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Abstract

Learning a postulated parametric model from the acquired data to extract useful

information is of great importance in modern signal processing, machine learning and

statistics. The linear model, where the observed data are assumed to depend linearly

on the input data, has been studied extensively and applied successfully to many ap-

plications. However, the linear assumption is quite restricted, creating a major road-

block for its accuracy and universality, since the dependency of the data is nonlinear

in general, and cannot be approximated by a linear model. The challenges of learn-

ing these nonlinear models include high computational cost and susceptibility to local

minima in their associated optimization problems. Through case studies, we highlight

the statistical and computational issues when learning from high-dimensional coarse

and nonlinear data, with the hope of shedding light on resolving these challenges.

In this thesis, we consider data from typical signal processing and machine learn-

ing applications. In the context of signal processing, we study the problem of esti-

mating spectrally-sparse signals from their quantized noisy complex-valued random

linear measurements, a problem arising naturally from analog-to-digital conversion

in sub-Nyquist spectrum sampling. We first study the effects of quantization on es-

timating the spectrum by characterizing the Cramér-Rao bound under the additive

white Gaussian noise. We use the calculated bound to highlight the trade-off between

the sample complexity and the bit depth under different signal-to-noise ratios for a
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fixed budget of bits. Secondly, we formulate a convex optimization approach based

on atomic norm soft thresholding to estimate the spectrum of the signal, which is

computationally more efficient than the maximum-likelihood estimator.

Moving to the context of machine learning, we study several one-hidden-layer

neural network models for nonlinear regression using both cross-entropy and least-

squares loss functions. The neural-network-based models have attracted a significant

amount of research interest due to the success of deep learning in practical domains

such as computer vision and natural language processing. Learning such neural-

network-based models often requires solving a non-convex optimization problem. We

propose different strategies to characterize the optimization landscape of the non-

convex loss functions and provide guarantees on the statistical and computational

efficiency of optimizing these loss functions via gradient descent.
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Chapter 1: Introduction

This thesis studies several problems on learning from coarse and nonlinear data.

In this chapter, we first explain the motivation of these problems, and describe the

major approach to solving them. We then summarize our main contributions with

respect to the state-of-the-art in the literature.

1.1 Motivation

In order to extract latent information from the collected data samples in many

machine learning, signal processing and statistical inference tasks, a parametric model

is generally proposed to postulate a data generating mechanism. Fitting an effective

and reasonable model is then equivalent to recovering a finite set of parameters. In

this thesis, we follow this direction and focus on parametric models to fit the data.

Assuming the observed data is generated from a true parametric model, our goal is

to recover the parameters of the underlying model from the acquired data.

One example is the classical linear model, where we aim to estimate a vector

w? ∈ Rd from a set of independent and identically distributed (i.i.d.) data samples

{
(xi, yi) : xi ∈ Rd and yi ∈ R

}n
i=1

,
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by assuming the observation yi depends linearly on the vector w?, through the fol-

lowing model:

yi = x>i w
? + νi, i = 1, 2, · · · , n, (1.1)

where νi stands for some noise.

To find an estimator ŵ that approximates w?, a common strategy is to form a

proper optimization problem with the data {(xi, yi)}ni=1, i.e., solving the following

optimization problem

ŵ =argmin
w

Ln (w) =
1

n

n∑
i=1

` (w;xi, yi) , (1.2)

subject to w ∈ C.

Here, the loss function Ln (w) measures the discrepancy between the candidate model

and the true model, and the set C is the feasible region which has incorporated

the constraint or prior information, if any. For example, when the noise νi follows

i.i.d. Gaussian distribution and C = Rd, it is not a bad idea to take ` (w;xi, yi) =(
x>i w − yi

)2
, the least-squares, or the quadratic loss, which yields the maximum

likelihood estimator (MLE).

Although the linear model (1.1) is equipped with many good properties, for exam-

ple, it is easy to interpret, and computationally efficient, to name a few. However, the

stringent assumption that the output depends on the input via a linear relationship

has been a serious impediment for its accuracy and universality, since the relationship

of the data can be nonlinear in general. One example of the non-linearity is when the

observed data is quantized into a binary observation, i.e., yi ∈ {−1, 1}. Such binary

observations have emerged in many applications, such as 1-bit compressed sensing [1]

in signal processing, and binary classification in machine learning. Another example

2



is that the observed data is continuous but does not necessarily depends linearly on

the input data, such as the output of a neural network with nonlinear activations.

The binary or the general nonlinear nature of the output data has raised many

new challenges which are not inherent in the linear model (1.1). In particular, the

computational cost of the MLE with quantized data could be much higher. When the

quantizer is not given, the effect of quantization has not been fully understood yet,

a MLE cannot be formulated. Finding the MLE for a general nonlinear model often

requires solving a non-convex optimization problem which is much more challenging.

Hence, in this thesis we study the problem of learning from coarse and nonlinear data

to shed light on understanding quantization effects as well as developing algorithms

for solving a type of non-convex optimization problem.

1.2 Convex and Nonconvex Approaches

One of the most popular methods to recover the model parameterized with w?

from the observed data is via solving the optimization problem (1.2). The loss func-

tion Ln (·) or the feasible region C is often nonconvex in many problems. The main

challenge caused by the nonconvexity is the existence of local minima and saddle

points that can attract the algorithm.

One way to circumvent this challenge is to reformulate the problem as a convex

optimization problem via convex relaxation, which excuses the need to worry about

the spurious local minima. For example, in the problem of spectrum estimation which

will be studied later, we assume the signal w? is approximately sparse in the spectral

domain. However, incorporating such sparse prior makes the feasible set C nonconvex,

and searching in such a nonconvex space is not computationally tractable. To deal

3



with this problem, we take an atomic norm [2] constraint which convexifies the exact

sparsity constraint onw. Such a convex relaxation approach has achieved tremendous

theoretical success in solving various problems [3, 4].

Differently from convex relaxation, an alternative approach is to directly solve the

nonconvex optimization problem with careful local landscape analysis and initializa-

tion. Although solving general nonconvex optimization problems is computationally

intractable due to the existence of spurious local minima or saddle points, solving

certain nonconvex problems under proper statistical models may not be that diffi-

cult. For certain types of nonconvex problems, it was shown that in the local region

around the global minima, the objective function usually possesses a benign land-

scape [5–7]. For example, in the problem of recovering neural-network-based models

that will be studied later, we found that there often exists a reasonably large basin

of attraction around the ground truth w?. Particularly, we can either explore the

second-order (Hessian) property of the loss function to establish the local strong

convexity or check the first-order (gradient) property to verify a so-called regularity

condition under some mild conditions. Once initialized in such local regions, simple

algorithms like gradient descent can find the global optimum w?.

This Thesis explores the convex approach to solve the problem of spectrum esti-

mation from quantized measurements in the context of signal processing, and adopts

the nonconvex approach to solve the neural-network-based model recovery problem

in the context of machine learning.
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1.3 Spectrum Estimation from Quantized Measurements

We first study a problem in the context of signal processing, i.e., estimating a

spectrally-sparse signals from its heavy quantized linear measurements. In this prob-

lem, the non-linearity of the data comes from the quantization procedure, i.e., the

output data depends on the input through

yi = f
(
x>i w

? + νi
)
, (1.3)

where f (·) is used to model the quantization non-linearity. More specifically, we study

high-resolution spectrum estimation of a band-limited signal from quantization of its

noisy random linear measurements. The signals of interest are spectrally sparse, which

are modeled as a linear superposition of complex sinusoids with continuous-valued fre-

quencies. In the extreme 1-bit case, the quantization is based on the quadrants of the

complex-valued measurements. More generally, sophisticated quantization schemes

such as Lloyds quantizer [8] can be used to allow a higher bit depth. The specific

form of the quantizer can be either known or unknown. In addition, the quantized

measurements may be additionally contaminated by a noise model, in order to model

imperfections in the quantization.

The reasons we study this problem are two-fold. Compressed Sensing (CS) [9,10]

has emerged as an effective approach to allow sub-Nyquist sampling [11–13] when

the wideband signal is approximately sparse in the spectral domain. The result-

ing paradigm is referred to as Compressive Spectrum Sensing [14, 15]. Significant

focus has been put on reducing the sampling rates of the analog-to-digital convert-

ers (ADC), which only covers one aspect of the operations of ADCs. Quantization,

which maps the analog samples into a finite number of bits for digital processing, is

5



another necessary step that requires careful treatments. Most existing works, with a

few exceptions, assume that the samples are quantized at a high bit level so that the

quantization error is relatively small and well-behaved. Another motivation comes

from the application wideband spectrum sensing in bandwidth-constrained wireless

networks [16,17]. In order to reduce the communication overhead, each sensor trans-

mits quantized messages, e.g. 1-bit messages; and it is necessary to estimate wideband

spectrum from quantized measurements at the fusion center. Moreover, the quanti-

zation scheme might be unknown, due to lack of the knowledge of noise statistics

or privacy constraints. Therefore, it is necessary to develop estimators that do not

require exact knowledge of the quantizers.

Hence the study aims at understanding the fundamental limits of quantization,

as well as developing computationally efficient algorithms, for compressive spectrum

sensing and parameter estimation, in particular in the regime of heavy quantization

where it is no longer appropriate to model quantization errors as bounded additive

noise. Examining the figure-of-merit of ADCs, two key specifications are the sam-

pling rate and the effective number of bits (ENOB), which is the number of bits per

measurement, also known as the bit depth. Typically, a small bit depth allows a high

sampling rate, and vice versa [18]. Therefore, it is critical to understand the funda-

mental trade-off between sampling rate and bit depth for high-resolution spectrum

estimation. Though the importance of understanding such trade-off has been real-

ized in the context of CS [19,20], they haven’t been studied for the task of parameter

estimation using estimation-theoretic tools.
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Contributions

In this study, we first derive the Cramér-Rao bound (CRB) for estimating multi-

ple frequencies and their complex amplitudes assuming additive white Gaussian noise

(AWGN) and the Lloyd’s quantizer, using a fixed and deterministic CS measurement

matrix. Our bounds suggest that the CRB experiences a phase transition depending

on the signal-to-noise ratio (SNR) before quantization. In the low SNR regime it is

noise-limited, and behaves similarly as if there was no quantization; in the high SNR

regime, it is quantization-limited, and experiences severe performance degeneration

due to quantization. Furthermore, we use the derived CRB to answer the following

question: given the same budget of bits, should we use more measurements (high sam-

ple complexity) with low bit-depth, or fewer measurements (low sample complexity)

with high bit-depth? We answer this question by comparing 1-bit versus 2-bit quanti-

zation schemes using the CRB, and demonstrate the answer depends on the SNR. At

low SNR, 1-bit measurements are preferred, while at high SNR, 2-bit measurements

are preferred.

It is well-known that maximum likelihood estimators approach the performance of

CRB asymptotically at high SNR [21], however, their implementation requires exact

knowledge of the likelihood function, which in our problem, includes the exact form of

the quantizer and noise statistics. However, such knowledge may not be available in

certain applications. Therefore, our goal is to develop estimators that do not require

the knowledge of the quantization scheme. To mitigate basis mismatch [22], atomic

norm [2, 23–30] has been proposed recently to promote spectral sparsity via convex

optimization without discretizing the frequencies onto a finite grid, which has found
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applications in signal denoising, interpolation of missing data, and frequency local-

ization of spectrally-sparse signals. Existing atomic norm minimization algorithms

assume unquantized measurements that are possibly contaminated by additive noise,

and a direct application will lead to highly sub-optimal performance when a significant

amount of the quantized measurements saturate [31].

We propose a novel atomic norm soft thresholding (AST) algorithm [29] to recover

spectrally-sparse signals and estimate the frequencies from their 1-bit quantized mea-

surements. Our algorithm is based on finding the proximal mapping of properly

designed surrogate signals, that are formed by linear combinations of the sample-

modulated measurement vectors, with respect to the atomic norm to promote spectral

sparsity. In other words, we aim to find signals that balance between the proximity

to the surrogate signals and the small atomic norm. Moreover, the frequencies can be

localized without knowing the model order a priori, by examining the peak of a dual

polynomial constructed from the dual solution. Alternatively, conventional subspace

methods can be used to estimate the frequencies using the recovered spectral signal.

The proposed algorithm can be generalized to handle quantizations of noisy random

linear measurements of multiple spectrally-sparse signals [25], where each signal con-

tains the same set of frequencies with different coefficients. The proposed algorithms

do not require knowledge of the specific form of the quantizer, and therefore can be

applied even when the quantizer is unknown.

Related Work

This study is closely related to 1-bit compressed sensing [1, 32–38], which aims

to recover a sparse signal from signs of random linear measurements. In particular,

Plan and Vershynin [34–37] generalize this idea to reconstructing signals that belong
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to some low-dimensional set. Very recently, [39] studied a similar setup and proposed

a new algorithm using projected gradient descent. The surrogate signals used in

our algorithm can be traced back to [20, 37]. The difference lies in that instead of

projecting the surrogate signals directly onto some low-dimensional set, we adopt the

proximal mapping of the surrogate signals with respect to the atomic norm. Several

algorithms have been proposed in the CS literature to deal with general quantization

schemes [19, 40] and nonlinear measurement schemes [37, 39], however the focus has

been on reconstruction of sparse signals in a finite dictionary, whereas our focus is

on parameter estimation and reconstructing sparse signals in a parametric dictionary

containing an infinite number of atoms.

There are also several conflicting evidence regarding the trade-offs between bit-

depth and sample complexity [20, 41] for signal reconstruction, as they may vary

for different problems when using specific algorithms. In contrast, we derive the

Cramér-Rao bound for parameter estimation using quantized compressive random

measurements, which provides an estimation-theoretic baseline for gauging the trade-

off as well as benchmarking performances. Our CRB adds to existing literature of

CRB calculations for 1-bit quantized single-tone frequency estimation [42] as well as

for parameter estimation using compressive measurements [43].

1.4 Learning One-Hidden-Layer Neural Networks for Binary
Classification

We then study the problem of learning neural-network-based models in the context

of machine learning, i.e., we assume the training samples (xi, yi) ∼ (x, y), i = 1, . . . , n,

are generated independently and identically distributed (i.i.d.) from a distribution

based on a neural network model with the ground truth parameter W ? ∈ Rd×K . The

9



output of an one-hidden-layer neural network can be written as

f (W ?,xi) =
1

K

K∑
k=1

φ
(
x>i w

?
k

)
, (1.4)

where φ (·) is the activation function, and w?
k denotes the k-th column of W ?. The

goal is to recover the underlying model parameterW ? using the training samples. The

non-linearity comes from two-fold. First the activation function considered is either

Sigmoid φ (x) = 1
1+exp(−x)

or ReLU φ (x) = max (x, 0), both of which are nonlinear.

Second with the binary classification setting we considered, yi is quantized to discrete

label {−1, 1}.

Neural networks have attracted a significant amount of research interest in recent

years due to the success of deep neural networks [44] in practical domains such as

computer vision and artificial intelligence [45–47]. Extensive studies have established

the expressive power of neural networks. In particular, one-hidden-layer neural net-

works are sufficient to approximate any continuous function under certain conditions.

However, the theoretical underpinnings behind this model remains mysterious to a

large extent. This motivates us to study such a one-hidden-layer neural networks.

As with learning the linear model (1.1), an optimization problem (1.2) will be

formulated for learning the neural-network-based model as well. Due to the non-

linearity of the neural-network-based model, the optimization problem that needs to

be solved is often non-convex. The intricate and unknown landscape of the non-

convex objection function makes the problem much more difficult than the convex

case.
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Contributions

The main purpose of this study is to answer whether the true parameter can

be recovered from its finite non-linear observations via solving the formulated non-

convex optimization problem. As most machine learning tasks can be categorized as

a classification problem or a regression problem, we considered both settings in this

study, i.e.,

• Regression, where each sample y ∈ R is generated as

y = f(W ?,x).

This type of regression problem has been studied in various settings. In particu-

lar, [48] studied the single-neuron model under the Rectified Linear Unit (ReLU)

activation, [7] studied the one-hidden-layer multi-neuron network model, and

[49] studied a two-layer feedforward network with ReLU activations and iden-

tity mapping.

• Classification, where a label y ∈ {0, 1} is drawn according to the conditional

distribution

P(y = 1|x) = f(W ?,x).

Such a problem has been studied in [50] when the network contains only a single

neuron.

For both cases, previous studies attempted to recover W ?, by minimizing an empir-

ical loss function using the squared loss, i.e. minW
1
n

∑n
i=1(yi − f(W ,xi))

2, given

the training data. Two types of statistical guarantees were provided for such model

recovery problems using the squared loss. More specifically, [7] showed that in the
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local neighborhood of the ground truth W ?, the empirical loss function is strongly

convex for each given point under independent high probability event, which implies

that fresh samples are required at every iteration for gradient descent to converge

linearly with well-designed initializations. On the other hand, studies such as [50]

established strong convexity in the entire local neighborhood of the ground truth in

a uniform sense, so that resampling per iteration is not needed for gradient descent

to have guaranteed linear convergence as long as it enters such a local neighborhood.

Here, one weakness of the pointwise strong convexity in [7], compared to the uniform

strong convexity in [50], is that independent fresh samples are required at each it-

eration to guarantee the linear convergence of gradient descent. Consequently, the

sample complexity of [7] grows with respect to the recovery accuracy ε, typically with

an extra factor of log(1/ε) under linear convergence, which can be large when the de-

sired accuracy is high. Therefore, the latter type of uniform strong convexity without

requiring per-iteration resampling is much stronger and more desirable.

Considering the multi-neuron classification problem with either FCN or CNN.

We show that the empirical risk function Ln(W ) is uniformly strongly convex in a

local neighborhood of the ground truth W ?, hence if initialized in this neighborhood,

gradient descent converges linearly to a critical point (which we show to exist). Due

to the nature of quantized labels here, the recovery of the ground truth is only up to

certain statistical accuracy. Finally, we show that a tensor method provably provides

an initialization in the neighborhood of the ground truth both for FCN and CNN.

The cross-entropy loss is much more challenging to analyze than the squared loss,

e.g., its gradient and Hessian take much more complicated forms compared with the

squared loss; moreover, it is hard to control the values of gradient and Hessian due
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to the saturation phenomenon, i.e., when f (W ,x) approaches 0 or 1. In order to

establish the uniform local strong convexity property for the cross-entropy loss, we

first show the population loss is smooth regarding to W ?. Such a property was also

established in [7] for the squared loss. However, considering the special form of Hes-

sian under the cross-entropy loss, we need to apply Taylor’s approximation together

with certain probabilistic upper bounds to control the value of Hessian, and obtain

the smooth property. Network-specific quantities to capture the local geometry of

the population loss at W ? for FCN and CNN are derived, which imply that the

geometry of CNN is more benign than FCN, corroborated by the numerical experi-

ments. Beyond these two steps, the additional uniform concentration property of the

Hessian is of key importance for us to obtain the uniform local strong convexity of

the empirical loss. To show the uniform concentration of the Hessian, we successfully

apply a type of covering argument. Different from the arguments in [50], which deal

with the squared loss and are facilitated by certain nice assumptions on the activation

functions, the cross-entropy loss is more difficult to apply the covering argument, e.g.,

both the gradient and Hessian no longer have a deterministic upper bound. Hence,

we exploit the property of the sigmoid activation to show that the gradient and the

Hessian of the cross-entropy loss are upper bounded with high probability in order to

establish the uniform concentration property.

Related Work

Due to the scope, we focus on the most relevant literature on theoretical and

algorithmic aspects of learning shallow neural networks via nonconvex optimization.

The parameter recovery viewpoint is relevant to the success of nonconvex learning in
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signal processing problems such as matrix completion, phase retrieval, blind deconvo-

lution, dictionary learning and tensor decomposition [51–58], to name a few; see also

the overview article [59]. The statistical model for data generation effectively removes

worst-case instances and allows us to focus on average-case performance, which often

possess much benign geometric properties that enable global convergence of simple

local search algorithms.

The studies of one-hidden-layer network model can be further categorized into

two classes, landscape analysis and model recovery. In the landscape analysis, it

is known that if the network size is large enough compared to the data input, then

there are no spurious local minima in the optimization landscape, and all local minima

are global [60–63]. For the case with multiple neurons (2 ≤ K ≤ d) in the under-

parameterized setting, the work of Tian [64] studied the landscape of the population

squared loss surface with ReLU activations. In particular, there exist spurious bad

local minima in the optimization landscape [65,66] even at the population level. Zhong

et. al. [7] provided several important geometric characterizations for the regression

problem using a variety of activation functions and the squared loss.

In the model recovery problem, the number of neurons is smaller than the input

dimension, and all the existing works discussed below assumed the squared loss and

(sub-)Gaussian inputs. In the case with a single neuron (K = 1), [48] showed that

gradient descent converges linearly when the activation function is ReLU, with a zero

initialization, as long as the sample complexity is O(d) for the regression problem.

When the activation function is quadratic, [67] shows that randomly initialized gradi-

ent descent converges fast to the global optimum at a near-optimal sample complexity.

On the other hand, [50] showed that when φ(·) has bounded first, second and third
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derivatives, there is no other critical points than the unique global minimum (within

a constrained region of interest), and (projected) gradient descent converges linearly

with an arbitrary initialization, as long as the sample complexity is O(d log2 d) for the

classification problem. Moreover, in the case with multiple neurons, [68] showed that

projected gradient descent with a local initialization converges linearly for smooth

activations with bounded second derivatives for the regression problem, [69] showed

that gradient descent with tensor initialization converges linearly to a neighborhood

of the ground truth using ReLU activations, and [70] showed the linear convergence

of gradient descent with the spectral initialization using quadratic activations. For

CNN with ReLU activations, [71] shows that gradient descent converges to the ground

truth with random initialization for the population risk function based on the squared

loss under Gaussian inputs. Moreover, [72] shows that gradient descent successfully

learns a two-layer convolutional neural network despite the existence of bad local

minima. From a technical perspective, our study differs from all the aforementioned

work in that the cross entropy loss function we analyze has a very different form. Fur-

thermore, we study the model recovery classification problem under the multi-neuron

case, which has not been studied before.

1.5 Guaranteed Recovery of CNN with ReLU Activations

Moving beyond the classification setting, we further study a similar model recovery

problem under the regression setting using the quadratic loss. In particular, we

consider the training data that are generated by a one-hidden-layer convolutional

neural network (CNN) with the ReLU activation function. Previous work [71, 73]
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focused on analyzing the corresponding population risk function given by

L (w) = ED [` (w;xi, yi)] , (1.5)

where D denotes the joint distribution of (x, y). They analyzed the performance of

gradient descent that minimizes the population risk (1.5) with suitable assumptions

on the joint distribution D, and [71] further characterized the critical points of the

population risk function. However, these studies considered only the first-order prop-

erty about the population risk function. The second-order geometric property of the

population risk function has not been explored, which is our interest here. We further

wish to leverage the power of such second-order geometric properties for improving

the previous results. Moreover, the performance of gradient descent on minimizing

the empirical risk function has not been understood yet. Due to the non-smoothness

of the ReLU activation, the landscape of the empirical risk function cannot be directly

studied via its second-order property, i.e., the Hessian, and new methods need to be

developed.

Contributions

We first provide a refined analysis of the landscape of the population risk function

L (w) under the Gaussian input assumption [71, 73], and show that it is strongly

convex in a local neighborhood of the ground truth w?. Then, we show that gradient

descent with random initialization converges to the global minimum w? at a linear

rate. We further study the empirical risk function and show that such a function

satisfies a regularity condition within a local neighborhood of w?. We then further

establish that with a good initialization gradient descent converges linearly to the

true weights w?.
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Related Work

Besides the related work already mentioned in section 1.4, we here focus only on

the studies of the model recovery problem with ReLU activation. [64] considered a

single neuron neural network with ReLU activation, and showed that gradient descent

with random initialization learns the true weights. Later, [49] showed that for a one-

hidden-layer feed forward neural network with ReLU activation, SGD converges to

the global minimum in two phases with small initialization weights. For the one-

hidden-layer non-overlap convolutional neural network with ReLU activation, [71]

studied the convergence of gradient descent with a fixed output layer and proved

that gradient descent with random initialization can recover the weights exactly.

Subsequently [73] generalized their result by not fixing the output layer, and more

specifically they showed that when the output layer is to be learned, there exists

spurious local minimum, but gradient descent still converges to the true weights with

random initialization. These works have all been obtained under the assumption

that input training data follow an i.i.d. Gaussian distribution. Moreover, all the

convergence analysis of gradient descent methods is with regard to the population

risk function.

In the finite sample regime, training the neural network is based on the empirical

risk function. [48] studied the single-neuron network with ReLU activation in the high

dimensional regime, and showed that projected gradient descent with initialization

at the origin can recover the true weights up to some numerical constant under the

assumption that the weights belong to a closed set and the input follows a Gaussian

distribution.
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The most related work to our study is [71], which studied only the population risk

function. Our work captures the second-order landscape property of the population

risk function, based on which we significantly improve the convergence rate of gradient

descent from polynomial in [71] to linear. Inspired by the success of nonconvex

learning in signal processing problems [51, 58, 74], we exploit the geometric property

of the nonconvex empirical risk function and show the convergence of gradient descent

with well-designed initialization.

1.6 Notations

Throughout this thesis, we use boldface letters to denote vectors and matrices,

e.g. a and A. The Hermitian transpose of a is denoted by aH, the transpose of a

is denoted by aT, and ‖A‖, ‖A‖F, Tr(A) denote the spectral norm, the Frobenius

norm, and the trace of the matrixA, respectively. IfA is positive semidefinite (PSD),

then A � 0. The identity matrix is denoted by I. The gradient and the Hessian of a

function f(W ) is denoted by ∇f(W ) and ∇2f(W ), respectively. We use c, C, C1, . . .

to denote constants whose values may vary from place to place. If necessary, we

will introduce additional notations following the convention of notations in specific

context in each chapter.
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Chapter 2: Line Spectrum Estimation with Quantized

Measurements

In this chapter, we consider the problem of recovering spectrally-sparse signals

from heavy quantizations of their noisy complex-valued random linear measurements,

e.g. only the quadrant information. We first derive the Cramér-Rao bound (CRB) for

estimating multiple frequencies and their complex amplitudes assuming additive white

Gaussian noise (AWGN) and the Lloyd’s quantizer, using a fixed and deterministic

compressed sensing (CS) measurement matrix. Furthermore, we use the derived CRB

to answer the following question: given the same budget of bits, should we use more

measurements (high sample complexity) with low bit-depth, or fewer measurements

(low sample complexity) with high bit-depth? Moreover, we propose a novel atomic

norm soft thresholding (AST) algorithm [29] to recover spectrally-sparse signals and

estimate the frequencies from their 1-bit quantized measurements.

