
Communication-Efficient Optimization Algorithms

for Decentralized Machine Learning

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Boyue Li

B.S., Electronic Engineering, Tsinghua University
M.S., Language Technologies, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

May 2023

© Boyue Li, 2023
All rights reserved.

Acknowledgements

I would like to thank the generous support by ONR under N00014-18-1-2142 and N00014-19-1-2404, ARO

under W911NF-18-1-0303, AFOSR/AFRL under FA8750-20-2-0504, NSF under ECCS-1818571, CCF-1806154,

CCF-1901199 and CCF-2007911, as well as the Wei Shen and Xuehong Zhang Presidential Fellowship at

Carnegie Mellon University.

I am deeply grateful for my advisor and the chair of the committee, Dr. Yuejie Chi, for her mentorship

and support through my PhD journey. Your passion for research and dedication to students have been

inspiring me since the first day we work together. I would like to extend my sincere thanks to my other

committee members: Dr. Guannan Gu, Dr. Mingyi Hong and Dr. Soummya Kar, for giving invaluable

feedback to help shaping my thesis.

I would like to acknowledge everyone in Yuejie’s group: Dr. Yuanxin Li, Dr. Maxime Ferreira Da Costa,

Dr. Harlin Lee, Dr. Vincent J. Monardo, Dr. Tian Tong, Shicong Cen, Laixi Shi, Diogo Cardoso, Pedro

Valdeira, Jiin Woo, Harry Dong, Dr. Zhize Li, Lingjing Kong, Zixin Wen and He Wang, my life in Porter

Hall basement was brighter because of all of you.

Finally, special thanks to my lovely fiancée, it would be impossible for me to get through the COVID-19

pandemic without you. And thanks to my parents for your unconditional support over the years.

Boyue Li

ii

Abstract

Emerging applications in multi-agent environments such as internet-of-things, networked sensing, large-

scale machine learning and federated learning, have attracting increasing attention for decentralized

optimization algorithms that are resource efficient in both computation and communication while being

able to protect data privacy. This thesis considers the prototypical setting where the agents work collab-

oratively to minimize the sum of local loss functions by only communicating with their neighbors over

a predetermined network topology. We propose four decentralized optimization algorithms, with the

intertwined goals of achieving communication efficiency, computation efficiency, as well as data privacy

through carefully designed update procedures. For all algorithms, we provide theoretical convergence

guarantees and perform extensive numerical experiments to support the analyses.

First, we propose a Newton-type algorithm called Network-DANE for decentralized problems with

strongly convex objectives, which utilizes gradient tracking and extra mixing (i.e., multiple mixing rounds

per iteration) to extend the celebrated server/client algorithm DANE to the decentralized setting. Our

analysis shows that, similar to DANE, Network-DANE achieves linear convergence guarantees for general

smooth strongly convex and quadratic objective functions, and can provably harness data similarity

across agents to accelerate convergence, which highlights its communication efficiency. We further extend

Network-DANE by allowing a nonsmooth penalty term for composite optimization problems, and by using

stochastic variance-reduced local updates for computation efficiency.

Next, for more general decentralized nonconvex empirical risk minimization (ERM) problems, we

propose DESTRESS, which matches the optimal incremental first-order oracle (IFO) complexity of centralized

algorithms for finding first-order stationary points, while maintaining communication efficiency. In addition

to gradient tracking and extra mixing, DESTRESS also incorporates randomly activated stochastic recursive

mini-batch gradient updates to avoid unnecessary computations, which allows the improvement upon

prior decentralized algorithms over a wide range of parameter regimes.

Then, we consider communication compression to further improve communication efficiency for

decentralized nonconvex optimization problems, which leads to the development of BEER. This algorithm

iii

ABSTRACT iv

also leverages stochastic gradient tracking, and in addition incorporates communication compression

together with error feedback to improve communication quality, which allows it to maintain communication

efficiency even when data distribution over agents is highly heterogeneous.

Finally, based on BEER, we propose PORTER for decentralized nonconvex optimization, which can

provably converge to global first-order stationary points while preserving each agent’s privacy under the

notion of differential privacy. PORTER utilizes stochastic gradient tracking, communication compression

together with error feedback as BEER does, and further leverages Gaussian perturbation with gradient

clipping to preserve privacy for arbitrary objective functions.

In summary, our work emphasizes 1) the effectiveness of gradient tracking in estimating global

gradients, 2) by using extra mixing, communication compression and error feedback, the overall efficiency

can be substantially improved, and 3) privacy can be preserved thorough gradient clipping and Gaussian

perturbation. The key algorithm design ideas can also be applied, in a systematic manner, to design new

resource-efficient decentralized optimization algorithms.

Keywords: decentralized optimization, communication and computation efficiency, gradient tracking,

variance reduction, communication compression, error feedback, differential privacy

Contents

Acknowledgements iii

Abstract iv

Contents vi

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Problem formulation . 2

1.2 Contributions . 4

1.3 Related works . 13

1.4 Notation . 15

1.5 Thesis organization . 16

2 Decentralized Newton-style algorithm 17

2.1 Preliminaries . 18

2.2 The Network-DANE algorithm . 20

2.3 Convergence guarantees . 22

2.4 Extension to nonsmooth composite optimization . 27

2.5 Extension with variance reduction . 27

2.6 Numerical experiments . 29

3 Decentralized stochastic recursive gradient algorithm 35

3.1 The DESTRESS algorithm . 35

3.2 Convergence guarantees . 37

v

CONTENTS vi

3.3 Numerical experiments . 39

4 Decentralized stochastic algorithm with communication compression 44

4.1 Preliminaries . 44

4.2 The BEER algorithm . 46

4.3 Convergence guarantees . 48

4.4 Numerical experiments . 50

5 Decentralized private stochastic algorithm with communication compression 54

5.1 Preliminaries . 54

5.2 The PORTER algorithm . 57

5.3 Local differential privacy guarantee . 58

5.4 Convergence with bounded gradient assumption . 58

5.5 Convergence without bounded gradient assumption . 60

5.6 Numerical experiments . 61

6 Conclusions 64

A Appendix for Chapter 2 66

A.1 Derivation of Equation (2.6) . 66

A.2 Proof of Theorem 1 and Theorem 2 . 66

A.3 Proofs of Theorem 3 and Theorem 4 . 71

A.4 Proof of Theorem 5 . 74

A.5 Proof of Lemma 1 . 75

A.6 Proof of Lemma 2 . 81

A.7 Proof of Lemma 3 . 84

B Appendix for Chapter 3 90

B.1 Experiment details . 90

B.2 Proof of Theorem 6 . 90

B.3 Proof of Corollary 3 . 93

B.4 Proof of Lemma 5 . 94

B.5 Proof of Lemma 6 . 101

C Appendix for Chapter 4 107

C.1 Technical lemmas . 107

CONTENTS vii

C.2 Recursive relations of main errors . 109

C.3 Proof of Theorem 7 . 113

C.4 Proof of Theorem 8 . 115

D Appendix for Chapter 5 117

D.1 Proof of Theorem 9 . 117

D.2 Proof of Theorem 10 . 118

D.3 Proof of Theorem 11 . 126

Bibliography 132

List of Tables

1.1 Proposed algorithms, corresponding chapters and contribution highlights 5

1.2 Complexities of Network-DANE . 6

1.3 Complexities of stochastic variance-reduced algorithms . 8

1.4 Complexities of BEER . 10

1.5 Utilities and iterations complexities of private optimization algorithms 12

3.1 Communication complexities of DESTRESS . 39

3.2 Settings for logistic regression with nonconvex regularization experiments for DESTRESS 40

3.3 Settings for neural network training experiments for DESTRESS 41

viii

List of Figures

1.1 Illustration of two distributed settings . 2

2.1 Convergence of Network-DANE and Network-SVRG for linear regression experiments 30

2.2 Convergence of Network-DANE under different rounds of mixing for linear regression 31

2.3 Number of communication rounds till converge with respect to different numbers of local

iterations for Network-SVRG . 32

2.4 Convergence of Network-DANE under different network topologies for linear regression 32

2.5 Convergence of Network-DANE under different rounds of mixing for linear regression with

ℓ1-norm regularization . 33

2.6 Convergence of Network-DANE and Network-SVRG under different rounds of mixing for logistic

regression . 34

2.7 Convergence of Network-DANE and Network-SVRG for neural networks 34

3.1 Convergence of DESTRESS under different network topologies for logistic regression with non-

convex regularization . 41

3.2 Convergence of DESTRESS under different network topologies for one-hidden-layer neural

network training . 42

3.3 The convergence precision 1/ϵ2 with respect to gradient evaluations 42

4.1 Convergence of BEER for logistic regression with nonconvex regularization 51

4.2 Convergence of BEER for 1-hidden-layer neural network training 52

4.3 Convergence of BEER under different network topologies for logistic regression with nonconvex

regularization . 53

4.4 Convergence of BEER under different compression schemes for logistic regression with nonconvex

regularization . 53

5.1 Illustration of input norm and clipped norm for clipping operators 57

ix

LIST OF FIGURES x

5.2 Convergence of PORTER for logistic regression with nonconvex regularization when guaranteeing

(10−2, 10−3)-LDP . 62

5.3 Convergence of PORTER for logistic regression with nonconvex regularization when guaranteeing

(10−1, 10−3)-LDP . 62

5.4 Convergence of PORTER for neural network training when guaranteeing (10−2, 10−3)-LDP . . . 63

5.5 Convergence of PORTER for neural network training when guaranteeing (10−1, 10−3)-LDP . . . 63

Chapter 1

Introduction

Distributed optimization has been a classic topic [BT89] yet is attracting significant attention recently in

machine learning due to its numerous applications such as distributed training [BPC+11], multi-agent

learning [NOP10], and federated learning [KMR15, KMY+16, MMR+17]. At least two facts contribute

towards this resurgence of interest: (1) the scale of modern datasets has oftentimes far exceeded the compu-

tation capacity of a single machine and requires coordination across multiple machines; (2) communication

and privacy constraints disfavor information sharing in a centralized manner and necessitates distributed

infrastructures.

Broadly speaking, in terms of communication patterns, there are two distributed settings that have

received the most interest as illustrated in Figure 1.1: 1) the server/client setting, which assumes the

existence of a central parameter server that can aggregate and share information with all agents; and 2) the

decentralized setting, where each agent is only permitted to communicate with its neighbors over a locally

connected network specified by a communication graph. For both settings, each agent only has access

to a disjoint subset of the data samples and aims to work collaboratively to optimize the global objective

function f (x), by only exchanging information with the parameter server or its neighbors (in other words,

no centralized coordination is present). It is in general more challenging to developing algorithms for the

latter setting, which is the focus of this thesis.

For a typical decentralized optimization algorithm, agents generally alternate between (1) communi-

cation, which propagates local information and enforces consensus and (2) computation, which updates

individual optimization variables and improves convergence using information received from neighbors.

Compared to the server/client setting, [LZZ+17] suggests decentralized algorithms can effectively avoid

communication jams on busy agents, e.g., the parameter server, and be more efficient in wall-clock time.

We can roughly break down an algorithm’s total running cost Ctotal to the total number of iterations T

1

CHAPTER 1. INTRODUCTION 2

(a) The server/client setting, where all devices
(clients) connect to a remote central server.

(b) The decentralized setting, where all devices con-
nect with its neighbors without a central server.

Figure 1.1: Illustration of two distributed settings: (a) the server/client setting, and (b) the decentralized
setting. This thesis focuses on the decentralized setting.

multiplied by the sum of per-iteration communication cost Ccomm and per-iteration computation cost Ccomp,

i.e.

Ctotal = T × (Ccomm + Ccomp). (1.1)

For example, when reducing total time spent to reach certain accuracy is the top priority, the running

cost can be defined as wall-clock time. Horizontally scaling the system by adding more agents to run in

parallel may reduce T, but it will increase the communication cost Ccomm in the meantime, which may

lead to a worse total cost Ctotal in some cases. Therefore, achieving a desired level of resource efficiency

for a decentralized algorithm often requires careful and delicate trade-offs between computation and

communication costs, as these objectives are often conflicting in nature.

Privacy is another crucial constraint in large-scale decentralized optimization, because these applications

often involve transferring computation outcomes on sensitive data that may contain personal or confidential

information to external agents. Without carefully designed privacy-preserving protocols, systems may

risk to directly reveal sensitive data or be vulnerable to other forms of attacks, e.g., linkage attacks

[DR14]. A notable example of linkage attacks is the identification of the medical records of the governor of

Massachusetts from anonymized medical data with voter registration data [Lam01], which emphasizes the

importance of privacy-preserving.

1.1 Problem formulation

In this thesis, we investigate decentralized minimization problems, with the aim of achieving communica-

tion and computation efficiency simultaneously, as well as satisfying privacy-preserving constraints. In this

section, we formally define the problem and related concepts.

CHAPTER 1. INTRODUCTION 3

Objective functions Consider the following minimization problem:

minimize
x∈Rd

f (x) :=
1
n

n

∑
i=1

fi(x), (1.2)

where x ∈ Rd denotes the optimization variable, fi(·) denotes the local objective function at the i-th agent

(1 ≤ i ≤ n) of n agents. In many machine learning applications, for example, empirical risk minimization

(ERM) problems, local objective functions often have a finite-sum structure that is defined as

fi(x) :=
1
m ∑

z∈Mi

ℓ(x; z), (1.3)

where ℓ(x; z) denotes the sample loss of the sample z at x, Mi denotes the dataset at agent i, m = |Mi|
denotes the number of data samples at each agent.1 In addition, we define the full dataset M = ∪n

i=1Mi

and total sample size N = |M| = mn. The communication pattern of the network is specified by

an undirected graph G = (V , E), where V denotes the set of all agents, and two agents can exchange

information if and only if there is an edge in E connecting them.

General assumptions We assume Assumptions 1 and 2 for all analysis in this thesis. Assumption 1

guarantees the existence of nontrivial solution(s) of the global optimization problem. Assumption 2 limits

the change of sample gradients, which also implies the local objective functions fi(·) and global objective

function f (·) have Lipschitz gradients.

Assumption 1 (Bounded global objective function). The global objective function f (x) is bounded below, i.e.,

f ⋆ = inf
x∈Rd

f (x) > −∞.

Assumption 2 (L-smooth sample loss function). A sample loss function ℓ(x; z) is L-smooth if ∀x, y ∈ Rd and

∀z ∈ Z , the following inequality holds:

∥∥∇ℓ(x; z)−∇ℓ(y; z)
∥∥

2 ≤ L∥x − y∥2.

Information mixing The information mixing between agents is conducted by updating the local informa-

tion via a weighted sum of information from neighbors, which is characterized by a mixing (gossiping)

matrix. Concerning this matrix is an important quantity called the mixing rate, defined in Definition 1.

