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Abstract
This paper concerns the central issues of model robustness and sample efficiency in offline reinforce-

ment learning (RL), which aims to learn to perform decision making from history data without active
exploration. Due to uncertainties and variabilities of the environment, it is critical to learn a robust
policy—with as few samples as possible—that performs well even when the deployed environment de-
viates from the nominal one used to collect the history dataset. We consider a distributionally robust
formulation of offline RL, focusing on tabular robust Markov decision processes with an uncertainty set
specified by the Kullback-Leibler divergence in both finite-horizon and infinite-horizon settings. To com-
bat with sample scarcity, a model-based algorithm that combines distributionally robust value iteration
with the principle of pessimism in the face of uncertainty is proposed, by penalizing the robust value
estimates with a carefully designed data-driven penalty term. Under a mild and tailored assumption of
the history dataset that measures distribution shift without requiring full coverage of the state-action
space, we establish the finite-sample complexity of the proposed algorithms. We further develop an
information-theoretic lower bound, which suggests that learning RMDPs is at least as hard as the stan-
dard MDPs when the uncertainty level is sufficient small, and corroborates the tightness of our upper
bound up to polynomial factors of the (effective) horizon length for a range of uncertainty levels. To the
best our knowledge, this provides the first provably near-optimal robust offline RL algorithm that learns
under model uncertainty and partial coverage.

Keywords: offline/batch reinforcement learning, distributional robustness, pessimism, model-based rein-
forcement learning, KL divergence uncertainty
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1 Introduction
Reinforcement learning (RL) concerns about finding an optimal policy that maximizes an agent’s expected
total reward in an unknown environment. A fundamental challenge of deploying RL to real-world applications
is the limited ability to explore or interact with the environment, due to resources, time, or safety constraints.
Offline RL, or batch RL, seeks to circumvent this challenge by resorting to history data—which are often
collected by executing some possibly unknown behavior policy in the past—with the hope that the history
data might already provide significant insights about the targeted optimal policy without further exploration
(Levine et al., 2020).

Besides maximizing the expected total reward, perhaps an equally important goal—to say the least—for
an RL agent is safety and robustness (Garcıa and Fernández, 2015), especially in high-stake applications such
as robotics, autonomous driving, clinical trials, financial investments, and so on (Choi et al., 2009; Schulman
et al., 2013). It has been observed that a standard RL agent trained in an ideal environment might be
extremely sensitive and fail catastrophically when the deployed environment is subject to small adversarial
perturbations (Zhang et al., 2020). Consequently, robust RL has attracted a surge of attentions with the
goal to learn an optimal policy that is robust to environment perturbations. In fact, providing robustness
guarantees becomes even more relevant in the offline setting, which can be formulated as robust offline RL,
since the history data is often inevitably collected from a timeframe where it is no longer reasonable to
assume model stillness, due to the highly non-stationary and time-varying dynamics of many real-world
applications. Altogether, this naturally leads to a question:

Can we learn a near-optimal policy which is robust with respect to uncertainties and variabilities of the
environments using as few history samples as possible?

1.1 Challenges and premises in robust offline RL
Despite significant amount of recent activities in robust RL and offline RL, addressing model uncertainty
and sample efficiency simultaneously remains challenging due to several key issues that we single out below.
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• Distribution shift. The history data is generated by following some behavior policy in an outdated
environment, which can result in a data distribution that is heavily deviated from the desired one, i.e.,
induced by the target policy in the deployed environment.

• Partial and limited coverage. The history data might only provide partial and limited coverage over
the entire state-action space, where the limited sample size leads to a poor estimate of the associated
model parameters, and consequently, unreliable policy learning outcomes.

Understanding the implications of—and designing algorithms that work around—these challenges play
a major role in advancing the state-of-the-art of robust offline RL. In particular, two prevalent algorithmic
ideas, distributional robustness and pessimism, are called out as our guiding principles.

• Distributional robustness. Instead of finding an optimal policy in a fixed environment, motivated by
the literature in distributionally robust optimization (Delage and Ye, 2010), one might seek to find a
policy that achieves the best worst-case performance for all the environments in some uncertainty set
around the offline environment, as formalized in the framework of robust RL (Iyengar, 2005; Nilim and
El Ghaoui, 2005).

• Pessimism. When the samples are scarce, it is wise to act with caution based on the principle of
pessimism, where one subtracts a penalty term—representing the confidence of the corresponding
estimate—from the value functions to avoid excessive risk. Encouragingly, pessimism has been recently
shown as an indispensable ingredient to achieve sample efficiency in offline RL without requiring full
coverage (Jin et al., 2021; Li et al., 2022; Rashidinejad et al., 2021), as long as the trajectory of the
behavior policy provides sufficient overlap with that of the target policy.

While these two ideas have been proven useful for robust RL and offline RL separately, tackling robust
offline RL needs novel ingredients that go significantly beyond a naïve combination of existing techniques.
This is because, in robust offline RL, one needs to handle the distribution shift induced not only by the
behavior policy, but also by model perturbations, thus the penalty term derived from the pessimism principle
in standard offline RL is no longer applicable. Indeed, while the value function of standard RL depends
linearly with respect to the transition kernel, the dependency between the nominal transition kernel and
the robust value function unfortunately becomes highly nonlinear—even without a closed-form expression—
making the control of statistical uncertainty extremely challenging in robust offline RL.

1.2 Main contributions
In this work, we provide an affirmative answer to the question raised earlier, by developing a provably efficient
model-based algorithm that learns a near-optimal distributionally-robust policy from a minimal number of
offline samples. Specifically, we consider a Robust Markov Decision Process (RMDP) with S states, A actions
in both the nonstationary finite-horizon setting (with horizon length H) and the discounted infinite-horizon
setting (with discount factor γ). Different from standard MDPs, RMDPs specify a family transition kernels,
which lie within an uncertainty set taken as a small ball of size σ around a nominal transition kernel with
respect to the Kullback-Leibler (KL) divergence. Given K episodes (resp. N transitions) of history data
drawn by following some behavior policy πb under the nominal transition kernel in the finite-horizon (resp.
infinite-horizon) setting, our goal is to learn the optimal robust policy π? in the maximin sense, which has
the best worst-case value for all the transition kernels within the uncertainty set (Iyengar, 2005; Nilim and
El Ghaoui, 2005). Our main results are summarized below.

• We introduce a notion called robust single-policy clipped concentrability coefficient C?rob ∈ [1/S,∞]
to quantify the quality of history data, which measures the distribution shift between the behavior
policy πb and the optimal robust policy π? in the presence of model perturbations, without requiring
full coverage of the entire state-action space by the behavior policy. In contrast, prior algorithms
(Panaganti and Kalathil, 2022; Yang et al., 2022; Zhou et al., 2021)—using simulator or offline data—
all require full coverage of the entire state-action space.

• We propose a novel pessimistic variant of distributionally robust value iteration with a plug-in esti-
mate of the nominal transition kernel (Iyengar, 2005; Nilim and El Ghaoui, 2005), called DRVI-LCB, by
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penalizing the robust value estimates with a carefully designed data-driven penalty term. We demon-
strate that DRVI-LCB finds an ε-optimal robust policy as soon as the sample size is above Õ

(
SC?robH

5

P?minσ
2ε2

)
for the finite-horizon setting and Õ

(
SC?rob

P?minσ
2(1−γ)4ε2

)
for the infinite-horizon setting, up to some loga-

rithmic factor after a burn-in cost independent of ε. Here, P ?min is the smallest positive state transition
probability of the optimal robust policy π? under the nominal kernel.

• To complement the upper bound, we further develop information-theoretic lower bounds for a range of
uncertainty levels, showing there exists some transition kernel such that at least Ω

(
SC?robH

4

ε2

)
samples

(resp. Ω
(

SC?rob
(1−γ)3ε2

)
samples) are needed to find an ε-optimal robust policy when the uncertainty level

σ . 1/H (resp. σ . (1 − γ)), and at least Ω
(
SC?robH

3

P?minσ
2ε2

)
samples (resp. Ω

(
SC?rob

P?minσ
2(1−γ)2ε2

)
samples)

are needed to find an ε-optimal robust policy when the uncertainty level σ � log(1/P ?min), regardless
of the choice of algorithms in the finite-horizon (resp. infinite-horizon) setting. Hence, this suggests
that learning RMDPs is at least as hard as the standard MDP (Li et al., 2022) when the uncertainty
level is sufficiently small, and corroborates the near-optimality of DRVI-LCB with respect to all key
parameters up to a polynomial factor of the horizon length H (resp. the effective horizon length 1

1−γ )
for a range of uncertainty levels (σ � log(1/P ?min)).

To the best of our knowledge, our paper is the first work to execute the principle of pessimism in a
data-driven manner for robust offline RL, leading to the first provably efficient algorithm that learns under
simultaneous model uncertainty and partial coverage of the history dataset. See Table 1 for a summary.

Comparison with prior art under full coverage. Prior works (Panaganti and Kalathil, 2022; Yang
et al., 2022; Zhou et al., 2021) have only addressed the infinite-horizon setting under full coverage of the
history data. Fortunately, our results also seamlessly cover this easier scenario, by replacing C?rob with A.
Specializing our result to this setting to facilitate comparison, DRVI-LCB finds an ε-optimal robust policy
with at most Õ

(
SA

P?min(1−γ)4σ2ε2

)
samples, which depends linearly with respect to the size of the state space

S (ignoring other parameters). In contrast, all prior works (Panaganti and Kalathil, 2022; Yang et al., 2022;
Zhou et al., 2021) incur sample complexities that scale at least quadratically with respect to the size of
the state space S. In addition, our bound improves the exponential dependency on 1

1−γ of Panaganti and
Kalathil (2022); Zhou et al. (2021) to a polynomial dependency, as well as the quadratic dependency on
1/Pmin (which satisfies Pmin ≤ P ?min) of Yang et al. (2022) to a linear one on 1/P ?min. These improvements
further corroborate the benefit of the proposed DRVI-LCB even under full coverage. See Table 2 for detailed
comparisons.

1.3 Related works
We shall focus on the closely related works on offline RL and distributionally robust RL.

Offline RL. Focusing on the task of learning an optimal policy from offline data, a significant amount of
prior arts sets to understand the sample complexity and efficacy of offline RL under different assumptions of
the history dataset. A bulk of prior results requires the history data to cover all the state-action pairs, under
assumptions such as uniformly bounded concentrability coefficients (Chen and Jiang, 2019; Munos, 2005)
and uniformly lower bounded data visitation distribution (Yin et al., 2021; Yin and Wang, 2021), where the
latter assumption is also related to studies of asynchronous Q-learning (Li et al., 2021). More recently, the
principle of pessimism has been investigated for offline RL in both model-based (Jin et al., 2021; Li et al.,
2022; Rashidinejad et al., 2021; Xie et al., 2021) and model-free algorithms (Kumar et al., 2020; Shi et al.,
2022; Yan et al., 2023), without the stringent requirement of full coverage. In particular, Li et al. (2022)
established the near-minimax optimality of a pessimistic variant of value iteration under the single-policy
clipped concentrability of history data, which inspired our algorithm design in the distributionally robust
setting.
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Horizon Algorithm Coverage Sample complexity Uncertainty level

infinite-horizon

DRVI-LCB
(this work) partial SC?rob

P?min(1−γ)4σ2ε2 full range

Lower bound
(this work) partial SC?rob

(1−γ)3ε2
σ . (1− γ)

Lower bound
(this work) partial SC?rob

P?min(1−γ)2σ2ε2 σ � log(1/P ?min)

finite-horizon

DRVI-LCB
(this work) partial SC?robH

5

P?minσ
2ε2

full range

Lower bound
(this work) partial SC?robH

4

ε2
σ . 1/H

Lower bound
(this work) partial SC?robH

3

P?minσ
2ε2

σ � log(1/P ?min)

Table 1: Our results for finding an ε-optimal robust policy in the infinite/finite-horizon robust MDPs with
an uncertainty set measured with respect to the KL divergence using history data under partial coverage.
The sample complexities included in the table are valid for sufficiently small ε, with all logarithmic factors
omitted. Here, σ is the uncertainty level, S is the size of the state space, H is the horizon length for the
finite-horizon setting, γ is the discount factor for the infinite-horizon setting, C?rob is the robust single-policy
clipped concentrability coefficient, and P ?min is the smallest positive state transition probability of the nominal
kernel visited by the optimal robust policy π?.

Distributionally robust RL. While distributionally robust optimization has been mainly investigated in
the context of supervised learning (Bertsimas et al., 2018; Blanchet and Murthy, 2019; Duchi and Namkoong,
2021; Gao, 2022; Rahimian and Mehrotra, 2019; Sinha et al., 2018), distributionally robust dynamic program-
ming has also attracted considerable amount of attention, e.g. Iyengar (2005); Nilim and El Ghaoui (2005);
Nilim and Ghaoui (2003); Xu and Mannor (2012), where natural robust extensions to the standard Bellman
machineries are developed under mild assumptions. Targeting robust MDPs, empirical and theoretical works
have been widely explored under different forms of uncertainty sets (Abdullah et al., 2019; Badrinath and
Kalathil, 2021; Derman and Mannor, 2020; Ding et al., 2023; Goyal and Grand-Clement, 2022; Ho et al.,
2018, 2021; Hou et al., 2020; Iyengar, 2005; Kaufman and Schaefer, 2013; Smirnova et al., 2019; Song and
Zhao, 2020; Tamar et al., 2014; Wang et al., 2022; Wolff et al., 2012; Xu and Mannor, 2012; Yang, 2017).
Nonetheless, the majority of prior theoretical analyses focus on planning with an exact knowledge of the
uncertainty set (Iyengar, 2005; Tamar et al., 2014; Xu and Mannor, 2012), or are asymptotic in nature (Roy
et al., 2017).

A number of robust RL algorithms were proposed recently with an emphasis on finite-sample performance
guarantees under different data generating mechanisms. Wang and Zou (2021) proposed a robust Q-learning
algorithm with an R-contamination uncertain set for the online setting, which achieves a similar bound as
its non-robust counterpart. Badrinath and Kalathil (2021) proposed a model-free algorithm for the online
setting with linear function approximation to cope with large state spaces. Panaganti and Kalathil (2022);
Yang et al. (2022) developed sample complexities for a model-based robust RL algorithm with a variety
of uncertainty sets where the data are collected using a generative model. In addition, Zhou et al. (2021)
examined the uncertainty set defined by the KL divergence for offline data with uniformly lower bounded
data visitation distribution. These works all require full coverage of the state-action space, whereas ours is
the first one to leverage the principle of pessimism in robust offline RL.

Since the first appearance of our paper on arXiv in August 2022, a few more papers have emerged that also
tackle the sample complexity of robust RL algorithms. For example, Wang et al. (2023a,b) developed finite-
sample complexity bounds for robust variants of Q-learning with the generative model when the uncertainty
set is measured by KL divergence; in particular, the improved bound of variance-reduced robust Q-learning
(Wang et al., 2023b) becomes independent of the size of the uncertainty set when it is sufficiently small with
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Problem type Algorithm Coverage Sample complexity

infinite-horizon

DRVI full S2A exp(O( 1
1−γ ))

(1−γ)4σ2ε2(Zhou et al., 2021)
REVI/DRVI full S2A exp(O( 1

1−γ ))
(1−γ)4σ2ε2(Panaganti and Kalathil, 2022)

DRVI full S2A
P 2

min(1−γ)4σ2ε2(Yang et al., 2022)
DRVI-LCB
(this work) full SA

P?min(1−γ)4σ2ε2

finite-horizon DRVI-LCB
(this work) full SAH5

P?minσ
2ε2

Table 2: Comparisons between our results and prior arts for finding an ε-optimal robust policy in the
infinite/finite-horizon robust MDPs with an uncertainty set measured with respect to the KL divergence
under full coverage of the history data. The sample complexities included in the table are valid for sufficiently
small ε, with all logarithmic factors omitted. Here, σ is the uncertainty level, S is the size of the state space,
A is the size of the action space, H is the horizon length for the finite-horizon setting, γ is the discount
factor for the infinite-horizon setting, P ?min is the smallest positive state transition probability of the nominal
kernel visited by the optimal robust policy π?, and Pmin is the smallest positive state transition probability of
the nominal kernel; it holds Pmin ≤ P ?min.

respect to the minimal support probability of the nominal kernel at a price of worse dependency with 1/P ?min.
Shi et al. (2023) provided near-optimal sample complexity bounds for model-based robust RL algorithms
with the generative model when the uncertainty set is measured by the total variation or chi-square distances,
which highlighted that different uncertainty sets can lead to drastically different sample complexities, and
hence, statistical consequences.

1.4 Notation and paper organization
Throughout this paper, we denote by ∆(S) the probability simplex over a set S, and introduce the notation
[H] := {1, · · · , H} for any positive integer H > 0. In addition, for any vector x =

[
x(s, a)

]
(s,a)∈S×A ∈ RSA

(resp. x =
[
x(s)

]
s∈S ∈ RS) that constitutes certain values for each state-action pair (resp. state), we

overload the notation by letting x2 =
[
x(s, a)2

]
(s,a)∈S×A (resp. x2 =

[
x(s)2

]
s∈S). Moreover, for any two

vectors x = [xi]1≤i≤n and y = [yi]1≤i≤n, the notation x ≤ y (resp. x ≥ y) means xi ≤ yi (resp. xi ≥ yi) for
all 1 ≤ i ≤ n. Finally, the Kullback-Leibler (KL) divergence for any two distributions P and Q is denoted
as KL(P ‖ Q).

The rest of this paper is organized as follows. Section 2 provides the backgrounds and introduces the
distributionally robust formulation of finite-horizon MDPs in the offline setting under partial coverage.
Section 3 presents the proposed algorithm and provides sample complexity guarantees. Section 4 develops
the corresponding results for the infinite-horizon setting. Section 5 demonstrate the performance of the
proposed algorithm through numerical experiments. Finally, we conclude in Section 6. The detailed proofs
are postponed to the appendix.

2 Problem formulation: episodic finite-horizon RMDPs

2.1 Basics of finite-horizon episodic tabular MDPs
Consider an episodic finite-horizon MDP, represented by M =

(
S,A, H, P := {Ph}Hh=1, {rh}Hh=1

)
, where

S = {1, · · · , S} and A = {1, · · · , A} are the finite state and action spaces, respectively, H is the horizon
length, Ph : S ×A → ∆(S) (resp. rh : S ×A → [0, 1]) denotes the probability transition kernel (resp. reward
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function) at step h (1 ≤ h ≤ H).1 For any transition kernel P , we introduce the S-dimensional distribution
vectors

Ph,s,a := Ph(· | s, a) ∈ [0, 1]1×S , ∀(h, s, a) ∈ [H]× S ×A (1)

to represent the probability transition vector in state s when taking action a at step h.
Denote by π = {πh}Hh=1 as the policy or action selection rule of an agent, where πh : S → ∆(A) specifies

the action selection probability over the action space; when the policy is deterministic, we slightly abuse
the notation and refer to πh(s) as the action selected by policy π in state s at step h. The value function
V π,P = {V π,Ph }Hh=1 of policy π with a transition kernel P is defined by

∀(h, s) ∈ [H]× S : V π,Ph (s) := Eπ,P

[
H∑
t=h

rt
(
st, at

) ∣∣∣ sh = s

]
, (2)

where the expectation is taken over the randomness of the trajectory {sh, ah, rh}Hh=1 generated by executing
policy π, namely, at ∼ πt(st), and st+1 ∼ Pt(· | st, at). Similarly, the Q-function Qπ,P = {Qπ,Ph }Hh=1 of policy
π is defined as

∀(h, s, a) ∈ [H]× S ×A : Qπ,Ph (s, a) := rh(s, a) + Eπ,P

[
H∑

t=h+1

rt(st, at)
∣∣∣ sh = s, ah = a

]
, (3)

where the expectation is again taken over the randomness of the trajectory.
Moreover, when the initial state s1 is drawn from a given distribution ρ, let dπ,Ph (s | ρ) and dπ,Ph (s, a | ρ)

denote respectively the state occupancy distribution and the state-action occupancy distribution induced by
π at time step h ∈ [H]. In particular, we often dropped the dependency with respect to ρ whenever it is
clear from the context, by simply writing dπ,Ph (s) := dπ,Ph (s | ρ) and dπ,Ph (s, a) := dπ,Ph (s, a | ρ), i.e.,

∀(h, s) ∈ [H]× S : dπ,Ph (s) := P(sh = s | s1 ∼ ρ, π, P ), (4a)

∀(h, s, a) ∈ [H]× S ×A : dπ,Ph (s, a) := P(sh = s | s1 ∼ ρ, π, P )πh(a | s), (4b)

which are conditioned on s1 ∼ ρ and the event that all actions and states are drawn according to policy π
and transition kernel P .

2.2 Distributionally robust MDPs
In this section, we focus on finite-horizon episodic distributionally robust MDPs (RMDPs), denoted by
Mrob =

(
S,A, H,Uσ(P 0), {rh}Hh=1

)
. Different from standard MDPs, we now consider an ensemble of proba-

bility transition kernels or models within an uncertainty set centered around a nominal one P 0 = {P 0
h}Hh=1,

where the distance between the transition kernels is measured in terms of the Kullback-Leibler (KL) di-
vergence. Specifically, given an uncertainty level σ > 0, the uncertainty set around P 0, which satisfies the
so-called (s, a)-rectangularity condition (Wiesemann et al., 2013), is specified as

Uσ(P 0) := ⊗ Uσ(P 0
h,s,a), Uσ(P 0

h,s,a) :=
{
Ph,s,a ∈ ∆(S) : KL

(
Ph,s,a ‖ P 0

h,s,a

)
≤ σ

}
, (5)

where ⊗ denote the Cartesian product. In words, the KL divergence between the true transition probability
vector and the nominal one at each state-action pair is at most σ; moreover, the RMDP reduces to the
standard MDP when σ = 0.

Instead of evaluating a policy in a fixed MDP, the performance of a policy in the RMDP is evaluated
based on its worst-case—i.e., smallest—value function over all the instances in the uncertainty set. That
is, we define the robust value function V π,σ = {V π,σh }Hh=1 and the robust Q-function Qπ,σ = {Qπ,σh }Hh=1

respectively as

∀(h, s, a) ∈ [H]× S ×A : V π,σh (s) := inf
P∈Uσ(P 0)

V π,Ph (s), Qπ,σh (s, a) := inf
P∈Uσ(P 0)

Qπ,Ph (s, a),

where the infimum is taken over the uncertainty set of transition kernels.
1Without loss of generality, we assume the reward function is deterministic, fixed, and normalized to be within [0, 1]; it is

straightforward to generalize our framework to incorporate random rewards with uncertainties.
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Optimal robust policy. For finite-horizon RMDPs, it has been established that there exists at least one
deterministic policy that maximizes the robust value function and the robust Q-function simultaneously
(Iyengar, 2005; Nilim and El Ghaoui, 2005). In view of this, we shall denote a deterministic policy π? =
{π?h}Hh=1 as an optimal robust policy throughout this paper. The resulting optimal robust value function
V ?,σ = {V ?,σh }Hh=1 and optimal robust Q-function Q?,σ = {Q?,σh }Hh=1 are denoted by

∀(h, s) ∈ [H]× S : V ?,σh (s) := V π
?,σ

h (s) = max
π

V π,σh (s), (6a)

∀(h, s, a) ∈ [H]× S ×A : Q?,σh (s, a) := Qπ
?,σ
h (s, a) = max

π
Qπ,σh (s, a). (6b)

Similar to (4), we adopt the following short-hand notation for the occupancy distributions associated
with the optimal policy:

∀(h, s) ∈ [H]× S : d?,Ph (s) := dπ
?,P
h (s), (7a)

∀(h, s, a) ∈ [H]× S ×A : d?,Ph (s, a) := dπ
?,P
h (s, a) = d?,Ph (s)1{a = π?h(s)}. (7b)

Robust Bellman equations. It turns out the Bellman’s principle of optimality can be extended naturally
to its robust counterpart (Iyengar, 2005; Nilim and El Ghaoui, 2005), which plays a fundamental role in
solving the RMDP. To begin with, for any policy π, the robust value function and robust Q-function satisfy
the following robust Bellman consistency equation:

∀(h, s, a) ∈ [H]× S ×A : Qπ,σh (s, a) = rh(s, a) + inf
P∈Uσ(P 0

h,s,a)
PV π,σh+1. (8)

Additionally, the optimal robust Q-function obeys the robust Bellman optimality equation:

∀(h, s, a) ∈ [H]× S ×A : Q?,σh (s, a) = rh(s, a) + inf
P∈Uσ(P 0

h,s,a)
PV ?,σh+1, (9)

which can be solved efficiently via a robust variant of value iteration when the RMDP is known (Iyengar,
2005; Nilim and El Ghaoui, 2005).

2.3 Distributionally robust offline RL
Let D be a history/batch dataset, which consists of a collection ofK independent episodes generated based on
executing a behavior policy πb = {πb

h}Hh=1 in some nominal MDPM0 =
(
S,A, H, P 0 := {P 0

h}Hh=1, {rh}Hh=1

)
.

More specifically, for 1 ≤ k ≤ K, the k-th episode
(
sk1 , a

k
1 , . . . , s

k
H , a

k
H , s

k
H+1

)
is generated according to

sk1 ∼ ρb, akh ∼ πb
h(· | skh) and skh+1 ∼ P 0

h (· | skh, akh), 1 ≤ h ≤ H. (10)

Throughout the paper, ρb represents for some initial distribution associated with the history dataset. Then,
we introduce the following short-hand notation for the occupancy distribution w.r.t. πb:

∀(h, s, a) ∈ [H]× S ×A : dbh(s) := dπ
b,P 0

h (s), dbh(s, a) := dπ
b,P 0

h (s, a). (11)

Goal. With the history dataset D in hand, our goal is to find a near-optimal robust policy π̂, which satisfies

V π̂,σ1 (ρ) ≥ V ?,σ1 (ρ)− ε (12)

using as few samples as possible, where ε is the target accuracy level, and

V π,σ1 (ρ) := Es1∼ρ
[
V π,σ1 (s1)

]
and V ?,σ1 (ρ) := Es1∼ρ

[
V ?,σ1 (s1)

]
(13)

are evaluated when the initial state s1 is drawn from a given distribution ρ.
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Robust single-policy clipped concentrability. To quantify the quality of the history dataset to achieve
the set goal, it is desirable to capture the distribution mismatch between the history dataset and the desired
ones, inspired by the single-policy clipped concentrability assumption recently proposed by Li et al. (2022),
we introduce a tailored assumption for robust MDPs as follows.

Assumption 1 (Robust single-policy clipped concentrability). The behavior policy of the history dataset D
satisfies

max
(s,a,h,P )∈S×A×[H]×Uσ(P 0)

min
{
d?,Ph (s, a), 1

S

}
dbh(s, a)

≤ C?rob (14)

for some quantity C?rob ∈
[

1
S ,∞

]
. Here, we take C?rob to be the smallest quantity satisfying (14), and refer to

it as the robust single-policy clipped concentrability coefficient. In addition, we follow the convention 0/0 = 0.

