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Empirical Risk Minimization (ERM)

Given a set of data M,

L 1
minimize, f(x) = N Z l(x; 2)
zeEM
Here, N = number of total samples.
e convex: least squares, logistic regression

e non-convex: PCA, training neural networks (focus of this talk)
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Distributed ERM

Distributed/Federated learning: due to privacy and scalability, data
are distributed at multiple locations / workers / agents.

Let M = U; M; be a data partition with equal splitting:
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n = number of agents

N/n = number of local samples
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Challenges in federated/decentralized learning

e Communication efficiency: limited bandwidth, stragglers, ...

e Heterogeneity: non-iid data and systems across the agents

e Privacy: does not come for free without sharing data
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Two distributed schemes

Server/client model

PS coordinates global information
sharing



Two distributed schemes

Server/client model

PS coordinates global information
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Network /decentralized model

agents share local information over a
graph topology



Communication efficiency



Communication efficiency

Communication cost = Communication rounds x Cost per roundJ

e Local method: perform more local computation to reduce
communication rounds, e.g. FedAvg (McMahan et al., 2016).
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Communication efficiency

Communication cost = Communication rounds x Cost per roundJ

e Local method: perform more local computation to reduce
communication rounds, e.g. FedAvg (McMahan et al., 2016).

e Communication compression: compress the message into fewer
bits, e.g. sparsification or quantization (Alistarh et al., 2017).
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We will focus on the latter, which are particularly suitable for
bandwidth-limited environments.



Communication compression

Communication compression is a popular approach to reduce
communication cost (e.g., (Alistarh et al., 2017); (Koloskova et al., 2019)).
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Communication compression

Communication compression is a popular approach to reduce
communication cost (e.g., (Alistarh et al., 2017); (Koloskova et al., 2019)).
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e random sparsification: « = k/d measures the compression ratio.

e Other examples: random quantization, top quantization, etc....



A prelude: what should we compress?
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A prelude: what should we compress?
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A prelude: what should we compress?
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Somewhat surprisingly, direct compression may not work! )




A counter-example

Consider n = 3 and let f;(z) = (a] «)? + 3|z, where
a; = (-4,3,3)", ay = (3,-4,3)" and a3 = (3,3,-4) .
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A counter-example

Consider n = 3 and let f;(z) = (a] «)? + 3|z, where
a; = (-4,3,3)", ay = (3,-4,3)" and a3 = (3,3,-4) .

o Let 2 = (b, b,b), and the compressor be top;,
V(%) =b(-15,13,13)"  — C(Vfi(z")) = b(~15,0,0)"
Vfa(x®) = b(13,-15,13)" —  C(V/fa(x°)) = b(0,—15,0)"
Vfs(x®) =b(13,13,-15)7  —  C(Vf3(z")) = b(0,0,—15)"



A counter-example

Consider n = 3 and let f;(z) = (a] «)? + 3|z, where
a; = (-4,3,3)", ay = (3,-4,3)" and a3 = (3,3,-4) .
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o Let 2 = (b, b,b), and the compressor be top;,
Vi(x) =b(-15,13,13)" —  C(Vfi(z")) = b(—15,0,0)"
Vfa(x®) = b(13,-15,13)" —  C(V/fa(x°)) = b(0,—15,0)"
Vfs(x®) =b(13,13,-15)7  —  C(Vf3(z")) = b(0,0,—15)"

e The next iteration
3
1
1_ .0 0V 0
@ =2~y ;:1 C(Vfi(z")) = (1+5n)z

and then x' = (1 + 5n)'z° diverges exponentially.



A better scheme: shift compression

(Stich et al., 2018; Richtérik et al., 2021)

e The PS updates the model:

— gl is the compressed surrogate of V f;(x!)

T

10



A better scheme: shift compression

(Stich et al., 2018; Richtarik et al., 2021)
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e The PS updates the model:
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o Clients update g} with a shift compression:
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g =gl +C(Vfi(x') —gl)

difference compression

— gl is constructed accumulatively over time
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Let's revisit the example

e Let 2° = (b,b,b), and the compressor be top1, g7 = C(V f;(z?)),
and the first iteration is still ' = (1 4 5n)z".