Definition 1 (Mixing matrix and mixing rate). The mixing matrix is a matrix W = [wij] ∈ Rn×n, such that

wij = 0 if agent i and j are not connected according to the communication graph G. Furthermore, W1n = 1n and

W⊤1n = 1n. The mixing rate of a mixing matrix W is defined as

α :=
∥∥W − 1

n 1n1⊤n
∥∥

op ∈ [0, 1). (1.4)
1We assuming the data is distributed equally among all agents, but it can be easily generalized to the unequal splitting case.

CHAPTER 1. INTRODUCTION 4

The mixing rate indicates the speed of information shared across the network. For example, for a fully

connected network, choosing W = 1
n 1n1⊤n leads to α = 0. For general networks and mixing matrices,

[NOR18, Proposition 5] provides comprehensive bounds on 1 − α—also known as the spectral gap—for

various graphs. For instance, one has α ≍ 1 with high probability in an Erdős-Rényi random graph if the

graph is connected. In practice, FDLA matrices [XB04] are more favorable because it can achieve a much

smaller mixing rate, but they usually contain negative elements and are not symmetric. Our analysis can

handle arbitrary mixing matrices as long as their row/column sums equal to one and its mixing rate is

smaller than 1.

Convergence metrics For strongly convex optimization algorithms, a global optimum is guaranteed to

exist. Thus, we consider the distance of output to the global optimum defined in Definition 2, where a

smaller ν means better performance.

Definition 2 (ν-accurate solution). The output of a deterministic optimization algorithm x ∈ Rd is a ν-solution of

a differentiable strongly convex function f (x) if

∥x − x⋆∥2
2 ≤ ν2,

where x⋆ = arg min f (x).

For nonconvex optimization algorithms, we consider the norm of the output’s gradient as the quality

metric. Definition 3 defines a ν-first-order stationary point, where a smaller ν indicates better convergence.

Definition 3 (ν-first-order stationary point). The output of an optimization algorithm x ∈ Rd is a ν-first-order

stationary point of a differentiable function f (x) if

• ∥∇ f (x)∥2
2 ≤ ν2 for deterministic optimization algorithms.

• E∥∇ f (x)∥2
2 ≤ ν2 for stochastic optimization algorithms.

1.2 Contributions

Our main contribution is the design and analysis of four resource-efficient primal-only decentralized

optimization algorithms: Network-DANE (cf. Algorithm 1), DESTRESS (cf. Algorithm 4), BEER (cf. Algo-

rithm 5) and PORTER (cf. Algorithm 7) as summarized in Table 1.1. While all algorithms share a similar

framework based on gradient tracking, each one focuses on a unique perspective of decentralized ERM

problems, resulting in distinct algorithm designs that can achieve overall resource efficiency and address

problem-specific constraints. Proposed algorithms encompass a variety of methods, such as approximate

CHAPTER 1. INTRODUCTION 5

Algorithm Chapter
Communication Computation Communication Differential

efficiency efficiency compression privacy

Network-DANE 2 ✓

DESTRESS 3 ✓ ✓

BEER 4 ✓ ✓ ✓

PORTER 5 ✓ ✓ ✓ ✓

Table 1.1: Proposed algorithms, corresponding chapters and contribution highlights.

Newton-type methods, stochastic variance-reduced methods, communication compression, error feedback

and privacy perturbation.

In addition, our work indicates that by performing a judiciously chosen amount of local communication

and computation per iteration, the overall efficiency can be remarkably boosted while simultaneously

meeting problem-specific constraints. Extensive numerical experiments are provided to corroborate our

theoretical findings, and to demonstrate the practical efficacy of the proposed algorithms over competitive

baselines. All code can be accessed at

https://github.com/liboyue/Network-Distributed-Algorithm.

1.2.1 Decentralized Newton-style algorithm

This subsection highlights our contributions of designing the decentralized Newton-type method Network-DANE

(cf. Chapter 2) [LCCC20], which converges linearly for smooth strongly convex objectives and quadratic

objectives, and can be extended to nonsmooth composite objectives using a proximal operator.

Algorithm development We start by studying an approximate Newton-type method called DANE

[SSZ14], which is among the most popular communication-efficient server/client optimization algorithms

for solving ERM problems. Then, we develop Network-DANE, which generalizes DANE to the decentralized

(network) setting. The main challenge in developing such an algorithm is to track and update a faithful

estimate of the global gradient at each agent, despite the lack of centralized information aggregation.

Towards this end, we leverage dynamic average consensus (originally proposed in the control literature

[ZM10] and later adopted in decentralized optimization [QL18, NOS17, DLS16]) to track and correct locally

aggregated gradients at each agent — a scheme commonly referred to as gradient tracking. We then employ

the corrected gradient in local computations, according to the subroutine adapted from DANE. This simple

idea allows one to adapt approximate Newton-type methods to network-distributed optimization, without

communicating Hessian matrices.

https://github.com/liboyue/Network-Distributed-Algorithm

CHAPTER 1. INTRODUCTION 6

Algorithm Communication Extra Loss
βrounds averaging functions

EXTRA
κ2 log(1/ϵ) ✗ Strongly convex

Arbitrary[SLWY15a]
DGD κ2 log(1/ϵ)

(1−α)2 ✗ Strongly convex[QL18]
κ(β/σ+1) log(1/ϵ)

(1−α)2 ✗
Quadratic

Arbitrary
log κ · (β2/σ2+1) log(1/ϵ)

(1−α)1/2 ✓
Network-DANE
(Algorithm 1) κ2 log(1/ϵ)

(1−α)2 ✗
Strongly convex

log κ · κ(β/σ+1) log(1/ϵ)

(1−α)1/2 ✓

Network-SVRG log κ · log(1/ϵ)

(1−α)1/2 ✓ Strongly convex β ≤ σ/200(Algorithm 3)

Table 1.2: Communication complexity of the proposed algorithms for quadratic and strongly convex losses
to reach ϵ-accuracy. Here, σ, L and κ = L/σ are the strong convexity, smoothness, and condition number
of the local loss functions. In addition, β ≤ L is the homogeneity parameter gauging the similarities of
the local loss functions defined in (4), and α is the mixing rate defined in (1.4). Here, we assume the extra
averaging step is implemented via Chebyshev acceleration scheme [AS14]. EXTRA [SLWY15a] and DGD
[QL18] are listed as baselines. The big-O notation (defined in Section 1.4) is omitted for simplicity.

Our ideas for designing Network-DANE can be extended, in a systematic manner, to obtain decentralized

versions of other algorithms developed for the server/client setting, by modifying the local computation

step properly. As a notable example, we develop Network-SVRG, which performs variance-reduced

stochastic optimization locally to enable further computational savings [JZ13]. We also demonstrate

that Network-DANE can be extended to the proximal setting for nonsmooth composite optimization in a

straightforward manner.

Efficiency analysis Network-DANE achieves an intriguing trade-off between communication and computa-

tion efficiency. During every iteration, each agent only communicates the parameter and gradient estimate

to its neighbors, and is therefore communication-efficient globally; moreover, the local subproblem at each

agent can be solved efficiently with accelerated gradient methods, and is thus computation-efficient locally.

When the network exhibits a high degree of locality, we show that by allowing multiple rounds of local mix-

ing within each iteration, an improved overall communication complexity can be achieved as it accelerates

the rate of convergence. Theoretically, we establish the linear convergence of Network-DANE for strongly

convex and quadratic losses, and show that incorporating extra mixing leads to great improvements in

communication complexity. For Network-SVRG, we establish its linear convergence for the case of smooth

strongly convex losses with extra rounds of averaging. Our analysis is highly nontrivial, as it needs to deal

with the tight couplings of optimization and network consensus errors through a carefully designed linear

CHAPTER 1. INTRODUCTION 7

system of Lyapunov functions, especially in the context of approximate Newton-type methods which are

known be harder to handle than simple gradient-type methods.

Table 1.2 summarizes the convergence rates of the proposed algorithm and baseline algorithms. Let σ,

L, κ = L/σ and β denote the strong convexity, smoothness, condition number of the local loss functions

and homogeneity parameter. For general strongly convex losses, Network-DANE matches the results of

both EXTRA [SLWY15a] and DGD [QL18] without extra mixing, but achieves a significantly improved

communication complexity when incorporating extra mixing by a factor of O
(
(1− α)3/2(β/σ+ 1)κ−1 log κ

)
.

The resulting convergence rate attains the optimal network dependency O
(
(1 − α)−1/2), and improves the

condition number dependency from O(κ2) to O
(
(β/σ + 1)κ log κ

)
, which can be a significant improvement

in the case that data similarity parameter β is small. For example, in the big data scenario, each agent can

access a large number of i.i.d. data samples, which results in a small homogeneity parameter. Moreover,

Network-DANE reaches a condition number free (up to a log factor) communication complexity for quadratic

losses, which emphasizes the potential of the Newton-type method and extra mixing. Network-SVRG

reaches a condition number free (up to a log factor) communication complexity as well for strongly convex

objectives, providing β is small enough, at a much lower computation complexity than Network-DANE due

to its stochastic nature. Our results shed light on the impacts of data homogeneity and network connectivity

upon the rate of convergence.

1.2.2 Decentralized stochastic recursive gradient algorithm

This subsection highlights our contributions of the development of DEcentralized STochastic REcurSive

gradient methodS (DESTRESS, cf. Chapter 3) [LLC22], which is a resource-efficient algorithm for decen-

tralized nonconvex ERM problems. DESTRESS provably finds first-order stationary points of the global

objective function f (x) with the optimal incremental first-order (IFO) oracle complexity, i.e., the complexity

of evaluating sample gradients, but at a much lower communication complexity compared to existing

decentralized algorithms over a wide range of parameter regimes.

Algorithm development DESTRESS tries to improve computation and communication simultaneously

to achieve overall resource efficiency. To reduce local computation, DESTRESS harnesses the finite-sum

structure of the empirical risk function by performing stochastic variance-reduced recursive gradient

updates [NvP+22, FLLZ18, WJZ+19, Li19, LR21b, LBZR21, ZXG18]—an approach that is shown to be

optimal in terms of IFO complexity in the centralized setting—in a randomly activated manner to further

improve computational efficiency when the local sample size is limited. To reduce communication, DESTRESS

employs gradient tracking [ZM10] with a few mixing rounds per iteration, which helps accelerate the

CHAPTER 1. INTRODUCTION 8

Algorithms Setting Per-agent IFO Complexity Communication Rounds

SVRG
centralized N + N2/3L

ϵ2 -
[AZH16, RHS+16]

SCSG/SVRG+
centralized N + N2/3L

ϵ2 -
[LJCJ17, LL18]

SNVRG
centralized N + N1/2L

ϵ2 -
[ZXG18]

SARAH/SPIDER/SpiderBoost
centralized N + N1/2L

ϵ2 -
[NvP+22, FLLZ18, WJZ+19]
SSRGD/ZeroSARAH/PAGE

centralized N + N1/2L
ϵ2 -

[Li19, LR21b, LBZR21]
D-GET

decentralized m + 1
(1−α)2 · m1/2L

ϵ2 Same as IFO
[SLH20]

GT-SARAH
decentralized m + max

(
1

(1−α)2 ,
(m

n
)1/2, (m/n+1)1/3

1−α

)
· L

ϵ2 Same as IFO
[XKK22a]
DESTRESS

decentralized m + (m/n)1/2L
ϵ2

1
(1−α)1/2 ·

(
(mn)1/2 + L

ϵ2

)
(Algorithm 4)

Table 1.3: The per-agent IFO complexities and communication complexities to find ϵ-first-order stationary
points by stochastic variance-reduced algorithms for nonconvex ERM problems. The first five algorithms
are designed for the centralized setting, and the remaining D-GET, GT-SARAH and DESTRESS are for the
decentralized setting. m, n, L are defined in Section 1.1 and α is the mixing rate defined in (1.4). The big-O
notation (defined in Section 1.4) and logarithmic terms are omitted for simplicity.

convergence through better information sharing [LCCC20]; the extra mixing scheme can be implemented

using Chebyshev acceleration [AS14] (detailed in Section 2.1.2) to further improve the communication

efficiency.

Efficiency analysis In a nutshell, to find an ϵ-first-order stationary point (cf. Definition 3), where xout

is the output of DESTRESS, and the expectation is taken with respect to the randomness of the algorithm,

DESTRESS requires:

• O
(
m + (m/n)1/2L/ϵ2) per-agent IFO calls, which is network-independent; and

• O
(log

(
(n/m)1/2+2

)

(1−α)1/2 ·
(
(mn)1/2 + L

ϵ2

))
rounds of communication,

where L is the smoothness parameter of the sample loss, α ∈ [0, 1) is the mixing rate of the mixing

matrix. DESTRESS is resource-efficient for it reaches optimal computation complexity with state-of-the-art

communication complexity.

Table 1.3 summarizes convergence guarantees of representative stochastic variance-reduced algorithms

for finding first-order stationary points across centralized and decentralized communication settings.

• In terms of the computation complexity, the overall IFO complexity of DESTRESS—when summed

CHAPTER 1. INTRODUCTION 9

over all agents—becomes

n · O
(
m + (m/n)1/2L/ϵ2) = O

(
mn + (mn)1/2L/ϵ2) = O

(
N + N1/2L/ϵ2),

matching the optimal IFO complexity of centralized algorithms (e.g., SPIDER [FLLZ18], PAGE [LBZR21])

and distributed server/client algorithms (e.g., D-ZeroSARAH [LR21b]). However, the state-of-the-art

decentralized algorithm GT-SARAH [XKK22a] is not able to achieve this optimal IFO complexity for

all situations (see Table 1.3). To the best of our knowledge, DESTRESS is the first algorithm to achieve

the optimal IFO complexity for the decentralized setting regardless of network topology and sample

size.

• When it comes to the communication complexity, it is observed that the communication rounds of

DESTRESS can be decomposed into the sum of an ϵ-independent term and an ϵ-dependent term (up

to a logarithmic factor), i.e.,

1
(1 − α)1/2 · (mn)1/2

︸ ︷︷ ︸
ϵ−independent

+
1

(1 − α)1/2 · L
ϵ2

︸ ︷︷ ︸
ϵ−dependent

;

similar decompositions also apply to competing decentralized algorithms. DESTRESS significantly

improves the ϵ-dependent term of D-GET and GT-SARAH by at least a factor of 1
(1−α)3/2 , and

therefore, saves more communications over poorly connected networks. Further, the ϵ-independent

term of DESTRESS is also smaller than that of D-GET/GT-SARAH as long as the local sample size is

sufficiently large, i.e., m = Ω
(n

1−α

)
, which also holds for a wide variety of application scenarios.

In sum, DESTRESS harnesses the ideas of random client activation, variance reduction, gradient tracking

and extra mixing in a sophisticated manner to achieve a scalable decentralized algorithm for nonconvex

empirical risk minimization that is competitive in both computation and communication over existing

approaches.

