperspectral unmixing via L1/2

sparsity-constrained nonnegative matrix factorization,” IEEE Transactions on Geo-

science and Remote Sensing, vol. 49, no. 11, pp. 4282–4297, 2011. 43

[88] L. Drumetz, T. R. Meyer, J. Chanussot, A. L. Bertozzi, and C. Jutten, “Hyperspec-

tral image unmixing with endmember bundles and group sparsity inducing mixed

norms,” IEEE Transactions on Image Processing, vol. 28, no. 7, pp. 3435–3450,

2019. 43, 59, 60

138

[89] A. Sandryhaila and J. M. Moura, “Discrete signal processing on graphs: Frequency

analysis,” IEEE Transactions on Signal Processing, vol. 62, no. 12, pp. 3042–3054,

2014. 44, 46

[90] R. Ammanouil, A. Ferrari, and C. Richard, “Hyperspectral data unmixing with

graph-based regularization,” in 7th Workshop on Hyperspectral Image and Signal

Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4, June 2015. 44

[91] K. Benzi, V. Kalofolias, X. Bresson, and P. Vandergheynst, “Song recommendation

with non-negative matrix factorization and graph total variation,” in 2016 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 2439–2443, 2016. 44, 46

[92] Y. Van-Gennip and A. L. Bertozzi, “Gamma-convergence of graph Ginzburg-Landau

functionals,” Advances in Differential Equations, vol. 17, no. 11/12, pp. 1115–1180,

2012. 44

[93] J. A. Dobrosotskaya and A. L. Bertozzi, “A wavelet-Laplace variational technique

for image deconvolution and inpainting,” IEEE Transactions on Image Processing,

vol. 17, no. 5, pp. 657–663, 2008. 44, 55

[94] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping using the

Nyström method,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 26, no. 2, pp. 214–225, 2004. 44, 47, 50

[95] R. Glowinski and A. Marrocco, “Sur l’approximation, par elements finis d’ordre un,

et la resolution, par, penalisation-dualité, d’une classe de problems de Dirichlet non

lineares,” Revue Française d’Automatique, Informatique, et Recherche Opéationelle,

vol. 9, pp. 41–76, 1975. 44

139

[96] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear varia-

tional problems via finite element approximations,” Computers & mathematics with

applications, vol. 2, pp. 17–40, 1976. 44

[97] B. Merriman, J. K. Bence, and S. J. Osher, “Motion of multiple junctions: A level

set approach,” Journal of Computational Physics, vol. 112, no. 2, pp. 334–363, 1994.

44, 52

[98] E. Merkurjev, J. Sunu, and A. L. Bertozzi, “Graph MBO method for multiclass seg-

mentation of hyperspectral stand-off detection video,” in IEEE International Con-

ference on Image Processing, pp. 689–693, 2014. 44, 48, 51, 52

[99] Z. Meng, E. Merkurjev, A. Koniges, and A. L. Bertozzi, “Hyperspectral image classi-

fication using graph clustering methods,” Image Processing On Line, vol. 7, pp. 218–

245, 2017. 45, 48, 50, 52, 56

[100] L. I. Rudin, S. J. Osher, and E. Fatemi, “Nonlinear total variation based noise removal

algorithms,” Physica D: nonlinear phenomena, vol. 60, no. 1-4, pp. 259–268, 1992.

45

[101] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total variation spatial regular-

ization for sparse hyperspectral unmixing,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 50, no. 11, pp. 4484–4502, 2012. 45, 58, 59, 60

[102] Z. Guo, T. Wittman, and S. J. Osher, “L1 unmixing and its application to hy-

perspectral image enhancement,” in Algorithms and Technologies for Multispectral,

Hyperspectral, and Ultraspectral Imagery XV, vol. 7334, p. 73341M, International

Society for Optics and Photonics, 2009. 46

140

[103] W. He, H. Zhang, and L. Zhang, “Total variation regularized reweighted sparse

nonnegative matrix factorization for hyperspectral unmixing,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 55, no. 7, pp. 3909–3921, 2017. 46

