
Gradient Descent with Random Initialization:
Fast Global Convergence for Nonconvex Phase Retrieval

Yuxin Chen∗ Yuejie Chi† Jianqing Fan‡ Cong Ma‡

March 2018; Revised December 2018

Abstract

This paper considers the problem of solving systems of quadratic equations, namely, recovering an
object of interest x\ ∈ Rn from m quadratic equations / samples yi = (a>i x

\)2, 1 ≤ i ≤ m. This problem,
also dubbed as phase retrieval, spans multiple domains including physical sciences and machine learning.

We investigate the efficacy of gradient descent (or Wirtinger flow) designed for the nonconvex least
squares problem. We prove that under Gaussian designs, gradient descent — when randomly initialized
— yields an ε-accurate solution in O

(
logn + log(1/ε)

)
iterations given nearly minimal samples, thus

achieving near-optimal computational and sample complexities at once. This provides the first global
convergence guarantee concerning vanilla gradient descent for phase retrieval, without the need of (i)
carefully-designed initialization, (ii) sample splitting, or (iii) sophisticated saddle-point escaping schemes.
All of these are achieved by exploiting the statistical models in analyzing optimization algorithms, via a
leave-one-out approach that enables the decoupling of certain statistical dependency between the gradient
descent iterates and the data.

1 Introduction
Suppose we are interested in learning an unknown object x\ ∈ Rn, but only have access to a few quadratic
equations of the form

yi =
(
a>i x

\
)2
, 1 ≤ i ≤ m, (1)

where yi is the sample we collect and ai is the design vector known a priori. Is it feasible to reconstruct x\
in an accurate and efficient manner?

The problem of solving systems of quadratic equations (1) is of fundamental importance and finds ap-
plications in numerous contexts. Perhaps one of the best-known applications is the so-called phase retrieval
problem arising in physical sciences [CESV13,SEC+15]. In X-ray crystallography, due to the ultra-high fre-
quency of the X-rays, the optical sensors and detectors are incapable of recording the phases of the diffractive
waves; rather, only intensity measurements are collected. The phase retrieval problem comes down to recon-
structing the specimen of interest given intensity-only measurements. If one thinks of x\ as the specimen
under study and uses {yi} to represent the intensity measurements, then phase retrieval is precisely about
inverting the quadratic system (1).

Moving beyond physical sciences, the above problem also spans various machine learning applications.
One example is mixed linear regression, where one wishes to estimate two unknown vectors β1 and β2 from
unlabeled linear measurements [CYC14]. The acquired data {ai, bi}1≤i≤m take the form of either bi ≈ a>i β1

or bi ≈ a>i β2, without knowing which of the two vectors generates the data. In a simple symmetric case with
β1 = −β2 = x\ (so that bi ≈ ±a>i x\), the squared measurements yi = b2i ≈ (a>i x

\)2 become the sufficient
statistics, and hence mixed linear regression can be converted to learning x\ from {ai, yi}. Furthermore,

Author names are sorted alphabetically.
∗Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA; Email: yuxin.chen@princeton.edu.
†Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Email:

yuejiechi@cmu.edu.
‡Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544, USA; Email:

{jqfan, congm}@princeton.edu.

1

the quadratic measurement model in (1) allows to represent a single neuron associated with a quadratic
activation function, where {ai, yi} are the data and x\ encodes the parameters to be learned. As described
in [SJL17, LMZ17], learning neural nets with quadratic activations involves solving systems of quadratic
equations.

1.1 Nonconvex optimization via gradient descent
A natural strategy for inverting the system of quadratic equations (1) is to solve the following nonconvex
least squares estimation problem

minimizex∈Rn f(x) :=
1

4m

m∑
i=1

[(
a>i x

)2 − yi]2 . (2)

Under Gaussian designs where ai
i.i.d.∼ N (0, In), the solution to (2) is known to be exact — up to some

global sign — with high probability, as soon as the number m of equations (samples) exceeds the order of
the number n of unknowns [BCMN14]. However, the loss function in (2) is highly nonconvex, thus resulting
in severe computational challenges. With this issue in mind, can we still hope to find the global minimizer
of (2) via low-complexity algorithms which, ideally, run in time proportional to that taken to read the data?

Fortunately, in spite of nonconvexity, a variety of optimization-based methods are shown to be effective
in the presence of proper statistical models. Arguably, one of the simplest algorithms for solving (2) is vanilla
gradient descent (GD), which attempts recovery via the update rule

xt+1 = xt − ηt∇f
(
xt
)
, t = 0, 1, · · · (3)

with ηt being the stepsize / learning rate. The above iterative procedure is also dubbed Wirtinger flow for
phase retrieval, which can accommodate the complex-valued case as well [CLS15]. This simple algorithm
is remarkably efficient under Gaussian designs: in conjunction with carefully-designed initialization and
stepsize rules, GD provably converges to the truth x\ at a linear rate1, provided that the ratio m/n of the
number of equations to the number of unknowns exceeds some logarithmic factor [CLS15,Sol14,MWCC17].

One crucial element in prior convergence analysis is initialization. In order to guarantee linear conver-
gence, prior works typically recommend spectral initialization or its variants [CLS15,CC17,WGE17,ZZLC17,
MWCC17,LL17,MM17]. Specifically, the spectral method forms an initial estimate x0 using the (properly
scaled) leading eigenvector of a certain data matrix. Two important features are worth emphasizing:

• x0 falls within a local `2-ball surrounding x\ with a reasonably small radius, where f(·) enjoys strong
convexity;

• x0 is incoherent with all the design vectors {ai} — in the sense that |a>i x0| is reasonably small for all
1 ≤ i ≤ m — and hence x0 falls within a region where f(·) enjoys desired smoothness conditions.

These two properties taken collectively allow gradient descent to converge rapidly from the very beginning.

1.2 Random initialization?
The enormous success of spectral initialization gives rise to a curious question: is carefully-designed initial-
ization necessary for achieving fast convergence? Obviously, vanilla GD cannot start from arbitrary points,
since it may get trapped in undesirable stationary points (e.g. saddle points). However, is there any simpler
initialization approach that avoids such stationary points and works equally well as spectral initialization?

A strategy that practitioners often like to employ is to initialize GD randomly. The advantage is clear:
compared with spectral methods, random initialization is model-agnostic and is usually more robust vis-
a-vis model mismatch. Despite its wide use in practice, however, GD with random initialization is poorly
understood in theory. One way to study this method is through a geometric lens [SQW16]: under Gaussian
designs, the loss function f(·) (cf. (2)) does not have any spurious local minima as long as the sample sizem is
on the order of n log3 n. Moreover, all saddle points are strict [GHJY15], meaning that the associated Hessian

1An iterative algorithm is said to enjoy linear convergence if the iterates {xt} converge geometrically fast to the minimizer x\.

2

0 50 100 150 200
t : iteration count

10-5

100

d
is
t(

x
t ;

x
\)
=k

x
\ k

2

n = 100
n = 200
n = 500
n = 800
n = 1000

Figure 1: The relative `2 error vs. iteration count for GD with random initialization, plotted semi-
logarithmically. The results are shown for n = 100, 200, 500, 800, 1000 with m = 10n and ηt ≡ 0.1.

matrices have at least one negative eigenvalue if they are not local minima. Armed with these two conditions,
the theory of Lee et al. [LSJR16] implies that vanilla GD converges almost surely to the truth. However, the
convergence rate remains unsettled. In fact, we are not aware of any theory that guarantees polynomial-time
convergence of vanilla GD for phase retrieval in the absence of carefully-designed initialization.

Motivated by this, we aim to pursue a formal understanding about the convergence properties of GD
with random initialization. Before embarking on theoretical analyses, we first assess its practical efficiency
through numerical experiments. Generate the true object x\ and the initial guess x0 randomly as

x\ ∼ N (0, n−1In) and x0 ∼ N (0, n−1In).

We vary the number n of unknowns (i.e. n = 100, 200, 500, 800, 1000), set m = 10n, and take a constant
stepsize ηt ≡ 0.1. Here the measurement vectors are generated from Gaussian distributions, i.e. ai

i.i.d.∼
N (0, In) for 1 ≤ i ≤ m. The relative `2 errors dist(xt,x\)/‖x\‖2 of the GD iterates in a random trial are
plotted in Figure 1, where

dist(xt,x\) := min
{
‖xt − x\‖2, ‖xt + x\‖2

}
(4)

represents the `2 distance between xt and x\ modulo the unrecoverable global sign.
In all experiments carried out in Figure 1, we observe two stages for GD: (1) Stage 1: the relative error

of xt stays nearly flat; (2) Stage 2: the relative error of xt experiences geometric decay. Interestingly,
Stage 1 lasts only for a few tens of iterations. These numerical findings taken together reveal appealing
computational efficiency of GD in the presence of random initialization — it attains 5-digit accuracy within
about 200 iterations!

To further illustrate this point, we take a closer inspection of the signal component 〈xt,x\〉x\ and the
orthogonal component xt − 〈xt,x\〉x\, where we normalize ‖x\‖2 = 1 for simplicity. Denote by ‖xt⊥‖2 the
`2 norm of the orthogonal component. We highlight two important and somewhat surprising observations
that allude to why random initialization works.

• The strength ratio of the signal to the orthogonal components grows exponentially. The ratio, |〈xt,x\〉| / ‖xt⊥‖2,
grows exponentially fast throughout the execution of the algorithm, as demonstrated in Figure 2(a). This
metric |〈xt,x\〉| / ‖xt⊥‖2 in some sense captures the signal-to-noise ratio of the running iterates.

• Exponential growth of the signal strength in Stage 1. While the `2 estimation error of xt may not drop
significantly during Stage 1, the size |〈xt,x\〉| of the signal component increases exponentially fast and
becomes the dominant component within several tens of iterations, as demonstrated in Figure 2(b). This
helps explain why Stage 1 lasts only for a short duration.

The central question then amounts to whether one can develop a mathematical theory to interpret such
intriguing numerical performance. In particular, how many iterations does Stage 1 encompass, and how fast
can the algorithm converge in Stage 2?

3

0 50 100 150 200 250 300
t : iteration count

100

105
jhx

t ;
x

\ i
j=

kx
t ?
k 2

n = 100
n = 200
n = 500
n = 800
n = 1000

0 50 100 150
t : iteration count

10-4

10-2

100

jhx
t ;

x
\ i
ja

n
d

d
is
t(

x
t ;

x
\)

jhxt; x\ij (n = 100)

jhxt; x\ij (n = 200)

jhxt; x\ij (n = 500)

jhxt; x\ij (n = 1000)

dist(xt; x\) (n = 100)

dist(xt; x\) (n = 200)

dist(xt; x\) (n = 500)

dist(xt; x\) (n = 1000)

(a) (b)

Figure 2: (a) The ratio |〈xt,x\〉| / ‖xt⊥‖2, and (b) the size |〈xt,x\〉| of the signal component and the
`2 error vs. iteration count, both plotted on semilogarithmic scales. The results are shown for n =
100, 200, 500, 800, 1000 with m = 10n, ηt ≡ 0.1, and ‖x\‖2 = 1.

1.3 Main findings
The objective of the current paper is to demystify the computational efficiency of GD with random initial-
ization, thus bridging the gap between theory and practice. Assuming a tractable random design model in
which ai’s follow Gaussian distributions, our main findings are summarized in the following theorem. Here
and throughout, the notation f(n) . g(n) or f(n) = O(g(n)) (resp. f(n) & g(n), f(n) � g(n)) means that
there exist constants c1, c2 > 0 such that f(n) ≤ c1g(n) (resp. f(n) ≥ c2g(n), c1g(n) ≤ f(n) ≤ c2g(n)).

Theorem 1. Fix x\ ∈ Rn with ‖x\‖2 = 1. Suppose that ai
i.i.d.∼ N (0, In) for 1 ≤ i ≤ m, x0 ∼ N (0, n−1In),

and ηt ≡ η = c/‖x\‖22 for some sufficiently small constant c > 0. Then with probability approaching one,
there exist some sufficiently small constant 0 < γ < 1 and Tγ . log n such that the GD iterates (3) obey

dist
(
xt,x\

)
≤ γ(1− ρ)t−Tγ , ∀ t ≥ Tγ

for some absolute constant 0 < ρ < 1, provided that the sample size m & n poly log(m).

Remark 1. The readers are referred to Theorem 2 for a more general statement.
Here, the stepsize is taken to be a fixed constant throughout all iterations, and we reuse the same

data across all iterations (i.e. no sample splitting is needed to establish this theorem). The GD trajectory
is divided into 2 stages: (1) Stage 1 consists of the first Tγ iterations, corresponding to the first tens of
iterations discussed in Section 1.2; (2) Stage 2 consists of all remaining iterations, where the estimation error
contracts linearly. Several important implications / remarks follow immediately.

• Stage 1 takes O(log n) iterations. When seeded with a random initial guess, GD is capable of entering a
local region surrounding x\ within Tγ . log n iterations, namely,

dist
(
xTγ ,x\

)
≤ γ

for some sufficiently small constant γ > 0. Even though Stage 1 may not enjoy linear convergence in terms
of the estimation error, it is of fairly short duration.

