A Preliminaries

We first gather two standard concentration inequalities used throughout the appendix. The first lemma
is the multiplicative form of the Chernoff bound, while the second lemma is a user-friendly version of the
Bernstein inequality.

Lemma 10. Suppose X1, -, X,, are independent random variables taking values in {0,1}. Denote X =
Sty Xi and p=E[X]. Then for any § > 1, one has

P(X > (146)p) <e /3,

Lemma 11. Consider m independent random variables z; (1 <1< m), each satisfying |z;| < B. For any
a > 2, one has

G 2
< 2alongE[zl2] + gaBlogm
=1

Z zZ| — Z E [Zl}
=1 =1

a

with probability at least 1 — 2m ™.

Next, we list a few simple facts. The gradient and the Hessian of the nonconvex loss function (2) are
given respectively by

Vf(x)= %Z [(a;rwf — (a;wh)z} aia;ra:; (54)
i=1
Vi @) =" [3(al @)’ - (a] )| aia]. (55)

1=1

In addition, recall that x? is assumed to be z% = e; throughout the proof. For each 1 < i < m, we have

the decomposition a; = i1 , where a; | contains the 2nd through the nth entries of a,;. The standard
i, L
concentration inequality reveals that
Tt = i1l <5y/1 56
max |a; 2’| = max Jai1| < 5y/logm (56)

with probability 1 — O (m_w). Additionally, apply the standard concentration inequality to see that

A, <V
nax laill, < Von (57)

with probability 1 — O (me‘1'5”).
The next lemma provides concentration bounds regarding polynomial functions of {a;}.

Lemma 12. Consider any € > 3/n. Suppose that a; s N(0,I,) for1 <i<m. Let
o -1 T
S = {z eR" ‘ max la 2| <8 ||z||2} ,
where (B is any value obeying B > c1v/logm for some sufficiently large constant ¢c; > 0. Then with probability

exceeding 1 — O (m_lo), one has

1|25 ailaL_z‘ < €|z, for all z € S, provided that m > co max {e%nlogn, 18n log? m};

m

m

2. |5 aia (aZLz)Sl <e ||zH§ for all z € S, provided that m > ¢g max {E%nlogn, %B‘%logg m};

3. |E> " a, (a;lz)2 - ||z|\§‘ <e ||z||g for all z € S, provided that m > comax { Znlogn, * 2nlog? m};
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4|2 a$ (a;)rJ_z)2 - 15 ||z||§’ <e ||z||§ forallz € S, provided that m > comax { 4nlogn, %52n10g4 m};

m

m

5123, aj, (aZLz)G —15 ||z||g’ <e ||z||g forallz € S, provided thatm > comax { 4nlogn, %ﬂﬁnlog2 m};

6. |=> " a?, (aL_z)4 -3 Hz||;1’ < e|z|fs for allz € S, provided that m > comax { Lnlogn, L14*nlog? m}.
Here, cqg > 0 is some sufficiently large constant.
Proof. See Appendix J. O

The next lemmas provide the (uniform) matrix concentration inequalities about {aiaiT}.

Lemma 13 ( [Verl2, Corollary 5.35|). Suppose that a; Hd N(0,1,) for 1 <i < m. With probability at
least 1 — ce=%™, one has
Zaz

as long as m > con for some sufficiently large constant co > 0. Here, c,¢ > 0 are some absolute constants.

<2

Lemma 14. Fiz some % € R™. Suppose that a; R N(0,I,), 1 < i < m. With probability at least
1-0 (m_lo), one has

3
MHmuH; (58)

3 (al e al a1 20t
m “= m

provided that m > cinlog® m. Here, cy,c1 are some universal positive constants. Furthermore, fix any ¢z > 1

and suppose that m > cynlog® m for some sufficiently large constant ¢; > 0. Then with probability exceeding
1-0 (m_lo),

nlog m
< ¢ =115 (59)

1 m
EZ a) z)" a;a —||zHZI —2zz"

holds simultaneously for all z € R™ obeying maxi<i<m |a;-'—z| < cov/logm ||z||,. On this event, we have

Z|az 1| a;a

Proof. See Appendix K. O

<4 (60)

al J-a’z 1

The following lemma provides the concentration results regarding the Hessian matrix V2f ().

Lemma 15. Fiz any constant ¢o > 1. Suppose that m > cinlog®m for some sufficiently large constant
c1 > 0. Then with probability exceeding 1 — O (m_lo),

[ loe?
H(In —nVQf(z)) — {(1 —3n||z|\§ +n)I, + 2nafat T — 677zzT}H < %max{\ldlﬁ,l}

and |V2f (2)|| < 10]]2]13 + 4

hold simultaneously for all z obeying max;<;<m |a z’ < covlogm ||z||y, provided that 0 < n <

max{l\ZHa,l}
for some sufficiently small constant co > 0.

Proof. See Appendix L. O
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Finally, we note that there are a few immediate consequences of the induction hypotheses (40), which we
summarize below. These conditions are useful in the subsequent analysis. Note that Lemma 3 is incorporated

here.

Lemma 16. Suppose that m > Cnlog®m for some sufficiently large constant C > 0. Then under the

hypotheses (40) for t < logn, with probability at least 1 — O(me=15") — O(m~1°) one has

/2 < oV, < [t O], < 205
cs/2 < [, < a0, < 205

eof2 < [, < a0, < 205

max ’al—rwt’ < \/logmHthQ;

1<i<m
s [af ot | < Viogma
max a2 S Viogml|ato#|
max [af @] < Viogm|2f
e [a et | < Viogmfet s
1I§nza£§n Hmt - a:t7(l)H2 < logm;
t t,s .
D
max ’xt’(l)‘ < 204.
1<i<m I
Proof. See Appendix M.
B Proof of Lemma 1
We focus on the case when
1 logn
\/nlognSOZOS NG and 1_logn§50§1+logn

The other cases can be proved using very similar arguments as below, and hence omitted.

Let 7 > 0 and ¢4 > 0 be some sufficiently small constants independent of n. In the sequel, we divide

Stage 1 (iterations up to T) into several substages. See Figure 9 for an illustration.

e Stage 1.1: consider the period when «; is sufficiently small, which consists of all iterations 0 < ¢t < T}

with T3 given in (26). We claim that, throughout this substage,
1

t > s —,

2v/nlogn
V0.5 < B < V1.5.

(67

(64a)

(64b)

If this claim holds, then we would have af + 7 < ¢f + 1.5 < 2 as long as ¢4 is small enough. This

immediately reveals that 1+ n (1 — 3a? — 357) > 1 — 61, which further gives
Bt+1 > {1 +7 (1 — 30} — 353) +770t} Bt
> (1—677— il >5t

logn
> (1= 1n)Bt.

In what follows, we further divide this stage into multiple sub-phases.
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Figure 9: Illustration of the substages for the proof of Lemma 1.

— Stage 1.1.1: consider the iterations 0 <t < T3 ; with

Tl,l = min {t | /BtJrl S VvV 1/3+77} . (66)

Fact 1. For any sufficiently small n > 0, one has

Bir1 < (1—20%)B, 0<

a1 < (14 4n)ou, 0<t

a1 > (1+2°)ap,  1<t<Ty; (68)
ar > ag/2;

Y

6T1,1+1

T

N

(69)

Moreover, ar, , K ¢y and hence Ty 1 < T1.
From Fact 1, we see that in this substage, a; keeps increasing (at least for ¢ > 1) with

1

Qg
L >0 > — 2, 0<t<Ty1,
* =2 T 2y/nlogn =" =-11
and [, is strictly decreasing with
1'5>60>ﬂt>6T11+1>177n, O<t<1_‘117
2 Pt 2 Py, =5 <t<T,

which justifies (64). In addition, combining (67) with (68), we arrive at the growth rate of «;/f; as

Olt+1/01t > 1+27]3
Bew1/Be — 1—2n?

These demonstrate (24) for this substage.

=1+0(?.

— Stage 1.1.2: this substage contains all iterations obeying 77 ; < t < T7. We claim the following result.
Fact 2. Suppose that n > 0 is sufficiently small. Then for any Ty <t <11,

(1—7n)* 1+30n]
Bt € \/g ) \/g I
Be1 < (1 + 30n%) ;. (71)
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Furthermore, since
(1+ 30m)2

of +B7 <+ 3

-1
27
we have, for sufficiently small c3, that
a1 > {1+3n(1—af — B7) —nlGl} o
c3n
>(1+15n—
2 ( + 1.om logn> Qg

> (14 Ldn)ay, (72)

and hence a; keeps increasing. This means oy > a3 > which justifies the claim (64) together

1
2y/nlogn’
with (70) for this substage. As a consequence,

log;—‘é < logn

(1+14n)~ n’

log —4—

T~ T, < oefm < log logm.
~ log (14 1.4n) ~ n

T —Tia S
log

Moreover, combining (72) with (71) yields the growth rate of ay/f; as

1/ > 1+1.4Z S 140
Bis1/Be — 14 30n

for n > 0 sufficiently small.
— Taken collectively, the preceding bounds imply that

1 logn _ logn
T1:T1,1+(T1—T1,1)§*2+i< s

~ 2

n Ui
e Stage 1.2: in this stage, we consider all iterations 77 < t < T3, where

2
za;xmn&|g”1>7}.
t+1

From the preceding analysis, it is seen that, for i sufficiently small,

(6% Ti1 < Cq < \/§C4
By 4 —'iki%ai ~—1-159

In addition, we have:

Fact 3. Suppose n > 0 is sufficiently small. Then for any Ty <t <Ts, one has

af + 53 <2 (73)
ait1/Brr1 .

g St (74)

(e7ER} 2 {]. - 3177} Qg (75)

Br+1 = {1 = 5.1n} Br. (76)

In addition,

1
Y

=
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With this fact in place, one has
> (131" ar 21, Ty <t<Th.

and hence
Be > (1 =519 Tpp >1, Ty <t<T.

These taken collectively demonstrate (24) for any 77 < ¢t < T5. Finally, if T5 > T, then we complete the
proof as
logn
Try STQ :T1+(T2_T1) g %
Otherwise we move to the next stage.
e Stage 1.3: this stage is composed of all iterations 7o < t < T',. We break the discussion into two cases.

— If ap,41 > 1+, then 042T2+1 + ﬁ%ﬁl > 042T2+1 > 1+ 2v. This means that

ary2 < {1430 (1—af, 11 — Bhi1) +0l¢rt1l} ang
nes
<16y — 1B
from e
<{l =57} an

when ¢z > 0 is sufficiently small. Similarly, one also gets fr,+2 < (1 — 577)Br+1- As a result, both oy
and f3; will decrease. Repeating this argument reveals that

agy1 < (1 —5n7)ay,
Ber1 < (1 —5ny)Be

until oy < 1+ ~. In addition, applying the same argument as for Stage 1.2 yields

at+1/at

ﬁt—i—l//@)t

for some constant c¢1g > 0. Therefore, when oy drops below 1 + ~, one has

> 1+ cion

ar>(1=3n)(1+v)>1—7v

and v
B < 5 <7.
This justifies that
log 1% 1
T, —Ty < R e St

—log(1—="517) ~ n’

— If ¢y < ap,41 < 1— 7, take very similar arguments as in Stage 1.2 to reach that

O[t+1/0[t 1

——— > 1+ cio7, T, -1, 5 -

Bit+1/Be K 7
and a2 1, B 21 T, <t<T,

for some constant c;g > 0. We omit the details for brevity.

In either case, we see that a; is always bounded away from 0. We can also repeat the argument for Stage
1.2 to show that 5, 2 1.
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In conclusion, we have established that

=T+ T -T)+ (T, —12) S

Qii/O oy LR e < B < 15,

Br+1/ Bt 2y/nlogn S

and

for some constants cs, c1g > 0.

Proof of Fact 1. The proof proceeds as follows.
e First of all, for any 0 < ¢ < T} 1, one has 3; > \/1/3+n and o + 7 > 1/3 + 1 and, as a result,

Bey1 < {141 (1 =307 —367) +nlpel} Be
< (1—37724‘6377)@
logn
< (1-20)B, (77)

as long as c3 and 7 are both constants. In other words, f3; is strictly decreasing before T ;, which also
justifies the claim (64b) for this substage.

Moreover, given that the contraction factor of 3; is at least 1 — 2n?, we have

Bo

1
T, < 0g1/1/3+n _1

—log (1 —2n2) " n*

This upper bound also allows us to conclude that 3; will cross the threshold y/1/3 + 7 before o exceeds
¢4, namely, T7 1 < Th. To see this, we note that the growth rate of {cy} within this substage is upper
bounded by

a1 < {1+377 (1 _Off _/Bf) +77|Ct|}at

< (1+3n+ =l )at
logn

< (14 4n)ay. (78)

This leads to an upper bound

-2y logn
o | < (1 4n) o] < (1 4+-4m) 0 I <y (79)

Furthermore, we can also lower bound ;. First of all,

ar > {1430 (1 - a5 = 53) —nl¢l} ao

> (1 — 3y — lg‘;) ao

1
> (1—4n)ag > 50

for n sufficiently small. For all 1 <t < T 1, using (78) we have
ai + 87 < (L+4n)"1ag + 87 < o(1) + (1 —21%)Bo < 1 =1,
allowing one to deduce that

Qpy1 2 {1+377 (1 —ozf —Bf) —77|Ct|}at
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C
> (”3”3‘&)%

> (1+20°)oy

In other words, «; keeps increasing throughout all 1 < ¢ < Ty ;. This verifies the condition (64a) for this
substage.

e Finally, we make note of one useful lower bound

1—-1Tn
ﬂT1,1+1 > (1 - 777)16T1,1 > \/g ) (80)
which follows by combining (65) and the condition 37, , > \/1/3+ 7 .
O

Proof of Fact 2. Clearly, fr, 41 falls within this range according to (66) and (80). We now divide into
several cases.

o If 1%’ < B < 1?)" then o + 82 > 32 > (1 +n)?/3, and hence the next iteration obeys

Bea1 < {1+ (1=387) +nlpel } Be

< <1+n(1—(1+n)2)+ el )Bt

logn

< (1—7°)B (81)

and, in view of (65), Biy1 > (1 —7n)Br > % In summary, in this case one has ;41 € [—17\/2”, 15’;”}7

which still resides within the range (70).

o If U \/75" < < 1\/?7 then of + 7 < ¢+ (1—7n)?/3 < (1—7n)/3 for ¢4 sufficiently small. Consequently,
for a small enough c3 one has
B> {1+n(1- 307 — 353) —nlpel} Be

2 c3n
> (1+ 7" — o gn)ﬁt

> (1+6n°)p:.

In other words, By is strictly larger than 3;. Moreover, recognizing that o? + 2 > (1 — 7p)*/3 >
(1 —297)/3, one has

5t+1<{1+77(1*30l?*35t2)+77\/0t|}5t
< (1+297° + )5t (1+30n*)8: (82)
1+ 3002
<7\/g .