[104] F. Xiong, Y. Qian, J. Zhou, and Y. Y. Tang, “Hyperspectral unmixing via total varia-

tion regularized nonnegative tensor factorization,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 57, no. 4, pp. 2341–2357, 2018. 46

[105] Y. Yuan, Z. Zhang, and Q. Wang, “Improved collaborative non-negative matrix fac-

torization and total variation for hyperspectral unmixing,” IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 998–1010,

2020. 46

[106] J. Li, J. M. Bioucas-Dias, A. Plaza, and L. Liu, “Robust collaborative nonnegative

matrix factorization for hyperspectral unmixing,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 54, no. 10, pp. 6076–6090, 2016. 46

[107] L. Zhuang, C.-H. Lin, M. A. Figueiredo, and J. M. Bioucas-Dias, “Regularization pa-

rameter selection in minimum volume hyperspectral unmixing,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 57, no. 12, pp. 9858–9877, 2019. 46, 59, 60

[108] G. Gilboa and S. J. Osher, “Nonlocal operators with applications to image process-

ing,” Multiscale Modeling & Simulation, vol. 7, no. 3, pp. 1005–1028, 2008. 46

[109] Y. Lou, X. Zhang, S. J. Osher, and A. L. Bertozzi, “Image recovery via nonlocal

operators,” Journal of Scientific Computing, vol. 42, no. 2, pp. 185–197, 2010. 46

[110] W. Zhu, V. Chayes, A. Tiard, S. Sanchez, D. Dahlberg, A. L. Bertozzi, S. J. Osher,

D. Zosso, and D. Kuang, “Unsupervised classification in hyperspectral imagery with

141

nonlocal total variation and primal-dual hybrid gradient algorithm,” IEEE Transac-

tions on Geoscience and Remote Sensing, vol. 55, no. 5, pp. 2786–2798, 2017. 46

[111] J. Yao, D. Meng, Q. Zhao, W. Cao, and Z. Xu, “Nonconvex-sparsity and nonlocal-

smoothness-based blind hyperspectral unmixing,” IEEE Transactions on Image Pro-

cessing, vol. 28, no. 6, pp. 2991–3006, 2019. 46

[112] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonnegative matrix

factorization for data representation,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 33, no. 8, pp. 1548–1560, 2010. 46

[113] F. Zhu, Y. Wang, S. Xiang, B. Fan, and C. Pan, “Structured sparse method for

hyperspectral unmixing,” ISPRS Journal of Photogrammetry and Remote Sensing,

vol. 88, pp. 101–118, 2014. 46

[114] X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, “Manifold regularized sparse NMF for

hyperspectral unmixing,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 51, no. 5, pp. 2815–2826, 2012. 46, 58, 59

[115] M. Li, F. Zhu, A. J. X. Guo, and J. Chen, “A graph regularized multilinear mix-

ing model for nonlinear hyperspectral unmixing,” Remote Sensing, vol. 11, no. 19,

p. 2188, 2019. 46

[116] X. Zhang, C. Li, J. Zhang, Q. Chen, J. Feng, L. Jiao, and H. Zhou, “Hyperspectral

unmixing via low-rank representation with space consistency constraint and spectral

library pruning,” Remote Sensing, vol. 10, no. 2, p. 339, 2018. 46

[117] E. Esser, M. Moller, S. Osher, G. Sapiro, and J. Xin, “A convex model for nonneg-

ative matrix factorization and dimensionality reduction on physical space,” IEEE

Transactions on Image Processing, vol. 21, no. 7, pp. 3239–3252, 2012. 47

142

[118] H. Hu, J. Sunu, and A. L. Bertozzi, “Multi-class graph Mumford-Shah model for

plume detection using the MBO scheme,” in International Workshop on Energy

Minimization Methods in Computer Vision and Pattern Recognition, pp. 209–222,

Springer, 2015. 48, 51

[119] A. L. Bertozzi and A. Flenner, “Diffuse interface models on graphs for classification

of high dimensional data,” SIAM Review, vol. 58, no. 2, pp. 293–328, 2016. 51

[120] S. Esedog and Y. H. R. Tsai, “Threshold dynamics for the piecewise constant