In words, C?rob measures the worst-case discrepancy—between the optimal robust policy π? (from initial
state distribution ρ) in any model P ∈ Uσ(P 0) within the uncertainty set and the behavior policy πb (from
initial state distribution ρb) in the nominal model P 0—in terms of the clipped maximum density ratio of
the state-action occupancy distributions.

• Distribution shift. When the uncertainty level σ = 0, Assumption 1 reduces back to the single-policy
clipped concentrability in Li et al. (2022) for standard offline RL, a weaker notion that can be S times
smaller than the single-policy concentrability adopted in, e.g., Rashidinejad et al. (2021); Shi et al.
(2022); Xie et al. (2021). On the other end, whenever σ > 0, the proposed robust single-policy clipped
concentrability accounts for the distribution shift not only due to the policies in use (π? versus πb) with
respect to the respective initial state distributions, but also the underlying environments (P ∈ Uσ(P 0)
versus P 0), and therefore, is generally larger than that in the non-robust counterpart.

• Partial coverage. As long as C?rob is finite, i.e., C?rob < ∞, it admits the scenarios when the history
dataset only provides partial coverage over the entire state-action space, as long as the behavior policy
πb visits the state-action pairs that are visited by the optimal robust policy π? under at least one
model in the uncertainty set.

Remark 1. To facilitate comparison with prior works assuming full coverage, we can bound C?rob when the
batch dataset is generated using a simulator (Panaganti and Kalathil, 2022; Yang et al., 2022); namely, we
can generate sample state transitions based on the transition kernel of the nominal MDP for all state-action
pairs at all time steps. In this case, it amounts to that dbh(s, a) = 1

SA for all (s, a, h) ∈ S × A × [H], which

directly leads to the bound C?rob = max(s,a,h,P )∈S×A×[H]×Uσ(P 0)
min
{
d?,Ph (s,a), 1

S

}
dbh(s,a)

≤ 1/S
1/(SA) = A.

3 Algorithm and theory: episodic finite-horizon RMDPs
In this section, we present a model-based algorithm—namely DRVI-LCB—for robust offline RL in the finite-
horizon setting, along with its performance guarantees.

3.1 Building an empirical nominal MDP
For a moment, imagine we have access to N independent sample transitions D0 := {(hi, si, ai, s′i)}Ni=1 drawn
from the transition kernel P 0 of the nominal MDP M0, where each sample (hi, si, ai, s

′
i) indicates the

transition from state si to state s′i when action ai is taken at step hi, drawn according to s′i ∼ P 0
hi

(· | si, ai).
It is then natural to build an empirical estimate P̂ 0 = {P̂ 0

h}Hh=1 of P 0 based on the empirical frequencies of
state transitions, where

P̂ 0
h (s′ | s, a) :=

 1
Nh(s,a)

N∑
i=1

1
{

(hi, si, ai, s
′
i) = (h, s, a, s′)

}
, if Nh(s, a) > 0

0, else
(15)
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Algorithm 1: Two-fold subsampling trick for the finite-horizon setting.
1 input: a dataset D, probability δ.
2 data splitting: split D into two Dmain and Daux, where each contain K/2 trajectories.
3 lower bounding the number of transitions in Dmain: denote the number of transitions from

state s at step h in Dmain (resp. Daux) as Nmain
h (s) (resp. N aux

h (s)), construct

N trim
h (s) := max

{
N aux
h (s)− 10

√
N aux
h (s) log

HS

δ
, 0

}
; (17)

4 generate the subsampled dataset Dtrim: randomly sample the transitions (i.e., the quadruples
taking the form (s, a, h, s′)) from Dmain uniformly at random, such that for each (s, h) ∈ S × [H],
Dtrim contains min{N trim

h (s), Nmain
h (s)} sample transitions.

5 output: set D0 = Dtrim.

for any (h, s, a, s′) ∈ [H] × S × A × S. Here, Nh(s, a) denotes the total number of sample transitions from
(s, a) at step h as

Nh(s, a) :=

N∑
i=1

1
{

(hi, si, ai) = (h, s, a)
}
. (16)

While it is possible to directly break down the history dataset D into sample transitions, unfortunately,
the sample transitions from the same episode are not independent, significantly hurdling the analysis. To
alleviate this, Li et al. (2022, Algorithm 2) proposed a simple two-fold subsampling scheme to preprocess
the history dataset D and decouple the statistical dependency, resulting into a distributionally equivalent
dataset D0 with independent samples; for completeness, we provide the procedure in Algorithm 1. We have
the following lemma paraphrased from Li et al. (2022) for the obtained dataset D0.

Lemma 1 ((Li et al., 2022)). With probability at least 1−8δ, the output dataset from the two-fold subsampling
scheme in Li et al. (2022) is distributionally equivalent to D0, where {Nh(s, a)} are independent of the sample
transitions in D0 and obey

Nh(s, a) ≥ Kdbh(s, a)

8
− 5

√
Kdbh(s, a) log

KH

δ
. (18)

for all (h, s, a) ∈ [H]× S ×A.

Therefore, by invoking the two-fold sampling trick from Li et al. (2022), it is sufficient to treat the dataset
D0 with independent samples onwards with Lemma 1 in place, which greatly simplifies the analysis.

3.2 DRVI-LCB: a pessimistic variant of robust value iteration

Armed with the estimate P̂ 0 of the nominal transition kernel P 0, we are positioned to introduce our algorithm
DRVI-LCB, summarized in Algorithm 2.

Distributionally robust value iteration. Before proceeding, let us recall the update rule of the classical
distributionally robust value iteration (DRVI), which serves as the basis of our algorithmic development.
Given an estimate of the nominal MDP P̂ 0 and the radius σ of the uncertainty set, DRVI updates the robust
value functions according to

Q̂h(s, a) = rh(s, a) + inf
P∈Uσ(P̂ 0

h,s,a)
PV̂h+1, and V̂h(s) = max

a
Q̂h(s, a), (19)

10



Algorithm 2: Robust value iteration with LCB (DRVI-LCB) for robust offline RL.
1 input: a dataset D0; reward function r; uncertainty level σ.
2 initialization: Q̂H+1 = 0, V̂H+1 = 0.
3 for h = H, · · · , 1 do
4 Compute the empirical nominal transition kernel P̂ 0

h according to (15);
5 for s ∈ S, a ∈ A do
6 Compute the penalty term bh

(
s, a
)
according to (22);

7 Set Q̂h(s, a) according to (21);

8 for s ∈ S do
9 Set V̂h(s) = maxa Q̂h(s, a) and π̂h(s) = arg maxa Q̂h(s, a);

10 output: π̂ = {π̂h}1≤h≤H .

which works backwards from h = H to h = 1, with the terminal condition Q̂H+1 = 0. Due to strong duality
(Hu and Hong, 2013), the update rule of the robust Q-functions in (19) can be equivalently reformulated in
its dual form as

Q̂h(s, a) = rh(s, a) + sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V̂h+1

λ

))
− λσ

}
, (20)

which can be solved efficiently (Iyengar, 2005; Panaganti and Kalathil, 2022; Yang et al., 2022).

Our algorithm DRVI-LCB. Motivated by the principle of pessimism in standard offline RL (Jin et al.,
2021; Li et al., 2022; Rashidinejad et al., 2021; Xie et al., 2021), we propose to perform a pessimistic variant
of DRVI, where the update rule of DRVI-LCB at step h is modified as

Q̂h(s, a) = max

{
rh(s, a) + sup

λ≥0

{
−λ log

(
P̂ 0
h,s,a · exp

(
−V̂h+1

λ

))
− λσ

}
− bh

(
s, a
)
, 0

}
. (21)

Here, the robust Q-function estimate is adjusted by subtracting a carefully designed data-driven penalty
term bh(s, a) that measures the uncertainty of the value estimates. Specifically, for some δ ∈ (0, 1) and any
(s, a, h) ∈ S ×A× [H], the penalty term bh(s, a) is defined as

bh(s, a) =

min

{
cb
H
σ

√
log(KHSδ )

P̂min,h(s,a)Nh(s,a)
, H

}
if Nh(s, a) > 0,

H otherwise,
(22)

where cb is some universal constant, and

P̂min,h(s, a) := min
s′

{
P̂ 0
h (s′ | s, a) : P̂ 0

h (s′ | s, a) > 0
}
. (23)

The penalty term is novel and different from the one used in standard (no-robust) offline RL (Jin et al., 2021;
Li et al., 2022; Rashidinejad et al., 2021; Shi et al., 2022; Xie et al., 2021), by taking into consideration the
unique problem structure pertaining to robust MDPs. In particular, it tightly upper bounds the statistical
uncertainty which carries a non-linear and implicit dependency w.r.t. the estimated nominal transition
kernel induced by the uncertainty set U(P 0), addressing unique challenges not present for the standard
MDP case.

3.3 Performance guarantees
Before stating the main theorems, let us first introduce several important metrics.
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• P ?min, which only depends on the state-action pairs covered by the optimal robust policy π? under the
nominal model P 0:

P ?min := min
h,s,s′

{
P 0
h (s′|s, π?h(s)) : P 0

h (s′|s, π?h(s)) > 0
}
. (24)

In words, P ?min is the smallest positive state transition probability of the optimal robust policy π? under
the nominal kernel P 0.

• Similarly, we introduce P b
min which only depends on the state-action pairs covered by the behavior

policy πb under the nominal model P 0:

P b
min := min

h,s,a,s′

{
P 0
h (s′|s, a) : dbh(s, a) > 0, P 0

h (s′ | s, a) > 0
}
. (25)

In words, P b
min is the smallest positive state transition probability of the behavior policy πb under the

nominal kernel P 0.

• Finally, let dbmin denote the smallest positive state-action occupancy distribution of the behavior policy
πb under the nominal model P 0:

dbmin := min
h,s,a

{
dbh(s, a) : dbh(s, a) > 0

}
. (26)

We are now positioned to present the performance guarantees of DRVI-LCB for robust offline RL.

Theorem 1. Given an uncertainty level σ > 0, suppose that the penalty terms in Algorithm 2 are chosen
as (22) for sufficiently large cb. With probability at least 1− δ, the output π̂ of Algorithm 2 obeys

V ?,σ1 (ρ)− V π̂,σ1 (ρ) ≤ c0
H2

σ

√
SC?rob log2(KHS/δ)

P ?minK
, (27)

as long as the number of episodes K satisfies

K ≥ c1 log(KHS/δ)

dbminP
b
min

, (28)

where c0 and c1 are some sufficiently large universal constants.

Our theorem is the first to characterize the sample complexities of robust offline RL under partial coverage,
to the best of our knowledge (cf. Table 2). Theorem 1 shows that DRVI-LCB finds an ε-optimal robust policy
as soon as the sample size T = KH is above the order of

SC?robH
5

P ?minσ
2ε2︸ ︷︷ ︸

ε-dependent

+
H

dbminP
b
min︸ ︷︷ ︸

burn-in cost

, (29)

up to some logarithmic factor, where the burn-in cost is independent of the accuracy level ε. For sufficiently
small accuracy level ε, this results in a sample complexity of

Õ

(
SC?robH

5

P ?minσ
2ε2

)
. (30)

Our theorem suggests that the sample efficiency of robust offline RL critically depends on the problem
structure of the given RMDP (i.e. coverage of the optimal robust policy π? as measured by P ?min) as well as
the quality of the history dataset (as measured by C?rob). Given that C?rob can be as small as on the order of
1/S, the sample complexity requirement can exhibit a much weaker dependency with the size of the state
space S.

On the flip side, to assess the optimality of Theorem 1, we develop an information-theoretic lower bound
for robust offline RL as provided in the following theorem.
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Theorem 2. For any (H,S,C, P ?min, σ, ε) obeying H ≥ 2e8, C ≥ 4/S, P ?min ∈ (0, 1
H ], and ε ≤ H

384e6 log(1/P?min)
,

we can construct a collection of finite-horizon RMDPs {Mθ | θ ∈ Θ}, an initial state distribution ρ, and a
batch dataset with K independent sample trajectories each with length H satisfying 2C ≤ C?rob ≤ 4C, such
that

inf
π̂

max
θ∈Θ

Pθ
{
V ?,σ1 (ρ)− V π̂,σ1 (ρ) > ε

}
≥ 1

8
,

provided that

T = KH ≤

{
c1SC

?
robH

4

ε2 if 0 < σ ≤ 1
20H ,

c1SC
?
robH

3

P?minσ
2ε2 if log(1/P ?min)− 6 ≤ σ ≤ log(1/P ?min)− 5

. (31)

Here, c1 > 0 is some universal constant, the infimum is taken over all estimators π̂, and Pθ denotes the
probability when the RMDP isMθ.

The messages of Theorem 2 are two-fold.

• When the uncertainty level σ . 1/H is relatively small, Theorem 2 shows that no algorithm can
succeed in finding an ε-optimal robust policy when the sample complexity falls below the order of

Ω

(
SC?robH

4

ε2

)
,

which is at least as large as the sample complexity requirement of non-robust offline RL (Li et al., 2022).
Consequently, this leads to new insights regarding the statistical hardness of learning robust RMDPs
with the KL uncertainty set: it can be at least as hard as the standard MDPs (which corresponds to
σ = 0), for sufficiently small uncertainty levels.

• When the uncertainty level σ � log(1/P ?min), Theorem 2 shows that no algorithm can succeed in finding
an ε-optimal robust policy when the sample complexity falls below the order of

Ω

(
SC?robH

3

P ?minσ
2ε2

)
,

which confirms the near-optimality of DRVI-LCB up to a factor of H2 ignoring logarithmic factors.
Therefore, DRVI-LCB is the first provable algorithm for robust offline RL with a near-optimal sample
complexity without requiring the stringent full coverage assumption.

4 Robust offline RL for discounted infinite-horizon RMDPs
In this section, we turn to the studies of robust offline RL for discounted infinite-horizon MDPs.

4.1 Backgrounds on discounted infinite-horizon RMDPs
Similar to the finite-horizon setting, we consider the discounted infinite-horizon robust MDPs (RMDPs)
represented by Mrob = {S,A, γ,Uσ(P 0), r}. Here, S = {1, 2, · · · , S} is the state space, A = {1, 2, · · · , A}
is the action space, γ ∈ [0, 1) is the discounted factor, and r : S × A → [0, 1] is the intermediate reward
function. Different from the standard MDPs, Uσ(P 0) denote the set of possible transition kernels within
an uncertainty set centered around a nominal kernel P 0 : S × A → ∆(S) using the distance measured in
terms of the KL divergence. In particular, given an uncertainty level σ > 0, the uncertainty set around P 0

is specified as

Uσ(P 0) := ⊗ Uσ(P 0
s,a), Uσ(P 0

s,a) :=
{
Ps,a ∈ ∆(S) : KL

(
Ps,a ‖ P 0

s,a

)
≤ σ

}
, (32)

where we denote a vector of the transition kernel P or P 0 at (s, a) respectively as

Ps,a := P (· | s, a) ∈ R1×S , P 0
s,a := P 0(· | s, a) ∈ R1×S . (33)

Note that at any time step, the adversary of the nature chooses a history-independent component within
the fixed uncertainty set Uσ(P 0

s,a) defined in (30), conditioned only on the current state-action pair (s, a).
This is to ensure the computation tractability of finding such adversary.
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Policy and robust value/Q functions. A (possibly random) stationary policy π : S → ∆(A) represents
the selection rule of the agent, namely, π(a | s) denote the probability of choosing a in state s. With some
abuse of notation, let π(s) represent the action chosen by π when π is a deterministic policy. We define the
robust value function V π,σ and robust Q-function Qπ,σ respectively as

∀(s, a) ∈ S ×A : V π,σ(s) := inf
P∈Uσ(P 0)

V π,P (s), Qπ,σ(s, a) := inf
P∈Uσ(P 0)

Qπ,P (s, a),

where the value function V π,P and Q-function Qπ,P w.r.t. policy π and transition kernel P are defined
respectively by

∀s ∈ S : V π,P (s) := Eπ,P

[ ∞∑
t=0

γtr
(
st, at

) ∣∣∣ s0 = s

]
, (34)

∀(s, a) ∈ S ×A : Qπ,P (s, a) := Eπ,P

[ ∞∑
t=0

γtr(st, at)
∣∣∣ s0 = s, a0 = a

]
, (35)

where the expectation is taken over the randomness of the trajectory. In words, the robust value/Q functions
characterize the worst case over all the instances in the uncertainty set.

Optimal policy and robust Bellman equation. Similar to the finite-horizon RMDPs, it is well-known
that there exists at least one deterministic policy that maximizes the robust value function and Q-function
simultaneously in the infinite-horizon setting as well (Iyengar, 2005; Nilim and El Ghaoui, 2005). With this in
mind, we denote the optimal policy as π? and the corresponding optimal robust value function (resp. optimal
robust Q-function) as V ?,σ (resp. Q?,σ), namely

∀s ∈ S : V ?,σ(s) := V π
?,σ(s) = max

π
V π,σ(s), (36a)

∀(s, a) ∈ S ×A : Q?,σ(s, a) := Qπ
?,σ(s, a) = max

π
Qπ,σ(s, a). (36b)

In addition, we continue to admit the Bellman’s optimality principle, resulting in the following robust Bellman
consistency equation (resp. robust Bellman optimality equation):

∀(s, a) ∈ S ×A : Qπ,σ(s, a) = r(s, a) + γ inf
P∈Uσ(P 0

s,a)
PV π,σ, (37a)

∀(s, a) ∈ S ×A : Q?,σ(s, a) = r(s, a) + γ inf
P∈Uσ(P 0

s,a)
PV ?,σ. (37b)

Occupancy distributions. To begin, let ρ be some initial state distribution. We denote dπ,P (s | ρ) and
dπ,P (s, a | ρ) respectively as the state occupancy distribution and the state-action occupancy distribution
induced by policy π, namely

∀s ∈ S : dπ,P (s) := (1− γ)

∞∑
t=0

γtP(st = s | s0 ∼ ρ, π, P ), (38a)

∀(s, a) ∈ S ×A : dπ,P (s, a) := (1− γ)

∞∑
t=0

γtP(st = s | s0 ∼ ρ, π, P )π(a | s). (38b)

Here, the occupancy distributions are conditioned on s0 ∼ ρ and the sequence of actions and states are
generated based on policy π and transition kernel P . Next, applying (38) with π = π?, we adopt the the
following short-hand notation for the occupancy distributions associated with the optimal policy:

∀s ∈ S : d?,P (s) := dπ
?,P (s), (39a)

∀(s, a) ∈ S ×A : d?,P (s, a) := dπ
?,P (s, a) = d?,P (s)1{a = π?(s)}. (39b)
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4.2 Data collection and constructing the empirical MDP
Suppose that we observe a batch/history dataset D = {(si, ai, s′i)}1≤i≤N consisting of N sample transitions.
These transitions are independently generated, where the state-action pair is drawn from some behavior
distribution db ∈ ∆(S ×A), followed by a next state drawn over the nominal transition kernel P 0, i.e.,

(si, ai)
i.i.d.∼ db and s′i

i.i.d.∼ P 0(· | si, ai), 1 ≤ i ≤ N. (40)

Armed with these, we are ready to introduce the goal in the infinite-horizon setting. Given the history
dataset D obeying Assumption 2, for some target accuracy ε > 0, we aim to find a near-optimal robust
policy π̂, which satisfies

V π̂,σ(ρ) ≥ V ?,σ(ρ)− ε (41)

in a sample-efficient manner for some initial state distribution ρ.
Remark 2. For simplicity, we limit ourselves to the case when the history dataset consists of independent
sample transitions. It is not difficult to generalize to the Markovian data case, when we only have access to a
single trajectory of data generated by following some behavior policy, by combining the two-fold subsampling
trick in Li et al. (2022, Appendix D) with our analysis. We leave this extension to interested readers.

Similar to Assumption 1, we design the following robust single-policy clipped concentrability assumption
tailored for infinite-horizon RMDPs to characterize the quality of the history dataset.

Assumption 2 (Robust single-policy clipped concentrability for infinite-horizon MDPs). The behavior policy
of the history dataset D satisfies

max
(s,a,P )∈S×A×Uσ(P 0)

min
{
d?,P (s, a), 1

S

}
db(s, a)

≤ C?rob (42)

for some finite quantity C?rob ∈
[

1
S ,∞

)
. Following the convention 0/0 = 0, we denote C?rob to be the smallest

quantity satisfying (42), and refer to it as the robust single-policy clipped concentrability coefficient.

Remark 3. Similar to Remark 1, we can bound C?rob ≤ A when the batch dataset is generated using a
simulator (Panaganti and Kalathil, 2022; Yang et al., 2022). By combining this bound of C?rob with the
theoretical guarantees developed momentarily in Theorem 3, we obtain the comparison in Table 2.

Building an empirical nominal MDP Recalling that we have N independent samples in the dataset
D = {(si, ai, s′i)}1≤i≤N . First, we denote N(s, a) as the total number of sample transitions from any state-
action pair (s, a) as

N(s, a) :=

N∑
i=1

1
{

(si, ai) = (s, a)
}
. (43)

Armed with N(s, a), we construct the empirical estimate P̂ 0 of the nominal kernel P 0 by the visiting
frequencies of state-action pairs as follows:

P̂ 0(s′ | s, a) :=

 1
N(s,a)

N∑
i=1

1
{

(si, ai, s
′
i) = (s, a, s′)

}
, if N(s, a) > 0

0, else
(44)

for any (s, a, s′) ∈ S ×A× S.

4.3 DRVI-LCB for discounted infinite-horizon RMDPs
With the estimate P̂ 0 of the nominal transition kernel P 0 in hand, we are positioned to introduce our
algorithm DRVI-LCB for infinite-horizon RMDPs, which bears some similarity with the finite-horizon version
(cf. Algorithm 2), by taking the uncertainties of the value estimates into consideration throughout the value
iterations. The procedure is summarized in Algorithm 3.
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Algorithm 3: Robust value iteration with LCB (DRVI-LCB) for infinite-horizon RMDPs.
1 input: a dataset D; reward function r; uncertainty level σ; number of iterations M .
2 initialization: Q̂0(s, a) = 0, V̂0(s) = 0 for all (s, a) ∈ S ×A.
3 Compute the empirical nominal transition kernel P̂ 0 according to (44);
4 Compute the penalty term b(s, a) according to (48);
5 for m = 1, 2, · · · ,M do
6 for s ∈ S, a ∈ A do
7 Set Q̂m(s, a) according to (51);

8 for s ∈ S do
9 Set V̂m(s) = maxa Q̂m(s, a);

10 output: π̂ s.t. π̂(s) = arg maxa Q̂M (s, a) for all s ∈ S.

The pessimistic robust Bellman operator. At the core of DRVI-LCB is a pessimistic variant of the
classical robust Bellman operator in the infinite-horizon setting (Iyengar, 2005; Nilim and El Ghaoui, 2005;
Zhou et al., 2021), denoted as T σ(·) : RSA → RSA, which we recall as follows:

∀(s, a) ∈S ×A : T σ(Q)(s, a) := r(s, a) + γ inf
P∈Uσ(P 0

s,a)
PV, with V (s) := max

a
Q(s, a). (45)

Encouragingly, the robust Bellman operator shares the nice γ-contraction property of the standard Bellman
operator, ensuring fast convergence of robust value iteration by applying the robust Bellman operator (45)
recursively. In the robust offline setting, instead of recursing using the population robust Bellman operator,
we need to construct a pessimistic variant of the robust Bellman operator T̂ σpe(·) w.r.t. the empirical nominal
kernel P̂ 0 as follows:

∀(s, a) ∈ S ×A : T̂ σpe(Q)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV − b

(
s, a
)
, 0

}
, (46)

where b(s, a) denotes the penalty term that measures the data-dependent uncertainty of the value estimates.
To specify the tailored penalty term b(s, a) in (46), we first introduce an additional term

∀(s, a) ∈ S ×A : P̂min(s, a) := min
s′

{
P̂ 0(s′ | s, a) : P̂ 0(s′ | s, a) > 0

}
, (47)

which in words represents the smallest positive transition probability of the estimated nominal kernel
P̂ 0(s′ | s, a). Then for some δ ∈ (0, 1), some universal constant cb > 0, b(s, a) is defined as

b(s, a) =

min

{
cb

σ(1−γ)

√
log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min(s,a)N(s,a)

+ 4
σN(1−γ) ,

1
1−γ

}
+ 2

σN if N(s, a) > 0,

1
1−γ + 2

σN otherwise.
(48)

As shall be illuminated, our proposed pessimistic robust Bellman operator T̂ σpe(·) (cf. (46)) plays an
important role in DRVI-LCB. Encouragingly, despite the additional data-driven penalty term b(s, a), it still
enjoys the celebrated γ-contractive property, which greatly facilitates the analysis. Before continuing, we
summarize the γ-contraction property below, whose proof is postponed to Appendix C.1.

Lemma 2 (γ-Contraction). For any γ ∈ [0, 1), the operator T̂ σpe(·) (cf. (46)) is a γ-contraction w.r.t. ‖ · ‖∞.
Namely, for any Q1, Q2 ∈ RSA s.t. Q1(s, a), Q2(s, a) ∈

[
0, 1

1−γ
]
for all (s, a) ∈ S ×A, one has∥∥∥T̂ σpe(Q1)− T̂ σpe(Q2)

∥∥∥
∞
≤ γ ‖Q1 −Q2‖∞ . (49)

Additionally, there exists a unique fixed point Q̂?,σpe of the operator T̂ σpe(·) obeying 0 ≤ Q̂?,σpe (s, a) ≤ 1
1−γ for

all (s, a) ∈ S ×A.
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Our algorithm DRVI-LCB for infinite-horizon robust offline RL. Armed with the γ-contraction
property of the pessimistic robust Bellman operator T̂ σpe(·), we are positioned to introduce DRVI-LCB for
infinite-horizon RMDPs, summarized in Algorithm 3. Specifically, DRVI-LCB can be seen as a value iteration
algorithm w.r.t. T̂ σpe(·) (cf. (46)), whose update rule at the m-th iteration can be formulated as

Q̂m(s, a) = T̂ σpe(Q̂m−1)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV̂m−1 − b

(
s, a
)
, 0

}
, (50)

and V̂m(s) = maxa Q̂m(s, a) for all m = 1, 2, · · · ,M . In view of strong duality (Hu and Hong, 2013), the
above convex problem can be translated into a dual formulation, leading to the following equivalent update
rule:

Q̂m(s, a) = max

{
r(s, a) + sup

λ≥0

{
−λ log

(
P̂ 0
s,a · exp

(
−V̂m−1

λ

))
− λσ

}
− b
(
s, a
)
, 0

}
, (51)

which can be solved efficiently (Iyengar, 2005; Panaganti and Kalathil, 2022; Yang et al., 2022) as a one-
dimensional optimization problem.

To finish the description, we initialize the estimates of Q-function (Q̂0) and value function (V̂0) to be
zero and output the greedy policy of the final Q-estimates (Q̂M ) as the final policy π̂, namely,

π̂(s) = arg max
a

Q̂M (s, a) for all s ∈ S. (52)

It turns out that the iterates
{
Q̂m
}
m≥0

of DRVI-LCB converge linearly to the fixed point Q̂?,σpe owing to the
nice γ-contraction property outlined in Lemma 2. This fact is summarized in the following lemma, whose
proof is postponed to Appendix C.2.