1.2.3 Decentralized stochastic algorithm with communication compression

This subsection highlights our contributions of the development of Better comprEssion for dEcentRalized

optimization (BEER, cf. Chapter 4) [ZLL+22], which is a communication-efficient algorithm for decentral-

ized nonconvex optimization problems. Communication compression is a well-established method to

improve communication efficiency for server/client distributed optimization algorithms. However, for the

decentralized setting, most existing algorithms, e.g. [KSJ19, TLQ+19, SDGD21], require strong assumptions

as bounded gradient assumption or bounded dissimilarity assumption to guarantee convergence. BEER

CHAPTER 1. INTRODUCTION 10

Algorithm Communication Per-agent IFO Extra assumptionrounds complexity
SQuARM-SGD nτ2

ϵ2 + σ2

bnϵ4
nτ2

ϵ2 + σ2

nϵ4 Bounded gradient (1)
[SDGD21]

DeepSqueeze β
ϵ3 +

σ2

bnϵ4
β
ϵ3 +

σ2

nϵ4 Bounded dissimilarity (2)
[TLQ+19]

CHOCO-SGD τ
ϵ3 +

σ2

bnϵ4
τ
ϵ3 +

σ2

nϵ4 Bounded gradient (1)
[KSJ19]

BEER 1
ϵ2

1
ϵ2 +

σ2

ϵ4 -(Algorithm 5)

Table 1.4: Comparison of iteration (communication) complexity, per-agent IFO complexity, and extra
assumptions in addition to BEER’s assumptions, for existing decentralized stochastic nonconvex optimization
algorithms to reach ϵ-first-order stationary points. σ2 and b denote the local gradient variance and batch
size, respectively.
(1) The bounded gradient assumption is defined as ∀x ∈ Rd, Ezi∼Zi∥∇ℓ(x, zi)∥2

2 ≤ τ2 .
(2) The bounded dissimilarity assumption is defined as ∀x ∈ Rd, 1

n ∑n
i=1 ∥∇ fi(x)−∇ f (x)∥2

2 ≤ β2.

removes theses strong assumptions, which enables it to converge under arbitrary data heterogeneity where

other algorithms fail. BEER enjoys a faster convergence rate to find first-order stationary points of the

global objective function f (x) than existing algorithms that use communication compression. We establish

convergence analysis for BEER using stochastic gradient for nonconvex optimization problem, and further

extend this convergence to problems satisfying the Polyak-Łojasiewicz (PL) condition.

Algorithm development We develop BEER, in hope to match the convergence rate of centralized stochastic

gradient descent (SGD) without aforementioned strong assumptions and under arbitrary data distribu-

tions, by leveraging gradient tracking and error feedback [RSF21]. For each variable that needs to be

communicated, BEER tracks and maintains a control sequence that serves as compressed surrogate by

communicating and accumulating a compressed error from the variable and the control sequence, which

leads to an improved convergence rate.

Efficiency analysis To find an ϵ-first-order stationary point, using both full gradient and stochastic

gradient (with proper batch size), BEER takes

• O(ϵ−2) iterations for optimizing nonconvex objective functions,

• O
(
κ log(1/ϵ)

)
iterations for optimizing PL objectives, where κ is the condition number,

while only requires bounded local stochastic gradient variance assumption and global L-smoothness

assumption.

Table 1.4 summarizes the iteration complexities, per-agent IFO complexities and extra assumptions for

BEER and baseline algorithms for optimizing nonconvex objectives using minibatch stochastic gradients,

CHAPTER 1. INTRODUCTION 11

where the IFO complexities are results after using appropriate batch sizes, extra assumptions are those

needed in addition to BEER’s assumptions.

Let σ2 denote the local gradient variance. When all algorithms use full gradient updates, which is

equal to σ = 0, in terms of the variance-independent terms in the iteration complexities, BEER improves the

dependency on ϵ from O(ϵ−3) to O(ϵ−2) and matches the centralized SGD.

When the local gradient variance is present, using appropriate batch sizes for all algorithms, BEER still

attains the best iteration complexity. Furthermore, as shown in Table 1.4, SQuARM-SGD and CHOCO-SGD

all require bounded gradient assumption, and DeepSqueeze requires bounded dissimilarity assumption,

which results in a significant performance degeneration when those assumptions are not satisfied. On

the contrary, BEER maintains the same convergence guarantees under arbitrary data heterogeneity, which

highlights BEER’s adaptivity to more optimization problems.

1.2.4 Decentralized private stochastic algorithm

This subsection highlights our contributions of developing PORTER (cf. Chapter 5), which is a resource-

efficient and differentially private decentralized stochastic optimization algorithm for nonconvex ERM

problems. PORTER is the first private decentralized optimization algorithm to incorporate communication

compression and gradient clipping, to improve communication efficiency and converge for arbitrary

objective functions without the bounded gradient assumption, respectively. We establish convergence

analysis both with and without the bounded gradient assumption, and show explicit dependency on the

mixing rate and compression parameter.

Algorithm development The focus of PORTER is preserving the privacy of each agent while being resource-

efficient. To address the privacy concern, PORTER applies gradient clipping to ensure gradients are bounded

for any objective function, then adds privacy perturbation to clipped gradients. To improve communication

efficiency, PORTER incorporates gradient tracking [ZM10] without extra mixing to construct an estimate of

the global gradient at each agent, and utilizes communication compression together with error feedback

[RSF21] to reduce the amount of data to be communicated without hurting the convergence rate. Lastly, to

improve computation efficiency, PORTER queries a mini-batch of samples to compute stochastic gradient per

agent at each iteration.

Privacy constraints PORTER achieves (ϵ, δ)-local differential privacy (LDP) (cf. Theorem 9), which protects

privacy leakage between any two agents, hence is a stronger guarantee than conventional differential

privacy that only protects privacy leakage to external adversaries. Privacy is protected by adding Gaussian

CHAPTER 1. INTRODUCTION 12

Algorithm Privacy Compression Bounded Utility Communication
operator gradient rounds

DP-SGD DP - ✓ ϕm -[ACG+16]
DDP-SRM DP - ✓ 1

n ϕm n2dϕ−1
m[WJEG19]

Soteria-SGD (1)
LDP Unbiased ✓ (1 + θ1/2)

(1+ω
n
)1/2

ϕm (1 + θ1/2)
(n

1+ω

)2/3dϕ−1
m[LZLC22]

PORTER LDP General ✓
1

(1−α)8/3ρ4/3 ϕm ϕ−2
m(Algorithm 8)

PORTER - General ✗ 1
(1−α)8/3ρ4/3 ϕ1/2

m (1 − α)8/3ρ4/3ϕ−1
m(Algorithm 7)

Table 1.5: Comparison of final utility upper bounds communication complexities of different stochastic

optimization algorithms that achieves (ϵ, δ)-DP/LDP. ϕm =

√
d log(1/δ)

mϵ is the baseline utility. Big-O notation
(defined in Section 1.4) is omitted for simplicity. DP-SGD is a single-machine optimization algorithm that
serves as a baseline, to show the overhead brought in by the distributed setting. DDP-SRM and Soteria-SGD
are server/client distributed algorithms, but DDP-SRM doesn’t use communication compression.
(1) Here θ = (1 + ω)3/2n−1/2.

perturbations to clipped stochastic gradients at each agent [DR14], where the variance of the perturbation

is decided according to the target final utility and the norm of gradients (which is bounded by the clipping

parameter τ).

Efficiency analysis Table 1.5 presents final utilities and corresponding communication complexities for

PORTER and baseline algorithms under (ϵ, δ)-DP/LDP, where we show explicit convergence rates of PORTER

for general compression operators (cf. Definition 5). When assuming the bounded gradient assumption

(cf. Assumption 8), PORTER reaches O
(
(1 − α)−8/3ρ−4/3ϕm

)
utility in O(ϕ−2

m) iterations. Otherwise,

PORTER reaches O
(
(1 − α)−4/3ρ−2/3ϕ1/4

m
)
ℓ2 utility in no more than O((1 − α)4/3ρ2/3ϕ−1

m) iterations. This

convergence analysis is the first that specifies explicate dependency on mixing rate and compression

parameter for decentralized private optimization algorithms.

To begin with, we first assume Assumption 8 holds, Using general compression operators (cf. Defini-

tion 5), PORTER reaches O
(
(1− α)−8/3ρ−4/3ϕm

)
squared ℓ2 utility in ϕ−2

m iterations. The iteration complexity

is relatively higher compared to the O(ϕ−1
m) complexity of baseline algorithms, due to extra errors induced

by the decentralized setting.

However, the bounded gradient assumption is rarely met in practice, which makes it necessary

for private optimization algorithms to apply gradient clipping to converge on more general objective

functions. We propose a novel framework to analyze algorithms that uses gradient clipping without

bounded gradient assumption, and show that using general compression operators, Algorithm 7 can reach

O
(
(1 − α)−4/3ρ−2/3ϕ1/4

m
)
ℓ2 utility in no more than O((1 − α)4/3ρ2/3ϕ−1

m) iterations.

CHAPTER 1. INTRODUCTION 13

To conclude, PORTER is a promising approach to efficiently and privately optimizing decentralized

nonconvex optimization problems by leveraging gradient tracking, communication compression, error

feedback, gradient clipping and privacy perturbation in a refined manner, which is backed by novel

convergence analysis that shows explicit rates under various assumptions.

1.3 Related works

Gradient tracking Gradient tracking [ZM10, QL18] provides a systematic approach to estimate the global

gradient at each agent, which allows one to easily design decentralized optimization algorithms based

on existing centralized algorithms. This idea is first incorporated to adjust distributed gradient descent

(DGD) to ensure its linear convergence using a constant step size [NOS17, QL18, LSY19, XXK17, YYZS18,

SS19, XSKK19]. Using the same idea, [LCCC20] extends Newton-style algorithms as well as stochastic

variance-reduced algorithms with performance guarantees for optimizing strongly convex functions, and

[ZY19, SLH20, XKK22b, XKK22a, LLC22, HSZ+22, LY22] design stochastic optimization algorithms for

nonconvex problems.

Newton-type methods for distributed optimization Distributed Approximate NEwton-type Method

(DANE) [SSZ14] exhibits appealing performance in both theory and practice. AIDE [RKR+16] relaxes

the local optimization problem to an inexact solver and applies acceleration techniques, which improves

the communication complexity to match the lower bound. CEASE [FGW21] further extends DANE to

optimizing objective functions with proximal terms and improves the analysis.

Stochastic variance-reduced methods Many variants of stochastic variance-reduced gradient based

methods have been proposed for finite-sum optimization for finding first-order stationary points, including

but not limited to SVRG [JZ13, AZH16, RHS+16], SCSG [LJCJ17], SVRG+ [LL18], SAGA [DBLJ14], SARAH

[NLST17, NvP+22], SPIDER [FLLZ18], SpiderBoost [WJZ+19], SSRGD [Li19], ZeroSARAH [LR21b] and

PAGE [LBZR21]. SVRG/SVRG+/SCSG/SAGA utilize stochastic variance-reduced gradients as a corrected

estimator of the full gradient, but can only achieve a sub-optimal IFO complexity of O(N + N2/3L/ϵ).

Other algorithms such as SARAH, SPIDER, SpiderBoost, SSRGD and PAGE adopt stochastic recursive

gradients to improve the IFO complexity to O(N + N1/2L/ϵ), which is optimal indicated by the lower

bound [FLLZ18, LBZR21].

Decentralized stochastic nonconvex optimization There has been a flurry of recent activities in decen-

tralized nonconvex optimization. D-PSGD [LZZ+17] and SGP [ALBR19] extend stochastic gradient descent

CHAPTER 1. INTRODUCTION 14

(SGD) to solve the nonconvex decentralized expectation minimization problems with sub-optimal rates.

However, due to the noisy stochastic gradients, D-PSGD can only use diminishing step size to ensure

convergence, and SGP uses a small step size on the order of 1/K, where K denotes the total iterations,

[KDG03, XB04, Sha07, BJ13, LZZ+17, WJ21] also propose decentralized algorithms with similar structures.

D2 [TLY+18] introduces a variance-reduced correction term to D-PSGD, which allows a constant step size

and hence reaches a better convergence rate.

GT-SAGA [XKK22b] further uses SAGA-style updates and reaches a convergence rate that matches

SAGA [DBLJ14, RSPS16]. However, GT-SAGA requires to store a variable table, which leads to a high

memory complexity. D-GET [SLH20] and GT-SARAH [XKK22a] adopt equivalent recursive local gradient

estimators to enable the use of constant step sizes without extra memory usage. The IFO complexity of

GT-SARAH is optimal in the restrictive range m ≳ n
(1−α)6 , while DESTRESS achieves the optimal IFO over

all parameter regimes.

In addition to variance reduction techniques, performing multiple mixing steps between local updates

can greatly improve the dependence of the network in convergence rates, which is equivalent of com-

municating over a better-connected communication graph for the agents, which in turn leads to a faster

convergence (and a better overall efficiency) due to better information mixing. This technique is applied

by a number of recent literatures [BBKW19, PLW20, BBW21, LCCC20, HAD+21, IW22, SBB+17, SBB+18,

LFYL20, YZLZ20, GF20, LDS21].

Communication compression Communication efficiency is critical to decentralized optimization algo-

rithms, as communication can quickly become bottleneck of the system as the number of agents and the size

of the model increase. This has led to the development of communication compression (or quantization)

technique, which can significantly reduce the communication burden by transferring compressed informa-

tion without hurting the convergence too much. [DSZOR15, AGL+17] adopt gradient compression to create

a server/client distributed stochastic gradient descent, however, the large variance of compressed gradients

leads to a sub-optimal convergence rate. [SFD+14] first proposes using error feedback to compensate for the

variance induced by compression. [SCJ18, AHJ+18, MGTR19, LKQR20, GBLR21, LR21a] all equip similar

mechanism to improve convergence for server/client distributed optimization algorithms, and [RSF21]

proposes EF21 that formalizes the error feedback mechanism and reaches a O(1/T) convergence rate for

smooth nonconvex objective functions. [TGZ+18, KSJ19, SDGD21, TMHP20, ZLL+22, YCC+23, LLP23]

further extend communication compression schemes to the decentralized setting.

On the other hand, many compressed methods are proposed recently such as [AGL+17, KFJ18, TGZ+18,

SCJ18, KSJ19, LKQR20, GBLR21, LR21a, RSF21, FSG+21, ZBLR21].