In this chapter we adopt the following notations. An indicator function for an

event A is denoted as IA. Denote T (u) ∈ Cn×n as the Hermitian Toeplitz matrix

with u as the first column. Define the inner product between two vectors a, b as

〈a, b〉 = aHb. The cardinality of a set D is defined as |D|. If A is positive semidefinite

(PSD), then A � 0. <(y) and =(y) denote the real and imaginary part of a complex
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number y, respectively. The expectation of a random variable a is written as E[a].

Define � as entry-wise product.

2.1 Problem Formulation

Let x? ∈ Cn be a line spectrum signal, which is composed of a small number of

spectral lines, defined as

x? =
K∑
k=1

ckv(fk), (2.1)

where K is the number of frequencies or level of sparsity, ck = Ake
j2πφk ∈ C is the

kth coefficient, Ak > 0 is the kth amplitude, φk ∈ [0, 1) is the kth normalized phase,

fk ∈ [0, 1) is the kth frequency, and

v(f) =
[
1 ej2πf · · · ej2π(n−1)f

]T
.

In CS, we acquire a set of random linear measurements of x?, contaminated by

additive complex Gaussian noise, where each measurement is given as

zi = 〈ai,x?〉+ σεi, i = 1, . . . ,m, (2.2)

where m is the number of measurements, ai ∈ Cn’s are the measurement vectors

composed of i.i.d. standard complex Gaussian entries CN (0, 1), σ is the noise level,

and we further have i.i.d. εi ∼ CN (0, 1). In a vector notation, we write

z = Ax? + σε, (2.3)

where A = [a1,a2, . . . ,am]H ∈ Cm×n is the measurement matrix, ε = [ε1, ε2, . . . , εm]T,

and z = [z1, z2, . . . , zm]T. These measurements are then quantized into a finite number

of bits for the ease of digital storage and processing. Denote Q(·) : R 7→ D as the

quantizer that quantizes a real number into a finite alphabet D, where the bit depth
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is the smallest number of bits necessary to represent D, i.e. b? = min{b ∈ Z+ : |D| ≤

2b}. The quantized measurements y = [y1, y2, . . . , ym]T of z are then denoted as

yi = Q(<(zi)) + jQ(=(zi)), i = 1, . . . ,m, (2.4)

where we apply the same quantizer Q to both the real part and the imaginary part

of the complex-valued measurement zi. With slight abuse of notation, we denote the

quantized measurements as

y = Q(z). (2.5)

Our goal is then to recover x?, and the set of frequencies f = {fk}Kk=1, from the

quantized measurements y, possibly without a priori knowing the sparsity level K,

and the form of the quantizer Q.

Several choices of the quantizer are of special interest. At the extreme, we consider

only knowing the quadrature information of zi, where

Q(a) = sign(a), a ∈ R, (2.6)

We refer to this quantizer as the one-bit quantizer, as only a single bit is used to

quantize each real number.

More generally, we consider a quantizer Q(·) that is fully characterized by the

quantization intervals {[t`, t`+1)}|D|−1
`=1 , where t0 = −∞, t|D| = ∞, ∪|D|`=1[t`, t`+1) = R,

as well as the representatives of each interval ω` ∈ [t`, t`+1), where

Q(a) = ω`, if a ∈ [t`, t`+1). (2.7)

For example, the Lloyd’s quantizer [8] belongs to this form. The choice of the quanti-

zation scheme plays an important role in determining the performance of parameter

estimation.
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2.2 Cramer-Rao Bounds and Trade-offs

In this section, we study the effects of quantization on parameter estimation by

deriving the Cramér-Rao bound assuming the quantizer, the sparsity level, and the

noise level are known. In particular, the bounds are calculated for 1-bit and general

quantizations, respectively, which are then used to study the trade-off between sample

complexity and bit depths for a fixed bit budget.

To begin with, we assume the set of parameters, including the frequencies, ampli-

tudes, and phases, given as κ = {fk, Ak, φk}Kk=1 ∈ R3K , is deterministic but unknown,

the measurement matrix A is deterministic and known. Denote the probability mass

function as p(y|κ), which is given as

p(y|κ) =
m∏
i=1

p(yi|κ) =
m∏
i=1

[p(<(yi)|κ) · p(=(yi)|κ)] , (2.8)

where the second equality follows from the fact that εi is proper. Moreover, let

p(<(yi)|κ) =
∏
ω∈D

p<(yi)(ω|κ)I{<(yi)=ω} (2.9)

p(=(yi)|κ) =
∏
ω∈D

p=(yi)(ω|κ)I{=(yi)=ω} (2.10)

be the probability mass function of <(y) and =(y), respectively. The Fisher Informa-

tion Matrix (FIM), denoted by I(κ) ∈ R3K×3K , is given as

I(κ) = E

[(
∂ log p(y|κ)

∂κ

)(
∂ log p(y|κ)

∂κ

)>]
. (2.11)

Note that for any 1 ≤ i, j ≤ m,

E

[(
∂ log p(<(yi)|κ)

∂κ

)(
∂ log p(=(yj)|κ)

∂κ

)>]

= E
[
∂ log p(<(yi)|κ)

∂κ

]
· E
[
∂ log p(=(yj)|κ)

∂κ

]>
= 0,
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where the first equality follows from independence of <(yi) and =(yj), and the second

equality follows from the fact

E
[(

∂ log p(<(yi)|κ)

∂κ

)]
= E

[∑
ω∈D

I{<(yi)=ω}

p<(yi)(ω|κ)

∂p<(yi)(ω|κ)

∂κ

]

=
∑
ω∈D

∂p<(yi)(ω|κ)

∂κ
=
∂
(∑

ω∈D p<(yi)(ω|κ)
)

∂κ
= 0.

Thus, plugging (2.8) into (2.11) all cross-terms will be zero and we have

I(κ) =
m∑
i=1

[
IRi (κ) + IIi (κ)

]
, (2.12)

where

IRi (κ) = E

[(
∂ log p(<(yi)|κ)

∂κ

)(
∂ log p(<(yi)|κ)

∂κ

)>]

=
∑
ω∈D

1

p<(yi)(ω|κ)

(
∂p<(yi)(ω|κ)

∂κ

)(
∂p<(yi)(ω|κ)

∂κ

)>
,

and IIi (κ) can be given similarly by replacing <(yi) with =(yi).

The CRB for estimating κ, is then given as CRB(κ) = I(κ)−1, and the CRB for

estimating the ith parameter in κ, is given as [I(κ)−1]i,i.

2.2.1 CRB for 1-Bit Quantization

Our goal is then to calculate the FIM in (2.12). We will explain in details the

calculations for the 1-bit case. First, since <(zi) ∼ N (<(〈ai,x?〉), 1
2
σ2), then

p<(yi)(ω|κ) = P (ω · <(zi) > 0|κ) =
1

2
+ ω · Φ

(
<(〈ai,x?〉)

σ

)
, ω = ±1, (2.13)

where Φ(u) = 1√
π

∫ u
0
e−t

2
dt. Therefore, by the chain rule,

∂p<(yi)(ω|κ)

∂κ
=
ω

σ
Φ′
(
<(〈ai,x?〉)

σ

)
∂<(〈ai,x?〉)

∂κ

=
ω√
πσ2

exp

(
−<(〈ai,x?〉)2

σ2

)
∂<(〈ai,x?〉)

∂κ
. (2.14)
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As a short-hand notation, denote si(κ) = <(〈ai,x?〉) and ri(κ) = =(〈ai,x?〉).

Plug (2.14) into IRi (κ), we have

IRi (κ) =
4 exp (−2si(κ)2/σ2)

πσ2
[
1− 4Φ2

(
si(κ)
σ

)] (∂si(κ)

∂κ

)(
∂si(κ)

∂κ

)>
,

and similarly,

IIi (κ) =
4 exp (−2ri(κ)2/σ2)

πσ2
[
1− 4Φ2

(
ri(κ)
σ

)] (∂ri(κ)

∂κ

)(
∂ri(κ)

∂κ

)>
.

As a remark, when σ = 0, the amplitude of the signal cannot be recovered from

the 1-bit measurements due to scaling ambiguity, and the FIM becomes singular in

this case. Therefore, our expressions for CRB is valid when σ 6= 0.

2.2.2 CRB for General Quantization

We now explain the calculation for a general quantization scheme. For ω` ∈ D,

and a corresponding interval [t`, t`+1), we have

p<(yi)(ω`|κ) = P (<(zi) ∈ [t`, t`+1)|κ)

=

∫ t`+1−si(κ)

σ

t`−si(κ)

σ

1√
π
e−t

2

dt

= Φ

(
t`+1 − si(κ)

σ

)
− Φ

(
t` − si(κ)

σ

)
, (2.15)

then, following similar arguments, we have

∂p<(yi)(ω`|κ)

∂κ
=

1√
πσ2

[
e−

(t`+1−si(κ))2

σ2 − e−
(t`−si(κ))2

σ2

]
∂<(〈ai,x?〉)

∂κ
.

Therefore, define

ΓRi (κ) =

|D|−1∑
`=1

[
e−

(t`+1−si(κ))2

σ2 − e−
(t`−si(κ))2

σ2

]2

Φ
(
t`+1−si(κ)

σ

)
− Φ

(
t`−si(κ)

σ

) , (2.16)
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and

ΓIi (κ) =

|D|−1∑
`=1

[
e−

(t`+1−ri(κ))2

σ2 − e−
(t`−ri(κ))2

σ2

]2

Φ
(
t`+1−ri(κ)

σ

)
− Φ

(
t`−ri(κ)

σ

) , (2.17)

we have the following theorem for the expression of FIM in light of our derivations in

the previous subsection.

Theorem 1. The Fisher information matrix I(κ) for estimating the unknown pa-

rameter κ is given as

I (κ) =
1

πσ2

m∑
i=1

(
ΓRi (κ)

∂si(κ)

∂κ

(
∂si(κ)

∂κ

)>
+ ΓIi (κ)

∂ri(κ)

∂κ

(
∂ri(κ)

∂κ

)>)
. (2.18)

It is worth mentioning the FIM depends only on the quantization intervals, not the

value of representatives. In contrast, the FIM using the unquantized measurements

z is given as

Iunquantized (κ) =
2

σ2

m∑
i=1

∂si(κ)

∂κ

(
∂si(κ)

∂κ

)>
+
∂ri(κ)

∂κ

(
∂ri(κ)

∂κ

)>)
.

It remains to evaluate ∂si(κ)
∂κ

and ∂ri(κ)
∂κ

. Following the Wirtinger calculus [75], we

have ∂si(κ)
∂κ

= ∂<(〈ai,x?〉)
∂κ

= 1
2
<
(
aH
i
∂x?

∂κ

)
and ∂ri(κ)

∂κ
= ∂=(〈ai,x?〉)

∂κ
= 1

2
=
(
aH
i
∂x?

∂κ

)
. Define

g(f) =
∂v(f)

∂f
=
[
0, j2πej2πf , · · · , j2π(n− 1)ej2π(n−1)f

]T
.

Then, for each of the parameters in κ, we have, for k = 1, . . . , K,

∂x?

∂fk
= ckg(fk), (2.19a)

∂x?

∂Ak
= ej2πφkv(fk), (2.19b)

∂x?

φk
= j2πckv(fk). (2.19c)
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Figure 2.1: The CRB under different bit-depths with respect to SNR for a fixed
number of measurements m = 100. Here, n = 64 and K = 3. Each row represents
the CRB for estimating the frequency, amplitude and phase of one spectral atom.
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Figure 2.2: The CRB under different bit-depths with respect to SNR for a fixed
number of bits B = 100. In this case, 2-bit quantization only has half the number of
measurements of the 1-bit case. Here, n = 64 and K = 3. Each row represents the
CRB for estimating the frequency, amplitude and phase of one spectral atom.
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2.2.3 Numerical Evaluations of CRB

We now evaluate the CRB for 1-bit and 2-bit quantization schemes using the

Lloyd’s quantizer, and compare it against the CRB without quantization. We generate

a spectrally-sparse signal x? of length n = 64 with frequencies f1 = 0.3, f2 = 0.325,

and f3 = 0.8, and complex coefficients c1 = 0.4ej2π·0.1, c2 = 0.15ej2π·0.55, and c3 =

0.05ej2π·0.75, which are selected arbitrarily.

We first fix the number of measurements as m = 100, and generate a measurement

matrix with complex standard i.i.d. Gaussian entries. Fig. 2.1 shows the CRB for

estimating all parameters with respect to the SNR, where it is defined as SNR =

‖x?‖2
2/σ

2. It is evident that increasing the bit depth improves the performance. In

the low SNR regime performance is noise-limited, and behaves similarly as if there

was no quantization; in the high SNR regime, performance is quantization-limited,

and experiences severe performance degeneration due to quantization.

In many situations, we cannot simultaneously have high sample complexity and

high bit depth, but rather, our budget is constrained by the number of total bits,

which is B = m ·b? = m · dlog2 |D|e. Therefore, it is useful to understand the trade-off

between sample complexity and bit depth. Here, we use the CRB as a tool to compare

the 1-bit and 2-bit quantization schemes. Fix the total number of bits as B = 100.

In the 1-bit quantization scheme, we use a measurement matrix with m = 100 as

generated earlier. In the 2-bit quantization scheme, we only use the first m/2 rows

of the same measurement matrix. For comparison, we also plot the CRB assuming

unquantized measurements using the same measurement matrix as the 1-bit case. Fig.

2.2 shows the CRB for estimating all parameters with respect to the SNR. It can be

seen that in the low SNR regime, 1-bit quantization is preferred, as performance is
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noise-limited, so higher sample complexity improves performance; in the high SNR

regime, 2-bit quantization is preferred, as performance is quantization-limited, so

higher bit depth improves performance. Our analysis is estimation-theoretic, and

doesn’t depend on the algorithm being adopted.

2.3 Atomic Norm Soft Thresholding for Quantized Spectral
Compressed Sensing

It is well-known that maximum likelihood estimators approach the performance

of CRB asymptotically at high SNR [21], however, their implementation requires

exact knowledge of the likelihood function, which may not be available in certain

applications. Therefore, in this section, we will develop estimators that do not require

the knowledge of the quantization scheme using 1-bit measurements via atomic norm

minimization [2]. We first provide the backgrounds on atomic norm for line spectrum

estimation, and then describe the proposed algorithms for both the single vector case

and the multiple vector case with performance guarantees.

2.3.1 Backgrounds on Atomic Norms

The atomic norm is originally proposed in [2] as a unified framework of convex

regularizations for solving underdetermined linear inverse problems. Subsequently,

[23–29] has tailored it to the estimation of spectrally-sparse signals. Most recently, [30]

offered an extensive and comprehensive overview to atomic norm minimization as a

canonical convex approach for super resolution.

For the single vector case, define the atomic set as

As =
{
ejφv(f) : f ∈ [0, 1), φ ∈ [0, 2π)

}
,
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then the atomic norm of a vector x is given as

‖x‖A := inf{t > 0 : x ∈ t · conv(As)} = inf

{∑
i

|αi|
∣∣∣ x =

∑
i

αiv(fi)

}
, (2.20)

where conv(A) denotes the convex hull of set A. The atomic norm can be viewed

as a continuous analog of the `1 norm over the continuous dictionary defined by the

atomic set. Therefore, by promoting signals with small atomic norms, we encourage

signals that can be expressed by a small number of spectral atoms. Appealingly,

as shown in [23], it is possible to calculate ‖x‖A using an equivalent semidefinite

program, which can be computed efficiently using off-the-shelf solvers:

‖x‖A = min
u∈Cn,w

{
1

2n
Tr(T (u)) +

w

2

∣∣∣ [T (u) x
xH w

]
� 0

}
,

where T (u) denotes the Hermitian Toeplitz matrix with u as the first column. The

dual atomic norm ‖ · ‖∗A for a vector q ∈ Cn, as will become useful later, is given as

‖q‖∗A = sup
‖x‖A≤1

〈q,x〉R = sup
f∈[0,1]

|qHv(f)|,

where the second equality follows from the fact the the extreme values are taken when

x is aligned with v(f) due to convexity. From the above equation it is clear that ‖q‖∗A

can be interpreted as the largest absolute value of a polynomial of ej2πf , denoted as

Q(f) = |qHv(f)|.

2.3.2 Atomic Soft-Thresholding with Quantized Measurements

We first construct a surrogate signal from the quantized measurements as [37]

s =
1

m

m∑
i=1

yiai =
1

m
AHy ∈ Cn, (2.21)

and use the following atomic norm soft-thresholding (AST) algorithm to estimate the

signal x,

x̂ = argminx∈Cn
1

2
‖x− s‖2

2 + τ‖x‖A, (2.22)
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which is the proximal mapping of the surrogate signal s with respect to the atomic

norm, where τ > 0 is a regularization parameter. One appealing feature of atomic

norm minimization is that the set of frequencies can be recovered via the dual poly-

nomial approach [29]. Namely, denote the dual variable as q̂ = (s − x̂)/τ , and

Q(f) = |q̂Hv(f)|. Then the set of frequencies can be localized as F̂ = {f : Q(f) = 1}.

We refer interested readers to the details in [23]. Alternatively, the frequencies can be

localized via performing conventional subspace methods using the estimated signal.

2.3.3 Performance Guarantees

In this section, we develop performance guarantees of the proposed AST algorithm

under 1-bit quantization in the single vector case using the sign quantizer in (2.6).

Note that in this case, it can be seen that s in (2.21) is an unbiased estimator of x?

up to a scaling difference, i.e.

E[s] = λ
x?

‖x?‖2

,

where

λ =
2‖x?‖2√

π(σ2 + ‖x?‖2
2)

=
2√

π(1/SNR + 1)
(2.23)

depends on the SNR before quantization SNR = ‖x?‖2
2/σ

2. To illustrate, Fig. 2.3

depicts λ as a function of SNR, which is a monotonically increasing function with

respect to SNR and approaches to the limit 2/
√
π as SNR goes to infinity.

Without loss of generality, we assume ‖x?‖2 = 1. The performance of AST relies

critically on the separation condition, which is defined as the minimum distance

between distinct frequencies,

∆ = min
k 6=j
|fk − fj| ≥

4

n
, (2.24)
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Figure 2.3: The value of λ with respect to SNR before quantization.

where |fk − fj| is evaluated as the wrap-around difference on the unit modulus. Un-

der the separation condition, we have the performance guarantee of the proposed

algorithm in (2.22), stated below.

Theorem 2. Set τ := η
√
n log n/m for some constant η ≥ 1. Under the separation

condition, the solution x̂ satisfies∥∥∥∥ x̂λ − x?
∥∥∥∥

2

.
1

λ

√
K log n

m

with high probability.

The proof of Theorem 2 can be found in Appendix A.1. Theorem 2 suggests that

the proposed algorithm accurately recovers the signal as soon as m is on the order

of K log n, which is order-wise near-optimal, since at least an order of K log(n/K)

measurements are needed in order to recover a sparse signal in the DFT basis [35].

Moreover, the theorem also suggests that the normalized reconstruction error is in-

verse proportional to λ, which plays the role of SNR after quantization and is a
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nonlinear function of the SNR before quantization. In the low SNR regime, λ scales

as 1/
√
SNR, and the performance is comparable to that using unquantized measure-

ments. However, in the high SNR regime, there is a saturation phenomenon, as

evidenced by Fig. 2.3, and the performance does not improve as much with we in-

crease SNR, which is also corroborated by numerical simulation in Section 2.5. These

results are qualitatively in line with existing work on one-bit CS [35].

Remark: More generally, Theorem 2 can be extended to the generalized linear model

following similar strategies in [34], as long as the 1-bit measurements yi’s are i.i.d.

and satisfy E[yi|ai] = g (〈ai,x?〉) for some link function g(·), and accordingly λ =

E[g(θ)θH] where the expectation is taken with respect to θ ∼ CN (0, 1). This allows

us to model other complex quantization schemes with non-Gaussian noise.

2.4 Extension to the Multiple Vector Case

In many applications, we encounter an ensemble of line spectrum signals, where

each signal xt ∈ Cn contains a linear combination of spectral lines with the same set

of frequencies F , but with varying amplitudes, given as

x?t =
K∑
k=1

ck,tv (fk) , 1 ≤ t ≤ T,

where ck,t ∈ C, and T is the number of snapshots. Denote X? = [x?1,x
?
2, . . . ,x

?
T ] ∈

Cn×T as the signal ensemble. Similar to (2.3), the CS measurement of each snapshot

is given as

zt = Ax?t + σεt, (2.25)
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where εt = [ε1,t, ε2,t, . . . , εm,t]
T contains i.i.d. standard complex Gaussian CN (0, 1)

entries. Similar to (2.5), the quantized measurements of each zt is then given as

yt = Q(zt). (2.26)

DenoteZ = [z1, z2, . . . ,zT ] and Y = [y1,y2, . . . ,yT ] as the unquantized measurement

ensemble and the quantized measurement ensemble, respectively. Our goal is then to

recover X? and the set of frequencies from Y , without assuming the knowledge of the

sparsity level and the quantizer. The presence of multiple vectors can significantly

improve the accuracy of frequency estimation.

It is possible to extend the atomic norm formulation to the multiple vector case

[25]. Define the atomic set as

Am =
{
A (f, b) = v (f) b|f ∈ (0, 1] , b ∈ C1×T , ‖b‖2 = 1

}
,

then the atomic norm is defined as

‖X‖A = inf {t > 0 : X ∈ t · conv (Am)}

= inf

{∑
k

|ck|
∣∣∣X =

∑
k

ckA (fk, bk)

}
,

which can be computed similarly via solving the following semidefinite program [25]:

‖X‖A = min
u∈Cn,W∈CT×T

{ 1

2n
Tr(T (u)) +

1

2
Tr(W )

∣∣∣[
T (u) X
XH W

]
� 0
}
.

The dual norm for some Q ∈ Cn×T is given as

‖Q‖∗A = sup
‖X‖A≤1

〈Q,X〉R = sup
f∈[0,1]

‖QHv(f)‖2,

which is the largest absolute value of the polynomial Q(f) = ‖QHv(f)‖2.
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For reconstruction, we construct the surrogate signal ensemble from the quantized

measurement ensemble Y as

S =
1

m
AHY ∈ Cn×T , (2.27)

and use the following atomic norm soft-thresholding (AST) algorithm to estimate the

signal ensemble X,

X̂ = argminX∈Cn×T ‖X − S‖2
F + τT‖X‖A, (2.28)

where τT > 0 is a regularization parameter. Moreover, define Q̂ = (S − X̂)/τT , and

Q(f) = ‖Q̂Hv(f)‖2. Then the set of frequencies can be localized as F̂ = {f : Q(f) =

1}. Alternatively, the frequencies can be localized via performing conventional sub-

space methods using the estimated snapshots.

2.5 Numerical Experiments

In this section, we conduct numerical experiments to evaluate the performance of

the proposed AST algorithms for parameter estimation using quantized compressive

measurements in both the single vector case and the multiple vector case. For imple-

mentation of the AST algorithms, we used the CVX toolbox [76]. There’re several

other fast solvers developed for atomic norm minimization that are more scalable to

large problems, including ADMM [25, 29], ADCG [77], and CoGent [78], to name a

few.

2.5.1 Single Vector Case

Let n = 64 and K = 3. The set of frequencies is located at f = {0.3, 0.325, 0.8},

where the first two frequencies are separated barely more than 1/n, the Rayleigh
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limit. The number of bits is set as m = 1000, where the measurement vectors are

generated with i.i.d. CN (0, 1) entries. The measurements are quantized according

to (2.6). Fig. 2.4 shows the amplitude of the constructed dual polynomial by solving

(2.22), where its peaks can be used to localize the frequencies. It can be seen that it

matches accurately with the ground truth.
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Figure 2.4: Frequency localization via peaks of the dual polynomial, superimposed
on the ground truth.

Next, we compare the performance of signal reconstruction using atomic norm

with unquantized measurements z, by running the algorithm:

x̂UQ = argminx∈Cn
1

2
‖z −Ax‖2

2 + τ̃‖x‖A,
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Figure 2.5: Normalized reconstruction error with respect to the number of measure-
ments at different SNRs with or without quantization.

where τ̃ is a properly tuned regularization parameter. The normalized reconstruction

error is defined as sin2(∠x̂,x) = 1 − |〈x̂,x?〉|2/(‖x̂‖2
2‖x?‖2

2), where x̂ is the recon-

structed signal using either algorithm. Fig. 2.5 shows the normalized reconstruction

error at different SNRs with comparisons to that using the quantized measurements

and the AST algorithm (2.22), where SNR is defined again as SNR = ‖x?‖2
2/σ

2. It

can be seen that the reconstruction accuracy improves as we increase the SNR as well

as the number of measurements, validating the theoretical analysis. In particular, at

low SNR, using quantized measurements can potentially achieve better reconstruc-

tion quality with much fewer measurement budgets in bits. It can also be seen that
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improving the SNR before quantization does not have as strong impact as for the

unquantized case.
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Figure 2.6: Normalized reconstruction error with respect to the spectral sparsity level
at different SNRs before quantization.

Next, we examine the performance of the proposed algorithm as a function of

the spectral sparsity level. Fix n = 64 and m = 1000. At each run, we randomly

generate K different frequencies that satisfy the separate condition. Fig. 2.6 shows

the normalized reconstruction error as a function of the sparsity level at various SNR,

averaged over 200 Monte Carlo simulations. It can be seen that the reconstruction

error is higher when the spectral sparsity level is higher, and the SNR is lower.

Moreover, it can be seen that the reconstruction error stops to decrease when the
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SNR is relatively high, indicating a saturation effect due to quantization, as predicted

by our theory.
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Figure 2.7: Mean square error of frequency localization with respect to SNR using
1-bit measurements, CRB is provided as a benchmark: (a) first frequency; (b) second
frequency.