Therefore, we have shown that 8,41 € [(1_\/7;)2, 17%)"}, which continues to lie within the range (70).

e Finally, if X \[7” < B < \/g , we have o + 32 > % > % for 7 sufficiently small, which implies
Bea1 < {1+ 1507 +nlpe| } B < (14 167°)5; (83)
< (14 16n%)(1 +n) < L+2
- V3 BRVE]

for small 7 > 0. In addition, it comes from (80) that 8,11 > (1 —7Tn)B; > a }7) This justifies that B;11
falls within the range (70).
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Combining all of the preceding cases establishes the claim (70) for all T7 ; < t < T3.

Proof of Fact 3. We first demonstrate that
of + 67 <2

throughout this substage. In fact, if a? + 82 < 1.5, then
arpr < {1430 (1—af = 57) +nlGl} o < (1+40)
and, similarly, 8;11 < (1 + 4n)S;. These taken together imply that
aFpy + By < (L+4n)? (af +47) < 1.5(1+91) < 2.
Additionally, if 1.5 < a? + 32 < 2, then
a1 < {1430 (1—af = B87) +nl¢l}
< (1 — Lo+ 20 ) at

logn
< (T =n)ow

and, similarly, 811 < (1 — n)B:. These reveal that
ajyy + B < of + B

Put together the above argument to establish the claim (84).
With the claim (84) in place, we can deduce that

Qpy1 > {1+377 (1 —a? _53) _77|Ct|}04t
> {1+3p (1—af —p57) —0.1n} oy

and

Biy1 < {1+n(1 — 307 *353) +nlpel} B
<{1+n(1-3a7 —367) +0.1n} B,

Consequently,

Qi1 /Ber1 _ awpr/or 1430 (1-af = 57) - 0.1
ay/ By Biv1/Be — 1+ n(1 =307 —367) + 0.1y

14 1.8n

7 1+ (1—3af —367) +0.17
1.8

>1 >1

21+ o = +n

for n > 0 sufficiently small. This immediately implies that

2/
< 1og<O‘T1/BT1) - 1

Ty < ==
log (1 +n) n

Ty —

Moreover, combine (84) and (85) to arrive at
a1 > {1-31n}ay,

Similarly, one can show that 8;11 > {1 — 5.1n} 5.
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C Proof of Lemma 2
C.1 Proof of (41a)

In view of the gradient update rule (3), we can express the signal component x1|5|+ ! as follows

m
t+1 __ o E 2 T,.t .
.T” = CCH — |: i,1 (a,b xr ):| a;1-

. . . . T t _ t T t . .
Expanding this expression using a; " = T i1+ a; T and rearranging terms, we are left with

m

2 1
#t =l 4 1= (af)?] o - Za“+n[1—3x”} Z%Mm

=1

=Jp =Ja

m m

1
T .t
— 3nzt - g a! xt) a2 g x! a-l.
[ (R (’L,J_ J_) i1 J_J_ i,

i=1 i=1

iJ& ::J4
In the sequel, we control the above four terms Jy, Jo, J3 and Jy separately.

e With regard to the first term Ji, it follows from the standard concentration inequality for Gaussian
polynomials [SS12, Theorem 1.9] that

1m
p(
m:

4
E ai,l—?)
i=1

> T) < g2emam!/r

for some absolute constant ¢; > 0. Taking 7 < lo\g}%m reveals that with probability exceeding 1—O (m_lo),

=301 - (o) }ler( Za” )n{l_(“;t'ﬂxt'

=3n [1 — () } 471, (87)

1 3
il =0 (M)

Here, the last line also uses the fact that

where the remainder term r; obeys

1= @)’ <1+ o] S . (88)

with the last relation coming from the induction hypothesis (40e).

e For the third term Js, it is easy to see that

m

1 m
m Z a; LwL ai2,1 - ||thH2 = :EL [m Z ai,La;L —In wfi» (89)

i=1 =1

=U
where U — I,,_; is a submatrix of the following matrix (obtained by removing its first row and column)

m

% Z (a:wh)2 aa] — (I, +2z'z%"). (90)
i=1
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This fact combined with Lemma 14 reveals that
[U—1I,| <

3
< nlog®m
~ m

with probability at least 1 — O (m_lo), provided that m >> nlog® m. This further implies

% Z (a?mh)z a;a; — (In + th:cﬂ)
i=1

Js :377Hmi||;xﬁ + 79, (91)

where the size of the remaining term ro satisfies

log® log”
ral S [ 22 o[l S my) R

Here, the last inequality holds under the hypothesis (40e) that ||:c7iH§ < ||:ct||§ <1

When it comes to Jy, our analysis relies on the random-sign sequence {x!*8"}. Specifically, one can
decompose

1 m 1 m
3 T t t,sgn 3 T t t,sgn
™ E a;1Q; | T) = E az 19, Lmj_ + ™ E a;1a; | (f’fl - ) . (92)
i—1 i—1

For the first term on the right-hand 51de of (92), note that |a; 1|*a; i1 T £ is statistically independent of

& = sgn (a;,1). Therefore we can treat L "7, a?laL_misgn as a weighted sum of the &;’s and apply the

Bernstein inequality (see Lemma 11) to arrive at

t t
Z az 10’1 LmJ_SE;n Z fi <|0’1 1| a; ij_sgn)

with probability exceeding 1 — O (m_lo), where

% (\/Vl logm + B; 1ogm> (93)

2
V1= Z la;. 1| a; La:tfgn) and By := R a1 | a2

Make use of Lemma 12 and the incoherence condition (62d) to deduce that with probability at least
1-0 (m*w)7

ivlzif:m 1| ( mtsgn) <H$tsgn||
m m — - L L 2

with the proviso that m > nlog® m. Furthermore, the incoherence condition (62d) together with the fact
(56) implies that
t,sgn

B; < log? me H2

Substitute the bounds on V; and By back to (93) to obtain

t,sgn
az 10’1 LmL

as long as m > log” m. Additionally, regarding the second term on the right-hand side of (92), one sees
that

logm logm

,sgn 1 ’ ,sgn sgn
S e |21, (94)

e </

1 & 1\
EzailaL (2 — ™) :Ez a; a* a“aL( af — o), (95)

=1

=ul



where wu is the first column of (90) without the first entry. Hence we have

1 m
3 T t t,sgn
— E ;1@ | (ml - )
m < 1
i=

with probability exceeding 1 —O (m~'°), with the proviso that m > nlog” m. Substituting the above two
bounds (94) and (96) back into (92) gives

1 m
3 T t t,sgn
*E a;1a; (T | < E az 1au_93¢
mi4
i

< IOg m Hwt,sgn

~

1 3
< ully [t — 2=, < /2 et — 2, (96)

1 m
3 T t tsgn
EE a; 1@ | (J’J_ T )

i=1

3
nlog®m H‘Bt _ tsgn

I I

As a result, we arrive at the following bound on Js:

3
ol S 1= 8af)?| { /B e, + ) T - e
(1) 1 log3
< B e, 4y B |t ot
(ii) 1 log®
<, ogm”:,aHQﬂ7 ant —atee|

t,sgn t,sgn

where (i) uses (88) again and (ii) comes from the triangle inequality ||z} ||2 <@t ||, + |2, — 2

and the fact that \/1°7gnm < \/nloi m

I

It remains to control Jy, towards which we resort to the random-sign sequence {x*¢"} once again. Write

m m

1 sgn 1 - sgn
m Z J_$J_ ai,l = % Z ( Tj_wtl & ai,l + % ; [(GIL:I:Z_)B ( Tj_wi g )3j| a,1- (97)

i=1 i=1

For the first term in (97), since & = sgn (a;1) is statistically independent of (a; lar:ﬂ_sgn) lail|, we can

upper bound the first term using the Bernstein inequality (see Lemma 11) as

a; Lwtfgn |ai,1| &

Ms

1
< — (\/Vg logm—I—Bglogm) ,
m

1
m
z:l

where the quantities Vo and Bs obey
m

. T t, 2 . - .
Vy = z; (az J_Q'JJ_Sgn) \ai71| and By = 1235‘); a; J_wJ_sg;n|
i=

Using similar arguments as in bounding (93) yields

sz <m||a:t ,sgn tsgnH2

||2 and By <log”m Hw

with the proviso that m > nlog® m and

m
> ( (a L&) Jaia|&| <

~Y
i=1

logm ijlsgn 3

3
[0 4 OB gten B | JOB T b (g

I =

Sl
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with probability exceeding 1 — O(m~1°) as soon as m > log® m. Regarding the second term in (97),

1
> [(alat)’ — (al at™) | o

2

()

m
- [{al, @ =2t [(al at)" + (al @) + (o] 124 (o] 25") |} s

i=1
1
m
11) $
Here, the first equality (i) utilizes the elementary identity a® — b = (a — b) (a? + b* + ab), and (ii) follows
from the Cauchy-Schwarz inequality as well as the inequality

u b]’] 2 1 i sgn
Z tg} EZ{ zJ_:BJ_ +5(1Lwig)}ail. (99)

i=1

MH

(a? + b% + ab)? < (1.5a% + 1.5b%)? < 5a* + 5b*

Use Lemma 13 to reach

m
Bl (N R [N I ( Zaz La; L) (@t —2%) < [, — 22,
i=1

Additionally, combining Lemma 12 and the incoherence conditions (62b) and (62d), we can obtain

1 " t 4 t,

— 3 [s(al.at) ! +5(al ™) a2, S et} + =y S 1
i=1

as long as m > nlog® m. Here, the last relation comes from the norm conditions (40e) and (61b). These

in turn imply

m
LS ()" — (alat=) ) o] < Jat — 2=, (100)
i=1
Combining the above bounds (98) and (100), we get
m 1 m 5
|J4| < n\— Z J_wj_bgn 4,1 + n E Z |: J_wJ_ - (aTij_sgn) i| (78]
i=1 i=1
1
Sy o et 4 2t -

< /B gt |, 4 2t — 2,
1
< ny/ B gt |, + o [l2 — @,

where the penultimate inequality arises from the norm condition (61b) and the last one comes from the

triangle inequality ||z B, < N2t lly + |2t — a;isgnHQ and the fact that /8™ <1,
e Putting together the above estimates for Ji, Jo, J3 and Jys, we reach
ot =+ =T+ T2 =
_ ot ¢
= af + 30 [1 = ()] 2f - 30 || ]| 2f) + Ry

= {1430 (1= [o'[}) } af + B (01)
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where R; is the residual term obeying

nlog®m, , logm | t . tsgn
Bal S o\ = L[+ = = Ml + et — 2t

Substituting the hypotheses (40) into (101) and recalling that «; = (*, %) lead us to conclude that

2 nlog®m logm
arpn = {1430 (1= ||2*[3) } s+ 0 | my/ 220y +o<n S @)
m m
1\, [nlog®
+ 0 nat(1+) Cs nlos m
logm m

- {1+3n (1— ||mt||§) +77Ct}at, (102)

for some |¢;] < @, provided that

log® 1
PR (103a)
m logm
1
08T 5 « @ (103b)
m logm

1 ¢ nlog’m 1
1+ Cs 8 M« . (103c)
logm m logm

Here, the first condition (103a) naturally holds under the sample complexity m > nlog® m, whereas the
second condition (103b) is true since B; < ||zt||2 < azyv/nlogm (cf. the induction hypothesis (40f)) and
m > nlog® m. For the last condition (103c), observe that for t < Ty = O (logn),

1\
1 =0(1
< +10gm> ()7
1y log” log” 1
1+ Cs 7n°gm§C3 noe m o
logm m m logm

as long as the number of samples obeys m > n log7 m. This concludes the proof.

which further implies

C.2 Proof of (41b)

Given the gradient update rule (3), the orthogonal component :l:’j_Jrl can be decomposed as

b a1 (ae) - (o) ol
i;l -
=z + % 2 (a,z—:ch)2 a; ja) x' — % ; (a;ra:t)3 a; . (104)
=, i=vp

In what follows, we bound v; and vs in turn.
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e We begin with v;. Using the identity a, ! = ai,1xﬁ + a;':l:ci, one can further decompose v; into the
following two terms:

m

1 1 2 1 & 2
t T T T ot
;'ul = xH . % E (ai 93“) ;1@ 1 + E E (ai ach) a; 1a; T
i=1 i=1

t t
= Jj”'ul + U$L7

where U, u are as defined, respectively, in (89) and (95). Recall that we have shown that

log? log?
Jull, S /250 and U = L) S )
m m

hold with probability exceeding 1 — O (m~'°). Consequently, one has
v = nx' + 71, (105)

where the residual term 7, obeys

nlog®m nlog®m
Irlls S| —>— [l=%]l, + n\/T!zﬁ . (106)

e It remains to bound vy in (104). To this end, we make note of the following fact

m

%Z(a?w) au—fz al 2)) ai L + (af)’ Zalau_

i=1

” Zaz 1 (a] 2h) 2 a1+ 3(fff|)2a Zazz,lai,iaz-,—i_wﬂ_
=1
1 m SmH m ' 3 2
=— Z (aiTin) a; +— Zal 1 (a) =) ai,L + (=) w +3(z)) Uz’ (107)

i=1
Applying Lemma 14 and using the incoherence condition (62b), we get

m

> (al 2) a;1a], — [ [|5 Tnr — 22! 21T
1=1

1 & 0 1\? 0 0
m?(ag—[:c’l }) ala HxLHz Q{xi ][wi

as long as m > nlog® m. These two together allow us to derive

nlog®m
S\ —,— |l

~

I

1
m xl”w

<

~

nlog®m
—— ll=],.

13" et oot ot H{ e
<23 <aLmL>2 assal, — o | Lo — 208t | ot |,
[ RE at
and
@i,1 (aiT,LfBi)zai,L < ;é <aiT [ mOi Dzaza ||5’3LH2 —2 { x% ] [ 9’% }T

=A
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<

~

nlogTm e |2
m 27

where the second one follows since = 3" a;1(a; @' )%a; . is the first column of A except for the first

entry. Substitute the preceding bounds into (107) to arrive at

%Z (a; z") aLL—3Hwi||§wi—3(a:ﬁ)2:c’i

2

<

t 2
+3 g a;, 1 J_mj_ a; |

1 m

oo (aliet) as = 3Jet |t
i=1

e ], # 36 o - et

nlog®m nlog®m
5 U (I 2+ Jo 2+ Jo ™+ o P ) 4 ™25 o,

with probability at least 1 — O(m~1%). Here, the last relation holds owing to the norm condition (40¢)
and the fact that

2 2

I (15 + [ N5 + 2 + [ * L, = [l2']], < 1=,
This in turn tells us that

m
vy = % Z (a?wt)saiyl =3n ||:c’iH§ xh + 37)(x|t‘)2wi +1e=3n Hthz z' + 1o,
i=1

where the residual term 7, is bounded by

1 3
Ially < my | o,

e Putting the above estimates on v; and v together, we conclude that
2
ar:’j_Jrl = $ﬁ_ + v — vy = {1 +n (1 -3 Hth2)}w’i + 73,
where r3 = r; — ro satisfies
nlog®m | ,
Islly S m| —— [l'l,

Plug in the definitions of a; and §; to realize that

3
B = {1 (1=3]2![2) } 80 m/”b%(aﬁm)

= {1+ n(1=3][3) + o} e

for some |p;| < ﬁ, with the proviso that m > nlog® m and

log® 1
R, < Be. (108)
m logm
The last condition holds true since
nlog m nlog m
B,
log m log‘m logm

where we have used the assumption oy < Togrm (see definition of Tj), the sample size condition m >
nlog™ m and the induction hypothesis 8; > cs (see (40e)). This finishes the proof.