CHAPTER 1. INTRODUCTION 15

Private optimization algorithms The concern of leaking sensitive data has been increasing with the

rapid development of large-scale machine learning systems. To address this concern, the concept of

differential privacy is widely adopted [DMNS06, Dwo08, DR14], which is the possibility of a system to

leak information under an adversarial attack. A popular approach to protect privacy is adding a noise to

the model or gradients, so that the algorithm will converge to an “inexact” solution. [ACG+16, WYX17,

INS+19, FKT20, CWH20] apply this method to design differentially private optimization algorithms for

the single server setting, while [HDJ+20, ACCÖ21, NBD22, DLC+22] consider differential privacy for

server/client distributed setting. However, merely protecting the privacy of all agents against external

adversary is insufficient in the decentralized setting. It is also necessary to protect each agent’s privacy from

leaking to other agents, which leads to the development of locally differentially private server/client and

decentralized optimization algorithms [DJW13, ABCP13, CABP13, XYD19, CSU+19, WXDX20, ZZY+21,

LZLC22, ZCH+22, ZKL18, ZKL20, CEBM22, ZP23, MS23].

Gradient clipping Gradient clipping has gained significant attention in recent years. Earlier works

e.g. [PMB13, BBP13, KLL16, KFI17, YGG17], use gradient clipping as a pure heuristic to solve gradient

vanishing/exploding problems without theoretical understandings. Then, [ZHSJ20, ZKV+20, ZJFW20,

RLDJ23] introduce theoretical analysis trying to understand the impact on the convergence rate when an

algorithm adopts gradient clipping. With the recent advancements in differentially private optimization

algorithms, a series of works, e.g. [CWH20, ZCH+22, DKX+22, ?, ?], apply this technique to limit the

magnitude of gradients, so that the variance of privacy perturbation can be decided without the bounded

gradient assumption.

1.4 Notation

Throughout this thesis, we use lowercase and uppercase boldface letters to represent vectors and matrices,

respectively. We use ∥ · ∥op for matrix operator norm, ∥ · ∥F for Frobenius norm, ∥ · ∥2 for 2-norm, ⊗ for

the Kronecker product, ⊙ for the element-wise multiplication, In for the n-dimensional identity matrix,

⟨x, y⟩ for the inner product of two vectors x and y, 1n for the n-dimensional all-one vector and 0d×n

for the (d × n)-dimensional zero matrix. For two real functions f (·) and g(·) defined on R+, we say

f (x) = O
(

g(x)
)

or f (x) ≲ g(x) if there exists some universal constant M > 0 such that f (x) ≤ Mg(x).

The notation f (x) = Ω
(

g(x)
)

or f (x) ≳ g(x) means g(x) = O
(

f (x)
)
.

Let xi ∈ Rd be the optimization variable at agent i. We define the matrix of all optimization variables

CHAPTER 1. INTRODUCTION 16

and the average vector as

X := [x1, x2, . . . , xn] ∈ Rd×n x :=
1
n

n

∑
i=1

xi. (1.5)

In addition, for a matrix of variables, we introduce the distributed gradient ∇F(X) ∈ Rd×n as

∇F(X) :=
[
∇ f1(x1),∇ f2(x2), . . . ,∇ fn(xn)

]
∈ Rd×n, (1.6)

and the global gradient of the matrix ∇ f (X) ∈ Rd×n as

∇ f (x) := [∇ f (x1), · · · ,∇ f (xn)]. (1.7)

1.5 Thesis organization

The rest of this thesis is organized as following: Chapters 2 to 5 develop and analyze Network-DANE,

DESTRESS, BEER and PORTER, respectively, with extensive numerical experiments; Chapter 6 concludes this

thesis and proposes future directions.

Chapter 2

Decentralized Newton-style algorithm

There is growing interest in large-scale machine learning and optimization over decentralized networks,

e.g., in the context of multi-agent learning and federated learning. Due to the imminent need to alleviate the

communication burden, the investigation of communication-efficient distributed optimization algorithms

— particularly for empirical risk minimization — has flourished in recent years. A large fraction of these

algorithms has been developed for the server/client setting, relying on the presence of a central parameter

server that can communicate with all agents.

This chapter decentralized optimization problems defined by (1.2), where objective functions don’t

have finite-sum structure, and each agent is only allowed to aggregate information from its neighbors

over a network (namely, no centralized coordination is present). By properly adjusting the global gradient

estimate via local averaging in conjunction with proper correction, we develop a communication-efficient

approximate Newton-type method, called Network-DANE, which generalizes DANE to accommodate decen-

tralized scenarios. Our key ideas can be applied, in a systematic manner, to obtain decentralized versions

of other server/client distributed algorithms. A notable example is the development of Network-SVRG,

which employs variance reduction at each agent to further accelerate local computation. We establish

linear convergence of Network-DANE and Network-SVRG for strongly convex losses, which shed light on the

impacts of data homogeneity, network connectivity, and local averaging upon the rate of convergence. We

further extend Network-DANE to composite optimization by allowing a nonsmooth penalty term. Numerical

evidence is provided to demonstrate the appealing performance of our algorithms over competitive base-

lines, in terms of both communication and computation efficiency. Our work suggests that by performing a

judiciously chosen amount of local communication and computation per iteration, the overall efficiency

can be substantially improved.

This chapter is based on our previous publication [LCCC20].

17

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 18

2.1 Preliminaries

This section introduces two important concepts that are crucial to Network-DANE and Network-SVRG, and

the DANE algorithm that inspires the development of Network-DANE.

2.1.1 Dynamic average consensus

Assume that each agent generates some time-varying quantity r(t)j (e.g., the current local parameter or

gradient estimates). Let r(t) = [r(t)1 , · · · , r(t)n]⊤. To track the dynamic average 1
n ∑n

j=1 r(t)j = 1
n 1⊤n r(t) at each

agent, [ZM10] proposes a simple tracking algorithm: suppose each agent maintains an estimate q(t)j in the

t-th iteration, and the network collectively adopts the following update rule

q(t) = Wq(t−1) + r(t) − r(t−1), (2.1)

where q(t) = [q(t)1 , · · · , q(t)n]⊤. The first term Wq(t−1) represents the standard local information mixing

operation (meaning that each agent updates its own estimate by a weighted average of its neighbors’

estimates), the second term r(t) − r(t−1) tracks the temporal difference. A crucial property of (2.1) is

1⊤n q(t) = 1⊤n r(t), (2.2)

which indicates that the average of {q(t)i }1≤i≤n dynamically tracks the average of {r(t)i }1≤i≤n. We shall

adapt this procedure in our algorithmic development, in the hope of reliably tracking the global gradients

(i.e., the average of the local, and often time-varying, gradients at all agents).

2.1.2 Chebyshev’s acceleration

Performing one round of mixing for x ∈ Rnd using mixing matrix W , the resulting vector at agent i

is x̃i = ∑j wijxj. If the communication network is not well-connected, we may need to perform K > 1

rounds of communications to improve the communication quality. If implemented as repeatedly mixing

the mixed variable, the result will be equivalent as mixing using WK, and the resulting vector at agent i is

x̃i = ∑j(W
K)ijxj.

However, the simple implementation is not optimal, as we can construct a polynomial of W to further

minimize the mixing rate of the resulting mixing matrix. Let Pk(W) = ckW k + ck−1W k−1 + . . . + c1W + c0.

Optimize the mixing rate of Pk(W) leads to the solution

Pk(x) = 1 − Tk(x/α0)

Tk(1/α0)
,

where Tk(x) is the Chebyshev polynomial defined by

T0(x) = 1

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 19

T1(x) = x

Tk+1(x) = 2xTk(x)− Tk−1(x).

When α is close to 1, the mixing rate of PK(W) is approximately αcheby ∼ 1 −
√

2(1 − α0).

2.1.3 Additional notation

We define the following (nd)-dimensional stacked vectors

x(t) :=
[
x(t)⊤1 , · · · , x(t)⊤n

]⊤, y(t) :=
[
y(t)⊤

1 , · · · , y(t)⊤
n

]⊤, s(t) :=
[
s(t)⊤1 , · · · , s(t)⊤n

]⊤. (2.3)

With a slight abuse of nations, we introduce the stacked distributed gradient ∇F(x) ∈ Rnd and the stacked

global gradient ∇ f (x) ∈ Rnd of an (nd)-dimensional vector x as follows:

∇F(x) := [∇ f1(x1)
⊤, · · · ,∇ fn(xn)

⊤]⊤, ∇ f (x) := [∇ f (x1)
⊤, · · · ,∇ f (xn)

⊤]⊤. (2.4)

2.1.4 The DANE algorithm

The DANE algorithm is a popular communication-efficient approximate Newton method developed for

the server/client model [SSZ14]. Here, we review some key features of DANE. (i) Each agent performs an

update using both the local loss function f j(·) and the gradient ∇ f (·) of the global loss function (obtained

via the parameter server). (ii) In the t-th iteration, the j-th agent solves the following problem to update its

local estimate x(t)j :

x(t)j = arg min
x∈Rd

{
f j(x)−

〈
∇ f j

(
x(t)
)
−∇ f

(
x(t)
)
, x
〉
+

µ

2

∥∥x − x(t)
∥∥2

2

}
, (2.5)

where µ ≥ 0 is the regularization parameter.1 Implementing this algorithm requires two rounds of

communications per iteration.

(a) The parameter server first collects all local estimates {x(t−1)
j }1≤j≤n and computes the average global

parameter estimate x(t) = 1
n ∑n

j=1 x(t−1)
j ; this is then sent back to all agents.

(b) The parameter server collects all local gradients evaluated at the point x(t), computes the global

gradient ∇ f (x(t)) = 1
n ∑n

j=1 ∇ f j(x(t)), and shares it with all agents.

The DANE algorithm has been demonstrated as a competitive baseline whose communication efficiency

improves, in some sense, with the increase of data size [SSZ14]; see [FGW21] for its proximal variation and

1In [SSZ14], the second term in (2.5) takes the form ∇ f j(x(t))− η̃∇ f (x(t)). We set η̃ = 1 without loss of generality following the
analysis in [FGW21].

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 20

improved theoretical analysis. To see the reason why DANE is an approximate Newton-type algorithm,

consider the case when the local loss functions in all agents are quadratic and takes the form (2.10). The

local optimization subproblem (2.5) in DANE can be solved in closed form, with x(t)j given by2

x(t)j = x(t) −
(

Hj + µId︸ ︷︷ ︸
local Hessian

)−1∇ f
(
x(t)
)
. (2.6)

Clearly, this can be interpreted as

x(t)j = local parameter estimate −
(
local Hessian

)−1(global gradient
)
,

which is an approximate Newton-type update rule (since we invoke the local Hessian to approximate

the true global Hessian). It is worth noting that the algorithm proceeds without communicating the local

Hessians.

2.2 The Network-DANE algorithm

The DANE algorithm was originally developed for the server/client setting. In the network setting, however,

agents can no longer compute (2.5) locally, due to the absence of centralization enabled by the parameter

server; more specifically, agents have access to neither x(t) nor ∇ f (x(t)), both of which are required when

solving (2.5). To address this lack of global information, one might naturally wonder whether we can

simply replace global averaging by local averaging; that is, replacing x(t) and ∇ f (x(t)) by 1
|Nj | ∑i∈Nj

x(t−1)
i

and 1
|Nj | ∑i∈Nj

∇ fi(x(t−1)
i), respectively, in the j-th agent. However, this simple idea fails to guarantee

convergence in local agents. For instance, the local estimation errors may stay flat (but nonvanishing) —

as opposed to converging to zero — as the iterations progress, primarily due to imperfect information

sharing.

With this convergence issue in mind, our key idea is composed of the following components.

• The first ingredient is to maintain an additional estimate of the global gradient in each agent —

denoted by s(t)j in the j-th agent. This additional gradient estimate is updated via dynamic average

consensus (2.8), in the hope of tracking the global gradient evaluated at y(t)
j in the j-th agent

(1 ≤ j ≤ n), i.e., s(t)j attempts to track ∇ f (y(t)
j). Here, y(t)

j stands for the parameter estimate obtained

by local neighborly averaging in the t-th iteration (see Algorithm 1 for details). As the algorithm

converges, {y(t)
j }1≤j≤n is expected to reach consensus, allowing s(t)j (1 ≤ j ≤ n) to converge to the

true global gradient as well.

2See [SSZ14] for a short derivation.

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 21

Algorithm 1 Network-DANE

1 input: initial parameter estimates x(0)j ∈ Rd (1 ≤ j ≤ n), regularization parameter µ.

2 initialization: set y(0)
j = x(0)j , s(0)j = ∇ f j(y

(0)
j) for all agents 1 ≤ j ≤ n.

3 for t = 1, 2, · · · do

4 for Agents 1 ≤ j ≤ n in parallel do

5 Set y(t),0
j = x(t−1)

j and s(t),0j = s(t−1)
j .

6 for k = 1, 2, . . . , K do

7 Receive information y(t),k−1
i and s(t),k−1

i from its neighbors i ∈ Nj.

8 Aggregate parameter estimates from neighbors:

y(t),k
j = ∑i∈Nj

wjiy
(t),k−1
i , s(t),kj = ∑i∈Nj

wjis
(t),k−1
i (2.7)

9 Set the local parameter estimate to y(t)
j = y(t),K

j .

10 Update the global gradient estimate by aggregated local information and gradient tracking:

s(t)j = s(t),Kj +∇ f j
(
y(t)

j
)
−∇ f j

(
y(t−1)

j
)

︸ ︷︷ ︸
gradient tracking

. (2.8)

11 Update the parameter estimate by solving:

x(t)j = argmin
z∈Rd

{
f j(z)−

〈
∇ f j(y

(t)
j)− s(t)j , z

〉
+

µ

2

∥∥z − y(t)
j

∥∥2
2

}
. (2.9)

• In addition, we also allow multiple rounds of mixing within each iteration, i.e., (2.7), which is helpful

in accelerating convergence when the network exhibits a high degree of locality. In essence, by

applying K rounds of mixing, we improve the mixing rate from α to αK. As we shall see later,

choosing a proper (but not too large) K suffices to achieve the desired trade-off between the rate of

information sharing and iteration complexity, which helps reduce the overall communication and

computation cost. This step of extra averaging can be implemented in an efficient manner via the

Chebyshev acceleration scheme [AS14, SBB+17].

Armed with such improved global gradient estimates, we propose to solve a modified local optimiza-

tion subproblem (2.9) in Network-DANE, which approximates the original Newton-type problem (2.5) by

replacing ∇ f (x(t)) with the local surrogate s(t)j . The proposed local subproblem (2.9) is convex and can be

solved efficiently via, say, Nesterov’s accelerated gradient methods. The whole algorithm is presented in

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 22

Algorithm 1.

Remark 1. It is certainly possible to employ more general mixing matrices in (2.7). For instance, in mobile computing

scenarios with moving agents, one might prefer using time-varying mixing matrices in order to accommodate the

topology changes over time. We omit such extensions for brevity.

2.3 Convergence guarantees

2.3.1 Assumptions, metrics and parameters

This section formally introduces additional assumptions, key parameters, and error metrics required for

convergence analysis of Network-DANE.

To begin with, we introduce Assumptions 3 and 4 that characterize local objective functions.