• Stage 2 takes O(log(1/ε)) iterations. After entering the local region, GD converges linearly to the ground
truth x\ with a contraction rate 1−ρ. This tells us that GD reaches ε-accuracy (in a relative sense) within
O(log(1/ε)) iterations.

• Near linear-time computational complexity. Taken collectively, these imply that the iteration complexity
of GD with random initialization is

O

(
log n+ log

1

ε

)
.

4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.05 0.1

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.05 0.1

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
,t

0

0.2

0.4

0.6

0.8

1

-
t

2 =0.01
2 =0.05
2 =0.1

0 0.1 0.2

0.58

0.6

0.62

0.64

(a) (b)

Figure 3: The trajectory of (↵t,�t), where ↵t and �t represent the signal and the perpendicular components
of the GD iterates. (a) The results are shown for n = 1000 with m = 10n, ⌘t = 0.01, 0.05, 0.1, and kx\k

2

= 1,
the same instance as plotted in Figure 1. (b) The results are shown for n = 1000 with m approaching infinity,
⌘t = 0.01, 0.05, 0.1, and kx\k

2

= 1. The red dots represent the population-level saddle points.

statistical observation plays a crucial role in characterizing the dynamics of the algorithm without the
need of sample splitting.

It is worth emphasizing that the entire trajectory of GD is automatically confined within a certain region
enjoying favorable geometry. For example, as we shall make precise in Section 4, the GD iterates are al-
ways incoherent with the design vectors, stay sufficiently away from any saddle point, and exhibit desired
smoothness conditions. Such delicate geometric properties underlying the GD trajectory are not explained
by prior works. In light of this, convergence analysis based on global geometry [SQW16] — which provides
valuable insights into algorithm designs with arbitrary initialization — results in suboptimal (or even pes-
simistic) computational guarantees when analyzing a concrete algorithm like GD. In contrast, the current
paper establishes near-optimal performance guarantees by paying particular attention to finer dynamics of
the algorithm. As will be seen later, this is accomplished by heavily exploiting statistical models in each
iterative update.

2 Why random initialization works?
Before diving into the proof of the main theorem, we pause to develop intuitions regarding why random
initialization is expected to work. We will build our understanding step by step: (i) we first investigate the
dynamics of the population gradient sequence (the case where we have infinite samples); (ii) we then turn
to the finite-sample case and present a heuristic argument assuming independence between the iterates and
the design vectors; (iii) finally, we argue that the true trajectory is remarkably close to the one heuristically
analyzed in Step (ii), which arises from a key property concerning the “near-independence” between {xt}
and the design vectors {ai}.

Without loss of generality, we assume x\
= e

1

throughout this section, where e
1

denotes the first standard
basis vector. For notational simplicity, we denote by

xt
k := xt

1

and x

t
? := [xt

i]2in (5)

5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.05 0.1

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
,t

0

0.2

0.4

0.6

0.8

1

-
t

2 =0.01
2 =0.05
2 =0.1

0 0.1 0.2

0.58

0.6

0.62

0.64

(a) (b)

Figure 3: The trajectory of (↵t,�t), where ↵t and �t represent the signal and the perpendicular components
of the GD iterates. (a) The results are shown for n = 1000 with m = 10n, ⌘t = 0.01, 0.05, 0.1, and kx\k

2

= 1,
the same instance as plotted in Figure 1. (b) The results are shown for n = 1000 with m approaching infinity,
⌘t = 0.01, 0.05, 0.1, and kx\k

2

= 1. The red dots represent the population-level saddle points.

statistical observation plays a crucial role in characterizing the dynamics of the algorithm without the
need of sample splitting.

It is worth emphasizing that the entire trajectory of GD is automatically confined within a certain region
enjoying favorable geometry. For example, as we shall make precise in Section 4, the GD iterates are al-
ways incoherent with the design vectors, stay sufficiently away from any saddle point, and exhibit desired
smoothness conditions. Such delicate geometric properties underlying the GD trajectory are not explained
by prior works. In light of this, convergence analysis based on global geometry [SQW16] — which provides
valuable insights into algorithm designs with arbitrary initialization — results in suboptimal (or even pes-
simistic) computational guarantees when analyzing a concrete algorithm like GD. In contrast, the current
paper establishes near-optimal performance guarantees by paying particular attention to finer dynamics of
the algorithm. As will be seen later, this is accomplished by heavily exploiting statistical models in each
iterative update.

2 Why random initialization works?
Before diving into the proof of the main theorem, we pause to develop intuitions regarding why random
initialization is expected to work. We will build our understanding step by step: (i) we first investigate the
dynamics of the population gradient sequence (the case where we have infinite samples); (ii) we then turn
to the finite-sample case and present a heuristic argument assuming independence between the iterates and
the design vectors; (iii) finally, we argue that the true trajectory is remarkably close to the one heuristically
analyzed in Step (ii), which arises from a key property concerning the “near-independence” between {xt}
and the design vectors {ai}.

Without loss of generality, we assume x\
= e

1

throughout this section, where e
1

denotes the first standard
basis vector. For notational simplicity, we denote by

xt
k := xt

1

and x

t
? := [xt

i]2in (5)

5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.05 0.1

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
,t

0

0.2

0.4

0.6

0.8

1

-
t

2 =0.01
2 =0.05
2 =0.1

0 0.1 0.2

0.58

0.6

0.62

0.64

(a) (b)

Figure 3: The trajectory of (↵t,�t), where ↵t and �t represent the signal and the perpendicular components
of the GD iterates. (a) The results are shown for n = 1000 with m = 10n, ⌘t = 0.01, 0.05, 0.1, and kx\k

2

= 1,
the same instance as plotted in Figure 1. (b) The results are shown for n = 1000 with m approaching infinity,
⌘t = 0.01, 0.05, 0.1, and kx\k

2

= 1. The red dots represent the population-level saddle points.

statistical observation plays a crucial role in characterizing the dynamics of the algorithm without the
need of sample splitting.

It is worth emphasizing that the entire trajectory of GD is automatically confined within a certain region
enjoying favorable geometry. For example, as we shall make precise in Section 4, the GD iterates are al-
ways incoherent with the design vectors, stay sufficiently away from any saddle point, and exhibit desired
smoothness conditions. Such delicate geometric properties underlying the GD trajectory are not explained
by prior works. In light of this, convergence analysis based on global geometry [SQW16] — which provides
valuable insights into algorithm designs with arbitrary initialization — results in suboptimal (or even pes-
simistic) computational guarantees when analyzing a concrete algorithm like GD. In contrast, the current
paper establishes near-optimal performance guarantees by paying particular attention to finer dynamics of
the algorithm. As will be seen later, this is accomplished by heavily exploiting statistical models in each
iterative update.

2 Why random initialization works?
Before diving into the proof of the main theorem, we pause to develop intuitions regarding why random
initialization is expected to work. We will build our understanding step by step: (i) we first investigate the
dynamics of the population gradient sequence (the case where we have infinite samples); (ii) we then turn
to the finite-sample case and present a heuristic argument assuming independence between the iterates and
the design vectors; (iii) finally, we argue that the true trajectory is remarkably close to the one heuristically
analyzed in Step (ii), which arises from a key property concerning the “near-independence” between {xt}
and the design vectors {ai}.

Without loss of generality, we assume x\
= e

1

throughout this section, where e
1

denotes the first standard
basis vector. For notational simplicity, we denote by

xt
k := xt

1

and x

t
? := [xt

i]2in (5)

5

the first entry and the 2nd through the nth entries of xt, respectively. Since x

\
= e

1

, it is easily seen that

xt
ke1 = hxt,x\ix\

| {z }

signal component

and


0

x

t
?

�

= x

t � hxt,x\ix\

| {z }

perpendicular component

(6)

represent respectively the components of xt along and perpendicular to the signal direction. In what follows,
we focus our attention on the following two quantities that reflect the sizes of the preceding two components2

↵t := xt
k and �t :=

�

�

x

t
?
�

�

2

. (7)

Without loss of generality, assume that ↵
0

> 0.

2.1 Population dynamics
To start with, we consider the case where the iterates {xt} are constructed using the population gradient
(or equivalently, when the sample size m approaches infinity), i.e.

x

t+1

= x

t � ⌘rF (x

t
).

Here, rF (x) represents the population gradient given by

rF (x) := �
�

3kxk2
2

� 1

�

x+ 2

�

x

\>
x

�

x

\,

which essentially computed by rF (x) = E[rf(x)] = E
⇥

{(a>
i x)

2 � (a

>
i x

\
)

2}aia
>
i x

⇤

assuming that x and
the ai’s are independent. Simple algebraic manipulation reveals the dynamics for both the signal and the
perpendicular components:

xt+1

k =

�

1 + 3⌘
�

1� kxtk2
2

�

xt
k; (8a)

x

t+1

? =

�

1 + ⌘
�

1� 3kxtk2
2

�

x

t
?. (8b)

Assuming that ⌘ is sufficiently small and recognizing that kxtk2
2

= ↵2

t + �2

t , we arrive at the following
population-level state evolution for both ↵t and �t (cf. (7)):

↵t+1

=

�

1 + 3⌘
⇥

1�
�

↵2

t + �2

t

�⇤

↵t; (9a)
�t+1

=

�

1 + ⌘
⇥

1� 3

�

↵2

t + �2

t

�⇤

�t. (9b)

This recursive system has three fixed points:

(↵,�) = (1, 0), (↵,�) = (0, 0), and (↵,�) = (0, 1/
p
3),

which correspond to the global minimizer, the local maximizer, and the saddle points, respectively.
We make note of the following key observations in the presence of a randomly initialized x

0, which will
be formalized later in Lemma 1:

1. the ratio ↵t/�t of the size of the signal to the perpendicular components increases exponentially fast;

2. the size ↵t of the signal component keeps growing until it plateaus around 1;

3. the size �t of the perpendicular component drops towards zero.

In other words, when randomly initialized, (↵t,�t
) converges to (1,0) rapidly, thus indicating rapid conver-

gence of xt to the truth x

\, without getting stuck around undesirable saddle points. We also illustrate these
phenomena numerically. Set n = 1000, ⌘t ⌘ 0.1 and x

0 ⇠ N
�

0, n�1

In

�

. Figure 4 displays the dynamics of
↵t/�t, ↵t, and �t, which are precisely as discussed above.

2Here, we do not take the absolute value of xt
k. As we shall see later, the x

t
k’s are of the same sign throughout the execution

of the algorithm.

6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

0.58

0.6

0.62

0.64

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.05 0.1

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
,t

0

0.2

0.4

0.6

0.8

1

-
t

2 =0.01
2 =0.05
2 =0.1

0 0.1 0.2

0.58

0.6

0.62

0.64

(a) (b)

Figure 3: The trajectory of (↵t,�t), where ↵t and �t represent the signal and the perpendicular components
of the GD iterates. (a) The results are shown for n = 1000 with m = 10n, ⌘t = 0.01, 0.05, 0.1, and kx\k

2

= 1,
the same instance as plotted in Figure 1. (b) The results are shown for n = 1000 with m approaching infinity,
⌘t = 0.01, 0.05, 0.1, and kx\k

2

= 1. The red dots represent the population-level saddle points.

statistical observation plays a crucial role in characterizing the dynamics of the algorithm without the
need of sample splitting.

It is worth emphasizing that the entire trajectory of GD is automatically confined within a certain region
enjoying favorable geometry. For example, as we shall make precise in Section 4, the GD iterates are al-
ways incoherent with the design vectors, stay sufficiently away from any saddle point, and exhibit desired
smoothness conditions. Such delicate geometric properties underlying the GD trajectory are not explained
by prior works. In light of this, convergence analysis based on global geometry [SQW16] — which provides
valuable insights into algorithm designs with arbitrary initialization — results in suboptimal (or even pes-
simistic) computational guarantees when analyzing a concrete algorithm like GD. In contrast, the current
paper establishes near-optimal performance guarantees by paying particular attention to finer dynamics of
the algorithm. As will be seen later, this is accomplished by heavily exploiting statistical models in each
iterative update.

2 Why random initialization works?
Before diving into the proof of the main theorem, we pause to develop intuitions regarding why random
initialization is expected to work. We will build our understanding step by step: (i) we first investigate the
dynamics of the population gradient sequence (the case where we have infinite samples); (ii) we then turn
to the finite-sample case and present a heuristic argument assuming independence between the iterates and
the design vectors; (iii) finally, we argue that the true trajectory is remarkably close to the one heuristically
analyzed in Step (ii), which arises from a key property concerning the “near-independence” between {xt}
and the design vectors {ai}.

Without loss of generality, we assume x\
= e

1

throughout this section, where e
1

denotes the first standard
basis vector. For notational simplicity, we denote by

xt
k := xt

1

and x

t
? := [xt

i]2in (5)

5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.05 0.1

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
,t

0

0.2

0.4

0.6

0.8

1

-
t

2 =0.01
2 =0.05
2 =0.1

0 0.1 0.2

0.58

0.6

0.62

0.64

(a) (b)

Figure 3: The trajectory of (↵t,�t), where ↵t and �t represent the signal and the perpendicular components
of the GD iterates. (a) The results are shown for n = 1000 with m = 10n, ⌘t = 0.01, 0.05, 0.1, and kx\k

2

= 1,
the same instance as plotted in Figure 1. (b) The results are shown for n = 1000 with m approaching infinity,
⌘t = 0.01, 0.05, 0.1, and kx\k

2

= 1. The red dots represent the population-level saddle points.

statistical observation plays a crucial role in characterizing the dynamics of the algorithm without the
need of sample splitting.