Lemma 3. Let Q̂0 = 0. The iterates of Algorithm 3 obey

∀m ≥ 0 : Q̂m ≤ Q̂?,σpe and
∥∥Q̂m − Q̂?,σpe

∥∥
∞ ≤

γm

1− γ
. (53)

4.4 Performance guarantees
Before introducing the main theorems, we first define several essential metrics.

• dbmin: the smallest positive entry of the distribution db, i.e.,

dbmin := min
s,a

{
db(s, a) : db(s, a) > 0

}
. (54)

• P b
min: the smallest positive state transition probability under the nominal kernel P 0 in the region

covered by dataset D, i.e.,

P b
min := min

s,a,s′

{
P 0 (s′ | s, a) : db(s, a) > 0, P 0 (s′ | s, a) > 0

}
. (55)

Note that P b
min is determined only by the state-action pairs covered by the batch dataset D.

• P ?min: the smallest positive state transition probability of the optimal robust policy π? under the
nominal kernel P 0, namely

P ?min := min
s,s′

{
P 0
(
s′ | s, π?(s)

)
: P 0

(
s′ | s, π?(s)

)
> 0
}
. (56)

We also note that P ?min is determined only by the state-action pairs covered by the optimal robust
policy π? under the nominal model P 0.
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We are now positioned to introduce the sample complexity upper bound of DRVI-LCB, together with the
minimax lower bound, for solving infinite-horizon RMDPs. First, we present the performance guarantees of
DRVI-LCB for robust offline RL in the infinite-horizon case, with the proof deferred to Appendix C.3.

Theorem 3. Let c0 and c1 be some sufficiently large universal constants. Given an uncertainty level σ > 0,
suppose that the penalty terms in Algorithm 3 are chosen as (48) for sufficiently large cb. With probability
at least 1− δ, the output π̂ of Algorithm 3 obeys

V ?,σ(ρ)− V π̂,σ(ρ) ≤ c0
σ(1− γ)2

√√√√SC?rob log2
(

(1+σ)N3S
(1−γ)δ

)
P ?minN

, (57)

as long as the number of samples N satisfies

N ≥ c1 log(NS/δ)

dbminP
b
min

. (58)

The result directly indicates that DRVI-LCB can finds an ε-optimal policy as long as the sample size in
dataset D exceeds the order of (ignoring logarithmic factors)

SC?rob
P ?min(1− γ)4σ2ε2︸ ︷︷ ︸

ε-dependent

+
1

dbminP
b
min︸ ︷︷ ︸

burn-in cost

. (59)

Note that the burn-in cost is independent with the accuracy level ε, which tells us that the sample complexity
is no more than

Õ

(
SC?rob

P ?min(1− γ)4σ2ε2

)
(60)

as long as ε is small enough. The sample complexity of DRVI-LCB still dramatically outperforms prior works
under full coverage, which has been compared in detail in Section 1.2 (cf. Table 2). In particular, our sample
complexity produces an exponential improvement over Panaganti and Kalathil (2022); Zhou et al. (2021)
in terms of the dependency with the effective horizon 1

1−γ , which is especially significant for long-horizon
problems. Compared with Yang et al. (2022), our sample complexity is better by at least a factor of S/P ?min.
To achieve the claimed bound, we resort to a delicate technique called the leave-one-out analysis (Agarwal
et al., 2020; Li et al., 2022, 2020), by carefully designing an auxiliary set of RMDPs to decouple the statistical
dependency introduced across the iterates of pessimistic robust value iteration. This is the first time that the
leave-one-out analysis is applied to understanding the sample efficiency of model-based robust RL algorithms,
which is of potential independent interest to tighten the sample complexity of other robust RL problems.

To complement the upper bound, we develop an information-theoretic lower bound for robust offline RL
as provided in the following theorem whose proof can be found in Appendix C.4.

Theorem 4. For any (S, P ?min, C
?
rob, γ, σ, ε) obeying 1

1−γ ≥ 2e8, P ?min ∈
(
0, 1 − γ

]
, S ≥ log

(
1/P ?min

)
, C?rob ≥

8/S, and ε ≤ 1

384e6(1−γ) log
(

1/P?min

) , we can construct a collection of infinite-horizon RMDPs {Mθ | θ ∈ Θ},

an initial state distribution ρ, and a batch dataset with N independent samples, such that

inf
π̂

max
θ∈Θ

Pθ

{
V ?,σ(ρ)− V π̂,σ(ρ) > ε

)}
≥ 1

8
,

provided that

N ≤

{
c1SC

?
rob

(1−γ)3ε2 if 0 < σ ≤ 1−γ
20 ,

c1SC
?
rob

P?min(1−γ)2σ2ε2 if log
(
1/P ?min

)
− 6 ≤ σ ≤ log

(
1/P ?min

)
− 5

(61)

Here, c1 > 0 is some universal constant, the infimum is taken over all estimators π̂, and Pθ denotes the
probability when the RMDP isMθ.
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Similar to the finite-horizon setting, the messages of Theorem 4 are two-fold.

• When the uncertainty level σ . 1 − γ is relatively small, Theorem 4 shows that no algorithm can
succeed in finding an ε-optimal robust policy when the sample complexity falls below the order of

Ω

(
SC?rob

(1− γ)3ε2

)
,

which is at least as large as the sample complexity requirement of non-robust offline RL (Li et al.,
2022). Consequently, this again suggests that learning robust RMDPs with the KL uncertainty set
can be at least as hard as the standard MDPs (which corresponds to σ = 0), for sufficiently small
uncertainty levels.

• When the uncertainty level σ � log(1/P ?min), Theorem 4 shows that no algorithm can succeed in finding
an ε-optimal robust policy when the sample complexity falls below the order of

Ω

(
SC?rob

P ?min(1− γ)2σ2ε2

)
,

which directly confirms that DRVI-LCB is near-optimal up to a polynomial factor of the effective
horizon length 1

1−γ (cf. (59)). To the best of our knowledge, DRVI-LCB is the first provable algorithm
with near-optimal sample complexity for infinite-horizon robust offline RL. Moreover, the requirement
imposed on the history dataset is also much weaker than prior literature on robust offline RL (Yang
et al., 2022; Zhou et al., 2021), without the need of full coverage of the state-action space.

5 Numerical experiments
We conduct experiments on the gambler’s problem (Sutton and Barto, 2018; Zhou et al., 2021) to evaluate the
performance of the proposed algorithm DRVI-LCB, with comparisons to the robust value iteration algorithm
DRVI without pessimism (Panaganti and Kalathil, 2022). Our code can be accessed at:

https://github.com/Laixishi/Robust-RL-with-KL-divergence.

Gambler’s problem. In the gambler’s game (Sutton and Barto, 2018; Zhou et al., 2021), a gambler bets
on a sequence of coin flips, winning the stake with heads and losing with tails. Starting from some initial
balance, the game ends when the gambler’s balance either reaches 50 or 0, or the total number of bets H is
hit. This problem can be formulated as an episodic finite-horizon MDP, with a state space S = {0, 1, · · · , 50}
and the associated possible actions a ∈

{
0, 1, · · · ,min{s, 50− s}

}
at state s. Here, we set the horizon length

H = 100. Moreover, the parameter of the transition kernel, which is the probability of heads for the coin
flip, is fixed as phead and remains the same in all time steps h ∈ [H]. The reward is set as 1 when the state
reaches s = 50 and 0 for all other cases. In addition, suppose the initial state (i.e., the gambler’s initial
balance) distribution ρ is taken uniformly at random within S.

The benefit of pessimism. We first utilize a history dataset with N independent samples per state-action
pair and time step, generated from the nominal MDP with p0

head = 0.6. We evaluate the performance of the
learned policy π̂ using our proposed method DRVI-LCB with comparison to DRVI without pessimism, where
we fix the uncertainty level σ = 0.1 for learning the robust optimal policy. The experiments are repeated 10
times with the average and standard deviations reported. To begin with, Figure 1(a) plots the sub-optimality
value gap V ?,σ1 (s)−V π̂,σ1 (s) for every s ∈ S, when a sample size N = 100 is used to learn the robust policies.
It is shown that DRVI-LCB outperform the baseline DRVI uniformly over the state space when the sample
size is small, corroborating the benefit of pessimism in the sample-starved regime. Furthermore, Figure 1(b)
shows the sub-optimality gap V ?,σ1 (ρ) − V π̂,σ1 (ρ) with varying sample sizes N = 100, 300, 1000, 3000, 5000,
where the initial test distribution ρ is generated randomly.2 While the performance of DRVI-LCB and DRVI
both improves with the increase of the sample size, the proposed algorithm DRVI-LCB achieves much better
performance with fewer samples.

2The probability distribution vector ρ ∈ ∆(S) is generated as ρ(s) = us/
∑

s∈S us, where us is drawn independently from a
uniform distribution.
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Figure 1: Performance of the proposed algorithm DRVI-LCB using independent samples per state-action pair
and time step, where it shows better sample efficiency than the baseline algorithm DRVI without pessimism,
as well as better robustness in the learned policy compare to its non-robust counterpart.

The benefit of distributional robustness. To corroborate the benefit of distributional robustness, we
evaluate the performance of the policy learned from N = 1000 samples using DRVI-LCB on perturbed
environments with varying model parameters phead ∈ [0.25, 0.75]. We measure the practical performance
based on the ratio of winning (i.e., reaching the state s = 50) calculated from 3000 episodes. Figure 1(c)
illustrates the ratio of winning against the test probability of heads for the policies learned from DRVI-LCB
with σ = 0.01 and σ = 0.2, which are benchmarked against the non-robust optimal policy of the nominal
MDP using the exact model. It can be seen that the policies learned from DRVI-LCB deviate from the
non-robust optimal policy as σ increases, which achieves better worst-case rates of winning across a wide
range of perturbed environments. On the other end, while the non-robust policy maximizes the performance
when the test environment is close to the history one used for training, its performance degenerates to be
much worse than the robust policies when the probability of heads is mismatched significantly, especially
when phead drops below, say around, 0.5.

Impact of the number of states. We evaluate the performance of DRVI-LCB and DRVI when the number
of states varies within [25, 50, 100, 150, 200, 250], using a fixed sample size N = 300. Figure 1(d) show that
DRVI-LCB performs consistently better than DRVI as the number of states S increases, where the value gap
exhibits a linear scaling with respect to the number of states.

Performance using trajectory data. Instead of using independent samples, we now evaluate the pro-
posed algorithm using a dataset consisting of K sample trajectories generated from a uniform random policy,
for the same setting of Figure 1(b). Figure 2 shows the sub-optimality value gap with respect to the num-
ber of trajectories K, where the performance of both DRVI-LCB and DRVI improves as K increases, and
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Figure 2: Performance of the proposed algorithm DRVI-LCB compared against DRVI using trajectory data.

DRVI-LCB achieves better performance especially when K is small, consistent with the observation under
independent data.

6 Conclusion
To accommodate both model robustness and sample efficiency, this paper proposes a distributionally robust
model-based algorithm for offline RL with the principle of pessimism. We study the finite-sample complexity
of the proposed algorithm DRVI-LCB, and establish an information-theoretic lower bound to benchmark its
near-optimality for a range of uncertainty levels. Numerical experiments are provided to demonstrate the
efficacy of the proposed algorithm. To the best our knowledge, this provides the first provably near-optimal
robust offline RL algorithm that learns under model perturbation and partial coverage. This work opens up
several interesting directions.

• Tightening the gap between upper and lower bounds. Our upper and lower bounds still leave room for
future improvements. For example, it is yet to establish the information-theoretic lower bound over the
full range of the uncertainty set, and close the gap between the upper and lower bounds with respect
to the horizon length.

• Model-free algorithms for robust offline RL. Can we design provably efficient model-free algorithms for
robust offline RL with partial coverage? Recent works (Wang et al., 2023a,b) in understanding robust
variants of Q-learning in the generative model might shed light on how to approach this question.

• Choice of uncertainty sets. Moreover, it is possible to extend our framework to handle uncertainty
sets defined using other distances such as the chi-square distance and the total variation distance in
a similar fashion. Shi et al. (2023) recently established near minimax-optimal sample complexities for
the total variation distance and the chi-square distance in the generative model setting, paving ways
to study these uncertainty sets in the offline setting.

• Adaptive tuning of the uncertainty set. In this work, we treat the radius of the uncertainty set as
a fixed, a priori specified parameter, and study the sample complexity of learning a robust optimal
policy with respect to the given uncertainty set modeling the sim-to-real gap. It is of great interest to
incorporate the tuning of the uncertainty set (both its size and metric) to complete the pipeline of the
algorithm design, which will require a different framework than the one adopted in the current paper.

We leave these questions to future investigations.
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A Preliminaries
Before starting, let us introduce some additional notation useful throughout the theoretical analysis. Let
ess inf X denote the essential infimum of a function/variable X.

A.1 Properties of the robust Bellman operator
To begin with, we introduce the following strong duality lemma which is widely used in distributionally
robust optimization when the uncertainty set is defined with respect to the KL divergence.

Lemma 4 ((Hu and Hong, 2013), Theorem 1). Suppose f(x) has a finite moment generating function in
some neighborhood around x = 0, then for any σ > 0 and a nominal distribution P 0, we have

sup
P∈Uσ(P 0)

EX∼P [f(X)] = inf
λ≥0

{
λ logEX∼P 0

[
exp

(
f(X)

λ

)]
+ λσ

}
. (62)

Armed with the above lemma, it is easily verified that for any positive constant M and a nominal
distribution vector P 0 ∈ R1×S supported over the state space S, if X(s) ∈ [0,M ] for all s ∈ S, then

inf
P∈Uσ(P 0)

PX = sup
λ≥0

{
−λ log

(
P 0 exp

(
−X
λ

))
− λσ

}
. (63)

For convenience, we introduce the following lemma, paraphrased from Zhou et al. (2021, Lemma 4) and
its proof, to further characterize several essential properties of the optimal dual value.

Lemma 5 ((Zhou et al., 2021)). Let X ∼ P be a bounded random variable with X ∈ [0,M ]. Let σ > 0 be
any uncertainty level and the corresponding optimal dual variable be

λ? ∈ arg max
λ≥0

f(λ, P ), where f(λ, P ) :=

{
−λ logEX∼P

[
exp

(
−X
λ

)]
− λσ

}
. (64)

Then the optimal value λ? obeys

λ? ∈
[
0,
M

σ

]
, (65)

where λ? = 0 if and only if

log
(
P(X = essinfX)

)
+ σ ≥ 0. (66)

Moreover, when λ? = 0, we have

lim
λ→0

f(λ, P ) = lim
λ→0

{
−λ logEX∼P

[
exp

(
−X
λ

)]
− λσ

}
= essinfX. (67)
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A.2 Concentration inequalities
In light of Lemma 5 (cf. 67), we are interested in comparing the values of essinfX when X is drawn from
the population nominal distribution or its empirical estimate. This is supplied by the following lemma from
Zhou et al. (2021).

Lemma 6 ((Zhou et al., 2021)). Let X ∼ P be a discrete bounded random variable with X ∈ [0,M ]. Let Pn
denote the empirical distribution constructed from n independent samples X1, X2, · · · , Xn, and let X̂ ∼ Pn.
Denote Pmin,X as the smallest positive probability Pmin,X := min{P(X = x) : x ∈ supp(X)}, where supp(X)
is the support of X. Then for any δ ∈ (0, 1), with probability at least 1− δ, we have

min
i∈[n]

Xi = essinfX̂ = essinfX, (68)

as long as

n ≥ − log(2/δ)

log(1− Pmin,X)
. (69)

We next gather a few elementary facts about the Binomial distribution, which will be useful throughout
the proof.

Lemma 7 (Chernoff’s inequality). Suppose N ∼ Binomial(n, p), where n ≥ 1 and p ∈ [0, 1). For some
universal constant cf > 0, we have

P (|N/n− p| ≥ pt) ≤ exp
(
−cfnpt2

)
, ∀t ∈ [0, 1]. (70)

Lemma 8 ((Shi et al., 2022, Lemma 8)). Suppose N ∼ Binomial(n, p), where n ≥ 1 and p ∈ [0, 1]. For any
δ ∈ (0, 1), we have

N ≥ np

8 log
(

1
δ

) if np ≥ 8 log

(
1

δ

)
, (71a)

N ≤

{
e2np if np ≥ log

(
1
δ

)
,

2e2 log
(

1
δ

)
if np ≤ 2 log

(
1
δ

) (71b)

hold with probability at least 1− 4δ.

A.3 Kullback-Leibler (KL) divergence
We next introduce some useful facts about the Kullback-Leibler (KL) divergence for two distributions P and
Q, denoted as KL(P ‖ Q). Denoting Ber(p)(resp. Ber(q)) as the Bernoulli distribution with mean p (resp. q),
we introduce

KL
(
Ber(p) ‖ Ber(q)

)
:= p log

p

q
+ (1− p) log

1− p
1− q

, (72)

which represents the KL divergence from Ber(p) to Ber(q). We now introduce the following lemma.

Lemma 9. For any p, q ∈
[

1
2 , 1
)
and p > q, it holds that

KL
(
Ber(p) ‖ Ber(q)

)
≤ KL

(
Ber(q) ‖ Ber(p)

)
≤ (p− q)2

p(1− p)
. (73)

Moreover, for any 0 ≤ x < y < q, it holds

KL (Ber (x) ‖ Ber(q)) > KL (Ber (y) ‖ Ber(q)) . (74)

Proof. The first half of this lemma is proven in Li et al. (2022, Lemma 10). For the latter half, it follows
from that the function

f(x, q) := KL (Ber (x) ‖ Ber(q))

is monotonically decreasing for all x ∈ (0, q], since its derivative with respect to x satisfies ∂f(x,q)
∂x = log x

q +

log 1−q
1−x < 0.
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B Analysis: episodic finite-horizon RMDPs

B.1 Proof of Theorem 1
Before starting, we introduce several additional notation that will be useful in the analysis. First, we denote
the state-action space covered by the behavior policy πb in the nominal model P 0 as

Cb =
{

(h, s, a) : dbh(s, a) > 0
}
. (75)

Moreover, we recall the definition in (23) and define a similar one based on the exact nominal model P 0 as

Pmin,h(s, a) := min
s′

{
P 0
h (s′ | s, a) : P 0

h (s′ | s, a) > 0
}
. (76)

Clearly, by comparing with the definitions (24) and (25), it holds that

P ?min = min
h,s

Pmin,h(s, π?h(s)), P b
min = min

(h,s,a)∈Cb
Pmin,h(s, a). (77)

For any time step h ∈ [H], we denote the set of possible state occupancy distributions associated with the
optimal policy π? in a model within the uncertainty set P ∈ Uσ

(
P 0
)
as

D?h :=

{[
d?,Ph (s)

]
s∈S

: P ∈ Uσ
(
P 0
)}

=

{[
d?,Ph

(
s, π?h(s)

)]
s∈S

: P ∈ Uσ
(
P 0
)}

, (78)

where the second equality is due to the fact that π? is chosen to be deterministic.
With these in place, the proof of Theorem 1 is separated into several key steps, as outlined below.

Step 1: establishing the pessimism property. To achieve this claim, we heavily count on the following
lemma whose proof can be found in Appendix B.2.

Lemma 10. Instate the assumptions in Theorem 1. Then for all (h, s, a) ∈ [H]×S×A, consider any vector
V ∈ RS independent of P̂ 0

h,s,a obeying ‖V ‖∞ ≤ H. With probability at least 1− δ, one has∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV

∣∣∣∣∣ ≤ bh(s, a) (79)

with bh(s, a) given in (22). Moreover, for all (h, s, a) ∈ Cb, with probability at least 1− δ, one has

Pmin,h(s, a)

8 log(KHS/δ)
≤ P̂min,h(s, a) ≤ e2Pmin,h(s, a). (80)

Armed with the above lemma, with probability at least 1− δ, we shall show the following relation holds

∀(s, a, h) ∈ S ×A× [H + 1] : Q̂h(s, a) ≤ Qπ̂,σh (s, a), V̂h(s) ≤ V π̂,σh (s), (81)

which means that Q̂h (resp. V̂h) is a pessimistic estimate of Qπ̂,σh (resp. V π̂,σh ). Towards this, it is easily
verified that the latter assertion concerning V π̂,σh is implied by the former, since

V̂h(s) = max
a

Q̂h(s, a) ≤ max
a

Qπ̂,σh (s, a) = V π̂,σh (s). (82)

Therefore, the remainder of this step focuses on verifying the former assertion in (81) by induction.

• To begin, the claim (81) holds at the base case when h = H+1, by invoking the trivial fact Q̂H+1(s, a) =

Qπ̂,σH+1(s, a) = 0.
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• Then, suppose that Q̂h+1(s, a) ≤ Qπ̂,σh+1(s, a) holds for all (s, a) ∈ S × A at some time step h ∈ [H], it
boils down to show Q̂h(s, a) ≤ Qπ̂,σh (s, a).

By the update rule of Q̂h(s, a) in Algorithm 2 (cf. line 7), the above relation holds immediately if
Q̂h(s, a) = 0 since Q̂h(s, a) = 0 ≤ Qπ̂,σh (s, a). Otherwise, Q̂h(s, a) is updated via

Q̂h(s, a) = rh(s, a) + sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a · exp

(
−V̂h+1

λ

))
− λσ

}
− bh(s, a)

(i)
= rh(s, a) + inf

P∈Uσ(P̂ 0
h,s,a)

PV̂h+1 − bh(s, a)

≤ rh(s, a) + inf
P∈Uσ(P 0

h,s,a)
PV̂h+1 +

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV̂h+1 − inf

P∈Uσ(P 0
h,s,a)

PV̂h+1

∣∣∣∣∣− bh(s, a)

(ii)

≤ rh(s, a) + inf
P∈Uσ(P 0

h,s,a)
PV π̂,σh+1 + 0

(iii)
= Qπ̂,σh (s, a), (83)

where (i) rewrites the update rule back to its primal form (cf. (19)), (ii) holds by applying (79) with
the condition (28) satisfied and the induction hypothesis V̂h+1 ≤ V π̂,σh+1, and lastly, (iii) follows by the
robust Bellman consistency equation (8).

Putting them together, we have verified the claim (81) by induction.

Step 2: bounding V ?,σh (s) − V π̂,σh (s). With the pessimism property (81) in place, we observe that the
following relation holds

0 ≤ V ?,σh (s)− V π̂,σh (s) ≤ V ?,σh (s)− V̂h(s) ≤ Q?,σh
(
s, π?h(s)

)
− Q̂h

(
s, π?h(s)

)
, (84)

where the last inequality follows from Q̂h
(
s, π?h(s)

)
≤ maxa Q̂h(s, a) = V̂h(s). Then, by the robust Bellman

optimality equation in (9) and the primal version of the update rule (cf. (19))

Q?,σh
(
s, π?h(s)

)
= rh

(
s, π?h(s)

)
+ inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σh+1,

Q̂h
(
s, π?h(s)

)
= rh

(
s, π?h(s)

)
+ inf
P∈Uσ

(
P̂ 0
h,s,π?

h
(s)

)PV̂h+1 − bh (s, π?h(s)) ,

we arrive at

V ?,σh (s)− V̂h(s) ≤ Q?,σh
(
s, π?h(s)

)
− Q̂h

(
s, π?h(s)

)
= inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σh+1 − inf
P∈Uσ

(
P̂ 0
h,s,π?

h
(s)

)PV̂h+1 + bh
(
s, π?h(s)

)
≤ inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σh+1 − inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV̂h+1

+

∣∣∣∣∣∣ inf
P∈Uσ

(
P̂ 0
h,s,π?

h
(s)

)PV̂h+1 − inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV̂h+1

∣∣∣∣∣∣+ bh
(
s, π?h(s)

)
(i)

≤ inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σh+1 − inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV̂h+1 + 2bh
(
s, π?h(s)

)
(ii)

≤ P̂ inf
h,s,π?h(s)

(
V ?,σh+1 − V̂h+1

)
+ 2bh

(
s, π?h(s)

)
, (85)
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where (i) holds by applying Lemma 2 (cf. (79)) since V̂h+1 is independent of P 0
h,s,π?h(s) by construction, and

(ii) arises from introducing the notation

P̂ inf
h,s,π?h(s) := argmin

P∈Uσ
(
P 0
h,s,π?

h
(s)

) PV̂h+1 (86)

and consequently,

inf
P∈Uσ

(
P 0
h,s,π?

h
(s)

)PV ?,σh+1 ≤ P̂
inf
h,s,π?h(s)V

?,σ
h+1, and inf

P∈Uσ
(
P 0
h,s,π?

h
(s)

)PV̂h+1 = P̂ inf
h,s,π?h(s)V̂h+1.

To continue, let us introduce some additional notation for convenience. Define a sequence of matrices
P̂ inf
h ∈ RS×S and vectors b?h ∈ RS for h ∈ [H], where their s-th rows (resp. entries) are given by[

P̂ inf
h

]
s,·

= P̂ inf
h,s,π?h(s), and b?h(s) = bh

(
s, π?h(s)

)
. (87)

Applying (85) recursively over the time steps h, h+ 1, · · · , H using the above notation gives

0 ≤ V ?,σh − V̂h ≤ P̂ inf
h

(
V ?,σh+1 − V̂h+1

)
+ 2b?h

≤ P̂ inf
h P̂ inf

h+1

(
V ?,σh+2 − V̂h+2

)
+ 2P̂ inf

h b?h+1 + 2b?h ≤ · · · ≤ 2

H∑
i=h

i−1∏
j=h

P̂ inf
j

 b?i , (88)

where we let
(∏i−1

j=i P̂
inf
j

)
= I for convenience.

For any d?h ∈ D?h (cf. (78)), taking inner product with (88) leads to

〈
d?h, V

?,σ
h − V̂h

〉
≤

〈
d?h, 2

H∑
i=h

i−1∏
j=h

P̂ inf
j

 b?i

〉
= 2

H∑
i=h

〈d?i , b?i 〉 , (89)

where

d?i :=

(d?h)>
i−1∏
j=h

P̂ inf
j

> ∈ D?i (90)

by the definition of D?i (cf. (78)) for all i = h+ 1, · · · , H.

Step 3: controlling 〈d?i , b?i 〉 using concentrability. Since 〈d?i , b?i 〉 =
∑
s∈S d

?
i (s)b

?
i (s), we shall divide

the discussion in two different cases.