11



Let's revisit the example

e Let 2° = (b,b,b), and the compressor be top1, g7 = C(V f;(z?)),
and the first iteration is still ' = (1 4 5n)z".

e Error feedback:
—757

Vfi(z') —gf =b [13(1+5n)
13(1 + 5n)

11



Let's revisit the example

e Let 2° = (b,b,b), and the compressor be top1, g7 = C(V f;(z?)),
and the first iteration is still ' = (1 4 5n)z".

e Error feedback:

—757
Vii(z') — gt =b [13(1+5n)
13(1 + 57)
and as long as n < 13/30:
0
C(Vfi(z') —gi) =b [13(1+5n)
0

receiving information from coordinates other than the first one,
leading to a better compressed gradient!
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Let's revisit the example

e Let 2° = (b,b,b), and the compressor be top1, g7 = C(V f;(z?)),
and the first iteration is still ' = (1 4 5n)z".

e Error feedback:

—757
Vii(z') — gt =b [13(1+5n)
13(1 + 57)
and as long as n < 13/30:
0
C(Vfi(z') —gi) =b [13(1+5n)
0

receiving information from coordinates other than the first one,
leading to a better compressed gradient!

We'll consider algorithms using shift compression! )
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This talk: communication-compressed algorithms
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PS coordinates global information agents share local information over a
sharing graph topology
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This talk: communication-compressed algorithms

Server/client model

PS coordinates global information
sharing

Coping with privacy
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BEER: Fast Decentralized Nonconvex Optimization
with Communication Compression

Haoyu Zhao Boyue Li Zhize Li Peter Richtarik
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Decentralized nonconvex opt with compressed comm

—~ ey fi(x)
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e The mixing of information is characterized by a mixing matrix
W = [w;;] € R™*™ aligned with the network topology.
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Decentralized nonconvex opt with compressed comm

—~ e, fi(z)
OOt

e The mixing of information is characterized by a mixing matrix
W = [w;;] € R™*™ aligned with the network topology.
e The spectral quantity, which we call the spectral gap,

p21—[Ma(W) € (0,1]

captures how fast information mixes over the network.

Goal: design fast-converging algorithms with communication compressionJ
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Data heterogeneity

Entities g
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local obj. global obj.
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Data heterogeneity

Entities gg
e i @ g.
Sfels Users g
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Devices |

Heterogeneity measure

]
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Eil| Vfi(x) - Vf(x) |* < G2
——

——
local obj. global obj.

— G can be unbounded!
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Prior art
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CHOCO-SGD (Koloskova et al., 2019) / DeepSqueeze (Tang et al., 2019):
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CHOCO-SGD (Koloskova et al., 2019) / DeepSqueeze (Tang et al., 2019):

e slow convergence rates (need more communication rounds) and
e Incompatible with heterogeneity
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e Incompatible with heterogeneity

Can we converge at the rate O (1) under arbitrary heterogeneity? J
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CHOCO-SGD (Koloskova et al., 2019) / DeepSqueeze (Tang et al., 2019):
e slow convergence rates (need more communication rounds) and
e Incompatible with heterogeneity

Can we converge at the rate O (1) under arbitrary heterogeneity? J

Yes, by using gradient tracking!
16



Detour: DGD with gradient tracking

Centralized Gradient Descent (GD):

wt _ wtfl _ UVf(IBt71)
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Detour: DGD with gradient tracking

Centralized Gradient Descent (GD):

2t — i1 _ an(:Bt71)
Constant step size, linear convergence for strongly convex problems.
Decentralized Gradient Descent (DGD):

SCI; = Z]‘ wijwz_l —'f]Vfi(II)E_l)

mixing local gradient

Constant step size, does not converge!

At optimal point * : Vf(x*) =0, but Vf;(z*) #0 J

How do we fix this?
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DGD with gradient tracking

Use dynamic average consensus (Zhu and Martinez, 2010) to track the global
gradient st:

t_ =1 t
€T = E jwzﬂ’j —ns;
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mixing
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si = wyst ™+ Vhilel) - V(i)
mixing gradient tracking
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DGD with gradient tracking

Use dynamic average consensus (Zhu and Martinez, 2010) to track the global
gradient st:

t_ =1 t
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mixing
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mixing gradient tracking

This trick, and other alternatives, have been used extensively to fix the
non-convergence issue in decentralized optimization.
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DGD with gradient tracking

Use dynamic average consensus (Zhu and Martinez, 2010) to track the global
gradient st:

t_ =1 t
€T = E jwljwj —ns;

—_———
mixing

si=>_ wis; '+ Vi) = Vfil@i ™)

mixing

gradient tracking

This trick, and other alternatives, have been used extensively to fix the
non-convergence issue in decentralized optimization.

