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Wireless health monitoring:

transmission loss and

power-hungry sensors

Internet monitoring:

limited measurements and

massive data

Netflix Ratings:

incomplete (and skewed)

ratings

High-dimensional Streaming Data

Each time snapshot a data vector xt ∈ Rn is generated, with n large.

● Need to learn and track structures of minimally observed data streams.

Jovanov, Emil, et al. ”A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation.”
Journal of NeuroEngineering and rehabilitation 2.1 (2005): 6.

Netflix statistics source: http://www.hackedexistence.com/project-netflix.html
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Challenges in Modern Data Acquisition

Data generation at unprecedented rate: data samples are

● not observable due to privacy or security constraints;

● distributed at multiple locations;

● online generated on the fly and can only access once.

Limited processing power at sensor platforms:

● time-sensitive: impossible to obtain a complete snapshot of the system;

● storage-limited: cannot store the whole data set;

● power-hungry: minimize the number of observations.

Limited'Power'and'Storage'Unprecedented'Data'Rate'and'Volume'
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Covariance Sketching

Key Observation: the covariance structure can be recovered without measuring
the whole data stream.

Approach: distributed data sketching and aggregation to recover the covariance
structure or principal components.

● access each data sample via linear or quadratic (energy) sketches;

● aggregate the sketches into linear observations of the covariance matrix.
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Quadratic Sketching for Covariance Estimation

Consider a data stream possible distributively observed at m sensors:

Quadratic Sketching: For each sensor i = 1, . . . ,m:

● randomly select a sketching vector ai ∈ Rn with i.i.d. sub-Gaussian entries;

● Sketch an arbitrary substream indexed by {`it}Tt=1 with an energy measurement

∣⟨ai,x`it⟩∣
2

and aggregate the average energy measurement:

yi,T = 1

T

T

∑
t=1

∣⟨ai,x`it⟩∣
2
= T − 1

T
yi,T−1 +

1

T
∣⟨ai,x`iT ⟩∣

2
.
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Quadratic Sketching for Covariance Estimation

● For each sketch:

yi,T = 1

T

T

∑
t=1

∣⟨ai,x`it⟩∣
2
= T − 1

T
yi,T−1 +

1

T
∣⟨ai,x`iT ⟩∣

2
.

● As T →∞, ΣT →Σ,

yi,T → aTi Σai

yields a linear measurement of Σ!

● All sketches can be obtained in a fully distributed manner.

Page 7



Covariance Estimation with Rank-One Measurements

● Quadratic Measurement Model:

yi,T = aTi ΣTai ∶= aTi Σai + ηi,

where ηi = aTi (ΣT −Σ)ai is the additive noise.

● More generally, we assume the following measurement model:

zi = aTi Σai + ηi, i = 1, . . . ,m;

or more concisely,
z = A(Σ) + η.

● The measurements are quadratic in ai and linear in the rank-one matrix
aiaTi ;
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Sampling Model

We need some additional assumptions on the sampling model:

● sub-Gaussian i.i.d. sketching vectors: each ai is i.i.d. copies of a =
[a1, a2, . . . , an]T satisfying:

E[ai] = 0, E[a2i ] = 1, and µ4 ∶= Ea4i > 1.

● noise model: deterministically bounded `1-norm noise:

∥η∥1 ≤ ε

where ε is known a priori.

While we can solve for Σ via least-squares estimation if m ≥ n2 (the size of
Σ), we can greatly reduce the number of m by exploiting the low-dimensional
structure of Σ.
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low-rank Toeplitz low-rank

Geometry of Covariance Structures

Many high-dimensional data lie in a low-dimensional subspace, resulting in a
low-rank covariance matrix:

● Low-Rankness: the covariance matrix is low-rank, which occurs when a small
number of components accounts for most of the variability in the data.

● Stationary Low-Rankness: the covariance matrix is simultaneously Toeplitz
and low rank, which has many applications in array signal processing.
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Low-Rank Covariance Estimation via Convex Relaxation

● We would like to seek the covariance matrix satisfying the observations with
the minimal rank:

Σ̂ = argmin
Σ⪰0

rank(Σ) s.t. ∥z −A(Σ)∥1 ≤ ε.

● However this is non-convex and NP-hard. Therefore, we replace it by the
trace minimization, which is the tightest convex relaxation with respect to
the rank function, over all matrices compatible with the measurements:

Σ̂ = argmin
Σ⪰0

Tr(Σ) s.t. ∥z −A(Σ)∥1 ≤ ε.