Mumford–Shah functional,” Journal of Computational Physics, vol. 211, no. 1,

pp. 367–384, 2006. 51

[121] R. V. Kohn and P. Sternberg, “Local minimisers and singular perturbations,” Pro-

ceedings of the Royal Society of Edinburgh Section A: Mathematics, vol. 111, no. 1-2,

pp. 69–84, 1989. 51

[122] C. Garcia-Cardona, E. Merkurjev, A. L. Bertozzi, A. Flenner, and A. G. Percus,

“Multiclass data segmentation using diffuse interface methods on graphs,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 8, pp. 1600–

1613, 2014. 51, 52

[123] G. Iyer, J. Chanussot, and A. L. Bertozzi, “A graph-based approach for feature ex-

traction and segmentation of multimodal images,” in IEEE International Conference

on Image Processing, pp. 3320–3324, 2017. 51

[124] G. Iyer, J. Chanussot, and A. L. Bertozzi, “A graph-based approach for data fusion

and segmentation of multimodal images,” IEEE Transactions on Geoscience and

Remote Sensing, 2020. 51

143

[125] W. Wang and M. A. Carreira-Perpinán, “Projection onto the probability simplex:

An efficient algorithm with a simple proof, and an application,” arXiv preprint

arXiv:1309.1541, 2013. 54

[126] J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting method and the

proximal point algorithm for maximal monotone operators,” Mathematical Program-

ming, vol. 55, no. 1-3, pp. 293–318, 1992. 56

[127] J. M. Nascimento and J. M. Dias, “Vertex component analysis: A fast algorithm to

unmix hyperspectral data,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 43, no. 4, pp. 898–910, 2005. 59

[128] F. Zhu, “Hyperspectral unmixing: Ground truth labeling, datasets, benchmark per-

formances and survey,” arXiv preprint arXiv:1708.05125, 2017. 62

[129] S. Kumar, M. Mohri, and A. Talwalkar, “Sampling methods for the Nyström

method,” Journal of Machine Learning Research, vol. 13, no. Apr, pp. 981–1006,

2012. 68

[130] Z. Meng, A. Koniges, Y. H. He, S. Williams, T. Kurth, B. Cook, J. Deslippe, and

A. L. Bertozzi, “OpenMP Parallelization and Optimization of Graph-based Machine

Learning Algorithms,” pp. 17–31, Springer, 2016. 68

[131] E. A. Ashley, “Towards precision medicine,” Nature Reviews Genetics, vol. 17, no. 9,

p. 507, 2016. 75

[132] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized data,” in Ar-

tificial Intelligence and Statistics, pp. 1273–1282, PMLR, 2017. 75

144

[133] E. Dobriban and Y. Sheng, “Wonder: Weighted one-shot distributed ridge regression

in high dimensions.,” Journal of Machine Learning Research, vol. 21, no. 66, pp. 1–52,

2020. 77, 78, 86

[134] E. Dobriban and Y. Sheng, “Distributed linear regression by averaging,” The Annals

of Statistics, vol. 49, no. 2, pp. 918–943, 2021. 78

[135] Y. Zhang, J. C. Duchi, and M. J. Wainwright, “Communication-efficient algorithms

for statistical optimization,” Journal of Machine Learning Research, vol. 14, no. 1,

pp. 3321–3363, 2013. 78

[136] J. Fan, D. Wang, K. Wang, and Z. Zhu, “Distributed estimation of principal

eigenspaces,” Annals of statistics, vol. 47, no. 6, p. 3009, 2019. 78, 93

[137] V. Charisopoulos, A. R. Benson, and A. Damle, “Communication-efficient distributed

eigenspace estimation,” arXiv preprint arXiv:2009.02436, 2020. 78

[138] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three approaches for personaliza-

tion with applications to federated learning,” arXiv preprint arXiv:2002.10619, 2020.