e EXTRA (Shi, Ling, Wu and Yin, 2015); NEXT (Di Lorenzo and Scutari, 2016);
NIDS (Li, Shi, Yan, 2017); ADD-OPT (Xi, Xin, and Khan, 2017); DIGING
(Nedic, Olshevsky, and Shi, 2017); DGD (Qu and Li, 2018);

® many, many more...
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BEER: gradient tracking + shift compression

X =[x1,xa, -+ ,@,]: local models.
VFE(X) = [Vfi(z1), Vfa(x2), -, Vfn(xn)]: local gradients.
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BEER: gradient tracking + shift compression

X =[x1,xa, -+ ,@,]: local models.
VFE(X) = [Vfi(z1), Vfa(x2), -, Vfn(xn)]: local gradients.
¢ model update:
t+1 _ oyt t o t
X =X"+yH'(W I)n‘(/;t
gradien

mixing

where H! is the accumulated compressed surrogate of X*¢, and V!
is the global gradient estimates across the agents.
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where H! is the accumulated compressed surrogate of X*t, and V!
is the global gradient estimates across the agents.

e gradient tracking:

Vil =V yGY W — 1)+ VF(X') - VF(XY),

mixing gradient tracking

where G? is the accumulated compressed surrogate of V.
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BEER: gradient tracking + shift compression

X =[x1,xa, -+ ,@,]: local models.
VFE(X) = [Vfi(z1), Vfa(x2), -, Vfn(xn)]: local gradients.
¢ model update:
1 _ oyt t o t
X" =X"4+~yH' (W —1I)—y V
mixing gradient

where H! is the accumulated compressed surrogate of X*¢, and V!
is the global gradient estimates across the agents.

e gradient tracking:

Vil =V yGY W — 1)+ VF(X') - VF(XY),

mixing gradient tracking

where G? is the accumulated compressed surrogate of V.

e Both H' and G are updated using shift compression.
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Theoretical convergence of BEER

Theorem (Zhao et al., 2022)
To achieve E||V f(x°"*%)||2 < &, BEER requires at most

1
o <p30«5>

communication rounds, without the bounded heterogeneity assumption.

Here, « is the compression ratio, 3 is the spectral gap of the network.
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Theoretical convergence of BEER

Theorem (Zhao et al., 2022)
To achieve E||V f(x°"*%)||2 < &, BEER requires at most

1
o <p3a6)

communication rounds, without the bounded heterogeneity assumption.
Here, « is the compression ratio, 3 is the spectral gap of the network.

e Assuming constant a and p, the convergence rate of BEER is

°(2)

e Our result can also be extended to using stochastic gradients.
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Theoretical convergence of BEER
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BEER converges at the rate O (1) under arbitrary heterogeneity! J
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BEER vs CHOCO-SGD

0 500 1,000 1,500 2,000
Communication rounds

=26 1
3
E —a BEER z 0.8 )
E 4| —o-cHoco-seD | z
B 2 0.6 |
= )
EC?O <o}
) = 04 b
22 1z
= z
E
'aE & 0.2 —a—BEER
E —o— CHOCO-SGD
‘

0

500 1,000 1,500 2,000
Communication rounds

Figure: Training gradient norm and testing accuracy against communication
rounds for classification on the unshuffled MNIST dataset using a simple neural
network. Both BEER and CHOCO-SGD employ the biased gsgd, compression
with b = 20.
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SoteriaFL: A Unified Framework for Private FL with
Communication Compression

Zhize Li Haoyu Zhao
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A little privacy, please

© MAZL ANDEZSON WINW ANDEZTOONS.COM

US State Privacy Legislation Tracker

“Before I write my name on the board, I'll need to know
how you're planning to use that data.”

Privacy guarantees are becoming increasingly critical!
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Protecting local privacy via differential privacy
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Introducing local differential privacy to guarantee the client privacy )
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Protecting local privacy via differential privacy
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Introducing local differential privacy to guarantee the client privacy

J
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Protecting local privacy via differential privacy
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Introducing local differential privacy to guarantee the client privacy
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Protecting local privacy via differential privacy
00 5 G ian
N :5@ %

:> Gaussian
mechamsm f:>
q Gaussian &
mechanlsm

Introducing local differential privacy to guarantee the client privacy

)

— used by Google, Apple, etc in products
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Warm-up: a direct compression approach (CDP-SGD)

Stochastic gradient :> [ rr?:cl:asrlma;:m J :> [Directcompressicf]
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Warm-up: a direct compression approach (CDP-SGD)

Stochastic gradient :> ‘ rr?:cfas::gm I :> l Directcompression'