42



D Proof of Lemma 4

It follows from the gradient update rules (3) and (29) that
ittt L) — gt nvf (wt) _ (wt’(l) _ Wf(” (mt,(l))>
=x' —nVf (wt) — (:ct’(l) — an(mt"(l))> + v O (:ct’(l)) — an(wt’(l))

= {In - 77/01 V2f (z (1)) dT:| (' — (Bt’(l)) - % [(a;—wt’(”)z - (al—rw”)ﬂ aa] x4V (109)

where we denote @ (1) := @' + 7 (") — x'). Here, the last identity is due to the fundamental theorem of
calculus [Lan93, Chapter XIII, Theorem 4.2].

e Controlling the first term in (109) requires exploring the properties of the Hessian V2 f (). Since z (7)
lies between ! and x> for any 0 < 7 < 1, we have the following two consequences

[z (Tl < llz (T, <2C5  and max |a; @ (1)| < Vlegm S vlogm ||z (7)ll, - (110)

1<i<m
To see the left statement in (110), one has
lz (7)ll; < max{|z* |2, 2" @2} < 25,
where the last inequality follows from (40e) and (61a). Moreover, for the right statement in (110), one

can see

T — R g T u(l)‘
12%)§n|az @ (7)] max. 1-7)a, ' +7a, =

< max |(1-7)a;z' +7a; (mt’(” - wt’(i)) +ra; zb®
1<i<m

a; b,

<(1-7) max ’a;r:ct| +7 max |a; (:ct’(l) - wt’(z))‘ + 7 max
1<i<m 1<i<m 1<i<m

In view of (62a), we have

max |aiT:ct| < logm.

1<i<m
Furthermore, due to the independence between a; and (", one can apply standard Gaussian concentra-
tion inequalities to show that with high probability

max

al 2t
1<i<m

< V/logm.

We are left with the middle term, which can be controlled using Cauchy-Schwarz as follows:

max |a] (wt,(l) _ mt,(n)‘ < max |||, max Hmt,(z) _ gt
7 1<4

1<i<m <i<m 2

®)

< V/n- max (Hwt’(l) - :ctH + Hwt — b
1<i<m 2

< V/n- max
N\f 1<i<m

)

2t — pt@

2

1\ nlog®
<1+) Cyy Y log” m
logm m

(i)
SVn- B

(iii)
< Vlogm.

Here, the inequality (i) arises from the concentration of norm of Gaussian vectors and the triangle inequal-
ity; the relation (ii) holds because of the induction hypothesis (40a) and the last inequality (iii) holds true
under the sample size condition m > nlog® m.
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In addition, combining (40e) and (63) leads to

LD > e5—log ™ m > cs/4. (111)

e (7)ly > ||t ]|, — [l — 2O,

Armed with these bounds, we can readily apply Lemma 15 to obtain

| @) = {(1=3nle ()3 +1) L + 2aat —6na ()2 (1) ||

log® log®
S e max {[le(r) 3,1} S 0y e
m m

This further allows one to derive

H{In*nv%f(a: (7'))} (;,; _x (l))‘

‘ 2

1 3
< H{(l —3na (7l + 77) I, + 20z z* T — 6nz (1) x (T)T} (x — mt’(l))HQ +0|n %Hmt — gt

Moreover, we can apply the triangle inequality to get
H{(l —3n|lx (7)]5 + 77) I, + 2na’z"" —6nx (1) x (T)T} (z' — z"1) H2
< [{(1=3nlz ()3 + 1) L~ 652 (@ ()} (@~ 2 0)|| + |2neiatT (@ - 2t 0)|

{(1=3nlle @)IE+n) L —6n (1) 2 (1) } (& = 2O) |+ 2nfaf - 2

2

(i) ) .1
< (1-3nlz (3 +n) l2* - O, + 20faf 2],
where (i) holds since " (z* — ")) = x| — x‘tl’(l) (recall that 2% = e;) and (ii) follows from the fact that

(1=3nlle (1)} +n) L 6y () @ () =0,

as long as 7 < 1/ (18C5). This further reveals

H{In—nVQf(w(T)) zt — b H

3
<d1en(1-3le@I2) +0 {n ) b et — 28O, + 2nlaf — |
3
Lo (13 [o'[3) + 0 (allat = o"],) + 0 [ | 25 ) bt =2t + 20faf - )

—~
INZ
=

< {1 +1 (1 -3 H:r,tﬂi) + n¢1} [t — O, + 2n]af — 2", (112)
for some |¢1] < ﬁ, where (i) holds since for every 0 < 7 <1
I ()12 > (|3 = e ()12 ~ 23
> [t lly = ll (r) = @[], (e ()l + [l2*]l,)
> |lat|; - O (|l — 21, . (113)

and (ii) comes from the fact (63a) and the sample complexity assumption m > nlog® m.
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e We then move on to the second term of (109). Observing that x> () is statistically independent of a;, we
have

Hl [(a;wt’(l))Q — (alT:L'h) } alan‘ Dl < 1 [(a?wt’(l)f + (alTwh)Z] ‘a?mt’(l)‘ l|lal|,
m , m
< % -logm - \/logm‘ act’(l)H2 -v/n

=~

_ Vnlog®m ‘
m

mn(l)’

114
R (114)
where the second inequality makes use of the facts (56), (57) and the standard concentration results
‘a;mt’(”’ < \/logm||a:t’(l)||2 < /logm
e Combine the previous two bounds (112) and (114) to reach

HiEtJrl _ xt+1,(l) HQ

< H{I—n/ol V3 ((r)) dr | a' ~ @)

< {1n (1-3]j]3) +nen } o — 2O,

2
+77H[ ; f<l>) (a?zh)}ala?wt(l)
2

1 3
o] vo (R 0]

2 7 nvn log3 m ()
S@+n0—wfm%wﬁhw—f”m+0<yn)HfM+%M—ﬁ |

Here the last relation holds because of the triangle inequality

2O, < [l2]], + [|=* — =",

and the fact that Y nlog "«
logm

In view of the inductlve hypotheses (40), one has
(i) 1 t 1 5
||wt+1_a:t+1,(l)||2 < {1"‘77(1_3H33t”§)+77¢1}ﬂt <1+ ) %) vnlog®m
logm m
nlog®m 1 ! nlog™ m
() o)
m logm

m
(ii) 1 o nlog?
< {1+n(1—3||mt||§)+n¢2}ﬁt <1+) c, Y1108 m
ogm m
iii t+1
(ii) (1+ 1 ) Clx/nlog m

9

<
< Bit1 log m ™

for some |p2| < ﬁ7 where the inequality (i) uses ||z'||2 < \m’m + ||z |2 = o + B¢, the inequality (ii)
holds true as long as

V/nlog® 1 1\, Vnlog®
M(at+6t) < ﬂt 14+ Cl n 10g m7 (1153)
m logm logm m
/ Toa 2 1 /i loo®
Oy Y08 T o By Y108 T (115b)
m logm m

Here, the first condition (115a) comes from the fact that for ¢ < T,

\/nlog?’m \/nlog m
m

ap+ f) X ————fF < C15

Vnlog®m
m )
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as long as C7 > 0 is sufficiently large. The other one (115b) is valid owing to the assumption of Phase I
a; < 1/1og” m. Regarding the inequality (iii) above, it is easy to check that for some |¢3| < @,

{1 (1=3]o12) 4 non i = {222 4 oa 5

B
Bi+1 <5t+1 ) }
= +n0
{ /Bt 77 /Bt d)?) ﬁt
1
< B <1 + ) ; (116)
log
where the second equality holds since Bi1 ~ 1 in Phase L

Bt
The proof is completed by applying the union bound over all 1 <[ < m.
E Proof of Lemma 5
Use (109) once again to deduce

t+1,(1
xﬁﬂ -~ x\l+ o _ e (xt! — $t+1,(z))

1
=e, {In — n/o Vi f (z (1)) dr} (z' — 2" - % {(a;mt’(l))Q - (afw“)z} el aja] "

1
= [xf - x‘tl’(l) — 77/ el Vi f (z(r))dr(z' - mt’(l))} - % [(a?wt’(l))z - (a?mh)ﬂ apra) 200, (117)
0

where we recall that @ (1) 1= ' 4+ 7 () — z*).

We begin by controlling the second term of (117). Applying similar arguments as in (114) yields

1 log?

)
2

with probability at least 1 — O (m~'9).
Regarding the first term in (117), one can use the decomposition

al (z' — 2" ®) = a;1 (o} — zﬁ’(l)) +a, (2 —2)

to obtain that

el V2f (x (7)) (' — 2"V) =

=1
=wi(7)
+ L3 [3(a] 2 (1) - (a7 o")?| avsal, (@ — o).
i=1
i=wa(T)

In the sequel, we shall bound w; (7) and wsy () separately.

e For wq (1), Lemma 14 together with the facts (110) tells us that

m

=S [l e )’ - (ol @)t~ [3llw (D2 + 6l (1) - 3]

i=1
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nlog®m 9 nlog®m
S\ max {2 (13,1} 5 1/

which further implies that
2 (1
wi (1) = (312 (D)3 + 6l (1) [* = 3) (af = 2 V) 471

with the residual term r; obeying

nloggm’ . ¢
— |z

1| = - 55'”’([)

e We proceed to bound ws (7). Decompose ws (7) into the following:

m
1

m
Z (af (T))2 aipa; (z) — i(l)) m Z (%Tach)z aipal ) (2 - :zcti(l)) .
=1 i=1

i=w3(T) 1=wy

— The term wy is relatively simple to control. Recognizing (a;'—xh)Q = %2,1 and a;1 = & |a; 1|, one has

Zfz

a; ( tsgn_mtsgn (l Z§z|a11| a ( wi(l) tsgn+ tsgn (l))

. . 3 t, t,sgn, (1 .
In view of the independence between §; and |a; 1] a;r (a: J_sgn —x J_Sgn ( )), one can thus invoke the

Bernstein inequality (see Lemma 11) to obtain

Za

with probability at least 1 — O (m~'°), where

al ( t,sgn wj:sgn ,(1) )

% (\/Vl logm + B4 1ogm) (118)

2
V= Z |a;, 1| ‘ x! e — :visgn’(l))‘ and B; := max |a; 1| ‘ TL (aztfg“ - :ci’sgn’(l))‘ .

1<i<m

Regarding V;, one can combine the fact (56) and Lemma 14 to reach

1 m
2 t,sgn t,sgn, (1) t,sgn t,sgn, (1)
Evl < log m( " —x] E \a11| a‘lJ-a‘zJ_ (Sﬂ - )

t,sgn, (1
<log mH tggn—wfgn )H

For By, it is easy to check from (56) and (57) that

/ 3 t,sgr t,sg ,l
B S TLIOg mH:E’ — X n()H
2

The previous two bounds taken collectively yield

! Enl 5 a; (mt,Sgn tbgn,(l)) \/log m H t,sgn tbgn,(l)H nlog m ‘
* % T
m ’ 1
=1

t,sgn tsgn (l)H

10g3 m| ¢ t,sgn, (1
< ,Sgn. ,581,( )H 119
~ \/ m HmL aat 2’ (119)
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as long as m 2 nlog?m. The second term in ws can be simply controlled by the Cauchy-Schwarz

inequality and Lemma 14. Specifically, we have

1 « 3 .
T t t,(1) t,sgn t,sgn,(l)
oo E ilainl"a; 1 (ml -z —xT T

Zfzmzll a ‘

1 sgn
\/m H t (l wisgn + ‘Ei g :(l)HQ’ (120)

where the second relation holds due to Lemma 14. Take the preceding two bounds (119) and (120)
collectively to conclude that

/10g3m ¢ " ! nlog?’m
|UJ4| 5 Hwisgn _ J:J:sgn,( )H +
z nlog m L0 _ ot t5gn,(l
B R el LIRS S

where the second line follows from the triangle inequality

t,() t sgn + wt Sgna(l)H

—x
+ 2

t t,(1)
1T —xy

t,sgn + wij,_sgn,(l) H

2

log m

t,sgn t,sgn, (1) t t,(1) t t,(1) t,sgn t,sgn, (1)
le —x 2§ r) —x) 2+ )~z —x] tx] )

and the fact that \/log:Lm < \/”lof: m.

— It remains to bound w3 (7). To this end, one can decompose

an(r) = 23" [(ala ()’ - (@ Te (1) aal, (2} - o}")

:=01(7)

23 [(@ e ) - (@ Ta 1) aal o - a)

i=1
:=05(T)
3 G sgn'T 2 T t,sgn t,sgn, (1)
sgn ,Sgn,
+%§:<ai x*® (7)) aiya; ) (27" — ] )
i=1
:=03(T)
3 S sgn'T 2 T t t,(1) t,sgn t,sgn,(l)
sgn ) ) ,SgN,
JFEE:(‘% x> (7')) ;1@ | (f’a*f’ﬂ —xr] txy >,
=1
:=04(T)

where we denote 8" (1) =zt + 7 (zt58m (1) — gtsen) . A direct consequence of (61) and (62) is that

ase" T gsen (7)‘ < /logm. (121)

Recalling that & = sgn (a;1) and &*" = sgn (a;%"), one has

alz(r) - a® @ (1) = (& - &) laia|z (1),

£
Z‘.gnTm (7_) — (61 + glsgn) |ai,1| ;EH (T) + QGZL-'BL (7') )
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which implies that

(T2 ) - (a7 ()

(al2(r) = a2 (n) - (a]2(7) + 0™ T2 (7))
= (& - Sg“> () {(& + €5 lasa| 2y () +2a] 21 (1)}
2(& - ésgn)\azﬂxn( T)a; ® (1) (122)

owing to the identity (& — &%) (& + &%) = €2 — (£5")* = 0. In light of (122), we have

SRS

01 (1) = — 3 (& =€) |asal 2y (D) @l 21 (1) airal, (2 -2t )

i=1

= 6z (7 (1) [ Z (1—&&*") |a;, 1| a; LGIL] (:ci — a:i’(l)) .
i=1

3=

First note that

1 e sgn
”m > (=485 aia asial || <2 <1, (123)

=1

1 m
—> lain*aial |
m =1

where the last relation holds due to Lemma 14. This results in the following upper bound on 6; (7)

61 (7)| S Jay ()] e (7)1 |

£,
x! —ch_( )H2 < |:z:H (7')| ‘ x!

where we have used the fact that || (7)||, S 1 (see (110)). Regarding 605 (7), one obtains

m

02(r) = 23" [ (@ (7) — 2 (1)] [t (@ (r) + 2 (7)) ana], (2 — ).

i=1

Apply the Cauchy-Schwarz inequality to reach

6:(0I = %i [azgﬂ (z (1) — @sen (TMQ [aigﬂ (x (1) + 580 (T))]2 %i a1 |? {GL (931 _
=1 -
S % ,m {asgﬂ (@ (7) — asen (7))}2 logm - ‘ x| — mtﬁl)H

580 l
S Viogm|ja () - & (7)), 2%, — 25 .