We further compare the performance of frequency localization using the proposed

algorithm with the CRB. Fix n = 64 and m = 1000. We generate the ground signal

with frequencies f1 = 0.3, f2 = 0.325 and amplitudes c1 = 0.4ej2π·0.1, c2 = 0.15ej2π·0.55.

Fig. 2.7 shows the average mean squared error for each frequency over 200 Monte

Carlo simulations, against the corresponding CRB calculated using the formulas in

Section 2.2. The frequencies are estimated by using the MATLAB function rootmusic

by assuming the correct model order, that is K = 2. The performance of the proposed
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algorithm exhibits a threshold effect where it approaches that of CRB as soon as SNR

is large enough. However, further increasing the SNR doesn’t seem to improve the

performance, which coincides with the saturation effect discussed earlier.
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Figure 2.8: Performance with respect to the number of snapshots at different SNRs
using 1-bit measurements: (a) signal reconstruction error; (b) frequency estimation
error measured in Hausdorff distance.

2.5.2 Multiple Vector Case

We evaluate the performance of the AST algorithm (2.28) in the multiple vector

case. We follow the same setup as Fig. 2.4, where n = 64, the set of frequen-

cies f = {0.3, 0.325, 0.8}, and the number of measurements for each snapshot is

m = 50. The coefficients of each snapshot in X is generated independently using

the standard complex Gaussian distribution. The SNR per snapshot is defined as

SNR = ‖X‖2
F/(Tσ

2), where T is the number of snapshots. We set the regularization
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parameter τT =
√
n log n/(10 ·mT ) in the experiment. The normalized reconstruc-

tion error is defined as sin2(∠X; X̂), where X̂ is the recovered signal containing mul-

tiple snapshots, and ∠ denotes the angle between the subspace spanned by X and

X̂. Once X̂ is obtained, we estimate the frequencies by using the MATLAB function

rootmusic by assuming the correct model order, that is K = 3. The accuracy of

frequency estimation is evaluated by examining the Hausdorff distance between the

recovered frequencies f̂ and the ground truth f as

dH(f , f̂) = max

{
sup
f∈f

inf
f̂∈f̂
‖f − f̂‖2, sup

f̂∈f̂
inf
f∈f
‖f − f̂‖2

}
.

Fig. 2.8 shows the recovery performance with respect to the number of snapshots

at different SNRs, averaged over 50 Monte Carlo simulations, where (a) depicts the

normalized reconstruction error, and (b) depicts the squared Hausdorff distance. At a

fixed SNR, it can be seen that both the normalized reconstruction error and frequency

estimation error reduce, highlighting the benefit of having multiple snapshots. In par-

ticular, having multiple snapshots allows better frequency recovery once the number

of snapshots is large enough. Moreover, performance improves as we increase the

SNR.
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Chapter 3: Learning One-Hidden-Layer Neural Network for

Binary Classification

In this chapter, we study model recovery for data classification, where the training

labels are generated from a one-hidden-layer neural network with sigmoid activations,

and the goal is to recover the weights of the neural network. Considering the multi-

neuron classification problem with either FCN or CNN, we first analyze the landscape

of the cross-entropy loss and show that gradient descent converges linearly to a critical

point, which is shown to exist. Due to the quantized nature of labels, the recovery of

the ground truth is only up to certain statistical accuracy. At last, we show that a

tensor method provably provides an initialization in the neighborhood of the ground

truth both for FCN and CNN.

We adopt additional notations in this chapter as follows. Denote ‖ · ‖ψ1 as the

sub-exponential norm of a random variable. For nonnegative functions f(x) and g(x),

f(x) = O (g(x)) means there exist positive constants c and a such that f(x) ≤ cg(x)

for all x ≥ a; f(x) = Ω (g(x)) means there exist positive constants c and a such that

f(x) ≥ cg(x) for all x ≥ a.
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3.1 Problem Formulation

We consider two popular types of one-hidden-layer nonlinear neural networks il-

lustrated in Fig. 3.1, i.e., a FCN [7] and a non-overlapping CNN [71]. For both cases,

we let x ∈ Rd be the input, K ≥ 1 be the number of neurons, and the activation

function be the sigmoid function

φ (x) =
1

1 + exp (−x)
.

• FCN: the network parameter is W = [w1, · · · ,wK ] ∈ Rd×K , and

HFCN (W ,x) =
1

K

K∑
k=1

φ(w>k x). (3.1)

• Non-overlapping CNN: for simplicity we let d = m · K for some integers m.

Let w ∈ Rm be the network parameter, and the kth stride of x be given as

x(k) =
[
xm(k−1)+1, · · ·xm·k

]> ∈ Rm. Then,

HCNN (w,x) =
1

K

K∑
k=1

φ(w>x(k)). (3.2)

The non-overlapping CNN model can be viewed as a highly structured instance of

the FCN, where the weight matrix can be written as:

WCNN =


w 0 . . . 0
0 w . . . 0
...

...
. . .

...
0 0 . . . w

 ∈ Rd×K .

In a model recovery setting, we are given n training samples {(xi, yi)}ni=1 ∼ (x, y)

that are drawn i.i.d. from certain distribution regarding the ground truth network

parameter W ? (or resp. w? for CNN). Suppose the network input x ∈ Rd is drawn

from a standard Gaussian distribution x ∼ N (0, Id). This assumption has been used
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(a) FCN (b) CNN

Figure 3.1: Illustration of two types of one-hidden-layer neural networks considered
in this Chapter: (a) a fully-connected network (FCN); (b) a non-overlapping convo-
lutional neural network (CNN).

a lot in previous literature [48,68,71,72], to name a few. Then, conditioned on x ∈ Rd,

the output y is mapped to {0, 1} via the output of the neural network, i.e.,

P (y = 1|x) = H (W ?,x) . (3.3)

Our goal is to recover the network parameter, i.e., W ?, via minimizing the fol-

lowing empirical loss function:

fn(W ) =
1

n

n∑
i=1

` (W ;xi) , (3.4)

where ` (W ;x) := ` (W ;x, y) is the cross-entropy loss function, i.e.,

` (W ;x) = −y · log (H (W ,x))− (1− y) · log (1−H (W ,x)) , (3.5)

where H(W ,x) can subsume either HFCN or HCNN.

44



3.2 Gradient Descent and its Performance Guarantee

To estimate the network parameterW ?, since (3.4) is a highly nonconvex function,

vanilla gradient descent with an arbitrary initialization may get stuck at local minima.

Therefore, we implement gradient descent (GD) with a well-designed initialization

scheme that is described in details in Section 3.3. In this section, we focus on the

performance of the local update rule

Wt+1 = Wt − η∇fn (Wt) ,

where η is the constant step size. The algorithm is summarized in Algorithm 1.

Algorithm 1 Gradient Descent (GD)

Input: Training data {(xi, yi)}ni=1, step size η, iteration T
Initialization: W0 ← Initialization ({(xi, yi)}ni=1)
Gradient Descent: for t = 0, 1, · · · , T − 1

Wt+1 = Wt − η∇fn (Wt) .

Output: WT

Note that throughout the execution of GD, the same set of training samples is

used which is the standard implementation of gradient descent. Consequently the

analysis is challenging due to the statistical dependence of the iterates with the data.

3.2.1 Uniform local strong convexity

We first characterize the local strong convexity of fn(·) in a neighborhood of the

ground truth. We use the Euclidean ball to denote the local neighborhood of W ? for

45



FCN or of w? for CNN.

B (W ?, r) =
{
W ∈ Rd×K : ‖W −W ?‖F ≤ r

}
, (3.6a)

B (w?, r) = {w ∈ Rm : ‖w −w?‖2 ≤ r} , (3.6b)

where r is the radius of the ball. With slight abuse of notations, we will drop the

subscript FCN or CNN for simplicity, whenever it is clear from the context that the

result is for FCN when the argument is W ∈ Rd×K and for CNN when the argument

is w ∈ Rm. Further, σi (W ) denotes the i-th largest singular value of W ?. Let the

condition number be κ = σ1/σK , and λ =
∏K

i=1 (σi/σK). Moreover, we introduce

an important quantity ρ (σ) regarding φ(z), the sigmoid activation function, that

captures the geometric properties of the loss function for neural networks (3.1) and

(3.2).

Definition 1 (Key quantity for FCN). Let z ∼ N (0, 1) and define αq(σ) = E[φ′(σ ·

z)zq],∀q ∈ {0, 1, 2}, and βq(σ) = E[φ′(σ · z)2zq], ∀q ∈ {0, 2}. Define ρFCN(σ) as

ρFCN(σ) = min
{
β0(σ)− α2

0(σ), β2(σ)− α2
2(σ)

}
− α2

1(σ).

Definition 2 (Key quantity for CNN). Let z ∼ N (0, σ2) and define ρCNN(σ) as

ρCNN(σ) = min
{
E[(φ′(z)z)

2
],E[φ′ (z)2]

}
.

Note that Definition 1 for FCN is different from that in [7, Property 3.2] but

consistent with [7, Lemma D.4] which removes the third term in [7, Property 3.2].

For the activation function considered in this Chapter, the first two terms suffice.

Definition 2 for CNN is a newly distilled quantity in this Chapter tailored to the

special structure of CNN.

46



The quantity ρ (σ) plays an important role in the following theorem which guar-

antees the Hessian of the empirical risk function in the local neighborhood of the

ground truth is positive definite with high probability for both FCN and CNN.

Theorem 3 (Local Strong Convexity). Consider the classification model with FCN

(3.1) or CNN (3.2) and the sigmoid activation function.

• For FCN, assume ‖w?
k‖2 ≤ 1 for all k. There exist constants c1 and c2 such

that as soon as sample size

nFCN ≥ c1 · dK5 log2 d ·
(

κ2λ

ρFCN (σK)

)2

,

with probability at least 1− d−10, we have for all W ∈ B(W ?, rFCN),

Ω

(
1

K2
· ρFCN (σK)

κ2λ

)
· I � ∇2fn (W ) � Ω(1) · I,

where rFCN := c2√
K
· ρFCN(σK)

κ2λ
.

• For CNN, assume ‖w?‖2 ≤ 1. There exist constants c3 and c4 such that as soon

as sample size

nCNN ≥ c3 · dK5 log2 d ·
(

1

ρCNN (‖w?‖2)

)2

,

with probability at least 1− d−10, we have for all w ∈ B(w?, rCNN),

Ω

(
1

K
· ρCNN (‖w?‖2)

)
· I � ∇2fn (w) � Ω(K) · I,

where rCNN := c4
K2 · ρCNN (‖w?‖2).

We note that for FCN (3.1), all column permutations of W ? are equivalent global

minimum of the loss function, and Theorem 3 applies to all such permutation matrices

of W ?. The proof of Theorem 3 is outlined in Appendix B.2.

47



A pivot observation from the lower bound of the Hessian is that the sign of ρ (·)

will determine whether the Hessian is positive definite or not, since K,κ, λ are all

positive. We depict ρ(σ) as a function of σ in a certain range for the sigmoid activation

in Fig. 3.2. It can be seen from Fig. 3.2 that ρ (σ) is monotonic increasing when σ

increases, and we have ρ(σ) > 0 as long as σ > 0. When W ? is orthogonal, κ and λ

are both 1, ρ (σ) is a constant, hence the lower bound of Hessian is on the order of 1
K2

for FCN. However, in the worst case where the columns of W ? is linear dependent,

then κ, λ, ρ (σ) are infinite, and the local strong convexity doesn’t hold for FCN case.

Furthermore, the value of ρCNN(σ) is much larger than ρFCN(σ) for the same input.

Theorem 3 guarantees that for both FCN (3.1) and CNN (3.2) the Hessian of the

empirical cross-entropy loss function fn(W ) is positive definite in a neighborhood of

the ground truthW ?, as long as the sample size n is sufficiently large and the columns

of W ? are linearly independent. The bounds in Theorem 3 depend on the dimension

parameters of the network (n and K), as well as the ground truth (ρFCN(σK), λ,

ρCNN (‖w?‖2)).

3.2.2 Performance Guarantees of GD

For the classification problem, due to the nature of quantized labels, W ? is no

longer a critical point of fn(W ). By the strong convexity of the empirical risk function

fn(W ) in the local neighborhood of W ?, there can exist at most one critical point in

B(W ?, r), which is the unique local minimizer in B (W ?, r) if it exists. The following

theorem shows that there indeed exists such a critical point Ŵn, which is provably

close to the ground truth W ?, and gradient descent converges linearly to Ŵn.
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Figure 3.2: Illustration of ρ (σ) for both FCN and CNN with the sigmoid activation.

Theorem 4 (Performance Guarantees of Gradient Descent). Assume the assumptions

in Theorem 3 hold. Under the event that local strong convexity holds,

• for FCN, there exists a critical point in B(W ?, rFCN) such that∥∥∥Ŵn −W ?
∥∥∥

F
≤ c1

K9/4κ2λ

ρFNN (σK)

√
d log n

n
,

and if the initial point W0 ∈ B(W ?, rFCN), GD converges linearly to Ŵn, i.e.∥∥∥Wt − Ŵn

∥∥∥
F
≤
(

1− c2ηρFCN (σK)

K2κ2λ

)t ∥∥∥W0 − Ŵn

∥∥∥
F
,

for η ≤ c3, where c1, c2, c3 are constants;

• for CNN, there exists a critical point in B(w?, rCNN) such that

‖ŵn −w?‖2 ≤ c4
K

ρCNN (‖w?‖2)
·
√
d log n

n
,

and if the initial point w0 ∈ B(w?, rCNN), GD converges linearly to ŵn, i.e.

‖wt − ŵn‖2 ≤
(

1− c5ηρCNN (‖w?‖2)

K

)t
‖w0 − ŵn‖2 ,

for η ≤ c6/K, where c4, c5, c6 are constants.
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Similarly to Theorem 3, for FCN (3.1) Theorem 4 also holds for all column per-

mutations of W ?. The proof can be found in Appendix B.3. Theorem 4 guarantees

that the existence of critical points in the local neighborhood of the ground truth,

which GD converges to, and also shows that the critical points converge to the ground

truth W ? at the rate of O(K9/4
√
d log n/n) for FCN (3.1) and O

(
K
√
d log n/n

)
for

CNN(3.2) with respect to increasing the sample size n. Therefore, W ? can be recov-

ered consistently as n goes to infinity. Moreover, for both FCN (3.1) and CNN (3.2)

gradient descent converges linearly to Ŵn (or resp. ŵn) at a linear rate, as long as it is

initialized in the basin of attraction. To achieve ε-accuracy, i.e.
∥∥∥Wt − Ŵn

∥∥∥
F
≤ ε (or

resp. ‖wt − ŵn‖2 ≤ ε), it requires a computational complexity of O (ndK4 log (1/ε))

(or resp. O (ndK2 log (1/ε))), which is linear in n, d and log(1/ε).

3.3 Initialization via Tensor Method

Our initialization adopts the tensor method proposed in [7]. The initialization

method works for the FCN model directly, and works for the CNN model with slight

modification as presented in [79]. To avoid unnecessary repetitions from the previous

work, we focus on the FCN case to outline the algorithm and remark the difference.

We recommend the readers refer to [7, 79] for more details.

3.3.1 Preliminary and Algorithm

We start with introducing the necessary definitions which can be found in [7]. We

first define a product ⊗̃ as follows. If v ∈ Rd is a vector and I is the identity matrix,

then v⊗̃I =
∑d

j=1[v ⊗ ej ⊗ ej + ej ⊗ v ⊗ ej + ej ⊗ ej ⊗ v]. If M is a symmetric
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rank-r matrix factorized as M =
∑r

i=1 siviv
>
i and I is the identity matrix, then

M⊗̃I =
r∑
i=1

si

d∑
j=1

6∑
l=1

Al,i,j, (3.7)

where A1,i,j = vi ⊗ vi ⊗ ej ⊗ ej, A2,i,j = vi ⊗ ej ⊗ vi ⊗ ej, A3,i,j = ej ⊗ vi ⊗ vi ⊗ ej,

A4,i,j = vi ⊗ ej ⊗ ej ⊗ vi, A5,i,j = ej ⊗ vi ⊗ ej ⊗ vi and A6,i,j = ej ⊗ ej ⊗ vi ⊗ vi.

This allows us to introduce the following quantities.

Definition 3. Define M1, M2, M3, M4 and m1,i, m2,i, m3,i, m4,i as follows:

M1 = E[y · x],

M2 = E[y · (x⊗ x− I)],

M3 = E[y · (x⊗3 − x⊗̃I)],

M4 = E[y · (x⊗4 − (x⊗ x)⊗̃I + I⊗̃I)],

ml,i = gl,i (‖w?
i ‖) ,∀l = 0, 1, 2, 3, 4,

where g1,i (σ) = γ1(σ), g2,i (σ) = γ2(σ) − γ0(σ), g3,i (σ) = γ3(σ) − 3γ1(σ), g4,i (σ) =

γ4(σ) + 3γ0(σ)− 6γ2(σ), and γj(σ) = Ez∼N (0,1)[φ(σ · z)zj], ∀j = 0, 1, 2, 3, 4.

We further define a tensor operation as follows. For a tensor T ∈ Rn1×n2×n3 and

three matricesA ∈ Rn1×d1 ,B ∈ Rn2×d2 ,C ∈ Rn3×d3 , the (i, j, k)-th entry of the tensor

T (A,B,C) is given by

n1∑
i′

n2∑
j′

n3∑
k′

Ti′,j′,k′Ai′,iBj′,jCk′,k. (3.8)

Armed this with definition, we define the following useful quantities.

Definition 4. Let α ∈ Rd denote a randomly picked vector. We define P2 and

P3 as follows: P2 = Mj2(I, I,α, · · · ,α), where j2 = min{j ≥ 2|Mj 6= 0}, and

P3 = Mj3(I, I, I,α, · · · ,α), where j3 = min{j ≥ 3|Mj 6= 0}.
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We further denote w = w/‖w‖. An important implication of Definition 3

and 4 is that the non-zero matrix P2 and non-zero tensor P3 is in the form of∑K
i=1 mj2,i

(
α>w?

i

)j2−2
w?⊗2
i ,

∑K
i=1mj3,i

(
α>w?

i

)j3−3
w?⊗3
i , see [7, Claim 5.5]. The ba-

sic strategy is to extract the direction, magnitude information from the empirical

version of P2 and P3. Hence estimating W ? can be decomposed as the following two

steps.

• Estimate the direction of each column of W ? by decomposing P2 to approxi-

mate the subspace spanned by {w?
1,w

?
2, · · · ,w?

K} (denoted by V ), then reduce

the third-order tensor P3 to a lower-dimension tensor R3 = P3 (V ,V ,V ) ∈

RK×K×K , and apply non-orthogonal tensor decomposition on R3 to output the

estimate siV
>w?

i , where si ∈ {1,−1} is a random sign.

• Approximate the magnitude of w?
i and the sign si by solving a linear system of

equations.

The initialization algorithm based on the tensor method is outlined in Algorithm 2.

For more implementation details about Algorithm 2, e.g., power method, we refer

to [7].

Algorithm 2 Initialization via Tensor Method

Require: Partition n pairs of data {(xi, yi)}ni=1 into three subsets D1,D2,D3.
Ensure:
1: Estimate P̂2 of P2 from data set D1.
2: V ← PowerMethod(P̂2, K).

3: Estimate R̂3 of P3(V ,V ,V ) from data set D2.

4: {ûi}i∈[K] ← KCL(R̂3).

5: {w(0)
i }i∈[K] ← RecMag(V , {ûi}i∈[K],D3).
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3.3.2 Performance Guarantee of Initialization

For the classification problem, we make the following technical assumptions, sim-

ilarly to [7, Assumption 5.3] for the regression problem.

Assumption 1. The activation function φ(z) satisfies the following conditions:

1. If Mj 6= 0, then

K∑
i=1

mj,i

(
w?
i
>α
)j−2

wi
?wi

?> 6= 0,

K∑
i=1

mj,i

(
w?>
i α

)j−3
(V >w?

i )vec((V >w?
i )(V

>w?
i )
>)> 6= 0,

for j ≥ 3.

2. At least one of M3 and M4 is non-zero.

Assumption 1 is to guarantee that the key terms still contain the magnitude

information about w?
j . It can be verified that for sigmoid activation m3,i is non-zero

for σ > 0, hence it will satisfy Assumption 1. Furthermore, we do not require the

homogeneous assumption (i.e., φ(az) = apz for an integer p) required in [7], which

can be restrictive. Instead, we assume the following condition on the curvature of

the activation function around the ground truth, which holds for a larger class of

activation functions such as sigmoid and tanh.

Assumption 2. Let l1 be the index of the first nonzero Mi where i = 1, . . . , 4. For

the activation function φ (·), there exists a positive constant δ such that gl1,i(·) is

strictly monotone over the interval (‖w?
i ‖ − δ, ‖w?

i ‖+ δ), and the derivative of gl1,i(·)

is lower bounded by some constant for all i.
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It can be numerically verified that sigmoid activation will also satisfy Assump-

tion 2. We next present the performance guarantee for the initialization algorithm in

the following theorem.

Theorem 5. For the classification model (3.1), under Assumptions 1 and 2, for any

0 < ε < 1 and ζ > 1, if the sample size n ≥ d · poly (K,κ, ζ, log d, 1/ε), then the

output W0 ∈ Rd×K of Algorithm 2 satisfies

‖W0 −W ?‖F ≤ εpoly (K,κ) ‖W ?‖F, (3.9)

with probability at least 1− d−Ω(ζ).

The proof of Theorem 5 consists of (a) showing the estimation of the direction of

W ? is sufficiently accurate and (b) showing the approximation of the norm of W ? is

accurate enough. The proof of part (a) is the same as that in [7], but our argument

in part (b) is different, where we relax the homogeneous assumption on activation

functions. More details can be found in the supplementary materials in Appendix B.5.

3.4 Numerical Experiments

For FCN, we first implement gradient descent to verify that the empirical risk

function is strongly convex in the local region around W ?. If we initialize multiple

times in such a local region, it is expected that gradient descent converges to the

same critical point Ŵn, with the same set of training samples. Given a set of training

samples, we randomly initialize multiple times, and then calculate the variance of the

output of gradient descent. Denote the output of the `th run as ŵ
(`)
n = vec(Ŵ

(`)
n ) and

the mean of the runs as w̄. The error is calculated as SDn =
√

1
L

∑L
`=1 ‖ŵ

(`)
n − w̄‖2,

where L = 20 is the total number of random initializations. Adopted from [50], it
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quantifies the standard deviation of the estimator Ŵn under different initializations

with the same set of training samples. We say an experiment is successful, if SDn ≤

10−4. We generate the ground truth W ? from Gaussian matrices, and the training

samples are generated using the FCN (3.1). Figure 3.3 (a) shows the successful rate

of gradient descent by averaging over 50 sets of training samples for each pair of n

and d, where K = 3 and d = 15, 20, 25 respectively. The maximum iterations for

gradient descent is set as itermax = 3500. It can be seen that as long as the sample

complexity is large enough, gradient descent converges to the same local minima with

high probability.

(a) (b)

Figure 3.3: For FCN (3.1) fix K = 3. (a) Success rate of converging to the same local
minima with respect to the sample complexity for various d with threshold 10−4; (b)
Average estimation error of gradient descent in a local neighborhood of the ground
truth with respect to the sample complexity for various d. The x-axis is scaled to
illuminate the correct scaling between n and d.

We next show that the statistical accuracy of the local minimizer for gradient de-

scent if it is initialized close enough to the ground truth. Suppose we initialize around
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(a) (b)

Figure 3.4: For CNN (3.2), fix K = 3. (a) Success rate of converging to the same local
minima with respect to the sample complexity for various d with threshold 10−14; (b)
Average estimation error of gradient descent in a local neighborhood of the ground
truth with respect to the sample complexity for various d. The x-axis is scaled to
illuminate the correct scaling between n and d.

the ground truth such that ‖W0 −W ?‖F ≤ 0.1 · ‖W ?‖F. We calculate the average

estimation error as
∑L

`=1 ‖Ŵ
(`)
n −W ?‖2

F/(L‖W ?‖2
F) over L = 100 Monte Carlo sim-

ulations with random initializations. Fig. 3.3 (b) shows the average estimation error

with respect to the sample complexity when K = 3 and d = 20, 35, 50 respectively. It

can be seen that the estimation error decreases gracefully as we increase the sample

size and matches with the theoretical prediction of error rates reasonably well.

Similarly, for CNN, we first verify that the empirical risk function is locally

strongly convex using the same method as before. We generate the entries of true

weights w? from standard Gaussian distribution, and generate the training samples

using the CNN model (3.2). In Fig. 3.4 (a), we say an experiment is successful if

SDn ≤ 10−14, and the successful rate is calculated over 100 sets of training samples
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with K = 3 and d = 15, 24, 30 respectively. Then we verify the performance of gra-

dient descent in Fig. 3.4 (b). Suppose we initialized in the neighborhood of w?, i.e.,

‖w0−w?‖2 ≤ 0.9·‖w?‖2, for fixed d,K, n, the average error is calculated over L = 100

Monte Carlo simulations. It can be seen that the error decreases as we increase the

number of samples.
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Chapter 4: Guaranteed Recovery of CNN with ReLU

Activations

In this chapter, we study the model recovery problem when the data is gen-

erated by a one-hidden-layer non-overlap convolutional neural network with ReLU

activations, and the goal is to recover the weights of the neural network. We first

characterize the landscape of the population risk function L (w) by exploiting the

second-order property of L (w), and then we show that gradient descent with ran-

dom initialization converges to the global minimum w? at a much faster rate than

previously established. Furthermore, we also study the empirical risk function which

is practically used in training a neural network. We show that with a well designed

initialization, gradient descent converges linearly to the true weights w? with high

probability.

4.1 Problem Formulation

Given an input x ∈ Rd, the output of a one-hidden-layer non-overlapping convo-

lutional neural network as illustrated in Fig. 4.1 is given by

f (x;w) =
1

K

K∑
k=1

φ
(
w>x(k)

)
, (4.1)
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Figure 4.1: Illustration of a one-hidden-layer convolutional neural network without
overlap

where K is the number of neurons, φ (·) is the ReLU activation function, i.e., φ (z) =

max (0, z), w ∈ Rm is the weight of the neural network, and the kth stride of x be

given as x(k) =
[
xm(k−1)+1, · · · xm·k

]> ∈ Rm. Here, we assume d = m ·K for simplicity.