78

[139] S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei, “Few-shot learning via learning

the representation, provably,” arXiv preprint arXiv:2002.09434, 2020. 78

[140] N. Tripuraneni, C. Jin, and M. I. Jordan, “Provable meta-learning of linear repre-

sentations,” arXiv preprint arXiv:2002.11684, 2020. 78

[141] S. Wu, H. R. Zhang, and C. Ré, “Understanding and improving information transfer

in multi-task learning,” arXiv preprint arXiv:2005.00944, 2020. 78

145

[142] R. Nassif, S. Vlaski, C. Richard, J. Chen, and A. H. Sayed, “Multitask learning over

graphs: An approach for distributed, streaming machine learning,” IEEE Signal

Processing Magazine, vol. 37, no. 3, pp. 14–25, 2020. 78

[143] W. Wang, J. Wang, M. Kolar, and N. Srebro, “Distributed stochastic multi-task

learning with graph regularization,” arXiv preprint arXiv:1802.03830, 2018. 78

[144] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-task learn-

ing,” in Proceedings of the 31st International Conference on Neural Information Pro-

cessing Systems, pp. 4427–4437, 2017. 78

[145] S. Liu, S. J. Pan, and Q. Ho, “Distributed multi-task relationship learning,” in

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pp. 937–946, 2017. 78

[146] D. Richards, S. N. Negahban, and P. Rebeschini, “Decentralised sparse multi-task

regression,” arXiv preprint arXiv:1912.01417, 2019. 78

[147] I. Yamane, F. Yger, M. Berar, and M. Sugiyama, “Multitask principal component

analysis,” in Asian Conference on Machine Learning, pp. 302–317, PMLR, 2016. 78,

94

[148] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated learning: A meta-

learning approach,” arXiv preprint arXiv:2002.07948, 2020. 78

[149] A. Maurer, “The rademacher complexity of linear transformation classes,” in Inter-

national Conference on Computational Learning Theory, pp. 65–78, Springer, 2006.

79

[150] L. Balzano, Y. Chi, and Y. M. Lu, “Streaming PCA and subspace tracking: The

missing data case,” Proceedings of the IEEE, vol. 106, no. 8, pp. 1293–1310, 2018. 96

146

[151] C. Gao and J. D. Welch, “Iterative refinement of cellular identity from single-cell

data using online learning,” bioRxiv preprint bioRxiv:2020.01.16.909861, 2020. 102

[152] S. Chen, Y. C. Eldar, and L. Zhao, “Graph unrolling networks: Interpretable neural

networks for graph signal denoising,” arXiv preprint arXiv:2006.01301, 2020. 102

[153] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors

for model based reconstruction,” in 2013 IEEE Global Conference on Signal and

Information Processing, pp. 945–948, IEEE, 2013. 102

[154] Y. Romano, M. Elad, and P. Milanfar, “The little engine that could: Regularization

by denoising (red),” SIAM Journal on Imaging Sciences, vol. 10, no. 4, pp. 1804–

1844, 2017. 102

[155] M. J. Wainwright, High-dimensional statistics: A non-asymptotic viewpoint, vol. 48.

Cambridge University Press, 2019. 106

[156] P. Tseng, “Convergence of a block coordinate descent method for nondifferentiable

minimization,” Journal of Optimization Theory and Applications, vol. 109, no. 3,

pp. 475–494, 2001. 111

[157] R. Elyanow, B. Dumitrascu, B. E. Engelhardt, and B. J. Raphael, “netNMF-sc:

Leveraging gene–gene interactions for imputation and dimensionality reduction in

single-cell expression analysis,” Genome research, vol. 30, no. 2, pp. 195–204, 2020.