It is worth emphasizing that the entire trajectory of GD is automatically confined within a certain region
enjoying favorable geometry. For example, as we shall make precise in Section 4, the GD iterates are al-
ways incoherent with the design vectors, stay sufficiently away from any saddle point, and exhibit desired
smoothness conditions. Such delicate geometric properties underlying the GD trajectory are not explained
by prior works. In light of this, convergence analysis based on global geometry [SQW16] — which provides
valuable insights into algorithm designs with arbitrary initialization — results in suboptimal (or even pes-
simistic) computational guarantees when analyzing a concrete algorithm like GD. In contrast, the current
paper establishes near-optimal performance guarantees by paying particular attention to finer dynamics of
the algorithm. As will be seen later, this is accomplished by heavily exploiting statistical models in each
iterative update.

2 Why random initialization works?
Before diving into the proof of the main theorem, we pause to develop intuitions regarding why random
initialization is expected to work. We will build our understanding step by step: (i) we first investigate the
dynamics of the population gradient sequence (the case where we have infinite samples); (ii) we then turn
to the finite-sample case and present a heuristic argument assuming independence between the iterates and
the design vectors; (iii) finally, we argue that the true trajectory is remarkably close to the one heuristically
analyzed in Step (ii), which arises from a key property concerning the “near-independence” between {xt}
and the design vectors {ai}.

Without loss of generality, we assume x\
= e

1

throughout this section, where e
1

denotes the first standard
basis vector. For notational simplicity, we denote by

xt
k := xt

1

and x

t
? := [xt

i]2in (5)

5

the first entry and the 2nd through the nth entries of xt, respectively. Since x

\
= e

1

, it is easily seen that

xt
ke1 = hxt,x\ix\

| {z }

signal component

and


0

x

t
?

�

= x

t � hxt,x\ix\

| {z }

perpendicular component

(6)

represent respectively the components of xt along and perpendicular to the signal direction. In what follows,
we focus our attention on the following two quantities that reflect the sizes of the preceding two components2

↵t := xt
k and �t :=

�

�

x

t
?
�

�

2

. (7)

Without loss of generality, assume that ↵
0

> 0.

2.1 Population dynamics
To start with, we consider the case where the iterates {xt} are constructed using the population gradient
(or equivalently, when the sample size m approaches infinity), i.e.

x

t+1

= x

t � ⌘rF (x

t
).

Here, rF (x) represents the population gradient given by

rF (x) := �
�

3kxk2
2

� 1

�

x+ 2

�

x

\>
x

�

x

\,

which essentially computed by rF (x) = E[rf(x)] = E
⇥

{(a>
i x)

2 � (a

>
i x

\
)

2}aia
>
i x

⇤

assuming that x and
the ai’s are independent. Simple algebraic manipulation reveals the dynamics for both the signal and the
perpendicular components:

xt+1

k =

�

1 + 3⌘
�

1� kxtk2
2

�

xt
k; (8a)

x

t+1

? =

�

1 + ⌘
�

1� 3kxtk2
2

�

x

t
?. (8b)

Assuming that ⌘ is sufficiently small and recognizing that kxtk2
2

= ↵2

t + �2

t , we arrive at the following
population-level state evolution for both ↵t and �t (cf. (7)):

↵t+1

=

�

1 + 3⌘
⇥

1�
�

↵2

t + �2

t

�⇤

↵t; (9a)
�t+1

=

�

1 + ⌘
⇥

1� 3

�

↵2

t + �2

t

�⇤

�t. (9b)

This recursive system has three fixed points:

(↵,�) = (1, 0), (↵,�) = (0, 0), and (↵,�) = (0, 1/
p
3),

which correspond to the global minimizer, the local maximizer, and the saddle points, respectively.
We make note of the following key observations in the presence of a randomly initialized x

0, which will
be formalized later in Lemma 1:

1. the ratio ↵t/�t of the size of the signal to the perpendicular components increases exponentially fast;

2. the size ↵t of the signal component keeps growing until it plateaus around 1;

3. the size �t of the perpendicular component drops towards zero.

In other words, when randomly initialized, (↵t,�t
) converges to (1,0) rapidly, thus indicating rapid conver-

gence of xt to the truth x

\, without getting stuck around undesirable saddle points. We also illustrate these
phenomena numerically. Set n = 1000, ⌘t ⌘ 0.1 and x

0 ⇠ N
�

0, n�1

In

�

. Figure 4 displays the dynamics of
↵t/�t, ↵t, and �t, which are precisely as discussed above.

2Here, we do not take the absolute value of xt
k. As we shall see later, the x

t
k’s are of the same sign throughout the execution

of the algorithm.

6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.05 0.1

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
,t

0

0.2

0.4

0.6

0.8

1

-
t

2 =0.01
2 =0.05
2 =0.1

0 0.1 0.2

0.58

0.6

0.62

0.64

(a) (b)

Figure 3: The trajectory of (↵t,�t), where ↵t and �t represent the signal and the perpendicular components
of the GD iterates. (a) The results are shown for n = 1000 with m = 10n, ⌘t = 0.01, 0.05, 0.1, and kx\k

2

= 1,
the same instance as plotted in Figure 1. (b) The results are shown for n = 1000 with m approaching infinity,
⌘t = 0.01, 0.05, 0.1, and kx\k

2

= 1. The red dots represent the population-level saddle points.

statistical observation plays a crucial role in characterizing the dynamics of the algorithm without the
need of sample splitting.

It is worth emphasizing that the entire trajectory of GD is automatically confined within a certain region
enjoying favorable geometry. For example, as we shall make precise in Section 4, the GD iterates are al-
ways incoherent with the design vectors, stay sufficiently away from any saddle point, and exhibit desired
smoothness conditions. Such delicate geometric properties underlying the GD trajectory are not explained
by prior works. In light of this, convergence analysis based on global geometry [SQW16] — which provides
valuable insights into algorithm designs with arbitrary initialization — results in suboptimal (or even pes-
simistic) computational guarantees when analyzing a concrete algorithm like GD. In contrast, the current
paper establishes near-optimal performance guarantees by paying particular attention to finer dynamics of
the algorithm. As will be seen later, this is accomplished by heavily exploiting statistical models in each
iterative update.

2 Why random initialization works?
Before diving into the proof of the main theorem, we pause to develop intuitions regarding why random
initialization is expected to work. We will build our understanding step by step: (i) we first investigate the
dynamics of the population gradient sequence (the case where we have infinite samples); (ii) we then turn
to the finite-sample case and present a heuristic argument assuming independence between the iterates and
the design vectors; (iii) finally, we argue that the true trajectory is remarkably close to the one heuristically
analyzed in Step (ii), which arises from a key property concerning the “near-independence” between {xt}
and the design vectors {ai}.

Without loss of generality, we assume x\
= e

1

throughout this section, where e
1

denotes the first standard
basis vector. For notational simplicity, we denote by

xt
k := xt

1

and x

t
? := [xt

i]2in (5)

5

(a) (b)

Figure 3: The trajectory of (αt, βt), where αt = |〈xt,x\〉| and βt = ‖xt− 〈xt,x\〉x\‖2 represent respectively
the size of the signal component and that of the orthogonal component of the GD iterates (assume ‖x\‖2 = 1).
(a) The results are shown for n = 1000 with m = 10n, and ηt = 0.01, 0.05, 0.1. (b) The results are shown
for n = 1000 with m approaching infinity, and ηt = 0.01, 0.05, 0.1. The blue filled circles represent the
population-level saddle points, and the orange arrows indicate the directions of increasing t.

Given that the cost of each iteration mainly lies in calculating the gradient ∇f(xt), the whole algorithm
takes nearly linear time, namely, it enjoys a computational complexity proportional to the time taken to
read the data (modulo some logarithmic factor).

• Near-minimal sample complexity. The preceding computational guarantees occur as soon as the sample
size exceeds m & n poly log(m). Given that one needs at least n samples to recover n unknowns, the
sample complexity of randomly initialized GD is optimal up to some logarithmic factor.

• Saddle points? The GD iterates never hit the saddle points (see Figure 3 for an illustration). In fact, after
a constant number of iterations at the very beginning, GD will follow a path that increasingly distances
itself from the set of saddle points as the algorithm progresses. There is no need to adopt sophisticated
saddle-point escaping schemes developed in generic optimization theory (e.g. cubic regularization [NP06],
perturbed GD [JGN+17]).

• Weak dependency w.r.t. the design vectors. As we will elaborate in Section 4, the statistical dependency
between the GD iterates {xt} and certain components of the design vectors {ai} stays at an exceedingly
weak level. Consequently, the GD iterates {xt} proceed as if fresh samples were employed in each iteration.
This statistical observation plays a crucial role in characterizing the dynamics of the algorithm without
the need of sample splitting.

It is worth emphasizing that the entire trajectory of GD is automatically confined within a certain region
enjoying favorable geometry. For example, the GD iterates are always incoherent with the design vectors,
stay sufficiently away from any saddle point, and exhibit desired smoothness conditions, which we will for-
malize in Section 4. Such delicate geometric properties underlying the GD trajectory are not explained by
prior papers. In light of this, convergence analysis based on global geometry [SQW16] — which provides
valuable insights into algorithm designs with arbitrary initialization — results in suboptimal (or even pes-
simistic) computational guarantees when analyzing a specific algorithm like GD. In contrast, the current
paper establishes near-optimal performance guarantees by paying particular attention to finer dynamics of
the algorithm. As will be seen later, this is accomplished by heavily exploiting the statistical properties in
each iterative update.

5

2 Why random initialization works?
Before diving into the proof of the main theorem, we pause to develop intuitions regarding why gradient
descent with random initialization is expected to work. We will build our understanding step by step: (i) we
first investigate the dynamics of the population gradient sequence (the case where we have infinite samples);
(ii) we then turn to the finite-sample case and present a heuristic argument assuming independence between
the iterates and the design vectors; (iii) finally, we argue that the true trajectory is remarkably close to
the one heuristically analyzed in the previous step, which arises from a key property concerning the “near-
independence” between {xt} and the design vectors {ai}.

Without loss of generality, we assume x\ = e1 throughout this section, where e1 denotes the first standard
basis vector. For notational simplicity, we denote by

xt‖ := xt1 and xt⊥ := [xti]2≤i≤n (5)

the first entry and the 2nd through the nth entries of xt, respectively. Since x\ = e1, it is easily seen that

xt‖e1 = 〈xt,x\〉x\︸ ︷︷ ︸
signal component

and
[

0
xt⊥

]
= xt − 〈xt,x\〉x\︸ ︷︷ ︸

orthogonal component

(6)

represent respectively the components of xt along and orthogonal to the signal direction. In what follows, we
focus our attention on the following two quantities that reflect the sizes of the preceding two components2

αt := xt‖ and βt :=
∥∥xt⊥∥∥2 . (7)

Without loss of generality, assume that α0 > 0.

2.1 Population dynamics
To start with, we consider the unrealistic case where the iterates {xt} are constructed using the population
gradient (or equivalently, the gradient when the sample size m approaches infinity), i.e.

xt+1 = xt − η∇F (xt).
Here, ∇F (x) represents the population gradient given by

∇F (x) := (3‖x‖22 − 1)x− 2(x\>x)x\,

which can be computed by ∇F (x) = E[∇f(x)] = E
[
{(a>i x)2 − (a>i x

\)2}aia>i x
]
assuming that x and

the ai’s are independent. Simple algebraic manipulation reveals the dynamics for both the signal and the
orthogonal components:

xt+1
‖ =

{
1 + 3η

(
1− ‖xt‖22

)}
xt‖; (8a)

xt+1
⊥ =

{
1 + η

(
1− 3‖xt‖22

)}
xt⊥. (8b)

Assuming that η is sufficiently small and recognizing that ‖xt‖22 = α2
t + β2

t , we arrive at the following
population-level state evolution for both αt and βt (cf. (7)):

αt+1 =
{
1 + 3η

[
1−

(
α2
t + β2

t

)]}
αt; (9a)

βt+1 =
{
1 + η

[
1− 3

(
α2
t + β2

t

)]}
βt. (9b)

This recursive system has three fixed points:

(α, β) = (1, 0), (α, β) = (0, 0), and (α, β) = (0, 1/
√
3),

which correspond to the global minimizer, the local maximizer, and the saddle points, respectively, of the
population objective function.

We make note of the following key observations in the presence of a randomly initialized x0, which will
be formalized later in Lemma 1:

2Here, we do not take the absolute value of xt‖. As we shall see later, the x
t
‖’s are of the same sign throughout the execution

of the algorithm.

6

0 10 20 30 40 50

10-2

100

102

0 10 20 30 40 50
10-3

10-2

10-1

100

(a) αt/βt (b) αt and βt

Figure 4: Population-level state evolution, plotted semilogarithmically: (a) the ratio αt/βt vs. iteration count,
and (b) αt and βt vs. iteration count. The results are shown for n = 1000, ηt ≡ 0.1, and x0 ∼ N (0, n−1In)
(assuming α0 > 0 though).