Suppose we are given a set of training samples {(xi, yi)}ni=1 where yi is generated

by the neural network with w?, i.e., yi = f (xi;w
?). Our goal is to learn the true

neural network w? via risk minimization. Under the regression setting, the squared

loss is generally adopted as the risk function. Two types of risk functions have been

considered in the literature, i.e., the population risk function

L (w) = ED
[
(y − f (x;w))2] , (4.2)

where D denotes the joint distribution of (x, y), and the empirical risk function

Ln (w) =
1

n

n∑
i=1

(yi − f (xi;w))2 . (4.3)

In this work, we first consider minimizing the population risk function (4.2) via gra-

dient descent, and then we further analyze the performance of gradient descent on

minimizing the empirical risk function (4.3).
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As shown in [71], even with infinitely many samples, the problem of minimizing

the population risk without any assumption on the distribution D is NP-Complete.

Hence in this work we adopt the standard assumption as in [71, 73] that the input

{xi}ni=1 are composed of i.i.d. standard Gaussian vectors.

4.2 Minimizing the Population Risk

To minimize (4.2), we implement the gradient descent (GD) algorithm which is

an iterative method and update the parameter as follows.

wt+1 = wt − η(1)
t ∇L (wt) , (4.4)

where η
(1)
t is the step size or the learning rate, and the subscript t denotes the t-th

update. This algorithm and its variant (such as stochastic gradient descent) have

been widely used in practical machine learning and deep learning.

The population risk function has been studied in [71], in which only the first-

order property was exploited. We take another path by leveraging the second-order

property of the population risk function to provide a refined analysis. According

to [71], under the Gaussian input assumption, we calculate the closed form of the

population risk function (4.2) (up to the additive factors in w?) as

L (w) =
1

K2

[(
K2 −K

2π
+
K

2

)
‖w‖2

2 −
K2 −K

π
‖w‖2‖w?‖2

− K

π
‖w‖2‖w?‖2 (sin (θ) + (π − θ) cos (θ))

]
, (4.5)

where θ = arccos
(

w>w?

‖w‖2‖w?‖2

)
denotes the angle between the vectors w and w?.
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The population risk function (4.5) in general is nonconvex, and with the closed

form expression of the population risk function, the critical points can be charac-

terized. According to [71, Lemma 5.1], the population risk function (4.5) has three

critical points, i.e.,

(a) A local maximum at w = 0;

(b) A unique global minimum at w = w?;

(c) A degenerate saddle point at w = − K2−K
K2+(π−1)K

w?.

← global minimum

← local maximum

← degenerate saddle
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Figure 4.2: Contour plot of the population risk function (4.5) when m = 2 and K = 3.

We illustrate the landscape of the population risk function (4.5) in Fig 4.2 and

mark the three critical points. With the aid of such critical point characterization, [71]
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further showed that gradient descent with random initialization converges to a point

with ε-accuracy to w? after O
(

1
ε4

)
steps for which we suspect is not optimal. More-

over, the analysis of the critical points is not sufficient to fully understand the op-

timization landscape. In particular, we are interested in understanding whether the

population risk is strongly convex in a region around the ground truth w?; as demon-

strated in Chapter 3 that the nonconvex objective functions for learning one-hidden-

layer neural network usually have benign geometric properties locally. Hence, beyond

the analysis of the critical points which only requires the first-order information of

the population risk, we further analyze the Hessian of the population risk. We show

that the Hessian of (4.2) can be lower and upper bounded in the local neighborhood

of w? with a radius Ω
(

1
K

)
. With the aid of this property, we are able to improve the

performance analysis of gradient descent and show that with random initialization,

gradient descent converges much faster to w?.

Before presenting the result, we denote B (w?, r) as a Euclidean ball centered at

w? ∈ Rm with a radius r, i.e.,

B (w?, r) = {w ∈ Rm : ‖w −w?‖2 ≤ r} . (4.6)

The second-order property of the population risk function (4.2) is summarized as

follows.

Theorem 6. Consider the regression model with the ReLU activation function (4.1),

and the population risk (4.2). If the input follows a Gaussian distribution, i.e., x ∼

N (0, I), then the following inequality

1

4K
· I � ∇2L (w) � 3 · I (4.7)

62



holds for all w ∈ B (w?, r), as long as w 6= −λ · w?, where λ is any nonnegative

constant and r := 1
3K+3

.

The proof of Theorem 6 is provided in Appendix C.2. Theorem 6 guarantees that

the population loss is strongly convex in the neighborhood of w?, and the size of the

neighborhood is roughly O
(

1
K

)
which shrinks when the number of neurons increases.

The implication of such a local strong convexity is that once initialized in the local

region, if the updates of gradient descent wt never lies on the line of −w?, gradient

descent converges to the unique critical point w? at a linear rate. In fact, it has been

shown in [71] that the angle between the updates wt and w? is decreasing, and thus

wt never lies on the line of −w?.

It has been shown in [71] that the estimation error ‖wt −w?‖2 keeps decreasing

during the execution of gradient descent. The analysis can be used to guarantee that

wt enters such a local region. Hence, combining these two phases yields the following

guarantee for (4.4).

Theorem 7. Assume ‖w?‖2 = 1, and suppose the initial point w0 is uniformly drawn

from the unit sphere. Further set the learning rate η
(1)
t = η < 1

3
. Then the gradient

descent updates wt satisfy

‖wt −w?‖2 ≤ ε (4.8)

after O
(
K4 +K · log

(
1
ε

))
iterations.

Theorem 7 shows that even though the population loss (4.5) is nonconvex, gradient

descent still converges fast to the global minimum with random initialization. The

theoretical guarantee suggests that this convergence exhibits two phases: first the

estimation error contracts relatively slowly; once it enters the local neighborhood
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of w? after O (K4) steps, the convergence rate speeds up. Comparing to the result

of [71] which requires O
(

1
ε4

)
iterations to guarantee the ε-accuracy, our result shows

that gradient descent converges much faster. This improvement highly depends on

the property of the Hessian that we characterize. We sketch the proof of Theorem 7

as follows.

Proof. Let wt be the estimator at the t-th iteration. Due to the proof of [71, Theo-

rem 5.2], we have that with constant step size 0 < η < 1,

‖wt −w?‖2 ≤ O

(
1

K

)
(4.9)

holds after O (K4) iterations, and w>w?

‖w‖2‖w?‖2 6= −1. Hence, after O (K4) iterations, wt

enters the local region where

1

4K
· I � ∇2L (w) � 3 · I (4.10)

holds according to Theorem 6. Then following the same proof as in [59, Lemma 1],

we obtain the following error contraction result,

‖wt+1 −w?‖2 ≤
(

1− 1

K

)
‖wt −w?‖2, (4.11)

as long as η < 1
3
. Hence after O (K4) iterations, gradient descent converges to w?

linearly.

4.3 Minimizing the Empirical Risk

In practice, it is common to minimize the empirical risk function formed with finite

samples. Hence, in this section we study the empirical risk function. Particularly,

we implement the same gradient descent algorithm to minimize (4.3), which updates

64



wt+1 via

wt+1 = wt − η(2)
t ∇Ln (wt) , (4.12)

where η
(2)
t is the step size or the learning rate. In this section, we analyze the per-

formance of gradient descent (4.12). Note that throughout the execution of GD, the

same set of training samples is used which is the standard implementation of gradient

descent. Consequently the analysis is challenging due to the statistical dependence of

the iterates with the data. Another challenge of analyzing the performance of GD on

minimizing the empirical risk function is due to the non-smoothness of the empirical

risk function because ReLU is not differentiable at 0. In our algorithm we define the

gradient of ReLU activation φ (·) as φ′ (x) = 1{x>0}. Then we calculate the gradient

of the empirical risk function (4.3) as

∇Ln (w) = 2 · 1

n

n∑
i=1

1

K2

K∑
j=1

K∑
l=1

(
φ
(
w>x

(j)
i

)
− φ

(
w?>x

(j)
i

))
φ′
(
w>x

(l)
i

)
x

(l)
i .

(4.13)

Since the empirical risk function (4.3) is highly non-convex and non-smoothness, it

is not possible to exploit the geometric property of (4.3) by analyzing its Hessian

directly. As the analysis developed in Chapter 3, the empirical risk function usu-

ally concentrates around the population risk function when the sample size is large

enough. However, due to the unboundedness of ReLU activation, it is very difficult

to implement this approach and guarantee the concentration.

Instead, we resort to a so-called regularity condition, stated as follows, which is

widely used to establish the geometric property of the loss function.
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Definition 5 (Regularity condition [59]). The function f (·) is said to obey the reg-

ularity condition RC(µ, λ, ζ) for some µ,λ,ζ > 0 if

2 〈∇f (w) ,w −w?〉 ≥ µ‖∇f (w) ‖2
2 + λ‖w −w?‖2

2 (4.14)

for all w ∈ B (w?, ζ).

Note that this condition does not require∇f (·) to be differentiable and it does not

require the loss function f (·) to be convex, which is applicable to our case. Moreover,

such a condition implies that at any pointw ∈ B (w?, ζ) the associated gradient∇f (·)

is positively correlated with the estimation error w −w?, and hence the update rule

(4.12) reduces the error w −w?. Next we show that the regularity condition indeed

holds for (4.13) in Lemma 1. By leveraging such a geometric property, we show that

gradient descent (4.12) converges linearly.

Lemma 1. For all w ∈ B (w?, r) with r := 1

K
3
2
‖w?‖2, the following regularity condi-

tion

〈∇Ln (w) ,w −w?〉 ≥ 1

72K2
‖∇Ln (w) ‖2

2 +
1

4K2
‖w −w?‖2

2 (4.15)

holds with probability at least 1− 1
d10

, as long as the sample complexity satisfies n ≥

c ·mK2 · log (n) for some sufficiently large constant c.

The proof of Lemma 1 can be found in Appendix C.3.1, in which we do not

optimize the constant. Lemma 1 captures the particular geometric property of the

empirical risk function within a local neighborhood of w?. Utilizing such a geometric

property, we next show the performance guarantee of gradient descent (4.12) as below.

Theorem 8. Consider the problem of minimizing (4.3) with gradient descent (4.12).

Assume the input xi ∼ N (0, I) and the initial point satisfies w0 ∈ B (w?, r) with
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r := 1

K
3
2
‖w?‖2. Then, with the step size η

(2)
t = 1

4K2 , the following inequality

‖wt −w?‖2
2 ≤

(
1− 1

288K4

)t
‖w0 −w?‖2

2 (4.16)

holds with probability at least 1 − 1
d10

as long as the sample complexity satisfies n ≥

c ·mK2 · log (n) for some sufficiently large constant c.

Theorem 8 implies that in the finite sample regime, gradient descent with a well

designed initial point still converges to the ground truth although the empirical risk

function is not convex. Note that the performance guarantee requires a local ini-

tialization with radius 1

K
3
2
‖w?‖2, the sample complexity is roughly on the order of

O(dK) where d = mK, and the sample complexity is linear in terms of both the

input dimension d and the number of neurons K.

Proof. Following the same proof of [59, Lemma 2], setting η
(2)
t = 1

4K2 , and then

applying Lemma 1, we obtain

‖wt+1 −w?‖2
2 ≤

(
1− 1

288K4

)
‖wt −w?‖2

2. (4.17)

4.4 Numerical Experiments

In this section, we implement gradient descent on synthetic data to demonstrate

the statistical accuracy of the optimizer if w is initialized close enough to the ground

truth w?, i.e., ‖w0 −w?‖2 ≤ 1

K
3
2
‖w?‖2. We first generate

{
xi ∈ Rd

}n
i=1

as Gaussian

random vector, i.e., each entry of xi follows a standard Gaussian distribution, and

then we generate the output yi via (4.1). Given the set of training samples, we

randomly initialize w0 and calculate the error of the outputs of gradient descent at
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each step. Denoting the output at the t-th step as wt, we define the normalized mean

squared error (NMSE) as
‖wt−w?‖22
‖w?‖22

. We first initialize w0 as w0 = w? + ε where

ε ∼ N
(
0, 1

K3‖w?‖2
2

)
, such that ‖w0 −w?‖2 ≤ 1

K
3
2
‖w?‖2, and Fig 4.3 (a) shows that

with local initialization, gradient descent converges linearly in log scale, and w? can

be recovered exactly after the gradient descent converges.

Although the theoretical guarantee of gradient descent needs a local initialization,

we observe an interesting phenomenon that gradient descent converges to the ground

truth w? even without local initialization. We use the same set of training samples

and run gradient descent starting from w0 which follows a Gaussian distribution. As

can be seen from Fig 4.3 (b), gradient descent still converges to w? at a linear rate.

(a) (b)

Figure 4.3: For CNN, fix K = 10, m = 35 and d = 350, the NMSE with respect
to the number of steps of gradient descent for various n. (a) local initialization; (b)
Gaussian initialization.
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Chapter 5: Conclusion and Future Work

5.1 Concluding Remarks

In the study of line spectrum estimation from quantized measurement, we exam-

ined the effect of (heavy) quantization in spectral compressed sensing that is useful

for understanding wideband spectral signal acquisition and processing. Our contribu-

tions are two-fold. We first derived the Cramér-Rao bound for parameter estimation

with multiple complex sinusoids using quantized compressed linear measurements.

This bound is instrumental in describing the trade-offs between bit depth and sample

complexity at different SNR regimes. Such an estimation-theoretical perspective is

independent of the algorithm and hasn’t been exploited in the previous literature.

Secondly, we developed algorithms for spectral-sparse signal recovery using quantized

measurements via atomic norm minimization, which do not require knowledge of the

quantizer in recovery. Under a mild separation condition, we establish that we can

accurately recover a spectrally-sparse signal from the signs of O(K log n) random lin-

ear measurements. The proposed algorithm also can be extended to handle multiple

signal snapshots. This generalizes the literature on one-bit compressed sensing to the
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important class of spectrally sparse signals using atomic norms, and we carefully ex-

amined the performance of the proposed algorithms via numerical experiments. The

content of this Chapter is published in [80,81].

In the study of model recovery of neural-network-based models we recover an

one-hidden-layer neural network using the cross-entropy loss in a multi-neuron clas-

sification problem. In particular, we have characterized the sample complexity to

guarantee local strong convexity in a neighborhood (whose size we have characterized

as well) of the ground truth when the training data are generated from a classifi-

cation model for two types of neural network models: fully-connected network and

non-overlapping convolutional network. This guarantees that with high probability,

gradient descent converges linearly to the ground truth if initialized properly. The

content of this chapter is summarized in a research paper and can be found in [82].

In the study of recovering a one-hidden-layer non-overlap convolutional neural

network under regression setting, where the activation is the commonly used ReLU

activation in practice. We first analyze the landscape of the population risk function

more carefully and find that its Hessian is lower and upper bounded by some positive

quantities. Leveraging such a good property, we improve the convergence rate of

gradient descent in the existing literature significantly. Secondly, we analyze the non-

smooth empirical risk function. We show that a so-called regularity condition holds

uniformly in a neighborhood of w? with high probability as soon as the sample size

is O(mK2). This further implies that gradient descent finds the global optimal w?

at a linear convergence rate provided a good initialization.
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5.2 Future Work

Along the study of estimating model paratemeters from coarse and nonlinear data,

we obtained some insightful results and also found some insteresting open problems.

Hence we discuss several potential directions of future work in this section.

Alternative Algorithms for Spectrally-Sparse Signal Estimation

In the work of estimating spectrally sparse signal from its quantized linear mea-

surements as described in Chapter 2, an alternative convex relaxation for spectrally-

sparse signal recovery is based on Hankel matrix enhancement and nuclear norm

minimization [83,84]. In the single vector case, instead of imposing the atomic norm

regularizer as in (2.22), one may consider

x̂ = argminx∈Cn
1

2
‖x− s‖2

2 + τH‖H(x)‖∗. (5.1)

Here, H(x) denotes a Hankel matrix given as

H(x) =


x1 x2

x2 . .
.

... . .
.

xn1 xn1+1 · · · xn

 ,
where n1 is set as bn/2c to make the matrix H(x) as square as possible, ‖ · ‖∗ is

the nuclear norm, and τH is a regularization parameter. The preliminary numerical

simulations suggest this method is also effective for promoting spectral sparsity, hence

it’s interesting to analyze (5.1) in the future work. Further more, since the Cramér-

Rao bounds assume perfect knowledge of the quantizers, they may not be indicative to

benchmark the performance of the atomic norm minimization algorithms as proposed

in this paper, since these algorithms do not make use of such knowledge. In the future,
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it might be interesting to develop estimation-theoretical bounds that only assume

partial or little knowledge about the quantizer.

Learning One-Hidden-Layer Neural Networks with ReLU Activations

In the work of learning an one-hidden-layer neural network as discussed in Chapter

3 and 4, we considered different activation functions and network structures. However,

ReLU activation is only considered with CNN network, an interesting future direction

would be considering learn a FCN network with ReLU activation. Next we briefly

introduce the problem. Suppose we are given a set of training samples {(xi, yi)}ni=1,

where xi ∈ Rd is drawn from an i.i.d. distribution, i.e., xi ∼ N (0, I). And yi is

generated according to

yi =
K∑
j=1

φ
(
w?>
j xi

)
, (5.2)

where φ (x) = max (0, x) is the ReLu activation, K is the number of neurons and we

are interested in recovering W ? = [w?
1, · · · ,w?

K ] ∈ Rd×K by minimizing the following

empirical risk function, i.e.

fn (W ) =
1

2n

n∑
i=1

(
K∑
j=1

φ
(
w>j xi

)
− yi

)2

. (5.3)

One challenge of solving this problem is that the loss function is non-convex and non-

smoothness. It’s hard to make use of the second order information about the empirical

risk function. Previously, [69] studies the same problem, i.e. for the particular FCN

network, they study minimizing the empirical risk function (5.3) via gradient descent.

In [69] the authors showed that W ? can be recovered up to certain estimation error.

Such an estimation error is upper bounded by two quantities. The first quantity comes

from the optimization aspect, it decreases extremely fast as the algorithm iterates
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and it’s not avoidable. However, the second term doesn’t decrease as the algorithm

iterates it diminishes only when the sample size increases to infinity. Hence in the

finite sample regime gradient descent is not guaranteed to converge to W ? exactly.

Thus it’s desired to further understand the performance of gradient descent, develop

new analysis to avoid the second type of error and see if we can get an exact recover

of W ? in finite sample regime.

Another open question about learning the one-hidden-layer CNN with ReLU acti-

vations is how gradient descent performs with random initialization. We have already

numerically demonstrate in Chapter 4 that gradient descent with random initializa-

tion still converges linearly to the ground truth. Moreover, it was shown in [71] that

gradient descent with random initialization finds the global optimal of the population

risk function. Hence, it’s natural to postulate that apply gradient descent to learn

CNN doesn’t require well designed initialization.
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Appendix A: Proofs for Chapter 2

A.1 Proof of Theorem 2

An alternative way to represent the atomic decomposition is to write it as an

integration of certain point measure [28]. Define the representing measure of x? as

µ(f) =
K∑
k=1

ckδ(f − fk),

where δ(·) is the delta function. Then we can rewrite x? as

x? =

∫ 1

0

v(f)dµ(f) =
K∑
k=1

ckv(fk). (A.1)

Correspondingly, denote µ̂(f) as the representing measure for the solution x̂ of (2.22),

which means x̂ =
∫ 1

0
v(f)dµ̂(f).

Denote the reconstruction error as e = λx? − x̂, and its representing measure is

γ = λµ− µ̂. With these definitions, applying [28, Lemma 1], we can bound the error

as [28]

‖e‖2
2 ≤ ‖e‖∗A

(∫
F

|γ| (df) + I0 + I1 + I2

)
, (A.2)

where I` =
∑K

k=1 I
k
` , for ` = 0, 1, 2, with Ik0 =

∣∣∣∫Nk γ (df)
∣∣∣, Ik1 = n

∣∣∣∫Nk (f − fk) γ (df)
∣∣∣,

Ik2 = n2

2

∫
Nk

(f − fk)2 |γ| (df), where Nk = {f ∈ T : d (f, fk) ≤ 0.16/n} as the neigh-

borhoods around each frequency, and F = T \ ∩Kk=1Nk.
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To bound the first term in (A.2), let us denote the deviation

w = s− E[s] = s− λx?, (A.3)

where E[w] = 0. We have

‖e‖∗A ≤ ‖w‖∗A + ‖s− x̂‖∗A

≤ ‖w‖∗A + τ, (A.4)

where the first line follows from the triangle inequality, and the second line follows

from the optimality condition of the AST algorithm in (2.22) in the following lemma.

Lemma 2 (Optimality conditions [29]). x̂ is the solution of (2.22) if and only if

‖s− x̂‖∗A ≤ τ , and 〈s− x̂, x̂〉 = τ‖x̂‖A.

Therefore, if we set τ ≥ η‖w‖∗A, where η ≥ 1 is some constant, then plugging this

into (A.4) we can show that

‖e‖∗A ≤ (η−1 + 1)τ ≤ 2τ. (A.5)

The second term in (A.2) can be bounded in exactly the same manner as in [28],

as long as (A.5) holds. In effect, [28] proved the following bound, under the separation

condition, with high probability we have(∫
F

|γ| (df) + I0 + I1 + I2

)
≤ C

Kτ

n
. (A.6)

The following lemma bounds ‖w‖∗A, whose proof is provided in Appendix A.2.

Lemma 3. With probability at least 1− 1/(πn log n), we have

‖w‖∗A ≤ C ·
√
n log n

m
,

where C is some universal constant.
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Therefore, set τ = Cη
√
n log n/m, and plug (A.5) and (A.6) into (A.2), we have

‖e‖2
2 ≤ C ′ · Kτ

2

n
≤ C ′

K log n

m
. (A.7)

which is equivalent to ∥∥∥∥ x̂λ − x?
∥∥∥∥

2

.
1

λ

√
K log n

m
.

The proof is complete.

A.2 Proof of Lemma 3

By definition, we can write ‖w‖∗A as

‖w‖∗A = sup
f∈[0,1)

|〈s− λx?,v (f)〉|

= sup
f∈[0,1)

|〈s,v (f)〉 − E [〈s,v (f)〉]|

= sup
f∈[0,1)

|gx?(f)− E[gx?(f)]| (A.8)

where gx?(f) := 〈s,v (f)〉 = 1
m

∑m
i=1 yi 〈ai,v (f)〉.

To proceed, we use the following symmetrization bound, which is the complex-

valued version of [35, Lemma 5.1].

Lemma 4. Let {εi}mi=1 be a sequence of independent complex-valued random variables,

where εi ∼ ε = ej2πθ, where θ uniformly distributed between [0, 1). Then

µ : = E

[
sup
f∈[0,1)

|gx? (f)− E [gx?(f)]|

]

≤ 2E

[
sup
f∈[0,1)

1

m

∣∣∣∣∣
m∑
i=1

εiyi 〈ai,v(f)〉

∣∣∣∣∣
]
. (A.9)

Furthermore, we have the deviation inequality

P

{
sup
f∈[0,1)

|gx? (f)− E [gx? (f)]| ≥ 2µ+ t

}

≤ 4P

{
sup
f∈[0,1)

1

m

∣∣∣∣∣
m∑
i=1

εiyi 〈ai,v (f)〉

∣∣∣∣∣ > t

2

}
. (A.10)
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Before applying Lemma 4, note that by symmetrization and rotational invariance,

εiyiai have the same i.i.d. distribution of
√

2ai. Therefore, the following quantities

are equivalent in distribution:

sup
f∈[0,1)

1

m

∣∣∣∣∣
m∑
i=1

εiyi 〈ai,v (f)〉

∣∣∣∣∣ ∼
√

2

m
sup
f∈[0,1)

∣∣∣∣∣
m∑
i=1

〈ai,v (f)〉

∣∣∣∣∣
∼
√

2

m
sup
f∈[0,1)

| 〈g,v (f)〉 |,

where g is a vector composed of i.i.d. CN (0, 1).

Applying (A.10) in Lemma 4 to (A.8), we have

P (‖w‖∗A ≥ 2µ+ t) ≤ 4P

(√
2

m
sup
f∈[0,1)

| 〈g,v (f)〉 | ≥ t

2

)
. (A.11)

From (A.9) in Lemma 4, we have

µ = E [‖w‖∗A] ≤ 2

√
2

m
E

[
sup
f∈[0,1)

| 〈g,v (f)〉 |

]

≤ C

√
n log n

m
, (A.12)

where the second line follows from [29, Appendix C,D] as

E

[
sup
f∈[0,1]

| 〈g,v (f)〉 |

]
≤ C1

√
n log (n).

Moreover, from [29, Appendix C], we have

sup
f∈[0,1)

|〈g,v (f)〉| ≤ C2 ·
√
n log n

hold with probability at least 1− 1/(πn log n). Set t = 2C2

√
n log n and plug in the

above two inequalities in (A.11), we have that

‖w‖∗A ≤ C ·
√
n log n

m

holds with probability at least 1− 1/(πn log n).
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Appendix B: Proofs for Chapter 3

B.1 Gradient and Hessian of the Population Loss

For the convenience of analysis, we first provide the gradient and the Hessian

formula for the cross-entropy loss using FCN and CNN here.

B.1.1 The FCN case

Consider the population loss function f(W ) = E [fn(W )] = E [` (W ;x)], where

` (W ;x) is associated with network HFCN (W ,x) = 1
K

∑K
k=1 φ(w>k x). Hiding the

dependence on x for notational simplicity, we can calculate the gradient and the

Hessian as

E
[
∂` (W )

∂wj

]
= E

[
− 1

K

(y −H(W ))

H(W ) (1−H(W ))
φ′
(
w>j x

)
x

]
, (B.1)

E
[
∇2` (W )

∂wj∂wl

]
= E

[
ξj,l (W ) · xx>

]
, (B.2)

for 1 ≤ j, l ≤ K. Here, when j 6= l,

ξj,l (W ) =
1

K2
φ′
(
w>j x

)
φ′
(
w>l x

)
· H (W )2 + y − 2y ·H (W )

H2(W ) (1−H(W ))2 ,
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and when j = l,

ξj,j (W ) =
1

K2
φ′
(
w>j x

)2 · H (W )2 + y − 2y ·H (W )

H2(W ) (1−H(W ))2

− 1

K
φ′′
(
w>j x

)
· y −H (W )

H(W ) (1−H(W ))
.