Assumption 3 (strongly convex and smooth local objective function). The local objective function fi(x) at each

agent is strongly convex and smooth, namely, σI ⪯ ∇2 f j(x) ⪯ LI (1 ≤ j ≤ n) for some quantities 0 < σ ≤ L.

Define κ = L/σ is the condition number.

Assumption 4 (quadratic local objective function). The local objective function fi(x) at each agent is quadratic

w.r.t. x, i.e., taking the form of

fi(x) =
1
2

x⊤H ix + b⊤
i x + ci, (2.10)

where bi ∈ Rd, ci ∈ R, and H i = ∇2 fi(x) ∈ Rd×d is a fixed symmetric and positive semidefinite matrix.

Next, we define the homogeneity parameter following [CZC+20, FGW21].

Definition 4 (Homogeneity parameter). Let f (x) and f j(x) be as defined in (1.2). The homogeneity parameter β

is defined as

β := max
1≤j≤n

β j with β j := sup
x∈Rd

∥∥∇2 f j(x)−∇2 f (x)
∥∥. (2.11)

As it turns out, β is bounded by the smoothness parameter of f (x), i.e., β ≤ L.3 On the other end, as

the local loss functions f j’s become similar with each other, β will become smaller. Therefore, β is a key

quantity measuring the similarity of data across agents.

3To prove this inequality, we note from the minimax theorem of eigenvalues and the triangle inequality that

β ≤ max
j

{
sup

x∈Rd ,
∥v∥2=1

v⊤
(

n−1
n ∇2 f j(x)

)
v − inf

x∈Rd ,
∥v∥2=1

v⊤
(

1
n ∑

i:i ̸=j
∇2 fi(x)

)
v

}
=
(
1 − 1

n
)
(L − σ) ≤ L.

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 23

Remark 2. If the local data follow certain statistical models, it is possible to show that β decreases as the local data

size m grows. For example, [SSZ14] shows that if the data samples at all agents are i.i.d. and Assumption 2 holds,

then with probability at least 1 − δ over the samples, we have β <
√

32L2

m log nd
δ – implying β decreases at the rate of

1/
√

m.

In addition to notation defined in Section 1.4, we define an extra (nd)-dimensional vector y analogous

to (1.5).

To characterize the convergence behavior of our algorithm, we need to simultaneously track several

interrelated error metrics as follows:

(1) the convergence error:
∥∥y(t) − y⋆

∥∥
2;

(2) the parameter consensus error:
∥∥y(t) − 1n ⊗ y(t)

∥∥
2;

(3) the gradient estimation error:
∥∥s(t) − 1n ⊗∇ f (y(t))

∥∥
2.

In this thesis, an algorithm is said to converge linearly at a rate ρ ∈ (0, 1) if there exists some constant

C > 0 such that the following holds for all t ≥ 1:

max
{√

n
∥∥y(t) − y⋆

∥∥
2,
∥∥y(t) − 1n ⊗ y(t)∥∥

2, L−1∥∥s(t) −∇ f (y(t))
∥∥

2

}
≤ Cρt.

In addition, an algorithm is said to reach ϵ-accuracy if the left-hand side of the above expression is bounded

by ϵ.

2.3.2 Convergence guarantees of Network-DANE for quadratic loss

This section establishes linear convergence of Network-DANE when the objective functions are quadratic.

Theorem 1 (Network-DANE under quadratic loss, arbitrary K). Suppose that Assumptions 1, 3 and 4 hold.

Set K > 0, the effective mixing rate becomes αK. Set µ large enough so that σ + µ ≥ 140L
(1−αK)2

(
β
σ + 1

)
. Then

Network-DANE converges linearly at a rate ρ1 obeying

ρ1 := max
{

1 + θ1

2
, αK +

140κ

1 − αK

(
σ + β

σ + µ

)
,

1 + αK

2
+

2β

σ + µ

}
, (2.12)

where θ1 is defined by

θ1 :=1 − σ

σ + µ
+

L
L + µ

β2

(σ + µ)(σ + µ − β)
. (2.13)

Remark 3. It turns out that θ1 ∈ (0, 1) is the convergence rate of DANE in the server/client setting under quadratic

losses [SSZ14, Theorem 1].

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 24

It is worth noting that we do not optimized constants in the above theorem, as our primary focus is

the order of convergence rate. If the regularization parameter µ is sufficiently large, one can guarantee

that θ1 < 1 and hence DANE converges at a linear rate when optimizing quadratic losses [SSZ14]. We can

clearly see that (2.12) is always greater than θ1, which is the price we pay for consensus under the network

setting. Fortunately, by properly setting µ, we can still guarantee that ρ1 < 1, which in turn enables linear

convergence of Network-DANE.

In view of (2.12), if the network is sufficiently connected (i.e., α is small), or if the data are sufficiently

homogeneous (i.e., β is small), we can use a smaller parameter µ, which makes θ1 (defined in (2.13)) smaller

and results in faster convergence. In summary, Network-DANE takes fewer iterations to converge when α

and β are both small. After some basic calculations, the complexity of Network-DANE for quadratic losses is

formalized in the following corollary.

Corollary 1. Set µ + σ = 180L
(1−αK)2 (

β
σ + 1). Under the assumptions of Theorem 1, one has

ρ1 ≤ 1 −
(

1 − αK

20

)2 1
κ

1
(β/σ + 1)

. (2.14)

To reach ϵ-accuracy, Network-DANE takes at most O
(

κ(β/σ+1) log(1/ϵ)
(1−αK)2

)
iterations, and O

(
K · κ(β/σ+1) log(1/ϵ)

(1−αK)2

)

communication rounds.

If we set the number of local averaging rounds to be K = 1, then the iteration complexity can be

directly compared with other existing results. If the homogeneous parameter β obeys β = O(σ), then the

convergence rate can be improved to O
(
κ log(1/ϵ)/(1 − α)2); this is much faster than the corrected DGD

[QL18] with gradient tracking, which converges in O(κ2 log(1/ϵ)/(1 − α)2) iterations. The convergence

rate of Network-DANE degenerates to that of DGD [QL18] with gradient tracking under the worst condition

β = Θ(L). This observation highlights the communication efficiency of Network-DANE by harnessing the

homogeneity of data across different agents. We emphasize that this is an important feature of our analysis,

where the convergence rate adapts with respect to the data homogeneity.

Benefits of extra local averaging (i.e., K > 1). The careful reader might have noticed that the rate

established above scales poorly with respect to the network parameter, namely, (1− α)−1, when K = 1. One

remedy is to consider the case with K > 1, where Network-DANE performs K rounds of communications

per iteration. On the one hand, the effective network parameter becomes αK that can be made arbitrarily

small by setting K sufficiently large, thus leading to faster convergence; on the other hand, the total number

of communications is K times larger than the number of iterations, meaning that we might end up with a

higher communication complexity. As an example, invoking Corollary 1, the total communication cost to

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 25

reach ϵ-accuracy is given by

O
(
K · κ(1 + β/σ) log(1/ϵ)/(1 − αK)2).

Therefore, by judiciously choosing K, it is possible to significantly improve the overall communication

complexity, especially when α is close to 1. For example, by setting K ≍ 1/ log(1/α) = O(1/(1 − α)), we

can ensure αK ≍ 1/2 and reduce the communication complexity to O
(
κ · (β/σ + 1) log(1/ϵ)/(1 − α)

)
, thus

improving the dependence with the graph topology.

The following theorem shows an improved result following a refined analysis, which improves the

dependence simultaneously with respect to both κ and (1 − α)−1.

Theorem 2 (Network-DANE under quadratic loss, optimized K). Instate the assumptions of Theorem 1. Set K

and µ large enough so that αK ≤ 1/(2κ) and σ + µ ≥ 360σ
(

β2

σ2 + 1
)

. To reach ϵ-accuracy, Network-DANE takes

at most O
(
(β2/σ2 + 1) log(1/ϵ)

)
iterations, and O

(
log κ · (β2/σ2+1) log(1/ϵ)

1−α

)
communications rounds.

When we set K as suggested in Theorem 2, the iteration complexity becomes independent of the network

topology. Moreover, it matches the rate of DANE in the server/client setting [SSZ14] when β = O(σ),

which is O(log(1/ϵ)) and further independent of the condition number κ.

In terms of network dependence, the communication complexity improves from O
(
1/(1 − α)2) to

O
(
1/(1 − α)

)
. By implementing the extra averaging step in an efficient manner via the well-known

Chebyshev acceleration scheme [AS14, SBB+17], the dependence of the communication complexity with

respect to (1 − α)−1 can be further improved to O
(
(1 − α)−1/2

)
. The final communication complexity of

Network-DANE for quadratic losses thus becomes

O
(

log κ · (β2/σ2 + 1) log(1/ϵ)

(1 − α)1/2

)
.

Therefore, the total amount of communication is significantly reduced using extra averaging, where it

scales only logarithmically with respect to κ.

2.3.3 Convergence guarantees of Network-DANE for strongly convex loss

This section establishes the linear convergence of Network-DANE for general smooth and strongly convex

loss functions, where the rate is worse than that for quadratic losses.

Theorem 3. Assume Assumptions 1 and 3 hold. Set K > 0, and µ large enough so that σ + µ ≥ 170κL
(1−αK)2 . Then

Network-DANE converges linearly at a rate ρ2 obeying

ρ2 := max
{

1 + θ2

2
, αK +

170κ

1 − αK

(
L

σ + µ

)
,

1 + αK

2
+

2β

σ + µ

}
, (2.15)

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 26

where θ2 is given by

θ2 :=1 − σ

σ + µ
+

β

σ + µ

√
1 −

(µ

σ + µ

)2
. (2.16)

Remark 4. Note that θ2 ∈ (0, 1) is precisely the convergence rate of DANE in the server/client setting [FGW21,

Theorem 3.1].

Similar to Theorem 1, one can guarantee θ2 < 1 and ρ2 < 1 by setting the regularization parameter µ

sufficiently large. Therefore, Network-DANE can converge at a linear rate for a general class of smooth and

strongly convex problems. Comparing the convergence rates of Network-DANE derived for the above two

different losses (i.e., comparing (2.13) with (2.16)), we see that: when the loss functions are non-quadratic,

θ2 is generally greater than θ1
4. This happens since the Hessian matrices associated with the non-quadratic

loss functions may vary across different points, which is also the reason why the convergence rate of

Network-DANE derived for the general case degenerates to the worst-case rate. After some basic calculations,

the complexity of Network-DANE under strongly convex losses is formalized by the following corollary.

Corollary 2. Set σ + µ = 180κL
(1−αK)2 . Under the assumptions of Theorem 3, one has

ρ2 ≤ 1 −
(

1 − αK

20

)2 1
κ2 . (2.17)

To reach ϵ-accuracy, Network-DANE takes at most O
(

κ2 log(1/ϵ)
(1−αK)2

)
iterations and O

(
K · κ2 log(1/ϵ)

(1−αK)2

)
communication

rounds.

When K = 1, the communication complexity of Network-DANE is O
(

κ2 log(1/ϵ)
(1−α)2

)
, which is rather

pessimistic and does not improve with data homogeneity. Similar to Theorem 2, we can improve this by

optimizing K properly. We have the following theorem, which is parallel to Theorem 2.

Theorem 4 (Network-DANE under strongly convex loss, optimized K). Instate the assumptions of Theorem 3.

Set K and µ large enough so that αK ≤ 1/(2κ) and σ + µ ≥ 360L
(

β
σ + 1

)
. To reach ϵ-accuracy, Network-DANE

takes at most O (κ(β/σ + 1) log(1/ϵ)) iterations and O
(

log κ · κ(β/σ+1) log(1/ϵ)
1−α

)
communication rounds.

The improved rate in Theorem 4 improves as the local data become more homogeneous, recovering a

feature that has been highlighted previously. Similar to earlier discussions in Section 2.1.2, by using the

Chebyshev acceleration scheme [AS14, SBB+17], the final communication complexity of Network-DANE for

strongly convex losses becomes

O
(

log κ · κ(β/σ + 1) log(1/ϵ)

(1 − α)1/2

)
.

4This is because
√

σ2+2σµ

(σ+µ)2 ≥ σ
σ+µ .

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 27

Remark 5. The homogeneity parameter β defined in Definition 4 measures the largest deviation of local Hessians

from the global Hessian. A refined analysis using local deviation β j is possible by permitting different regularization

parameters µj in (2.9) for different agents.

2.4 Extension to nonsmooth composite optimization

Network-DANE can be extended for nonsmooth composite optimization, by properly adjusting the local

optimization step, leveraging proximal variants of DANE [FGW21] and SVRG [XZ14]. For simplicity, we

present the proximal variant of Network-DANE and leave its theoretical analysis to future work.

Consider the following regularized empirical risk minimization problem:

minimize
x∈Rd

f (x) + g(x) ≜
1
N

N

∑
i=1

ℓ(x; zi) + g(x), (2.18)

where f (·) and f j(·) are defined as in (1.2), and g(·) is a deterministic convex regularizer that can be

nonsmooth. This type of problem has wide applications, where it is desirable to promote additional

structures or incorporate prior knowledge about the solution through adding a deterministic regularization

term g(x). We can extend Network-DANE to solve (2.18) by adding the proximal term into the local

optimization step, as detailed in Algorithm 2, which is a direct extension of Algorithm 1. Section 2.6

numerically verifies the effectiveness of Algorithm 2.

Algorithm 2 Network-DANE for nonsmooth composite optimization

1 Replace the local optimization sub-problem (2.9) of Network-DANE by the following:

2 Input: y(t)
j , s(t)j , regularization parameter µ.

3 Update the parameter estimate by solving:

x(t)j = argmin
z∈Rd

{
f j(z) + g(z)−

〈
∇ f j(y

(t)
j)− s(t)j , z

〉
+

µ

2

∥∥z − y(t)
j

∥∥2
2

}
. (2.19)

2.5 Extension with variance reduction

The design of Network-DANE suggests a systematic approach to obtain decentralized versions of other

algorithms. We illustrate this by reducing local computation of Network-DANE using variance reduction.

Stochastic variance reduction methods are a popular class of stochastic optimization algorithms, developed

to allow for constant step sizes and faster convergence in finite-sum optimization [JZ13, XZ14, NLST17].

It is therefore natural to ask whether such variance reduction techniques can be leveraged in a network

setting to further save local computation without compromising communication.

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 28

Algorithm 3 Network-SVRG

1 Replace the local optimization subproblem (2.9) of Network-DANE by the following:

2 Input: y(t)
j , s(t)j , step size δ, number of local iterations S.

3 Initialization: set u(t),0
j = y(t)

j , v(t),0
j = s(t)j .

4 for s = 1, ..., S do

5 u(t),s
j = u(t),s−1

j − δv(t),s−1
j .