• the ratio αt/βt of the size of the signal component to that of the orthogonal component increases expo-
nentially fast;

• the size αt of the signal component keeps growing until it plateaus around 1;

• the size βt of the orthogonal component eventually drops towards zero.

In other words, when randomly initialized, (αt, βt) converges to (1, 0) rapidly, thus indicating rapid conver-
gence of xt to the truth x\, without getting stuck at any undesirable saddle points. We also illustrate these
phenomena numerically. Set n = 1000, ηt ≡ 0.1 and x0 ∼ N (0, n−1In). Figure 4 displays the dynamics of
αt/βt, αt, and βt, which are precisely as discussed above.

2.2 Finite-sample analysis: a heuristic treatment
We now move on to the finite-sample regime, and examine how many samples are needed in order for the
population dynamics to be reasonably accurate. Notably, the arguments in this subsection are heuristic in
nature, but they are useful in developing insights into the true dynamics of the GD iterates.

Rewrite the gradient update rule (3) as

xt+1 = xt − η∇f(xt) = xt − η∇F (xt)− η
(
∇f(xt)−∇F (xt)︸ ︷︷ ︸

:=r(xt)

)
, (10)

where ∇f(x) = m−1
∑m
i=1[(a

>
i x)

2 − (a>i x
\)2]aia

>
i x. Assuming (unreasonably) that the iterate xt is inde-

pendent of {ai}, the central limit theorem (CLT) allows us to control the size of the fluctuation term r(xt).
Take the signal component as an example: simple calculations give

xt+1
‖ = xt‖ − η

(
∇F (xt)

)
1
− ηr1(xt),

where

r1(x) :=
1

m

m∑
i=1

[(
a>i x

)3 − a2i,1(a>i x)] ai,1 − E
[{(

a>i x
)3 − a2i,1(a>i x)} ai,1] (11)

with ai,1 the first entry of ai. Owing to the preceding independence assumption, r1 is the sum ofm i.i.d. zero-
mean random variables. Assuming that xt never blows up so that ‖xt‖2 = O(1), one can apply the CLT to
demonstrate that

|r1(xt)| .
√

Var(r1(xt)) poly log(m) .

√
poly log(m)

m
(12)

7

P⇥(✓0)PX|⇥(x | ✓0)
H0
>
<
H1

P⇥(✓1)PX|⇥(x | ✓1)

L(x) =
PX|⇥(x | ✓1)
PX|⇥(x | ✓0)

H1
>
<
H0

⇠

H0 ! N (0, 1)

H1 ! N (1, 1)

L(x) =
fX(x | H1)

fX(x | H0)
=

1p
2⇡

exp

⇣
� (x�1)2

2

⌘

1p
2⇡

exp

�
�x2

2

� = exp

✓
x� 1

2

◆

L(x)

H1
>
<
H0

⇠ () x

H1
>
<
H0

1

2

+ log ⇠

Pe,MAP = P⇥(✓0)↵+ P⇥(✓1)�

↵ �

S1,k = (Wk + c1Fk)e
i�1,k

S2,k = (Wk + c2Fk)e
i�2,k

S1,k = (Wk + c1Fk)e
i�1,k

S2,k = (Wk + c2Fk)e
i�2,k

, 8pixel k

Wk = f1(S1,k, S2,k)

Fk = f2(S1,k, S2,k)

x

\

1

x

0
x

1
x

2
x

3

1

{xt,(l)} al w.r.t. al

1

Figure 5: Illustration of the region satisfying the “near-independence” property. Here, the green arrows
represent the directions of {ai}1≤i≤20, and the blue region consists of all points such that the first entry
r1(x) of the fluctuation r(x) = ∇f(x)−∇F (x) is bounded above in magnitude by |xt‖|/5 (or |〈x,x\〉|/5).

with high probability, which is often negligible compared to the other terms. For instance, for the random
initial guess x0 ∼ N (0, n−1In) one has

∣∣x0||∣∣ & 1/
√
n log n with probability approaching one, telling us that

|r1(x0)| .
√

poly log(m)

m
� |x0|||

as long as m & n poly log(m). This combined with the fact that |x0||− η(∇F (x0))1| � |x0||| reveals |r1(x0)| .
|x0|| − η(∇F (x0))1|. Similar observations hold true for the orthogonal component xt⊥.

In summary, by assuming independence between xt and {ai}, we arrive at an approximate state evolution
for the finite-sample regime:

αt+1 ≈
{
1 + 3η

[
1−

(
α2
t + β2

t

)]}
αt; (13a)

βt+1 ≈
{
1 + η

[
1− 3

(
α2
t + β2

t

)]}
βt, (13b)

with the proviso that m & n poly log(m).

2.3 Key analysis ingredients: near-independence and leave-one-out tricks
The preceding heuristic argument justifies the approximate validity of the population dynamics, under an
independence assumption that never holds unless we use fresh samples in each iteration. On closer inspection,
what we essentially need is the fluctuation term r(xt) (cf. (10)) being well-controlled. For instance, when
focusing on the signal component, one needs |r1(xt)| �

∣∣xt‖∣∣ for all t ≥ 0. In particular, in the beginning
iterations, |xt‖| is as small as O(1/

√
n). Without the independence assumption, the CLT types of results

fail to hold due to the complicated dependency between xt and {ai}. In fact, one can easily find many
points that result in much larger remainder terms (as large as O(1)) and that violate the approximate state
evolution (13). See Figure 5 for a caricature of the region where the fluctuation term r(xt) is well-controlled.
As can be seen, it only occupies a tiny fraction of the neighborhood of x\ .

Fortunately, despite the complicated dependency across iterations, one can provably guarantee that xt
always stays within the preceding desirable region in which r(xt) is well-controlled. The key idea is to
exploit a certain “near-independence” property between {xt} and {ai}. Towards this, we make use of a
leave-one-out trick proposed in [MWCC17] for analyzing nonconvex iterative methods. In particular, we
construct auxiliary sequences that are

1. independent of certain components of the design vectors {ai}; and

2. extremely close to the original gradient sequence {xt}t≥0.

8

A

x

Ax

1

x\

Ax\

y = |Ax\|2

1

A

x

Ax

1

x\

Ax\

y = |Ax\|2

1

Asgn

1

y = |Asgnx\|2

1

Asgn

1

y = |Asgnx\|2

1

(a) xt (b) xt,(l) (c) xt,sgn (d) xt,sgn,(l)

Figure 6: Illustration of the leave-one-out and random-sign sequences. (a) {xt} is constructed using all data
{ai, yi}; (b) {xt,(l)} is constructed by discarding the lth sample {al, yl}; (c) {xt,sgn} is constructed by using
auxiliary design vectors {asgn

i }, where asgn
i is obtained by randomly flipping the sign of the first entry of ai;

(d) {xt,sgn,(l)} is constructed by discarding the lth sample {asgn
l , yl}.

As it turns out, we need to construct several auxiliary sequences {xt,(l)}t≥0, {xt,sgn}t≥0 and {xt,sgn,(l)}t≥0,
where {xt,(l)}t≥0 is independent of the lth sampling vector al, {xt,sgn}t≥0 is independent of the sign infor-
mation of the first entries of all ai’s, and {xt,sgn,(l)} is independent of both. In addition, these auxiliary
sequences are constructed by slightly perturbing the original data (see Figure 6 for an illustration), and hence
one can expect all of them to stay close to the original sequence throughout the execution of the algorithm.
Taking these two properties together, one can propagate the above statistical independence underlying each
auxiliary sequence to the true iterates {xt}, which in turn allows us to obtain near-optimal control of the
fluctuation term r(xt). The details are postponed to Section 4.

3 Related work
Solving systems of quadratic equations, or phase retrieval, has been studied extensively in the recent litera-
ture; see [SEC+15] for an overview. One popular method is convex relaxation (e.g. PhaseLift [CSV13]), which
is guaranteed to work as long asm/n exceeds some large enough constant [CL14,DH14,CCG15,CZ15,KRT17].
However, the resulting semidefinite program is computationally prohibitive for solving large-scale problems.
To address this issue, [CLS15] proposed the Wirtinger flow algorithm with spectral initialization, which
provides the first convergence guarantee for nonconvex methods without sample splitting. Both the sam-
ple and computation complexities were further improved by [CC17] with an adaptive truncation strategy.
Other nonconvex phase retrieval methods include [NJS13,CLM16,Sol17,WGE17,ZZLC17,WGSC17,CL16,
DR17,GX16, CFL15,Wei15, BEB17, TV17, CLW17, ZWGC17,QZEW17, ZCL16,YYF+17, CWZG17, Zha17,
MXM18,CLC18]. Almost all of these nonconvex methods require carefully-designed initialization to guar-
antee a sufficiently accurate initial point. One exception is the approximate message passing algorithm
proposed in [MXM18], which works as long as the correlation between the truth and the initial signal is
bounded away from zero. This, however, does not accommodate the case when the initial signal strength is
vanishingly small (like random initialization). Other works [Zha17,LGL15] explored the global convergence
of alternating minimization / projection with random initialization which, however, require fresh samples at
least in each of the first O(log n) iterations in order to enter the local basin. In addition, [LMZ17] explored
low-rank recovery from quadratic measurements with near-zero initialization. Using a truncated least-squares
objective, [LMZ17] established approximate (but non-exact) recovery of over-parametrized GD. Notably, if
we do not over-parametrize the phase retrieval problem, then GD with near-zero initialization is (nearly)
equivalent to running the power method for spectral initialization3, which can be understood using prior
theory.

Another related line of research is the design of generic saddle-point escaping algorithms, where the goal is
to locate a second-order stationary point (i.e. the point with a vanishing gradient and a positive-semidefinite
Hessian). As mentioned earlier, it has been shown by [SQW16] that as soon asm� n log3 n, all local minima

3More specifically, the GD update xt+1 = xt −m−1ηt
∑m

i=1

[
(a>i xt)2 − yi

]
aia
>
i xt ≈ (I +m−1ηt

∑m
i=1 yiaia

>
i)xt when

xt ≈ 0, which is equivalent to a power iteration (without normalization) w.r.t. the data matrix I +m−1ηt
∑m

i=1 yiaia
>
i .

9

are global and all the saddle points are strict. With these two geometric properties in mind, saddle-point
escaping algorithms are guaranteed to converge globally for phase retrieval. Existing saddle-point escaping
algorithms include but are not limited to Hessian-based methods [NP06, SQW16] (see also [AAZB+16,
AZ17, JGN+17] for some reviews), noisy stochastic gradient descent [GHJY15], perturbed gradient descent
[JGN+17], and normalized gradient descent [MSK17]. On the one hand, the results developed in these works
are fairly general: they establish polynomial-time convergence guarantees under a few generic geometric
conditions. On the other hand, the iteration complexity derived therein may be pessimistic when specialized
to a particular problem.

Take phase retrieval and the perturbed gradient descent algorithm [JGN+17] as an example. It has been
shown in [JGN+17, Theorem 5] that for an objective function that is L-gradient Lipschitz, ρ-Hessian Lips-
chitz, (θ, γ, ζ)-strict saddle, and also locally α-strongly convex and β-smooth (see definitions in [JGN+17]),
it takes4

O

(
L

[min (θ, γ2/ρ)]
2 +

β

α
log

1

ε

)
= O

(
n3 + n log

1

ε

)
iterations (ignoring logarithmic factors) for perturbed gradient descent to converge to ε-accuracy. In fact,
even with Nesterov’s accelerated scheme [JNJ17], the iteration complexity for entering the local region is at
least

O

(
L1/2ρ1/4

[min (θ, γ2/ρ)]
7/4

)
= O

(
n2.5

)
.

Both of them are much larger than the O
(
log n+ log(1/ε)

)
complexity established herein. This is primarily

due to the following facts: (i) the Lipschitz constants of both the gradients and the Hessians are quite large,
i.e. L � n and ρ � n (ignoring log factors), which are, however, treated as dimension-independent constants
in the aforementioned papers; (ii) the local condition number is also large, i.e. β/α � n. In comparison, as
suggested by our theory, the GD iterates with random initialization are always confined within a restricted
region enjoying much more benign geometry than the worst-case / global characterization.

Furthermore, the above saddle-escaping first-order methods are often more complicated than vanilla
GD. Despite its algorithmic simplicity and wide use in practice, the convergence rate of GD with random
initialization remains largely unknown. In fact, Du et al. [DJL+17] demonstrated that there exist non-
pathological functions such that GD can take exponential time to escape the saddle points when initialized
randomly. In contrast, as we have demonstrated, saddle points are not an issue for phase retrieval; the GD
iterates with random initialization never get trapped in the saddle points.

Finally, the leave-one-out arguments have been invoked to analyze other high-dimensional statistical
inference problems including robust M-estimators [EKBB+13, EK15], and maximum likelihood theory for
logistic regression [SCC18], etc. In addition, [ZB17, CFMW17, AFWZ17] made use of the leave-one-out
trick to derive entrywise perturbation bounds for eigenvectors resulting from certain spectral methods. The
techniques have also been applied by [MWCC17, LMCC18] to establish local linear convergence of vanilla
GD for nonconvex statistical estimation problems in the presence of proper spectral initialization.

4 Analysis
In this section, we first provide a more general version of Theorem 1 as follows. It spells out exactly the
conditions on x0 in order for vanilla GD with random initialization to succeed.