B.1.2 The CNN case

For the CNN case, i.e., H (w) := HCNN (w,x) = 1
K

∑K
k=1 φ(w>x(k)), the corre-

sponding gradient and Hessian of the population loss function `(w) is given by

E
[
∂` (w)

∂w

]
= E

[
−φ′(w>x(1)) · y −H (w)

H (w) (1−H (w))
· x(1)

]
, (B.3)

E
[
∇2` (w)

∂w2

]
= E

[
K∑
j=1

K∑
l=1

gj,l (w)x(j)x(l)>

]
, (B.4)

where when j 6= l,

gj,l (w) =
1

K2
· H (w)2 + y − 2y ·H (w)

(H (w) (1−H (w)))2 φ′
(
w>x(j)

)
φ′
(
w>x(l)

)
,

and when j = l,

gj,j (w) =
1

K2
· H (w)2 + y − 2y ·H (w)

(H (w) (1−H (w)))2 · φ′
(
w>x(j)

)2

− 1

K
· y −H (w)

H (w) (1−H (w))
· φ′′

(
w>x(j)

)
.

B.2 Proof of Theorem 3

In order to show that the empirical loss possesses a local strong convexity, we

follow the following steps:

1. We first show that the Hessian ∇2f(W ) of the population loss function is

smooth with respect to ∇2f(W ?) (Lemma 5);

79



2. We then show that∇2f(W ) satisfies local strong convexity and smoothness in a

neighborhood of W ? with appropriately chosen radius, B(W ?, r), by leveraging

similar properties of ∇2f(W ?) (Lemma 6);

3. Next, we show that the Hessian of the empirical loss function ∇2fn(W ) is

close to its population counterpart ∇2f(W ) uniformly in B(W ?, r) with high

probability (Lemma 7).

4. Finally, putting all the arguments together, we establish∇2fn(W ) satisfies local

strong convexity and smoothness in B(W ?, r).

To begin, we first show that the Hessian of the population risk is smooth enough

around W ? in the following lemmas.

Lemma 5 (Hessian Smoothness of Population Loss). Suppose the loss ` (·) associates

with FCN (3.1), and assume ‖w?
k‖2 ≤ 1 for all k and ‖W −W ?‖F ≤ 0.7. Then we

have

‖∇2f (W )−∇2f (W ?) ‖ ≤ C1

K
3
2

· ‖W −W ?‖F, (B.5)

holds. Similarly, suppose the loss ` (·) associates with CNN (3.2), and assume ‖w?‖2 ≤

1 and ‖w −w?‖2 ≤ 0.7. We have

‖∇2f (w)−∇2f (w?) ‖ ≤ C2 ·K · ‖w −w?‖2, (B.6)

holds. Here C1 and C2 denote some large constants.

The proof is provided in Appendix B.4.1. Together with the fact that∇2f(W ?) be

lower and upper bounded, Lemma 5 allows us to bound ∇2f(W ) in a neighborhood

around ground truth, given below.
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Lemma 6 (Local Strong Convexity and Smoothness of Population Loss). If the loss

` (·) associates with FCN (3.1), there exists some constant C1, such that

4

K2
· ρFCN (σK)

κ2λ
· I � ∇2f (W ) � C1 · I,

holds for all W ∈ B(W ?, rFCN) with rFCN := C2

K
1
2
· ρFCN(σK)

κ2λ
. Moreover, if loss ` (·)

associates with CNN (3.2), then we have

C3 ·
ρCNN (‖w?‖2)

K
· I � ∇2f (w) � C4 ·K · I, (B.7)

holds for all w ∈ B (w?, rCNN) with rCNN := C5 · ρCNN(‖w?‖2)
K2 .

The proof is provided in Appendix B.4.2. The next step is to show the Hessian of

the empirical loss function is close to the Hessian of the population loss function in a

uniform sense, which can be summarized as follows.

Lemma 7. For the loss ` (·) associated with FCN (3.1), there exists a constant C

such that as long as n ≥ C ·dK log dK, with probability at least 1−d−10, the following

holds

sup
W∈B(W ?,rFCN)

‖∇2fn (W )−∇2f (W ) ‖ ≤ C

√
dK log n

n
, (B.8)

where rFCN := C

K
1
2
· ρ(σK)

κ2λ
. For the loss ` (·) associated with CNN (3.2), we have

sup
w∈B(w?,rCNN)

‖∇2fn (w)−∇2f (w) ‖ ≤ CK2

√
d
K
· log (n)

n
, (B.9)

holds with probability at least 1 − d−10, as long as n ≥ d
K

log
(
d
K

)
, and rCNN :=

C · ρCNN(‖w?‖2)
K2 .

The proof is provided in Appendix B.4.3. Combining the above results will give

us the result. Next we assume that the loss ` (·) associates with FCN, and take it as
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an example in the proof. Then if the loss ` (·) associates with CNN, the proof follows

in the same manner.

Proof of Theorem 3. With probability at least 1− d−10,

∇2fn(W ) � ∇2f (W )−
∥∥∇2fn (W )−∇2f(W )

∥∥ · I
� Ω

(
1

K2
· ρFCN (σK)

κ2λ

)
· I − Ω

(
C ·
√
dK log n

n

)
· I.

As long as the sample size n is set to satisfy

C ·
√
dK log n

n
≤ 1

K2
· ρFCN (σK)

κ2λ
,

i.e. n ≥ C · dK5 log2 d ·
(

κ2λ
ρFCN(σK)

)2

, we have

∇2fn(W ) � Ω

(
1

K2
· ρFCN (σK)

κ2λ

)
· I.

holds for all W ∈ B (W ?, rFCN). Similarly, we have

∇2fn(W ) � C · I

holds for all W ∈ B (W ?, rFCN).

B.3 Proof of Theorem 4

We have established that fn (W ) is strongly convex in B(W ?, r) in Theorem 3.

Thus there exists at most one critical point in B(W ?, r). The proof of Theorem 4

follows the steps below:

1. We first show that the gradient ∇fn (W ) concentrates around ∇f (W ) in

B(W ?, r) (Lemma 8), and then invoke [50, Theorem 2] to guarantee that there

indeed exists a critical point Ŵn in B(W ?, r);
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2. We next show that Ŵn is close to W ? and gradient descent converges linearly

to Ŵn with a properly chosen step size.

To begin, the following lemma establishes that ∇fn (W ) uniformly concentrates

around ∇f (W ).

Lemma 8. If the loss ` (·) associates with FCN (3.1) with rFCN := C

K
1
2
· ρFCN(σK)

κ2λ
, and

‖w?
k‖2 ≤ 1 for all k, then

sup
W∈B(W ?,rFCN)

‖∇fn (W )−∇f(W )‖ ≤ C

√
d
√
K log n

n

holds with probability at least 1− d−10, as long as n ≥ CdK log(dK). If the loss ` (·)

associates with CNN (3.2), with rCNN := C · ρCNN(‖w?‖2)
K2 and ‖w?‖2 ≤ 1, then

sup
w∈B(w?,rCNN)

‖∇fn (w)−∇f (w) ‖ ≤ C ·
√
d log n

n
(B.10)

holds with probability at least 1− d−10 as long as n ≥ C d
K

log
(
d
K

)
.

The proof is provided in Appendix B.4.4. Notice that for the population risk

function f(W ), W ? is the unique critical point in B(W ?, r) due to local strong

convexity. With Lemma 7 and Lemma 8, we can invoke [50, Theorem 2], which

guarantees the following.

Corollary 1. If the loss ` (·) associates with FCN or CNN, there exists one and only

one critical point Ŵn ∈ B (W ∗, r) that satisfies ∇fn
(
Ŵn

)
= 0 correspondingly.

Again, since the proof for the case with the loss ` (·) associating with FCN is the

same as that for CNN, we next take FCN as an example.
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We first show that Ŵn is close to W ?. By the extended mean value theorem,

there exists W ′ on the straight line connecting W ? and Ŵn such that

fn

(
Ŵn

)
= fn (W ?) +

〈
∇fn (W ?) , vec

(
Ŵn −W ?

)〉
+

1

2
vec
(
Ŵn −W ?

)>
∇2fn (W ′) vec

(
Ŵn −W ?

)
≤ fn (W ?) , (B.11)

where the last inequality follows from the optimality of Ŵn. By Theorem 3, we have

1

2
vec
(
Ŵn −W ?

)>
∇2fn (W ′) vec

(
Ŵn −W ?

)
≥ Ω

(
1

K2
· ρFCN (σK)

κ2λ

)∥∥∥Ŵn −W ?
∥∥∥2

F
. (B.12)

On the other hand, by the Cauchy-Schwarz inequality, we have

∣∣∣〈∇fn (W ?) , vec
(
Ŵn −W ?

)〉∣∣∣ ≤ ‖∇fn (W ?) ‖2‖Ŵn −W ?‖F

≤ Ω

(√
dK1/2 log n

n

)
‖Ŵn −W ?‖F, (B.13)

where the last line follows from Lemma 8. Plugging (B.12) and (B.13) into (B.11),

we have

‖Ŵn −W ?‖F ≤ Ω

(
K

9
4κ2λ

ρFCN (σK)

√
d log n

n

)
. (B.14)

Now we have established that there indeed exists a critical point in B(W ?, rFCN).

We can then establish the local linear convergence of gradient descent as below. Let

Wt be the estimate at the t-th iteration. Due to the update rule, we have

Wt+1 − Ŵn = Wt − η∇fn (Wt)−
(
Ŵn − η∇fn

(
Ŵn

))
=

(
I − η

∫ 1

0

∇2fn (W (γ))

)(
Wt − Ŵn

)
,
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where W (γ) = Ŵn+γ
(
Wt − Ŵn

)
for γ ∈ [0, 1]. If Wt ∈ B(W ?, rFCN), it is obvious

that W (γ) ∈ B(W ?, rFCN), and by Theorem 3, we have

Hmin · I � ∇2fn (W (γ)) � Hmax · I,

where Hmin = Ω
(

1
K2 · ρFCN(σK)

κ2λ

)
and Hmax = C. Therefore, we have

‖Wt+1 − Ŵn‖F ≤ ‖I − η
∫ 1

0

∇2fn (W (γ)) ‖‖Wt − Ŵn‖F

≤ (1− ηHmin) ‖Wt − Ŵn‖F. (B.15)

Hence, by setting η = 1
Hmax

:= Ω (C), we obtain

‖Wt+1 − Ŵn‖F ≤
(

1− Hmin

Hmax

)
‖Wt − Ŵn‖F, (B.16)

which implies that gradient descent converges linearly to the local minimizer Ŵn.

B.4 Proof of Auxiliary Lemmas

B.4.1 Proof of Lemma 5.

We prove the two claims for FCN and CNN separately as below.

• The FCN case: Let ∆ = ∇2f(W ) −∇2f(W ?). For each (j, l) ∈ [K] × [K],

let ∆j,l ∈ Rd×d denote the (j, l)-th block of ∆. Let a = [a>1 , · · · ,a>K ]> ∈ RdK .

By definition,

‖∇2f(W )−∇2f(W ?)‖ = max
‖a‖=1

a>(∇2f(W )−∇2f(W ?))a

= max
‖a‖=1

K∑
j=1

K∑
l=1

a>j ∆j,lal. (B.17)

From (B.2) we know that

∆j,l =
∂2f (W )

∂wj∂wl

− ∂2f (W ?)

∂w?
j∂w

?
l

= E
[
(ξj,l (W )− ξj,l (W ?)) · xx>

]
, (B.18)
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and then by the mean value theorem, we can further expand ξj,l (W ) as

ξj,l (W ) = ξj,l (W
?) +

K∑
k=1

〈
∂ξj,l

(
W̃
)

∂w̃k

,wk −w?
k

〉
, (B.19)

where W̃ = η ·W + (1− η)W ? for some η ∈ (0, 1). Thus we can write ∆j,l as

∆j,l = E

 K∑
k=1

〈
∂ξj,l

(
W̃
)

∂w̃k

,wk −w?
k

〉 · xx>
 , (B.20)

which can be further simplified as

∆j,l = E

[(
K∑
k=1

Tj,l,k 〈x,wk −w?
k〉

)
· xx>

]
, (B.21)

by the fact that
∂ξj,l(W̃)
∂w̃k

can be written as Tj,l,k · x, where Tj,l,k ∈ R is a scalar

depending on x. When j = l, we calculate
∂ξj,l(W̃)
∂w̃k

for illustration,

∂ξj,j (W )

∂wk

=

(
− 2

K2

φ′
(
w>j x

)2

H (W )3 +
1

K

φ′′
(
w>j x

)
H (W )2

)
1

K
φ
(
w>k x

)
x, k 6= j

∂ξj,j (W )

∂wk

=

(
2

K2

(
φ′
(
w>j x

)
φ′′
(
w>j x

)
H (W )2 −

φ′
(
w>j x

)2

H (W )3

)

+
1

K

(
φ′′
(
w>j x

)
H (W )2 −

φ′′′
(
w>j x

)
H (W )

))
1

K
φ
(
w>k x

)
x, k = j (B.22)

where we have simplified the presentation by setting y = 1, since y is a binary

random variable, and we will show that in either case |Tj,j,k| is upper bounded,

i.e., in this case

|Tj,j,k| ≤


max

{
2
K3

1
H(W̃ )3

, 1
K2

1
H(W̃ )2

}
y = 1

max

{
2
K3

1

(1−H(W̃ ))
3 ,

1
K2

1

(1−H(W̃ ))
2

}
y = 0

,

since φ (·) , φ′ (·) , φ′′ (·) , φ′′′ (·) are bounded. More generally, by calculating the

other case we can claim that

|Tj,l,k| ≤ max

{
2

K3

1

H(W̃ )3
,

1

K2

1

H(W̃ )2
,

2

K3

1

(1−H(W̃ ))3
,

1

K2

1

(1−H(W̃ ))2

}
,

(B.23)
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holds for all j, l, k. Then, we can upper bound a>j ∆j,lal using Cauchy-Schwarz

inequality,

a>j ∆j,lal = E

[(
K∑
k=1

Tj,l,k 〈x,wk −w?
k〉

)
·
(
a>j x

) (
a>l x

)]

≤

√√√√E

[
K∑
k=1

T 2
j,l,k

]
· E

[
K∑
k=1

(
〈x,wk −w?

k〉
(
a>j x

) (
a>l x

))2

]

≤

√√√√ K∑
k=1

E
[
T 2
j,l,k

]
·

√√√√ K∑
k=1

‖wk −w?
k‖2

2 · ‖aj‖2
2 · ‖al‖2

2. (B.24)

Plug it back to (B.17) we can obtain the following inequality,

‖∇2f(W )−∇2f(W ?)‖

≤ max
‖a‖=1

K∑
j=1

K∑
l=1

√√√√ K∑
k=1

E
[
T 2
j,l,k

]
·

√√√√ K∑
k=1

‖wk −w?
k‖2

2 · ‖aj‖2
2 · ‖al‖2

2. (B.25)

Then the problem boils down to upper bound E
[
T 2
i,j,k

]
, which we can apply the

following lemma, whose proof can be found in Section B.4.5.

Lemma 9. Let x ∼ N (0, I), t = max {‖w1‖2, · · · ‖wK‖2} and z ∈ Z such that

z ≥ 1 , for the sigmoid activation function φ (x) = 1
1+e−x

, the following

E

[(
1

1
K

∑K
j=1 φ

(
w>j x

))z]
≤ C1 · et

2

,

E

 1(
1− 1

K

∑K
j=1 φ

(
w>j x

))
z ≤ C2 · et

2

(B.26)

holds for some large enough constants C1, C2 that depend on the constant z.

Setting z = 4 and z = 6 in Lemma 9, together with (B.23) we obtain that

E
[
T 2
j,l,k

]
≤ C

K4
· emax1≤i≤k ‖w̃i‖22 , (B.27)
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holds for some constant C. Plugging (B.27) into (B.25), we obtain

‖∇2f(W )−∇2f(W ?)‖ ≤ C

K
3
2

e‖W̃ ‖
2
F · ‖W −W ?‖F · max

‖a‖=1

K∑
j=1

K∑
l=1

‖aj‖2‖al‖2

≤ C

K
3
2

e‖W̃ ‖
2
F · ‖W −W ?‖F. (B.28)

Further since emax1≤i≤k ‖w̃i‖22 ≤ C gives that ‖wi − w?
i ‖2 ≤ 0.7, where we have

used the assumption that max1≤i≤k ‖w?
i ‖2

2 ≤ 1, we conclude that

‖∇2f(W )−∇2f(W ?)‖ ≤ C

K
3
2

‖W −W ?‖F (B.29)

holds for some constant C.

• The CNN case: according to (B.4), we can calculate the upper bound of

‖∇2f (w)−∇2f (w?) ‖ by definition as

max
‖u‖2=1

K∑
j=1

K∑
l=1

E
[
(gj,l (w)− gj,l (w?)) · u>x(j) · x(l)>u

]
. (B.30)

We then again apply the mean value theorem to gj,l (w), such that there exists

w̃ = ηw + (1− η)w for some η ∈ (0, 1),

gj,l (w)− gj,l (w?) = 〈∇gj,l (w̃) ,w −w?〉 .

Similarly to the FCN case, we can write ∇gj,l (w̃) in the form of

∇gj,l (w̃) =
K∑
k=1

Sj,l,k · x(k),

where Sj,l,k is a scalar that depends on w̃ and x(k), k = 1, · · · , K. Again we

take j 6= l as an example to calculate Sj,l,k, by definition, and obtain

K2 · ∂gj,l (w)

∂w
=

(1−H (w))φ′
(
w>x(j)

)
φ′′
(
w>x(l)

)
(1−H (w))3 · x(l)

+
(1−H (w))φ′

(
w>x(l)

)
φ′′
(
w>x(j)

)
(1−H (w))3 · x(j)

−
φ′
(
w>x(l)

)
φ′
(
w>x(j)

)
(1−H (w))3 ·

(
1

K

K∑
k=1

x(k)

)
, (B.31)
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where we set y = 0 for simplification. Then we obtain

Sj,l,l =
1

K2

(1−H (w))φ′
(
w>x(j)

)
φ′′
(
w>x(l)

)
(1−H (w))3 − 1

K3

φ′
(
w>x(l)

)
φ′
(
w>x(j)

)
(1−H (w))3 .

(B.32)

and

|Sj,l,l| ≤
1

K2

1

(1−H (w̃))3 , (B.33)

hold, where we used the fact that 0 ≤ H (w) ≤ 1 and φ′ (·) , φ′′ (·) are bounded.

Hence in the same way, we can obtain

|Sj,l,k| ≤

max
{

1
K2

1
(1−H(w̃))3

, 1
K2

1
(H(w̃))3

}
j 6= l

max
{

1
K

1
(1−H(w̃))2

, 1
K

1
(H(w̃))2

}
j = l

. (B.34)

Plug these back to (B.30) we obtain

‖∇2f (w)−∇2f (w?) ‖

≤ max
‖u‖2=1

K∑
j=1

K∑
l=1

E

[
K∑
k=1

〈
Sj,l,k · x(k),w −w?

〉
· u>x(j) · x(l)>u

]

= max
‖u‖2=1

K∑
j=1

K∑
l=1

E

[
K∑
k=1

Sj,l,k · (w −w?)> x(k) · u>x(j) · x(l)>u

]

≤ max
‖u‖2=1

K∑
j=1

K∑
l=1

√√√√E

[
K∑
k=1

S2
j,l,k

]
· E

[
K∑
k=1

(
(w −w?)> x(k)

)2

(u>x(j))
2

(x(l)>u)
2

]

≤ max
‖u‖2=1

K∑
j=1

K∑
l=1

√√√√E

[
K∑
k=1

S2
j,l,k

]
·
K∑
k=1

‖w −w?‖2
2 · ‖u‖2

2 · ‖u‖2
2

≤ C ·K · e‖w̃‖22 · ‖w −w?‖2, (B.35)

where the second inequality follows from Cauchy-Schwarz inequality, and the

last inequality follows from (B.34) and Lemma 9. Further since e‖w̃‖
2
2 ≤ C ·

(1 + ‖w −w?‖2
2) given that ‖w −w?‖2 ≤ 0.7, we conclude that

‖∇2f (w)−∇2f (w?) ‖ ≤ C ·K · ‖w −w?‖2 (B.36)

holds for some constant C and ‖w −w?‖ ≤ 0.7.

89



B.4.2 Proof of Lemma 6

We first present upper and lower bounds on the Hessian ∇2f(W ?) of the popu-

lation risk at ground truth, and then apply Lemma 5 to obtain a uniform bound in

the neighborhood of W ?.

• The FCN case: Recall

∂2f (W ?)

∂w2
j

= E

[
1

K2
·

(
φ′
(
w?>
j x

)2

H (W ?) (1−H (W ?))

)
xx>

]
,

∂2f (W ?)

∂wj∂wl

= E

[
1

K2
·

(
φ′
(
w?>
j x

)
φ′
(
w?>
l x

)
H (W ?) (1−H (W ?))

)
xx>

]
,

where we have applied the fact that E [y|x] = H (W ?). Let a = [a>1 , · · · ,a>K ]> ∈

RdK . Then we can write

∇2f (W ?) �
(

min
‖a‖2=1

a>∇2f (W ?)a

)
· I

= min
‖a‖2=1

1

K2
E


(∑K

j=1 φ
′ (w?>

j x
) (
a>j x

))2

H (W ?) (1−H (W ?))

 · I. (B.37)

Since 0 ≤ H (W ?) ≤ 1, we have that H (W ?) (1−H (W ?)) ≤ 1
4
. Hence,

∇2f (W ?) � min
‖a‖2=1

4

K2
E

( K∑
j=1

φ′
(
w?>
j x

) (
a>j x

))2
 · I � 4

K2
· ρFCN (σK)

κ2λ
· I,

(B.38)

where the last inequality follows from [7, Lemmas D.4 and D.6]. To derive an

upper bound of ∇2f (W ?), we have

∇2f (W ?) �
(

max
‖a‖2=1

a>∇2f (W ?)a

)
· I

= max
‖a‖2=1

1

K2
E


(∑K

j=1 φ
′ (w?>

j x
) (
a>j x

))2

1
K2

∑
j,l φ

(
w?>
j x

) (
1− φ

(
w?>
l x

))
 . (B.39)
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Then by Cauchy-Schwarz inequality, we have(∑K
j=1 φ

′ (w?>
j x

) (
a>j x

))2

1
K2

∑
j,l φ

(
w?>
j x

) (
1− φ

(
w?>
l x

)) ≤
(∑K

j=1 φ
′ (w?>

j x
)2
)
·
(∑K

j=1

(
a>j x

)2
)

1
K2

∑
j,l φ

(
w?>
j x

) (
1− φ

(
w?>
l x

)) .

Further since φ′
(
w?>
j x

)
≤ 1

4
, and

∑
j,l

φ
(
w?>
j x

) (
1− φ

(
w?>
l x

))
≥

K∑
j=1

φ
(
w?>
j x

) (
1− φ

(
w?>
j x

))
=

K∑
j=1

φ′
(
w?>
j x

)
≥ 4

K∑
j=1

φ′
(
w?>
j x

)2
, (B.40)

we obtain

a>∇2f (W ?)a � 1

K2
E

[
CK2

4

K∑
j=1

(
a>j x

)2

]
. (B.41)

Plugging (B.41) back to (B.39), we obtain

∇2f (W ?) � C · I. (B.42)

Thus together with the lower bound (B.38), we conclude that

4

K2
· ρFCN (σK)

κ2λ
· I � ∇2f (W ?) � C · I. (B.43)

From Lemma 5, we have

‖∇2f(W )−∇2f(W ?)‖ . C

K
3
2

‖W −W ?‖F . (B.44)

Therefore, if ‖W ? −W ‖F ≤ 0.7 and

C

K
3
2

· ‖W −W ?‖F ≤
4

K2
· ρFCN (σK)

κ2λ
,
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i.e., if ‖W −W ?‖F ≤ min
{

C

K
1
2
· ρFCN(σK)

κ2λ
, 0.7

}
for some constant C, we have

σmin

(
∇2f (W )

)
≥ σmin

(
∇2f (W ?)

)
− ‖∇2f (W )−∇2f (W ?) ‖

&
4

K2
· ρFCN (σK)

κ2λ
− C

K
3
2

‖W −W ?‖F

&
4

K2
· ρFCN (σK)

κ2λ
.

Moreover, within the same neighborhood, by the triangle inequality we have

‖∇2f (W ) ‖ ≤ ‖∇2f (W )−∇2f (W ?) ‖+ ‖∇2f (W ?) ‖ . C.

• The CNN case: Following from (B.4), we have

∇2f (w?) = E
[ 1
K2

∑
j,l φ

′ (w?>x(j)
)
φ′
(
w?>x(l)

)
x(j)x(l)>

H (w?) (1−H (w?))

]
. (B.45)

By definition, we lower bound ∇2f (w?) by

min
‖u‖=1

E

[
1
K2

∑
j,l φ

′ (w?>x(j)
)
u>x(j)φ′

(
w?>x(l)

)
u>x(l)

H (w?) (1−H (w?))

]
· I

� min
‖u‖=1

E

[
4

K2

∑
j,l

φ′
(
w?>x(j)

)
u>x(j)φ′

(
w?>x(l)

)
u>x(l)

]
· I

=
4

K2
·
(

min
‖u‖=1

∑
j 6=l

E
[
φ′
(
w?>x(j)

)
u>x(j)

]
· E
[
φ′
(
w?>x(l)

)
u>x(l)

]
+

K∑
j=1

E
[(
φ′
(
w?>x(j)

)
u>x(j)

)2
])
· I,

where the last equality follows from the fact that x(j) is independent from x(l)

given that j 6= l. Next we decompose u as u = u>w?

‖w?‖22
·w? +

(
u− u>w?