6 Sample z from Mj uniformly at random, then,

v(t),s
j = ∇ℓ(u(t),s

j ; z)−∇ℓ(u(t),0
j ; z) + v(t),0

j . (2.20)

7 Choose the new parameter estimate x(t)j from {u(t),1
j , · · · , u(t),S

j } uniformly at random.

Inspired by the connection between DANE and SVRG [KMR15], we introduce Network-SVRG in Al-

gorithm 3, a decentralized version of SVRG [JZ13] tailored to the network setting, with the assistance of

gradient tracking. In particular, the inner loops of SVRG [JZ13] are adopted to replace the local computation

subproblem (2.9) of Network-DANE, where the reference to the global gradient is replaced by s(t)j to calculate

the variance-reduced stochastic gradient.

The convergence analysis of Algorithm 3 is more challenging due to the biased stochastic gradient

involved in each local iteration. Theorem 5 establishes the linear convergence of Network-SVRG for strongly

convex losses, as long as β is sufficiently small and the number of mixing rounds K is sufficiently large.

Again, we have not strived to improve the pre-constants specified in the theorem.

Theorem 5. Assume Assumptions 1 and 3 hold and β/σ ≤ 1/200. Set K large enough such that αK ≍ 1/κ and S

large enough, Network-SVRG converges linearly. To reach ε-accuracy, Network-SVRG takes at most O (log(1/ε))

iterations and O
(

log κ · log(1/ε)
1−α

)
communication rounds.

The proof of Theorem 5 can be found in Appendix A.4. Theorem 5 implies that: as long as the local data

are sufficiently similar (so that β does not exceed the order of σ), by performing O (log κ/(1 − α)) rounds

of local communication per iteration, Network-SVRG converges in O (log(1/ε)) iterations independent of

κ. This performance guarantee matches its counterpart in the server/client setting [CZC+20]. Altogether,

Network-SVRG achieves appealing computation and communication complexities simultaneously. By

further adopting the Chebyshev acceleration scheme [AS14, SBB+17], the final communication complexity

of Network-SVRG is at most

O
(

log κ · log(1/ε)

(1 − α)1/2

)
.

It is straightforward to extend this idea to obtain decentralized variants of other stochastic variance

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 29

reduced algorithms such as Katyusha [AZ17], by replacing the local computation step (2.9) by the inner

loop update rules of the stochastic methods of interest. For the sake of brevity, this paper does not pursue

such “plug-and-play” extensions.

Remark 6. Our convergence theory of Network-SVRG requires β ≲ σ, which is consistent with its counterpart

in the server/client setting [CZC+20]. In contrast, Network-DANE is guaranteed to converge linearly in the entire

range of β by setting µ sufficiently large. One scheme to relax this requirement, as analyzed in [CZC+20], is to add a

regularization term, similar to the last term in (2.9), that penalizes the distance to the previous estimate. However,

this might come at a price of slower convergence. We leave this to future investigation.

2.6 Numerical experiments

We evaluate the performance of the proposed algorithms5 for solving both strongly convex and nonconvex

problems, in order to demonstrate the appealing performance in terms of communication-computation

trade-offs.

Throughout this section, we set the number of agents n = 20. We use symmetric fastest distributed

linear averaging (FDLA) matrices [XB04] generated according to the communication graph as the mixing

matrix W for aggregating x(t)j in (2.7). For aggregating s(t)j in (2.7), we use a convex combination of I and

W such that its diagonal elements are greater than 0.1, which makes the algorithm more stable in practice.

The same regularization parameter µ is used for DANE and Network-DANE. We generate connected random

communication graphs using an Erdős-Rényi graph with the probability of connectivity p = 0.3 (if not

specified). For each experiment, we use the same random starting point x(0) and mixing matrix W for all

algorithms. To solve the local optimization subproblems, we use Nesterov’s accelerated gradient descent

for at most 100 iterations for DANE and Network-DANE.

2.6.1 Experiments on synthetic data

We conduct five synthetic numerical experiments based on linear regression to investigate the performance

of our algorithms. The same data generation method is used for all synthetic experiments. We generate

m = 1000 samples of dimension d = 40, denoted by Ai, randomly from N (0, Σ) i.i.d. for each agent, where

Σ is a diagonal matrix with Σii = i−ϱ. By changing ϱ, we can change the condition number κ. Data samples

are generated according to the linear model bi = Aix0 + ξi, with a random signal x0 and i.i.d. noise

ξi ∼ N (0, I). For DANE and Network-DANE, we set µ = 5 × 10−10 when κ = 10 and µ = 5 × 10−4 when

5In our experiments of Network-SVRG, we use the last iterate u(t),S
j as the new parameter estimate locally, which is more practical;

though our analysis only handles the case where the new parameter estimate is selected uniformly at random from previous iterates.

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 30

0 20 40 60 80 10010−14

10−11

10−8

10−5

10−2

#iters

(f
(x̄

(t
))
−
f
⋆
)/
f
⋆

κ = 10

100 101 102 103 104

#grads/#samples

κ = 10

0 20 40 60 80 100
#iters

κ = 104

100 101 102 103 104

#grads/#samples

κ = 104

DANE ADMM EXTRA DGD Network-DANE Network-SVRG

Figure 2.1: The relative optimality gap with respect to the number of iterations and gradient evaluations
under different conditioning κ = 10 (left two panels) and κ = 104 (right two panels) for linear regression.

κ = 104. For Network-SVRG, we set the step size δ = 0.1/(L + σ + 2µ) and the number of local iterations

S = 0.05m.

Comparison with existing algorithms. To make a fair comparison with other algorithms, no extra local

averaging is adopted in this experiment, i.e., the number of mixing rounds is set to K = 1. The loss

function at each agent is given as fi(x) = 1
2m∥Aix − bi∥2

2. We plot the relative optimality gap, given as

(f (x(t))− f ⋆)/ f ⋆, where x(t) is the average parameter of all agents at the t-th iteration, and f ⋆ is the optimal

value. We compare the proposed Network-DANE (cf. Algorithm 1) and Network-SVRG (cf. Algorithm 3) with

the server/client algorithms DANE [SSZ14] and ADMM [BPC+11],6 and two popular network-distributed

gradient descent algorithms, referred to as DGD [QL18] and EXTRA [SLWY15a].

Figure 2.1 shows the relative optimality gap with respect to the number of iterations as well as the

number of gradient evaluations under different condition numbers κ = 10 and κ = 104 for linear regression.

In both experiments, Network-DANE and Network-SVRG outperform DGD and EXTRA in terms of the

numbers of communication rounds. Network-SVRG has similar communication rounds with ADMM but

only communicates locally. Network-DANE is quite insensitive to the condition number, performing almost

as well as the DANE algorithm in the ill-conditioned case, but operates in a fully decentralized setting.

Network-SVRG further outperforms other algorithms in terms of gradient evaluations in most settings,

especially for well-conditioned cases.

Benefits of extra local mixing (communication) per iteration. We conduct synthetic experiments to

investigate the communication-computation trade-off observed in Theorem 4 when employing multiple

rounds of mixing within every iteration. Following the suggestion of the theory, we use a poorly connected

6We apply ADMM to the constrained optimization problem, which amounts to the centrally-distributed setting,
minxi

1
n ∑ fi(xi) s.t. xi = x. Note that ADMM can also be applied to the network-distributed setting, which is not shown here

since our network algorithms already outperform ADMM in the centrally-distributed setting.

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 31

0 20 40 60 80 10010−12

10−9

10−6

10−3

100

#iters
(f

(x̄
(t
))
−

f
?
)/
f
?

0 100 200 300 400 500
#communications

K = 1 K = 2 K = 5 K = 20 K = 50

Figure 2.2: The relative optimality gap with respect to the number of iterations and communication rounds
under different rounds of mixing K for Network-DANE over a poorly connected graph.

network with mixing rate α0 = 0.944 for communication, which is generated by an Erdős-Rényi graph with

p = 0.2. For illustration, we consider the relative optimality gap for a linear regression problem with κ = 10,

with respect to the number of iterations and communication rounds for Network-DANE and Network-SVRG,

under different values of K (no Chebyshev acceleration is employed), shown in Figure 2.2. Due to poor

connectivity, Network-DANE and Network-SVRG fail to converge when using moderate parameters. However,

by using a larger K, due to improvement in consensus, Network-DANE converge faster in terms of the number

of iterations. Notice that after certain threshold, further increasing K will not improve the convergence rate

in terms of communication rounds.

Effects of local computation for Network-SVRG. We conduct an experiment to analyze the effect of

different numbers of local stochastic iterations for Network-SVRG. Throughout this experiment, we run

our algorithms on a linear regression problem with κ = 10 and Erdős-Rényi graph (p = 0.2) as the

communication graph. Figure 2.3 shows the number of communication rounds and the number of gradient

evaluations till converge for different numbers of local iterations. It is clear that with too few local iterations,

Network-SVRG converges very slow and requires more communication. As soon as S is above a threshold,

which is around 0.05m local iterations, the communication rounds no longer decrease. Therefore, in our

experiments, we set the number of local iterations as S = 0.05m to ensure satisfactory convergence rate

while using an economical amount of local computation.

Effects of network topology. We conduct another experiment to compare the effect of network topology

on linear regression problem with κ = 10. We generate communication graphs with different topology

settings. Figure 2.4 shows the relative optimality gap with respect to the number of iterations and gradient

evaluations for Network-DANE for Erdős-Rényi graph (p = 0.3), a 4 × 5 grid graph, a star graph, and a ring

graph. The performance degrades as the network becomes less connected (where 1 − α0 becomes small)

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 32

0 0.2 0.4 0.6 0.8

102

103

0.1

#local iters/#local samples

#
it
er
s
ti
ll
co
n
ve
rg
e

Figure 2.3: Number of communication rounds till converge with respect to different numbers of local
iterations for Network-SVRG.

0 50 100 150 200

10−12

10−9

10−6

10−3

100

#iters

(f
(x̄

(t
)
)
−
f
?
)/
f
?

100 101 102 103 104

#grads/#samples

Erdős–Rényi Grid Star Ring

Figure 2.4: Performance of Network-DANE under different network topologies.

[NOR18].

Experiments for nonsmooth composite optimization We consider the ℓ1-norm regularized linear regres-

sion, where the loss function of each agent is given as f̃i(x) = fi(x) + g(x) = 1
2m∥Aix − bi∥2

2 + 0.01∥x∥1,

and the communication graph are generated in the same way as Figure 2.1. The condition number κ is also

defined in the same way as earlier. We compare the performance of Network-DANE with CEASE [FGW21],

which is the proximal version of DANE in the server/client setting, ADMM, and PG-EXTRA, which is

the proximal version of EXTRA [SLWY15b]. For CEASE and Network-DANE, we set µ = 10−4 when κ = 10

and µ = 10−1 when κ = 104, and use FISTA [BT09] to solve the ℓ1-norm regularized local problems for

computation efficiency. Figure 2.5 plots the relative optimality gap ∥x(t) − x⋆∥2/∥x⋆∥2 with respect to

the number of iterations and the number of gradient evaluations for different algorithms under different

condition numbers. In both experiments, Network-DANE outperformed ADMM and PG-EXTRA in both

metrics, and achieves similar convergence behavior as CEASE, though at a slower rate due to optimizing

over a decentralized topology.

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 33

0 20 40 60 80 10010−14

10−11

10−8

10−5

10−2

101

#iters

‖x̄
(t
)
−
x
?
‖ 2
/‖
x
?
‖ 2

κ = 10

100 101 102 103

#grads/#samples

κ = 10

0 20 40 60 80 100
#iters

κ = 104

100 101 102 103 104

#grads/#samples

κ = 104

CEASE ADMM PG-EXTRA Network-DANE

Figure 2.5: The relative optimality gap with respect to the number of iterations and gradient evaluations
under different conditioning κ = 10 (left two panels) and κ = 104 (right two panels) for linear regression
with ℓ1-norm regularization.

2.6.2 Experiments on real data

We perform two experiments on real data to further evaluate the performance of the proposed algorithms

for both convex and nonconvex problems.

Binary classification using logistic regression. We use regularized logistic regression to solve a binary

classification problem using the Gisette dataset.7 We split the Gisette dataset to n = 20 agents, where each

agent receives m = 300 training samples of dimension d = 5000. The loss function at each agent is given as

fi(x) =
1
m

m

∑
j=1

log
(

1 + (2b(j)
i − 1) exp(x⊤a(j)

i)
)
+

λ

2
∥x∥2

2,

where a(j)
i ∈ Rd and b(j)

i ∈ {0, 1} are samples stored at agent i. For DANE and Network-DANE, we set

µ = 5× 10−9 when κ = 2 and µ = 5× 10−1 when κ = 100. The condition number is controlled by changing

the regularization λ. Figure 2.6 shows the results. In both cases, our algorithms exhibit compelling

performance over other decentralized optimization algorithms especially in terms of communication

efficiency.

1-hidden-layer neural network training. Though our theory only applies to the strongly convex case,

we examine Network-SVRG in the nonconvex case, by training a one-hidden-layer neural network with 64

hidden neurons and sigmoid activations for a classification task using the MNIST dataset. We split 60, 000

training samples to 20 agents and use an Erdős-Rényi graph with p = 0.3 for communications. Figure 2.7

plots the training loss and testing accuracy against the number of iterations and gradient evaluations

for different algorithms, where centralized ADMM and decentralized stochastic algorithm (DSGD) are

plotted as baselines. Being more communication-efficient than DSGD, and more computation-efficient than

ADMM, Network-SVRG reach a desirable balance between computation and communication efficacies.
7The dataset can be found at https://archive.ics.uci.edu/ml/datasets/Gisette.

https://archive.ics.uci.edu/ml/datasets/Gisette

CHAPTER 2. DECENTRALIZED NEWTON-STYLE ALGORITHM 34

0 50 100 150
10−16

10−11

10−6

10−1

104

#iters

(f
(x̄

(t
))
−

f
⋆
)/
f
⋆

κ = 2

100 101 102 103 104
10−16

10−11

10−6

10−1

104

#grads/#samples

κ = 2

0 100 200 300 400 500
10−11

10−8

10−5

10−2

101

#iters

κ = 100

100 101 102 103 104 105
10−11

10−8

10−5

10−2

101

#grads/#samples

κ = 100

DANE ADMM EXTRA DGD Network-DANE Network-SVRG

Figure 2.6: The relative optimality gap with respect to the number of iterations and gradient evaluations
under different conditioning κ = 2 (left two panels) and κ = 100 (right two panels) for logistic regression
using the Gisette dataset.