Theorem 2. Fix x\ ∈ Rn. Suppose ai
i.i.d.∼ N (0, In) (1 ≤ i ≤ m) and m ≥ Cn log13m for some sufficiently

large constant C > 0. Assume that the initialization x0 is independent of {ai} and obeys∣∣〈x0,x\〉
∣∣

‖x\‖22
≥ 1√

n log n
and

(
1− 1

log n

)
‖x\‖2 ≤ ‖x0‖2 ≤

(
1 +

1

log n

)
‖x\‖2, (14)

and that the stepsize satisfies ηt ≡ η = c/‖x\‖22 for some sufficiently small constant c > 0. Then there
exist a sufficiently small absolute constant 0 < γ < 1 and Tγ . log n such that with probability at least
1−O(m2e−1.5n)−O(m−9),

4When applied to phase retrieval with m � n poly logn, one has L � n, ρ � n, θ � γ � 1 (see [SQW16, Theorem 2.2]),
α � 1, and β & n (ignoring logarithmic factors).

10

1. the GD iterates (3) converge linearly to x\ after t ≥ Tγ , namely,

dist
(
xt,x\

)
≤
(
1− η

2

∥∥x\∥∥2
2

)t−Tγ
· γ
∥∥x\∥∥

2
, ∀ t ≥ Tγ ;

2. the strength ratio of the signal component 〈x
t,x\〉
‖x\‖22

x\ to the orthogonal component xt − 〈x
t,x\〉
‖x\‖22

x\ obeys∥∥∥ 〈xt,x\〉‖x\‖22
x\
∥∥∥
2∥∥∥xt − 〈xt,x\〉‖x\‖22
x\
∥∥∥
2

&
1√

n log n
(1 + c1η

2)t, t = 0, 1, · · · (15)

for some constant c1 > 0.

Several remarks regarding Theorem 2 are in order.

• Our current sample complexity reads m & n log13m, which is optimal up to logarithmic factors. It is
possible to further reduce the logarithmic factors using more refined probabilistic tools, which we leave for
future work.

• We can also prove similar performance guarantees for noisy phase retrieval. For brevity, we do not provide
the exact theorem and the detailed proofs. The readers will find them in the last author’s Ph.D. thesis.

• The random initialization x0 ∼ N (0, n−1‖x\‖22In) obeys the condition (14) with probability exceeding
1−O(1/

√
log n), which in turn establishes Theorem 1.

• Theorem 2 requires an initialization x0 which is independent of the data and the knowledge of ‖x\‖, which
is not practical. One possible method is to estimate it from the data, which results in an initial value that
depends on the data. The following theorem demonstrate both independent initial value and known ‖x\‖
are not necessary, resulting a practical algorithm.

Theorem 3. Let

x0 =

√√√√ 1

m

m∑
i=1

yi · u,

where u is uniformly distributed over the unit sphere. With probability at least 1 − O(1/
√
log n) all the

claims in Theorem 2 continue to hold.

Proof. The proof is very similar to that of Theorem 2, with only a few changes. See Appendix N for
detailed explanations.

The remainder of this section is then devoted to proving Theorem 2. Without loss of generality5, we will
assume throughout that

x\ = e1 and x01 > 0. (16)

Given this, one can decompose

xt = xt‖e1 +

[
0
xt⊥

]
(17)

where xt‖ = xt1 and xt⊥ = [xti]2≤i≤n as introduced in Section 2. For notational simplicity, we define

αt := xt‖ and βt := ‖xt⊥‖2. (18)

Intuitively, αt represents the size of the signal component, whereas βt measures the size of the component
orthogonal to the signal direction. In view of (16), we have α0 > 0.

5This is because of the rotational invariance of Gaussian distributions.

11

4.1 Outline of the proof
To begin with, it is easily seen that if αt and βt (cf. (18)) obey |αt − 1| ≤ γ/2 and βt ≤ γ/2, then

dist
(
xt,x\

)
≤ ‖xt − x\‖2 ≤

∣∣αt − 1
∣∣+ ∣∣βt∣∣ ≤ γ.

Therefore, our first step — which is concerned with proving dist(xt,x\) ≤ γ — comes down to the following
two steps.

1. Show that if αt and βt satisfy the approximate state evolution (see (13)), then there exists some Tγ =
O (log n) such that ∣∣αTγ − 1

∣∣ ≤ γ/2 and βTγ ≤ γ/2, (19)

which would immediately imply that
dist

(
xTγ ,x\

)
≤ γ.

Along the way, we will also show that the ratio αt/βt grows exponentially fast.

2. Justify that αt and βt satisfy the approximate state evolution with high probability, using (some variants
of) leave-one-out arguments.

After t ≥ Tγ , we can invoke prior theory [MWCC17] concerning local convergence to show that with high
probability,

dist
(
xt,x\

)
≤ (1− ρ)t−Tγ‖xTγ − x\‖2, ∀ t > Tγ

for some constant 0 < ρ < 1 independent of n and m.

4.2 Dynamics of approximate state evolution
This subsection formalizes our intuition in Section 2: as long as the approximate state evolution holds, then
one can find Tγ . log n obeying condition (19). In particular, the approximate state evolution is given by

αt+1 =
{
1 + 3η

[
1−

(
α2
t + β2

t

)]
+ ηζt

}
αt, (20a)

βt+1 =
{
1 + η

[
1− 3

(
α2
t + β2

t

)]
+ ηρt

}
βt, (20b)

where {ζt} and {ρt} represent the perturbation terms. Our result is this:

Lemma 1. Let γ > 0 be some sufficiently small constant, and consider the approximate state evolution (20).
Suppose the initial point obeys

α0 ≥
1√

n log n
and 1− 1

log n
≤
√
α2
0 + β2

0 ≤ 1 +
1

log n
. (21)

and the perturbation terms satisfy

max {|ζt| , |ρt|} ≤
c3

log n
, t = 0, 1, · · ·

for some sufficiently small constant c3 > 0.
(a) Let

Tγ := min
{
t : |αt − 1| ≤ γ/2 and βt ≤ γ/2

}
. (22)

Then for any sufficiently large n and m and any sufficiently small constant η > 0, one has

Tγ . log n, (23)

and there exist some constants c5, c10 > 0 independent of n and m such that

1

2
√
n log n

≤ αt ≤ 2, c5 ≤ βt ≤ 1.5 and
αt+1/αt
βt+1/βt

≥ 1 + c10η
2, 0 ≤ t ≤ Tγ . (24)

12

(b) If we define

T0 := min
{
t : αt+1 ≥ c6/ log5m

}
, (25)

T1 := min {t : αt+1 > c4} , (26)

for some arbitrarily small constants c4, c6 > 0, then

1) T0 ≤ T1 ≤ Tγ . log n; T1 − T0 . log logm; Tγ − T1 . 1;

2) For T0 < t ≤ Tγ , one has αt ≥ c6/ log5m.

Proof. See Appendix B.

Remark 2. Recall that γ is sufficiently small and (α, β) = (1, 0) represents the global minimizer. Since
|α0−1| ≈ 1, one has Tγ > 0, which denotes the first time when the iterates enter the local region surrounding
the global minimizer. In addition, the fact that α0 . 1/

√
n gives T0 > 0 and T1 > 0, both of which indicate

the first time when the signal strength is sufficiently large.

Lemma 1 makes precise that under the approximate state evolution, the first stage enjoys a fairly short
duration Tγ . log n. Moreover, the size of the signal component grows faster than that of the orthogonal
component for any iteration t < Tγ , thus confirming the exponential growth of αt/βt.

In addition, Lemma 1 identifies two midpoints T0 and T1 when the sizes of the signal component αt
become sufficiently large. These are helpful in our subsequent analysis. In what follows, we will divide
Stage 1 (which consists of all iterations up to Tγ) into two phases:

• Phase I : consider the duration 0 ≤ t ≤ T0;

• Phase II : consider all iterations with T0 < t ≤ Tγ .

We will justify the approximate state evolution (20) for these two phases separately.

4.3 Motivation of the leave-one-out approach
As we have alluded in Section 2.3, the main difficulty in establishing the approximate state evolution (20)
lies in controlling the perturbation terms to the desired orders (i.e. |ζt| , |ρt| � 1/ log n in Lemma 1). To
achieve this, we advocate the use of (some variants of) leave-one-out sequences to help establish certain
“near-independence” between xt and certain components of {ai}.

We begin by taking a closer look at the perturbation terms. Regarding the signal component, it is easily
seen from (11) that

xt+1
‖ =

{
1 + 3η

(
1− ‖xt‖22

)}
xt‖ − ηr1(xt),

where the perturbation term r1(x
t) obeys

r1(x
t) =

[
1−

(
xt‖
)2]

xt‖

(
1

m

m∑
i=1

a4i,1 − 3

)
︸ ︷︷ ︸

:=I1

+
[
1− 3

(
xt‖
)2] 1

m

m∑
i=1

a3i,1a
>
i,⊥x

t
⊥︸ ︷︷ ︸

:=I2

− 3xt‖

(
1

m

m∑
i=1

(
a>i,⊥x

t
⊥
)2
a2i,1 −

∥∥xt⊥∥∥22
)

︸ ︷︷ ︸
:=I3

− 1

m

m∑
i=1

(
a>i,⊥x

t
⊥
)3
ai,1︸ ︷︷ ︸

:=I4

. (27)

Here and throughout the paper, for any vector v ∈ Rn, v⊥ ∈ Rn−1 denotes the 2nd through the nth entries
of v. Due to the dependency between xt and {ai}, it is challenging to obtain sharp control of some of these
terms.

In what follows, we use the term I4 to explain and motivate our leave-one-out approach. As discussed
in Section 2.3, I4 needs to be controlled to the level O(1/(

√
npoly log(n))). This precludes us from seeking

a uniform bound on the function h(x) := m−1
∑m
i=1(a

>
i,⊥x⊥)

3ai,1 over all x (or even all x within the set C

13

Algorithm 1 The lth leave-one-out sequence
Input: {ai}1≤i≤m,i 6=l, {yi}1≤i≤m,i6=l, and x0.
Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

xt+1,(l) = xt,(l) − ηt∇f (l)(xt,(l)), (29)

where x0,(l) = x0 and f (l)(x) = (1/4m)·∑i:i 6=l[(a
>
i x)

2 − (a>i x
\)2]2.

incoherent with {ai}), since the uniform bound supx∈C |h(x)| can be O(
√
n/poly log(n)) times larger than

the desired order.
In order to control I4 to the desirable order, one strategy is to approximate it by a sum of independent

variables and then invoke the CLT. Specifically, we first rewrite I4 as

I4 =
1

m

m∑
i=1

(
a>i,⊥x

t
⊥
)3 |ai,1| ξi

with ξi := sgn(ai,1). Here sgn(·) denotes the usual sign function. To exploit the statistical independence
between ξi and {|ai,1|,ai,⊥}, we would like to identify some vector independent of ξi that well approximates
xt. If this can be done, then one may treat I4 as a weighted independent sum of {ξi}. Viewed in this light,
our plan is the following:

1. Construct a sequence {xt,sgn} independent of {ξi} obeying xt,sgn ≈ xt, so that

I4 ≈
1

m

m∑
i=1

(
a>i,⊥x

t,sgn
⊥

)3 |ai,1|︸ ︷︷ ︸
:=wi

ξi.

One can then apply standard concentration results (e.g. the Bernstein inequality) to control I4, as long as
none of the weight wi is exceedingly large.

2. Demonstrate that the weight wi is well-controlled, or equivalently,
∣∣a>i,⊥xt,sgn⊥

∣∣ (1 ≤ i ≤ m) is not much
larger than its typical size. This can be accomplished by identifying another sequence {xt,(i)} independent
of ai such that xt,(i) ≈ xt ≈ xt,sgn, followed by the argument:∣∣a>i,⊥xt,sgn⊥

∣∣ ≈ ∣∣a>i,⊥xt⊥∣∣ ≈ ∣∣a>i,⊥xt,(i)⊥
∣∣ .√logm

∥∥xt,(i)⊥
∥∥
2
≈
√
logm

∥∥xt⊥∥∥2. (28)

Here, the inequality follows from standard Gaussian tail bounds and the independence between ai and
xt,(i). This explains why we would like to construct {xt,(i)} for each 1 ≤ i ≤ m.

As we will detail in the next subsection, such auxiliary sequences are constructed by leaving out a small
amount of relevant information from the collected data before running the GD algorithm, which is a variant
of the “leave-one-out” approach rooted in probability theory and random matrix theory.

4.4 Leave-one-out and random-sign sequences
We now describe how to design auxiliary sequences to help establish certain independence properties between
the gradient iterates {xt} and the design vectors {ai}. In the sequel, we formally define the three sets of
auxiliary sequences {xt,(l)}, {xt,sgn}, {xt,sgn,(l)} as introduced in Section 2.3 and Section 4.3.

• Leave-one-out sequences {xt,(l)}t≥0. For each 1 ≤ l ≤ m, we introduce a sequence {xt,(l)}, which drops
the lth sample and runs GD w.r.t. the auxiliary objective function

f (l) (x) =
1

4m

∑
i:i 6=l

[(
a>i x

)2 − (a>i x\)2]2 . (32)

14

Algorithm 2 The random-sign sequence
Input: {|ai,1|}1≤i≤m, {ai,⊥}1≤i≤m, {ξsgni }1≤i≤m, {yi}1≤i≤m, x0.
Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

xt+1,sgn = xt,sgn − ηt∇f sgn(xt,sgn), (30)

where x0,sgn = x0, f sgn(x) = 1
4m

∑m
i=1[(a

sgn>
i x)2 − (asgn>

i x\)2]2 with asgn
i :=

[
ξsgni |ai,1|
ai,⊥

]
.