● Additionally, if Σ is Toeplitz, we add the additional structural constraint:

Σ̂ = argmin
Σ⪰0

Tr(Σ) s.t. ∥z −A(Σ)∥2 ≤ ε, and Σ is Toeplitz.

Our theoretical results considered `2 noise for Toeplitz covariance matrix recovery.

Page 11



● Exact with Θ(nr) measurements;

● Universal for all low-rank matrices;

● Robust against approximate low-rankness
and bounded noise;

● Results hold for i.i.d. bilinear measurements
aTi Σbi as well. m / (n*n)

r/n
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Near-Optimal Covariance Estimation

Theorem 1 (Chen, Chi and Goldsmith). Consider the sub-Gaussian sampling
model, then with probability exceeding 1−exp(−c1m), the solution Σ̂ satisfies

∥Σ̂ −Σ∥F ≤ C1
∥Σ −Σr∥∗√

r
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

due to imperfect structure

+ C2
ε

m²
due to noise

,

where Σr is the best rank-r approximation of Σ, provided that m > c0nr ,
where c0, c1, C1 and C2 are universal constants.

Y. Chen, Y. Chi, and A. J. Goldsmith, “Exact and Stable Covariance Estimation from Quadratic Sampling via Convex Programming,”
IEEE Trans. on Information Theory, vol. 61, no. 7, pp. 4034-4059, 2015.
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Phase Transition

Our covariance sketching scheme is

● universal

● works with sparse and Toeplitz low-rank covariance matrices as well;

● robust to noise and imperfect model assumptions

m / (n*n)

r/n
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Exact and Stable Covariance Sketching via Convex Programming

m / (n*n)

k u/(n
*n
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Figure 3. Reconstruction of sparse matrices from Gaussian quadratic measurements when n = 50. Here, ku denotes the
number of non-zero entries above or on the main diagonal, which represents the degrees of freedom for symmetric matrices.
The results are shown for (a) PSD sparse matrices, and (b) general symmetric sparse matrices.

We have also examined the stability of our algorithm
in the presence of noise, which is deferred to the sup-
plemental materials.

5. Conclusions and Future Work

In this paper, we design a novel covariance sketch-
ing strategy to extract covariance information via
quadratic sampling. This sampling model acts as an
effective signal processing method for real-time data
with limited memory and low computational complex-
ity. Covariance recovery from quadratic sketches can
be achieved via efficient convex programming as soon
as the number of measurements exceeds the funda-
mental sampling theoretic limit. Our results highlight
the stability and robustness of the convex program in
the presence of noise and imperfect structural assump-
tions. The performance guarantees are established
via a novel notion of mixed-norm restricted isometry
property (RIP-!2/!1), which significantly simplifies the
proof. It remains to see whether the proposed sens-
ing scheme can be used to recover other types of low-
dimensional covariance structures, such as a sparse in-
verse covariance matrix. It will also be interesting to
explore general types of sampling models that satisfy
RIP-!2/!1 such as structured random measurements.

A. Proof of Main Results

We present here the key lemmas for proving Theo-
rems 1-2, with proofs deferred to supplemental mate-
rials. Our proof is short and uses very simple analy-
sis. Specifically, Theorems 1-2 can be proved if we can
ensure small RIP-!2/!1 constants w.r.t. the auxiliary
operator B, which we established in Section 3.

A.1. Proof of Theorem 1

Lemma 1. Consider any matrix Σ = Σr +Σc, where
Σr is the best rank-r approximation of Σ. If there
exists a number K1 > 2r such that

1 − δlb
2r+K1√
2

−
(
1 + δub

K1

) √
2r

K1
≥ β1 > 0 (14)

holds for some absolute constant β, then the minimizer
Σ̂ to the trace minimization program obeys

∥∥∥Σ̂ − Σ
∥∥∥

F
≤ C1

‖Σc‖∗√
K1

+ C2
ε

m
(15)

for some constants C1 and C2 depending only on the
restricted isometry constants and β1.

By choosing K1 = 8
(

4c2

c1

)2

r ≥ 8

(
1+δub

K1

1−δub
2r+K1

)2

r for

the universal constants c1, c2 given in Corollary 1 in
the main body of the paper, we obtain (14) when m >
c4 (K1 + 2r)n for some constant c4. This establishes
Theorem 1.