0 50 100 150 200

0.5

1

1.5

2

2.5

#iters

T
ra
in
in
g
lo
ss

0 50 100 150 200

0.2

0.4

0.6

0.8

1

#iters

T
es
ti
n
g
ac
cu
ra
cy

10−2 10−1 100 101 102 103

0.5

1

1.5

2

2.5

#grads/#samples

T
ra
in
in
g
lo
ss

10−2 10−1 100 101 102 103

0.2

0.4

0.6

0.8

1

#grads/#samples

T
es
ti
n
g
ac
cu
ra
cy

ADMM DSGD Network-SVRG

Figure 2.7: The training loss and testing accuracy with respect to the number of iterations (left two panels)
and gradient evaluations (right two panels) for different algorithms on the MNIST dataset.

Chapter 3

Decentralized stochastic recursive gradient

algorithm

Emerging applications in multi-agent environments such as internet-of-things, networked sensing, au-

tonomous systems and federated learning, call for decentralized algorithms for finite-sum optimizations

that are resource-efficient in terms of both computation and communication. In this chapter, we consider

the prototypical setting where the agents work collaboratively to minimize the sum of local loss functions

(cf. (1.3)) by only communicating with their neighbors over a predetermined network topology. We develop

a new algorithm, called DEcentralized STochastic REcurSive gradient methodS (DESTRESS) for nonconvex

finite-sum optimization, which matches the optimal incremental first-order oracle (IFO) complexity of

centralized algorithms for finding first-order stationary points, while maintaining communication efficiency.

Detailed theoretical and numerical comparisons corroborate that the resource efficiencies of DESTRESS

improve upon prior decentralized algorithms over a wide range of parameter regimes. DESTRESS leverages

several key algorithm design ideas including randomly activated stochastic recursive gradient updates with

mini-batches for local computation, gradient tracking with extra mixing (i.e., multiple gossiping rounds)

for per-iteration communication, together with careful choices of hyper-parameters and new analysis

frameworks to provably achieve a desirable computation-communication trade-off.

This chapter is based on our previous publication [LLC22].

3.1 The DESTRESS algorithm

We propose DESTRESS for finding first-order order stationary points of nonconvex finite-sum problems.

Throughout, we define (nd)-dimensional stacked vectors u(t), v(t), g(t) and s(t) analogously to Section 2.1.3.

Motivated by stochastic recursive gradient methods in the centralized setting, DESTRESS has a nested loop

35

CHAPTER 3. DECENTRALIZED STOCHASTIC RECURSIVE GRADIENT ALGORITHM 36

structure:

1. The inner loop refines the parameter estimate u(t),0 = x(t−1) by performing randomly activated

stochastic recursive gradient updates (3.1), where the stochastic recursive gradient v(t),s is updated in

(3.1b) and (3.1c) via mixing mini-batch stochastic gradients from activated agents’ local datasets.

2. The outer loop adopts dynamic average consensus to estimate and track the global gradient ∇F(x(t))

at each agent by s(t) in (3.2), which allows the next inner loop to start from a less noisy starting

gradient v(t+1),0 = s(t). A key property of (3.2)—which is a direct consequence of dynamic average

consensus—is that the average of s(t) equals to the dynamic average of local gradients, i.e., s(t) =

1
n ∑i∈[n] s(t)i = 1

n ∑i∈[n] ∇ fi(x(t)i).

To enable better information sharing and faster convergence, inspired by [LCCC20], we allow DESTRESS to

perform a few rounds of mixing or gossiping whenever communication takes place. Specifically, DESTRESS

performs Kout and Kin mixing steps for the outer and inner loops respectively per iteration, which is

equivalent to using

Wout = WKout and W in = WKin

as mixing matrices, and correspondingly a network with better connectivity; see (3.2), (3.1a) and (3.1c).

Note that Algorithm 4 is written in matrix notation, where the mixing steps are described by W in ⊗ In

or Wout ⊗ In and applied to all agents simultaneously. The extra mixing steps can be implemented by

Chebyshev acceleration [AS14] with improved communication efficiency.

Compared with existing decentralized algorithms based on stochastic variance-reduced algorithms

such as D-GET [SLH20] and GT-SARAH [XKK22a], DESTRESS utilizes different gradient estimators and

communication protocols: First, DESTRESS produces a sequence of reference points {x(t)} that converge to

a global first-order stationary point and corresponding global gradient estimates {s(t)} that are updated by

full gradient computations, so that inner loops can refine x(t) using stochastic recursive gradients based on

accurate gradient estimates; second, the communication and computation in DESTRESS are paced differently

due to the introduction of extra mixing, which allow a more flexible trade-off schemes between different

types of resources; last but not least, the random activation of stochastic recursive gradient updates further

saves local computation, especially when the local sample size is small compared to the number of agents.

1The stochastic gradients will not be computed if λ
(t),s
i = 0.

CHAPTER 3. DECENTRALIZED STOCHASTIC RECURSIVE GRADIENT ALGORITHM 37

Algorithm 4 DESTRESS for decentralized nonconvex finite-sum optimization

1 input: initial parameter x(0), step size η, activation probability p, batch size b, number of outer loops T,
number of inner loops S, and number of communication (extra mixing) steps Kin and Kout.

2 initialization: set x(0)i = x(0) and s(0)i = ∇ f (x(0)) for all agents 1 ≤ i ≤ n.

3 for t = 1, . . . , T do

4 Set inner loop initial parameters u(t),0 = x(t−1) and v(t),0 = s(t−1).

5 for s = 1, ..., S do

6 Each agent i samples a mini-batch Z (t),s
i of size b from Mi uniformly at random, λ

(t),s
i ∼ B(p)

where B(p) denotes the Bernoulli distribution with parameter p,1 and then performs the
following updates:

u(t),s = (W in ⊗ Id)(u
(t),s−1 − ηv(t),s−1), (3.1a)

g(t),si =
λ
(t),s
i
pb ∑

zi∈Z (t),s
i

(
∇ℓ(u(t),s

i ; zi)−∇ℓ(u(t),s−1
i ; zi)

)
+ v(t),s−1

i , (3.1b)

v(t),s = (W in ⊗ Id)g(t),s. (3.1c)

7 Set the new parameter estimate x(t) = u(t),S.

8 Update the global gradient estimate by aggregated local information and gradient tracking:

s(t) =(Wout ⊗ Id)
(

s(t−1) +∇F
(
x(t)
)
−∇F

(
x(t−1))) (3.2)

9 output: xout ∼ Uniform({u(t),s−1
i |i ∈ [n], t ∈ [T], s ∈ [S]}).

3.2 Convergence guarantees

This section presents the performance guarantees of DESTRESS. Due to the nonconvexity, first-order

algorithms are generally guaranteed to converge to only first-order stationary points of the global loss

function f (·), which is defined in Definition 3.

Theorem 6 shows that DESTRESS converges in expectation to an approximate first-order stationary point,

under suitable parameter choices.

Theorem 6 (First-order optimality). Assume Assumptions 1 and 2 hold. Set p ∈ (0, 1], Kin, Kout, S, b and η to be

positive and satisfy

αKin ≤ p and ηL ≤ (1 − αKin)3(1 − αKout)

10
(
1 + αKin αKout

√
npb

)(√
S/(npb) + 1

) . (3.3)

The output produced by Algorithm 4 satisfies

E
∥∥∇ f (xout)

∥∥2
2 <

4
ηTS

(
E[f (x(0))]− f ∗

)
. (3.4)

If there is only one agent, i.e., n = 1, the mixing rate will be α = 0, we can choose Kin = Kout =

p = 1, and Theorem 6 reduces to [NvP+22, Theorem 1], its counterpart in the centralized setting. For

CHAPTER 3. DECENTRALIZED STOCHASTIC RECURSIVE GRADIENT ALGORITHM 38

general decentralized settings with arbitrary mixing schedules, Theorem 6 provides a comprehensive

characterization of the convergence rate, where an ϵ-first-order stationary point can be found in expectation

in a total of

TS = O

(
E[f (x(0))]− f ∗

ηϵ2

)

iterations, where T is the number of outer iterations and S is the number of inner iterations. Clearly, a

larger step size η, as allowable by (3.3), hints on a smaller iteration complexity, and hence a smaller IFO

complexity.

There are two conditions in (3.3). On one end, Kin needs to be large enough (i.e., perform more rounds

of extra mixing) to counter the effect when p is small (i.e., we compute less stochastic gradients every

iteration), or when α is close to 1 (i.e., the network is poorly connected). On the other end, the step size η

needs to be small enough to account for the requirement of the step size in the centralized setting, as well as

the effect of imperfect communication due to decentralization. For well connected networks where α ≪ 1,

the terms introduced by the decentralized setting will diminish—indicating the iteration complexity is close

to that of the centralized setting. For poorly connected networks, carefully designing the mixing matrix

and other parameters can ensure a desirable trade-off between convergence speed and communication cost.

The following corollary provides specific parameter choices for DESTRESS to achieve the optimal per-agent

IFO complexity.

Corollary 3 (Complexity for finding first-order stationary points). Under conditions of Theorem 6, set

S =
⌈√

mn
⌉

, b =
⌈√

m/n
⌉
, p =

√
m/n

⌈√m/n⌉ , Kout =

⌈
log(

√
npb+1)

(1−α)1/2

⌉
, Kin =

⌈
log(2/p)
(1−α)1/2

⌉
, η = 1

640L , and implement

the mixing steps using Chebyshev’s acceleration [AS14]. To reach an ϵ-first-order stationary point, in expectation,

DESTRESS takes O
(

m + (m/n)1/2L
ϵ2

)
IFO calls per agent, and O

(log
(
(n/m)1/2+2

)

(1−α)1/2 ·
(
(mn)1/2 + L

ϵ2

))
rounds of

communication.

DESTRESS achieves a network-independent IFO complexity that matches the optimal complexity in the

centralized setting. In addition, when the accuracy ϵ2 ≲ L/(mn)1/2, DESTRESS reaches a communication

complexity of O
(1
(1−α)1/2 · L

ϵ2

)
, which is independent of the sample size.

It is worthwhile to further highlight the role of the random activation probability p in achieving the

optimal IFO by allowing “fractional” batch size. Note that the batch size is set as b =
⌈√

m/n
⌉
, where m is

the local sample size, and n is the number of agents.

1. When the local sample size is large, i.e., m ≥ n, we can approximate b ≈
√

m/n and p ≈ 1. In fact,

Corollary 3 continues to hold with p = 1 in this regime.

CHAPTER 3. DECENTRALIZED STOCHASTIC RECURSIVE GRADIENT ALGORITHM 39

Erdős-Rényi graph 2-D grid graph Path graph
1 − α 1 1

n log n
1

n2(spectral gap)
D-GET

m + m1/2L
ϵ2 m + m1/2n2L

ϵ2 m + m1/2n4L
ϵ2[SLH20]

GT-SARAH m + max
{

1,
(m

n
)1/3,

(m
n
)1/2

}
· L

ϵ2 m + max
{

n2, m1/3n2/3,
(m

n
)1/2

}
· L

ϵ2 m + max
{

n4, m1/3n5/3,
(m

n
)1/2

}
· L

ϵ2[XKK22a]
DESTRESS

(mn)1/2 + L
ϵ2 m1/2n + n1/2L

ϵ2 (mn3)1/2 + nL
ϵ2(Algorithm 4)

Improvement factors (m
n
)1/2 m1/2

n
m1/2

n3/2for ϵ-independent term
Improvement factors max

{
1,
(m

n
)1/3,

(m
n
)1/2

}
max

{
n3/2, m1/3n1/6, m1/2

n

}
max

{
n3, m1/3n2/3, m1/2

n3/2

}
for ϵ-dependent term

Table 3.1: Detailed comparisons of the communication complexities of D-GET, GT-SARAH and DESTRESS
under three graph topologies, where the last two rows delineate the improve factors of DESTRESS over
existing algorithms. The communication savings become significant especially when m = Ω

(n
1−α

)
. The

complexities are simplified by plugging the bound on the spectral gap 1 − α from [NOR18, Proposition 5].
m, n, L are defined in Section 1.1 and α is the mixing rate defined in (1.4). The big-O (defined in Section 1.4)
notation and logarithmic terms are omitted for simplicity.

2. However, when the number of agents is large, i.e., n > m, the batch size b = 1 and p =
√

m/n < 1,

which mitigates the potential computation waste by only selecting a subset of agents to perform local

computation, compared to the case when we naively set p = 1.

Therefore, by introducing random activation, we can view pb =
√

m/n as the effective batch size at each

agent, which allows fractional values and leads to the optimal IFO complexity in all scenarios.

To gain further insights in terms of the communication savings of DESTRESS, Table 3.1 further compares

the communication complexities of decentralized algorithms for finding first-order stationary points under

three common network settings, which highlights the communication improvement over existing works.

3.3 Numerical experiments

This section provides numerical experiments on real datasets to evaluate our proposed algorithm DESTRESS

with comparisons against two existing baselines: DSGD [NO09, LZZ+17] and GT-SARAH [XKK22a].

For all experiments, we shuffle the datasets and normalize the samples by subtracting the mean and

dividing the standard deviation. We use the same number of agents, FDLA matrices, communication

graphs and Chebyshev’s acceleration scheme as in Section 2.6. In addition, since m ≫ n in all experiments,

we set p = 1 for simplicity. To ensure convergence, DSGD adopts a diminishing step size schedule. All

parameters are tuned manually for the best performance. We defer detailed descriptions of baseline

algorithms to Appendix B.1.

CHAPTER 3. DECENTRALIZED STOCHASTIC RECURSIVE GRADIENT ALGORITHM 40

3.3.1 Logistic regression with nonconvex regularization

To begin with, we employ logistic regression with nonconvex regularization to solve a binary classification

problem using the Gisette dataset.2 We split the Gisette dataset to n = 20 agents, where each agent receives

m = 300 training samples. The sample loss function is given as

ℓ(x; { f , l}) = log
(

1 + (2l − 1) exp(x⊤ f)
)
+ λ

d

∑
i=1

x2
i

1 + x2
i

,

where { f , l} represents a training tuple, f ∈ Rd is the feature vector and l ∈ {0, 1} is the label, and λ is the

regularization parameter. For this experiment, we set λ = 0.1. Table 3.2 specifies parameter setting we use

for each graph.

Algorithms DSGD DESTRESS GT-SARAH
Parameters η0 b η p Kin Kout b S η b S
Erdős-Rényi 1 10 0.01 1 2 2 10 10 0.001 10 10

Grid 1 10 0.01 1 2 3 10 10 0.001 10 10
Path 0.1 10 0.01 1 8 8 10 10 0.0001 10 10

Table 3.2: Parameter settings for the experiments on regularized logistic regression in Figure 3.1.

Figure 3.1 shows the train gradient norm and testing accuracy for all algorithms. DESTRESS significantly

outperforms other algorithms both in terms of communication and computation. It is worth noting

that, DSGD converges very fast at the beginning of training, but cannot sustain the progress due to the

diminishing schedule of step sizes. On the contrary, the variance-reduced algorithms can converge with a

constant step size, and hence converge better overall. Moreover, due to the refined gradient estimation

and information mixing designs, DESTRESS can bear a larger step size than GT-SARAH, which leads to the

fastest convergence and best overall performance. In addition, a larger number of extra mixing steps leads

to a better performance when the communication graph is less connected.