Algorithm 3 The lth leave-one-out and random-sign sequence
Input:{|ai,1|}1≤i≤m,i6=l, {ai,⊥}1≤i≤m,i 6=l, {ξsgni }1≤i≤m,,i 6=l, {yi}1≤i≤m,i 6=l, x0.
Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

xt+1,sgn,(l) = xt,sgn,(l) − ηt∇f sgn,(l)(xt,sgn,(l)), (31)

where x0,sgn,(l) = x0, f sgn,(l)
(
x
)
= 1

4m

∑
i:i 6=l

[(
asgn>
i x

)2 − (asgn>
i x\

)2]2 with asgn
i :=

[
ξsgni |ai,1|
ai,⊥

]
.

See Algorithm 1 for details and also Figure 6(a) for an illustration. One of the most important features
of {xt,(l)} is that all of its iterates are statistically independent of (al, yl), and hence are incoherent with
al with high probability, in the sense that

∣∣a>l xt,(l)∣∣ .
√
logm‖xt,(l)‖2. Such incoherence properties

further allow us to control both
∣∣a>l xt∣∣ and ∣∣a>l xt,sgn∣∣ (see (28)), which is crucial for controlling the size

of the residual terms (e.g. r1(xt) as defined in (11)). Notably, the sequence {xt,(l)} has also been applied
by [MWCC17] to justify the success of GD with spectral initialization for several nonconvex statistical
estimation problems.

• Random-sign sequence {xt,sgn}t≥0. Introduce a collection of auxiliary design vectors {asgn
i }1≤i≤m defined

as
asgn
i :=

[
ξsgni |ai,1|
ai,⊥

]
, (33)

where {ξsgni }1≤i≤m is a set of Rademacher random variables independent of {ai}, i.e.

ξsgni
i.i.d.
=

{
1, with probability 1/2,
−1, else,

1 ≤ i ≤ m. (34)

In words, asgn
i is generated by randomly flipping the sign of the first entry of ai. To simplify the notations

hereafter, we also denote
ξi = sgn(ai,1). (35)

As a result, ai and a
sgn
i differ only by a single bit of information. With these auxiliary design vectors in

place, we generate a sequence {xt,sgn} by running GD w.r.t. the auxiliary loss function

f sgn
(
x
)
=

1

4m

m∑
i=1

[(
asgn>
i x

)2 − (asgn>
i x\

)2]2
. (36)

One simple yet important feature associated with these new design vectors is that it produces the same
measurements as {ai}: (

a>i x
\
)2

=
(
asgn>
i x\

)2
= |ai,1|2 , 1 ≤ i ≤ m. (37)

See Figure 6(b) for an illustration and Algorithm 2 for the detailed procedure. This sequence is introduced
in order to “randomize” certain Gaussian polynomials (e.g. I4 in (27)), which in turn enables optimal control
of these quantities. This is particularly crucial at the initial stage of the algorithm.

15

• Leave-one-out and random-sign sequences
{
xt,sgn,(l)

}
t≥0. Furthermore, we also need to introduce another

collection of sequences {xt,sgn,(l)} by simultaneously employing the new design vectors {asgn
i } and discard-

ing a single sample (asgn
l , ysgn

l). This enables us to propagate the kinds of independence properties across
the above two sets of sequences, which is useful in demonstrating that xt is jointly “nearly-independent”
of both al and {sgn(ai,1)}. See Algorithm 3 and Figure 6(c).

As a remark, all of these leave-one-out and random-sign procedures are assumed to start from the same
initial point as the original sequence, namely,

x0 = x0,(l) = x0,sgn = x0,sgn,(l), 1 ≤ l ≤ m. (38)

4.5 Justification of approximate state evolution for Phase I of Stage 1
Recall that Phase I consists of the iterations 0 ≤ t ≤ T0, where

T0 = min

{
t : αt+1 ≥

c6

log5m

}
. (39)

Our goal here is to show that the approximate state evolution (20) for both the size αt of the signal component
and the size βt of the orthogonal component holds true throughout Phase I. Our proof will be inductive in
nature. Specifically, we will first identify a set of induction hypotheses that are helpful in proving the validity
of the approximate state evolution (20), and then proceed by establishing these hypotheses via induction.

4.5.1 Induction hypotheses

For the sake of clarity, we first list all the induction hypotheses.

max
1≤l≤m

∥∥xt − xt,(l)∥∥
2
≤ βt

(
1 +

1

logm

)t
C1

√
n log5m

m
, (40a)

max
1≤l≤m

∣∣∣xt‖ − xt,(l)‖

∣∣∣ ≤ αt(1 + 1

logm

)t
C2

√
n log12m

m
, (40b)

∥∥xt − xt,sgn∥∥
2
≤ αt

(
1 +

1

logm

)t
C3

√
n log5m

m
, (40c)

max
1≤l≤m

∥∥∥xt − xt,sgn − xt,(l) + xt,sgn,(l)∥∥∥
2
≤ αt

(
1 +

1

logm

)t
C4

√
n log9m

m
, (40d)

c5 ≤
∥∥xt⊥∥∥2 ≤ ∥∥xt∥∥2 ≤ C5, (40e)∥∥xt∥∥

2
≤ 4αt

√
n logm, (40f)

where C1, · · · , C5 and c5 are some absolute positive constants.
Now we are ready to prove an immediate consequence of the induction hypotheses (40): if (40) hold for

the tth iteration, then αt+1 and βt+1 follow the approximate state evolution (see (20)). This is justified in
the following lemma.

Lemma 2. Suppose m ≥ Cn log11m for some sufficiently large constant C > 0. For any 0 ≤ t ≤
T0 (cf. (39)), if the tth iterates satisfy the induction hypotheses (40), then with probability at least 1 −
O(me−1.5n)−O(m−10),

αt+1 =
{
1 + 3η

[
1−

(
α2
t + β2

t

)]
+ ηζt

}
αt; (41a)

βt+1 =
{
1 + η

[
1− 3

(
α2
t + β2

t

)]
+ ηρt

}
βt (41b)

hold for some |ζt| � 1/ logm and |ρt| � 1/ logm.

Proof. See Appendix C.

16

0 10 20 30 40 50
10-5

10-4

10-3

10-2

10-1

100

0 50 100 150 200
10-10

10-5

100

(a) Stage 1 (b) Stage 1 and Stage 2

Figure 7: Illustration of the differences among leave-one-out and original sequences vs. iteration count,
plotted semilogarithmically. The results are shown for n = 1000 with m = 10n, ηt ≡ 0.1, and ‖x\‖2 = 1.
(a) The four differences increases in Stage 1. From the induction hypotheses (40), our upper bounds on
|xt‖ − x

t,(l)
‖ |, ‖xt − xt,sgn‖2 and ‖xt − xt,sgn − xt,(l) + xt,sgn,(l)‖2 scale linearly with αt, whereas the upper

bound on ‖xt − xt,(l)‖2 is proportional to βt. In addition, ‖x1 − x1,(l)‖2 . 1/
√
m, |x1‖ − x

1,(l)
‖ | . 1/m,

‖x1 − x1,sgn‖2 . 1/
√
m and ‖x1 − x1,sgn − x1,(l) + x1,sgn,(l)‖2 . 1/m. (b) The four differences converge to

zero geometrically fast in Stage 2, as all the (variants of) leave-one-out sequences and the original sequence
converge to the truth x\.

It remains to inductively show that the hypotheses hold for all 0 ≤ t ≤ T0. Before proceeding to this
induction step, it is helpful to first develop more understanding about the preceding hypotheses.

1. In words, (40a), (40b), (40c) specify that the leave-one-out sequences
{
xt,(l)

}
and {xt,sgn} are exceedingly

close to the original sequence {xt}. Similarly, the difference between xt − xt,sgn and xt,(l) − xt,sgn,(l) is
extremely small, as asserted in (40d). The hypothesis (40e) says that the norm of the iterates {xt} is
always bounded from above and from below in Phase I. The last one (40f) indicates that the size αt of the
signal component is never too small compared with ‖xt‖2.

2. Another property that is worth mentioning is the growth rate (with respect to t) of the quantities appeared
in the induction hypotheses (40). For instance,

∣∣xt‖−xt,(l)‖
∣∣, ‖xt−xt,sgn‖2 and ‖xt−xt,sgn−xt,(l)+xt,sgn,(l)‖2

grow more or less at the same rate as αt (modulo some (1+1/ logm)T0 factor). In contrast, ‖xt−xt,(l)‖2
shares the same growth rate with βt (modulo the (1+1/ logm)T0 factor). See Figure 7 for an illustration.
The difference in the growth rates turns out to be crucial in establishing the advertised result.

3. Last but not least, we emphasize the sizes of the quantities of interest in (40) for t = 1 under the Gaussian
initialization. Ignoring all of the logm terms and recognizing that α1 � 1/

√
n and β1 � 1, one sees that

‖x1−x1,(l)‖2 . 1/
√
m, |x1‖−x

1,(l)
‖ | . 1/m, ‖x1−x1,sgn‖2 . 1/

√
m and ‖x1−x1,sgn−x1,(l)+x1,sgn,(l)‖2 .

1/m. See Figure 7 for an illustration of the trends of the above four quantities.

Several consequences of (40) regarding the incoherence between {xt}, {xt,sgn} and {ai}, {asgn
i } are imme-

diate, as summarized in the following lemma.

Lemma 3. Suppose that m ≥ Cn log6m for some sufficiently large constant C > 0 and the tth iterates
satisfy the induction hypotheses (40) for t ≤ T0, then with probability at least 1−O(me−1.5n)−O(m−10),

max
1≤l≤m

∣∣a>l xt∣∣ .√logm
∥∥xt∥∥

2
;

max
1≤l≤m

∣∣a>l,⊥xt⊥∣∣ .√logm
∥∥xt⊥∥∥2;

max
1≤l≤m

∣∣a>l xt,sgn∣∣ .√logm
∥∥xt,sgn∥∥

2
;

17

max
1≤l≤m

∣∣a>l,⊥xt,sgn⊥
∣∣ .√logm

∥∥xt,sgn⊥
∥∥
2
;

max
1≤l≤m

∣∣asgn>
l xt,sgn

∣∣ .√logm
∥∥xt,sgn∥∥

2
.

Proof. These incoherence conditions typically arise from the independence between {xt,(l)} and al. For
instance, the first line follows since∣∣a>l xt∣∣ ≈ ∣∣a>l xt,(l)∣∣ .√logm‖xt,(l)‖2 �

√
logm‖xt‖2.

See Appendix M for detailed proofs.

4.5.2 Induction step

We then turn to showing that the induction hypotheses (40) hold throughout Phase I, i.e. for 0 ≤ t ≤ T0.
The base case can be easily verified because of the identical initial points (38). Now we move on to the
inductive step, i.e. we aim to show that if the hypotheses (40) are valid up to the tth iteration for some
t ≤ T0, then they continue to hold for the (t+ 1)

th iteration.
The first lemma concerns the difference between the leave-one-out sequence xt+1,(l) and the true sequence

xt+1 (see (40a)).

Lemma 4. Suppose m ≥ Cn log5m for some sufficiently large constant C > 0. If the induction hypotheses
(40) hold true up to the tth iteration for some t ≤ T0, then with probability at least 1−O(me−1.5n)−O(m−10),

max
1≤l≤m

∥∥xt+1 − xt+1,(l)
∥∥
2
≤ βt+1

(
1 +

1

logm

)t+1

C1

√
n log5m

m
(43)

holds as long as η > 0 is a sufficiently small constant and C1 > 0 is sufficiently large.

Proof. See Appendix D.

The next lemma characterizes a finer relation between xt+1 and xt+1,(l) when projected onto the signal
direction (cf. (40b)).

Lemma 5. Suppose m ≥ Cn log6m for some sufficiently large constant C > 0. If the induction hypotheses
(40) hold true up to the tth iteration for some t ≤ T0, then with probability at least 1−O(me−1.5n)−O(m−10),

max
1≤l≤m

∣∣xt+1
‖ − xt+1,(l)

‖
∣∣ ≤ αt+1

(
1 +

1

logm

)t+1

C2

√
n log12m

m
(44)

holds as long as η > 0 is a sufficiently small constant and C2 � C4.

Proof. See Appendix E.

Regarding the difference between xt and xt,sgn (see (40c)), we have the following result.

Lemma 6. Suppose m ≥ Cn log5m for some sufficiently large constant C > 0. If the induction hypotheses
(40) hold true up to the tth iteration for some t ≤ T0, then with probability at least 1−O(me−1.5n)−O

(
m−10

)
,

∥∥xt+1 − xt+1,sgn
∥∥
2
≤ αt+1

(
1 +

1

logm

)t+1

C3

√
n log5m

m
(45)

holds as long as η > 0 is a sufficiently small constant and C3 is a sufficiently large positive constant.

Proof. See Appendix F.