• For s ∈ S where maxP∈Uσ(P 0) d
?,P
i

(
s, π?i (s)

)
= maxP∈Uσ(P 0) d

?,P
i (s) = 0, it follows from the definition

(cf. (78)) that for any d?i ∈ D?i , it satisfies that

d?i (s) = 0. (91)

• For s ∈ S where maxP∈Uσ(P 0) d
?,P
i

(
s, π?i (s)

)
= maxP∈Uσ(P 0) d

?,P
i (s) > 0, by the assumption in (14)

max
P∈Uσ(P 0)

min
{
d?,Pi

(
s, π?i (s)

)
, 1
S

}
dbi
(
s, π?i (s)

) = max
P∈Uσ(P 0)

min
{
d?,Pi (s), 1

S

}
dbi
(
s, π?i (s)

) ≤ C?rob <∞,

it implies that

dbi
(
s, π?i (s)

)
> 0 and

(
i, s, π?i (s)

)
∈ Cb. (92)
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Lemma 1 tells that with probability at least 1− 8δ,

Ni
(
s, π?i (s)

)
≥
Kdbi

(
s, π?i (s)

)
8

− 5

√
Kdbi

(
s, π?i (s)

)
log

KH

δ

(i)

≥
Kdbi

(
s, π?i (s)

)
16

(ii)

≥
K maxP∈Uσ(P 0) min

{
d?,Pi

(
s, π?i (s)

)
, 1
S

}
16C?rob

≥
K min

{
d?i (s),

1
S

}
16C?rob

, (93)

where (i) holds due to

Kdbi
(
s, π?i (s)

)
≥ c1

dbi
(
s, π?i (s)

)
log(KHS/δ)

dbminP
b
min

≥
c1 log KH

δ

P b
min

≥ c1 log
KH

δ
(94)

for some sufficiently large c1, where the first inequality follows from Condition (28), the second in-
equality follows from

dbmin = min
h,s,a

{
dbh(s, a) : dbh(s, a) > 0

}
≤ dbi

(
s, π?i (s)

)
(95)

and the last inequality follows from P b
min ≤ 1. In addition, (ii) follows from Assumption 1.

With this in place, we observe that the pessimistic penalty (see (22)) obeys

b?i (s) ≤ cb
H

σ

√√√√ log(KHSδ )

P̂min,i

(
s, π?i (s)

)
Ni
(
s, π?i (s)

) (i)

≤ 4cb
H

σ

√
log2(KHSδ )

Pmin,i

(
s, π?i (s)

)
Ni
(
s, π?i (s)

)
≤ 16cb

H

σ

√
C?rob log2 KHS

δ

Pmin,i

(
s, π?i (s)

)
K min

{
d?i (s),

1
S

} , (96)

where (i) holds by applying (80) in view of the fact that
(
i, s, π?i (s)

)
∈ Cb by (92), and the last inequality

holds by (93).

Combining the results in the above two cases leads to

∑
s∈S

d?i (s)b
?
i (s) ≤

∑
s∈S

16d?i (s)cb
H

σ

√
C?rob log2 KHS

δ

Pmin,i

(
s, π?i (s)

)
K min

{
d?i (s),

1
S

}
(i)

≤ 16cb
H

σ

√√√√∑
s∈S

d?i (s)
C?rob log2 KHS

δ

Pmin,i

(
s, π?i (s)

)
K min

{
d?i (s),

1
S

}√∑
s∈S

d?i (s)

≤ 32cb
H

σ

√
SC?rob log2 KHS

δ

Pmin,i

(
s, π?i (s)

)
K
, (97)

where (i) follows from the Cauchy-Schwarz inequality and the last inequality hold by the trivial fact∑
s∈S

d?i (s)

min
{
d?i (s),

1
S

} ≤∑
s∈S

d?i (s)

(
1

d?i (s)
+

1

1/S

)
=
∑
s∈S

1 +
1

S

∑
s∈S

d?i (s) ≤ 2S. (98)

Step 4: finishing up the proof. Then, inserting (97) back into (89) with h = 1 shows

〈
d?1, V

?,σ
1 − V̂1

〉
≤ 2

H∑
i=1

〈d?i , b?i 〉 ≤
H∑
i=1

64cb
H

σ

√
SC?rob log2 KH

δ

Pmin,i

(
s, π?i (s)

)
K
≤ c2

H2

σ

√
SC?rob log2 KH

δ

P ?minK
, (99)

where the last inequality holds by plugging in the relation P ?min ≤ Pmin,i

(
s, π?i (s)

)
for i = 1, . . . ,H by the

definition in (24) (see also (77)), and choosing c2 to be large enough. The proof is completed.
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B.2 Proof of Lemma 10
To begin, we shall introduce the following fact that

∀(h, s, a) ∈ Cb : Nh(s, a) ≥
c1 log KHS

δ

16Pmin,h(s, a)
≥ −

log 2KHS
δ

log(1− Pmin,h(s, a))
, (100)

as long as Condition (28) holds. The proof is postponed to Appendix B.2.3. With this in mind, we shall
first establish the simpler bound (80) and then move on to show (79).

B.2.1 Proof of (80)

To begin, recall that (100) is satisfied for all (h, s, a) ∈ Cb. By Lemma 8 and the union bound, it holds that
with probability at least 1− δ that for all (h, s, a) ∈ Cb:

∀s′ ∈ S : P 0
h (s′ | s, a) ≥ P̂ 0

h (s′ | s, a)

e2
≥ P 0

h (s′ | s, a)

8e2 log(KHSδ )
. (101)

To characterize the relation between Pmin,h(s, a) and P̂min,h(s, a) for any (h, s, a) ∈ Cb, we suppose—without
loss of generality—that Pmin,h(s, a) = P 0

h (s1 | s, a) and P̂min,h(s, a) = P̂ 0
h (s2 | s, a) for some s1, s2 ∈ S. Then,

it follows that

Pmin,h(s, a) = P 0
h (s1 | s, a)

(i)

≥ P̂ 0
h (s1 | s, a)

e2
≥ P̂min,h(s, a)

e2
=
P̂ 0
h (s2 | s, a)

e2

(ii)

≥ P 0
h (s2 | s, a)

8e2 log(KHSδ )
≥ Pmin,h(s, a)

8e2 log(KHSδ )
,

where (i) and (ii) follow from (101).

B.2.2 Proof of (79)

The main goal of (79) is to control the gap between robust Bellman operations based on the nominal
transition kernel P 0

h,s,a and the estimated kernel P̂ 0
h,s,a by the constructed penalty term. Towards this, first

consider (h, s, a) /∈ Cb, which corresponds to the state-action pairs (s, a) that haven’t been visited at step h
by the behavior policy. In other words, Nh(s, a) = 0. In this case, (79) can be easily verified that∣∣∣∣∣ inf

P∈Uσ(P̂ 0
h,s,a)

PV − inf
P∈Uσ(P 0

h,s,a)
PV

∣∣∣∣∣ (i)
= inf
P∈Uσ(P 0

h,s,a)
PV ≤ ‖V ‖∞

(ii)

≤ H
(iii)
= bh(s, a), (102)

where (i) follows from the fact P̂ 0
h,s,a = 0 when Nh(s, a) = 0 (see (15)), (ii) arises from the assumption

‖V ‖∞ ≤ H, and (iii) holds by the definition of bh(s, a) in (22). Therefore, the remainder of the proof will
focus on verifying (79) for (h, s, a) ∈ Cb. Rewriting the term of interest via duality (cf. Lemma 4) yields∣∣∣∣∣ inf

P∈Uσ(P̂ 0
h,s,a)

PV − inf
P∈Uσ(P 0

h,s,a)
PV

∣∣∣∣∣
=

∣∣∣∣sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
− sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}∣∣∣∣ . (103)

Denoting

λ̂?h,s,a := arg max
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
, (104a)

λ?h,s,a := arg max
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}
, (104b)
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Lemma 5 (cf. (65)) then gives that

λ?h,s,a ∈
[
0,
H

σ

]
, λ̂?h,s,a ∈

[
0,
H

σ

]
, (105)

due to ‖V ‖∞ ≤ H. We shall control (103) in three different cases separately: (a) λ?h,s,a = 0 and λ̂?h,s,a = 0;
(b) λ?h,s,a > 0 and λ̂?h,s,a = 0 or λ?h,s,a = 0 and λ̂?h,s,a > 0; and (c) λ?h,s,a 6= 0 or λ̂?h,s,a 6= 0.

Case (a): λ?h,s,a = 0 and λ̂?h,s,a = 0. Applying Lemma 5 and Lemma 6 to (103) gives that, with probability
at least 1− δ

KH ,∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV

∣∣∣∣∣ (i)
=
∣∣∣essinfs∼P̂ 0

h,s,a
V (s)− essinfs∼P 0

h,s,a
V (s)

∣∣∣
(ii)
=
∣∣∣essinfs∼P 0

h,s,a
V (s)− essinfs∼P 0

h,s,a
V (s)

∣∣∣
= 0 ≤ bh(s, a). (106)

where (i) holds by Lemma 5 (cf. (67)) and (ii) arises from Lemma 6 (cf. (68)) given (100).

Case (b): λ?h,s,a > 0 and λ̂?h,s,a = 0 or λ?h,s,a = 0 and λ̂?h,s,a > 0. Towards this, note that two trivial
facts are implied by the definition (104):

sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}
≥ −λ̂?h,s,a log

(
P 0
h,s,a · exp

(
−V
λ̂?h,s,a

))
− λ̂?h,s,aσ, (107a)

sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
≥ −λ?h,s,a log

(
P̂ 0
h,s,a · exp

(
−V
λ?h,s,a

))
− λ?h,s,aσ. (107b)

To continue, first, we consider a subcase when λ?h,s,a = 0 and λ̂?h,s,a > 0. With probability at least 1− δ
KH ,

it follows from Lemma 5 (cf. (67)) and Lemma 6 (cf. (68)) that

sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
≥ lim
λ→0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
= essinfs∼P̂ 0

h,s,a
V (s) = essinfs∼P 0

h,s,a
V (s)

= sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}
, (108)

leading to∣∣∣∣sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
− sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}∣∣∣∣
(i)

≤

(
−λ̂?h,s,a log

(
P̂ 0
h,s,a · exp

(
−V
λ̂?h,s,a

))
− λ̂?h,s,aσ

)
−

(
−λ̂?h,s,a log

(
P 0
h,s,a · exp

(
−V
λ̂?h,s,a

))
− λ̂?h,s,aσ

)

≤ λ̂?h,s,a

∣∣∣∣∣log

(
P̂ 0
h,s,a · exp

(
−V
λ̂?h,s,a

))
− log

(
P 0
h,s,a · exp

(
−V
λ̂?h,s,a

))∣∣∣∣∣ , (109)

where (i) follows from the definition of λ̂?h,s,a in (104) and the fact in (107a).
We pause to claim that with probability at least 1− δ, the following bound holds

∀(h, s, a) ∈ Cb, V ∈ RS :

∣∣∣(P̂ 0
h,s,a − P 0

h,s,a

)
· exp

(−V
λ

)∣∣∣
P 0
h,s,a · exp

(−V
λ

) ≤

√
log(KHSδ )

cfNh(s, a)Pmin,h(s, a)
≤ 1

2
. (110)
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The proof is postponed to Appendix B.2.4. With (110) in place, we can further bound (109) (which is
plugged into (103)) as∣∣∣∣∣ inf
P∈Uσ(P̂ 0

h,s,a)
PV − inf

P∈Uσ(P 0
h,s,a)

PV

∣∣∣∣∣ ≤ λ̂?h,s,a
∣∣∣∣∣∣log

1 +

(
P̂ 0
h,s,a − P 0

h,s,a

)
· exp

(−V
λ

)
P 0
h,s,a · exp

(−V
λ

)
∣∣∣∣∣∣

(i)

≤ 2λ̂?h,s,a

∣∣∣(P̂ 0
h,s,a − P 0

h,s,a

)
· exp

(−V
λ

)∣∣∣
P 0
h,s,a · exp

(−V
λ

)
(ii)

≤ 2H

σ

√
log(KHSδ )

cfNh(s, a)Pmin,h(s, a)

≤ 2eH

σ

√
log(KHSδ )

cfNh(s, a)P̂min,h(s, a)
≤ cb

H

σ

√
log(KHSδ )

P̂min,h(s, a)Nh(s, a)
, (111)

where (i) follows from log(1 + x) ≤ 2|x| for any |x| ≤ 1
2 in view of (110), (ii) follows from (105) as well as

(110), and the last line follows from (80) and choosing cb to be sufficiently large.
Moreover, note that it can be easily verified that∣∣∣∣∣ inf

P∈Uσ(P̂ 0
h,s,a)

PV − inf
P∈Uσ(P 0

h,s,a)
PV

∣∣∣∣∣ ≤ H
due to the assumption ‖V ‖∞ ≤ H. Plugging in the definition of bh(s, a) in (22), combined with the above
bounds, we have that with probability at least 1− δ,∣∣∣∣∣ inf

P∈Uσ(P̂ 0
h,s,a)

PV − inf
P∈Uσ(P 0

h,s,a)
PV

∣∣∣∣∣ ≤ min

{
cb
H

σ

√
log(KHSδ )

Nh(s, a)P̂min,h(s, a)
, H

}
=: bh(s, a). (112)

The other subcase when λ?h,s,a > 0 and λ̂?h,s,a = 0 follows similarly from the bound∣∣∣∣sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
− sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}∣∣∣∣
≤ λ?h,s,a

∣∣∣∣∣log

(
P̂ 0
h,s,a · exp

(
−V
λ?h,s,a

))
− log

(
P 0
h,s,a · exp

(
−V
λ?h,s,a

))∣∣∣∣∣ , (113)

and therefore, will be omitted for simplicity.

Case (c): λ?h,s,a > 0 and λ̂?h,s,a > 0. It follows that∣∣∣∣sup
λ≥0

{
−λ log

(
P̂ 0
h,s,a exp

(
−V
λ

))
− λσ

}
− sup
λ≥0

{
−λ log

(
P 0
h,s,a exp

(
−V
λ

))
− λσ

}∣∣∣∣
(i)

≤ max

{(
−λ̂?h,s,a log

(
P̂ 0
h,s,a · e

−V
λ̂?
h,s,a

)
− λ̂?h,s,aσ

)
−
(
−λ̂?h,s,a log

(
P 0
h,s,a · e

−V
λ̂?
h,s,a

)
− λ̂?h,s,aσ

)
,

(
−λ?h,s,a log

(
P 0
h,s,a · e

−V
λ?
h,s,a

)
− λ?h,s,aσ

)
−
(
−λ?h,s,a log

(
P̂ 0
h,s,a · e

−V
λ?
h,s,a

)
− λ?h,s,aσ

)}

≤ max
λ∈{λ?h,s,a,λ̂

?
h,s,a}

λ

∣∣∣∣log

(
P̂ 0
h,s,a · exp

(
−V
λ

))
− log

(
P 0
h,s,a · exp

(
−V
λ

))∣∣∣∣ , (114)

where (i) can be verified by applying the facts in (107). Hence, the above term (114) can be controlled again
in a similar manner as (109); we omit the details for simplicity.
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Summing up. Combining the previous results in different cases by the union bound, with probability at
least 1− 10δ, it is satisfied that for all (h, s, a) ∈ Cb:∣∣∣∣∣ inf

P∈Uσ(P̂ 0
h,s,a)

PV − inf
P∈Uσ(P 0

h,s,a)
PV

∣∣∣∣∣ ≤ bh(s, a),

which concludes the proof.

B.2.3 Proof of (100)

Observe that for all (h, s, a) ∈ Cb:

Kdbh
(
s, a
) (i)

≥
c1d

b
h

(
s, a
)

log(KHS/δ)

dbminP
b
min

(ii)

≥ c1 log(KHS/δ)

P b
min

(iii)

≥ c1 log(KHS/δ)

Pmin,h(s, a)
, (115)

where (i) follows from Condition (28), (ii) follows from the definition that dbmin ≤ dbh(s, a) for (h, s, a) ∈ Cb,
and (iii) comes from (77).

Lemma 1 then tells that with probability at least 1− 8δ,

Nh(s, a) ≥
Kdbh

(
s, a
)

8
− 5

√
Kdbh

(
s, a
)

log
KH

δ

≥
Kdbi

(
s, a
)

16
≥

c1 log KH
δ

16Pmin,h(s, a)
, (116)

where the second line follows from the above relation as long as c1 is sufficiently large. The last inequality
of (100) then follows from

c1 log KHS
δ

16Pmin,h(s, a)
≥ −

log 2KHS
δ

log(1− Pmin,h(s, a))
, (117)

since x ≤ − log(1− x) for all x ∈ [0, 1].

B.2.4 Proof of (110)

Denoting
supp

(
P 0
h,s,a

)
:=
{
s′ ∈ S : P 0

h (s′ | s, a) > 0
}

as the support of P 0
h,s,a, we observe that∣∣∣(P̂ 0

h,s,a − P 0
h,s,a

)
· exp

(−V
λ

)∣∣∣
P 0
h,s,a · exp

(−V
λ

) ≤

∑
s′∈supp

(
P 0
h,s,a

) ∣∣∣P̂ 0
h (s′ | s, a)− P 0

h (s′ | s, a)
∣∣∣ exp

(
−V (s′)
λ

)
∑
s′∈supp

(
P 0
h,s,a

) P 0
h (s′ | s, a) exp

(
−V (s′)
λ

)
≤ max
s′∈supp

(
P 0
h,s,a

)
∣∣∣P̂ 0
h (s′ | s, a)− P 0

h (s′ | s, a)
∣∣∣

P 0
h (s′ | s, a)

, (118)

where the second line follows from
∑
i ai =

∑
i bi

ai
bi
≤ (maxi

ai
bi

)
∑
i bi for any positive sequences {ai, bi}i

obeying ai, bi > 0.
To continue, note that for any (h, s, a) ∈ Cb and s′ ∈ supp

(
P 0
h,s,a

)
, Nh(s, a)P̂ 0

h (s′ | s, a) follows the binomial

distribution Binomial
(
Nh(s, a), P 0

h (s′ | s, a)
)
. Thus, applying Lemma 7 with t =

√
log(KHSδ )

cfNh(s,a)P 0
h(s′ | s,a)

yields

P
(∣∣∣P̂ 0

h (s′ | s, a)− P 0
h (s′ | s, a)

∣∣∣ ≥ P 0
h (s′ | s, a)t

)
≤ exp

(
−cfNh(s, a)P 0

h (s′ | s, a)t2
)
≤ δ

KHS
, (119)
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as soon as t ≤ 1
2 , which can be verified by the fact (100) and Pmin,h(s, a) ≤ P 0

h (s′ | s, a) (cf. (76)), namely,

Nh(s, a) ≥
c1 log KHS

δ

16Pmin,h(s, a)
≥

log
(
KHS
δ

)
4cfPmin,h(s, a)

≥
log
(
KHS
δ

)
4cfP 0

h (s′ | s, a)
(120)

as long as c1 is sufficiently large.
Applying (119) and taking the union bound over s ∈ supp

(
P 0
h,s,a

)
lead to that with probability at least

1− δ
KH ,

max
s′∈supp

(
P 0
h,s,a

)
∣∣∣P̂ 0
h (s′ | s, a)− P 0

h (s′ | s, a)
∣∣∣

P 0
h (s′ | s, a)

≤ max
s′∈supp

(
P 0
h,s,a

) P 0
h (s′ | s, a)

√
log(KHSδ )

cfNh(s,a)P 0
h(s′ | s,a)

P 0
h (s′ | s, a)

= max
s′∈supp

(
P 0
h,s,a

)
√

log(KHSδ )

cfNh(s, a)P 0
h (s′ | s, a)

≤

√
log(KHSδ )

cfNh(s, a)Pmin,h(s, a)
≤ 1

2
,

where the last line uses again (120). Plugging this back into (118) and applying the union bound over
(h, s, a) ∈ Cb then completes the proof.

B.3 Proof of Theorem 2
The proof of Theorem 2 is inspired by the construction in Li et al. (2022) for standard MDPs, but is
considerably more involved to handle the uncertainty set unique in robust MDPs. In particular, we construct
two different classes of hard instances for different range of the uncertainty level σ to achieve a tighter σ-
dependent lower bound. In what follows, we start with the lower bound for the case when the uncertainty level
is relatively small, by first constructing some hard instances and then characterizing the sample complexity
requirements over these instances. We then move onto the case when the uncertainty level is relatively large,
and carry out a similar argument.

B.3.1 Construction of hard problem instances: small uncertainty level

Construction of a collection of hard MDPs To begin, let’s consider a collection Θ ⊆ {0, 1}H , consisting
of vectors with H dimensions. The Gilbert-Varshamov lemma (Gilbert, 1952) tells that there exists a set
Θ ⊆ {0, 1}H such that:

|Θ| ≥ eH/8 and ‖θ − θ̃‖1 ≥
H

8
for any θ, θ̃ ∈ Θ obeying θ 6= θ̃. (121)

Armed with Θ, we then generate a collection of RMDPs

Mrob(Θ) =
{
Mθ =

(
S,A,Uσ(P θ), {rh}Hh=1, H

)
| θ = [θh]1≤h≤H ∈ Θ

}
, (122)

where

S = {0, 1, . . . , S − 1}, and A = {0, 1}.

The transition kernel P θ = {P θhh }Hh=1 of the MDPMθ is specified as follows:

P θhh (s′ | s, a) =


p1(s′ = 0) + (1− p)1(s′ = 1) if (s, a) = (0, θh)
q1(s′ = 0) + (1− q)1(s′ = 1) if (s, a) = (0, 1− θh)
1(s′ = 1) if s = 1
q1(s′ = s) + (1− q)1(s′ = 1) if s > 1

(123)
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for any (s, a, s′, h) ∈ S ×A× S × [H]. Here, p and q are set according to

p = 1− c1
H

and q = p− c2ε

H2
(124)

for c1 = 1/8 and some c2 that satisfies
c2ε

H2
≤ c1

2H
≤ 1

8
. (125)

Clearly, it follows that

p > q ≥ 1

2
(126)

by construction. Furthermore, the MDP will stay in the state subset {0, 1} if its initial state falls in {0, 1}.
The reward function of these MDPs is set as

rh(s, a) =

{
1 if s = 0
0 if s > 0

(127)

for any (s, a, h) ∈ S ×A× [H].

Uncertainty set of the transition kernels. Denote the transition kernel vector as

P θh,s,a := P θh (· | s, a) ∈ [0, 1]1×S . (128)

For any (s, a, h) ∈ S×A× [H], the perturbation of the transition kernels inMθ is restricted to the following
uncertainty set

Uσ(P θ) := ⊗ Uσ
(
P θh,s,a

)
, Uσ(P θh,s,a) :=

{
Ph,s,a ∈ ∆(S) : KL

(
Ph,s,a ‖ P θh,s,a

)
≤ σ

}
(129)

with the uncertainty level σ satisfying

0 < σ ≤ 1

20H
. (130)

Before continuing, we shall introduce some notation for convenience. For any P θhh (· | s, a) in (123), we
define the limit of the perturbed kernel transiting to the next state s′ from the current state-action pair
(s, a) by

P θhh (s′ | s, a) := inf
Ph,s,a∈Uσ(P

θh
h,s,a)

Ph(s′ | s, a), (131)

and in particular, denote

p
h

:= P θhh (0 | 0, θh), q
h

:= P θhh (0 | 0, 1− θh). (132)

Armed with the above definitions, we introduce the following lemma which implies some useful properties
of the uncertainty set.

Lemma 11. The perturbed transition kernels obey

p
1

= p
2

= · · · p
H
, q

1
= q

2
= · · · q

H
. (133)

Denoting p
1

:= p? and q
1

:= q?, we have that when the uncertainty level σ satisfies (130),

p
?
≥ q

?
≥ 1− c3

H
and p

?
− q

?
≥ p− q ≥ 0 (134)

for constant c3 = 2c1 = 1
4 .

Proof. The proof is postponed to Appendix B.3.5.
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Value functions and optimal policies. We take a moment to derive the corresponding value functions
and identify the optimal policies. With some abuse of notation, for any MDPMθ, we denote π?,θ = {π?,θh }Hh=1

as the optimal policy, and let V π,σ,θh (resp. V ?,σ,θh ) represent the robust value function of policy π (resp. π?,θ)
at step h with uncertainty radius σ. Armed with these notation, we introduce the following lemma which
collects the properties concerning the value functions and optimal policies.

Lemma 12. Consider any θ ∈ Θ and any policy π. Then it holds that

V π,σ,θh (0) = 1 + xπ,θh V π,σ,θh+1 (0) (135)

for any h ∈ [H], where

xπ,θh = p
?
πh(θh | 0) + q

?
πh(1− θh | 0). (136)

In addition, for any h ∈ [H] and s ∈ S \ {0}, the optimal policies and the optimal value functions obey

π?,θh (θh | 0) = 1, V ?,σ,θh (0) ≥ 2
3 (H + 1− h), (137a)

π?,θh (θh | s) = 1, V ?,σ,θh (s) = 0, (137b)

provided that 0 < c1 ≤ 1/2.

Proof. See Appendix B.3.6.

Construction of the history/batch dataset. In the nominal environmentMθ, a batch dataset is gen-
erated consisting of K independent sample trajectories each of length H, where each trajectory is generated
according to (10), based on the following initial state distribution ρb and behavior policy πb = {πb

h}Hh=1:

ρb(s) = µ(s) and πb
h(a | s) =

1

2
, ∀(s, a, h) ∈ S ×A× [H]. (138)

Here, µ(s) is defined as the following state distribution supported on the state subset {0, 1}:

µ(s) =
1

CS
1(s = 0) +

(
1− 1

CS

)
1(s = 1), (139)

where 1(·) is the indicator function, and C > 0 is some constant that will determine the concentrability
coefficient C?rob (as we shall detail momentarily) and obeys

1

CS
≤ 1

4
. (140)

As it turns out, for any MDPMθ, the occupancy distributions of the above batch dataset are the same
(due to symmetry) and admit the following simple characterization:

db,P
θ

1 (0, a) =
1

2
µ(0), ∀a ∈ A, (141a)

µ(s)

2
≤ db,P

θ

h (s) ≤ 2µ(s),
µ(s)

4
≤ db,P

θ

h (s, a) ≤ µ(s), ∀(s, a, h) ∈ S ×A× [H]. (141b)

In addition, we choose the following initial state distribution

ρ(s) =

{
1, if s = 0

0, if s > 0
. (142)

With this choice of ρ, the single-policy clipped concentrability coefficient C?rob and the quantity C are
intimately connected as follows:

2C ≤ C?rob ≤ 4C. (143)

The proof of the claim (141) and (143) are postponed to Appendix B.3.7.
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B.3.2 Establishing the minimax lower bound: small uncertainty level

Towards this, we first make the following claim: for an arbitrary policy π obeying

H∑
h=1

∥∥πh(· | 0)− π?,θh (· | 0)
∥∥

1
≥ H

8
, (144)

one has 〈
ρ, V ?,σ,θ1 − V π,σ,θ1

〉
> ε. (145)

We shall postpone the proof of this claim to Appendix B.3.8.
Armed with the above claim and following the same arguments in (Li et al., 2022, Section C.3.2), we

complete the proof by observing: for some small enough constant c4, as long as the sample size is beneath

N = KH ≤ c4C
?
robSH

4

ε2
, (146)

then we necessarily have

inf
π̂

max
θ∈Θ

Pθ
{
V ?,σθ (ρ)− V π̂,σθ (ρ) ≥ ε

}
≥ 1

4
, (147)

where Pθ denote the probability conditioned on that the MDP isMθ. We omit the details for brevity and
complete the proof; interested readers can referred to (Li et al., 2022, Section C.3.2).

B.3.3 Construction of hard problem instances: large uncertainty level

We now move onto the case when the uncertainty level is relatively large, we construct another class of hard
instances, which is almost the same as the previous one except for the transition kernel.