Here the second relation comes from Lemma 14 and the fact that

a7 (2 (7) + 2" (7))] 5 Viogm

When it comes to 03 (1), we need to exploit the independence between
sgn S 2 sgn ,8gn,
{&} and (a3® Tgoe (1)) |ai’1|aL_ (mig — (l)).
Similar to (118), one can obtain
1
|03 (7 — (\/Vg logm+Bglogm)

with probability at least 1 — O (m_lo), where

i( sen T gan ))

2
t,sgn t,sgn, (1)
il (wl -y
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T t,sgn t,sgn, (1)
a; | (wl —x] .

It is easy to see from Lemma 14, (121), (56) and (57) that

2
t,5gn, (1 / t,5gn, (1
Va < mlog? mH fsg“—a:fgn’()H and B, < y/nlog® mH tsgn _ h‘C’r“’()H ,
2 2

which implies

‘9 (7_)| < logg m + \% n10g5 m wusgn B wt,sgn,(l) - logg m wusgn B wt,sgn,(l)
8 ~ m m + + 2 m + + 2

with the proviso that m > nlog® m. We are left with 64 (7). Invoking Cauchy-Schwarz inequality,

1 m 4 1 m cen
TN P S e C) INED S o CE e s
i=1

=1

2
t,(l t ,(1
2 : ( sgnTmSgn )) log m - Hxi _ wi( ) wisgn + wisgn ( )H
2

g\
t%gn
—wL +x)

logm

)

t,sgn, (1) H

where we have used the fact that ’asg“—r 8% (1) | < v/logm. In summary, we have obtained

fws (D) £ {Jy ()] + Viogm 2 (7) — 2 (1), } [ty — 2

[log? ‘
n Ongm folsgn_mz,_agn,(l)HQ_F\/@Hxi_xj:(l) fsgn+mt ,sgn, l)H
log?’m (1
S 3 Joy )] + Viogm 2 (7) = @ (1), + | <= b ety — 24

t t,(1) t,sgn t,sgn, (1)
—l—\/logmHml—wl —x "+ x] .

where the last inequality utilizes the triangle inequality

t,sgn t,sgn, (1) t t,(1) t () _ tbgn t,sgn, (1)
le -z , ST el e ey tx )

and the fact that 4/ % < v/logm. This together with the bound for w4 (7) gives

jwa (T)] < fws (7)] + |wa (7)]

580 lOgBm t,(l
S S Jay (0] + Viogm [l (7) — &% ()], + 1/ =2 4 |lat, — 2t

+ /logm Hmi — :ci’(l) — :L'tl’sgn + a:tfgn’(l) H2 ,

as long as m > nlog® m.

e Combine the bounds to arrive at

1 3
1
ot =W = 8143 (1 [l ()ll3dr ) 400 | |y ()] + e (It _xt’(l))
| I A m [
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1 2 sgn
0 () 0 BT 0 )

. log®m
O\, |w|<f>!+@nw<¢>—wbg“<7>2+\E |t ==, )

To simplify the above bound, notice that for the last term, for any ¢ < Ty < logn and 0 < 7 < 1, one has

Vnlogm <

1 ¢
|9:H (T)| < |zt|+ o O _ gt <oaptop [ 1+ Oy < ay,
I I I logm m

as long as m > +/ nlog12 m. Similarly, one can show that

Vo ) - 2 (1), < VT (J — 255, + o — 0 — gt 1 1000 )

nlog®m  /nlog’m
< agy/logm + < oy,
m m

with the proviso that m > n log6 m. Therefore, we can further obtain

2 log®
2t - t““‘< 1+377(1—Hth)+77 0 H -’B“”H +‘$ﬂ‘ +\/7n0gm ‘H_xll ’
2 m

+O( log ||:l:t|| )+O(77\/10g7H :Di’(l) _wj:sgn+wisgrl,(l)“2>
+ O (nat zt — zt® H2>
< {1 +3n (1 — ||a:t|}§) + 77(;51} ’zﬁ - xﬂ’(l)’ +0 (nat

logZm
+o<n - ||a:t||2)+0<

for some |¢1| < loglm Here the last inequality comes from the sample complexity m >> nlog® m, the

-]
2

t,(1) t,sgn t,sgn, (1)
R ok A )

log m ||z!

assumption a; < and the fact (63a). Given the inductive hypotheses (40), we can conclude

logm
1\, Vnlog"
T|+1 t+1(l ’ <{1+3T}(1_||xt|| >+77¢1}04t <1+ ) C, nlog™™m
logm m
1 1\, nlog’
+0 7nogm(at+ﬂt) +O | nylogm-ay [ 1+ o,y nos m
m logm m
I log”
0 (natm (14 o) cvmgm>

logm

() b V/nlog™

< {1+377(1_H$t”§)+77¢2}04t (1+1 1 ) C, nlog = m
ogm m

i t+1 12

(7) (1 N 1 ) Cy vnlog™“m

logm m

for some |¢o] < logm Here, the inequality (i) holds true as long as

log®m 1 Vnlog?m
m

(o + Br) < logmatc2 - (124a)
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2
\/k)?C \/nlog m<< 1 o vnlog™“m

124b
logm 2 m ( )
Vvnl 1 vnlog'?
goyYnloemm 1 VnlogFm (124c)
m logm m

where the first condition (124a) is satisfied since (according to Lemma 1)

ar + B S Be S agy/nlogm.

The second condition (124b) holds as long as Cy > Cy. The third one (124c¢) holds trivially. Moreover,
the second inequality (ii) follows from the same reasoning as in (116). Specifically, we have for some

|¢3| < @7
2
{10 (1= a12) + nonf o = { 22 4 on b

« «

S{ t+1+770( t+1¢3>}04t
¢ Ot

<« 1+ L

> g1 1ogm )

The proof is completed by applying the union bound over all 1 <[ < m.

as long as 2L =< 1.
Qi

F  Proof of Lemma 6

By similar calculations as in (109), we get the identity

wt+1 _ wt-l—l,sgn _ {I _ 77/ sz( ( ))dT} (iB _ CEt 5gn> + 77( fsgn (wt,sgn) _ Vf (wt,sgn)) , (125)

where Z (1) := &' + 7 (%" — x'). The first term satisfies
H{I n/ V2f (& (7 dT}( tﬁgn)‘
HI 77/ V2 f ))dr H:c :1ct’sg“H2

1 3
1437 (1 7/ ||5,-(T)||§d7> +O g2 Oni Bt — @t (126)
0

where we have invoked Lemma 15. Furthermore, one has for all 0 <7 <1
18 ()13 2 [l2']13 - |1 (7)1~ [l
> |ty — [[& (r) = 2|, (12 ()], + [l2']],)

> |lt; = [t = 2=, (12 ()], + [|2*],) -

This combined with the norm conditions |||, < 1, [|Z ()], < 1 reveals that

IN

IN

Juin (| (1) > [|2*[l; + O (' — a]],).

and hence we can further upper bound (126) as

H{I = /0 Rt <T))dT} P
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IN

3
1+ 3n (1 — th‘@) +n-0 H:}ct . mt,sgnHQ + W H"ct _ wt,sgnHQ

{1430 (1= ') + 11} Jot —asen]

IN

for some |¢1] < @, where the last line follows from m > nlog® m and the fact (63b).

The remainder of this subsection is largely devoted to controlling the gradient difference V f%&" (:ct’sg“) —
Vf(x"*#") in (125). By the definition of f8" (-), one has

stgn< t, sgn) _ Vf (wt,sgn)
m
= % Z {(aign—rwt,sgn)3a?gn . (aignTwIJ)?(a?gnth,sgn)aigﬂ _ (a;rwt,sgn)3ai + (a:wh)Q(a;rwt,sgn)ai}
=1
Ly 3 3 1 &
- Z {(a?ganEt’sgn) a® — (a?;ﬁ,sgn) ai} - Za?’l (azsgnajgnT _ aia;-r) ghsen
i=1 =
=n =7

Here, the last identity holds because of (a;rwh)z = (a?gn—rwhy =a, (see (37)).

sgn sgn

e We begin with the second term r5. By construction, one has a il = @il G = f;gn la;1] and a;1 =

&1]ai1]. These taken together yield

sgn _sgn'l T sgn 0 (J,z—.l—l
a;>"a;>" —aa; = (65 — &) ai a. 0 | (127)

and hence 75 can be rewritten as

[ LS (€ - &) aial’ al 2 ]
To = t,sgn

x Em (Sgn_gz) |a'11| Qi |

For the first entry of 75, the triangle inequality gives

(128)

m m
1 ign t,sgn 1 t,sgn 1 3 #sgn T t
*Z i) lai, 1| a; Lmj_ = Z|az 1| &a ij_ + *Z|ai,1 & a; )
m m
i=1 i=1 i=1
=1 =¢2
Zlaz, P&al, (@ - ah)].
=¢3
t,sgn

Regarding ¢1, we make use of the independence between &; and |a;, 1| al x> and invoke the Bernstein
inequality (see Lemma 11) to reach that with probability at least 1 — O (m_lo) ,

o1 S % (\/Vl logm + B, 1ogm) ,

where V7 and B are defined to be

m

1% :ZZ

i=1

’a J_wtfgn|2 and By = 122};@{\a21| |a, J_:Eisgn|}.

It is easy to see from Lemma 12 and the incoherence condition (62d) that with probability exceeding

1-0(m™19, V1 <m H:ct SgnH2 and B; <log®m Hmt sgn”g’ which implies
logm  log®m , logm ,
o (/5 B e < [ e
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as long as m > log® m. Similarly, one can obtain

logm
60 S/ [ .

The last term ¢3 can be bounded through the Cauchy-Schwarz inequality. Specifically, one has
1 = sgn
= aia [’ &%a
M=

where the second relation arises from Lemma 14. The previous three bounds taken collectively yield

t,sgn

1 3
e ], £ 4 T e,
2

1 — 1 loo?
P - ol alut | (et ¢ ) + T o
logm |, , nloggm ¢ sgn '
s @[l + ) = |l ==L |, (129)

Here the second inequality results from the triangle inequality ||z b EL, < ety + Ha:t St — 2t ||, and

the fact that lo;gn < ”1051 ™ In addition, for the second through the nth entries of 9, one can again
invoke Lemma 14 to obtain

Zlaz P(E — &) ais

m

1 m
3
m Z il §fgnai,L Qi |
=1

o
< s (130)
m

This combined with (128) and (129) yields

3 3
Y e e L T e R R
2012 o Lilg €1 Lilg || m .
e Moving on to the term 71, we can also decompose
1 m sgn’l ¢ sgn 3 sgn _ T t,sgn 3 .
r m i=1 {(ai T ) ai71 (a"i T ) i1
1 =

1 m sgnT ¢t sgn 3 sgn T .t,sgn 3 .
o Diet {(ai T ) a;’ (ai x ) a1
For the second through the nth entries, we see that
sgnT .t, 1\ 3 _sgn T,.tsgn)3 i sgnT _ t,sgn)3 T, .tsgn)3
—E{ & bgl)a“_ (a) ") a; | :72 (a®" x"%#)" — (a ") b a,
m < m “
=1 i=1
(i) 1 S sgn t,sgn sgnT _ t.sgn 2 T,.t,sgn)2 sgnl _ tsegn T ,.t,sgn
= (&5 = &) las, 1|x a" x + (a T ) +(a® x (ai T ) a; |
i=1
xﬂ’sgn m

2
7 Z {(glsgn N 52) |ai,1| |:<a?gnTmt,sgn) + (ajmt’Sg“)Q + (ajgnTmt,sgn) (alfrmt,sgn):| } a; |,
=1

where (i) follows from asgL = a; | and (ii) relies on the elementary identity a®—b

= (a—b) (a®+ b* + ab).

2
(aignT ¢ Sgn) ;5" a; 1 as the first column (except its first entry) of -= > | (a‘zgnTmtng“> a;
by Lemma 14 and the incoherence condition (62e), we have

m m
1 2 1 2
sgn sgnT _t.s sgnT _t.s s, t,sgn tsn
LS e ] (a2 T e) a = -3 (@ 2t ) e, = 202t o,
m “ 1 m
i=

I
i=1

Treating L > |
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where [|v1]], S 4/ %. Similarly,
_72& |azl‘ T tagn) ai,J_:_Qxﬁsgn tsgn_’_v%

nlog® m
m

where [[valy S . Moreover, we have

m
1 sgn
—> &
=1
1 o , 2 1 o= N2 , 2
=— Zfzgn i1 (aig“T:ct’sgn) @il + - Zggn lai| [(a;rwt,sgn) _ <azs_gn—|—wt,sgn) i
; i=1

t,sgn tsn
=2z Hg &+ v + s,

(aiTmt,sgn)Q a;

1

)

where v3 is defined as

1=, 2 sgnT 2
vy = — Z gzgn ‘ai,1| [(agrmt,sgn) _ (a:gn mt,sgn) ai
=1

1 & -
= Qxﬁ agnm Z (57, _ g;gn) (aTij_:’gn) sgn |al 1| aiL
=1
1 m
= 2xﬁ»sgna Z (gzgzsgn ) |az 1| a; J_a;FJ_thSgn (131)
=1

Here the second equality comes from the identity (122). Similarly one can get
bgﬂT t,sgn 2 t,sgn_t,sgn
_*Z@ |a11|( e ) ai)J_:—2l'H7 7y — Vo — Uy,

where v4 obeys

V4

1 & 2 2
T
EZE" a1 ] [(aign wt,sgn) — (a] ztoem) } i
i=1
m

1
=2 ’ﬁ sg“m Z (&€= —1) |a;1* a1 a; Lo,
i=1

It remains to bound - 37 (£#¥" — &) (a?gnTazt’sgn) (a) ') a; 1. To this end, we have

1 m
~ Z fzsgn ‘ai71| (ajgnTmt,sgn) (aith,sgn) ai.
i=1

§ sen T
. E &5 aial (aign wt’sgn) ai L+ — > & ais

sgnT _ t.segn T ..t,sgn sgnT _ t.sgn )
(ai x ) [(ai z#) — (a® x a; 1

i=1
— 9% t sgn t sgn
— ” + v + Vs,
where
1 m
t,sgn - sgn bgnT t,sgn
vs =y E (&& —1) az 1a; =,
m <
=1
The same argument yields
1 m
sgnT t,sgn T ,.t,sgn t,sgn_ t,sgn
——E §i|a¢$1|(ai T g)(aia: g)au_——%c” x 7% — vy — g,
i=1
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where
m

1

t,s

v = oy 2 (66T - )
1=

.
>a; a gt

Combining all of the previous bounds and recognizing that v3 = v4 and vs = vg, we arrive at

: Em: s 3 nlog®m
m {(aSgnT heen) afgf (a ;—mt’sgn) ai,l} <ol + vzl S % Tl sgn’.
i=1 ,

Regarding the first entry of r;, one has

m
% Z { (ajgnTmt,sgn)3a?7g1n (a;rCCt’Sgn)Bai,l}
i=1

3=
INgE

3
{(Sg“m|x“g“+au:cisg“) & asal — (& laaal ™ + o] L) £|}‘

i=1

> (€% - &) osal {31asa o]

i=1

t,sgn

S\H

2
T t,sgn T t,sgn 3
a;, \r;° + (ai’J_azL ) .

In view of the independence between &; and |a; 1| (a J_:l:’isgn) , from the Bernstein’s inequality (see Lemma