We are left with the double difference xt+1 − xt+1,sgn − xt+1,(l) + xt+1,sgn,(l) (cf. (40d)), for which one
has the following lemma.

18

Lemma 7. Suppose m ≥ Cn log8m for some sufficiently large constant C > 0. If the induction hypotheses
(40) hold true up to the tth iteration for some t ≤ T0, then with probability at least 1−O(me−1.5n)−O(m−10),

max
1≤l≤m

∥∥∥xt+1 − xt+1,sgn − xt+1,(l) + xt+1,sgn,(l)
∥∥∥
2
≤ αt+1

(
1 +

1

logm

)t+1

C4

√
n log9m

m
(46)

holds as long as η > 0 is a sufficiently small constant and C4 > 0 is sufficiently large.

Proof. See Appendix G.

Assuming the induction hypotheses (40) hold up to the tth iteration for some t ≤ T0, we know from
Lemma 2 that the approximate state evolution for both αt and βt (see (20)) holds up to t+ 1. As a result,
the last two hypotheses (40e) and (40f) for the (t+ 1)

th iteration can be easily verified.

4.6 Justification of approximate state evolution for Phase II of Stage 1
Recall from Lemma 1 that Phase II refers to the iterations T0 < t ≤ Tγ (see the definition of T0 in Lemma 1),
for which one has

αt ≥
c6

log5m
(47)

as long as the approximate state evolution (20) holds. Here c6 > 0 is the same constant as in Lemma 1.
Similar to Phase I, we invoke an inductive argument to prove that the approximate state evolution (20)
continues to hold for T0 < t ≤ Tγ .

4.6.1 Induction hypotheses

In Phase I, we rely on the leave-one-out sequences and the random-sign sequences {xt,(l)}, {xt,sgn} and
{xt,sgn,(l)} to establish certain “near-independence” between {xt} and {al}, which in turn allows us to
obtain sharp control of the residual terms r (xt) (cf. (10)) and r1 (xt) (cf. (11)). As it turns out, once the
size αt of the signal component obeys αt & 1/poly log(m), then {xt,(l)} alone is sufficient for our purpose to
establish the “near-independence” property. More precisely, in Phase II we only need to impose the following
induction hypotheses.

max
1≤l≤m

∥∥xt − xt,(l)∥∥
2
≤ αt

(
1 +

1

logm

)t
C6

√
n log15m

m
; (48a)

c5 ≤
∥∥xt⊥∥∥2 ≤ ∥∥xt∥∥2 ≤ C5. (48b)

A direct consequence of (48) is the incoherence between xt and {al}, namely,

max
1≤l≤m

∣∣a>l,⊥xt⊥∣∣ .√logm
∥∥xt⊥∥∥2 ; (49a)

max
1≤l≤m

∣∣a>l xt∣∣ .√logm
∥∥xt∥∥

2
. (49b)

To see this, one can use the triangle inequality to show that∣∣a>l,⊥xt⊥∣∣ ≤ ∣∣∣a>l,⊥xt,(l)⊥

∣∣∣+ ∣∣∣a>l,⊥(xt⊥ − xt,(l)⊥
)∣∣∣

(i)
.
√
logm

∥∥xt,(l)⊥
∥∥
2
+
√
n
∥∥xt − xt,(l)∥∥

2

.
√
logm

(∥∥xt⊥∥∥2 + ∥∥xt − xt,(l)∥∥2)+√n∥∥xt − xt,(l)∥∥2
(ii)
.
√
logm+

√
n log15m

m

√
n .

√
logm,

19

where (i) follows from the independence between al and xt,(l) and the Cauchy-Schwarz inequality, and the
last line (ii) arises from (1 + 1/ logm)

t . 1 for t ≤ Tγ . log n and m � n log15/2m. This combined with
the fact that ‖xt⊥‖2 ≥ c5/2 results in

max
1≤l≤m

∣∣a>l,⊥xt⊥∣∣ .√logm
∥∥xt⊥∥∥2 . (50)

The condition (49b) follows using nearly identical arguments, which are omitted here.
As in Phase I, we need to justify the approximate state evolution (20) for both αt and βt, given that the

tth iterates satisfy the induction hypotheses (48). This is stated in the following lemma.

Lemma 8. Suppose m ≥ Cn log13m for some sufficiently large constant C > 0. If the tth iterates satisfy
the induction hypotheses (48) for T0 < t < Tγ , then with probability at least 1−O(me−1.5n)−O(m−10),

αt+1 =
{
1 + 3η

[
1−

(
α2
t + β2

t

)]
+ ηζt

}
αt; (51a)

βt+1 =
{
1 + η

[
1− 3

(
α2
t + β2

t

)]
+ ηρt

}
βt, (51b)

for some |ζt| � 1/ logm and ρt � 1/ logm.

Proof. See Appendix H for the proof of (51a). The proof of (51b) follows exactly the same argument as in
proving (41b), and is hence omitted.

4.6.2 Induction step

We proceed to complete the induction argument. Towards this end, one has the following lemma in regard
to the induction on max1≤l≤m ‖xt+1 − xt+1,(l)‖2 (see (48a)).

Lemma 9. Suppose m ≥ Cn log5m for some sufficiently large constant C > 0, and consider any T0 < t <
Tγ . If the induction hypotheses (40) are valid throughout Phase I and (48) are valid from the T0th to the tth
iterations, then with probability at least 1−O(me−1.5n)−O(m−10),

max
1≤l≤m

∥∥xt+1 − xt+1,(l)
∥∥
2
≤ αt+1

(
1 +

1

logm

)t+1

C6

√
n log13m

m

holds as long as η > 0 is sufficiently small and C6 > 0 is sufficiently large.

Proof. See Appendix I.

As in Phase I, since we assume the induction hypotheses (40) (resp. (48)) hold for all iterations up to the
T0th iteration (resp. between the T0th and the tth iteration), we know from Lemma 8 that the approximate
state evolution for both αt and βt (see (20)) holds up to t+ 1. The last induction hypothesis (48b) for the
(t+ 1)

th iteration can be easily verified from Lemma 1.
It remains to check the case when t = T0 + 1. It can be seen from the analysis in Phase I that

max
1≤l≤m

∥∥xT0+1 − xT0+1,(l)
∥∥
2
≤ βT0+1

(
1 +

1

logm

)T0+1

C1

√
n log5m

m

≤ αT0+1

(
1 +

1

logm

)T0+1

C6

√
n log15m

m
,

for some constant condition C6 � 1, where the second line holds since βT0+1 ≤ C5, αT0+1 ≥ c6/ log5m.

4.7 Analysis for Stage 2
Combining the analyses in Phase I and Phase II, we finish the proof of Theorem 2 for Stage 1, i.e. t ≤ Tγ .
In addition to dist

(
xTγ ,x\

)
≤ γ, we can also see from (49b) that

max
1≤i≤m

∣∣a>i xTγ ∣∣ .√logm,

20

which in turn implies that
max

1≤i≤m

∣∣a>i (xTγ − x\)∣∣ .√logm.

Armed with these properties, one can apply the arguments in [MWCC17, Section 6] to prove that for
t ≥ Tγ + 1,

dist
(
xt,x\

)
≤
(
1− η

2

)t−Tγ
dist

(
xTγ ,x\

)
≤
(
1− η

2

)t−Tγ
· γ. (52)

Notably, the theorem therein [MWCC17, Theorem 1] works under the stepsize ηt ≡ η � c/ log n when
m� n log n. Nevertheless, as remarked by the authors, when the sample complexity exceeds m� n log3m,
a constant stepsize is allowed.

We are left with proving (15) for Stage 2. Note that we have already shown that the ratio αt/βt increases
exponentially fast in Stage 1. Therefore,

αT1

βT1

≥ 1√
2n log n

(1 + c10η
2)T1

and, by the definition of T1 (see (26)) and Lemma 1, one has αT1 � βT1 � 1 and hence

αT1

βT1

� 1. (53)

When it comes to t > Tγ , in view of (52), one has

αt
βt
≥ 1− dist

(
xt,x\

)
dist (xt,x\)

≥ 1− γ(
1− η

2

)t−Tγ · γ
≥ 1− γ

γ

(
1 +

η

2

)t−Tγ (i)� αT1

βT1

(
1 +

η

2

)t−Tγ
&

1√
n log n

(
1 + c10η

2
)T1
(
1 +

η

2

)t−Tγ
(ii)� 1√

n log n

(
1 + c10η

2
)Tγ (

1 +
η

2

)t−Tγ
&

1√
n log n

(
1 + c10η

2
)t
,

where (i) arises from (53) and the fact that γ is a constant, (ii) follows since Tγ−T1 � 1 according to Lemma
1, and the last line holds as long as c10 > 0 and η are sufficiently small. This concludes the proof regarding
the lower bound on αt/βt.

5 Discussions
The current paper justifies the fast global convergence of gradient descent with random initialization for phase
retrieval. Specifically, we demonstrate that GD with random initialization takes only O

(
log n + log(1/ε)

)
iterations to achieve a relative ε-accuracy in terms of the estimation error. It is likely that such fast global
convergence properties also arise in other nonconvex statistical estimation problems. The technical tools
developed herein may also prove useful for other settings. We conclude our paper with a few directions
worthy of future investigation.

• Sample complexity and phase transition. We have proved in Theorem 2 that GD with random initialization
enjoys fast convergence, with the proviso that m � n log13m. It is possible to improve the sample
complexity via more sophisticated arguments. In addition, it would be interesting to examine the phase
transition phenomenon of GD with random initialization.

• Other nonconvex statistical estimation problems. We use the phase retrieval problem to showcase the
efficiency of GD with random initialization. It is certainly interesting to investigate whether this fast global

21

0 50 100 150 200
10-6

10-4

10-2

100

Figure 8: The relative `2 error vs. iteration count for GD with random initialization, plotted semilogarith-
mically. The results are shown for n = 1000 with m = 10n and ηt ≡ 0.1. Here the entries of the sampling
vectors ai are drawn i.i.d. from a Rademacher distribution.

convergence carries over to other nonconvex statistical estimation problems including low-rank matrix and
tensor recovery [KMO10, SL16, CW15, TBS+16, ZL16, ZWL15, MWCC17, CL17, CC18, CCF18, HZC18],
blind deconvolution [LLSW18,MWCC17,HH17] and neural networks [SJL17,LMZ17,FCL18]. The leave-
one-out sequences and the “near-independence” property introduced / identified in this paper might be
useful in proving efficiency of randomly initialized GD for the aforementioned problems.

• Noisy setting and other activation functions. Throughout this paper, our focus is on inverting noiseless
quadratic systems. Extensions to the noisy case is definitely worth investigating. Moving beyond quadratic
samples, one may also study other activation functions, including but not limited to Rectified Linear
Units (ReLU), polynomial functions and sigmoid functions. Such investigations might shed light on the
effectiveness of GD with random initialization for training neural networks.

• Other iterative optimization methods. Apart from gradient descent, other iterative procedures have been
applied to solve the phase retrieval problem. Partial examples include alternating minimization, Kacz-
marz algorithm, and truncated gradient descent (Truncated Wirtinger flow). In conjunction with random
initialization, whether the iterative algorithms mentioned above enjoy fast global convergence is an inter-
esting open problem. For example, it has been shown that truncated WF together with truncated spectral
initialization achieves optimal sample complexity (i.e. m � n) and computational complexity simulta-
neously [CC17]. Does truncated Wirtinger flow still enjoy optimal sample complexity when initialized
randomly?

• Beyond Gaussian sampling vectors. In this work, we consider the Gaussian phase retrieval problem where
the sampling vectors are i.i.d. Gaussian vectors. We expect our results to generalize to other sampling
vectors. Experimentally, we can verify that random initialization also converges fast under a Rademacher
sampling model; see Figure 8.

• Applications of leave-one-out tricks. In this paper, we heavily deploy the leave-one-out trick to demonstrate
the “near-independence” between the iterates xt and the sampling vectors {ai}. The basic idea is to
construct an auxiliary sequence that is (i) independent w.r.t. certain components of the design vectors,
and (ii) extremely close to the original sequence. These two properties allow us to propagate the desired
independence properties to xt. As mentioned in Section 3, the leave-one-out trick has served as a very
powerful hammer for decoupling the dependency between random vectors in several high-dimensional
estimation problems. We expect this powerful trick to be useful in broader settings.

Acknowledgements
Y. Chen is supported in part by the AFOSR YIP award FA9550-19-1-0030, by the ARO grant W911NF-18-1-
0303, and by the Princeton SEAS innovation award. Y. Chi is supported in part by AFOSR under the grant

22

FA9550-15-1-0205, by ONR under the grant N00014-18-1-2142, by ARO under the grant W911NF-18-1-0303,
and by NSF under the grants CAREER ECCS-1818571 and CCF-1806154. J. Fan is supported in part by
NSF grants DMS-1662139 and DMS-1712591 and NIH grant 2R01-GM072611-13.

References
[AAZB+16] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma. Finding approximate local minima

for nonconvex optimization in linear time. arXiv preprint arXiv:1611.01146, 2016.

[AFWZ17] E. Abbe, J. Fan, K. Wang, and Y. Zhong. Entrywise eigenvector analysis of random matrices
with low expected rank. arXiv preprint arXiv:1709.09565, 2017.