A.2. Proof of Theorem 2

Lemma 2. Consider any matrix Σ = ΣΩ + ΣΩc ,
where ΣΩ is the best k-term approximation of Σ. If
there exists a number K2 > 2k such that

(1 − γlb
k+K2

)√
2

−
(
1 + γub

K2

)√
k

K2
≥ β2 > 0 (16)

holds for some absolute constant β2, then the mini-
mizer Σ̂ to the !1 minimization program obeys

∥∥∥Σ̂ − Σ
∥∥∥

F
≤ C1

‖ΣΩc‖1√
K1

+ C2
ε

m
(17)

m: number of measurements

r:
 r

an
k
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Figure 1: Phase transition
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Proof Ingredient: Mixed-Norm RIP

● Restricted Isometry Property: a powerful notion for compressed sensing

∀X in some class ∶ ∥B (X)∥2 ≈ ∥X∥F .

– Unfortunately, it does NOT hold for quadratic models.

● We proposed a Mixed-norm Variant: RIP-`2/`1

∀X in some class ∶ ∥B (X)∥1 ≈ ∥X∥F .

– does NOT hold for A, but hold after A is debiased:

Bi(Σ) = ⟨Σ,a2ia
T
2i − a2i+1a

T
2i+1⟩

E. J. Candès, “The restricted isometry property and its implications for compressed sensing”. Compte Rendus de l’Academie des
Sciences, Paris, Serie I, 346 589–592.
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Comparisons with Related Work

● low-rank/sparse matrix recovery with linear measurements:

y = A(Σ)

– compressed sensing: Ai(Σ) = Tr(M iΣ)
– matrix completion: Ai(Σ) = (Σ)i1i2

● Sketching sparse matrices [Dasarathy et.al.]:

Y =AΣAT

– A ∈ Rm×n with m < n, cannot estimate low-rank models;
– no universal guarantees over sparse models;

● Phaselift: recover x ∈ Cn from {∣⟨ai,x⟩∣2}mi=1.

– our algorithm is the same form of Phaselift when rank is one.
– our algorithm extends the best performance guarantees of Phaselift to
O(n) sub-Gaussian measurements.
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Other Applications of Quadratic Sensing

● Energy measurements are often more reliable with high-frequency applications
for estimating power spectral density.

● Quadratic measurements arise in practical applications such as phase retrieval
and phase space tomography.

Figure 1: A typical setup for structured illuminations in diffraction imaging using a phase mask.

Figure 2: A typical setup for structured illuminations in diffraction imaging using oblique illumina-
tions. The left image shows direct (on-axis) illumination and the right image corresponds to oblique
(off-axis) illumination.

6

E. J. Candès, Y. C. Eldar, T. Strohmer and V. Voroninski, “Phase retrieval via matrix completion,” SIAM J. on Imaging Sciences.

L. Tian, J. Lee, S. Oh, and G. Barbastathis, “Experimental compressive phase space tomography,” Opt. Express.
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Graph Sketching

Consider an undirected graph with bounded degree d and number of nodes n
with adjacency matrix A.

● Define the ith sketching vector xi ∈ {0,1}n as composed of i.i.d. Bernoulli
entries, then the sketch yi = xTi Axi amounts to counting twice the number
of edges in random subgraphs.

● Example: x = [1,0,0,0,0,1,0,1]T whose support is I = {1,6,8}, then
xTAx = 2.

● Our results implies the graph can be perfectly reconstructed from O(nd)
quadratic sketches.
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Covariance Tracking for DOA Estimation

The aggregation step in the sketching scheme can be easily implemented in an
online manner to allow tracking.

● Aggregation: The aggregates yi,T can be modified with a discounting factor
λ for tracking:

yi,T = λyi,T−1 + ∣⟨ai,xT ⟩∣2

● Estimation: replace the trace minimization by a Projection onto Convex Sets
(POCS) procedure (n = 40, m = 600).
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One-Bit PCA: For each sensor i = 1, . . . ,m:

● randomly select two sketching vectors
ai,bi ∈ Cn with i.i.d. Gaussian entries;

● Sketch an arbitrary substream indexed by {`it}Tt=1 with two energy

measurements ∣⟨ai,x`it⟩∣
2
, ∣⟨bi,x`it⟩∣

2
, and transmit a binary bit indicating

the energy comparison outcome to the fusion center:

yi,T = sign( 1

T

T

∑
t=1

∣⟨ai,x`it⟩∣
2
− 1

T

T

∑
t=1

∣⟨bi,x`it⟩∣
2
)

● Estimation: The fusion center recovers the principal components Û ∈ Rn×r
by computing the top r eigenvectors of the surrogate matrix:

Jm = 1

m

m

∑
i=1
yi,T (aiaHi − bibHi ) .

Can we estimate the covariance from Bits?