11), we have that

Z§1|a11| LmZSgn) <%(\/V210gm+Bglogm>

holds with probability exceeding 1 — O (m_lo), where

m

Vo = Z |a¢,1|2 ( TL:cngn)s and By := max

t, sgn|3
¢ 1<i<m ’
i=1

LmL

It is straightforward to check that Vo < m Hwt 5gnH2 and B, < log?m H:ct sen

5> Which further implies

~

< logm Hmt,sgn 3

log®m sgn||3
e e

(R

I

Z &ilas, 1| a; Lth_bgn)

as long as m > log” m. For the term involving £*", we have

L Z gbgn ‘az 1| J_:L.Ylsgn _ Z gsgn

J_wj_ nggn ;s |: J_llu_):‘ . (aTJ_wisgn)S} )

=01 =0

Similarly one can obtain

logm Hwt

101] < il -

Expand 6y using the elementary identity a3 — b% = (a —b) (a2 + ab + b2) to get

by = — Zfsg“ jaialaly (@) — 25 [(al L@t)” + (al &) + (a] L2t (a] L2t™")]
1 — T t\2 sgn t t,sgn
= (ai}J_a:l) |az’|a (a:l—acJ_ )

i=1
1 m
+ E Z a; J_(Blisgn sgn |az 1| (1 (wi _ wtisgn)
i=1
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1 m
T Z al x')al, (a7 —x") & ai|al, (2 — 2.
i=1

Once more, we can apply Lemma 14 with the incoherence conditions ( (62d) to obtain

/nlog m.
< [nlog? m
~ m
2

In addition, one can use the Cauchy-Schwarz inequality to deduce that

1
H Z(zle> Sgn|azl|azl

=1

1 m
tngl sgn . T
m E_ u 1L & laiala; |

1
EZ(aZLmi)az Tgn_wﬁ_> bgn|a11|a”_( i_wj_sgn>
l S T t 2 T t,sgn " tsgn 2
= mZ(ai’Lxl> {‘%J.(xJ_ } Z|az1\ [ —x )]
i=1
1 m T ¢ 2 t,sgn t 112 t,san .12
< EZ(ai’lmJ—) a’LLazJ_ ||CU *QTJ_H2 Z|a“\ alLa,U_ Hm mLH2
i=1
o A

where the last inequality comes from Lemma 14. Combine the preceding bounds to reach

log3
62] S\ T ||t — 2|, + et — 25
Applying the similar arguments as above we get
23
| e EZ (& - &) \az1| Lmtfgn
=1
<ot (B e, B ]+ " ot — o)
Ty 2 m L1l2 m 1 2
2 [ N1 log®
<o ( DL ot ] 4+ L, — H)

t,sgn t,sgn

H2 < =t |, + HscL —x) H2 and the fact

that \/ 1°7gn m < \/ "lofl ™ Putting the above results together yields

103 lo sen 103 sgn
Iralla S 4 o [afo=| 4 2o ([, + (2 ],) + ) o 2 - 2

2 logm nlog®m
(n 2+ I o, Sg“||2),

B + T o

where the last line follows from the triangle inequality Ha:

t,sgn

t ,sgn

+ Hmi

s+

which can be further simplified to

1 3
il S 4 2 e
m

t

580

2
+ [|l=" ==,

I,
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o Combine all of the above estimates to reach

1
Hwt-‘rl _ mt—i—l,sgnHz S H{I _ ,'7/ v?f (i(T))dT} (:Et _ wt,Sgn)
0

v ) - v,
2

logm nlog®m
e, ) " b

for some |po| < @. Here the second inequality follows from the fact (63b). Substitute the induction
hypotheses into this bound to reach

I log”
||xt+1_mt+l,sgn’| < {1+37I (1_ ||:ct||2> +77¢2}Oét 14 o nlog®m
2 2 logm m
logm nlog®m
+m/ & 5t+77\/¢04t
m m
Q) 1 log”
< {1t (1= o) +noafa (14 ) o[ HE
logm m
(i) 1 t1 nlog®m
< Qi <1+ ) Cs L7
logm m

for some |¢3| < @, where (ii) follows the same reasoning as in (116) and (i) holds as long as

logm 1 1 K nlog®m
b L ——a (1 4+ —— | Cs\| ———, (132a)
m logm logm m
log® 1 1 log”
RO M, < a1+ Cay /2281 (132b)
m logm logm m

Here the first condition (132a) results from (see Lemma 1)

Be S v/nlogm - ay,

and the second one is trivially true with the proviso that C's > 0 is sufficiently large.

<{rron(1- )+ oo} ot -2 0 s

G Proof of Lemma 7

Consider any [ (1 <1 < m). According to the gradient update rules (3), (29), (30) and (31), we have

wt+1 _ mt+1,(l) . mt+1,sgn + mt+17sgn,(l)
— pt — :L't’(l) _ ptsen + mt,sgn,(l) - |:Vf (.’Bt) _ Vf(l) (.’Bt’(l)) _ vfsgn (mt,sgn) + vfsgn,(l) (mt,sgn,(l)>:| )

It then boils down to controlling the gradient difference, i.e. Vf (x?) — Vf(l)(:ct’(l)) — Vfoen (ghsen) 4
v feen @ (ghsen (1)) To this end, we first see that

\%i (33*) - Vf(l)(ggt,(l)) =Vf (Qg*) _ Vf(wt,(l)) + Vf(:ltt’(l)) _ Vf(l) (ajt’(l))
— (/01 V2 f (x (1)) d7> (mt _ g;t,(l)) + % {(al—rmt,(l))2 B (aszh)ﬂ aal 20
(133)

where we denote x(7) := x! + 7 (a:t’(l) - a:t) and the last identity results from the fundamental theorem of
calculus [Lan93, Chapter XIII, Theorem 4.2|. Similar calculations yield

vfsgn (mt,sgn) _ vfsgn,(l) (mt,sgn,(l))

58



(/ v2fsgn .’i )) ) (mt,sgn o mt,sgn(l)) + l [(a?gnTmt,sgn,(l))2 B (a?gnT.’Bh)2:| a?gna?gnTmt,sgn,(l)
m

(134)
with &(7) 1= 2®"8" 4 7 (b — gtsen) . Combine (133) and (134) to arrive at

Vf (.’Bt) . vf(l) (mt,(l)) o vfsgn (:L,t,sgn) + vfsgn,(l)( t,sgn,(l))

:< /Olvzf@m)ch) (2 — 2" 0) - ( / 2 (3(r))d )(act’sgn—wt’sgn’(l))

+ 1 {(al—rmt’(l)y B (alT:ch) } aa] 200 — 1 |:(a?gnTa:t,sgn,(l)>2 B (a?gnTmhf] a?gna?gn—rwt,sgn,(l).
m m

=2

(135)
In what follows, we shall control v; and vy separately.

e We start with the simpler term vs. In light of the fact that (al—'—ach)2 = (a?gnTa:”)2 = ‘al’lf (see (37)),
one can decompose v as

muy = [(al—rw“(l)f — (@B Tt ) } aa] b0

2:91

senT . N\ 2 2 sgn’T E
+ [(a7g11 wt,sgn,(l)) — a1 } (alawa (D _ ;grla7g11 wt,sgn,(l)).

=0,
First, it is easy to see from (56) and the independence between aj®" and z*%s™ () that
’(a?gn—rmt,sgn,(l))2 o ‘al,1|2‘ < (a?gn—rmt,sgn,(l))2 + ‘al,1|2
<logm - ||atsem() ||§ +logm < logm (136)

with probability at least 1—O (m_lo), where the last inequality results from the norm condition Hzct’sgn’(l) H 9 <
1 (see (61¢)). Regarding the term 02, one has

6, — (alalT _ a?gna?gnT> 2t 4 ai# g T (ph ) — ghean ()

which together with the identity (127) gives

+ a?gnaigrﬂ' (wt(l) _ wt,sgnv(l)).

oT a0
0> = (& — &%) |ara] (z)
d

3

In view of the independence between a; and (), and between a;*" and z'() — zt*s() one can again
apply standard Gaussian concentration results to obtain that

"IIL:BTZ)IS\/@H‘DTZ)HQ and a;‘gnT( (1) _ gptsen, 5) ‘< \/EH e, (l)H

with probability exceeding 1 — O (m~1°). Combining these two with the facts (56) and (57) leads to

bn (1 {1 sgn
1621 < 16 — & Jaua | ([al 25| + [f >\Hau||)+||ag||2

< Vlogm (m le’( )H2 D + /nlogm Hwt’(l) — wt7sg“’(l)H2

@ T (g0 wt,sgn,(l))’
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< logm‘

t,(1) H +/nlogm (‘xlt‘,(z)’ + Hwt,(l) _ wt,sgn,(l)H ) . (137)
2
We now move on to controlling 8;. Use the elementary identity a? — b? = (a — b) (a + b) to get
6, — (a;—xt’(l) _ a;gnth,sgm(Z>) (alth,a) n aigﬂwt,sgn,u)) aia] b0, (138)

The constructions of a;®" requires that

T..t,0 sgnT _t.sgn,(l) _ t,(1) sgn t,sgn, (1) t,(l t,sgn, (1)
a/ x4V — a wggn()—£l|al,1|xu a1 \x —l—au_(a:()—:vl ).
. . . t,(1 t l
Similarly, in view of the independence between a; | and x L( ) L’Sgn’( ), and the fact (56), one can see

that with probability at least 1 — O (m’lo)
alet,(l) ?gnT t,sgn,( ‘ < |£l| |al 1| ‘ rﬁ (l)‘ + ‘gsgn| |al 1| ’ tegn,(l)‘ + ‘al—l,—L (wzl,(l) . mtisgn,(l))‘

,(1 t,sgn, (1) t,(1 t,sgn,(l
< o (] -]

(]« o0 -] o
2

where the last inequality results from the triangle inequality |xf ggn’(l)| < | &0 | + ||t — atsen O
Substituting (139) into (138) results in

H01||2 ) [z B ?gnth,sgn,(l)‘ ‘al—rwt’(l) + a?gn—rwtvsgnv(l)‘ ||al||2 ‘al'l'wt,(l)‘
< Viogm ([ O] + 240 — a0, ) logm - i+ vlogm
=< m (‘xlt‘,(l)’ + [t ® — $t,sgn,(l)||2> : (140)

where the second line comes from the simple facts (57),
‘al—ra:t’(l) + a?g“th’sg“’(l)‘ <+/logm  and ’a;—wt’(l)‘ < Vlogm

Taking the bounds (136), (137) and (140) collectively, we can conclude that

H’U2||2 < — <||01|2 ( sgnT ptsen, (l)) ‘al,1|2 ”02|2>
log®m Vnlog®m
S I ot 0] 4 Y ([o40] 4 ot - gtasnid] ).

~ m

e To bound vy, one first observes that

sz (33 (7’)) <wt _ mt7(l)) _ V2fsgn (;i: (7_)) (wt,sgn . mt’Sgn’(l))
= VQf (m (7’)) (mt _ mty(l) _ ptsen + mt,sgn,(l)) + [VQf (:13 (7_)) _ V2f (:f} (7-))] (mt,sgn B xt,sgn,(l))

::wg('r)

=w1 (7)
[V (@ (1)~ V2P (@ ()] (@ — o))

=ws(T)

— The first term w (1) satisfies

1
wt _ IBt’(l) _ mt,sgn + mt,sgn,(l) _ 77/ wl(T)dT
0

2
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= H{I - 17/1 V2§ (x (1)) dT} (:ct — gt _ ptssn 4 wtﬁsgn,(l))
0

< HI—n/01V2f(a:(7-))dr ‘

<fream (1= o) +0 (nomn) + oo}

for some |¢1| < @, where the last line follows from the same argument as in (112).

2

ot — :Bt’(l) _ ptsen + mt,sgn,(l)H
2

ol — 2t (D) _ ptsen | ptsen()) H ,
2

— Regarding the second term ws(7), it is seen that

1927 (@ () - 25 @ ()| = | 2 3 (@l 2(0)” (o] #())7] ava]
< nax. ((1?.@1:(7’))2 - (a;r:E(T))Ql %Z a;a;

i=1

5 B 3 <«
< max [a] (@(7) =& (7)) max [af (@(7) +2 (7)) Hmi_;aia?

< max ‘a? (x(r)—& (T))‘ v/1ogm, (141)

1<i<m
where the last line makes use of Lemma 13 as well as the incoherence conditions

max |a; (z (1) + & (7))| < max |a/ @ (7)|+ max |a; @ (7)] < Vlogm. (142)

1<i<m 1<i<m 1<i<m

Note that

13(7') _ (f)(T) SCt 47 (Il?t’(l) _ wt) _ [wt,sgn 47 (wt,sgn,(l) _ wt,sgn)}
— (1 _ 7_) (:Itt . mt,sgn) + 7_(wt,(l) _ mbsgn,(l)).
This implies for all 0 < 7 < 1,
‘a: (z(r) — &(7))] < ‘a: (zf — ") | + ’a;r (wt’(l) - a:t’sg“’(l))‘ .