Construction of a collection of hard MDPs. Let us introduce two MDPs{
Mφ =

(
S,A, Pφ = {Pφh }

H
h=1, {rh}Hh=1, H

)
|φ = {0, 1}

}
, (148)

where the state space is S = {0, 1, . . . , S − 1}, and the action space is A = {0, 1}. The transition kernel Pφ
of the constructed MDPMφ is defined as

Pφ1 (s′ | s, a) =


p1(s′ = 0) + (1− p)1(s′ = 1) if (s, a) = (0, φ)
q1(s′ = 0) + (1− q)1(s′ = 1) if (s, a) = (0, 1− φ)
1(s′ = 1) if s = 1
q1(s′ = s) + (1− q)1(s′ = 1) if s > 1

(149a)

and

Pφh (s′ | s, a) = 1(s′ = s), ∀(h, s, a) ∈ {2, . . . ,H} × S ×A. (149b)

In words, except at step h = 1, the MDP always stays in the same state. Additionally, the MDP will always
stay in the state subset {0, 1} if the initial distribution is supported only on {0, 1}, in view of (149). Here,
p and q are set to be

p = 1− α and q = 1− α−∆ (150)

for some H ≥ 2e8, α and ∆ obeying

0 < α ≤ 1

H
≤ 1

2e8
and ∆ ≤ α

2
≤ 1

2H
≤ 1

4e8
, (151)

where β is set as

β :=
log 1

α+∆

2
≥ log(2H/3)

2
≥ 4. (152)
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The assumption (151) immediately indicates the facts

1 > p > q ≥ 1

2
. (153)

Moreover, for any (h, s, a) ∈ [H]× S ×A, the reward function is defined as

rh(s, a) =

{
1 if s = 0
0 otherwise . (154)

Construction of the history/batch dataset. We utilize the same batch dataset described in Ap-
pendix B.3.1 and choose the same initial state distribution ρ in (142) As a result, for any MDP Mφ, the
occupancy distributions of the above batch dataset are the same (due to symmetry) and admit the following
simple characterization:

db,P
φ

1 (0, a) =
1

2
µ(0), ∀a ∈ A, (155a)

µ(s)

2
≤ db,P

φ

h (s) ≤ 2µ(s),
µ(s)

4
≤ db,P

φ

h (s, a) ≤ µ(s), ∀(s, a, h) ∈ S ×A× [H]. (155b)

The proof of the claim (155) is postponed to Appendix B.3.9.

Uncertainty set of the transition kernels. Denote the transition kernel vector as

Pφh,s,a := Pφh (· | s, a) ∈ [0, 1]1×S . (156)

For any (s, a, h) ∈ S×A× [H], the perturbation of the transition kernels inMφ is restricted to the following
uncertainty set

Uσ(Pφ) := ⊗ Uσ
(
Pφh,s,a

)
, Uσ(Pφh,s,a) :=

{
Ph,s,a ∈ ∆(S) : KL

(
Ph,s,a ‖ Pφh,s,a

)
≤ σ

}
, (157)

where the radius of the uncertainty set σ obeys:(
1− 3

β

)
log

(
1

α+ ∆

)
≤ σ ≤

(
1− 2

β

)
log

(
1

α+ ∆

)
. (158)

Before continuing, we shall introduce some notation for convenience. For any Pφh (· | s, a) in (149), we
define the limit of the perturbed kernel transiting to the next state s′ from the current state-action pair
(s, a) by

Pφh(s′ | s, a) := inf
Ph,s,a∈Uσ(Pφh,s,a)

Ph(s′ | s, a), (159)

and in particular, denote

p := Pφ1 (0 | 0, φ), q = Pφ1 (0 | 0, 1− φ). (160)

Armed with the above definitions, we introduce the following lemma which implies some useful properties
of the uncertainty set.

Lemma 13. When β satisfies (152) and the uncertainty level σ satisfies (158), the perturbed transition
kernels obey

p ≥ q ≥ 1

β
. (161)

Proof. See Appendix B.3.10.
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Value functions and optimal policies. Similar to Appendix B.3.1, for any MDPMφ, we denote π?,φ =

{π?,φh }Hh=1 as the optimal policy, and let V π,σ,φh (resp. V ?,σ,φh ) represent the robust value function of policy π
(resp. π?,φ) at step h with uncertainty radius σ. Then we introduce the following lemma which collects the
properties concerning the value functions and optimal policies.

Lemma 14. For any φ = {0, 1} and any policy π, defining

zπφ := pπ1(φ | 0) + qπ1(1− φ | 0), (162)

it holds that

V π,σ,φ1 (0) = 1 + zπφ(H − 1). (163)

In addition, the optimal policies and the optimal value functions obey

V ?,σ,φ1 (0) = 1 + p(H − 1), (164a)

∀h ∈ [H] \ {1} : V ?,σ,φh (0) = H − h+ 1, (164b)

∀h ∈ [H] : π?,φh (φ | 0) = 1, π?,φh (φ | 1) = 1, V ?,σ,φh (1) = 0. (164c)

The robust single-policy clipped concentrability coefficient C?rob obeys

2C ≤ C?rob ≤ 4C. (165)

Proof. See Appendix B.3.11.

In view of Lemma 14, we note that the smallest positive state transition probability of the optimal policy
π? under any MDPMφ with φ ∈ {0, 1} thus can be given by

P ?min := min
h,s,s′

{
Pφh

(
s′|s, π?,φh (s)

)
: Pφh

(
s′|s, π?,φh (s)

)
> 0
}

= Pφ1 (1|0, 1− φ) = 1− p, (166)

which obeys
α = P ?min ∈ (0, 1/H]

according to (150) and (151).

B.3.4 Establishing the minimax lower bound: large uncertainty level

We are now ready to establish the sample complexity lower bound. With the choice of the initial distribution
ρ in (142), for any policy estimator π̂ computed based on the batch dataset, we plan to control the quantity〈

ρ, V ?,σ,φ1 − V π̂,σ,φ1

〉
= V ?,σ,φ1 (0)− V π̂,σ,φ1 (0).

Step 1: converting the goal to estimate φ. We make the following claim which shall be verified in
Appendix B.3.12: given ε ≤ H

384e6 log( 1
α )
≤ H

384e6 log( 1
α+∆ )

, choosing

∆ =
128e6σ(1− q)ε

H
=

128e6σ(α+ ∆)ε

H
≤

128e6(α+ ∆)ε log
(

1
α+∆

)
H

≤ α

2
, (167)

which satisfies (151) with the aid of (158) and (150), it holds that for any policy π̂,〈
ρ, V ?,σ,φ1 − V π̂,σ,φ1

〉
≥ 2ε

(
1− π̂1(φ | 0)

)
. (168)

Armed with this relation between the policy π̂ and its sub-optimality gap, we are positioned to construct an
estimate of φ. We denote Pφ as the probability distribution when the MDP isMφ, for any φ ∈ {0, 1}.

Suppose for the moment that a policy estimate π̂ achieves

Pφ
{〈
ρ, V ?,σ,φ1 − V π̂,σ,φ1

〉
≤ ε
}
≥ 7

8
, (169)
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then in view of (168), we necessarily have π̂1(φ | 0) ≥ 1
2 with probability at least 7

8 . With this in mind, we
are motivated to construct the following estimate φ̂ for φ ∈ {0, 1}:

φ̂ = arg max
a∈{0,1}

π̂1(a | 0), (170)

which obeys

Pφ
{
φ̂ = φ

}
≥ Pφ

{
π̂1(φ | 0) > 1/2

}
≥ 7

8
. (171)

In what follows, we would like to show (171) cannot happen without enough samples, which would in turn
contradict (168).

Step 2: probability of error in testing two hypotheses. Armed with the above preparation, we shall
focus on differentiating the two hypotheses φ ∈ {0, 1}. Towards this, consider the minimax probability of
error defined as follows:

pe := inf
ψ

max
{
P0(ψ 6= 0), P1(ψ 6= 1)

}
, (172)

where the infimum is taken over all possible tests ψ constructed from the batch dataset.
Let µb,φ (resp. µb,φ

h (sh)) be the distribution of a sample trajectory {sh, ah}Hh=1 (resp. a sample (ah, sh+1)
conditional on sh) for the MDP Mφ. Following standard results from Tsybakov and Zaiats (2009, Theo-
rem 2.2) and the additivity of the KL divergence (cf. Tsybakov and Zaiats (2009, Page 85)), we obtain

pe ≥
1

4
exp

(
−KKL

(
µb,0 ‖ µb,1

))
≥ 1

4
exp

{
− 1

2
Kµ(0)

(
KL
(
P 0

1 (· | 0, 0) ‖ P 1
1 (· | 0, 0)

)
+ KL

(
P 0

1 (· | 0, 1) ‖ P 1
1 (· | 0, 1)

))}
, (173)

where we also use the independence of the K trajectories in the batch dataset in the first line. Here, the
second line arises from the chain rule of the KL divergence (Duchi, 2018, Lemma 5.2.8) and the Markov
property of the sample trajectories (recall that db,P

0

h = db,P
1

h ) according to

KL
(
µb,0 ‖ µb,1

)
=

H∑
h=1

E
sh∼db,P

0

h

[
KL
(
µb,0
h (sh) ‖ µb,1

h (sh)
)]

=
∑

a∈{0,1}

db,P
0

1 (0, a)KL
(
P 0

1 (· | 0, a) ‖ P 1
1 (· | 0, a)

)
=

1

2
µ(0)

∑
a∈{0,1}

KL
(
P 0

1 (· | 0, a) ‖ P 1
1 (· | 0, a)

)
,

where the penultimate equality holds by the fact that P 0
h (· | s, a) and P 1

h (· | s, a) only differ when h = 1 and
s = 0, and the last equality follows from (155).

It remains to control the KL divergence terms in (173). Given p ≥ q ≥ 1/2 (cf. (153)), applying Lemma 9
(cf. (73)) yields

KL
(
P 0

1 (· | 0, 0) ‖ P 1
1 (· | 0, 0)

)
= KL (p ‖ q) ≤ (p− q)2

(1− p)p
(i)
=

∆2

p(1− p)
(ii)
=

1282e12σ2(1− q)2ε2

H2p(1− p)
(iii)

≤ c1σ
2P ?minε

2

H2
, (174)

where (i) follows from the definition (150), (ii) holds by plugging in the expression of ∆ in (167), (iii) arises
from 1− q ≤ 2(1− p) = 2P ?min (see (151) and (166)), p > 1

2 , as long as c1 is a large enough constant. It can
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be shown that KL
(
P 0

1 (· | 0, 1) ‖ P 1
1 (· | 0, 1)

)
can be upper bounded in the same way. Substituting (174) back

into (173) demonstrates that: if the sample size is chosen as

KH ≤ H3SC?rob log 2

4c1P ?minσ
2ε2

, (175)

then one necessarily has

pe ≥
1

4
exp

{
− 1

2
Kµ(0) · 2c1σ

2P ?minε
2

H2

}
(i)
=

1

4
exp

{
−Kc1σ

2P ?minε
2

SCH2

}
(ii)

≥ 1

4
exp

{
−K 4c1σ

2P ?minε
2

SC?robH
2

}
≥ 1

8
, (176)

where (i) follows from (139) and (ii) holds by (165).

Step 3: putting things together. Finally, suppose that there exists an estimator π̂ such that

P0

{〈
ρ, V ?,σ,01 − V π̂,σ,01

〉
> ε
}
<

1

8
and P1

{〈
ρ, V ?,σ,11 − V π̂,σ,11

〉
> ε
}
<

1

8
.

Then Step 1 tells us that the estimator φ̂ defined in (170) must satisfy

P0

(
φ̂ 6= 0

)
<

1

8
and P1

(
φ̂ 6= 1

)
<

1

8
,

which cannot happen under the sample size condition in (175) to avoid contradition with (176). The proof
is thus finished.

B.3.5 Proof of Lemma 11

First, (133) can be easily verified by the definition of p
h
and q

h
in (132) and the transition P θhh in (123).

Proof of the first inequality in (134). It is observed that

KL

(
Ber

(
1− 2c1

H

)
‖ Ber(q)

)
=

(
1− 2c1

H

)
log

(
1− 2c1

H

q

)
+

2c1
H

log

(
2c1
H

1− q

)

=

(
1− 2c1

H

)
log

(
1 +

1− q − 2c1
H

q

)
+

2c1
H

log

(
1 +

q − 1 + 2c1
H

1− q

)
(i)

≥
(

1− 2c1
H

) 1−q− 2c1
H

q

2q

1 + q − 2c1
H

1− 2c1
H

+
2c1
H
· 2
q − 1 + 2c1

H

1− q + 2c1
H

= (q − 1 +
2c1
H

)

[
−

1 + q − 2c1
H

2q2
+

4c1
H

1

1− q + 2c1
H

]
(ii)

≥ c1
2H

[
−1

(1− 3c1
2H )2

+
8

7

]
≥ 1

20H
≥ σ, (177)

where (i) holds by log(1 + x) ≥ x
2(1+x) when 0 ≤ x <∞ and log(1 + x) ≥ x

2
2+x
1+x when −1 < x ≤ 0 (Topsøe,

2007), and the penultimate inequality holds by 1− 3c1
2H ≥ 1− 3

256 ≥
63
64 . Here, (ii) can be verified by

−
1 + q − 2c1

H

2q2
≥ −1 + q

2q2
≥ −2

2q2

(iii)

≥ −1

(1− 3c1
2H )2

,

4c1
H

1

1− q + 2c1
H

(iv)

≥ 4c1
H

1
3c1
2H + 2c1

H

≥ 8

7
,

where (iii) holds by q ≥ 1− 3c1
2H , and (iv) arises from 0 ≤ 1− q ≤ 3c1

2H .

With above fact and KL
(
Ber

(
q
?

)
‖ Ber(q)

)
= σ in mind, applying Lemma 9 leads to q

?
≥ 1− 2c1

H .
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Proof of the second inequality in (134). First, observing the first claim in (134), combined with
Lemma 9, we know that for any uncertainty level σ ≤ 1

20H , there exists a unique q
?
obeying q

?
≥ 1− 2c1

H > 1
2

such that

σ = KL
(
Ber

(
q
?

)
‖ Ber(q)

)
. (178)

Then let us define the following function for 0 < x ≤ 1−q
3 (i.e., p = q + x)

g(x, q) = KL
(
Ber

(
q
?

+ x
)
‖ Ber(q + x)

)
= (q

?
+ x) log

q
?

+ x

q + x
+ (1− q

?
− x) log

1− q
?
− x

1− q − x
(179)

The first derivative ∇xg(x, q) is

∇xg(x, q)

= log

(
q
?

+ x

q + x

)
+ (q + x)

q + x− (q
?

+ x)

(q + x)2
− log

(
1− q

?
− x

1− q − x

)
+ (1− q − x)

−(1− q − x) + (1− q
?
− x)

(1− q − x)2

= log

(
q
?

+ x

q + x

)
− log

(
1− q

?
− x

1− q − x

)
+
q − q

?

q + x
+

q − q
?

1− q − x

= log

(
1 +

q
?
− q

q + x

)
− log

(
1 +

q − q
?

1− q − x

)
+
q − q

?

q + x
+

q − q
?

1− q − x

(i)

≥
q
?
− q

2(q + x)

2 +
q
?
−q

q+x

1 +
q
?
−q

q+x

−
q − q

?

2(1− q − x)

2 +
q−q

?

1−q−x

1 +
q−q

?

1−q−x

+
q − q

?

q + x
+

q − q
?

1− q − x

=
q − q

?

2(q + x)

(
2−

2q + 2x+ q
?
− q

q + x+ q
?
− q

)
+

q − q
?

2(1− q − x)

(
2−

2− 2q − 2x+ q − q
?

1− q − x+ q − q
?

)

=
q − q

?

2(q + x)

q
?
− q

x+ q
?

+
q − q

?

2(1− q − x)

q − q
?

1− q
?
− x

=
(q − q

?
)2
[
(q + x)(q

?
+ x)− (1− q − x)(1− q

?
− x)

]
2(q + x)(q

?
+ x)(1− q − x)(1− q

?
− x)

≥ 0 (180)

where (i) holds by log(1 + x) ≤ x
2

2+x
1+x when 0 ≤ x < ∞ and log(1 + x) ≥ x

2
2+x
1+x when −1 < x ≤ 0 (Topsøe,

2007), and the last inequality always holds for any 0 < x ≤ 1−q
3 and q

?
≥ 1

2 .
The above fact shows that g(p− q, q) ≥ g(0, q) = σ, and thus

KL
(
Ber

(
p− q + q

?

)
‖ Ber(p)

)
≥ σ, (181)

which complete the proof by observing that p
?
≥ p− q + q

?
via applying Lemma 9 with (178).

B.3.6 Proof of Lemma 12

Ordering the value function for different states. First, note that for any policy π at the final step
H + 1, we have

∀s ∈ S : V π,σ,θH+1 (s) = 0. (182)

Then for any θ ∈ Θ and any policy π, it is easily verified that

V π,σ,θH (0) = Ea∼πh(· | 0)

[
rh(0, a) + inf

P∈Uσ(P
θh
h,0,a)

PV π,σ,θH+1

]
= 1,

V π,σ,θH (s) = Ea∼πh(· | s)

[
rh(s, a) + inf

P∈Uσ(P
θh
h,s,a)

PV π,σ,θH+1

]
= 0, ∀s ∈ S \ {0}, (183)
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which directly indicates that

∀s ∈ S \ {0, 1} : V π,σ,θH (0) > V π,σ,θH (s) = 0. (184)

Then we provide the following claim which will be proved momentarily using induction: For any θ ∈ Θ
and any policy π, the following equation holds

∀(h, s) ∈ [H]× S \ {0} : V π,σ,θh (0) > V π,σ,θh (s) = 0. (185)

The above result leads to the following immediate fact for state s ∈ S \ {0}:

∀(h, s) ∈ [H]× S \ {0} : V ?,σ,θh (s) = max
π

V π,σ,θh (s) = 0, (186)

since (185) holds for any π and h ∈ [H]. Therefore, for any state s ∈ S \ {0}, without loss of generality, we
choose the optimal policy obeying

∀(h, s) ∈ [H]× S \ {0} : π?,θh (θh | s) = 1. (187)

Then the rest of the proof will focus on deriving the value function and optimal policy over state s = 0.
To begin with, recalling the value function in (192)

V π,σ,θh (0) = 1 + xπ,θh V π,σ,θh+1 (0) (188)

and observing that the function V π,σ,θh (0) is increasing in xπ,θh and that xπ,θh is increasing in πh(θh | 0) (due
to the fact p

?
≥ q

?
in (134)). As a result, the optimal policy obeys

π?,θh (θh | 0) = 1 (189)

at state 0. Plugging it back to (188) gives

V ?,σ,θh (0) = 1 + xπ
?,θ

h V ?,σ,θh+1 (0)

(i)
= 1 + p

?
V ?,σ,θh+1 (0) ≥

H−h∑
j=0

pj
?
≥
H−h∑
j=0

(
1− c3

H

)j
=

1−
(
1− c3

H

)H−h+1

c3/H

≥ 2

3
(H + 1− h). (190)

where (i) holds by xπ
?,θ
h = p

?
π?,θh (θh | 0) + q

?
π?,θh (1 − θh | 0) = p

?
. Here, the last inequality holds since we

observe that (
1− c3

H

)H−h+1

≤ exp
(
− c3
H

(H − h+ 1)
)
≤ 1− 2c3(H − h+ 1)

3H
,

as long as c3 ≤ 0.5, which follows due to the elementary inequalities 1 − x ≤ exp(−x) for any x ≥ 0 and
exp(−x) ≤ 1− 2x/3 for any 0 ≤ x ≤ 1/2.

Proof of claim in (185). We shall (185) through induction. Towards this, assuming that at time step
h+ 1, the following holds

∀s ∈ S \ {0, 1} : V π,σ,θh+1 (0) > V π,σ,θh+1 (s) = 0. (191)

Observing that the base case when h = H has already been confirmed in (184), now we move on to prove
the same property for time step h.

To start with, the robust value function of state 0 at step h satisfies

V π,σ,θh (0) = Ea∼πh(· | 0)

[
rh(0, a) + inf

P∈Uσ(P
θh
h,0,a)

PV π,σ,θh+1

]
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(i)
= 1 + πh(θh | 0)

(
inf

P∈Uσ(P
θh
h,0,θ)

PV π,σ,θh+1

)
+ πh(1− θh | 0)

(
inf

P∈Uσ(P
θh
h,0,1−θh

)

PV π,σ,θh+1

)
(ii)
= 1 + πh(θh | 0)

[
pV π,σ,θh+1 (0) +

(
1− p

)
V π,σ,θh+1 (1)

]
+ πh(1− θh | 0)

[
qV π,σ,θh+1 (0) +

(
1− q

)
V π,σ,θh+1 (1)

]
(iii)
= 1 + V π,σ,θh+1 (1) + xπ,θh

[
V π,σ,θh+1 (0)− V π,σ,θh+1 (1)

]
= 1 + xπ,θh V π,σ,θh+1 (0) (192)

where (i) uses the definition of the reward function in (127), (ii) uses the induction assumption in (191)
so that the infimum is attained by picking the choice specified in (132) with a smallest probability mass
imposed on the transition to state 0. Finally, we plug in the definition (136) of xπ,θh in (iii), and the last line
follows from (191).

V π,σ,θh (s) = Ea∼πh(· | s)

[
rh(s, a) + inf

P∈Uσ(P
θh
h,s,a)

PV π,σ,θh+1

]
= 0,

where the last inequality holds by the reward and transition function in (127) and (123) with the induction
assumption (191).

Combining (192) and (193), we complete the proof:

∀s ∈ S \ {0} : V π,σ,θhh (0) ≥ 1 > V π,σ,θh (s) = 0. (193)

B.3.7 Proof of claim (141) and (143)

Proof of the claim (141). With the initial state distribution and behavior policy defined in (138), we
have for any MDPMθ,

db,P
θ

1 (s) = ρb(s) = µ(s),

which leads to

∀a ∈ A : db,P
θ

1 (0, a) =
1

2
µ(0). (194)

In view of (149a), the state occupancy distribution at any step h = 2, 3, · · · , H obeys

db,P
θ

h (0) ≥ P
{
sh = 0 | sh−1 = 0;πb

}
≥ db,P

θ

h−1 (0)
[
πb
h−1(θh−1 | 0)p

?
+ πb

h−1(1− θh−1 | 0)q
?

]
≥ db,P

θ

h−1 (0)q
?
≥ · · · ≥ db,P

θ

1 (0)

h−1∏
j=0

q
?
≥ db,P

θ

1 (0)
(

1− c3
H

)H
>
µ(0)

2
, (195)

where the last line makes use of the properties q
?
≥ 1− c3/H in Lemma 11 and(

1− c3
H

)H
≥
(

1− 1

2H

)H
>

1

2

provided that 0 < c3 = 1/4 < 1/2. In addition, as state 1 is an absorbing state and state 0 will only transfer
to itself or state 1 at each time step, we directly achieve that

db,P
θ

h (0) ≤ db,P
θ

h−1 (0) ≤ · · · ≤ db,P
θ

1 (0) ≤ µ(0). (196)

For state 1, as it is absorbing, we directly have

db,P
θ

h (1) = P
{
sh = 1 | sh−1 = 1;πb

}
≥ db,P

θ

h−1 (1) ≥ · · · ≥ db,P
θ

1 (1) = µ(1). (197)
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According to the assumption in (140), it is easily verified that

db,P
θ

h (1) ≤ 1 ≤ 2µ(1). (198)

Finally, combining (195), (196), (197), (198), the definitions of P θhh (· | s, a) in (123) and the Markov
property, we arrive at for any (h, s) ∈ [H]× S,

µ(s)

2
≤ db,P

θ

h (s) ≤ 2µ(s), (199)

which directly leads to

µ(s)

4
≤ db,P

θ

h (s, a) = πb
1(a | s)db,P

θ

h (s) ≤ µ(s). (200)

Proof of the claim (143). Examining the definition of C?rob in (14), we make the following observations.

• For h = 1, we have

max
(s,a,P )∈S×A×Uσ(P θ)

min
{
d?,P1 (s, a), 1

S

}
db,P

θ

1 (s, a)

(i)
= max

P∈Uσ(P θ)

min
{
d?,P1 (0, θh), 1

S

}
db,P

θ

1 (0, θh)

(ii)
= max

P∈Uσ(P θ)

1

Sdb,P
θ

1 (0, θh)

(iii)
=

2

Sµ(0)
= 2C, (201)

where (i) holds by d?,P1 (s) = ρ(s) = 0 for all s ∈ S \ {0} (see (142)) and π?,θh (θh | 0) = 1 for all h ∈ [H],
(ii) follows from the fact d?,P1 (0, θ) = 1, (iii) is verified in (141), and the last equality arises from the
definition in (139).

• Similarly, for h = 2, 3, · · · , H, we arrive at

max
(s,a,P )∈S×A×Uσ(P θ)

min
{
d?,Ph (s, a), 1

S

}
db,P

θ

h (s, a)

(i)
= max

s∈{0,1},P∈Uσ(P θ)

min
{
d?,Ph (s, θh), 1

S

}
db,P

θ

h (s, θh)

≤ max
s∈{0,1},P∈Uσ(P θ)

1

Sdb,P
θ

h (s, θh)

(ii)

≤ 4

Sµ(0)
= 4C, (202)

where (i) holds by the optimal policy in (137) and the trivial fact that d?,Ph (s) = 0 for all s ∈ S \ {0, 1}
(see (142) and (123)), (ii) arises from (141), and the last equality comes from (139).

Combining the above cases, we complete the proof by

2C ≤ C?rob = max
(h,s,a,P )∈[H]×S×A×Uσ(P θ)

min
{
d?,Ph (s, a), 1

S

}
db,P

θ

h (s, a)
≤ 4C.

B.3.8 Proof of the claim (145)

By virtue of (136) and (137), we see that xπ
?,θ,θ
h = p

?
for all h ∈ [H], which combined with (135) gives〈

ρ, V ?,σ,θh − V π,σ,θh

〉
= V ?,θh (0)− V π,θh (0)

= p
?
V ?,σ,θh+1 (0)− xπ,θh V π,θh+1(0)

= xπ,θh

(
V ?,σ,θh+1 (0)− V π,σ,θh+1 (0)

)
+ (p

?
− xπ,θh )V ?,σ,θh+1 (0)

(i)

≥ q
?

(
V ?,σ,θh+1 (0)− V π,σ,θh+1 (0)

)
+ (p

?
− xπ,θh )V ?,σ,θh+1 (0)

(ii)

≥ q
?

(
V ?,σ,θh+1 (0)− V π,σ,θh+1 (0)

)
+

1

2
(p− q)

∥∥π?,θh (· | 0)− πh(· | 0)
∥∥

1
V ?,σ,θh+1 (0)
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(iii)

≥ q
?