‖w?‖22
·w?

)
,
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and calculate the expectation as

E
[
φ′
(
w?>x(j)

)
u>x(j)

]
= E

[
φ′
(
w?>x(j)

)(u>w?

‖w?‖2
2

·w? +

(
u− u

>w?

‖w?‖2
2

·w?

))>
x(j)

]

= E
[
φ′
(
w?>x(j)

) u>w?

‖w?‖2
2

·w?>x(j)

]
+ E

[
φ′
(
w?>x(j)

)]
· E

[(
u− u

>w?

‖w?‖2
2

·w?

)>
x(j)

]

=
u>w?

‖w?‖2
2

E
[
φ′
(
w?>x(j)

)
w?>x(j)

]
,

where the second equality follows from the independence of w?>x(j) and(
u− u>w?

‖w?‖22
·w?

)>
x(j). Hence,

E
[
φ′
(
w?>x(j)

)
u>x(j)

]
· E
[
φ′
(
w?>x(l)

)
u>x(l)

]
=

(
u>w?

‖w?‖2
2

)2

(E [φ′ (z) z])
2

= 0,

where z = w?>x(j) ∼ N (0, ‖w?‖2
2), and the last equality follows because

φ′ (z) z = − (φ′ (−z) · (−z)). Similarly,

E
[(
φ′
(
w?>x(j)

)
u>x(j)

)2
]

= E
[
φ′
(
w?>x(j)

)2 ·

(u>w?

‖w?‖2
2

·w?>x(j)

)2

+

((
u− u

>w?

‖w?‖2
2

·w?

)>
x(j)

)2
]

=

(
u>w?

‖w?‖2
2

)2

· E
[
φ′
(
w?>x(j)

)2 (
w?>x(j)

)2
]

+

(
‖u‖2

2 −
(
u>w?

)2

‖w?‖2
2

)
· E
[
φ′
(
w?>x(j)

)2
]
. (B.46)

Together with Definition 2, we have

E
[(
φ′
(
w?>x(j)

)
u>x(j)

)2
]
≥ ρCNN (‖w?‖2) . (B.47)
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Hence,

∇2f (w?) � 4

K
· ρCNN (‖w?‖2) · I. (B.48)

Moreover, we apply Cauchy-Schwarz inequality and upper bound the Hessian

as

∇2f (w?) ≤
(

max
‖u‖2=1

u>∇2f (w?)u

)
· I

≤ max
‖u‖2=1

E

[∑K
j=1

(
1
K
φ′
(
w?>x(j)

))2 ·
∑K

j=1

(
u>x(j)

)2

H (w?) (1−H (w?))

]
· I. (B.49)

Using (B.40), i.e.,

1
K2

∑K
j=1 φ

′ (w?>x(j)
)2

H (w?) (1−H (w?))
≤ 1

4
, (B.50)

we upper bound the right-hand side of (B.49) as

∇2f (w?) � max
‖u‖2=1

E

[
1

4

K∑
j=1

(
u>x(j)

)2

]
· I =

K

4
· I. (B.51)

Together with the lower bound, we now conclude that

4

K
· ρCNN (‖w?‖2) · I � ∇2f (w?) � K

4
· I. (B.52)

And following from (B.6) in Lemma 5, we have

‖∇2f (w)−∇2f (w?) ‖ ≤ C ·K · ‖w −w?‖2. (B.53)

Thus if ‖w −w?‖ ≤ min
{

0.7, C · ρCNN(‖w?‖2)
K2

}
, we have

C · ρCNN (‖w?‖2)

K
· I � ∇2f (w) � C ·K · I. (B.54)
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B.4.3 Proof of Lemma 7

We apply a covering type of argument to show that the Hessian of the empirical

risk function concentrates around the Hessian of the population risk function uni-

formly, and the argument applies to both the loss associated with FCN and CNN.

We first take the FCN case as an example and then we provide the necessary modi-

fications for the proof of the CNN case.

• The FCN case: We adapt the analysis in [50] to our setting. Let Nε be

the ε-covering number of the Euclidean ball B (W ?, r). Here, we omit the

subscript FCN of r for simplicity. It is known that logNε ≤ dK log (3r/ε)

[85]. Let Wε = {W1, · · · ,WNε} be the ε-cover set with Nε elements. For

any W ∈ B (W ?, r), let j (W ) = argminj∈[Nε] ‖W −Wj(W )‖F ≤ ε for all

W ∈ B (W ?, r).

For any W ∈ B (W ?, r), we have

∥∥∇2fn (W )−∇2f(W )
∥∥ ≤ 1

n

∥∥∥∥∥
n∑
i=1

[
∇2` (W ;xi)−∇2`

(
Wj(W );xi

)]∥∥∥∥∥
+

∥∥∥∥∥ 1

n

n∑
i=1

∇2`
(
Wj(W );xi

)
− E

[
∇2`

(
Wj(w);x

)]∥∥∥∥∥
+
∥∥E [∇2`

(
Wj(W );x

)]
− E

[
∇2` (W ;x)

]∥∥ .
Hence, we have

P

(
sup

W∈B(W ?,r)

∥∥∇2fn (W )−∇2f(W )
∥∥ ≥ t

)
≤ P (At) + P (Bt) + P (Ct) ,
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where the events At, Bt and Ct are defined as

At =

{
sup

W∈B(W ?,r)

1

n

∥∥∥∥∥
n∑
i=1

[
∇2` (W ;xi)−∇2`

(
Wj(W );xi

)]∥∥∥∥∥ ≥ t

3

}
,

Bt =

{
sup
W∈Wε

∥∥∥∥∥ 1n
n∑
i=1

∇2` (W ;xi)− E
[
∇2` (W ;x)

]∥∥∥∥∥ ≥ t

3

}
,

Ct =

{
sup

W∈B(W ?,r)

∥∥E [∇2`
(
Wj(W );x

)]
− E

[
∇2` (W ;x)

]∥∥ ≥ t

3

}
.

In the sequel, we bound the terms P (At), P (Bt), and P (Ct), separately.

1. Upper bound on P (Bt). Before continuing, we state a useful technical

lemma, whose proof can be found in [50].

Lemma 10. Let M ∈ Rd×d be a symmetric d × d matrix and Vε be an

ε-cover of unit-Euclidean-norm ball B (0, 1), then

‖M‖ ≤ 1

1− 2ε
sup
v∈Vε
| 〈v,Mv〉 |. (B.55)

Let V 1
4

be a
(

1
4

)
-cover of the ball B(0, 1) = {W ∈ Rd×K : ‖W ‖F = 1},

where log |V 1
4
| ≤ dK log 12. Following from Lemma 10, we have∥∥∥∥∥ 1

n

n∑
i=1

∇2` (W ;xi)− E
[
∇2` (W ;x)

]∥∥∥∥∥
≤ 2 sup

v∈V 1
4

∣∣∣∣∣
〈
v,

(
1

n

n∑
i=1

∇2` (W ;xi)− E
[
∇2` (W ;x)

])
v

〉∣∣∣∣∣ .
Taking the union bound over Wε and V 1

4
yields

P (Bt) ≤ P

 sup
W∈Wε,v∈V 1

4

∣∣∣∣∣ 1n
n∑
i=1

Gi

∣∣∣∣∣ ≥ t

6


≤ edK(log 3r

ε
+log 12) sup

W∈Wε,v∈V 1
4

P

(∣∣∣∣∣ 1n
n∑
i=1

Gi

∣∣∣∣∣ ≥ t

6

)
, (B.56)
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where Gi = 〈v, (∇2` (W ;xi)− E [∇2` (W ;x)])v〉 and E[Gi] = 0. Let a =[
a>1 , · · · ,a>K

]
∈ RdK . Then we can show that ‖Gi‖ψ1 is upper bounded,

which we summariz as follows, and whose proof is given in Appendix B.4.6.

Lemma 11. Suppose the loss is associated with FCN. There exists some

constant C such that

‖Gi‖ψ1 ≤ C :≡ τ 2.

Applying the Bernstein inequality for sub-exponential random variables

[50, Theorem 9] to (B.56), we have that for fixed W ∈ Wε,v ∈ V 1
4
,

P

(∣∣∣∣∣ 1n
n∑
i=1

〈
v,
(
∇2` (W ;xi)− E

[
∇2` (W ;x)

])
v
〉∣∣∣∣∣ ≥ t

6

)

≤ 2 exp

(
−c · n ·min

(
t2

τ 4
,
t

τ 2

))
, (B.57)

for some universal constant c. As a result, P (Bt) is upper bounded by

2 exp

(
−c · n ·min

(
t2

τ 4
,
t

τ 2

)
+ dK log

3r

ε
+ dK log 12

)
.

Thus as long as

t > C ·max

{√
τ 4
(
dK log 36r

ε
+ log 4

δ

)
n

,
τ 2
(
dK log 36r

ε
+ log 4

δ

)
n

}
(B.58)

for some large enough constant C, we have P (Bt) ≤ δ
2
.

2. Upper bound on P (At) and P (Ct). These two events will be bounded

in a similar way. We first present the following useful Lemma, whose proof

is provided in Appendix B.4.8

Lemma 12. Suppose the loss is associated with FCN. There exists some

constant C such that

E

[
sup

W 6=W ′∈B(W ?,r)

‖∇2` (W ,x)−∇2` (W ′,x) ‖
‖W −W ′‖F

]
≤ C · d

√
K. (B.59)
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Consider the event Ct first. We derive

sup
W∈B(W ?,r)

‖E
[
∇2`

(
Wj(W );x

)]
− E

[
∇2` (W ;x)

]
‖

≤ sup
W∈B(W ?,r)

‖E
[
∇2`

(
Wj(W );x

)]
− E [∇2` (W ;x)] ‖

‖W −Wj(W )‖F

· sup
W∈B(W ?,r)

‖W −Wj(W )‖F

≤ C · d
√
K · ε. (B.60)

Therefore, Ct holds as long as

t ≥ C · d
√
K · ε. (B.61)

We can bound the event At as below.

P

(
sup

W∈B(W ?,r)

1

n

∥∥∥∥∥
n∑
i=1

[
∇2` (W ;xi)−∇2`

(
Wj(W );xi

)]∥∥∥∥∥ ≥ t

3

)

≤ 3

t
E

[
sup

W∈B(W ?,r)

∥∥∥∥∥ 1n
n∑
i=1

[
∇2` (W ;xi)−∇2`

(
Wj(W );xi

)]∥∥∥∥∥
]

(B.62)

≤ 3

t
E

[
sup

W∈B(W ?,r)

∥∥∇2` (W ;xi)−∇2`
(
Wj(W );xi

)∥∥]

≤ 3

t
E

[
sup

W∈B(W ?,r)

‖∇2` (W ;xi)−∇2`
(
Wj(W );xi

)
‖

‖W −Wj(W )‖F

]
· sup
W∈B(W ?,r)

‖W −Wj(W )‖F

≤ C · d
√
K · ε
t

(B.63)

where (B.62) follows from the Markov inequality. Thus, taking

t ≥ 6ε · C · d
√
K

δ
(B.64)

ensures that P (At) ≤ δ
2
.

98



3. Final step. Let ε = δτ2

C·d
√
K·ndK and δ = d−10. Plugging ε and δ into (B.58)

we need

t > τ 2 ·max

{
1

ndK
,C ·

√(
dK log(36rnd11K) + log 4

δ

)
n

,(
dK log(36rnd11K) + log 4

δ

)
n

}
.

The middle term can be bounded as

dK log(36rnd11K) + 10 log d

n
≤ dK log n

n
+
dK log 36r

n
+

11dK log dK

n

+
10 log d

n
.

If n ≥ C · dK log (dK) for some large enough constant C, the first term

dK log n dominants and is on the order of dK log (dK). Moreover, it de-

creases as n increases when n ≥ 3. Thus we can set

t ≥ τ 2

√(
dK log(36rnd11K) + log 4

δ

)
n

(B.65)

which holds as t ≥ C ′ · τ 2
√

dK logn
n

for some constant C ′. By setting

t := Cτ 2
√

dK logn
n

for sufficiently large C, as long as n ≥ C ′ · dK log dK,

P

(
sup

W∈B(W ?,r)

‖∇2fn (W )−∇2f(W )‖ ≥ Cτ 2

√
dK log n

n

)
≤ d−10.

• The CNN case: If the loss is associated with CNN, we redefine Gi as Gi =

〈v, (∇2` (w;xi)− E [∇2` (w;x)])v〉 and we show the following Lemmas whose

proof is given in Appendix B.4.7 and Appendix B.4.9 .

Lemma 13. Suppose the loss is associated CNN. There exists some constant

C such that

‖Gi‖ψ1 ≤ C ·K2 :≡ τ 2. (B.66)
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Lemma 14. Suppose the loss is associated with CNN. There exists some con-

stant C such that

E

[
sup

W 6=W ′∈B(W ?,r)

‖∇2` (W ,x)−∇2` (W ′,x) ‖
‖W −W ′‖F

]
≤ C · d

√
K. (B.67)

Following argument similar to the proof of Lemma 7, we can obtain the following

concentration inequality:

sup
w∈B(w?,r)

‖∇2fn (w)−∇2f (w) ‖ ≤ C ·K2

√
d
K
· log n

n
, (B.68)

holds with probability at least 1− d−10, as long as the sample complexity n ≥

C · d
K

log
(
d
K

)
.

B.4.4 Proof of Lemma 8

In order to proceed we need the following Lemma 15 whose proof is given in

Appendix B.4.10.

Lemma 15. Suppose the loss is associated with FCN. Let u be a fixed unit norm

vector u =
[
u>1 , · · · ,u>K

]
∈ RdK with ‖u‖2 = 1. Then we have

‖u>∇` (W ;x) ‖ψ2 ≤
√
K.

Suppose the loss is associated with CNN. Let u be a fixed unit norm vector u ∈ Rm

with ‖u‖2 = 1. Then

‖ 〈u,∇` (w)〉 ‖ψ2 ≤ C ·K.

Following argument (details omitted) similar to the proof of Lemma 7, and applies

Lemma 15, for the loss associated with FCN, we can get the following concentration
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inequality

sup
W∈B(W ?,rFCN)

‖∇fn (W )−∇f (W ) ‖2 ≤ C ·

√
d
√
K log n

n
(B.69)

with probability at least 1− d−10, as long as the sample size n ≥ C · dK log(dK). For

the loss associated with CNN, we obtain

sup
w∈B(w?,rCNN)

‖∇fn (w)−∇f (w) ‖ ≤ C ·
√
K

√
d
K

log n

n
= C ·

√
d log n

n
, (B.70)

with probability at least 1− d−10 as long as n ≥ C · d
K

log
(
d
K

)
.

B.4.5 Proof of Lemma 9

We take the first term in (B.26) as an example, since the second term follows

exactly in the same way. We first derive

E

( 1

K

K∑
i=1

φ
(
w>i x

))−z ≤ E

[
1

K

K∑
i=1

(
φ
(
w>i x

))−z]
, (B.71)

which follows from the fact that f (x) = x−z is convex for x > 0 and z ≥ 1. Further

since 1
φ(x)

= 1 + e−x, and g = w>i x ∼ N (0, σ2
i = ‖wi‖2

2), we can exactly calculate the

summands in the above equation as follows:

E
[
φ (g)−z

]
= E

[
z∑
l=0

(
z

l

)
e−lg

]
=

z∑
l=0

(
z

l

)
e

(
σ2i l

2

2

)
,

where we use the fact that g is a Gaussian random variable. Hence, we conclude that

for t = max (‖w1‖2, · · · , ‖wK‖2) and p ≥ 1,

E

[(
1

1
K

∑K
i=1 φ

(
w>i x

))z]
≤ C · et2 , (B.72)

holds for some constant C depending on z.
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B.4.6 Proof of Lemma 11

The sub-exponential norm of Gi can be bounded as

‖Gi‖ψ1 ≤ ‖
〈
u,∇2` (W ; z)u

〉
‖ψ1 + ‖∇2f (W ; z) ‖,

where ‖∇2f (W ; z) ‖ is upper bounded by C due to Lemma 6. Denote the (j, l)-th

block of ∇2` (W ; z) as ξj,l · xx>. We can derive

‖
〈
u,∇2` (W ; z)u

〉
‖ψ1 ≤

K∑
j=1

K∑
l=1

‖ξj,l · u>j xx>ul‖ψ1

≤
K∑
j=1

K∑
l=1

sup
t≥1

t−1
(
E
∣∣ξj,l · u>j xx>ul∣∣t) 1

t
. (B.73)

Next we show that ξj,l is upper bounded by some constant for all j and l.

• For j 6= l,

|ξj,l| =

∣∣∣∣∣ 1

K2

φ′
(
w>j x

)
φ′
(
w>l x

)
·
(
H (W )2 + y − 2y ·H (W )

)
(H (W ) (1−H (W )))2

∣∣∣∣∣
=


1
K2

φ′(w>j x)φ′(w>l x)
(1−H(W ))2

y = 0

1
K2

φ′(w>j x)φ′(w>l x)
H(W )2

y = 1
. (B.74)

Moreover,

1

K2

φ′
(
w>j x

)
φ′
(
w>l x

)
(1−H (W ))2 ≤

φ′
(
w>j x

)
φ′
(
w>l x

)(
1− φ

(
w>j x

)) (
1− φ

(
w>l x

)) ≤ φ
(
w>j x

)
φ
(
w>l x

)
≤ 1, (B.75)

where the first inequality holds due to the following fact,

(1−H (W ))2 =

(
1− 1

K

K∑
j=1

φ
(
w>j x

))2

≥ 1

K2

(
1− φ

(
w>j x

)) (
1− φ

(
w>l x

))
,

the second inequality follows because φ (x) (1− φ (x)) = φ′ (x). Similarly, we

can show that

1

K2

φ′
(
w>j x

)
φ′
(
w>l x

)
H (W )2 ≤ 1. (B.76)

Thus for j 6= l, |ξj,l| ≤ 1 holds.
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• For j = l,

|ξj,j| ≤

∣∣∣∣∣ 1

K2

φ′
(
w>j x

)
φ′
(
w>j x

)
·
(
H (W )2 + y − 2y ·H (W )

)
(H (W ) (1−H (W )))2

∣∣∣∣∣
+

∣∣∣∣∣ 1

K

φ′′
(
w>j x

)
(y −H (W ))

H (W ) (1−H (W ))

∣∣∣∣∣ .
For the second term in the above equation, we have∣∣∣∣∣ 1

K

φ′′
(
w>j x

)
(y −H (W ))

H (W ) (1−H (W ))

∣∣∣∣∣ =

 1
K

φ′′(w>j x)
(1−H(W ))

≤ 1 y = 0

1
K

φ′′(w>j x)
H(W )

≤ 1 y = 1
,

which follows from the fact that the second derivative is

φ′′ (x) = φ (x) (1− φ (x)) (1− 2φ (x)) ,

the absolute value of which can be upper bounded by φ (x) or 1− φ (x).

Hence,

∥∥〈u,∇2` (W ; z)u
〉∥∥

ψ1

≤ C ·
K∑
j=1

K∑
l=1

sup
t≥1

t−1

(√
E
[(
u>j x

)2t
]
·
√

E
[(
u>l x

)2t
]) 1

t

≤ C ·
K∑
j=1

K∑
l=1

‖uj‖2‖ul‖2 · sup
t≥1

t−1 ((2t− 1)!!)
1
t

≤ C :≡ τ 2, (B.77)

where the last inequality holds because

sup
t≥1

t−1 ((2t− 1)!!)
1
t ≤ sup

t≥1
t−1
(
(2t)t

) 1
t ≤ 2,

K∑
j=1

K∑
l=1

‖uj‖2‖ul‖2 ≤
K∑
j=1

K∑
l=1

‖uj‖2
2 + ‖ul‖2

2

2
=

1

2
. (B.78)

Thus, we conclude

‖Gi‖ψ1 ≤ C :≡ τ 2.
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B.4.7 Proof of Lemma 13

Again the sub-exponential norm of Gi can be bounded as

‖Gi‖ψ1 ≤ ‖
〈
u,∇2` (w; z)u

〉
‖ψ1 + ‖∇2f (w; z) ‖,

where ‖∇2f (W ; z) ‖ is upper bounded by C · K due to Lemma 6. Applying the

triangle inequality, the sub-exponential norm of 〈u,∇2` (w)u〉 can be bounded as

‖
〈
u,∇2` (w)u

〉
‖ψ1 ≤

∑
j 6=l

‖gj,l (w)u>x(j)u>x(l)‖ψ1 +
∑
j=l

‖gj,l (w)u>x(j)u>x(l)‖ψ1 .

(B.79)

Hence, we have ∣∣∣∣∣ 1

K2

H (w)2 + y − 2y ·H (w)

(H (w) (1−H (w)))2 φ′
(
w>x(j)

)
φ′
(
w>x(l)

)∣∣∣∣∣
=

 1
K2

φ′(w>x(j))φ′(w>x(l))
H(w)2

≤ 1 y = 1

1
K2

φ′(w>x(j))φ′(w>x(l))
(1−H(w))2

≤ 1 y = 0
,

and ∣∣∣∣ 1

K

y −H (w)

H (w) (1−H (w))
φ′
(
w>x(j)

)∣∣∣∣ =

 1
K

φ′(w>x(j))
H(w)

≤ 1 y = 1

1
K

φ′(w>x(j))
1−H(w)

≤ 1 y = 0
.

Plugging it back to (B.79), we obtain

‖
〈
u,∇2` (w)u

〉
‖ψ1 ≤

∑
j 6=l

‖
(
u>x(j)

) (
u>x(l)

)
‖ψ1 +

K∑
j=1

‖
(
u>x(j)

)2 ‖ψ1 ≤ C ·K2.

(B.80)

B.4.8 Proof of Lemma 12

As noted before, we can write the (j, l)-th block of ∇2` (W ; z) as ξj,l (W )xx>.

Then we can obtain the following bound,

‖∇2` (W ; z)−∇2` (W ′; z) ‖ ≤
K∑
j=1

K∑
l=1

|ξj,l (W )− ξj,l (W ′) | · ‖xx>‖. (B.81)

104



Using the same method as shown in the proof of Lemma 5, we can upper bound

|ξj,l (W )− ξj,l (W ′) | as

|ξj,l (W )− ξj,l (W ′) | ≤
(

max
k
|Tj,l,k|

)
· ‖x‖2 ·

√
K · ‖W −W ′‖F ,

where following from (B.23),

|Tj,l,k| ≤ max

{
2

K3

1

H (W )3 ,
1

K2

1

H (W )2 ,
2

K3

1

(1−H (W ))3 ,
1

K2

1

(1−H (W ))2

}
.

(B.82)

And thus, if ‖W −W ′‖F ≤ 0.7 we have

E
[

sup
W 6=W ′

‖∇2` (W )−∇2` (W ′) ‖
‖W −W ′‖F

]
≤
√
K ·K2 · E

[(
max
j,l,k
|Tj,l,k|

)
· ‖x‖2 · ‖xx>‖

]
≤ C · d

√
K. (B.83)

Thus we only need to set J? ≥ C · d
√
K for some large enough C.

B.4.9 Proof of Lemma 14

Following from (B.4) we can write

‖∇2` (w)−∇2` (w′) ‖ ≤
K∑
j=1

K∑
l=1

|gj,l (w)− gj,l (w′) | · ‖x(j)x(l)>‖. (B.84)

Similarly, the analysis in the proof of Lemma 5 implies that

|gj,l (w)− gj,l (w′) | ≤
(

max
k
|Sj,l,k|

)
·
√
K‖x‖2 · ‖w −w′‖2, (B.85)

where we upper-bound Sj,l,k in (B.34) as

|Sj,l,k| ≤

max
{

1
K2

1
(1−H(w))3

, 1
K2

1
(H(w))3

}
j 6= l

max
{

1
K

1
(1−H(w))2

, 1
K

1
(H(w))2

}
j = l

. (B.86)

Hence, if ‖w −w′‖2 ≤ 0.7, we have

E
[

sup
w 6=w′

‖∇2` (w)−∇2` (w′) ‖
‖w −w′‖F

]
≤
√
K ·

K∑
j=1

K∑
l=1

E
[(

max
k
|Sj,l,k|

)
· ‖x‖2 · ‖x(j)x(l)>‖

]
≤ C · d

√
K. (B.87)

Thus, in this case we can set J? ≥ C · d
√
K as well.
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B.4.10 Proof of Lemma 15

• The FCN case: Following from (B.1), we have

〈∇` (W ) ,u〉 =
1

K

K∑
j=1

(
(y −H (W )) · φ′

(
w>j x

)
H (W ) (1−H (W ))

)(
u>j x

)
,

and by definition, we can upper-bound the sub-Gaussian norm as

‖ 〈∇` (W ) ,u〉 ‖ψ2

≤


1
K

∑K
j=1

∥∥∥∥ φ′(w>j x)
(1− 1

K

∑K
l=1 φ(w>l x))

u>j x

∥∥∥∥
ψ2

≤
∑K

j=1 ‖u>j x‖ψ2 y = 0

1
K

∑K
j=1

∥∥∥∥ φ′(w>j x)
1
K

∑K
l=1 φ(w>l x)

u>j x

∥∥∥∥
ψ2

≤
∑K

j=1 ‖u>j x‖ψ2 y = 1
.

Thus we conclude that

‖ 〈∇` (W ) ,u〉 ‖ψ2 ≤
K∑
j=1

‖uj‖2 ≤
√
K, (B.88)

and the directional gradient is
√
K-sub-Gaussian.

• The CNN case: Following from (B.3), we have

〈∇` (w) ,u〉 = −
K∑
j=1

1

K
φ′
(
w>x(j)

) y −H (w)

H (w) (1−H (w))
·
(
u>x(j)

)
,

where

∣∣∣∣φ′ (w>x(j)
) y −H (w)

H (w) (1−H (w))

∣∣∣∣ =


φ′(w>x(j))∑K

j=1
1
K
φ(w>x(j))

≤ K y = 1

φ′(w>x(j))∑K
j=1

1
K (1−φ(w>x(j)))

≤ K y = 0
.