Moreover, the triangle inequality together with the Cauchy-Schwarz inequality tells us that

(2

al (mt,(l) _ :L,t,sgn,(l))’ < ’aiT (mt _ wt,sgn)’ +

aiT (Il?t _ mt,sgn _ wt,(l) + xt,sgn,(l))‘
< o] (@ —2")| + llaif; o' — 2" — 2" 4 2t O
and

a] (& — 2o <

7 =

al (M0 — wt,sgn,@))‘ n ‘ a; (a:t _ pheen _ gh(i) 4 wt,sgn,(i))‘

IN

a] (zt0) - wt,sgn,(i))’ +lag, [|at — ztee — 2t 4 mt,sgn,(i)HT

Combine the previous three inequalities to obtain

[ () = ()] < e [of (5% [ (40 — 500

a;

<2 max |a;

1<i<m

S.; /logmlglaé}fn Hwt,(z) _ wt,sgn,(i)HZ + \/ﬁlgﬂlaé}in Hwt _ :Bt,sgn _ wt,(l) + wt,sgn,(l)HZ,

(mt,(i) _ mt,sgn,(i))‘ +3 max Ha’iH2 max ||$t _ miE,sgn _ J)t’(l) + wt,sgn,(l) H2
1<i<m 1<i<m

i
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where the last inequality follows from the independence between a; and (" — x5 and the fact
(57). Substituting the above bound into (141) results in

[V2f (2 (7)) = V2 (2 (7))

wt () _ gtsen, (i) togn _ gt () 4 gt

< logm max

+ v/nlogm max H:Et—a:
1<i<m 2 1<Ii<m

<logm ||w — wt’sg“HQ + v/nlogm max Hw —ghsen — gt () 4 gtsen,() H2

Here, we use the triangle inequality

Hwt,(z) _ mt,sgn, i

, < Hwt _ wt,sgnHz + Hwt _ xt,sgn _ xt,(i) + mt,sgny(i)Hz
and the fact logm < v/nlogm. Consequently, we have the following bound for ws (7):
lwa(7)l|2 < [[V2f ( (7)) = V2F (& (7))]| - [|a"e" — et D]

nlog max Hw wt,sgn _ wt,(l) + wt,sgn,(l)HQ} Hwt,sgn _ wt,sgn,(l)HQ.

t t,sgn
< {logm Hw —x

It remains to control ws (7). To this end, one has

1 — 2 2
=3 [s(ala ()" - (0] 2] aial (@ — 2o )
i—1
' =p;
1 & . 2 . 9 X
- Z [3(azgn—r:i (T)) — (azgn—rwh) } aig"aig“—r (:ct’sg“ — :ct’sgn’(l)).
i=1

__sgn

i

We consider the first entry of ws(7), i.e. ws (7), and the 2nd through the nth entries, ws i (7),
separately. For the first entry ws | (7), we obtain

m

sen sen 1 sgn csgn sgnT sgn sgn
w3, H szfz ‘Clz 1| a xhsen — gtse ’(l)) - m Zpig & ‘az |aig (a’t’ 8N _ gptse ’(l))~ (143)
i=1

Use the expansions
T (.t t,sgn,(1)\ _ t,sgn f ,sgn, (1) T t,sgn t,sgn, (1)
a; (m sen _ g sgn()) fz\az1|( gn 7| +a], ( bsen _ g )

sgnT (_ tsgn t,sgn,(l Sgn sgn t,sgn,(l) T t,sgn t,sgn, (1)
a® (x —x ()) la; 1| (= - +a (" -z} )
to further obtain

1 m
w3,\| (7_) _ = Z sgn |a1 1| ( t,sgn CUt ,8gn, l) + E Z ngz sgn sgn) |a2 1‘ a (wisgn . a:tl,sgn,(l))
i=1

Lo . o
= =3 (= A i ()

i=1
=01 ()
+ % i (pi — PE™) (& + E5) |aia| a] | (22" — 272 0)
i=1
1=0>(T)
+ = Z PP laiq| GI (wtfgn — wt sgn, l) Z i€ |a; | a ( tsgn il:i’sgn’(l))
i=03(T) o
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The identity (122) reveals that

pi— Pt =6 (& — &) |aia| 2 (1) a] &1 (1), (144)
and hence
6 - s n sgn t,sgn,(l
01(7) =3 (1) > 3 (& = &) fawal a o (7) (2" = o),
i=1

which together with (130) implies

1 m
01 ()] < 62 (7)] |« = (&= aial’al,

i=1

t t, (1 ~
Hsgn - ”sgn )’ [ (T)||2

nlog?’m - t tsgn, (1) | ) 4

S T|$H ()] usgn*”ﬁ\lsgn()"'wl Ol
n10g3m . t, t,sgn, (1)

S iy ()] fofen )

where the penultimate inequality arises from (130) and the last inequality utilizes the fact that
H-’il( H2 < ||$t Sgn” + H tbgﬂ7(l)H2 S 1.

Again, we can use (144) and the identity (§ — &*") (& + &®*") = 0 to deduce that
62 (T) =0.
When it comes to 03 (1), we exploit the independence between &; and p:®" |a; 1| az i (:ctfgn - wi’sgn’(l))

and apply the Bernstein inequality (see Lemma 11) to obtain that with probability exceeding 1 —

O(m—lo)
1
05 (1) S — (VValogm + Bilogm)
m
where
i 2
sgn 2 ,sgn t,sgn,(l L sen son -
Vi = E(mg) a] | (@t — 2 ())‘ and By := max |o] T, (@l gt <>)‘.

sgn

Combine the fact |p;*"| < logm and Lemma 14 to see that

1 < (mlog m Hwt S wtfgn’(l)Hz.

In addition, the facts |p;®"| < logm, (56) and (57) tell us that

B1 /nlog m||wtbgn_ t,sgn, l)||2
Continue the derivation to reach

|93 (7_)| S [log’:lm_’_ Vn10g5m H tsgn_ tsgn (Z)HQN ]-Og mH tsgn_mtisgn,(l)Hy (145)

m m

provided that m > nlog? m. This further allows us to obtain

|04 (7

1 & 2 1
= | X plala ) - @l e 6 fal ol (1 o)
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1 i T 2 2 s n t,(1)
< m;{i’)(aiw(ﬂ) — a1 } & |a11\a (:c’j_—:cL )
l = 3 T ~ 2_3 T 2 sgn t,sgn t,sgn, (1)
+ - (ai a:(T)) (ai x (7')) la;, 1|a (:cj_ T )
=1
1 & 2 2 N 6(0)  _tsen | _tsgn,()
1 3(aT ~las } sg al ( t_ b 58 sen, )
+ m;{ (a‘zw(T)) a1 L\ Tl - —x T+
IOgSm l sgn sgn l ~
S PEE ot - 240+ viogm et - o0 e () - & (1),
1 t t,(1) t,sgn t,sgn(l) H
_— —x N —ax ’ . 146
+log3/2m’wl x) 7 a , (146)

To justify the last inequality, we first use similar bounds as in (145) to show that with probability

exceeding 1 — O (m™10),
log m )
Sy = =t ==

Z {3 (a & (7))2 ~3(ajz (7_))2} £ g, | al B (mtjgn B :ij:sgn,(l))

m
<nlli{ PE( 2_3(a?$(7))2}2@i,1|2> ( i IL ( “gn_wtisgn,(l))‘Q)
=1 =

1 m

2 sgn
m;{S(a:az(T)) —|ai,1|2} 8 \a21|a (:ct t(l

In addition, we can invoke the Cauchy-Schwarz inequality to get

1

IN

m

< |15 f(a7z T
S\ =2 {@le ()~ (al2(m)*} Jail* [ — 2!
=1

where the last line arises from Lemma 13. For the remaining term in the expression above, we have

LS (@l )" - (@2 ()"} Joual?

i=1

=S sl [o] (@ (1) — 2 (7))]* [a] @ (r) +& ()]’

©) | logm =
S\ bl o] @) -2 ()

\/log m @ (1) = & (7)[l, -

Here, (i) makes use of the incoherence condition (142), whereas (ii) comes from Lemma 14. Regarding
the last line in (146), we have

1 & N
m > {3 (alz(r)" - \aml2} &5 ainlal | (xj — gD plen y glee ,u))
- a 2
n l n ; ’l
< m;{3(a:x(7)) — 2} a1 |al | Hxi_wi() 2t _’_wisgn()H2-

2

Since £*" is independent of {3 (a]x (T))2 —
(see Lemma 11) to deduce that

2} |a; 1] a;-': |, one can apply the Bernstein inequality

m

S {3l e () ~lasal} € aal o]

m <
i=1

(\/W + B log m)

1
m

2
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where

2
2 2 T 5
} lai1” a; a; 1 < mnlog”m;

ngzi{

2 2
B = mm\3 ale ()" = o loual . S Vilog* m

This further implies

m

%Z {3 (ajgc (T))2 B |ai71|2} sgn

i=1

4 5/2
< nlog m+\/ﬁlog m _ 1

2~ m m ~ log®?m

as long as m > nlog’ m. Take the previous bounds on 6, (), 6 (1), 3 (1) and 6, (1) collectively to

arrive at
< nlog®m | _ t,sgn tsgn 0} log m
lws, ()] < 7|xl\( ) o™ = ‘+ ’
1 9}
\/EH t(l ‘ Jr\/logiH Legn _ gt ’(”H (1) — & (1),

t,sgn t sg‘n,(l) H

t,() t sgn t sgn(l) H
x +x
log?’/2 m J' +
log®
5 nlog-m |,ffH (7_)| ‘z‘tlvsgn _ tbgn l)‘
m
log3
og;nm ‘:ct b (Z)H I \/IOTH tsgn tsgn (z)” lz (7) — (T)”2
1 t,() t sgn t sgn(l)
e !
log?’/2 m L +
where the last inequality follows from the triangle inequality
‘ s gl ‘ < Hwi _ a:ti(l)Hz T Hmi — g _ gl +~’Btisgn(l)H
and the fact that 4/ log;; < m for m sufficiently large. Similar to (143), we have the following
identity for the 2nd through the nth entries of ws (7):

1™
w3, | (7') = E Z piai,LaiT (mtysgn _ wt,sgn,(l)) Zpsgnal’ @gnT (wt’Sgn _ mt,sgn,(l))
=1
3 = T4 2 sgnT ~ 2 5gn t ,sgn t ,sgn, (1)
m Z (ai 1’ (T)) & —(a" @ (7) T
i=1

3 < "
T Z lai1[? (& — €5 aia| @i L (xflvsgn _ xﬁsgn,( ))
—

3 - sgn ~ 2 son sen
=y [(a;i () - (aig T (7')) ] aiia; | (wtig s ,(l)) '

m <
=1

It is easy to check by Lemma 14 and the incoherence conditions |a] & (7)| < vlogm @ (1), and

a3 (7)| < Viogm @ (7)]], that

R 2 . . nlog®m
— ; ilain|aiL =2 0 ’
m;("’zw(T)) §ilaialaiL =22 (1)@ (1) + O [/ —
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and

sgnl ~ 2 sn ~ nlo 3m
7Z< sgn T o ) g |a,1|a,l—2x1()mL(T)—|—O(HTgr;L

Besides, in view of (130), we have
/ 3
< nlog m.
~ m
2

3 —m T~ 2 senT = 2 T t,sgn t,sgn, (1)
o Din (az w(T)) - (ai w(r)) @i, 1a; | (fEL —x )

this end, one can see from (144) that

3 m
= a6 = €5 Jaial @iy
m i=1

. To
2

We are left with controlling

3 i - 2 sonT ~ 2 1
E Z |:(a:w (T)) _ (aign & (7_)) :| ai,J_aIJ_ (wwisgn . wj:sgny( ))
=1 2
6 m
,sgn, (1
E Z &) laiq] a; La;erL (1) TL (ﬂftfgn - actfgn ( )> ‘
=1

~ t,sgn t,sgn, (1)
<12 max i |7 (7)] max |al @ (7 Zauau H — ] H

t,sgn t,sgn, (1)
—x)

< logm|x|| | ‘

a;':J_a?J_ (T)‘ < Vlogm

where the last relation arises from (56), the incoherence condition max;<;<m

and Lemma 13. Hence the 2nd through the nth entries of ws (7) obey

nlog®m
lws, 1 (D), S 1/ L

Combine the above estimates to arrive at

t ,sgn t ,sgn, (1) t sgn t,sgn,(l)
T = +logm|x‘| } —x]

[ws (7)[|5 < Jws (7)] + [lws, 1 (7)]l,

<logm ‘l‘” | H t,sgn t sgn,(l \/m tsgn t 50, (l)’

l sgn =~
Bt o+ om0 ) - 2 )1,
2
PR AONE t sgn t,sgn(l) H
logg/zm wl oL T 2

e Putting together the preceding bounds on v and ve (w; (7), we (7) and ws (7)), we can deduce that

|=

1 gt 1,(1) _ gttlsgn | mt-s-l,sgn,(l)H

1 1 1
xt — b — ghsen 4 gtsen(D) _ n (/ wi (7)dr + / wo (7)d7r + / ws (1) d7'> — N
0 0 0 2

1
mt - :Bt’(l) . cct,sgn + mt,sgn,(l) . 77/ w; (7_) dr
0

<

+n sup [Jw(7)lly+n sup |lws (7)[ly+n]v2l;
2 0<r<1 0<r<1

< {1430 (1= [2'[;) + o1 } |2 — a0 — atsen 4 gtren ||
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+ 9] { nlog mlax Hm mt,sgn _ t,(l) + :L,t,sgn,(l)H + logm Hwt _ mt,sgn”z} ‘ mt,sgn _ wt,sgn,(l)HQ)

1 sgn,
+O(nlogm sup |&) (1 ’H tsgﬂ_wtbgnv(l)H +O \/m tsgn t g l)‘
0<r<1
log”m
(\/TH wll)H +O<77\/E'

t,<1>H2> Lo (n\/m (

log”=m
Lo (ng |«
m m

To simplify the preceding bound, we first make the following claim, whose proof is deferred to the end of
this subsection.
Claim 1. For t < Ty, the following inequalities hold:

Vnlogm Hwt7sg“ — gtsen ) H <
2

a0 s ()= ()l )
20<7<1

t(l‘+‘

t,(l) _ f ,sgn, (1) H
2)) . (147)

1ogm;
~ - Vnlog®m
logm sup |&) (1)| +logm ||z’ — " Sg“Hz logm sup ||z (1) — (1), + ynos m < aglog m;
0<r<1 0<r<1 m
1
aglogm <€ ——.
logm

Armed with Claim 1, one can rearrange terms in (147) to obtain for some |@s|, |¢3| < ﬁ
IE:

1t 1) _ gpttlsen o wt+1,sgn,(l)H

< {1 + 37 (1 - Haztﬂz) + nqbg} max Hwt — b _ ghsen 4 ghsen(D) H
2

1<i<m
log® log?
+170 logm.at+ Og m+M ‘mtfmtv(l)H
m m 2
nlog®m  /nlog®m ‘ ) log®m ‘
00 [\ 2l -2+ 2 o |,

+ n0O

<m> (‘ ||’+||f'3 — x|, )

_ gt (D) ptsen | ptsen, () H

{1 +3n (1 - ||:ct|| +77¢3}

+ O (nlogm) - t’(l)HQ

iL‘
1 log?
= ’”) =i +0 (25 el

nlog”m son
+o(nvm & tosn)

+0

Substituting in the hypotheses (40), we can arrive at

Hwt+1 _ gt L) _ ptlsen | pt+lsen() H
2

1 )tC Vnlog’m
4

< {1 (1= o) +moa e (14 o =
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1 \' ., Vnlog®
+ O (nlogm) oy By <1+> Rt R o8 ™
logm m

[log® m 1 t v nlo °m
O gm B (1+logm) G mg

nlog m \/nlog m
1+ Cz
logm

L0 logm

n >5t+0

nlog® m [nlog®m
+ O (T} ) ) (673 <1 logm Cg g

vnl
{1+377<1_||mt||)+77¢4}at< o m) Cy nlog”m
(ii) < 1 >t+1C Vnlog”m
P = Tl
m

P22

< 14+ —
< g Jrlgm

for some |¢4| < ﬁ. Here, the last relation (ii) follows the same argument as in (116) and (i) holds true
as long as

V/nlog® 1 1\, Vnlog®
) nlog’m t<1+ )04 nlog”m
logm m

1\
(logm) a5y [ 1+ C !
logm m logm

log® 1\, Vnlog" 1 1\, nlog’
nlogmm (14 c, Y108 M o a(1+ c, Y18 (148b)
m logm m logm logm m
1 )tC \/nloggm'
4
m

1
By < ap [ 1+
logm logm

Vnlog® I log” 1 1\, nlog’
VRO M, (14— ) gy 22 o ap [ 1+ c, Y18 (148d)
m logm m logm logm m
V/nlog® 1 1\’ log”
nlog®m t<1+ ) C nlog” m
m logm m

log2 m

148
oy K 1ogma , (148e)

where we recall that t < Ty < logn. The first condition (148a) can be checked using 8; < 1 and the

assumption that Cy > 0 is sufficiently large. The second one is valid if m > nlog® m. In addition, the
third condition follows from the relationship (see Lemma 1)

B S agy/nlogm.