113

[158] C. Gao and J. D. Welch, “Iterative refinement of cellular identity from single-cell

data using online learning,” bioRxiv, 2020. 113

[159] D. P. Palomar and J. R. Fonollosa, “Practical algorithms for a family of waterfilling

147

solutions,” IEEE Transactions on Signal Processing, vol. 53, no. 2, pp. 686–695, 2005.

126

148

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Chapter 1 Introduction
	1.1 Motivation for Better Inference with Graph Regularization
	1.2 Classical Optimization-based Graph Regularization Framework
	1.3 Thesis Contributions: Graph Regularization and Beyond
	1.4 Thesis Outline
	1.5 Notation

	Chapter 2 Denoising with Graph Regularization
	2.1 Summary
	2.2 Introduction
	2.3 Related Work and Connections
	2.4 Graph Trend Filtering (GTF)
	2.4.1 Piecewise Smooth Graph Signals
	2.4.2 Denoising Piecewise Smooth Graph Signals via GTF

	2.5 Proposed: Vector-valued GTF with Non-convex Penalties
	2.5.1 (Non-)convex Penalties
	2.5.2 Vector-valued GTF

	2.6 Theoretical Guarantees
	2.6.1 Error Rates of First-order Stationary Points
	2.6.2 Comparison with Scalar-GTF using 1 Regularization
	2.6.3 Error Rates for Erdos-Rényi Graphs
	2.6.4 Support Recovery

	2.7 ADMM Algorithm and its Convergence
	2.8 Numerical Experiments
	2.8.1 Denoising via GTF with Non-convex Regularizers
	2.8.2 Denoising Vector-valued Signals via GTF
	2.8.3 Denoising Trends in Real-world Traffic Data
	2.8.4 Semi-supervised Classification

	2.9 Conclusions

	Chapter 3 Matrix Factorization in Remote Sensing
	3.1 Summary
	3.2 Introduction
	3.3 Related Work
	3.4 Proposed: Graph Total Variation Regularization for Blind Hyperspectral Unmixing
	3.5 Preliminaries
	3.5.1 Graph Construction and Nyström Method
	3.5.2 Ginzburg-Langdau Functional and MBO Scheme

	3.6 gtvMBO: ADMM Algorithm
	3.6.1 Time Complexity of gtvMBO

	3.7 Hyperspectral Unmixing Experiments
	3.7.1 Synthetic Data
	3.7.2 Real Data

	3.8 Parameter Selection
	3.9 Conclusions

	Chapter 4 Distributed Multitask Learning
	4.1 Summary
	4.2 Introduction
	4.3 Related Work and Connections
	4.4 Multitask Linear Regression
	4.4.1 Motivation via Graph Regularization
	4.4.2 Fusion of Linear Estimators: Proposed Framework
	4.4.3 Fusion of Linear Estimators: Proposed Algorithms
	4.4.4 Simulation Experiments

	4.5 Multitask Principal Components Analysis (PCA)
	4.5.1 Multitask Rank-k PCA with Convex Relaxation
	4.5.2 Motivation via Graph Regularization
	4.5.3 Fusion of Sample Covariance Matrices: Proposed Framework and Algorithms
	4.5.4 Simulation Experiments

	4.6 Conclusions and Future Works

	Chapter 5 Conclusions and Future Works
	Appendix A Proofs for Denoising with Graph Regularization
	A.1 Proof of Theorem 1
	A.2 Proof of Proposition 1
	A.3 Proof of Theorem 3

	Appendix B Preliminary Results for Online Matrix Factorization in Computational Biology
	B.1 Computational Biology Motivation
	B.2 Online Matrix Factorization with Graph Regularization

	Appendix C Proofs and Intermediate Results for Distributed Multitask Learning
	C.1 Proof of Theorem 4
	C.2 Proof of Proposition 2
	C.3 Proof of Theorem 5
	C.4 Examples of Local Estimators for Theorem 5
	C.5 Proof of Proposition 3
	C.6 Proof of Theorem 6
	C.7 Intermediate Results: Convex Combination of OLS Estimates
	C.8 Proof of Proposition 5

	Bibliography