Then the sub-Gaussian norm of 〈∇` (w) ,u〉 is upper bounded as

‖ 〈∇` (w) ,u〉 ‖ψ2 ≤ K · 1

K

K∑
j=1

‖u>x(j)‖ψ2 ≤ C ·K. (B.89)

Hence, the directional gradient is K-sub-Gaussian.
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B.5 Proof of Theorem 5

We first define a product ⊗̃ as follows. If v ∈ Rd is a vector and I is the identity

matrix, then v⊗̃I =
∑d

j=1[v⊗ej⊗ej+ej⊗v⊗ej+ej⊗ej⊗v]. If M is a symmetric

rank-r matrix factorized as M =
∑r

i=1 siviv
>
i and I is the identity matrix, then

M⊗̃I =
r∑
i=1

si

d∑
j=1

6∑
l=1

Al,i,j, (B.90)

where A1,i,j = vi⊗vi⊗ej⊗ej, A2,i,j = vi⊗ej⊗vi⊗ej, A3,i,j = ej⊗vi⊗vi⊗ej,

A4,i,j = vi ⊗ ej ⊗ ej ⊗ vi, A5,i,j = ej ⊗ vi ⊗ ej ⊗ vi and A6,i,j = ej ⊗ ej ⊗ vi ⊗ vi.

And We further define a tensor operation as follows. For a tensor T ∈ Rn1×n2×n3

and three matrices A ∈ Rn1×d1 ,B ∈ Rn2×d2 ,C ∈ Rn3×d3 , the (i, j, k)-th entry of the

tensor T (A,B,C) is given by

n1∑
i′

n2∑
j′

n3∑
k′

Ti′,j′,k′Ai′,iBj′,jCk′,k. (B.91)

The proof contains two parts. Part (a) proves that the estimation of the direction

ofW ? is sufficiently accurate, which follows from the arguments similar to those in [7]

and is only briefly summarized below. Part (b) is different, where we do not require

the homogeneous condition for the activation function, and instead, our proof is based

on a mild condition in Assumption 2. We detail our proof in part (b).

(a) In order to estimate the direction of each wi for i = 1, . . . , K, [7] showed that

for the regression problem, if the sample size n ≥ dpoly (K,κ, ζ, log d), where ζ > 1

is any constant, then

‖wi
? − siV ûi‖ ≤ εpoly (K, κ) (B.92)

holds with probability at least 1−d−Ω(ζ). Such a result also holds for the classification

problem with only slight difference in the proof as we describe as follows. The main
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idea of the proof is to bound the estimation error of P2 and R3 via Bernstein inequal-

ity. For the regression problem, Bernstein inequality was applied to terms associated

with each neuron individually, and the bounds were then put together via the trian-

gle inequality in [7]. However, for the classification problem here, we apply Bernstein

inequality to the terms associated with all neurons together. Another difference is

that the label yi of the classification model is bounded by nature, whereas the output

yi in the regression model needs to be upper-bounded via homogeneously bounded

conditions of the activation function. A reader can refer to [7] for the details of the

proof for this part.

(b) In order to estimate ‖wi‖ for i = 1, . . . , K, we provide a different proof from [7],

which does not require the homogeneous condition on the activation function, but

assumes a more relaxed condition in Assumption 2.

We define a quantity Q1 as follows:

Q1 = Ml1(I,α, · · · ,α︸ ︷︷ ︸
(l1−1)

), (B.93)

where l1 is the first non-zero index such that Ml1 6= 0. For example, if l1 = 3, then

Q1 takes the following form

Q1 = M3 (I,α,α) =
1

K

K∑
i=1

m3,i(‖w?
i ‖)
(
α>w?

i

)2
w?
i , (B.94)

where w = w/‖w‖ and by definition

m3,i(‖w?
i ‖) = E

[
φ (‖w?

i ‖ · z) z3
]
− 3E [φ (‖w?

i ‖ · z) z] . (B.95)

Clearly, Q1 has information of ‖w?
i ‖, which can be estimated by solving the fol-

lowing optimization problem:

β? = argminβ∈RK

∥∥∥∥∥ 1

K

K∑
i=1

βisiwi
? −Q1

∥∥∥∥∥ , (B.96)
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where each entry of the solution takes the form

β?i = s3
im3,i(‖w?

i ‖)
(
αT siwi

?
)2
. (B.97)

In the initialization, we substitute Q̂1 (estimated from training data) for Q1, V ûi

(estimated in part (a)) for siwi
? into (B.96), and obtain an estimate β̂ of β?. We

then substitute β̂ for β? and V ûi for siwi
? into (B.97) to obtain an estimate âi of

‖w?
i ‖ via the following equation

β̂i = s3
im3,i(âi)

(
α>V ûi

)2
. (B.98)

Furthermore, since ml1,i(x) has fixed sign for x > 0 and for l1 ≥ 1, si can be estimated

correctly from the sign of β̂i for i = 1, . . . , K.

For notational simplicity, let β?1,i :=
β?i

s3i (α>siwi?)
2 and β̂1,i := β̂i

s3i (α>V ûi)
2 , and then

(B.97) and (B.98) become

β̂1,i = m3,i(âi), β?1,i = m3,i(‖w?
i ‖). (B.99)

By Assumption 2 and (B.97), there exists a constant δ′ > 0 such that the inverse

function g(·) of m3,1(·) has upper-bounded derivative in the interval (β?1,i−δ′, β?1,i+δ′),

i.e., |g′(x)| < Γ for a constant Γ. By employing the result in [7], if the sample size

n ≥ dpoly (K,κ, t, log d), then Q̂1 and Q1, V ûi and siwi
? can be arbitrarily close so

that |β?1,i − β̂1,i| < min{δ′, r√
KΓ
}.

Thus, by (B.99) and the mean value theorem, we obtain

|âi − ‖w?
i ‖| = |g′(ξ)||β?1,i − β̂1,i|, (B.100)

where ξ is between β?1,i and β̂1,i, and hence |g′(ξ)| < Γ. Therefore, |âi−‖w?
i ‖| ≤ r√

K
,

which is the desired result.
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Appendix C: Proofs for Chapter 4

C.1 Preliminary

For convenience, we introduce some useful results, for which the proofs of our

main result will rely on.

Lemma 16. Let z ∈ Rd be a standard Gaussian random vector, then for any fixed

unit vector u ∈ Rd, i.e., ‖u‖2 = 1 and a non-zero fixed vector w ∈ Rd, we have the

following identities,

E
[
u>z · 1{w>z>0}

]
=

1√
2π

u>w

‖w‖2

, (C.1)

E
[(
u>z

)2 · 1{w>z>0}
]

=
1

2
. (C.2)

Proof. The basic idea is to decompose u into an orthogonal pair, i.e., u = u⊥ + u‖,

where u‖ = ww>

‖w‖22
u is the projection of u onto w, and u⊥ =

(
I − ww>

‖w‖22

)
u is the

projection of u onto the corresponding complementary subspace. Then for (C.1) we

have

E
[
u>z · 1{w>z>0}

]
= E

[
z>
(
u⊥ + u‖

)
· 1{w>z>0}

]
= E

[
z>u‖ · 1{w>z>0}

]
=
w>u

‖w‖2
2

· E
[
z>w · 1{w>z>0}

]
,
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where for the second equality we have used the fact that z>u⊥ is a zero mean Gaussian

random variable and it is independent of z>w. Let x = w>z ∼ N (0, σ2), where

σ2 = ‖w‖2
2, then the result follows by evaluating the expectation:

E
[
z>w · 1{w>z>0}

]
=

∫ ∞
0

x · 1√
2πσ

exp

(
− x2

2σ2

)
dx =

σ√
2π

=
‖w‖2√

2π
.

Similarly, we can calculate (C.2) as

E
[(
u>z

)2 · 1{w>z>0}
]

= E
[((

z>u‖
)2

+
(
z>u⊥

)2
)
· 1{w>z>0}

]
= E

[(
z>u‖

)2 · 1{w>z>0}
]

+ E
[(
z>u⊥

)2 · 1{w>z>0}
]

(C.3)

=

(
w>u

‖w‖2
2

)2

· E
[(
z>w

)2 · 1{w>z>0}
]

+ E
[(
z>u⊥

)2
]
· E
[
1{w>z>0}

]
, (C.4)

and calculate the three expectations as follows:

E
[(
z>w

)2 · 1{w>z>0}
]

=

∫ ∞
0

x2 · 1√
2πσ

exp

(
− x2

2σ2

)
dx

=
1√
2πσ
· σ2 ·

∫ ∞
0

exp

(
− x2

2σ2

)
dx

=
σ2

2

=
‖w‖2

2

2
,

and

E
[
1{w>z>0}

]
= P

(
w>z > 0

)
=

1

2
,

E
[(
z>u⊥

)2
]

= ‖u⊥‖2
2 = 1−

(
u>w

)2

‖w‖2
2

.

Hence, the result follows by plugging the above results to (C.4).
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Lemma 17 (Lemma 3.1 in [86]). Let xi ∈ Rm be i.i.d. Gaussian random vectors,

then for any 0 < ε < 1, if n > c0mε
−2,

(1− ε) ‖h‖2
2 ≤

1

n

n∑
i=1

(
x>i h

)2 ≤ (1 + ε) ‖h‖2
2 (C.5)

holds for all non-zero vectors h ∈ Rm with probability at least 1− 2 exp (−c1ε
2n), and

c0, c1 are some constants.

Lemma 18. Denote h = w − w?, and let ρ = w>w?

‖w‖2‖w?‖2 . If ‖h‖2 = ‖w − w?‖2 =

ν · ‖w?‖2 where 0 ≤ ν < 1, then we have

ρ ≥ 1− ν2 (C.6)

holds.

Proof. We first show that the assumption ν < 1 implies ρ > 0 since

‖h‖2
2 = ‖w?‖2

2 + ‖w‖2
2 − 2ρ‖w?‖2‖w‖2 < ‖w?‖2

2, (C.7)

gives us

ρ >
‖w‖2

2‖w?‖2

> 0. (C.8)

We next show a tighter lower bound of ρ. Let α be the angle between h and w?, i.e.,

cos (α) = h>w?

‖h‖2‖w?‖2 . We can calculate ρ as

ρ =
w>w?

‖w‖2‖w?‖2

=
h>w? + ‖w?‖2

2

‖w? + h‖2‖w?‖2

=
cos (α) ‖h‖2 + ‖w?‖2

‖h+w?‖2

,

square the two sides will give us,

ρ2 =
cos (α)2 · ‖h‖2

2 + ‖w?‖2
2 + 2cos (α) ‖h‖2‖w?‖2

‖w?‖2
2 + ‖h‖2

2 + 2cos (α) ‖w?‖2‖h‖2

= 1− (1− cos2 (α)) · ν2

1 + ν2 + 2νcos (α)
.

(C.9)
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Moreover, when cos (α)2 6= 1,

(1− cos2 (α)) · ν2

1 + ν2 + 2νcos (α)
=

ν2

1 + (ν+cos(α))2

1−cos2(α)

≤ ν2,

where the equality holds when cos (α) = −ν, and when cos (α)2 = 1, ρ2 = 1. Together

we can conclude that

1 ≥ ρ ≥ ρ2 ≥ 1− ν2. (C.10)

C.2 Proof of GD on the Population Risk

C.2.1 Proof of Theorem 6

Proof. According to the definition of strong convexity, we can calculate the Hessian

of the population risk function and verify it is positive definite in certain region. We

next derive the Hessian and check its spectrum. First of all, according to [71], we can

write the population risk (up to additive factors in w?) and its gradient as

L (w) =
1

K2

[(
K2 −K

2π
+
K

2

)
‖w‖2

2 −
K

π
‖w‖2‖w?‖2 (sin (θ) + (π − θ) cos (θ))

− K2 −K
π

‖w‖2‖w?‖2

]
,

∇L (w) =

(
1

K
+

1− 1
K

π

)
·w − ‖w

?‖2

πK
· w

‖w‖2

· sin (θ)−
1− 1

K

π
· ‖w?‖2 ·

w

‖w‖2

− π − θ
Kπ

·w?.

113



When θ 6= 0 or π and w 6= 0, we can calculate the Hessian as

∇2L (w)

=

(
1

K
+

1− 1
K

π

)
· I − ‖w

?‖2

πK
·
[
w

‖w‖2

· cosθ · ∂θ
∂w

+ sinθ

(
1

‖w‖2

· I − 1

‖w‖3
2

·ww>
)]

−
1− 1

K

π
· ‖w?‖2

(
1

‖w‖2

· I − 1

‖w‖3
2

·ww>
)

+
1

Kπ
·w? · ∂θ

∂w

=

(
1

K
+

1− 1
K

π
− sin (θ)

πK
· ‖w

?‖2

‖w‖2

−
1− 1

K

π
· ‖w

?‖2

‖w‖2

)
· I︸ ︷︷ ︸

H1

+
1

πK
· cos (θ)

sin (θ)
· 1

‖w‖2
2

·
(
w?w> +ww?>)︸ ︷︷ ︸

H2

+

(
1− 1

K

π
− 1

πK
· cos (2θ)

sin (θ)

)
· ‖w

?‖2

‖w‖3
2

·ww>︸ ︷︷ ︸
H3

− 1

Kπ

1

sin (θ)
· 1

‖w‖2‖w?‖2

w?w?>︸ ︷︷ ︸
H4

. (C.11)

It is easy to show that the first term H1 is positively definite under some mild

conditions. The difficulty actually lies in lower bounding the spectrum of the last

three terms. We then lower bound the smallest eigenvalue of H2 + H3 + H4 as
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following,

min
‖u‖2=1

u> (H2 +H3 +H4)u

= min
‖u‖2=1

2

πK
· cos (θ)

sin (θ)
· 1

‖w‖2
2

· u>w · u>w? − 1

Kπ

1

sin (θ)
·
(
u>w?

)2

‖w‖2‖w?‖2

+

(
1− 1

K

π
− 1

πK
· cos (2θ)

sin (θ)

)
· ‖w

?‖2

‖w‖3
2

·
(
u>w

)2

= min
‖u‖2=1

2

πK
· cos (θ)

sin (θ)
· 1

‖w‖2
2

· u>w · u>w? − 1

πK
· cos (2θ)

sin (θ)
· ‖w

?‖2

‖w‖3
2

·
(
u>w

)2

− 1

Kπ

1

sin (θ)
·
(
u>w?

)2

‖w‖2‖w?‖2

+
1− 1

K

π

‖w?‖2

‖w‖3
2

·
(
u>w

)2

= min
‖u‖2=1

1

πK
· 1

sin (θ)
· ‖w

?‖2

‖w‖2

[
2cos (θ)u>w̄ · u>w̄? − cos (θ)2 (u>w̄)2

+ sin (θ)2 (u>w̄)2 −
(
u>w̄?

)2
]

+
1− 1

K

π
· ‖w

?‖2

‖w‖2

(
u>w̄

)2

= min
‖u‖2=1

1

πK
· 1

sin (θ)
· ‖w

?‖2

‖w‖2

[
sin (θ)2 (u>w̄)2 −

(
u>
(
I − w̄w̄>

)
w̄?
)2

+ (K − 1) sin (θ)
(
u>w̄

)2
]

(C.12)

≥ 1

πK
· 1

sin (θ)
· ‖w

?‖2

‖w‖2

·
(
−sin (θ)2)

= −sin (θ)

πK
· ‖w

?‖2

‖w‖2

where we use w̄ to denote w
‖w‖2 , and note that w̄ ⊥

(
I − w̄w̄>

)
w̄?, hence setting u

in the direction of
(
I − w̄w̄>

)
w̄? will achieve the minimum of (C.12). Moreover,

max
‖u‖2=1

u> (H2 +H3 +H4)u ≤ 1

π

‖w?‖2

‖w‖2

(C.13)
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holds by setting u in the direction of w̄. Hence if the condition ‖w‖2 ≥ K+1
K−1+ 3

4
π
‖w?‖2

holds, we have the eigenvalue of the Hessian is lower bounded by some positive value,

min
‖u‖2=1

u>H1u+ u> (H2 +H3 +H4)u

≥ 1

K
+

1− 1
K

π
− sin (θ)

πK
· ‖w

?‖2

‖w‖2

−
1− 1

K

π
· ‖w

?‖2

‖w‖2

− sin (θ)

πK
· ‖w

?‖2

‖w‖2

≥ 1

K
+

1− 1
K

π
−
(

2

πK
+
K − 1

Kπ

)
· ‖w

?‖2

‖w‖2

≥ 1

4K
, (C.14)

and we can also obtain the upper bound as

max
‖u‖2=1

u> (H1)u+ u> (H2 +H3 +H4)u

≤ 1

K
+

1− 1
K

π
− sin (θ)

πK
· ‖w

?‖2

‖w‖2

−
1− 1

K

π
· ‖w

?‖2

‖w‖2

+
1

π

‖w?‖2

‖w‖2

≤ K − 1 + π

πK
+

1

πK
· ‖w

?‖2

‖w‖2

≤ 3. (C.15)

As a summary, when θ 6= 0 or π and w 6= 0 we have shown that

1

4K
· I � ∇2L (w) � 3 · I (C.16)

holds when ‖w‖2 ≥ K+1
K−1+ 3

4
π
‖w?‖2.

Next we will consider the case θ = 0 and calculate the Hessian i.e., the derivative

of ∇L (w) at λ ·w? where λ ∈ R+. We decompose ∇L (w) as two terms

∇L (w) = g1 (w) + g2 (w) , (C.17)

where

g1 (w) =
‖w?‖2

Kπ
· w

‖w‖2

· sin (θ)− θ

Kπ
·w?, (C.18)

g2 (w) =

(
1

K
+

1− 1
K

π

)
·w −

1− 1
K

π
· ‖w?‖2 ·

w

‖w‖2

. (C.19)
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For g1 (w), according to the definition [87, Definition 9.11], if there exist A ∈ Rm×m

such that

lim
ε→0

‖g1 (λw? + εu)−A · ε · u‖2

‖εu‖2

= 0, (C.20)

holds for all ‖u‖2 = 1, then we say that g1 (w) is differentiable at λw? and we write

∇g1 (λw?) = A. Plugging g1 (w) into the left-hand side of (C.20) we obtain

lim
ε→0

∥∥∥∥∥
‖w?‖2
Kπ
· λw?+εu
‖λw?+εu‖2 · sin (θε)− θε

πK
·w?

ε
−Au

∥∥∥∥∥
2

= lim
ε→0

∥∥∥∥‖w?‖2

Kπ
· λw?

‖λw? + εu‖2

· sin (θε)

ε
+
‖w?‖2

Kπ
· u

‖λw? + εu‖2

· sin (θε)

− θε
ε
· w

?

πK
−A · u

∥∥∥∥
2

where θε is the angle between λw? + εu and λw?, and we have

lim
ε→0

sin (θε)

ε
= lim

ε→0

√
1−

(
λw?>(λw?+εu)
‖λw?‖2‖λw?+εu‖2

)2

ε
= lim

ε→0

√
‖λw?‖2

2 − (λw?>u)2

‖λw?‖2
2‖λw? + εu‖2

2

=

√
‖λw?‖2

2 − (λw?>u)2

‖λw?‖2
2‖λw?‖2

2

(C.21)

exists. Further since,

lim
ε→0

θε
ε

= lim
ε→0

(
θε

sin (θε)
· sin (θε)

ε

)
(C.22)

and

lim
ε→0

θε
sin (θε)

= lim
ε→0

1

cos (θε)
= lim

ε→0

‖λw?‖2‖λw? + εu‖2

λw?> (λw? + εu)
= 1, lim

ε→0

θε
ε

= lim
ε→0

sin (θε)

ε
,

(C.23)

both exist, hence

lim
ε→0

‖w?‖2

Kπ
· λw?

‖λw? + εu‖2

· sin (θε)

ε
− θε

ε
· w

?

πK
= 0. (C.24)
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Together with

lim
ε→0

‖w?‖2

Kπ
· u

‖λw? + εu‖2

· sin (θε) = 0, (C.25)

we will have (C.20) hold when A = 0, i.e.,

∇g1 (λw?) = 0. (C.26)

Next for g2 (w) =
(

1
K

+
1− 1

K

π

)
· w − 1− 1

K

π
· ‖w?‖2 · w

‖w‖2 , the derivative can be

calculated as

∇g2 (w) =

(
1

K
+

1− 1
K

π
−

1− 1
K

π
· ‖w

?‖2

‖w‖2

)
· I +

1− 1
K

π
· ‖w

?‖2

‖w‖3
2

·ww>, (C.27)

and since ∇L (w) = g1 (w) + g2 (w), we can conclude that when θ = 0,

∇2L (w) =

(
1

K
+

1− 1
K

π
−

1− 1
K

π
· ‖w

?‖2

‖w‖2

)
· I +

1− 1
K

π
· ‖w

?‖2

‖w‖3
2

·ww>

�
(

1

K
+

1− 1
K

π
−

1− 1
K

π
· ‖w

?‖2

‖w‖2

)
· I, (C.28)

and

∇2L (w) �
(

1

K
+

1− 1
K

π

)
· I. (C.29)

Hence when θ = 0, the result still holds.

C.3 Proof of GD on the Empirical Risk

C.3.1 Proof of Lemma 1

Proof. Recall that the empirical risk function (4.3) is

Ln (w) =
1

n

n∑
i=1

(
1

K

K∑
j=1

φ
(
w>x

(j)
i

)
− yi

)2

, (C.30)
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and we can calculate its gradient as

∇Ln (w) = 2 · 1

n

n∑
i=1

(
1

K

K∑
j=1

φ
(
w>x

(j)
i

)
− yi

)
·

(
1

K

K∑
j=1

φ′
(
w>x

(j)
i

)
x

(j)
i

)

= 2 · 1

n

n∑
i=1

1

K2

K∑
j=1

K∑
l=1

(
φ
(
w>x

(j)
i

)
− φ

(
w?>x

(j)
i

))
φ′
(
w>x

(l)
i

)
x

(l)
i ,

(C.31)

where φ′ denotes the derivative of φ, and following the convention we define it as

φ′ (z) = 1{z>0} =

{
1 z > 0

0 z ≤ 0
. (C.32)

Further denote h = w −w?, then the left-hand side of (4.15) can be written as

〈∇Ln (w) ,h〉 = 2 · 1

n

n∑
i=1

1

K2

K∑
j=1

K∑
l=1

[
h>x

(j)
i · h>x

(l)
i · 1{w>x(j)

i >0,w>x
(l)
i >0

}

+w?>x
(j)
i · h>x

(l)
i ·
(

1{
w>x

(j)
i >0

} − 1{
w?>x

(j)
i >0

}) · 1{
w>x

(l)
i >0

}].
(C.33)

One pivotal observation of (C.33) is that when w is close to w?, the first term can

be lower bounded by the distance ‖h‖2, and the second term is very small since

w?>x
(j)
i and w>x

(j)
i will have the same sign with high probability. We summarize

the observation in the following two lemmas.

Lemma 19. When the sample complexity satisfies n ≥ c · mK2 · log(n) for some

sufficiently large constant c, with probability at least 1− d−10, we have

1

n

n∑
i=1

1

K2

K∑
j=1

K∑
l=1

h>x
(j)
i · h>x

(l)
i · 1{w>x(j)

i >0,w>x
(l)
i >0

} ≥ 1

4K
· ‖h‖2

2 (C.34)

holds for all w ∈ B
(
w?, 1

K
‖w?‖2

)
.
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Lemma 20. For some sufficiently large constant c1, c2, if n ≥ c1 ·mK2 log (K) and

‖h‖2 ≤ 1
K
‖w?‖2 hold, then with probability at least 1− c2 exp (−K2n),

1

n

n∑
i=1

1

K2

K∑
j=1

K∑
l=1

w?>x
(j)
i · h>x

(l)
i ·
(

1{
w>x

(j)
i >0

} − 1{
w?>x

(j)
i >0

}) · 1{
w>x

(l)
i >0

}

≤ 1.2

K
3
2

· ‖h‖2
2 (C.35)

holds for all w ∈ B
(
w?, 1

K
3
2
‖w?‖2

)
.

The proof of Lemma 19 and Lemma 20 is provided in Section C.3.2. Together

with the above two lemmas we can conclude that as long as n ≥ c ·mK2 · log(n) for

some large constant c and ‖h‖2 ≤ 1

K
3
2
‖w?‖2,

〈∇Ln (w) ,h〉 ≥
√
K − 5.8

4K
3
2

· ‖h‖2
2 (C.36)

holds with probability at least 1− 1
d10

for all w. For the right-hand side of RC (4.15)

we successfully upper bound ‖∇Ln (w) ‖2
2, and the result is summarized as follows.

Lemma 21. If n ≥ c1mε
−2, then with probability at least 1 − 2 exp (−c2ε

2n) −

2 exp (−n/2) we have

‖∇Ln (w) ‖2
2 ≤ 18 (1 + ε) ‖h‖2

2 (C.37)

holds for all w.

Setting ε = 1
K

in lemma 21 we have the following inequality

‖∇Ln (w) ‖2
2 ≤ 18

(
1 +

1

K

)
‖h‖2

2 (C.38)

holds with probability at least 1 − c · exp (−mK2) for some large constant c as long

as n ≥ c4 ·mK2. Hence, further take λ = 1
72K2 and µ = 1

4K2 , then we have

〈∇Ln (w) ,w −w?〉 ≥ λ‖∇Ln (w) ‖2
2 + µ‖w −w?‖2

2 (C.39)
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holds with probability at least 1 − 1
d10

as long as the sample complexity satisfies

n ≥ c ·mK2 · log(n) for some large constant c and ‖h‖2 ≤ 1

K
3
2
‖w?‖2.

C.3.2 Proof of Auxiliary Lemmas

Proof of Lemma 19

Proof. Lower bounding (C.34) can be boiled down to lower bound the smallest eigen-

value of the symmetric matrix An (w) ∈ Rm×m, where

An (w) =
1

n

n∑
i=1

1

K2

K∑
j=1

K∑
l=1

x
(j)
i · x

(l)>
i · 1{

w>x
(j)
i >0,w>x

(l)
i >0

}. (C.40)

Due to the randomness of An (w), it’s hard to lower bound An (w) directly, however

it is easy to calculate and lower bound E[An (w)]. Hence, we first lower bound

E[An (w)], and then show that An (w) concentrates around its expectation.