[AZ17] Z. Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. arXiv preprint
arXiv:1708.08694, 2017.

[BCMN14] A. S. Bandeira, J. Cahill, D. G. Mixon, and A. A. Nelson. Saving phase: Injectivity and stability
for phase retrieval. Applied and Computational Harmonic Analysis, 37(1):106–125, 2014.

[BEB17] T. Bendory, Y. C. Eldar, and N. Boumal. Non-convex phase retrieval from STFT measurements.
IEEE Transactions on Information Theory, 2017.

[CC17] Y. Chen and E. J. Candès. Solving random quadratic systems of equations is nearly as easy as
solving linear systems. Comm. Pure Appl. Math., 70(5):822–883, 2017.

[CC18] Y. Chen and E. Candès. The projected power method: An efficient algorithm for joint alignment
from pairwise differences. Communications on Pure and Applied Mathematics, 71(8):1648–1714,
2018.

[CCF18] Y. Chen, C. Cheng, and J. Fan. Asymmetry helps: Eigenvalue and eigenvector analyses of
asymmetrically perturbed low-rank matrices. arXiv preprint arXiv:1811.12804, 2018.

[CCG15] Y. Chen, Y. Chi, and A. J. Goldsmith. Exact and stable covariance estimation from quadratic
sampling via convex programming. IEEE Transactions on Information Theory, 61(7):4034–
4059, 2015.

[CESV13] E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix comple-
tion. SIAM Journal on Imaging Sciences, 6(1):199–225, 2013.

[CFL15] P. Chen, A. Fannjiang, and G.-R. Liu. Phase retrieval with one or two diffraction patterns by
alternating projections with the null initialization. Journal of Fourier Analysis and Applications,
pages 1–40, 2015.

[CFMW17] Y. Chen, J. Fan, C. Ma, and K. Wang. Spectral method and regularized MLE are both optimal
for top-K ranking. arXiv preprint arXiv:1707.09971, 2017.

[CL14] E. J. Candès and X. Li. Solving quadratic equations via PhaseLift when there are about as
many equations as unknowns. Foundations of Computational Mathematics, 14(5):1017–1026,
2014.

[CL16] Y. Chi and Y. M. Lu. Kaczmarz method for solving quadratic equations. IEEE Signal Processing
Letters, 23(9):1183–1187, 2016.

[CL17] J. Chen and X. Li. Memory-efficient kernel PCA via partial matrix sampling and nonconvex
optimization: a model-free analysis of local minima. arXiv preprint arXiv:1711.01742, 2017.

[CLC18] Y. Chi, Y. M. Lu, and Y. Chen. Nonconvex optimization meets low-rank matrix factorization:
An overview. arXiv preprint arXiv:1809.09573, 2018.

[CLM16] T. T. Cai, X. Li, and Z. Ma. Optimal rates of convergence for noisy sparse phase retrieval via
thresholded Wirtinger flow. The Annals of Statistics, 44(5):2221–2251, 2016.

23

[CLS15] E. J. Candès, X. Li, and M. Soltanolkotabi. Phase retrieval via Wirtinger flow: Theory and
algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007, April 2015.

[CLW17] J.-F. Cai, H. Liu, and Y. Wang. Fast rank one alternating minimization algorithm for phase
retrieval. arXiv preprint arXiv:1708.08751, 2017.

[CSV13] E. J. Candès, T. Strohmer, and V. Voroninski. Phaselift: Exact and stable signal recovery
from magnitude measurements via convex programming. Communications on Pure and Applied
Mathematics, 66(8):1017–1026, 2013.

[CW15] Y. Chen and M. J. Wainwright. Fast low-rank estimation by projected gradient descent: General
statistical and algorithmic guarantees. arXiv preprint arXiv:1509.03025, 2015.

[CWZG17] J. Chen, L. Wang, X. Zhang, and Q. Gu. Robust wirtinger flow for phase retrieval with arbitrary
corruption. arXiv preprint arXiv:1704.06256, 2017.

[CYC14] Y. Chen, X. Yi, and C. Caramanis. A convex formulation for mixed regression with two
components: Minimax optimal rates. In Conference on Learning Theory, pages 560–604, 2014.

[CZ15] T. Cai and A. Zhang. ROP: Matrix recovery via rank-one projections. The Annals of Statistics,
43(1):102–138, 2015.

[DH14] L. Demanet and P. Hand. Stable optimizationless recovery from phaseless linear measurements.
Journal of Fourier Analysis and Applications, 20(1):199–221, 2014.

[DJL+17] S. S. Du, C. Jin, J. D. Lee, M. I. Jordan, A. Singh, and B. Poczos. Gradient descent can
take exponential time to escape saddle points. In Advances in Neural Information Processing
Systems, pages 1067–1077, 2017.

[DR17] J. C. Duchi and F. Ruan. Solving (most) of a set of quadratic equalities: Composite optimization
for robust phase retrieval. arXiv preprint arXiv:1705.02356, 2017.

[EK15] N. El Karoui. On the impact of predictor geometry on the performance on high-dimensional
ridge-regularized generalized robust regression estimators. Probability Theory and Related
Fields, pages 1–81, 2015.

[EKBB+13] N. El Karoui, D. Bean, P. J. Bickel, C. Lim, and B. Yu. On robust regression with high-
dimensional predictors. Proceedings of the National Academy of Sciences, 110(36):14557–14562,
2013.

[FCL18] H. Fu, Y. Chi, and Y. Liang. Local geometry of one-hidden-layer neural networks for logistic
regression. arXiv preprint arXiv:1802.06463, 2018.

[GHJY15] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points online stochastic gradient
for tensor decomposition. In Conference on Learning Theory, pages 797–842, 2015.

[GX16] B. Gao and Z. Xu. Phase retrieval using Gauss-Newton method. arXiv preprint
arXiv:1606.08135, 2016.

[HH17] W. Huang and P. Hand. Blind deconvolution by a steepest descent algorithm on a quotient
manifold. arXiv preprint arXiv:1710.03309, 2017.

[HZC18] B. Hao, A. Zhang, and G. Cheng. Sparse and low-rank tensor estimation via cubic sketchings.
arXiv preprint arXiv:1801.09326, 2018.

[JGN+17] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan. How to escape saddle points
efficiently. arXiv preprint arXiv:1703.00887, 2017.

[JNJ17] C. Jin, P. Netrapalli, and M. I. Jordan. Accelerated gradient descent escapes saddle points
faster than gradient descent. arXiv preprint arXiv:1711.10456, 2017.

24

[KMO10] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. IEEE
Transactions on Information Theory, 56(6):2980 –2998, June 2010.

[KRT17] R. Kueng, H. Rauhut, and U. Terstiege. Low rank matrix recovery from rank one measurements.
Applied and Computational Harmonic Analysis, 42(1):88–116, 2017.

[Lan93] S. Lang. Real and functional analysis. Springer-Verlag, New York,, 10:11–13, 1993.

[LGL15] G. Li, Y. Gu, and Y. M. Lu. Phase retrieval using iterative projections: Dynamics in the
large systems limit. In Allerton Conference on Communication, Control, and Computing, pages
1114–1118. IEEE, 2015.

[LL17] Y. M. Lu and G. Li. Phase transitions of spectral initialization for high-dimensional nonconvex
estimation. arXiv preprint arXiv:1702.06435, 2017.

[LLSW18] X. Li, S. Ling, T. Strohmer, and K. Wei. Rapid, robust, and reliable blind deconvolution via
nonconvex optimization. Applied and Computational Harmonic Analysis, 2018.

[LMCC18] Y. Li, C. Ma, Y. Chen, and Y. Chi. Nonconvex matrix factorization from rank-one measure-
ments. arXiv preprint arXiv:1802.06286, 2018.

[LMZ17] Y. Li, T. Ma, and H. Zhang. Algorithmic regularization in over-parameterized matrix recovery.
arXiv preprint arXiv:1712.09203, 2017.

[LSJR16] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. Gradient descent converges to minimizers.
arXiv preprint arXiv:1602.04915, 2016.

[MM17] M. Mondelli and A. Montanari. Fundamental limits of weak recovery with applications to phase
retrieval. arXiv preprint arXiv:1708.05932, 2017.

[MSK17] R. Murray, B. Swenson, and S. Kar. Revisiting normalized gradient descent: Evasion of saddle
points. arXiv preprint arXiv:1711.05224, 2017.

[MWCC17] C. Ma, K. Wang, Y. Chi, and Y. Chen. Implicit regularization in nonconvex statistical esti-
mation: Gradient descent converges linearly for phase retrieval, matrix completion and blind
deconvolution. arXiv preprint arXiv:1711.10467, 2017.

[MXM18] J. Ma, J. Xu, and A. Maleki. Optimization-based AMP for phase retrieval: The impact of
initialization and `2-regularization. arXiv preprint arXiv:1801.01170, 2018.

[NJS13] P. Netrapalli, P. Jain, and S. Sanghavi. Phase retrieval using alternating minimization. Advances
in Neural Information Processing Systems (NIPS), 2013.

[NP06] Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global perfor-
mance. Mathematical Programming, 108(1):177–205, 2006.

[QZEW17] Q. Qing, Y. Zhang, Y. Eldar, and J. Wright. Convolutional phase retrieval via gradient descent.
Neural Information Processing Systems, 2017.

[SCC18] P. Sur, Y. Chen, and E. J. Candès. The likelihood ratio test in high-dimensional logistic
regression is asymptotically a rescaled chi-square. accepted to Probability Theory and Related
Fields, 2018.

[SEC+15] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev. Phase retrieval
with application to optical imaging: a contemporary overview. IEEE signal processing magazine,
32(3):87–109, 2015.

[SJL17] M. Soltanolkotabi, A. Javanmard, and J. D. Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. arXiv preprint arXiv:1707.04926,
2017.

25

[SL16] R. Sun and Z.-Q. Luo. Guaranteed matrix completion via non-convex factorization. IEEE
Transactions on Information Theory, 62(11):6535–6579, 2016.

[Sol14] M. Soltanolkotabi. Algorithms and Theory for Clustering and Nonconvex Quadratic Program-
ming. PhD thesis, Stanford University, 2014.

[Sol17] M. Soltanolkotabi. Structured signal recovery from quadratic measurements: Breaking sample
complexity barriers via nonconvex optimization. arXiv preprint arXiv:1702.06175, 2017.

[SQW16] J. Sun, Q. Qu, and J. Wright. A geometric analysis of phase retrieval. In Information Theory
(ISIT), 2016 IEEE International Symposium on, pages 2379–2383. IEEE, 2016.

[SS12] W. Schudy and M. Sviridenko. Concentration and moment inequalities for polynomials of inde-
pendent random variables. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 437–446. ACM, New York, 2012.

[TBS+16] S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, and B. Recht. Low-rank solutions of linear
matrix equations via procrustes flow. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning-Volume 48, pages 964–973. JMLR. org, 2016.

[TV17] Y. S. Tan and R. Vershynin. Phase retrieval via randomized kaczmarz: Theoretical guarantees.
arXiv preprint arXiv:1706.09993, 2017.

[Ver12] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. Compressed
Sensing, Theory and Applications, pages 210 – 268, 2012.

[Wei15] K. Wei. Solving systems of phaseless equations via Kaczmarz methods: A proof of concept
study. Inverse Problems, 31(12):125008, 2015.

[WGE17] G. Wang, G. B. Giannakis, and Y. C. Eldar. Solving systems of random quadratic equations
via truncated amplitude flow. IEEE Transactions on Information Theory, 2017.

[WGSC17] G. Wang, G. B. Giannakis, Y. Saad, and J. Chen. Solving almost all systems of random
quadratic equations. arXiv preprint arXiv:1705.10407, 2017.

[YYF+17] Z. Yang, L. F. Yang, E. X. Fang, T. Zhao, Z. Wang, and M. Neykov. Misspecified nonconvex
statistical optimization for phase retrieval. arXiv preprint arXiv:1712.06245, 2017.

[ZB17] Y. Zhong and N. Boumal. Near-optimal bounds for phase synchronization. arXiv preprint
arXiv:1703.06605, 2017.

[ZCL16] H. Zhang, Y. Chi, and Y. Liang. Provable non-convex phase retrieval with outliers: Median
truncated Wirtinger flow. In International conference on machine learning, pages 1022–1031,
2016.

[Zha17] T. Zhang. Phase retrieval using alternating minimization in a batch setting. arXiv preprint
arXiv:1706.08167, 2017.

[ZL16] Q. Zheng and J. Lafferty. Convergence analysis for rectangular matrix completion using Burer-
Monteiro factorization and gradient descent. arXiv preprint arXiv:1605.07051, 2016.

[ZWGC17] L. Zhang, G. Wang, G. B. Giannakis, and J. Chen. Compressive phase retrieval via reweighted
amplitude flow. arXiv preprint arXiv:1712.02426, 2017.

[ZWL15] T. Zhao, Z. Wang, and H. Liu. A nonconvex optimization framework for low rank matrix
estimation. In Advances in Neural Information Processing Systems, pages 559–567, 2015.

[ZZLC17] H. Zhang, Y. Zhou, Y. Liang, and Y. Chi. A nonconvex approach for phase retrieval: Reshaped
wirtinger flow and incremental algorithms. Journal of Machine Learning Research, 2017.

26