(
V ?,σ,θh+1 (0)− V π,σ,θh+1 (0)

)
+

c2ε

3H2
(H + 1− h)

∥∥π?,θh (· | 0)− πh(· | 0)
∥∥

1
(203)

where (i) follows from the fact that xπh ≥ q
?
for any π and h ∈ [H], and (iii) holds by the facts (137) and

the choice (124) of (p, q). Here, (ii) arises from

p
?
− xπ,θh = (p

?
− q

?
)
(
1− πh(θh | 0)

)
≥ (p− q)

(
1− πh(θh | 0)

)
=

1

2
(p− q)

(
1− πh(θh | 0) + πh(1− θh | 0)

)
=

1

2
(p− q)

∥∥π?,θh (· | 0)− πh(· | 0)
∥∥

1
, (204)

where the first inequality holds by applying Lemma 11. With the fact of (203) in mind, combined with the
fact q

?
≥ 1− c3

H , following the same proof pipeline of (Li et al., 2022, (276) to (278)) leads to〈
ρ, V ?,σ,θh − V π,σ,θh

〉
> ε. (205)

We omit the proof here for conciseness.

B.3.9 Proof of (155)

With the initial state distribution and behavior policy defined in (138), we have for any MDP Mφ with
φ ∈ {0, 1},

db,P
φ

1 (s) = ρb(s) = µ(s),

which leads to

∀a ∈ A : db,P
φ

1 (0, a) =
1

2
µ(0). (206)

In view of (149a), the state occupancy distribution at step h = 2 obeys

db,P
φ

2 (0) = P
{
s2 = 0 | s1 ∼ db,P

φ

1 ;πb
}

= µ(0)
[
πb

1(φ | 0)p+ πb
1(1− φ | 0)q

]
=

(p+ q)µ(0)

2
,

and

db,P
φ

2 (1) = P
{
s2 = 1 | s1 ∼ db,P

φ

1 ;πb
}

= µ(0)
[
πb

1(φ | 0)(1− p) + πb
1(1− φ | 0)(1− q)

]
+ µ(1) = µ(1) +

(2− p− q)µ(0)

2
.

With the above result in mind and recalling the assumption in (153), we arrive at

µ(0)

2
≤ db,P

φ

2 (0) ≤ µ(0), µ(1) ≤ db,P
φ

2 (1)
(i)

≤ 2µ(1), (207)

where (i) holds by applying (153) and (140) (which implies µ(0) ≤ µ(1) by the assumption in (140))

db,P
φ

2 (1) = µ(1) +
(2− p− q)µ(0)

2
≤ µ(1) + µ(0) ≤ 2µ(1).

Finally, from the definitions of Pφh (· | s, a) in (149b) and the Markov property, we arrive at for any (h, s) ∈
[H]× S,

µ(s)

2
≤ db,P

φ

h (s) ≤ 2µ(s), (208)

which directly leads to

µ(s)

4
≤ db,P

φ

h (s, a) = πb
1(a | s)db,P

φ

h (s) ≤ µ(s). (209)
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B.3.10 Proof of Lemma 13

Note that p ≥ q can be easily verified since p > q, which indicates that the first assertion is true. So we
will focus on the second assertion in (161). Towards this, invoking the definition in (72), let σ′ be the KL
divergence from Ber

(
1
β

)
to Ber(q), defined as follows

σ′ := KL

(
Ber

(
1

β

)
‖ Ber(q)

)
=

1

β
log

1
β

q
+

(
1− 1

β

)
log

(
1− 1

β

)
1− q

=

(
1

β

)
log

(
1

β

)
−
(

1

β

)
log(q) +

(
1− 1

β

)
log

(
1

α+ ∆

)
+

(
1− 1

β

)
log

(
1− 1

β

)
, (210)

where the second line uses the definition of q in (150). We claim that σ′ satisfies the following relation with
σ, which will be proven at the end of this proof:

0 < σ ≤
(

1− 2

β

)
log

(
1

α+ ∆

)
≤ σ′ ≤

(
1− 1

β

)
log

(
1

α+ ∆

)
. (211)

Recalling the definition of the transition kernel in (149a)

Pφ1 (0 | 0, 1− φ) = q, Pφ1 (1 | 0, 1− φ) = 1− q, Pφ1 (s | 0, 1− φ) = 0, ∀s ∈ S \ {0, 1},

the uncertainty set of the transition kernel with radius σ is thus given as

Uσ(Pφ1,0,1−φ) = {P1,0,1−φ ∈ ∆(S) : P (0 | 0, 1− φ) = q′, P (1 | 0, 1− φ) = 1− q′,KL (Ber (q′) ‖ Ber(q)) ≤ σ} .
(212)

Recalling the definition of q in (160), we can bound

q = inf
P1,0,1−φ∈Uσ(Pφ1,0,1−φ)

P (0 | 0, 1− φ) = inf
q′:KL(Ber(q′)‖Ber(q))≤σ

q′

(i)

≥ inf
q′:KL(Ber(q′)‖Ber(q))≤σ′

q′ =
1

β
,

where (i) holds by σ ≤ σ′ (cf. (211)) and the last equality follows from applying Lemma 9 (cf. (74)) and
(210) to arrive at

∀0 ≤ q′ < 1

β
: KL (Ber (q′) ‖ Ber(q)) > KL

(
Ber

(
1

β

)
‖ Ber(q)

)
= σ′.

Proof of (211). To control σ′, we plug in the assumptions in (153) and β ≥ 4 and arrive at the trivial
facts (

1

β

)
log

(
1

β

)
−
(

1

β

)
log(q) < 0,

(
1− 1

β

)
log

(
1− 1

β

)
< 0.

The above facts directly lead to

σ′ ≤
(

1− 1

β

)
log

(
1

α+ ∆

)
. (213)

Similarly, observing

−1 ≤
(

1

β

)
log

(
1

β

)
+

(
1− 1

β

)
log

(
1− 1

β

)
≤ 0, −

(
1

β

)
log(q) ≥ 0,

we arrive at

σ′ ≥ −1 +

(
1− 1

β

)
log

(
1

α+ ∆

)
≥
(

1− 2

β

)
log

(
1

α+ ∆

)
(214)

as long as log
(

1
α+∆

)
≥ β (cf. (152)). With (213) and (214) in hand, it is straightforward to see that the

choice of the uncertainty radius σ in (158) obeys the advertised bound (211).
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B.3.11 Proof of Lemma 14

For notational conciseness, we shall drop the superscript φ and use the shorthand V π,σh = V π,σ,φh and
V ?,σh = V ?,σ,φh whenever it is clear from the context. We begin by deriving the robust value function for any
policy π. Starting with state 1, at any step h ∈ [H], it obeys

V π,σh (1) = Ea∼πh(· | 1)

[
rh(1, a) + inf

P∈Uσ(Pφh,1,a)
PV π,σh+1

]
= 0 + V π,σh+1(1),

where the first equality follows from the robust Bellman consistency equation (cf. (8)), and the second
equality follows from the observation that the distribution Pφh,1,a is supported solely on state 1 in view
of (149a), therefore Uσ(Pφh,1,a) = Pφh,1,a. Leveraging the terminal condition V π,σH+1(1) = 0, and recursively
applying the previous relation, we have

V ?,σh (1) = V π,σh (1) = 0, ∀h ∈ [H]. (215)

Similarly, turning to state 0, at any step h > 1, the robust value function satisfies

V π,σh (0) = Ea∼πh(· | 0)

[
rh(0, a) + inf

P∈Uσ(Pφh,0,a)
PV π,σh+1

]
= 1 + V π,σh+1(0),

which again uses the fact that the distribution Pφh,0,a is supported solely on state 0 in view of (149b), therefore
Uσ(Pφh,0,a) = Pφh,0,a. Leveraging the terminal condition V π,σH+1(0) = 0, and recursively applying the previous
relation, we have

V ?,σh (0) = V π,σh (0) = H − h+ 1, 2 ≤ h ≤ H. (216)

Taking (215) and (216) together, it follows that

∀ 2 ≤ h ≤ H : V π,σh (0) > V π,σh (1). (217)

Consequently, the robust value function of state 0 at step h = 1 satisfies

V π,σ1 (0) = Ea∼π1(· | 0)

[
r1(0, a) + inf

P∈Uσ(Pφ1,0,a)
PV π,σ2

]
(i)
= 1 + π1(φ | 0)

(
inf

P∈Uσ(Pφ1,0,φ)
PV π,σ2

)
+ π1(1− φ | 0)

(
inf

P∈Uσ(Pφ1,0,1−φ)
PV π,σ2

)
(ii)
= 1 + π1(φ | 0)

[
pV π,σ2 (0) +

(
1− p

)
V π,σ2 (1)

]
+ π1(1− φ | 0)

[
qV π,σ2 (0) +

(
1− q

)
V π,σ2 (1)

]
(iii)
= 1 + V π,σ2 (1) + zπφ [V π,σ2 (0)− V π,σ2 (1)]

= 1 + zπφV
π,σ
2 (0) (218)

where (i) uses the definition of the reward function in (154), (ii) uses (217) so that the infimum is attained
by picking the choice specified in (160) with a smallest probability mass imposed on the transition to state
0. Finally, we plug in the definition (162) of zπφ in (iii), and the last line follows from (215).

Therefore, taking π = π?,φ in the previous relation directly leads to

V ?,σ1 (0) = 1 + zπ
?,φ

φ V ?,σ2 (0) = 1 + zπ
?,φ

φ (H − 1), (219)

where the second equality follows from (216). Observing that the function (H − 1)z is increasing in z and
that zπφ is increasing in π1(φ | 0) (due to the fact p ≥ q in (161)). As a result, the optimal policy obeys

π?,φ1 (φ | 0) = 1 (220)

49



at state 0, and plugging back to (219) gives

V ?,σ1 (0) = 1 + zπ
?,φ

φ (H − 1) = 1 + p(H − 1),

where zπ
?,φ

φ = pπ?,φ1 (φ | 0) + qπ?,φ1 (1 − φ | 0) = p. For the rest of the states, without loss of generality, we
choose the optimal policy obeying

∀h ∈ [H] : π?,φh (φ | 0) = 1, π?,φh (φ | 1) = 1. (221)

Proof of claim (165). Given that π?,φh (φ | 0) = 1 for all h ∈ [H] and ρ(0) = 1, for any P ∈ Uσ(Pφ), we
have

d?,P2 (0, φ) = d?,P2 (0)π?,φ2 (φ | 0) = d?,P2 (0) = Ps2∼P (· | s1,π?,φ1 (s1))

{
s2 = 0 | s1 ∼ ρ;π?,φ

}
= P1(0 | 0, φ)

(i)

≥ Pφ1 (0 | 0, φ)
(ii)
= p ≥ 1

β
, (222)

which (i) holds by plugging in the definition (159), (ii) follows from the definition (160), and the final
inequality arises from Lemma 13. Hence, for all 2 ≤ h ≤ H, by the Markov property and Pφh (0 | 0, φ) = 1,
we have

d?,Ph (0, φ) = d?,P2 (0, φ) ≥ 1

β
. (223)

Examining the definition of C?rob in (14), we make the following observations.

• For h = 1, we have

max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P1 (s, a), 1

S

}
db,P

φ

1 (s, a)

(i)
= max

P∈Uσ(Pφ)

min
{
d?,P1 (0, φ), 1

S

}
db,P

φ

1 (0, φ)

(ii)
= max

P∈Uσ(Pφ)

1

Sdb,P
φ

1 (0, φ)

(iii)
=

2

Sµ(0)
= 2C, (224)

where (i) holds by d?,P1 (s) = ρ(s) = 0 for all s ∈ S \ {0} (see (142)) and π?,φh (φ | 0) = 1 for all h ∈ [H],
(ii) follows from the fact d?,P1 (0, φ) = 1, (iii) is verified in (155), and the last equality arises from the
definition in (139).

• Similarly, for h = 2, we arrive at

max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P2 (s, a), 1

S

}
db,P

φ

2 (s, a)

(i)
= max

s∈{0,1},P∈Uσ(Pφ)

min
{
d?,P2 (s, φ), 1

S

}
db,P

φ

2 (s, φ)

≤ max
s∈{0,1},P∈Uσ(Pφ)

1

Sdb,P
φ

2 (s, φ)

(ii)

≤ 4

Sµ(0)
= 4C, (225)

where (i) holds by the optimal policy in (164) and the trivial fact that d?,P2 (s) = 0 for all s ∈ S \ {0, 1}
(see (142) and (149a)), (ii) arises from (155), and the last equality comes from (139).

• For all other steps h = 3, . . . ,H, observing from the deterministic transition kernels in (149b), it can
be easily verified that

max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,Ph (s, a), 1

S

}
db,P

φ

h (s, a)
= max

(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P2 (s, a), 1

S

}
db,P

φ

2 (s, a)
≤ 4C. (226)

Combining the above cases, we complete the proof by

2C ≤ C?rob = max
(h,s,a,P )∈[H]×S×A×Uσ(Pφ)

min
{
d?,Ph (s, a), 1

S

}
db,P

φ

h (s, a)
≤ 4C.
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B.3.12 Proof of the claim (168)

Recall that by virtue of (162) and (164), we arrive at

z?φ := zπ
?,φ

φ = pπ?,φ1 (φ | 0) + qπ?,φ1 (1− φ | 0) = p.

Applying (163) yields〈
ρ, V ?,σ,φ1 − V π,σ,φ1

〉
= V ?,σ,φh (0)− V π,σ,φh (0) =

(
p− zπφ

)
(H − 1) =

(
p− q

)
(H − 1) (1− π1(φ | 0)) , (227)

where the last equality uses the definition (162). Therefore, it boils down to control p− q.
To continue, we define an auxiliary value function vector V ∈ RS×1 obeying

V (0) = H − 1 and V (s) = 0, ∀s ∈ S \ {0}. (228)

With this in hand, applying Lemma 4 gives

(H − 1)
(
p− q

) (i)
= inf
P∈Uσ(Pφ1,0,φ)

PV − inf
P∈Uσ(Pφ1,0,1−φ)

PV

= sup
λ≥0

{
−λ log

(
Pφ1,0,φ · exp

(
−V
λ

))
− λσ

}
− sup
λ≥0

{
−λ log

(
Pφ1,0,1−φ · exp

(
−V
λ

))
− λσ

}
(ii)

≥
{
−λ? log

(
Pφ1,0,φ · exp

(
−V
λ?

))
− λ?σ

}
−
{
−λ? log

(
Pφ1,0,1−φ · exp

(
−V
λ?

))
− λ?σ

}
= −λ?

[
log

(
Pφ1,0,φ · exp

(
−V
λ?

))
− log

(
Pφ1,0,1−φ · exp

(
−V
λ?

))]
, (229)

where (i) follows from (see the definition of p in (160))

inf
P∈Uσ(Pφ1,0,φ)

PV = Pφ1 (0 | 0, φ)V (0) = (H − 1)p,

inf
P∈Uσ(Pφ1,0,1−φ)

PV = Pφ1 (0 | 0, 1− φ)V (0) = (H − 1)q.

Here, (ii) holds by letting

λ? := arg max
λ≥0

f(λ) := arg max
λ≥0

{
−λ log

(
Pφ1,0,1−φ · exp

(
−V
λ

))
− λσ

}
. (230)

The rest of the proof is then to control (229). We start with the observation that λ? > 0; this is because in
view of Lemma 5 (cf. (66)), it suffices to verify that

log(1− q) + σ
(i)

≤ log(α+ ∆) +

(
1− 2

β

)
log

(
1

α+ ∆

)
= − 2

β
log

(
1

α+ ∆

)
< 0, (231)

where (i) holds by (158). We now claim the following bound for λ? holds, whose proof is postponed to the
end:

H

16σ
≤ H − 1

log
(

β
α+∆

) ≤ λ? ≤ H − 1(
1− 3

β

)
log
(

1
α+∆

) , (232)

which immediately implies the following by taking exponential maps given λ? > 0:

α+ ∆

β
≤ e−(H−1)/λ? ≤ (α+ ∆)1−3/β . (233)
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Moving to the second term of (229), it follows that

log

(
Pφ1,0,φ · exp

(
−V
λ?

))
− log

(
Pφ1,0,1−φ · exp

(
−V
λ?

))
(i)
= log

pe−(H−1)/λ? + (1− p)
qe−(H−1)/λ? + (1− q)

= log

(
1 +

(p− q)
(
e−(H−1)/λ? − 1

)
qe−(H−1)/λ? + (1− q)

)
(ii)
< −

∆
(
1− e−(H−1)/λ?

)
qe−(H−1)/λ? + (1− q)

(iii)

≤ −1

2

∆(
1

α+∆

) 3
β

(1− q) + (1− q)

≤ − ∆

4e6(1− q)
, (234)

where (i) follows from the definitions in (149) and (228), (ii) holds by log(1 + x) < x for x ∈ (−1,∞), (iii)
can be verified by (233), β ≥ 4, and (151):

1− e−(H−1)/λ? ≥ 1− (α+ ∆)1−3/β ≥ 1− (α+ ∆)1/4 ≥ 1−
(

3

2H

)1/4

≥ 1

2
,

and the last line uses
(

1
α+∆

) 3
β

=
(

1
α+∆

)6/ log( 1
α+∆ )

= e6 by the definition of β in (152). Plugging (232) and
(234) back into (229) and (227), we arrive at〈

ρ, V ?,σ,φ1 − V π,σ,φ1

〉
= (H − 1)

(
p− q

)
(1− π1(φ | 0))

(i)

≥ H∆

64e6σ(1− q)
(1− π1(φ | 0)) = 2ε (1− π1(φ | 0)) ,

where (i) holds by (232) and the last equality follows directly from the choice of ∆ in (167).

Proof of inequality (232). Applying (65) in Lemma 5 to λ? in (230) leads to the upper bound in (232):

λ? ≤ H − 1

σ
≤ H − 1(

1− 3
β

)
log
(

1
α+∆

) , (235)

where the last inequality holds by (158). As a result, we shall focus on showing the lower bounds in (232)
in the remainder of the proof.

Recalling the definition of q in (150), we can reparameterize 1− q using two positive variables cq and λq
(whose choices will be made clearer soon) as follows:

1− q = α = cqe
−(H−1)/λq . (236)

Deriving the first derivative of the function of interest f(λ) in (230) as follows:

∇λf(λ) = ∇λ
(
−λ log

(
Pφ1,0,1−φ · exp

(
−V
λ

))
− λσ

)
(i)
= ∇λ

(
−λ log

(
qe−(H−1)/λ + 1− q

)
− λσ

)
= −σ − log

(
qe−(H−1)/λ + 1− q

)
− 1

λ
· q(H − 1)e−(H−1)/λ

qe−(H−1)/λ + 1− q
, (237)

where (i) holds by the chosen transition kernels in (149) and the last line arises from basic calculus. To
continue, when λ = λq, the derivative of the function f(λ) can be expressed as

∇λf(λ) | λ=λq = −σ − log

(
(1− q) q

cq
+ 1− q

)
+

(1− q) qcq log 1−q
cq

(1− q) qcq + 1− q
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= −σ − log(1− q)− log

(
1 +

q

cq

)
+

q
cq

log 1−q
cq

q
cq

+ 1

= −σ − log(1− q)
(

1− q/cq
q/cq + 1

)
− log

(
1 +

q

cq

)
−

q
cq

log(cq)

1 + q/cq

(i)
= −σ + log

(
1

α+ ∆

)(
1− q/cq

q/cq + 1

)
− log

(
1 +

q

cq

)
−

q
cq

log(cq)

1 + q/cq
(238)

(ii)

≥ log

(
1

α+ ∆

)(
2

β
− q/cq
q/cq + 1

)
− log

(
1 +

q

cq

)
−

q
cq

log(cq)

1 + q/cq
(iii)

≥ 1

β
log

(
1

α+ ∆

)
− log(1 +

1

β
)− 1

≥ 1

β
log

(
1

α+ ∆

)
− 2 = 0, (239)

where (i) holds by (236), (ii) follows from the bound of σ in (158), (iii) arises from letting cq = β ≥ 4 and
noting the fact 1/2 ≤ q < 1 (see (153)), leading to

1

2β
≤ q

cq
<

1

β
,

q/cq
q/cq + 1

≤ 1

β
,

q
cq

log(cq)

1 + q/cq
< 1. (240)

Finally, the last line holds by 1/β ≤ 1
4 and log

(
1

α+∆

)
= 2β (see (152)).

To proceed, note that the function f(λ) is concave with respect to λ. Therefore, observing∇λf(λ) | λ=λq ≥
0 with cq = β, we have λq ≤ λ?, which implies (see (236))

1− q = α+ ∆ = βe−(H−1)/λq ≤ βe−(H−1)/λ? . (241)

The above assertion directly gives

λ? ≥ H − 1

log
(

β
α+∆

) .
The proof is completed by noticing

H − 1

log
(

β
α+∆

) =
H − 1

log
(

1
α+∆

)
+ log β

(i)

≥ H − 1

2 log
(

1
α+∆

) ≥ H

16σ
,

where (i) follows from (152), and the last inequality follows from (158) and the fact β ∈ [4,∞).

C Analysis: discounted infinite-horizon RMDPs

C.1 Proof of Lemma 2
We shall first show that the operator T̂ σpe(·) (cf. (46)) is a γ-contraction, which will in turn imply the existence
of the unique fixed point of T̂ σpe(·). Before starting, suppose that the entries of Q1, Q2 ∈ RSA are all bounded
in
[
0, 1

1−γ
]
for all (s, a) ∈ S ×A. Denote that

∀s ∈ S : V1(s) := max
a

Q1(s, a), V2(s) := max
a

Q2(s, a). (242)

Proof of γ-contraction. We first show that T̂ σpe(·) is a γ-contraction. Towards this, instead of T̂ σpe(·), we
begin with a simpler operator T̃ σpe(·), defined as follows:

∀(s, a) ∈ S ×A : T̃ σpe(Q)(s, a) = r(s, a) + γ inf
P∈Uσ(P̂ 0

s,a)
PV − b

(
s, a
)
, (243)
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which consequently leads to

∀(s, a) ∈ S ×A : T̂ σpe(Q)(s, a) = max
{
T̃ σpe(Q)(s, a), 0

}
. (244)

It follows straightforwardly that∥∥∥T̂ σpe(Q1)− T̂ σpe(Q2)
∥∥∥
∞
≤
∥∥∥T̃ σpe(Q1)− T̃ σpe(Q2)

∥∥∥
∞
, (245)

and hence it suffices to establish the γ-contraction of T̃ σpe(·). With this in mind, we observe that

∥∥∥T̃ σpe(Q1)− T̃ σpe(Q2)
∥∥∥
∞

= γ

∥∥∥∥∥ inf
P∈Uσ(P̂ 0

s,a)
PV1 − inf

P∈Uσ(P̂ 0
s,a)
PV2

∥∥∥∥∥
∞

(i)

≤ γ ‖V1 − V2‖∞

(ii)
= γmax

s

∣∣∣max
a

Q1(s, a)−max
a

Q2(s, a)
∣∣∣

≤ γmax
(s,a)
|Q1(s, a)−Q2(s, a)| = γ ‖Q1 −Q2‖∞ , (246)

where the first equality holds by the definition of T̃ σpe(·) (cf. (243)), (i) follows from that the infimum operator
is a 1-contraction w.r.t. ‖ · ‖∞ and ‖PV1 − PV2‖∞ ≤ ‖V1 − V2‖∞ for all P ∈ ∆(S), (ii) arises from the
definitions in (242), and the last inequality is due to the maximum operator is also a 1-contraction w.r.t.
‖ · ‖∞. Combining the above two inequalities establish the desired statement.

Existence of the unique fixed point. To continue, we shall first claim that there exists at least one fixed
point of T̂ σpe(·). This is a standard argument, which we omit for brevity; interested readers are encouraged
to refer to, e.g. Li et al. (2022), for details.

To prove the uniqueness of the fixed points of T̂ σpe(·), suppose that there exist two fixed points Q′ and
Q′′ obeying obeying Q′ = T̂ σpe(Q′) and Q′′ = T̂ σpe(Q′′). Moreover, the definition of T̂ σpe(·) directly implies
0 ≤ Q′, Q′′ ≤ 1

1−γ , since for any 0 ≤ Q ≤ 1
1−γ , it follows that 0 ≤ T̂ σpe(Q) ≤ 1

1−γ . By the γ-contraction
property, it follows that

‖Q′ −Q′′‖∞ =
∥∥∥T̂ σpe(Q′)− T̂ σpe(Q′′)∥∥∥∞ ≤ γ ‖Q′ −Q′′‖∞ . (247)

However, (247) can’t happen given γ ∈
[

1
2 , 1
)
, indicating the uniqueness of the fixed points of T̂ σpe(·).

C.2 Proof of Lemma 3
To begin with, considering any Q,Q′ obeying Q ≤ Q′, and 0 ≤ Q,Q′ ≤ 1

1−γ . We observe that the operator
T̂ σpe(·) (cf. (46)) has the monotone non-decreasing property, namely,

T̂ σpe(Q)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV − b

(
s, a
)
, 0

}

= max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
Pmax

a′
Q(·, a′)− b

(
s, a
)
, 0

}

≤ max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
Pmax

a′
Q′(·, a′)− b

(
s, a
)
, 0

}
= T̂ σpe(Q′)(s, a), (248)

where the last line uses Q ≤ Q′. Recalling the fixed point Q̂?,σpe of T̂ σpe(·), armed with (248) and the
initialization Q̂0 = 0, we arrive at

Q̂1 = T̂ σpe(Q̂0) ≤ T̂ σpe(Q̂?,σpe ) = Q̂?,σpe ,

54



where the inequality follows from Q̂0 = 0 ≤ Q̂?,σpe . Implementing the above result recursively gives

∀ m ≥ 0 : Q̂m ≤ Q̂?,σpe .

Applying the γ-contraction property in Lemma 2 thus yields that for any m ≥ 0,

‖Q̂m − Q̂?,σpe ‖∞ =
∥∥∥T̂ σpe(Q̂m−1)− T̂ σpe(Q̂?,σpe )

∥∥∥
∞
≤ γ‖Q̂m−1 − Q̂?,σpe ‖∞

≤ · · · ≤ γm‖Q̂0 − Q̂?,σpe ‖∞ = γm‖Q̂?,σpe ‖∞ ≤
γm

1− γ
,

where the last inequality holds by the fact ‖Q̂?,σpe ‖∞ ≤ 1
1−γ (see Lemma 2).