With the two identities from Lemma 16, we can lower bound E [An (w)] as

min
‖u‖2=1

E

[
1

n

n∑
i=1

1

K2

K∑
j=1

K∑
l=1

u>x
(j)
i · x

(l)>
i u · 1{

w>x
(j)
i >0,w>x

(l)
i >0

}
]
· I

= min
‖u‖2=1

1

K2

(∑
j 6=l

E
[
u>x(j) · 1{w>x(j)>0}

]
· E
[
u>x(l) · 1{w>x(l)>0}

]
+

K∑
j=1

E
[(
u>x(j)

)2 · 1{w>x(j)>0}
])
· I

= min
‖u‖2=1

1

K2

((
K2 −K

)
· 1

2π

(
u>w

)2

‖w‖2
2

+
K

2

)
· I

� 1

2K
· I (C.41)

where in the first equality we have used the fact that x(j) is independent of x(l) when

j 6= l, and for the last inequality, the equality holds when 〈u,w〉 = 0. In a summary,

we have shown that

E [An (w)] � 1

2K
· I (C.42)
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holds. Next we are going to apply a covering argument to show that with high prob-

ability the perturbation ‖An (w)−E [An (w)] ‖ is small for all w ∈ B
(
w?, 1

K
‖w?‖2

)
.

Notice that only the sign of w>x matters for An (w), hence considering w ∈ Sm−1

will be enough. Denote Nε as the ε-net of the sphere Sm−1, i.e. for any w ∈ Sm−1,

there exist a wε ∈ Nε corresponding to w such that ‖w − wε‖2 ≤ ε. By triangle

inequality, we can write

‖An (w)− E [An (w)] ‖ ≤ ‖An (w)−An (wε) ‖+ ‖An (wε)− E [An (wε)] ‖

+ ‖E [An (wε)]− E [An (w)] ‖, (C.43)

and hence

P
(

sup
w∈Sm−1

‖An (w)− E [An (w)] ‖ ≥ t

)
≤ P

(
sup

w∈Sm−1

‖An (w)−An (wε) ‖ ≥
t

3

)
+ P

(
sup
wε∈Nε

‖An (wε)− E [An (wε)] ‖ ≥
t

3

)
+ P

(
sup

w∈Sm−1

‖E [An (wε)]− E [An (w) ‖] ≥ t

3

)
. (C.44)

Next we will deal with the above terms step by step.

Firstly, let V 1
4

be a 1
4
-net of B (0, 1) with log |V 1

4
| ≤ m log 12. We have

‖An (wε)− E [An (wε)] ‖ ≤ 2 sup
u∈V 1

4

| 〈u, (An (wε)− E [An (wε)])u〉 |, (C.45)
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and then applying union bound over Nε and V 1
4

will give us

P
(

sup
wε∈Nε

‖An (wε)− E [An (wε)] ‖ ≥
t

3

)
≤ |Nε| · |V 1

4
| · sup
wε∈Nε

sup
u∈V 1

4

P
(
| 〈u, (An (wε)− E [An (wε)])u〉 | ≥

t

6

)
≤ exp

(
m log

(
1 +

2

ε

)
+m log (12)

)
· sup
wε∈Nε

sup
u∈V 1

4

P
(
| 〈u, (An (wε)− E [An (wε)])u〉 | ≥

t

6

)
. (C.46)

Further since the sub-exponential norm of An (w) can be upper bounded as∥∥∥∥∥ 1

K2

K∑
j=1

K∑
l=1

u>x(j) · x(l)>u · 1{w>x(j)>0,w>x(l)>0}

∥∥∥∥∥
ψ1

≤ 1

K2

K∑
j=1

K∑
l=1

‖u>x(j) · x(l)>u‖ψ1

≤ C,

where C is some constant. Hence, applying the Bernstein inequality will give us

P
(
| 〈u, (An (wε)− E [A (wε)])u〉 | ≥

t

6

)
≤ 2 exp

(
−C · n ·min

{
c1 · t2, c2 · t

})
,

(C.47)

together we will obtain

P
(

sup
wε∈Nε

‖An (wε)− E [An (wε)] ‖ ≥
t

3

)
≤ exp

(
m log

(
12 +

24

ε

))
· 2 exp

(
−C · n ·min

{
c1 · t2, c2 · t

})
.

Secondly, by the definition of spectral norm and apply Lemma 16 will give us

‖E [An (wε)]− E [An (w)] ‖ = sup
‖u‖2=1

u> (E [An (wε)]− E [An (w)])u

= sup
‖u‖2=1

K − 1

2πK

((
u>wε

)2

‖wε‖2
2

−
(
u>w

)2

‖w‖2
2

)
, (C.48)
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recall that ‖w‖2 = ‖wε‖2 = 1 and plugging it back to the above equation,

‖E [An (wε)]− E [An (w)] ‖ = sup
‖u‖2=1

K − 1

2πK

(
u> (wε −w) · u> (wε +w)

)
<
K − 1

2πK
‖wε −w‖2 · ‖wε +w‖2, (C.49)

where in the last step we apply Cauchy-Schwarz inequality. Hence by the definition

of wε we have the following holds

‖E [An (wε)]− E [An (w)] ‖ < K − 1

πK
· ε. (C.50)

Thus if we set t
3
≥ K−1

πK
· ε we will have

P
(

sup
w∈Nε

‖E [An (wε)]− E [An (w)] ‖ ≥ t

3

)
= 0. (C.51)

Finally, by Markov’s inequality we will obtain

P
(

sup
w∈Sm−1

‖An (w)−An (wε) ‖ ≥
t

3

)
≤ 3

t
· E
[

sup
w∈Sm−1

‖An (w)−An (wε) ‖
]
,

(C.52)

and we can upper bound the right-hand side as following

E
[

sup
w∈Sm−1

‖An (w)−An (wε) ‖
]

= E
[

sup
w∈Sm−1

∥∥ 1

K2

K∑
j=1

K∑
l=1

x(j) · x(l)>

·
(

1{w>x(j)>0,w>x(l)>0} − 1{w>ε x(j)>0,w>ε x
(l)>0}

)∥∥]
≤ E

[
‖ 1

K2

K∑
j=1

K∑
l=1

x(j) · x(l)>‖ (C.53)

·
(

max
j,l

sup
w∈Sm−1

|1{w>x(j)>0,w>x(l)>0} − 1{w>ε x(j)>0,w>ε x
(l)>0}|

)]

≤

√√√√E

[
‖ 1

K2

K∑
j=1

K∑
l=1

x(j) · x(l)>‖2

]
(C.54)

·

√√√√E

[(
max
j,l

sup
w∈Sm−1

|1{w>x(j)>0,w>x(l)>0} − 1{w>ε x(j)>0,w>ε x
(l)>0}|

)2
]
, (C.55)

124



the last inequality follows from Cauchy-Schwarz inequality. Notice that(
max
j,l

sup
w∈Sm−1

|1{w>x(j)>0,w>x(l)>0} − 1{w>ε x(j)>0,w>ε x
(l)>0}|

)2

= max
j,l

sup
w∈Sm−1

|1{w>x(j)>0,w>x(l)>0} − 1{w>ε x(j)>0,w>ε x
(l)>0}|

2,

= max
j,l

sup
w∈Sm−1

|1{w>x(j)>0,w>x(l)>0} − 1{w>ε x(j)>0,w>ε x
(l)>0}|

(C.56)

since |1{w>x(j)>0,w>x(l)>0} − 1{w>ε x(j)>0,w>ε x
(l)>0}| is either 0 or 1. Applying triangle

inequality we have

max
j,l

sup
w∈Sm−1

|1{w>x(j)>0,w>x(l)>0} − 1{w>ε x(j)>0,w>ε x
(l)>0}|

≤ max
j,l

sup
w∈Sm−1

|1{w>x(j)>0} − 1{w>ε x(j)>0}|+ |1{w>x(l)>0} − 1{w>ε x(l)>0}| (C.57)

hold. Furthermore, we have

|1{w>x(j)>0} − 1{w>ε x(j)>0}| =

{
1 w>x(j) ·w>ε x(j) ≤ 0

0 otherwise
. (C.58)

Next we are going to control P
(
w>x(j) ·w>ε x(j) ≤ 0

)
. Denote z1 = w̄>x(j) and

z2 = w̄>ε x
(j), then z1 and z2 follow a joint Gaussian distribution and

P (z1z2 < 0)

= P (z1 < 0, z2 > 0) + P (z1 > 0, z2 < 0)

=
2

2π
√

1− ρ2

∫ +∞

0

∫ 0

−∞
exp

(
− 1

2(1− ρ2)

(
z2

1 − 2ρz1z2 + z2
2

))
dz1dz2

≤ 2

2π
√

1− ρ2

∫ +∞

0

∫ 0

−∞
exp

(
− 1

2(1− ρ2)

(
z2

1 + z2
2

))
dz1dz2

=
2

2π
√

1− ρ2

∫ +∞

0

exp

(
− z2

1

2(1− ρ2)

)
dz1 ·

∫ 0

−∞
exp

(
− z2

2

2(1− ρ2)

)
dz2

=
2

2π
√

1− ρ2
·
(

1

2
·
√

2π (1− ρ2)

)2

=
1

2

√
1− ρ2, (C.59)
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where ρ = cos θε denotes the correlation between z1 and z2, and the inequality follows

since ρz1z2 < 0. Hence, by the definition of θε and ρ we have

E

[(
max
j,l

sup
w∈Sm−1

|
(

1{w>x(j)>0,w>x(l)>0} − 1{w>ε x(j)>0,w>ε x
(l)>0}

)
|
)2
]
≤ sup
w∈Sm−1

sin θε
2

.

(C.60)

And for the first term in (C.55), denote X = [x1, · · · ,xK ]> ∈ RK×m, we have

E

[
‖ 1

K2

K∑
j=1

K∑
l=1

x(j) · x(l)>‖2

]
= E

[
‖ 1

K2
XX>‖2

]
=

1

K4
E
[
smax (X)4] (C.61)

from [88, Corollary 5.35] we know that

smax (X) ≥
√
K +

√
m+ t (C.62)

holds with probability less or equal than 2 exp
(
− t2

2

)
, in other words,

P
(
smax (X)4 ≥ t

)
≤ 2 exp

−
(
t
1
4 −
√
K −

√
m
)2

2

 , (C.63)

and then applying the following fact, E [Z] =
∫∞

0
P (Z ≥ t) dt holds for a positive

random variable, we will obtain

E
[
smax (X)4] =

∫ ∞
0

P
(
smax (X)4 ≥ t

)
dt ≤

∫ ∞
0

2 exp

−
(
t
1
4 −
√
K −

√
m
)2

2

 dt,

(C.64)

and by changing variable we can write

E
[
smax (X)4] ≤ ∫ ∞

0

8
(
t+
√
K +

√
m
)3

exp

(
−t

2

2

)
dt

=

∫ ∞
0

8

(
t3 +

(√
K +

√
m
)3

+ 3t
(√

K +
√
m
)2

+ 3t2
(√

K +
√
m
))

· exp

(
−t

2

2

)
dt

≤ C ·
(√

K +
√
m
)3

. (C.65)
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Combining results, we can show that

E
[
sup
w
‖An (w)−An (wε) ‖

]
≤

(√
K +

√
m
) 3

2

K2
·

√
sup
w

sin θε
2

, (C.66)

where from Lemma 18 we know that (sin θε)
2 < (ε)2 holds when ε is small, hence

P
(

sup
w
‖An (w)−An (wε) ‖ ≥

t

3

)
≤ C

t
·

(√
K +

√
m
) 3

2

K2
·
√
ε (C.67)

Thus if we let

exp

(
m log

(
12 +

24

ε

))
· 2 exp

(
−C · n ·min

{
c1 · t2, c2 · t

})
≤ δ

2
, (C.68)

C

t
·

(√
K +

√
m
) 3

2

K2
·
√
ε ≤ δ

2
, (C.69)

and then when

t ≥ max

C · K − 1

K
· ε,

C ·
√
ε ·
(√

K +
√
m
) 3

2

δK2
,

√
m log(1

ε
)− log(δ)

n

 , (C.70)

set ε = δ
n
, δ = 1

d−10 , we will obtain that with probability at least 1− 1
d10

,

‖An (w)− E [An (w)] ‖ ≤
√
C ·m · log(n)

n
(C.71)

holds for all w ∈ Sm−1 and remember that only the direction of w matters, hence the

claim also holds for all w ∈ B
(
w?, 1

K
‖w?‖2

)
.

Together with the result that

E [An (w)] � 1

2K
· I, (C.72)

we can conclude that when the sample size n ≥ mK2 · log(n) with probability at least

1− 1
d10

,

An (w) � 1

4K
· I (C.73)
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holds for all w ∈ B
(
w?, 1

K
‖w?‖2

)
.

Proof of Lemma 20

Proof. Next we will show that the second term in (C.33) is uniformly upper bounded

for all w in a local neighborhood of w?. With some algebra we can have the following

deterministic upper bound,∣∣∣∣w?>x
(j)
i · h>x

(l)
i ·
(

1{
w>x

(j)
i >0

} − 1{
w?>x

(j)
i >0

}) · 1{
w>x

(l)
i >0

}∣∣∣∣
≤
∣∣∣h>x(l)

i

∣∣∣ · ∣∣∣w?>x
(j)
i

∣∣∣ · 1{
w>x

(j)
i ·w?>x

(j)
i <0

}, (C.74)

further since 1{
w>x

(j)
i ·w?>x

(j)
i <0

} = 1{
(w?+h)>x

(j)
i ·w?>x

(j)
i <0

} ≤ 1{|w?>x(j)
i |≤|h>x

(j)
i |
} holds,

we will obtain the following bound,∣∣∣h>x(l)
i

∣∣∣ · ∣∣∣w?>x
(j)
i

∣∣∣ · 1{
w>x

(j)
i ·w?>x

(j)
i <0

} ≤ ∣∣∣h>x(l)
i

∣∣∣ · ∣∣∣w?>x
(j)
i

∣∣∣ · 1{|w?>x(j)
i |≤|h>x

(j)
i |
}

≤
∣∣∣h>x(l)

i

∣∣∣ · ∣∣∣h>x(j)
i

∣∣∣ · 1{|w?>x(j)
i |≤|h>x

(j)
i |
},

i.e.,

1

n

n∑
i=1

1

K2

K∑
j=1

K∑
l=1

w?>x
(j)
i · h>x

(l)
i ·
(

1{
w>x

(j)
i >0

} − 1{
w?>x

(j)
i >0

}) · 1{
w>x

(l)
i >0

}

≤ 1

n

n∑
i=1

1

K2

K∑
j=1

K∑
l=1

∣∣∣h>x(l)
i

∣∣∣ · ∣∣∣h>x(j)
i

∣∣∣ · 1{|w?>x(j)
i |≤|h>x

(j)
i |
}

=
1

K2

∑
j 6=l

1

n

n∑
i=1

∣∣∣h>x(l)
i

∣∣∣ · ∣∣∣h>x(j)
i

∣∣∣ · 1{|w?>x(j)
i |≤|h>x

(j)
i |
}

+
1

K2

K∑
j=1

1

n

n∑
i=1

∣∣∣h>x(j)
i

∣∣∣2 · 1{|w?>x(j)
i |≤|h>x

(j)
i |
}. (C.75)

The key observation here is that
{
|w?>x

(j)
i | ≤ |h>x

(j)
i |
}

is an event with small prob-

ability when w is close to w?, we first show the second term in (C.75) can be upper

bounded by ‖h‖2
2 up to some scaling factor and the result is summarized as follows.
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Lemma 22. For any ε > 0 and some large enough constants c1, c2, if n ≥ c1 ·

mε−2 log (ε−1), then with probability at least 1− c2 exp (−ε2n),

1

n

n∑
i=1

|h>x(j)
i |2 · 1{|w?>x(j)

i |≤|h>x
(j)
i |
} ≤

(
1.18

K
3
2

+ ε

)
· ‖h‖2

2, (C.76)

holds for all non-zeros h ∈ Rm satisfying ‖h‖2 ≤ 1

K
3
2
‖w?‖2, by setting ε = 0.02

K
3
2

, we

have

1

n

n∑
i=1

|h>x(j)
i |2 · 1{|w?>x(j)

i |≤|h>x
(j)
i |
} ≤ 1.2

K
3
2

· ‖h‖2
2 (C.77)

holds with probability at least 1 − c2 exp (−K3n), as long as n ≥ c1 ·mK3 log
(
K

3
2

)
and ‖h‖2 ≤ 1

K
3
2
‖w?‖2 hold.

Moreover, with slight adaption we can directly show a similar upper bound holds

for the fist term in (C.75). Hence applying Lemma 22 we have that

1

n

n∑
i=1

1

K2

K∑
j=1

K∑
l=1

w?>x
(j)
i · h>x

(l)
i ·
(

1{
w>x

(j)
i >0

} − 1{
w?>x

(j)
i >0

}) · 1{
w>x

(l)
i >0

}

≤ K2 −K
K2

· 1.2

K
3
2

‖h‖2
2 +

K

K2
· 1.2

K
3
2

‖h‖2
2 ≤

1.2

K
3
2

· ‖h‖2
2, (C.78)

holds with probability at least 1 − c2 exp (−K3n) as long as n ≥ c1 ·mK3 log
(
K

3
2

)
and ‖h‖2 ≤ 1

K
3
2
‖w?‖2 hold.

Proof of Lemma 21

Proof. Recall that the gradient is

∇Ln (w) = 2 · 1

n

n∑
i=1

1

K2

K∑
j=1

K∑
l=1

(
φ
(
w>x

(j)
i

)
− φ

(
w?>x

(j)
i

))
φ′
(
w>x

(l)
i

)
x

(l)
i

=
2

K2

K∑
j=1

K∑
l=1

1

n

n∑
i=1

(
w>x

(j)
i · 1{w>x(j)

i >0,w>x
(l)
i >0

}

−w?>x
(j)
i · 1{w?>x(j)

i >0,w>x
(l)
i >0

})x(l)
i (C.79)
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Let X(l) =
[
x

(l)
1 , · · · ,x

(l)
n

]
∈ Rm×n and a(j,l) =

[
a

(j,l)
1 , · · · , a(j,l)

n

]>
∈ Rn where a

(j,l)
i =

w>x
(j)
i · 1{w>x(j)

i >0,w>x
(l)
i >0

}−w?>x
(j)
i · 1{w?>x(j)

i >0,w>x
(l)
i >0

}, then we can rewrite the

gradient as

∇Ln (w) =
2

K2

K∑
j=1

K∑
l=1

1

n
X(l)a(j,l) (C.80)

since the spectrum of X(l) is well controlled when n is large enough, hence in order

to upper bound the norm of ∇Ln (w), we will analyze the upper bound of ‖a(j,l)‖2
2.

We can further rewrite a
(j,l)
i as

h>x
(j)
i · 1{w>x(j)

i >0,w>x
(l)
i >0

} +w?>x
(j)
i ·

(
1{
w>x

(j)
i >0

} − 1{
w?>x

(j)
i >0

}) · 1{
w>x

(l)
i >0

}

by triangle inequality we have that

‖a(j,l)‖2

≤

√√√√ n∑
i=1

(
h>x

(j)
i · 1{w>x(j)

i >0,w>x
(l)
i >0

})2

+

√√√√ n∑
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(
w?>x

(j)
i ·

(
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w>x
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i >0

} − 1{
w?>x

(j)
i >0

}) · 1{
w>x

(l)
i >0

})2

≤

√√√√ n∑
i=1

(
h>x

(j)
i

)2

+

√√√√ n∑
i=1

(
w?>x

(j)
i

)2

· 1{(
w>x

(j)
i

)
·
(
w?>x

(j)
i

)
<0
}

≤

√√√√ n∑
i=1

(
h>x

(j)
i

)2

+

√√√√ n∑
i=1

(
h>x

(j)
i

)2

· 1{|w?>x(j)
i |<|h>x

(j)
i |
}

≤ 2

√√√√ n∑
i=1

(
h>x

(j)
i

)2

(C.81)

Applying Lemma 17 to the above term will give us

P

√√√√ n∑
i=1

(
h>x

(j)
i

)2

≤
√
n (1 + ε)‖h‖2

 ≥ 1− 2 exp
(
−cε2n

)
, (C.82)
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as long as n ≥ cmε−2. Finally we can upper bound the norm of the gradient as

‖∇Ln (w) ‖2
2 ≤

2

K2

K∑
j=1

K∑
l=1

‖ 1

n
X(l)a(j,l)‖2

2 ≤
2

K2

K∑
j=1

K∑
l=1

1

n2
‖X(l)‖2 · ‖a(j,l)‖2

2,

from [88, Corollary 5.35] we know that P
(
‖X(l)‖2 ≤ 9n

)
≥ 1− 2 exp (−n/2) as long

as n ≥ m, hence by union bound we can conclude that

P
(
‖∇Ln (w) ‖2

2 ≤ 18 (1 + ε) ‖h‖2
2

)
≥ 1− 2 exp

(
−cε2n

)
− 2 exp (−n/2) (C.83)

holds as long as n ≥ cmε−2.

Proof of Lemma 22

Proof. We will follow the same idea in the proof of [74, Lemma 7]. Firstly, for a fixed

h we will apply Bernstein type concentration inequality to show the result holds,

and then apply a covering argument to generalize the result. We define the following

Lipschitz function,

Fi (t) =


t, t >

(
w?>x

(j)
i

)2

1
δ

(
t−
(
w?>x

(j)
i

)2
)

+
(
w?>x

(j)
i

)2

(1− δ) ·
(
w?>x

(j)
i

)2

≤ t ≤
(
w?>x

(j)
i

)2

0, otherwise

for i = 1, · · · , n, and it’s easy to verify that

|h>x(j)
i |2 · 1{|w?>x(j)

i |≤|h>x
(j)
i |
} ≤ Fi

(
|h>x(j)

i |2
)
≤ |h>x(j)

i |2 · 1{(1−δ)|w?>x(j)
i |2≤|h>x

(j)
i |2

}.

Next we are going to upper bound the expectation of the right-hand side term above,

for simplicity we let γi =
|h>x(j)

i |
2

‖h‖22
· 1{

(1−δ)|w?>x(j)
i |2≤|h>x

(j)
i |2

} and r = ‖h‖2
‖w?‖2 , then

E [γi] =

∫ ∫ ∞
−∞

E
[
γi|w?>x

(j)
i = τ1‖w?‖2,h

>x
(j)
i = τ2‖h‖2

]
· f (τ1, τ2) dτ1dτ2,

(C.84)
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where f (τ1, τ2) is the joint density of two Gaussian random variable with correlation

ρ = h>w?

‖h‖2‖w?‖2 . Continuing evaluate (C.84) we will obtain

E [γi]

=

∫ ∫ ∞
−∞

τ 2
2 · 1{√1−δ|τ1|≤|τ2|·r} · f (τ1, τ2) dτ1dτ2

=
1√
2π

∫ ∞
0

τ 2
2 exp

(
−τ

2
2

2

)
·

erf


(

r√
1−δ − ρ

)
τ2√

1− ρ2

+ erf


(

r√
1−δ + ρ

)
τ2√

1− ρ2

 dτ2,

we omit calculations for the second equality here, further since

erf


(

r√
1−δ − ρ

)
τ2√

1− ρ2

+ erf


(

r√
1−δ + ρ

)
τ2√

1− ρ2


= erf


(

r√
1−δ + ρ

)
τ2√

1− ρ2

− erf


(
ρ− r√

1−δ

)
τ2√

1− ρ2


=

(
2 r√

1−δ · τ2√
1− ρ2

)
· 2√

π
exp

(
−z2

)
, (C.85)

where the first equality holds since erf (·) is an odd function, the second equality holds

by applying the mean value theorem, and z = λ

(
r√
1−δ+ρ

)
τ2√

1−ρ2
+ (1− λ)

(
ρ− r√

1−δ

)
τ2√

1−ρ2
for

some λ ∈ (0, 1).

From Lemma 18 we know that

ρ > ρ2 ≥ 1− r2 (C.86)

and we have that r = ‖h‖2
‖w?‖2 ≤

1

K
3
2

. When the number of neurons K ≥ 2 and δ is

small, e.g. δ = 0.01, then r√
1−δ ≈ r. Hence, 0 < ρ − r√

1−δ < ρ + r√
1−δ , notice that

exp (−z2) is monotonic decreasing with respect to z, thus we have(
2 r√

1−δ · τ2√
1− ρ2

)
· 2√

π
exp

(
−z2

)
≤ 2.27 · r · τ2√

1− ρ2
· exp

−

(
ρ− r√

1−δ

)
τ2√

1− ρ2

2


≤ 2.27 · r · τ2√
1− ρ2

· exp

(
−0.12τ 2

2

1− ρ2

)
, (C.87)
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Figure C.1: Numerical integral with respect to ρ

holds, the last step follows from the fact that ρ− r√
1−δ ≥

√
1− r2− r√

1−δ ≥ 0.36, and

notice that the right-hand side is monotonic decreasing, and r ≤ 1
2
. Together we can

upper bound the expectation as

E [γi]

=
1√
2π

∫ ∞
0

τ 2
2 exp

(
−τ

2
2

2

)
·

erf


(

r√
1−δ − ρ

)
τ2√

1− ρ2

+ erf


(

r√
1−δ + ρ

)
τ2√

1− ρ2

 dτ2

≤ 2.27√
2π
· r ·

∫ ∞
0
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2 exp
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−τ

2
2

2

)
· 1√

1− ρ2
exp

(
−0.12τ 2

2

1− ρ2

)
dτ2,

≤ 1.18

K
3
2

,

where we evaluate the integral in the first inequality over different choices of ρ in

Fig C.1, we see that the integral is upper bounded by a constant, hence we can obtain

the last inequality. Moreover, ‖Fi
(
|h>x(j)

i |2
)
‖ψ1 ≤ C ·‖h‖2

2 for all i = 1, · · · , n, hence

when r = ‖h‖2
‖w?‖2 ≤

1
K

we can have

P

 1

n

n∑
i=1

Fi

(
|h>x(j)

i |2
)

‖h‖2
2

≥
(

1.18

K
3
2

+ ε

) < exp
(
−c · n · ε2

)
, (C.88)
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holds for some constant c. Since the covering argument will be the same as the proof

of [74, Lemma 7], we omit the repetition and conclude.
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