Assumption: Let Σ = E[xtxHt ] = UUH be a rank-r matrix with U ∈ Cn×r.
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Bit Comparisons are Robust

● With finite samples, the numerical energy difference measures the sample
covariance ΣT :

zi,T = 1

T

T

∑
t=1

∣⟨ai,x`it⟩∣
2
− 1

T

T

∑
t=1

∣⟨bi,x`it⟩∣
2
= ⟨ΣT ,aia

H
i − bibHi ⟩ .

The discrepancy zi,T − zi = ⟨ΣT −Σ,aiaHi − bibHi ⟩ ≠ 0.

● The ordinal energy difference measures the exact covariance Σ with high
probability as soon as T is not too small:

yi,T = sign (⟨ΣT ,aia
H
i − bibHi ⟩)==sign (⟨Σ,aiaHi − bibHi ⟩) = yi.

Theorem 2 (Chi 2014). Let xt ∼ N (0,Σ). Let 0 < δ ≤ 1, then with probability
at least 1 − δ all bit measurements are exact, given that the number of
samples observed by each sensor satisfies T > cTr(Σ)/∥Σ∥F log (mδ ) for some
sufficiently large constant c.

Y. Chi, “One-Bit Principal Subspace Estimation”, IEEE Global Conference on Signal and Information Processing (GlobalSIP),
Atlanta, GA, Dec. 2014.
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One-Bit PCA: Why does it work?

Consider a rank-one example Σ = θθH with the eigenvector θ ∈ C2:

● Each bit yi = sign(∣⟨ai,θ⟩∣2 − ∣⟨bi,θ⟩∣2) selects the halfspace towards the
direction with a smaller angle with either ai or bi.

● With enough bit measurements, we can trap the eigenvector θ accurately up
to a sign difference.
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One-Bit PCA: Performance Guarantee

Conditioned on that the bit measurements are exact, the principal subspace of
Jm agrees with U with high probability given m is sufficiently large.

Theorem 3 (Chi 2014). Denote U ∈ Cn×r as the principal subspace of Σ and
Û as the principal subspace of Jm = 1

m∑
m
i=1 yi (aiaHi − bibHi ). Let 0 < δ < 1,

then with probability at least 1 − δ, there exists an r × r orthogonal matrix Q
such that

∥Û −UQ∥F ≤ c1

√
nr2

m
log (2n

δ
)

for all rank-r matrices Σ, where c1 is an absolute constant depending on r.

● The subspace estimate is accurate as soon as m = Θ(nr2 logn) which is
near-optimal as the subspace requires at least n measurements.

● Not an exact recovery guarantee.

Y. Chi, “Principal Subspace Estimation and Tracking From One-Bit Energy Measurements”, IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Atlanta, GA, Dec. 2014, submitted.
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How many bits do we need?

● We generate the covariance matrix as Σ = XXT , where X ∈ Rn×3 is
composed of standard Gaussian entries. The sketching vectors ai’s and bi’s
are also generated with standard Gaussian entries.

● The estimate X̂ is calculated via computing the top eigenvectors of Jm.

● The error metric is calculated as ∥P
X̂
⊥X∥2F/∥X∥2F.

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Number of bit measurements

N
M

S
E

 

 

n = 40

n = 100

n = 200

Page 23



Online DOA Estimation with Bit Measurements

● The covariance matrix Σ is a low-rank Toeplitz PSD matrix with n = 40 and
r = 3. The set of modes is F = [0.1,0.7,0.725] (notice the last two modes
are separated by the Rayleigh limit 1/n), and their variance is σ2 = 1.

● The subspace is updated online as new bit measurements arrive sequentially;
and ESPRIT is applied to estimate 5 modes using the subspace estimate.
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Recap: Comparing the Two Schemes

Covariance Sketching with Real Measurements:

● Near-Optimal Sample Complexity for a variety of covariance structures;

● Energy measurements are easier to obtain;

● Requires a noise estimate to performance the algorithm with finite sample
size and additive noise;

● The convex optimization might still be computationally expensive;

Covariance Sketching with One-bit Measurements:

● Communication overhead is minimized with bit measurements;

● Simple algorithm via computing the top eigenvectors;

● Robust measurement with respect to (possibly heterogeneous) noise.
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Summary and Future Directions

Summary:

● Covariance estimation is possible without observing and reconstructing the
whole data stream.

● The sensing and estimation procedure can be jointly designed to minimize
complexity by leveraging the low-dimensional structures of data.

● Many potential applications in network traffic monitoring, video surveillance,
and covariance estimation in privacy-aware and crowdsourcing environments.

Future Directions:

● Quality-Quantity-Computation Complexity Trade-offs for statistical inference.
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