C.3 Proof of Theorem 3
To begin, we introduce some additional notation that will be useful throughout the analysis. We denote the
state-action space covered by the batch dataset D as

Cb =
{

(s, a) : db(s, a) > 0
}
. (249)

In addition, recalling the definition in (47), we define a similar one based on the true nominal model P 0 as

Pmin(s, a) := min
s′

{
P 0(s′ | s, a) : P 0(s′ | s, a) > 0

}
, (250)

which directly indicates that

P ?min = min
s

Pmin(s, π
?(s)), P b

min = min
(s,a)∈Cb

Pmin(s, a). (251)

Next, we denote the set of possible state occupancy distributions associated with the optimal policy π? in a
model within the uncertainty set P ∈ Uσ

(
P 0
)
as

D? :=
{[
d?,P (s)

]
s∈S : P ∈ Uσ

(
P 0
)}

=
{[
d?,P

(
s, π?(s)

)]
s∈S : P ∈ Uσ

(
P 0
)}
, (252)

where the second equality is due to the fact that π? is chosen to be deterministic.
We are now ready to embark on the proof of Theorem 3. We first introduce a fact that is used throughout

the proof; the proof is postponed to Appendix C.3.2:

∀(s, a) ∈ Cb : N(s, a) ≥ Ndb(s, a)

12
≥ c1 log(NS/δ)

12Pmin(s, a)
≥ −

log 2NS
δ

log(1− Pmin(s, a))
(253)

as long as (58) holds.
For notation simplicity, denote the output Q-function and value function from Algorithm 3 as Q̂ = Q̂M

and V̂ = V̂M . Invoking Lemma 3 with M ≥ log σN
1−γ

log 1
γ

directly leads to

∥∥Q̂− Q̂?,σpe

∥∥
∞ ≤

1

σN
(254)

and therefore ∥∥V̂ − V̂ ?,σpe

∥∥
∞ ≤ max

s

∣∣∣max
a

Q̂(s, a)−max
a

Q̂?,σpe (s, a)
∣∣∣ ≤ ∥∥Q̂− Q̂?,σpe

∥∥
∞ ≤

1

σN
. (255)

The proof of Theorem 3 is separated into several key steps as follows.
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Step 1: controlling the uncertainty via leave-one-out analysis. Given access to only a finite number
of samples for estimating the nominal transition kernel P 0, we need to efficiently control∣∣∣∣∣ inf

P∈Uσ(P̂ 0
s,a)
PV̂ − inf

P∈Uσ(P 0
s,a)
PV̂

∣∣∣∣∣
across the robust value iterations, where V̂ is statistically dependent on P̂ 0

s,a (since P̂ 0
s,a will be reused in

the update rule (cf. (51)) for all the iterations). A naive treatment via the standard covering arguments
will unfortunately lead to rather loose bounds (Panaganti and Kalathil, 2022; Yang et al., 2022; Zhou et al.,
2021). To overcome this challenge, we resort to the leave-one-out analysis—pioneered by Agarwal et al.
(2020); Li et al. (2022, 2020) in the context of model-based RL—to decouple the statistical dependency. The
results are summarized in the following lemma, with the proof provided in Appendix C.3.1.

Lemma 15. Instate the assumptions in Theorem 3. Then for all vector Ṽ obeying
∥∥Ṽ − V̂ ?,σpe

∥∥
∞ ≤

1
σN and

‖Ṽ ‖∞ ≤ 1
1−γ , with probability at least 1− δ, one has

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PṼ

∣∣∣∣∣ ≤ min

 cb
σ(1− γ)

√√√√ log( 2(1+σ)N3S
(1−γ)δ )

P̂min(s, a)N(s, a)
+

4

Nσ(1− γ)
,

1

1− γ

 (256)

for all (s, a) ∈ S ×A. In addition, for all (s, a) ∈ Cb, with probability at least 1− δ, one has

Pmin(s, a)

8 log(NS/δ)
≤ P̂min(s, a) ≤ e2Pmin(s, a). (257)

Step 2: establishing the pessimism property. Armed with Lemma 15, we aim to show the key
property that

∀(s, a) ∈ S ×A : Q̂(s, a) ≤ Qπ̂,σ(s, a), V̂ (s) ≤ V π̂,σ(s). (258)

Similar to the finite-horizon setting, it suffices to focus on verifying the former assertion in (258). Towards
this, we first recall that the fixed point Q̂?,σpe of the pessimistic robust Bellman operator T̂ σpe(·) (cf. (46)) obeys

Q̂?,σpe = T̂ σpe(Q̂?,σpe ) = max

{
r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σpe − b

(
s, a
)
, 0

}
. (259)

If Q̂?,σpe (s, a) = 0. Given the initialization Q̂0 = 0, invoking Lemma 3 gives

Q̂(s, a) = Q̂M (s, a) ≤ Q̂?,σpe (s, a) = 0.

As a result, Qπ̂,σ(s, a) ≥ 0 = Q̂(s, a) as desired. Therefore, it boils down to examine the case when
Q̂?,σpe (s, a) > 0. One has

Q̂(s, a)
(i)

≤ Q̂?,σpe (s, a) +
1

σN
= r(s, a) + γ inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σpe − b

(
s, a
)

+
1

σN

≤ r(s, a) + γ inf
P∈Uσ(P̂ 0

s,a)
PV̂ − b(s, a) +

1

σN
+ γ

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σpe − inf

P∈Uσ(P̂ 0
s,a)
PV̂

∣∣∣∣∣
(ii)

≤ r(s, a) + γ inf
P∈Uσ(P̂ 0

s,a)
PV̂ − b(s, a) +

2

σN

≤ r(s, a) + γ inf
P∈Uσ(P 0

s,a)
PV̂ − b(s, a) +

2

σN
+ γ

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ − inf

P∈Uσ(P 0
s,a)
PV̂

∣∣∣∣∣
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≤ r(s, a) + γ inf
P∈Uσ(P 0

s,a)
PV̂ , (260)

where (i) follows from (254), (ii) arises from (255) and the basic fact that infimum operator is 1-contraction
w.r.t ‖ · ‖∞, and the last inequality holds by the definition of b(s, a) (cf. (48)) and Lemma 15. Putting the
above inequality together with the robust Bellman equation (cf. (37a)) pertaining to Qπ̂,σ(s, a), we arrive at

Qπ̂,σ(s, a)− Q̂(s, a) ≥ r(s, a) + γ inf
P∈Uσ(P 0

s,a)
PV π̂,σ −

(
r(s, a) + γ inf

P∈Uσ(P 0
s,a)
PV̂

)

= γ

(
inf

P∈Uσ(P 0
s,a)
PV π̂,σ − inf

P∈Uσ(P 0
s,a)
PV̂

)
(i)
= γ

(
P̃s,aV

π̂,σ − inf
P∈Uσ(P 0

s,a)
PV̂

)
≥ γP̃s,a

(
V π̂,σ − V̂

)
,

where (i) holds by setting P̃s,a = argminP∈Uσ(P 0
s,a)PV π̂,σ. Consequently, one has

min
s,a

[
Qπ̂,σ(s, a)− Q̂(s, a)

]
≥ min

s,a

[
γP̃s,a

(
V π̂,σ − V̂

)] (i)

≥ γmin
s

[
V π̂,σ(s)− V̂ (s)

]
= γmin

s

[
Qπ̂,σ

(
s, π̂(s)

)
− Q̂

(
s, π̂(s)

)]
≥ γmin

s,a

[
Qπ̂,σ

(
s, a
)
− Q̂

(
s, a
)]
, (261)

where (i) follows from P̃s,a ∈ ∆(S) for all (s, a) ∈ S × A. Noting that 0 ≤ γ < 1, we conclude Qπ̂,σ(s, a)−
Q̂(s, a) ≥ 0 for all (s, a) ∈ S ×A. This establishes the claim (258).

Step 3: bounding V ?,σ(ρ)− V π̂,σ(ρ). In view of the pessimistic property (cf. (258)), it follows that

V ?,σ(s)− V π̂,σ(s) ≤ V ?,σ(s)− V̂ (s). (262)

Towards this, note that

V̂ (s) = max
a

Q̂(s, a) ≥ Q̂
(
s, π?(s)

) (i)

≥ Q̂?,σpe

(
s, π?(s)

)
− 1

σN
(ii)

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P̂ 0
s,π?(s)

)PV̂ ?,σpe − b
(
s, π?(s)

)
− 1

σN

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P̂ 0
s,π?(s)

)PV̂ − b(s, π?(s))− 1

σN
− γ

∣∣∣∣∣∣ inf
P∈Uσ

(
P̂ 0
s,π?(s)

)PV̂ ?,σpe − inf
P∈Uσ

(
P̂ 0
s,π?(s)

)PV̂
∣∣∣∣∣∣

(iii)

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P̂ 0
s,π?(s)

)PV̂ − b(s, π?(s))− 2

σN

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P 0
s,π?(s)

)PV̂ − b(s, π?(s))− 2

σN
− γ

∣∣∣∣∣∣ inf
P∈Uσ

(
P̂ 0
s,π?(s)

)PV̂ − inf
P∈Uσ

(
P 0
s,π?(s)

)PV̂
∣∣∣∣∣∣

≥ r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P 0
s,π?(s)

)PV̂ − 2b
(
s, π?(s)

)
, (263)

where (i) follows from (254), (ii) holds by applying (259), (iii) arises from (255), and the basic fact that the
infimum operator is a 1-contraction w.r.t. ‖ · ‖∞, and the final inequality holds by the definition of b(s, a)
(see (48)) and Lemma 15.
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To continue, invoking the robust Bellman optimality equation in (37b) gives

V ?,σ(s) = Q?,σ
(
s, π?(s)

)
= r
(
s, π?(s)

)
+ γ inf

P∈Uσ
(
P 0
s,π?(s)

)PV ?,σ.

Combining the above relation with (263), we arrive at

V ?,σ(s)− V̂ (s) ≤ γ inf
P∈Uσ

(
P 0
s,π?(s)

)PV ?,σ − γ inf
P∈Uσ

(
P 0
s,π?(s)

)PV̂ + 2b
(
s, π?(s)

)
≤ γP̂ inf

s,π?(s)

(
V ?,σ − V̂

)
+ 2b

(
s, π?(s)

)
, (264)

where the final inequality holds evidently, by introducing

P̂ inf
s,π?(s) := argmin

P∈Uσ
(
P 0
s,π?(s)

) PV̂ . (265)

Before continuing, for convenience, let us introduce a matrix P̂ inf ∈ RS×S and a vector b? ∈ RS , where
their s-th rows (resp. entries) are defined as[

P̂ inf
]
s,·

= P̂ inf
s,π?(s), and b?(s) = b

(
s, π?(s)

)
. (266)

With these notation in hand, averaging (264) over the initial state distribution ρ leads to

V ?,σ(ρ)− V̂ (ρ) =
∑
s∈S

ρ(s)
(
V ?,σ(s)− V̂ (s)

)
≤ γ

∑
s∈S

ρ(s)P̂ inf
s,π?(s)

(
V ?,σ − V̂

)
+ 2

∑
s∈S

ρ(s)b
(
s, π?(s)

)
= γρ>P̂ inf

(
V ?,σ − V̂

)
+ 2ρ>b?. (267)

Applying the above result recursively gives

V ?,σ(ρ)− V̂ (ρ) ≤ γρ>P̂ inf
(
V ?,σ − V̂

)
+ 2ρ>b?

≤ γ
(
γρ>P̂ inf

)
P̂ inf

(
V ?,σ − V̂

)
+ 2

(
γρ>P̂ inf

)
b? + 2ρ>b?

≤ · · · ≤
{

lim
i→∞

γiρ>
(
P̂ inf

)i (
V ?,σ − V̂

)}
+ 2ρ>

∞∑
i=0

γi
(
P̂ inf

)i
b?

(i)

≤ 2ρ>
∞∑
i=0

γi
(
P̂ inf

)i
b? = 2ρ>

(
I − γP̂ inf

)−1

b?, (268)

where (i) holds by
∣∣ρ> (P̂ inf

)i (
V ?,σ − V̂

) ∣∣ ≤ 1
1−γ for all i ≥ 0, and that limi→∞ γiρ>

(
P̂ inf

)i (
V ?,σ − V̂

)
=

0 since limi→∞ γi = 0 for all 0 ≤ γ < 1.
To further characterize the above performance gap, invoking the definition of d?,P (cf. (38) and (39a)),

we arrive at (
d?,P̂

inf
)>

= (1− γ)ρ>
∞∑
t=0

γt
(
P̂ inf

)t
= (1− γ)ρ>

(
I − γP̂ inf

)−1

. (269)

Plugging the above expression back into (268), and combining with(262), yields

V ?,σ(ρ)− V π̂,σ(ρ) ≤ V ?,σ(ρ)− V̂ (ρ) ≤ 2

1− γ

〈
d?,P̂

inf

, b?
〉
. (270)

58



Step 4: controlling
〈
d?,P̂

inf

, b?
〉

using concentrability. Note that P̂ inf ∈ Uσ(P 0) (see (265) and

(266)), which in words means P̂ inf is some transition kernel inside Uσ(P 0) — the uncertainty set around
the nominal kernel P 0. Similar to the finite-horizon case, observing that we can express

〈
d?,P̂

inf

, b?
〉

=∑
s∈S d

?,P̂ inf

(s)b?(s), we divide the states into two cases and control them separately.

• Case 1: s ∈ S where max
P∈Uσ

(
P 0
) d?,P (s, π?(s)) = 0. Since P̂ inf ∈ Uσ(P 0), one has

0 ≤ d?,P̂
inf

(s) = d?,P̂
inf (

s, π?(s)
)
≤ max
P∈Uσ

(
P 0
) d?,P (s, π?(s)) = 0,

which consequently indicates

d?,P̂
inf

(s) = 0. (271)

• Case 2: s ∈ S where max
P∈Uσ

(
P 0
) d?,P (s, π?(s)) > 0. For any such state s, we claim that

db
(
s, π?(s)

)
> 0 and

(
s, π?(s)

)
∈ Cb. (272)

This is due to Assumption 2, which requires C?rob to be finite given the numerator is positive:

max
P∈Uσ(P 0)

min
{
d?,P

(
s, π?(s)

)
, 1
S

}
db
(
s, π?(s)

) = max
P∈Uσ(P 0)

min
{
d?,P (s), 1

S

}
db(s, a)

≤ C?rob <∞. (273)

To continue, invoking the fact in (253) with
(
s, π?(s)

)
∈ Cb gives

N
(
s, π?(s)

)
≥
Ndb

(
s, π?(s)

)
12

(i)

≥
N maxP∈Uσ(P 0) min

{
d?,P

(
s, π?(s)

)
, 1
S

}
12C?rob

≥
N min

{
d?,P̂

inf

(s), 1
S

}
12C?rob

, (274)

where (i) holds by Assumption 2, and the last inequality holds by P̂ inf ∈ Uσ(P 0). With this in mind,
we can control the pessimistic penalty b?(s) (cf. (48)) by

b?(s) ≤ cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min

(
s, π?(s)

)
N
(
s, π?(s)

) +
4

σN(1− γ)
+

2

σN

(i)

≤ 4cb
σ(1− γ)

√√√√ log2
(

2(1+σ)N3S
(1−γ)δ

)
Pmin

(
s, π?(s)

)
N
(
s, π?(s)

) +
4

σN(1− γ)
+

2

σN

≤ 16cb
σ(1− γ)

√√√√ C?rob log2
(

2(1+σ)N3S
(1−γ)δ

)
Pmin

(
s, π?(s)

)
N min

{
d?,P̂ inf (s), 1

S

} +
6

σN(1− γ)

≤ 20cb
σ(1− γ)

√√√√ C?rob log2
(

2(1+σ)N3S
(1−γ)δ

)
Pmin

(
s, π?(s)

)
N min

{
d?,P̂ inf (s), 1

S

} ,
where (i) arises from (257), the penultimate inequality follows from (274), and the last inequality holds
as long as cb is large enough.

Summing up the above two cases, we arrive at〈
d?,P̂

inf

, b?
〉

=
∑
s∈S

d?,P̂
inf

(s)b?(s)
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≤
∑
s∈S

d?,P̂
inf

(s)
20cb

σ(1− γ)

√√√√ C?rob log2
(

2(1+σ)N3S
(1−γ)δ

)
Pmin

(
s, π?(s)

)
N min

{
d?,P̂ inf (s), 1

S

}
(i)

≤ 20cb
σ(1− γ)

√√√√√∑
s∈S

d?,P̂ inf (s)
C?rob log2

(
2(1+σ)N3S

(1−γ)δ

)
Pmin

(
s, π?(s)

)
N min

{
d?,P̂ inf (s), 1

S

}√∑
s∈S

d?,P̂ inf (s)

≤ 40cb
σ(1− γ)

√√√√SC?rob log2
(

2(1+σ)N3S
(1−γ)δ

)
P ?minN

, (275)

where (i) arises from Cauchy-Schwarz inequality, and the last inequality holds since Pmin

(
s, π?(s)

)
≥ P ?min

for all s ∈ S (see (251)) and the following fact (which has been established in (98)):

∑
s∈S

d?,P̂
inf

(s)

min
{
d?,P̂ inf (s), 1

S

} ≤ 2S.

Finally, inserting (275) back into (270), with probability at least 1− 2δ, one has

V ?,σ(ρ)− V π̂,σ(ρ) ≤ 2

1− γ

〈
d?,P̂

inf

, b?
〉
≤ 80cb
σ(1− γ)2

√√√√SC?rob log2
(

2(1+σ)N3S
(1−γ)δ

)
P ?minN

,

which concludes the proof.

C.3.1 Proof of Lemma 15

We first note that the second assertion in (257) is the counterpart of (80), which can be verified following
the same argument in Appendix B.2.1. For brevity, we omit its proof, and shall focus on verifying (256).

To begin with, we consider the situation when N(s, a) = 0. In this case, (256) can be easily verified since∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV − inf

P∈Uσ(P 0
s,a)
PV

∣∣∣∣∣ (i)
= inf
P∈Uσ(P 0

s,a)
PV ≤ ‖V ‖∞

(ii)

≤ 1

1− γ
, (276)

where (i) follows from the fact P̂ 0
s,a = 0 when N(s, a) = 0 (see (44)), and (ii) arises from the assumption

‖V ‖∞ ≤ 1
1−γ . Consequently, in the remainder of the proof, we focus on verifying (256) when N(s, a) > 0.

Let us first introduce the counterpart of the claim (79) in Lemma 10 as follows.

Lemma 16. For all (s, a) ∈ S × A with N(s, a) > 0, consider any vector V ∈ RS independent of P̂ 0
s,a

obeying ‖V ‖∞ ≤ 1
1−γ . With probability at least 1− δ, one has∣∣∣∣∣ inf

P∈Uσ(P̂ 0
s,a)
PV − inf

P∈Uσ(P 0
s,a)
PV

∣∣∣∣∣ ≤ cb
σ(1− γ)

√
log(NSδ )

P̂min(s, a)N(s, a)
. (277)

Proof. The proof follows from the same arguments in Appendix B.2.2, with small modifications to adapt to
the infinite-horizon setting; we omit the details for conciseness.

Armed with the above point-wise concentration bound, we are now ready to derive the uniform con-
centration bound desired as in Lemma 15, counting on a leave-one-out argument divided into the following
steps. The crux of the analysis is to construct a set of auxiliary RMDPs, each different from the empirical
RMDP only at a single state but possessing crucial statistical independence that facilitates the concentration
arguments, which can then be transferred back to the empirical RMDP via a simple triangle inequality.
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Step 1: construction of auxiliary RMDPs with state-absorbing empirical nominal transitions.
Denote the empirical infinite-horizon robust MDP with the nominal transition kernel P̂ 0 as M̂rob. Then, for
each state s and each scalar u ≥ 0, we can construct an auxiliary robust MDP M̂s,u

rob so that it is the same as
M̂rob except the properties in state s. To be precise, let the nominal transition kernel and reward function
of M̂s,u

rob be P s,u and rs,u, which are given respectively as{
P s,u(s′ | s, a) = 1(s′ = s) for all (s′, a) ∈ S ×A,
P s,u(· | s̃, a) = P̂ 0(· | s̃, a) for all (s̃, a) ∈ S ×A and s̃ 6= s,

(278)

and {
rs,u(s, a) = u for all a ∈ A,
rs,u(s̃, a) = r(s̃, a) for all (s̃, a) ∈ S ×A and s̃ 6= s.

(279)

Clearly, state s of the auxiliary M̂s,u
rob is absorbing, meaning that the state stays at s once entering it. This

removes the randomness of P̂ 0
s,a for all a ∈ A in state s, a key property we will leverage later.

With the robust MDP M̂s,u
rob in hand, we still need to complete the design by defining the corresponding

penalty term for all (s̃, a) ∈ S ×A, which is given as follows

bs,u(s̃, a) :=

min

{
cb

σ(1−γ)

√
log
(

2(1+σ)N3S
(1−γ)δ

)
P s.umin (s,a)N(s̃,a) + 4

Nσ(1−γ) ,
1

1−γ

}
+ 2

σN if N(s̃, a) > 0,

1
1−γ + 2

σN otherwise,
(280)

where P s,umin (s̃, a) is defined as the smallest positive state transition probability over the nominal kernel
P s,u(· | s̃, a):

∀(s̃, a) ∈ S ×A : P s,umin (s̃, a) := min
s′

{
P s,u(s′ | s̃, a) : P s,u(s′ | s̃, a) > 0

}
. (281)

In view of (278) and (47), it holds that P s,umin (s̃, a) = P̂min(s̃, a), and therefore bs,u(s̃, a) = b(s̃, a), when s̃ 6= s

for any u ≥ 0. Armed with the above definitions, the pessimistic robust Bellman operator T̂ σs,u(Q)(·) of the
RMDP M̂s,u

rob is defined as

∀(s, a) ∈ S ×A : T̂ σs,u(Q)(s, a) = max

{
r(s, a) + γ inf

P∈Uσ(P s,us,a )
PV − bs,u(s, a), 0

}
. (282)

Step 2: fixed-point equivalence between M̂rob and the auxiliary RMDP M̂s,u
rob . Recall that Q̂?,σpe

is the unique fixed point of T̂ σpe(·) with the corresponding value V̂ ?,σpe . We claim that there exists some choice
of u such that the fixed point of T̂ σs,u(Q)(·) coincides with that of T̂ σpe(·). In particular, given a state s, we
show the following choice of u suffices:

u? := (1− γ)V̂ ?,σpe (s) + min

 cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P s.umin (s, a)N(s, a)

+
4

Nσ(1− γ)
,

1

1− γ

+
2

σN
. (283)

Towards this, we shall break our arguments in two different cases.

• For state s′ 6= s. In this case, for any a ∈ A, it can be verified that

max

{
rs,u

?

(s′, a) + γ inf
P∈Uσ(P s,u

?

s′,a )

PV̂ ?,σpe − bs,u
?

(s′, a), 0

}

= max

{
r(s′, a) + γ inf

P∈Uσ(P̂ 0
s′,a)
PV̂ ?,σpe − b(s′, a), 0

}
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= T̂ σpe(Q̂?,σpe )(s′, a) = Q̂?,σpe (s′, a), (284)

where the second line follows from the definitions in (279) and (278) as well as bs,u
?

(s′, a) = b(s′, a)
when s′ 6= s, the last line arises from the definition of the pessimistic Bellman operator (46), and that
Q̂?,σpe is the fixed point.

• For state s. In this case, for any u and a ∈ A, observing that P s,u(s′ | s, a) has only one positive
entry equal to 1 (cf. (278)), applying (281) yields

P s,umin (s, a) = 1. (285)

Plugging the above fact into (280) leads to

bs,u(s, a) =

min

{
cb

σ(1−γ)

√
log
(

2(1+σ)N3S
(1−γ)δ

)
N(s,a) + 4

Nσ(1−γ) ,
1

1−γ

}
+ 2

σN if N(s, a) > 0,

1
1−γ otherwise

(286)

for all a ∈ A. As a result, we have for any a ∈ A:

max

{
rs,u

?

(s, a) + γ inf
P∈Uσ(P s,u

?
s,a )

PV̂ ?,σpe − bs,u
?

(s, a), 0

}
= max

{
u? + γV̂ ?,σpe (s)− bs,u

?

(s, a), 0
}

= max
{

(1− γ)V̂ ?,σpe (s) + γV̂ ?,σpe (s), 0
}

= V̂ ?,σpe (s), (287)

where the second line follows from the fact that P s,u
?

s,a is a singleton distribution at state s, and hence
Uσ(P s,u

?

s,a ) = P s,u
?

s,a by the definition of the KL uncertainty set, and the second line follows from plugging
in the definition of u? in (283) and bs,u

?

(s, a) in (286).

Summing up the above two cases, we establish that there exists a fixed point Q̂?,σs,u? of the operator T̂ σs,u?(·)
if we let {

Q̂?,σs,u?(s, a) = V̂ ?,σpe (s) for all a ∈ A,
Q̂?,σs,u?(s′, a) = Q̂?,σpe (s′, a) for all s′ 6= s and a ∈ A.

(288)

Consequently, we confirm the existence of a fixed point of the operator T̂ σs,u?(·). In addition, its corresponding
value function V̂ ?,σs,u? also coincides with V̂ ?,σpe .

Step 3: building an ε-net for all reward values u. It is easily verified that the reward u? obeys

u? ≤ 1 + min

 cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P s,umin (s, a)N(s, a)

+
4

σN(1− γ)
,

1

1− γ

+
2

σN
≤ 2

σ
+

2

1− γ
. (289)

As a result, we construct an ε-net (Vershynin, 2018) of the line segment within the range
[
0, 2

σ + 2
1−γ

]
with

ε = 1
σN as follows:

Uε :=

{
i

σN
| 1 ≤ i ≤

⌊
σN

(
2

σ
+

2

1− γ

)⌋}
. (290)

Armed with this covering net Uε, we can construct an auxiliary robust MDP M̂s,u
rob and its corresponding

pessimistic robust Bellman operator for each u ∈ Uε (see Step 1). Following the same arguments in the proof
of Lemma 2 (cf. Appendix C.1), for each u ∈ Uε, it can be verified that there exists a unique fixed point
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Q̂?,σs,u of the operator T̂ σs,u(·), which satisfies 0 ≤ Q̂?,σs,u ≤ 1
1−γ · 1. In turn, the corresponding value function

also satisfies ‖V̂ ?,σs,u ‖∞ ≤ 1
1−γ .

In view of the definitions in (278) and (279), for all u ∈ Uε, M̂s,u
rob is statistically independent from P̂ 0

s,a,
which indicates the independence between V̂ ?,σs,u and P̂ 0

s,a. This makes it possible to invoke Lemma 16, and
taking the union bound over all samples N and u ∈ Uε give that, with probability at least 1− δ,∣∣∣∣∣ inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σs,u − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,u

∣∣∣∣∣ ≤ cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min(s, a)N(s, a)

(291)

hold simultaneously for all (s, a, u) ∈ S ×A× Uε with N(s, a) > 0.

Step 4: a covering argument. Recalling that u? ∈
[
0, 2

σ + 2
1−γ

]
(see (289)), we can always find some

ũ ∈ Uε such that |ũ− u?| ≤ 1
σN . Consequently, plugging in the operator in (282) yields

∀Q ∈ RSA :
∥∥∥T̂ σs,ũ(Q)− T̂ σs,u?(Q)

∥∥∥
∞

(i)

≤ |ũ− u?| ≤ 1

σN
, (292)

where (i) holds by bs,ũ(s, a) = bs,u
?

(s, a) for s (see (286)) and bs,ũ(s′, a) = bs,u
?

(s′, a) = b(s′, a) for all s′ 6= s.
With this in mind, we observe that the fixed points of T̂ σs,ũ(·) and T̂ σs,u?(·) obey∥∥∥Q̂?,σs,ũ − Q̂?,σs,u?∥∥∥∞ =

∥∥∥T̂ σs,ũ(Q̂?,σs,ũ)− T̂ σs,u?(Q̂?,σs,u?)
∥∥∥
∞

≤
∥∥∥T̂ σs,ũ(Q̂?,σs,ũ)− T̂ σs,ũ(Q̂?,σs,u?)

∥∥∥
∞

+
∥∥∥T̂ σs,ũ(Q̂?,σs,u?)− T̂ σs,u?(Q̂?,σs,u?)