Theorem (Li et al., 2022)
CDP-SGD achieves (e, )-LDP, and the utility
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within communication complexity on the order of
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Warm-up: a direct compression approach (CDP-SGD)

Stochastic gradient :> ‘ rr?:cfas::gm I :> ‘ Directcompression'

Theorem (Li et al., 2022)
CDP-SGD achieves (e, )-LDP, and the utility

BV f(e))? 5 L/ 1ol

me an

within communication complexity on the order of

2.2
3/2 3/2 d anm’=e€
n / o /

"N Tog(1/8) " log(1/6)"

log(1/6
o Larger 70‘%6( /9)
communication.

gives stronger privacy, worse accuracy, fewer
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Warm-up: a direct compression approach (CDP-SGD)

Stochastic gradient :> ‘ rr?:cfas::gm l :> l Directcompression\

Theorem (Li et al., 2022)
CDP-SGD achieves (e, )-LDP, and the utility

1 log(1
BV f(e))? 5 L/ 1ol
me an

within communication complexity on the order of

2

3 d anm?e
3/2 3/2
T log(1/8) T log(1/0)

log(1/6) . .
e Larger ¥———"— gives stronger privacy, worse accuracy, fewer

communication.
o Caveat: the communication complexity is O(m?) when the local
data size m is dominating.



Better compression and compute: a unified framework?

-~ 1% fi(z)
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e Compression: shift compression
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sparsification or quantization
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e Computation: stochastic local % E
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options, e.g. SGD, SVRG or SAGA @‘
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Better compression and compute: a unified framework?

—~ e, fi(z)
Is (w) -u, &
e Compression: shift compression
with many options, e.g.
sparsification or quantization ?
o s‘:\
e Computation: stochastic local % %
gradient estimators with many i) / file)
options, e.g. SGD, SVRG or SAGA é"

Can we develop a unified framework for private FL with compression,
with a characterization of the privacy-utility-communication trade-off?

J

27



SoteriaFL: a unified framework for compressed private FL

Local gradient Gaussian . . 5
‘ - —— Q ‘ mechanism ’ :> Shift compression :> Shift update

Highlights of SoteriaFL:
e Flexible local gradient estimators

e Protect local data privacy

SOTERIA e State-of-the-art shift compression scheme

GODDESS OF SAFETY

e Privacy-utility-communication trade-offs

28



Performance of SoteriaFL

Theorem (Li et al., 2022)

When n > 1/a3, SoteriaFL—with SGD, GD, SVRG, SAGA—achieves
(e,0)-LDP, and the utility

1 /dlog(1/9)
E output\ |12 < _~
Vs @2 s — |

with communication complexity on the order of

| d
3/2 3/2
n>“a”’“me Tog(1/3)"

e Communication complexity is linear in m, better than CDP-SGD!

e Our analysis applies to unbiased compressions, and adapts to other
gradient estimators too.
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Privacy-utility-communication trade-off

A r s
0*4 175 /L
c"\“’b L/) & \/a
e € <
'.0\\’0\ -'d\'b
N
€
\/ . 3/2
ommunication— log(1/9) omm““'Cation\a /
) /l05(1/9) - 1
Stronger privacy ¢ More compression va

e Stronger privacy, worse accuracy, fewer communication

e More compression, worse accuracy, fewer communication
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Numerical experiments

0.8
0.8 4
0.6 - 4
g 0.6 |- | g
g g M
= £ 04] A
B 04l —A-LDP-SGD i 2o —A—LDP-SGD -
S ~— LDP-SVRG & —— LDP-SVRE&:
-©- CDP-SGD —©= -SGD
02 ~£- SoteriaFL-SGD | 0.2 ~£=+ SoteriaFL-SGD |
—*— SoteriaFL-SVRG —*— SoteriaFL-SVRG
Il Il Il Il Il Il Il Il Il Il
0 50 100 150 0 0.5 1 1.5 2 2.5
Communication rounds Communication bits 108

Figure: Shallow NN training on the MNIST dataset under (1,10~3)-LDP.
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Summary

b 4
Iteration
complexity 1
CHOCO-SGD/DeepSqueeze
o( ﬁf,z> &V
> \’b(lc\}
1 uncompressed
3558 0 <7> . 3/2
€ mmunicatiOn\Oé
— > >
1/e 1/vVa
Provably efficient communication-compressed FL algorithms for
heterogeneous and private data!

Future work:

e Client-adaptive privacy-preserving decentralized algorithms under
data heterogeneity.



Thank you!
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