It is also easy to see that the last two are both valid.

Proof of Claim 1. For the first claim, it is east to see from the triangle inequality that
/n log m Hwt,sgn o wt,sgn,(l) H
< y/nlogm (

2

xt — xh(

:Bt’(l) _ wt,sgn + mt,sgn,(l)H )
2

1 ¢ Vnlog®m 1 ¢ Vnlog” m
< +/nl 1 —— +/nl 1
<+\/n ogm6t< Jrlogm) C1 = +/n ogmat( +logm) Cy o=
3 5
< nlog m+nlog m 1 ,
~ m m logm
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as long as m > nlog®m. Here, we have invoked the upper bounds on «; and §; provided in Lemma 1.
Regarding the second claim, we have

|.f” (7_)| < tsgn tsgn +lz

+’ t@gn(l)‘ <2z

t, t,sgn,(l
ahoen — gleenh

(
l,l‘fl _ 'rH) )‘ + Hmt _ mt,(l) — plsen + xt,sgn,(l)H

< 2\x.|| +2]at —wt’sg“Hﬁ

5 2 9
nlog m+ \/nlog m+ \/nlog m\

<Oét 1+ ~ “ty
m m m

~

as long as m > nlog® m. Similar arguments can lead us to conclude that the remaining terms on the
left-hand side of the second inequality in the claim are bounded by O(c;). The third claim is an immediate

consequence of the fact o < m (see Lemma 1). O

H Proof of Lemma 8

Recall from Appendix C that

1 3
wt = d1n (1= |2t ]) + 0 [y 22 ) baf + e - i,
m

where Jo and Jy are defined respectively as

T =11 - 3(zf } Za“a et

1
Jy=mn- o Z (azj_wﬂ_)sai)l.

i=1

Instead of resorting to the leave-one-out sequence {x**¢"} as in Appendix C, we can directly apply Lemma
12 and the incoherence condition (49a) to obtain

E a’zla' J_%_
m
1
*E 7Lml Qi1

i=1

Bl <t -3’ |

< g ||t ], < np—a
log® m L2 log '

|Ja] <1

<n—— |2 [} < nir—a
lg m N2 logm '

3

with probability at least 1 — O (m’lo), as long as m > nlog13 m. Here, the last relations come from the
fact that oy > (see Lemma 1). Combining the previous estimates gives

¢
= log®m

Qi1 = {1 + 3n (1 — Hthz) +77Ct}at,

with || < ﬁ. This finishes the proof.

I Proof of Lemma 9

In view of Appendix D, one has

3
ot a0, < o (1 1) o -0 0 (R )
2 2 m
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for some |¢1| < @, where we use the trivial upper bound

2n

t t,(1)
) — ) ‘ = 277‘

2t —at 0| .
2

Under the hypotheses (48a), we can obtain

me B wt+1,<l>H2 < {1 +3n (1 - Hthi) T ”¢1} a (1 *

1\ _ nlog™ Vnlog®
)Ca nlog m+0(n”;gm(at+5t)

logm m
t /1 15
§{1—|—377 (1—Hth§>+n¢2}at (1+1 L > Cs nlog " m
ogm m

1 1 /nlog® m
< [e7ER} (1 + ) Cﬁ g )
logm m

for some |¢o] < @, as long as 7 is sufficiently small and

Vnlog? 1 \" , Vnlog?
nlog®m (n+ B) < o (1 Co nlog " m
m logm logm m

This is satisfied since, according to Lemma 1,

Vnlog®m )< \/nloggmg\/nlogl?’mat < 1 o (1 1 )tCG\/nlogwm
m m m logm

logm m

(a¢ + Be

)

as long as Cg > 0 is sufficiently large.

J Proof of Lemma 12

Without loss of generality, it suffices to consider all the unit vectors z obeying ||z|, = 1. To begin with, for
any given z, we can express the quantities of interest as - 3" (g; (2) — G (z)) , where g;(z) depends only
on z and a;. Note that
0 T _\%
gi(z) = ai,ll (ai,Lz)
for different 61,0 € {1,2,3,4,6} in each of the cases considered herein. It can be easily verified from
Gaussianality that in all of these cases, for any fixed unit vector z one has

E [0 (2)] < (E[lg: (2)1)°; (149)
Ellg:i ()] = 1 (150)
B 06 (2) U (jar el<opetonnicovizmy | ~ Bl (]| < ~Ell: ()] (151)

In addition, on the event {maxi<;<m ||aill, < v/6n} which has probability at least 1 —O (me~'5"), one has,
for any fixed unit vectors z, zg, that

|9: (2) — g (20)| < n® ||z = 2ol (152)

for some parameter a = O (1) in all cases. In light of these properties, we will proceed by controlling
L5 9i(2) —Elg; (2)] in a unified manner.
We start by looking at any fixed vector z independent of {a;}. Recognizing that

m

1
m Z;gi (2) ]1{|ahz|g5|\z\|2,\ai,1|g5\/710gm} —E |g: (2) ]l{‘azlz|§5|\z\|2,|ai,1|§5\/710gm}:|
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is a sum of m i.i.d. random variables, one can thus apply the Bernstein inequality to obtain
{| Zgl ]l{lal 2| <Bllzly la <5visgm) B |9 (= )1{\aLz|£6qu2,|ai,1|s5ﬁlogm}} ‘ =z T}

72/2
<9 __Tre
= eXp( V+TB/3>’

where the two quantities V' and B obey

1 & ) 1 ) 1 5
=1
1
Bi= o e {10 ()| L jar  2f<iel o <sviogm) ) (154)

Here the penultimate relation of (153) follows from (149). Taking 7 = e E[|g; (2)|], we can deduce that

<eEllgi (z)[] (155)

Zgz ]1{|a,LJ_z|<,8\|z”2,|ab1\<5\/logm7} -E [Qz( )]1{ aILz|§ﬂ\|zH27\ai,1\SS\/logm}:|

with probability exceeding 1 — 2 min {exp (—clmeQ) , eXp (—M)} for some constants c1,co > 0. In

particular, when me?/(nlogn) and €E[|g; (2)|] /(Bnlogn) are both sufficiently large, the inequality (155)
holds with probability exceeding 1 — 2 exp (—csnlogn) for some constant ¢z > 0 sufficiently large.

We then move on to extending this result to a uniform bound. Let Ny be a 6-net of the unit sphere with
cardinality |[Ny| < (1 + %)n such that for any z on the unit sphere, one can find a point zy € Ny such that
|z — 20|, < 6. Apply the triangle inequality to obtain

Zg’ 2V a7 =|<Bll=l o 1 <5V omT) IE[gz( )

al | z|<Blzlylai, 1<5\/log7m}i|‘

=1

1
< m Zgi (20) ]l{|ahzo|s,@uzon2,|ai,1\s5ﬁlogm} —E [gi (20) ]1{|GZJ_ZO|SBHZOH27\M,1\§5\/7108m}} ‘

=1

2 [ 11

=1

al | zo|<Bllzolly,lai,1|<5vTogm }}

T z|<Bllzllylai1|<5vIogm} ~Ji (z0)

::Ig

where the second line arises from the fact that

E [gi (2) ]l{|aZLz|§ﬂ\|z|\2,|ai,1\SS@}} =E {gi (20) ]l{‘GIJ_ZO|SBHZOHQ>‘ai,1|§5m}i| :

With regard to the first term I, by the union bound, with probability at least 1—2 (1 + %)n exp (—cgnlogn),
one has

I < eEJlgi(20)]] -

It remains to bound I5. Denoting S; = {z | |a;':Lz‘ <Blzlly,lai1] < 5\/10gm}, we have

I = 9i (2) Lizes,y —9i (20) Lizpes,)

3=
M

=1

m

Z gi (ZO) ]l{z¢5i,2063i}

i:l

(gi (z) — 9 (ZO)) ]l{ze&,zoe&} Zgl 1{z63“20¢$ }

3

N
Il
_
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1 — 1
EE_: —gi Zo)|+*11glix |9 (2) L {zesiy| - lel{zesl,z0¢5}
1 m
+ — max |gl (z0) Z]l{%é&,zoesi}' (156)

m 1<i< :
=1

For the first term in (156), it follows from (152) that

ngz — i (20) < n* |1z = 2o, < n°0.

For the second term of (156), we have
Lzesizogsy S MaT 2|<s[a], 20]26)
= 1jar, =|<o} (L{lar, solzsvemo) + L {aslar, =] <o+ vomo} )
= a7, 2|<8} H{s<la] 20| <o+ vEno) (157)
< Lis<jar, 20| <p+vomo} -

Here, the identity (157) holds due to the fact that
Yja7 .26} L{JaT , 20] 25+ vEmo} =0

in fact, under the condition |aZJ_z0| > B+ v/6nb one has

lal 2| > |a] 20| — |a] | (z—20)| = B+ V6n8 — ||ai ||, ||z — 20ll, > B+ V6n8 — V6no > B,

which is contradictory to |a, Lz‘ < B. As a result, one can obtain

Z]l{zesl,zogés Jas Z]l{ﬁ<|a T z0|<pHVEne) S < 2Cnlogn,

=1

with probability at least 1 — e~ 3Cnlogn for g sufficiently large constant C' > 0, where the last inequality
follows from the Chernoff bound (see Lemma 10). This together with the union bound reveals that with
probability exceeding 1 — (1 + %)n e—350n logn

1 } )
— ma
m 11<nz<)7(n 9i (

’ Z]l{zesi,zoi&} <B- QOnlogn

i=1

with B defined in (154). Similarly, one can show that

1
— max ’gz
m 1<i<

Z]l{z$8 zoes;} < B-2Cnlogn.
i=1

Combine the above bounds to reach that
L+ 1 <eE[g; (z0)]] +n“0+4B - Cnlogn < 2¢E[|g; (2)]],

as long as
n*0 < gEng (2)|] and 4B -Cnlogn < ;Eﬂgl (2)]].

In view of the fact (150), one can take 6 < en™® to conclude that

1 m
g;gi () Lfjar | 2|<Blzllyslai|<sviogm)} —E |95 (Z)ﬂ{\a;z|sm\zu2,|ai,1|ssm}} < 2¢E[lgi (=)[] (158)
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holds for all z € R™ with probability at least 1—2exp (—cqnlogn) for some constant ¢4 > 0, with the proviso
that € > L and that eE[|g; (2)|] / (Bnlogn) sufficiently large.

Further, we note that {max; |a; 1| < 5v/logm} occurs with probability at least 1 — O(m~™1?). Therefore,
on an event of probability at least 1 — O(m 1Y), one has

1 & 1 &
m > 0i(z) = m > 0i(2) 1jar, 2| <Blizl i1 |<5vTogm} (159)
i=1 i=1
for all z € R"~! obeying max; ‘azlz| < B||z|l,- On this event, one can use the triangle inequality to obtain

= %Zgi(z)ﬂ{

i=1

a7 2| <Bllzly a1 |<sviogm) "B [9i (2)]

30 (2) ~Elgi (=)

‘ m

m

IN

1=

+ ’E [gi (z) ¢ aLz|g6uzn2,|ai,1\swmﬂ —Elg; (z”’

< 2¢E[|g; (2)]] + %E [lg: (z)I]
< 3eE[lgi (2)I],

as long as € > 1/n, where the penultimate line follows from (151). This leads to the desired uniform upper
bound for L 3" g; (2) — E[g; ()], namely, with probability at least 1 — O (m~19),

< 3eE[lgi (2)]

— 3 0:(z) ~Elgi =)

holds uniformly for all z € R"~! obeying max; ’a;{lz‘ < S ||z]|,, provided that

me®/(nlogn) and €R]|g; (2)|]/ (Bnlogn)

are both sufficiently large (with B defined in (154)).
To finish up, we provide the bounds on B and the resulting sample complexity conditions for each case
as follows.

e For g; (z) = aila;Lz, one has B < %Blog% m, and hence we need m > max {e%nlogn, %Bnlogg m};

3 ) ) .
For g; (z) = a;1 (aL_z) ,onehas B < %65 log% m, and hence we need m >> max {e%nlog n, %B‘Snlog% m}

2
TLz> , we have B < iﬂQ logm, and hence m > max {E%nlogn, %Binogz m};

[ ]
g
=
<
S
—
N
~
I
@
S
=
/N
e

2
 (2) =a%, (aL_z) , we have B < L3 log® m, and hence m >> max {%nlogn, %B2nlog4 m};

°

g

=
)
S

6
;'—Lz) ,one has B < %56 logm, and hence m > max{e%nlogn, %Bﬁnlog2 m};

.
g
=
Q@
S
—
N
~—
|
Q
SN
il
/N
e

4
e For g; (z) = a?, (aL_z) , one has B < L 8%logm, and hence m > max { tnlogn, 13%nlog®>m}.

Given that € can be arbitrary quantity above 1/n, we establish the advertised results.
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K Proof of Lemma 14

Note that if the second claim (59) holds, we can readily use it to justify the first one (58) by observing that

max |a x| < 5\/logm ||z,

1<i<m

holds with probability at least 1 — O (m_lo). As a consequence, the proof is devoted to justifying the second
claim in the lemma.

First, notice that it suffices to consider all z’s with unit norm, i.e. ||z]|, = 1. We can then apply the
triangle inequality to obtain

1 m 1 m
EZ(aiTz)zaiaiT —I,-222"| < EZ(aiTz)QaiaiT ]1{|ajz|gcz\/1cyﬁ}* (BlInJrﬂgzzT)H
i=1 i=1
=0,
+||BiIn + Bazz — (I, +2227)|,

1192
where

B1:=E |:§2 11{|€|S02\/m}] and B2 :=E |:£4 1{\£|§czx/logm}] 5
with & ~ N (0, 1).

e For the second term 65, we can further bound it as follows

0> < |G, — I,|| + HBzZZT - QZZTH
<|B1 =1 +[B2 =2,

which motivates us to bound |8; — 1| and |82 — 2|. Towards this end, simple calculation yields

2 c210g7n 1/1
1-p51 = \/;~02\/10gme_ T terfe (C20gm)

2

(%1) 2 \/17 _ cBlogm N 1 2 _ cBlogm
— O 2 —_— 4
I . C2 g me ﬁc2\/m6
() 1
S N

m

where (i) arises from the fact that for all z > 0, erfc(x) < %%e_“gand (ii) holds as long as co > 0 is
sufficiently large. Similarly, for the difference |33 — 2|, one can easily show that

2
4
12 =20 < [E[6" 1 copmmmy | =3 +18 -1 < = (160)
Take the previous two bounds collectively to reach
3
Oy < —.
m

e With regards to 6, we resort to the standard covering argument. First, fix some x,z € R with |||, =
llz]|], = 1 and notice that

%Z (a;z)g (a;»rgg)2 ]l{|aiTz|SC2\/m} _Bl — ﬁQ (zTa:)Q

is a sum of m i.i.d. random variables with bounded sub-exponential norms. To see this, one has

2 2 2
H(a;rz) (a;ra:) ]l{|a?z|S02\/m}H¢l < c2logm H(a;r:c) ‘ " < cZlogm,
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where || - ||y, denotes the sub-exponential norm [Ver12]. This further implies that

2 2
H( ;rz) (a;r:c) ]l{|a?z|§62\/log—m} —B1 — B (ZTa:) le < 2¢2log m.