∥∥∥
∞

≤ γ
∥∥∥Q̂?,σs,ũ − Q̂?,σs,u?∥∥∥∞ +

1

σN
, (293)

which directly indicates that ∥∥∥Q̂?,σs,ũ − Q̂?,σs,u?∥∥∥∞ ≤ 1

(1− γ)σN
(294)

and ∥∥∥V̂ ?,σs,ũ − V̂
?,σ
s,u?

∥∥∥
∞
≤
∥∥∥Q̂?,σs,ũ − Q̂?,σs,u?∥∥∥∞ ≤ 1

(1− γ)σN
. (295)

Armed with the above facts, invoking the identity V̂ ?,σpe = V̂ ?,σs,u? established in Step 2 gives∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σpe − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σpe

∣∣∣∣∣ =

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σs,u? − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,u?

∣∣∣∣∣
(i)

≤

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σs,ũ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,ũ

∣∣∣∣∣
+

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σs,ũ − inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σs,u?

∣∣∣∣∣+

∣∣∣∣∣ inf
P∈Uσ(P 0

s,a)
PV̂ ?,σs,ũ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,u?

∣∣∣∣∣
(ii)

≤

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σs,ũ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σs,ũ

∣∣∣∣∣+
2

Nσ(1− γ)

≤ cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min(s, a)N(s, a)

+
2

Nσ(1− γ)
, (296)

where (i) holds by applying the triangle inequality, (ii) arises from (295) and the basic fact that infimum
operator is a 1-contraction w.r.t. ‖ · ‖∞, and the final inequality follows from (291).
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Step 5: finishing up. Now we are positioned to finish up the proof. For all vector Ṽ obeying
∥∥Ṽ −

V̂ ?,σpe

∥∥
∞ ≤

1
σN and ‖Ṽ ‖∞ ≤ 1

1−γ , we apply the triangle inequality and invoke (296) to reach∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PṼ

∣∣∣∣∣ ≤
∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PV̂ ?,σpe − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σpe

∣∣∣∣∣
+

∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P̂ 0
s,a)
PV̂ ?,σpe

∣∣∣∣∣+

∣∣∣∣∣ inf
P∈Uσ(P 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PV̂ ?,σpe

∣∣∣∣∣
≤ cb
σ(1− γ)

√√√√ log
(

2(1+σ)N3S
(1−γ)δ

)
P̂min(s, a)N(s, a)

+
4

Nσ(1− γ)
. (297)

Finally, we complete the proof by verifying that∣∣∣∣∣ inf
P∈Uσ(P̂ 0

s,a)
PṼ − inf

P∈Uσ(P 0
s,a)
PṼ

∣∣∣∣∣ ≤ ∥∥∥Ṽ ∥∥∥∞ ≤ 1

1− γ
. (298)

C.3.2 Proof of (253)

For all (s, a) ∈ Cb, one has

Ndb
(
s, a
) (i)

≥
c1d

b
(
s, a
)

log(NS/δ)

dbminP
b
min

(ii)

≥ c1 log(NS/δ)

P b
min

(iii)

≥ c1 log(NS/δ)

Pmin(s, a)
, (299)

where (i) follows from the condition (58), (ii) arises from the definition that dbmin ≤ db(s, a) for all (s, a) ∈ Cb,
and (iii) follows from the definition in (251). In particular, when c1 is large enough, one has 2

3 log NS
δ <

Ndb(s,a)
12 . To continue, we recall a key property of N(s, a) (cf. (43)) in the following lemma.

Lemma 17 ((Li et al., 2022, Lemma 7)). Fix δ ∈ (0, 1). With probability at least 1 − δ, the quantities
{N(s, a)} in (43) obey

max

{
N(s, a),

2

3
log

NS

δ

}
≥ Ndb(s, a)

12
(300)

simultaneously for all (s, a) ∈ S ×A.

Consequently, Lemma 17 tells us that with probability at least 1− δ,

N(s, a) ≥ Ndb(s, a)

12
≥ c1 log(NS/δ)

12Pmin(s, a)
(301)

as long as c1 is large enough. Last but not least, taking the basic fact x ≤ − log(1− x) for all x ∈ [0, 1], the
last inequality of (253) can be verified by

c1 log(NS/δ)

12Pmin(s, a)
≥ −

log 2NS
δ

log(1− Pmin(s, a))
. (302)

C.4 Proof of Theorem 4
Similar to the finite-horizon case, we shall develop the lower bounds for the two cases when the uncertainty
levels σ vary separately.

C.4.1 Construction of hard problem instances: small uncertainty level

We first construct some hard discounted infinite-horizon RMDP instances and then characterize the sample
complexity requirements over these instances.
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Construction of a collection of hard MDPs. Suppose there are two MDPs{
Mθ =

(
S,A, P θ, r, γ

)
| θ = {0, 1}

}
.

Here, S = {0, 1, . . . , S−1}, and A = {0, 1}. The transition kernel P θ of the MDPMθ is specified as follows:

P θ(s′ | s, a) =

 p1(s′ = 0) + (1− p)1(s′ = 1) if (s, a) = (0, θ)
q1(s′ = 0) + (1− q)1(s′ = 1) if (s, a) = (0, 1− θ)
q1(s′ = s) + (1− q)1(s′ = 1) if s > 0

, (303)

for any (s, a, s′) ∈ S ×A× S×, where p and q are set to be

p = 1− c1(1− γ), q = 1− c1(1− γ)− c2(1− γ)2ε, (304)

which satisfies
2

3
≤ γ < 1 and c2(1− γ)2ε ≤ c1(1− γ)

2
≤ 1

8
. (305)

for some c1 ≤ 1
4 and small enough c2. In view of the assumptions (305), one has

p > q ≥ 1

2
. (306)

Finally, we define the reward function as

r(s, a) =

{
1 if s = 0 or s = 2
0 otherwise . (307)

Construction of the history/batch dataset. Define a useful state distribution (only supported on the
state subset {0, 1, 2}) as

µ(s) =
1

CS
1(s = 0) +

(
1− 1

CS

)
1(s = 1), (308)

where C > 0 is some constant that determines the robust concentrability coefficient C?rob (which will be made
clear soon) and obeys

1

CS
≤ 1

4
. (309)

A batch dataset—consists of N i.i.d samples {(si, ai, s′i)}1≤i≤N—is generated over the nominal environ-
mentMθ according to (40), with the behavior distribution chosen to be:

∀(s, a) ∈ S ×A : db(s, a) =
µ(s)

2
. (310)

Additionally, we choose the following initial state distribution:

ρ(s) =

{
1, if s = 0

0, otherwise
. (311)

Uncertainty set of the transition kernels. We next describe the radius σ of the uncertainty set in our
construction of the robust MDPs, along with some useful properties, which are similar to the finite-horizon
case. The perturbed transition kernels inMθ is limited to the following uncertainty set

Uσ(P θ) := ⊗ Uσ
(
P θs,a

)
, Uσ(P θs,a) :=

{
Ps,a ∈ ∆(S) : KL

(
Ps,a ‖ P θs,a

)
≤ σ

}
, (312)

where P θs,a := P θ(· | s, a) ∈ [0, 1]1×S . Moreover, the radius of the uncertainty set σ obeys

0 ≤ σ ≤ 1− γ
20

. (313)
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For any (s, a, s′) ∈ S × A × S, we denote the infimum entry of the perturbed transition kernel Ps,a ∈
Uσ(P θs,a) moving to the next state s′ as

P θ(s′ | s, a) := inf
Ps,a∈Uσ(P θs,a)

P (s′ | s, a). (314)

As shall be seen, the transition from state 0 to state 2 plays an important role in the analysis, for convenience,
we denote

p
?

:= P θ(0 | 0, θ), q
?

:= P θ(0 | 0, 1− θ). (315)

With these definitions in place, we summarize some useful properties of the uncertainty set in the following
lemma, which parallels Lemma 11 in the finite-horizon case.

Lemma 18. Suppose the uncertainty level σ satisfies (313). The perturbed transition kernels obey

p
?
≥ q

?
≥ 1− c3(1− γ) and p

?
− q

?
≥ p− q ≥ 0 (316)

for constant c3 = 2c1 ≤ 1
4 .

Proof. The proof follows from the same arguments as the proof for Lemma 11 in Appendix B.3.5 by replacing
H with 1

1−γ ; we omit the details for brevity.

Value functions and optimal policies. Now we are positioned to derive the corresponding robust value
functions and identify the optimal policies. For any MDP Mθ with the above uncertainty set, denote π?θ
as the optimal policy. In addition, we denote the robust value function of any policy π (resp. the optimal
policy π?θ) as V π,σθ (resp. V ?,σθ ). Then, we introduce the following lemma which describes some important
properties of the robust value functions and optimal policies.

Lemma 19. For any θ = {0, 1} and any policy π, one has

V π,σθ (0) =
1

1− γxπθ
, (317)

where xπθ is defined as

xπθ := p
?
π(θ | 0) + q

?
π(1− θ | 0). (318)

In addition, the optimal value functions and the optimal policies obey

V ?,σθ (0) =
1

1− γp
?

, V ?,σθ (s) = 0 for s = 1 or s > 2, (319a)

π?θ(θ | s) = 1, for s ∈ S. (319b)

Moreover, the robust single-policy clipped concentrability coefficient C?rob obeys

C?rob = 2C. (320)

Proof. See Appendix C.4.5.

C.4.2 Establishing the minimax lower bound: small uncertainty level

Towards this, we first introduce the following lemma, which parallels the claim in (167)-(168) in the finite-
horizon case.

Lemma 20. For any policy π̂,

V ?,σθ (0)− V π̂,σθ (0) ≥ 2ε
(
1− π̂(θ | 0)

)
.
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Proof. This lemma can be directly verified by controlling V ?,σθ (0)− V π̂,σθ (0) with the help of Lemma 18 and
Lemma 19; we omit the details for brevity.

Armed with this lemma, following the same arguments in Appendix B.3.4, we can complete the proof by
observing that: let c1 be some sufficient large constant, as long as the sample size is beneath

N ≤ c4SC
?
rob

(1− γ)3ε2
, (321)

then we necessarily have

inf
π̂

max
θ∈{0,1}

Pθ
{
V ?,σθ (ρ)− V π̂,σθ (ρ) ≥ ε

}
≥ 1

8
, (322)

where Pθ denote the probability conditioned on that the MDP isMθ. We omit the details for brevity and
complete the proof.

C.4.3 Construction of hard problem instances: large uncertainty level

Construction of a collection of hard MDPs. Suppose there are two MDPs{
Mφ =

(
S,A, Pφ, r, γ

)
|φ = {0, 1}

}
.

Here, γ is the discount parameter, S = {0, 1, . . . , S − 1} is the state space, and A = {0, 1} is the action
space. The transition kernel Pφ of either constructed MDPMφ is defined as

Pφ(s′ | s, a) =


p1(s′ = 2) + (1− p)1(s′ = 1) if (s, a) = (0, φ)
q1(s′ = 2) + (1− q)1(s′ = 1) if (s, a) = (0, 1− φ)
1(s′ = s) if s = 1 or s = 2
q1(s′ = s) + (1− q)1(s′ = 1) if s > 2

, (323)

where p and q are set as

p = 1− α and q = 1− α−∆ (324)

for some γ, α and ∆ obeying

0 < α ≤ 1− γ ≤ 1/(2e8) ≤ 1

2
and ∆ ≤ α

2
. (325)

Here, α and ∆ are some values that will be introduced later. Consequently, applying (324) directly leads to

1 ≥ p ≥ q ≥ γ ≥ 1

2
. (326)

Note that state 1 and 2 are absorbing states. In addition, if the initial distribution is supported on states
{0, 1, 2}, the MDP will always stay in the state {1, 2} after the first transition.

Finally, we define the reward function as

r(s, a) =

{
1 if s = 0 or s = 2
0 otherwise . (327)

Construction of the history/batch dataset. Define a useful state distribution (only supported on the
state subset {0, 1, 2}) as

µ(s) =
1

CS
1(s = 0) +

1

CS
1(s = 2) +

(
1− 2

CS

)
1(s = 1), (328)
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where C > 0 is some constant that determines the robust concentrability coefficient C?rob (which will be made
clear soon) and obeys

1

CS
≤ 1

4
. (329)

A batch dataset—consists of N i.i.d samples {(si, ai, s′i)}1≤i≤N—is generated over the nominal environ-
mentMφ according to (40), with the behavior distribution chosen to be:

∀(s, a) ∈ S ×A : db(s, a) =
µ(s)

2
. (330)

Additionally, we choose the following initial state distribution:

ρ(s) =

{
1, if s = 0

0, otherwise
. (331)

Uncertainty set of the transition kernels. We next describe the radius σ of the uncertainty set in our
construction of the robust MDPs, along with some useful properties, which are similar to the finite-horizon
case. To begin with, with slight abuse of notation, we introduce an important constant β defined as

β :=
1

2
log

1

α+ ∆
≥ 4. (332)

The perturbed transition kernels inMφ is limited to the following uncertainty set

Uσ(Pφ) := ⊗ Uσ
(
Pφs,a

)
, Uσ(Pφs,a) :=

{
Ps,a ∈ ∆(S) : KL

(
Ps,a ‖ Pφs,a

)
≤ σ

}
, (333)

where Pφs,a := Pφ(· | s, a) ∈ [0, 1]1×S . Moreover, the radius of the uncertainty set σ obeys(
1− 3

β

)
log

1

α+ ∆
≤ σ ≤

(
1− 2

β

)
log

1

α+ ∆
. (334)

For any (s, a, s′) ∈ S × A × S, we denote the infimum entry of the perturbed transition kernel Ps,a ∈
Uσ(Pφs,a) moving to the next state s′ as

Pφ(s′ | s, a) := inf
Ps,a∈Uσ(Pφs,a)

P (s′ | s, a). (335)

As shall be seen, the transition from state 0 to state 2 plays an important role in the analysis, for convenience,
we denote

p := Pφ(2 | 0, φ), q := Pφ(2 | 0, 1− φ). (336)

With these definitions in place, we summarize some useful properties of the uncertainty set in the following
lemma, which parallels Lemma 13 in the finite-horizon case.

Lemma 21. Suppose β satisfies (332) and the uncertainty level σ satisfies (334). The perturbed transition
kernels obey

p ≥ q ≥ 1

β
. (337)

Proof. The proof follows from the same arguments as Appendix B.3.10 by replacing H with 1
1−γ ; we omit

the details for brevity.
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Value functions and optimal policies. Now we are positioned to derive the corresponding robust value
functions and identify the optimal policies. For any MDP Mφ with the above uncertainty set, denote π?φ
as the optimal policy. In addition, we denote the robust value function of any policy π (resp. the optimal
policy π?φ) as V π,σφ (resp. V ?,σφ ). Then, we introduce the following lemma which describes some important
properties of the robust value functions and optimal policies.

Lemma 22. For any φ = {0, 1} and any policy π, one has

V π,σφ (0) = 1 +
γ

1− γ
zπφ , (338)

where zπφ is defined as

zπφ := pπ(φ | 0) + qπ(1− φ | 0). (339)

In addition, the optimal value functions and the optimal policies obey

V ?,σφ (0) = 1 +
γ

1− γ
p, V ?,σφ (2) =

1

1− γ
, V ?,σφ (s) = 0 for s = 1 or s > 2, (340a)

π?φ(φ | s) = 1, for s ∈ S. (340b)

Moreover, choosing S ≥ 2β, the robust single-policy clipped concentrability coefficient C?rob obeys

C?rob = 2C. (341)

Proof. See Appendix C.4.6.

C.4.4 Establishing the minimax lower bound: large uncertainty level

Now we are positioned to provide the sample complexity lower bound. In view of Lemma 22, the smallest
positive state transition probability of the optimal policy π?φ under any nominal transition kernel Pφ with
φ ∈ {0, 1} satisfies:

P ?min := min
s,s′

{
Pφ
(
s′ | s, π?φ(s)

)
: Pφ

(
s′ | s, π?φ(s)

)
> 0
}

= Pφ (1|0, φ) = 1− p. (342)

Our goal is to control the quantity w.r.t. any policy estimator π̂ based on the batch dataset and the
chosen initial distribution ρ in (331), which gives

V ?,σφ (ρ)− V π̂,σφ (ρ) = V ?,σφ (0)− V π̂,σφ (0). (343)

Towards this, we first introduce the following lemma, which parallels the claim in (167)-(168) in the finite-
horizon case.

Lemma 23. Given ε ≤ 1

384e6(1−γ) log( 1
α )
≤ 1

384e6(1−γ) log( 1
α+∆ )

, choosing ∆ = 128e6σ(1 − q)ε(1 − γ) ≤

128e6(α+ ∆)ε log
(

1
α+∆

)
(1− γ) ≤ α

2 , one has for any policy π̂,

V ?,σφ (0)− V π̂,σφ (0) ≥ 2ε
(
1− π̂(φ | 0)

)
.

Proof. This lemma follows from the same arguments as Appendix B.3.12 except replacing H with 1
1−γ under

the additional condition γ ≥ 1
2 ; we omit the details for brevity.

Armed with this lemma, following the same arguments in Appendix B.3.4, we can complete the proof by
observing that: let c1 be some sufficient large constant, as long as the sample size is beneath

N ≤ SC?rob log 2

4c1P ?minσ
2(1− γ)2ε2

, (344)

then we necessarily have

inf
π̂

max
φ∈{0,1}

Pφ
{
V ?,σφ (ρ)− V π̂,σφ (ρ) ≥ ε

}
≥ 1

8
, (345)

where Pφ denote the probability conditioned on that the MDP isMφ. We omit the details for brevity and
complete the proof.
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C.4.5 Proof of Lemma 19

First, it is easily verified that for any policy π,

∀s ∈ S \ {0} : V π,σθ (s) =

∞∑
t=0

γt · 0 = 0 (346)

since the reward function r(s, a) = 0 for (s, a) ∈ S \ {0} × A in (307).
To continue, we observe that the robust value function of state 0 satisfies

V π,σθ (0) = Ea∼π(· | 0)

[
r(0, a) + γ inf

P∈Uσ(P θ0,a)
PV π,σθ

]
(i)
= 1 + γπ(θ | 0) inf

P∈Uσ(P θ0,θ)
PV π,σθ + γπ(1− θ | 0) inf

P∈Uσ(P θ0,1−θ)
PV π,σθ (347)

(ii)
= 1 + γπ(θ | 0)

[
p
?
V π,σθ (0) +

(
1− p

?

)
V π,σθ (1)

]
+ γπ(1− θ | 0)

[
q
?
V π,σθ (0) +

(
1− q

?

)
V π,σθ (1)

]
(iii)
= 1 + γxπθ [V π,σθ (0)− V π,σθ (1)]

=
1

1− γxπθ
, (348)

where (i) holds by the reward function defined in (307). To see (ii), note that (347) indicates V π,σθ (0) ≥ 1 ≥
V π,σθ (1) = 0, so that the infimum is obtained by picking the smallest possible mass on the transition to state
2, provided by the definition in (315), and (iii) follows by plugging in the definition of xπθ in (318).

Consequently, observing that the function 1
1−γx is increasing in x and xπθ is also increasing in π(θ | 0) (see

the fact p
?
≥ q

?
in (316)), the optimal policy in state 0 thus obeys

π?θ(θ | 0) = 1. (349)

Therefore,

x?θ := xπ
?

θ = p
?
π?θ(θ | 0) + q

?
π?θ(1− θ | 0) = p

?
, (350)

which combined with (348) yields

V ?,σθ (0) =
1

1− γp
?

. (351)

Regarding the optimal policy for the remaining states s > 0, since the action does not influence the state
transition, without loss of generality, we choose the optimal policy to obey

∀s > 0 : π?θ(θ | s) = 1. (352)

Proof of (320). To begin with, for any MDPMθ with θ ∈ {0, 1}, recall the definition of C?rob as

C?rob = max
(s,a,P )∈S×A×Uσ(P θ)

min
{
d?,P (s, a), 1

S

}
db(s, a)

. (353)

Given π?θ(θ | s) = 1 for all s ∈ S and the initial distribution ρ(0) = 1, for any P ∈ Uσ(P θ), we arrive at

d?,P (0, θ) = (1− γ)ρ(0)

∞∑
t=0

γt
(
P θ(0 | 0, θ)

)t
(i)
= (1− γ)

∞∑
t=0

γtpt
?

=
1− γ

1− γp
?

(ii)

≥ 1− γ
1− γ(1− c3(1− γ))

≥ 1

2
. (354)
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where (i) holds by (315) and (ii) follows from (316). In addition, we have

d?,P (0, 1− θ) = 0 and ∀s > 1 : d?,P (s, a) = 0, (355)

since ρ(0) = 1 and state 0 and 1 are absorbing states for all policy and and all P ∈ Uσ(P θ).
Armed with the above facts, we observe that

max
(s,a,P )∈S×A×Uσ(P θ)

min
{
d?,P (s, a), 1

S

}
db(s, a)

= max
s∈{0,1},P∈Uσ(P θ)

min
{
d?,P (s, θ), 1

S

}
db(s, θ)

(356)

which follows from the properties of the optimal policy in (319).
Consequently, we control C?rob in states separately:

max
P∈Uσ(P θ)

min
{
d?,P (0, θ), 1

S

}
db(0, θ)

(i)
=

1

Sdb(0, θ)

(ii)
=

2

Sµ(0)
= 2C, (357a)

max
P∈Uσ(P θ)

min
{
d?,P (1, θ), 1

S

}
db(1, θ)

≤ 1

Sdb(1, θ)

(iii)
=

2

S
(
1− 1

CS

) (iv)

≤ 4

S

(v)

≤ C, (357b)

where (i) holds by (354) and S ≥ 2, (ii) and (iii) follow from the definitions in (310) and (308), and (iv) and
(v) and arise from the assumption in (309). Plugging the above results back into (356) directly completes
the proof of

C?rob = max
(s,a,P )∈S×A×Uσ(P θ)

min
{
d?,P (s, a), 1

S

}
db(s, a)

= 2C.

C.4.6 Proof of Lemma 22

For any Mφ with φ ∈ {0, 1}, we first characterize the robust value function for any policy π over different
states. due to state absorbing, the uncertainty set becomes a singleton containing the nominal distribution
at state s = 1 and s = 2. It is easily observed that for any policy π, the robust value functions at state s = 1
and s = 2 obey

V π,σφ (1) =

∞∑
t=0

γt · 0 = 0, (358a)

V π,σφ (2) =

∞∑
t=0

γt · 1 =
1

1− γ
, (358b)

since r(1, a) = 0 and r(2, a) = 1. In addition, for state s > 2, the perturbed transition kernel is supported
on itself and state 1, both of which receive a reward of 0 by design (327), leading to

V π,σφ (s) =

∞∑
t=0

γt · 0 = 0, for s > 2. (358c)

Moving onto the remaining states, the robust value function of state 0 satisfies

V π,σφ (0) = Ea∼π(· | 0)

[
r(0, a) + γ inf

P∈Uσ(Pφ0,a)
PV π,σφ

]
(i)
= 1 + γπ(φ | 0) inf

P∈Uσ(Pφ0,φ)
PV π,σφ + γπ(1− φ | 0) inf

P∈Uσ(Pφ0,1−φ)
PV π,σφ

(ii)
= 1 + γπ(φ | 0)

[
pV π,σφ (2) +

(
1− p

)
V π,σφ (1)

]
+ γπ(1− φ | 0)

[
qV π,σφ (2) +

(
1− q

)
V π,σφ (1)

]
(iii)
= 1 + γV π,σφ (1) + γzπφ

[
V π,σφ (2)− V π,σφ (1)

]
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= 1 +
γ

1− γ
zπφ , (359)

where (i) holds by the reward function defined in (327). To see (ii), note that (358) indicates V π,σφ (2) ≥
V π,σφ (1), so that the infimum is obtained by picking the smallest possible mass on the transition to state 2,
provided by the definition in (336). Last but not least, (iii) follows by plugging in the definition of zπφ in
(339), and the last identity is due to (358). Consequently, taking π = π?φ, we directly arrive at

V ?,σφ (0) = 1 +
γ

1− γ
zπ

?

φ . (360)

Observing that the function z γ
1−γ is increasing in z and zπφ is also increasing in π(φ | 0) (see the fact p ≥ q

in (337)), the optimal policy in state 0 thus obeys

π?φ(φ | 0) = 1. (361)

Finally, plugging the above fact back into (339) leads to

z?φ := zπ
?

φ = pπ?φ(φ | 0) + qπ?φ(1− φ | 0) = p, (362)

which combined with (360) yields

V ?,σφ (0) = 1 +
γ

1− γ
p. (363)

Regarding the optimal policy for the remaining states s > 0, since the action does not influence the state
transition, without loss of generality, we choose the optimal policy to obey

∀s > 0 : π?φ(φ | s) = 1. (364)

Proof of (341). To begin with, for any MDPMφ with φ ∈ {0, 1}, recall the definition of C?rob as

C?rob = max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P (s, a), 1

S

}
db(s, a)

. (365)

Given π?φ(φ | s) = 1 for all s ∈ S and the initial distribution ρ(0) = 1, for any P ∈ Uσ(Pφ), we arrive at

d?,P (0, φ) = (1− γ)ρ(0)π?φ(φ | 0) = (1− γ), (366)

which holds due to that the agent transits from state 0 to other states at the first step and then will never
go back to state 0. In addition, one has for any P ∈ Uσ(Pφ),

d?,P (2, φ) = (1− γ)P (2 | 0, φ)

∞∑
t=1

γt
(
P (2 | 2, φ)

)t
= (1− γ)P (2 | 0, φ)

∞∑
t=1

γt
(i)

≥ γp ≥ 1

2β
, (367)

where (i) holds by (336) and the final inequality follows from (337) and γ ≥ 1/2. Armed with the above
facts, we observe that

max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P (s, a), 1

S

}
db(s, a)

= max
s∈{0,1,2},P∈Uσ(Pφ)

min
{
d?,P (s, φ), 1

S

}
db(s, φ)

(368)

which follows from the properties of the optimal policy in (364) and consequently d?,P (s) = d?,P (s, φ) = 0
for all s > 2 and all P ∈ Uσ(Pφ).

To continue, we control the term in states {0, 1, 2} separately:

max
P∈Uσ(Pφ)

min
{
d?,P (2, φ), 1

S

}
db(2, φ)

(i)
=

1

Sdb(2, φ)

(ii)
=

2

Sµ(2)
= 2C, (369a)
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max
P∈Uσ(Pφ)

min
{
d?,P (0, φ), 1

S

}
db(0, φ)

≤ 1

Sdb(0, φ)

(iii)
=

2

Sµ(0)
= 2C, (369b)

max
P∈Uσ(Pφ)

min
{
d?,P (1, φ), 1

S

}
db(1, φ)

≤ 1

Sdb(1, φ)

(iv)
=

2

S
(
1− 2

CS

) (v)

≤ 4

S

(vi)

≤ C, (369c)

where (i) holds by (367) and S ≥ 2β, (ii), (iii) and (iv) follow from the definitions in (330) and (328), (v)
and (vi) arise from the assumption in (329). Plugging the above results back into (368) directly completes
the proof of

C?rob = max
(s,a,P )∈S×A×Uσ(Pφ)

min
{
d?,P (s, a), 1

S

}
db(s, a)

= 2C.
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