Apply the Bernstein’s inequality to show that for any 0 < e <1,

&

where ¢ > 0 is some absolute constant. Taking e < \/"l(’% reveals that with probability exceeding

1 —2exp (—cignlogm) for some 19 > 0, one has
2| o o nlog®m (161)
o\ —————.

One can then apply the covering argument to extend the above result to all unit vectors «,z € R™. Let
Ny be a 0-net of the unit sphere, which has cardinality at most (1 + %)n Then for every «,z € R with
unit norm, we can find xg, 29 € Ny such that |z — x|z < 0 and ||z — zg||2 < 0. The triangle inequality
reveals that

1 m
- Z . w)2 ]l{\ajz|§r:z\/@} —B1 — B (zT:c)2 > 260% logm> < 2exp (—ceQm) ,

1 & )
m ; - iL’) ]l{|ajz|§02M} —B1— B (ZT;L')

1 & 2 2
m 2 (42) (@0 2) oz conviogm) —Pr = 2 (=72) |
1 & T N2/ T 2 T \2
- Ez(ai ZO) ( a; :BO) ]l{‘a zo|<czy/logm} —B1— B2 (Zo iBo) +52’(Z a:) — (zo wo) ‘
i=1 ~ T
1 « 2 2 2 2
=3 [(a72)" (@7 2)" 1f|a7 s cerviogm) — (@ 20)” (@] @0) nﬂa;zdgmm}}].
i=1

::I3

Regarding I, one sees from (161) and the union bound that with probability at least 1—2(14-2 )™ exp (—cionlogm),
one has

For the second term I, we can deduce from (160) that 82 < 3 and

‘(zTalc)2 - (zOTmO)Q‘ = |z —z) @o| |z" @ + 2] @0

= ‘(z —z0)7w+z0 (a:—a:o)‘ |z7m+z(—)rmo
<2(|lz = 2olly + [z = zolly) < 26,

where the last line arises from the Cauchy-Schwarz inequality and the fact that x, z, g, 29 are all unit
norm vectors. This further implies
I, <66.

Now we move on to control the last term I3. Denoting

S = {u | ’a;ru| < 02\/@}

allows us to rewrite I3 as

1 m
= |- [(@l2)" (al @) Tizesy — (af 20)” (] @0) Lizessy
i=1
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1 m
< a Z {(a;rz)2 (a;rw)2 - (a‘z—'rz(])Q (a;w(])z] ]]'{ZGSi,ZUGS1,}
i=1
LN, 112, 712 LN, 1 32, 7 2
+| > (a)2) (0] @) Tzes,zgsy | + | D (ai 20)” (a] 20) Tizyes,zes) |- (162)
i=1 i=1

Here the decomposition is similar to what we have done in (156). For the first term in (162), one has

i ’(a?z)Q (a;m)z — (a;zo)2 (aiT:co)Q‘

<n%0,

1 & 1
—>"[(al2)" (al@)" - (T z0)" (@] w0)°| Lzesmoes| < o

i=1

for some a = O(1). Here the last line follows from the smoothness of the function g (x, z) = (aiTz)2 (a?m)z.
Proceeding to the second term in (162), we see from (157) that

]l{z€511720¢5i} S ]]'{czx/log m§|a;rz0 ‘ <ca+v/log m+\/6n9}’

which implies that

m

Z (asz)Q (ale)2 1{Z€Si,20¢3i}

i=1

I &, 2
EZ("% ) Lizes: z0¢8:)

i=1

2
< max (a]2)°1 )
< max (a;2) Lises,)

=

< c% logm

D IICE TRV
a a; T {cz 10g77L§|a?Z0‘§C2 10gm+\/%9}
i=1

With regard to the above quantity, we have the following claim.

Claim 2. With probability at least 1 — coe™%3"1°8™ for some constants ¢, cs > 0, one has

nlogm

1 & ( T )2]1
E a; T {cg\/logim§|a?z0|§(:2x/logm+\/67n€}

i=1

~

m

for all ® € R™ with unit norm and for all zy € Ny.

With this claim in place, we arrive at

3
nlog®m
<2y o8 m
m

with high probability. Similar arguments lead us to conclude that with high probability

1 m
m Z (az‘TZ)Q (az‘Ti’?)Q Lizes:,2025:)

=1

Ly nlog®m
E ; (af@TZO)Q (aiTCCO)Q ]I{ZOESi,zQSi} S C% \/7

—a—1

yield with high probability for all unit vectors

3
2 §c§ nlog m’
m

Taking the above bounds collectively and setting 6 < m
z’s and x’s

Z (asz)z (a’l—'rw)Q ]l{|a:z‘§c2m} 7ﬂ1 - ﬂ2 (sz)
i=1

3=

which is equivalent to saying that

m

The proof is complete by combining the upper bounds on 6; and 65, and the fact i =o0 (\/ ”logam)
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Proof of Claim 2. We first apply the triangle inequality to get

1 m
Ez a :I:O ]1{02\/10g <|a zo‘<c2\/log ﬂ/@a}

1 T
Ez_: a; EE ]l{cz Togm< v/ +\/@9} —
=J3
1 T 12 T 2
+ E |:(a7 :B) - (ai mo) :| ]l{cz Togm< v/ +\/%0} ’
=1
Z:JQ

where g € Ny and || — zg||2 < 0. The second term can be controlled as follows

where we utilize the smoothness property of the function h () = (aiTaz)Q. It remains to bound J;, for which
we first fix &y and zy. Take the Bernstein inequality to get
)

]P) (
for some constant ¢ > 0 and any sufficiently small 7 > 0. Taking 7 =< 4/ ”bgm reveals that with probability

< 267cm‘r2
exceeding 1 — 2e~¢™1°8™ for some large enough constant C' > 0,

m

1 T \2 T 2
E Z (ai .’Bo) 11{czx/log m§|ajz0|§cz\/logm+\/@6’} -E [(a7 :BQ) H{CQ\/logm§|a:zo‘Scz\/log m+\/ﬁ9}:|

i=1

T 2 nlogm
J1 S E [(az :]3()) H{CQ\/IOng|a;rZ0|SC2\/lOgm+\/%9}:| + m

Regarding the expectation term, it follows from Cauchy-Schwarz that

T,..\2 4
E |:(az ZB()) ]l{c’g«/logm§|a?z0|§cz\/logm+\/@9}} < \/E |:(G,ZT$(]) :|\/E []1{02 logm< <czv/ +\/@9}

=B {ﬂ{02@£laizo|scrzm+m@}}
<1/m,

as long as 6 is sufficiently small. Combining the preceding bounds with the union bound, we can see that
with probability at least 1 — 2 (1 + %)2” e—Cnlogm

nlogm 1
J1 S 5 + —
m m
Picking § =< m ™ for some large enough constant ¢; > 0, we arrive at with probability at least 1—coe~¢snlog™m
1 & 24 nlogm
E z; 33 {CQ\/lOg <‘a zo|<cz«/logm+\/670} m
i—
for all unit vectors «’s and for all zg € Ny, where ¢y, c3 > 0 are some absolute constants. O

L Proof of Lemma 15

Recall that the Hessian matrix is given by

V2if(z) = %Z [3 (a;rz)2 — (a;rwh)z} a;a; .



Lemma 14 implies that with probability at least 1 — O (m_lo),

V2 () = 6227 = 3112113 I + 20%T + ||a|; I,

3
S s {2 22} 163)

holds simultaneously for all z obeying maxi<;<m |aiTz| < cpy/logm||z|,, with the proviso that m >
nlog® m. This together with the fact ||a:h ||2 =1 leads to

1 3
—V2f(z) = —6z2" —{3[z|2 140 \/Wmax{”z”%,l} I,
9 nloggm 9
=9zl -1+0 Tmax{||z\|27l} I,.

As a consequence, if we pick 0 < n < W for ¢y > 0 sufficiently small, then I,, —nV?2f (z) = 0. This
max 3
combined with (163) gives

1 3
(=921 @) = { (1= 300213 + ) T+ 20250 — 622" | < /2 masc {2131}

Additionally, it follows from (163) that
nlog®m 2 b2
+0 — max{||z\|27||a: ||2}

nlog®m
<oflzll3 +3+0 | {2 | max {12131}

V25 )| < |[6227 + 31213 L + 2252 + |25 L,

< 10]z[3 + 4

as long as m > nlog® m.

M Proof of Lemma 16

Note that when ¢ < logn, one naturally has

1 t
1 <1. 164
(1+1m) % (164)

Regarding the first set of consequences (61), one sees via the triangle inequality that

max Hagt,(l)H2 < Hth2+ max Hwt_wt7(l)H2

1<i<m 1<i<m
Vnlog®m
m

(i) 1 \*'
3054-515 1+10gm Cln

V/nlog® m)
m

(i)
< Cs+0 <

(iii)
S 2057
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where (i) follows from the induction hypotheses (40a) and (40e). The second inequality (ii) holds true since
B: < 1 and (164). The last one (iii) is valid as long as m > y/nlog” m. Similarly, for the lower bound, one
can show that for each 1 <1 < m,

27, > [l fl, =l — 25,

> [|&! ||, — max |lz' —2"®|,

1<i<m
¢ Vnlog®m
G

>c5— By <1+
logm

C,
zg

as long as m > \/nlog® m. Using similar arguments (ay < 1), we can prove the lower and upper bounds for
mzﬁ,sgn and wt,sgn,(l).

For the second set of consequences (62), namely the incoherence consequences, first notice that it is
sufficient to show that the inner product (for instance |a; «!|) is upper bounded by C7logm in magnitude
for some absolute constants C7 > 0. To see this, suppose for now

max |alet‘ < C7+/log m. (165)

1<i<m

One can further utilize the lower bound on |z*||, to deduce that

C
Tt 7 t
< —4/1 .
max ol @] < 7 iogmaf],
This justifies the claim that we only need to obtain bounds as in (165). Once again we can invoke the triangle
inequality to deduce that with probability at least 1 — O (m_lo),

max |a/ 2’| < max |a] (z' — 2"V)| + max |a] 2"

1<I<m 1<i<m 1<Ii<m

®)

< max |la;||, max ||wt—wt7(l)||2+ max
1<i<m 1<i<m 1<i<m

(i) 1\ Vnlog® m
< Vnpy <1 + logm> Cl’ng

a;wt,a)‘

+ Vlogm max ||z,

5/2 ,,

1
< nos m + Cs5+/logm < Cs+/log m.
m

Here, the first relation (i) results from the Cauchy-Schwarz inequality and (ii) utilizes the induction hy-
pothesis (40a), the fact (57) and the standard Gaussian concentration, namely, maxi<i<m ‘a;xt’(l)’ <
Vviogmmax;<i<ym Hmt’(l)HQ with probability at least 1 — O (m*m). The last line is a direct consequence
of the fact (61a) established above and (164). In regard to the incoherence w.r.t. 8" we resort to the
leave-one-out sequence z>%8™ () Specifically, we have

0 2| < |a/ & + [a] (@' - )]

< ’al—rwt’ + ‘al‘r (wt,sgn gt ptsen() 4 wt,(l))‘ n ‘al‘r (wt,sgn,(l) _ wt,(l))’

1\, Vnlog®
< Vlogm + oy (1 ) Cy n;g m+\/logm

+
logm

< logm.

The remaining incoherence conditions can be obtained through similar arguments. For the sake of concise-
ness, we omit the details here.
With regard to the third set of consequences (63), we can directly use the induction hypothesis and obtain

t /13
ﬁ”hgm(u—l )Clnbgm
logm m

max Hwt -
1<i<m
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3
< v nlog m o 1

~ m ~ logm’

as long as m > \/nlog” m. Apply similar arguments to get the claimed bound on ||&! — x*%8"||,. For the
remaining one, we have

t,(1 t
max xH’()‘ < max xﬁ‘—&— max |

1<I<m 1<I<m 1<I<m
1 k nlogtm
<ot oy <1+> Co vnros m
logm

S 2at7

with the proviso that m > \/nlog'm.

N Proof of Theorem 3

A key observation is that in the proof of Theorem 2, we do not require independence between x° and the
data {a; y;}1<i<m. Instead, what we really need are:

1. 298" is independent of {¢; = sgn(a; 1)} 1<i<m;
2. %0 is independent of (a;,y;) for all 1 <! < m and
3. 298 is independent of both {&}1<i<m and {a;,y;} for all 1 <1 <m.

With this observation in mind, one can see that the claim on the convergence holds true as long as the
initialization a® satisfies (14) and we can construct %", £%®) and 29580 which obey the required
independence mentioned above as well as the base case specified in (40). In the following, we show that for

where u is uniformly distributed over the unit sphere, the requirements can all be satisfied.

1. The first restriction (14) can be easily verified by concentration inequalities for spherical distribution and
the fact that -L 3™ v; sharply concentrates around ||a*|3.

2. Next, we move on to demonstrating how to construct %", %@ and 2%%¢"®) with prescribed indepen-
dence. In view of the initialization, we have

' =\ u,

where u is a unit vector uniformly distributed over the unit sphere in R” and A = /Y.~ y;/m. Moreover,
one has A is independent of w. This together with the fact that

yi = (ain'?h)2 = |a1 |

reveals that A depends on {|a; 1|}1<i<m only and u is independent of the data {a;,y;}1<i<m. Therefore,

one can set
200 = O . u,

where u is the same vector as in 2% and \V) = ,/ZZ# yi;/m. One can see from this construction that
x%Wis independent of {a;,y;}. Regarding £%%8" and 20580 we set

wO,sgn _ ZI)O, and mO,sgn,(l) — :I}O’(l)-

Since 2 is independent of {¢; = sgn(a; 1)} 1<i<m, S0 is %", The same reasoning can be applied to show
independence between %" and {&}1<i<m and {a;,yi}.
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3. We are left with checking the base case, i.e. (40):

(a) For the difference between x° and %", we have

i A e
2 2
1 — 1 &
S EP X RPN
i=1 il
%yz

\/%2211yi+\/i2?¢¢lyi

where the last relation holds due to the basic identity \/a —v/b = (a —b)/(v/a+ v/b) for a,b > 0. Noting
that % >t y; sharply concentrates around 1 and |y;| < logm with high probability, one arrives at

1 V/nlog”
Hwo _mO»mH _ ‘)\—A(”‘ <logm g o Vnlog'm
2 m m
This finishes the proof of (40a).
(b) The base case for (40b) can be easily deduced due to
’1‘0 . IEO’(Z)’ < Hmo o xo’(l)H < logm < anC n]0g12m
I I - 2~ m — 02 m

(c) By construction, we have x*%#" = £ and x5 = 00 Therefore (40c) and (40d) trivially hold.

(d) The last two relations (40e) and (40f) can be verified using (14).

Combining all and repeating the proof of Theorem 2, we finish the proof of Theorem 3.
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