3.3.2 One-hidden-layer neural network training

Next, we compare the performance of DESTRESS to DSGD and GT-SARAH for training a one-hidden-layer

neural network with 64 hidden neurons and sigmoid activations for classifying the MNIST dataset [Den12].

We evenly split the MNIST dataset to n = 20 agents, where each agent receives m = 3, 000 training samples.

Table 3.3 specifies parameter setting we use for each graph.

Figure 3.2 plots the training gradient norm and testing accuracy against the number of communication

rounds and gradient evaluations for all algorithms. DESTRESS significantly outperforms GT-SARAH in

terms of computation and communication costs due to the larger step size and extra mixing. Different
2The dataset can be accessed at https://archive.ics.uci.edu/ml/datasets/Gisette.

https://archive.ics.uci.edu/ml/datasets/Gisette

CHAPTER 3. DECENTRALIZED STOCHASTIC RECURSIVE GRADIENT ALGORITHM 41

0 0.5 1 1.5 2

·104

0

1

2

3

4

5

Communication rounds

∥ ∥ ∇
f

(x̄
(t
)
)∥ ∥

2 2

0 0.5 1 1.5 2

·104

0.6

0.7

0.8

0.9

1

Communication rounds

T
es
t
ac
cu
ra
cy

0 200 400 600 800 1,000 1,200 1,400

0

1

2

3

4

5

#grads / #samples

∥ ∥ ∇
f

(x̄
(t
)
)∥ ∥

2 2

0 200 400 600 800 1,000 1,200 1,400

0.6

0.7

0.8

0.9

1

#grads / #samples

T
es
t
ac
cu
ra
cy

DSGD
DESTRESS
GT-SARAH

(a) Erdős-Rényi graph

0 0.5 1 1.5 2

·104

0

1

2

3

4

5

Communication rounds

∥ ∥ ∇
f

(x̄
(t
)
)∥ ∥

2 2

0 0.5 1 1.5 2

·104

0.6

0.7

0.8

0.9

1

Communication rounds

T
es
t
ac
cu
ra
cy

0 200 400 600 800 1,000 1,200 1,400

0

1

2

3

4

5

#grads / #samples

∥ ∥ ∇
f

(x̄
(t
)
)∥ ∥

2 2

0 200 400 600 800 1,000 1,200 1,400

0.6

0.7

0.8

0.9

1

#grads / #samples

T
es
t
ac
cu
ra
cy

DSGD
DESTRESS
GT-SARAH

(b) Grid graph

0 0.5 1 1.5 2

·104

0

1

2

3

4

5

Communication rounds

∥ ∥ ∇
f

(x̄
(t
)
)∥ ∥

2 2

0 0.5 1 1.5 2

·104

0.6

0.7

0.8

0.9

1

Communication rounds

T
es
t
ac
cu
ra
cy

0 200 400 600 800 1,000 1,200 1,400

0

1

2

3

4

5

#grads / #samples

∥ ∥ ∇
f

(x̄
(t
)
)∥ ∥

2 2

0 200 400 600 800 1,000 1,200 1,400

0.6

0.7

0.8

0.9

1

#grads / #samples

T
es
t
ac
cu
ra
cy

DSGD
DESTRESS
GT-SARAH

(c) Path graph

Figure 3.1: The train gradient norm and testing accuracy with respect to the number of communication
rounds (left two panels) and gradient evaluations (right two panels) for DSGD, GT-SARAH and DESTRESS
when training logistic regression model with nonconvex regularization on the Gisette dataset. Due to the
initial full-gradient computation, the gradient evaluations of DESTRESS and GT-SARAH do not start from 0.

Algorithms DSGD DESTRESS GT-SARAH
Parameters η0 b η p Kin Kout b S η b S
Erdős-Rényi 1 100 1 1 2 2 100 10 0.1 100 10

Grid 1 100 1 1 3 4 100 10 0.1 100 10
Path 0.1 100 1 1 8 10 100 10 0.0001 100 10

Table 3.3: Parameter settings for the experiments on neural network training in Figure 3.2.

from the previous experiment, DSGD performs the best for Erdős-Rényi graph and grid graph that are

well connected, while converges slower than DESTRESS on path graph.

CHAPTER 3. DECENTRALIZED STOCHASTIC RECURSIVE GRADIENT ALGORITHM 42

0 500 1,000 1,500 2,000

0

1

2

3

Communication rounds

∥ ∥ ∇
f

(x̄
(t
)
)∥ ∥

2 2

0 500 1,000 1,500 2,000

0.2

0.4

0.6

0.8

1

Communication rounds

T
es
t
ac
cu
ra
cy

0 20 40 60

0

1

2

3

#grads / #samples

∥ ∥ ∇
f

(x̄
(t
)
)∥ ∥

2 2

0 20 40 60

0.2

0.4

0.6

0.8

1

#grads / #samples

T
es
t
ac
cu
ra
cy

DSGD
DESTRESS
GT-SARAH

(a) Erdős-Rényi graph

0 500 1,000 1,500 2,000

0

1

2

3

Communication rounds

∥ ∥ ∇
f

(x̄
(t
)
)∥ ∥

2 2

0 500 1,000 1,500 2,000

0.2

0.4

0.6

0.8

1

Communication rounds

T
es
t
ac
cu
ra
cy

0 20 40 60

0

1

2

3

#grads / #samples

∥ ∥ ∇
f

(x̄
(t
)
)∥ ∥

2 2

0 20 40 60

0.2

0.4

0.6

0.8

1

#grads / #samples

T
es
t
ac
cu
ra
cy

DSGD
DESTRESS
GT-SARAH

(b) Grid graph

0 500 1,000 1,500 2,000

0

1

2

3

Communication rounds

∥ ∥ ∇
f

(x̄
(t
)
)∥ ∥

2 2

0 500 1,000 1,500 2,000

0.2

0.4

0.6

0.8

1

Communication rounds

T
es
t
ac
cu
ra
cy

0 20 40 60

0

1

2

3

#grads / #samples

∥ ∥ ∇
f

(x̄
(t
)
)∥ ∥

2 2

0 20 40 60

0.2

0.4

0.6

0.8

1

#grads / #samples

T
es
t
ac
cu
ra
cy

DSGD
DESTRESS
GT-SARAH

(c) Path graph

Figure 3.2: The train gradient norm and testing accuracy with respect to the number of communication
rounds (left two panels) and gradient evaluations (right two panels) for DSGD, GT-SARAH and DESTRESS
when training a one-hidden-layer neural network on the MNIST dataset. Due to the initial full-gradient
computation, the gradient evaluations of DESTRESS and GT-SARAH do not start from 0.

0 0.5 1 1.5 2 2.5

·108

0

1,000

2,000

3,000

#gradient evaluations

1/
ϵ2

Figure 3.3: The convergence precision 1/ϵ2 with respect to the number of total gradient evaluations for
neural network training averaged over 64 experiments. The shade shows the variance.

CHAPTER 3. DECENTRALIZED STOCHASTIC RECURSIVE GRADIENT ALGORITHM 43

3.3.3 Convergence and gradient computations

The last experiment investigates the convergence precision 1/ϵ2 of DESTRESS with respect to the number of

gradient evaluations. Under the same experimental setup, we conduct 64 different runs where each run

starts from a different initial point. The convergence precision is computed by the inverse of the running

average of the squared gradient norms. The results, including mean and variance, are shown in Figure 3.3,

which numerically validate the linear relation indicated by Corollary 3.

Chapter 4

Decentralized stochastic algorithm with

communication compression

Communication efficiency has been widely recognized as the bottleneck for large-scale decentralized

machine learning applications in multi-agent or federated environments. To tackle the communication

bottleneck, there have been many efforts to design algorithms with communication compression for

decentralized nonconvex optimization (cf. (1.3)), where the clients are only allowed to communicate a small

amount (commonly measured in bits) of quantized information with their neighbors over a predefined

graph topology. Despite significant efforts, the state-of-the-art algorithm in the nonconvex setting still

suffers from a slower rate of convergence O(G/ϵ3) compared with their uncompressed counterpart to reach

an ϵ-first-order stationary point for nonconvex objectives, where G measures the data heterogeneity across

different clients. We propose BEER, which adopts communication compression with gradient tracking, and

show it converges at a faster rate of O(1/ϵ2). This significantly improves over the state-of-the-art rate, by

matching the rate without compression even under arbitrary data heterogeneity. Numerical experiments

are also provided to corroborate our theory and confirm the practical superiority of BEER in the data

heterogeneous regime.

This chapter is based our previous publication [ZLL+22].

4.1 Preliminaries

4.1.1 Assumptions

We first introduce Assumptions 5 and 6, which are imposed on the global loss function. Assumption 5

only assumes global loss function is L-smooth, which makes it weaker than Assumption 2. The Polyak-

44

CHAPTER 4. DECENTRALIZED STOCHASTIC ALGORITHM WITH COMMUNICATION COMPRESSION45

Łojasiewicz (PL) condition [Pol63] described in Assumption 6 can lead to linear convergence even when

the function is nonconvex. It’s worth noting that Assumption 6 is weaker than strong convexity.

Assumption 5 (L-smooth objective function). A function f (x) is L-smooth if ∀x, y ∈ Rd, the following inequality

holds for some L ≥ 0:
∥∥∇ f (x)−∇ f (y)

∥∥
2 ≤ L∥x − y∥2.

Assumption 6 (PL condition). A function f (x) satisfies the Polyak-Łojasiewicz condition if ∀x ∈ Rd, the following

inequality holds for some µ > 0:
∥∥∇ f (x)

∥∥2
2 ≥ 2µ

(
f (x)− f ⋆

)
,

where f ⋆ = argminx∈Rd f (x).

Assumption 7 is a standard assumption for stochastic optimization algorithms, which implies a mini-

batch stochastic gradient of batch size b has a variance of σ2/b.

Assumption 7 (Bounded local variance). The variance of a local stochastic gradient at a uniformly randomly

selected data sample zi is bounded if ∀i ∈ [n] and ∀x ∈ Rd, the following inequality holds:

Ezi∼Mi

∥∥∇ℓ(x; zi)−∇ fi(x)
∥∥2

2 ≤ σ2.

4.1.2 Compression operators

Using compression operators to compress gradients or any data needed to be communicated can substan-

tially improve communication efficiency [TGZ+18, SCJ18, KSJ19, RSF21, FSG+21].

Definition 5 defines a randomized general compression operator that only guarantees the expected

compression error E
∥∥C(x)− x

∥∥2
2 is less than the magnitude of original message ∥x∥2

2. If the compression

operator is unbiased, it falls into the unbiased compression operator category [AGL+17, KFJ18, MGTR19,

LR20] defined in Definition 5.

Definition 5 (General compression operator). A randomized map C : Rd → Rd is a ρ-compression operator if

∀x ∈ Rd and some ρ ∈ [0, 1], the following inequality holds:

E
∥∥C(x)− x

∥∥2
2 ≤ (1 − ρ)∥x∥2

2.

Definition 6 (Unbiased compression operator). A randomized map C : Rd → Rd is an ω-unbiased compression

operator if ∀x ∈ Rd, and there exists some ω > 0, the followings hold:

E[C(x)] = x and E
∥∥C(x)− x

∥∥2
2 ≤ ω∥x∥2

2.

CHAPTER 4. DECENTRALIZED STOCHASTIC ALGORITHM WITH COMMUNICATION COMPRESSION46

It is possible to convert a general (biased) compression operator to an unbiased one. Example 1 shows

an example that random sparsification can be converted between these two categories by applying a

constant scaling. Examples 2 and 3 are two examples of general compression operators.

Example 1 (Random sparsification). Random sparsification keeps an element from a d-dimensional vector with

probability k
d . Let u ∈ Rd where ui ∼ B

(k
d
)
.

• Biased random sparsification is defined as randomk,biased(x) = u ⊙ x, which satisfies Definition 5 with ρ = k
d .

• Unbiased random sparsification is defined as randomk,unbiased(x) = d
k u ⊙ x, which satisfies Definition 6 with

ω = d
k − 1.

Example 2 (Random dithering). Random dithering [AGL+17] quantizes the message to b bits after adding random

noise, which is defined as

gsgdb(x) :=
∥x∥2

τ
· sign(x) · 2−(b−1) ·

⌊
2(b−1)|x|
∥x∥2

+ u

⌋

where τ = 1 + min
{

d
22(b−1) ,

√
d

2(b−1)

}
, and u is the random dithering vector uniformly sampled from [0, 1]d. gsgdb

satisfies Definition 5 with ρ = 1/τ.

Example 3 (topk). topk [AHJ+18, SCJ18] keeps k elements that have the largest absolute values and sets other

elements to 0, which is defined as

topk(x) := x ⊙ u(x),

where [u(x)]i = 1 if the absolute value of the i-th element is one of the k-largest absolute values, otherwise [u(x)]i = 0.

topk satisfies Definition 5 with ρ = k/d.

4.1.3 Additional notation

We denote a gradient of local objective function as ∇̃ fi(x) := ∇ℓ(x; zi), where zi ∈ Zi is uniformly

randomly sampled from local dataset Zi. In addition, for a batch of b i.i.d. uniform random samples

{zi,k ∈ Zi}k∈[b], the mini-batch stochastic gradient is defined as ∇̃b fi(x) := 1
b ∑b

k=1 ∇ℓ(x; zi,k).

We define the distributed stochastic gradient and mini-batch stochastic gradient ∇̃F(X), ∇̃bF(X), and

distributed compression operator C(X) analogously to (1.7).

4.2 The BEER algorithm

This section presents BEER (cf. Algorithm 5) for decentralized nonconvex optimization with compressed

communication.

CHAPTER 4. DECENTRALIZED STOCHASTIC ALGORITHM WITH COMMUNICATION COMPRESSION47

At the t-th iteration, BEER maintains the current model estimates X(t) and the global gradient estimates

V (t) across the clients. At the crux of its design, BEER also tracks and maintains two control sequences H(t)

and G(t) that serve as compressed surrogates of X(t) and V (t), respectively. In particular, these two control

sequences are updated by aggregating the received compressed messages alone (cf. Line 5 and Line 8).

It then boils down to how to carefully update these quantities in each iteration with communica-

tion compression. To begin, note that for each client i, BEER not only maintains its own parameters

{x(t)i , v(t)
i , h(t)

i , g(t)i }, but also the control variables from its neighbors, namely, {h(t)
j }j∈N (i) and {g(t)j }j∈N (i).

Each iteration can be roughly broken into three steps.

• Update model estimate: Each agent i first updates its model x(t+1)
i according to Line 3, by a gradient-

style update with a correction term using compressed surrogates of models, i.e., {h(t)
j }j∈N (i). This

update step incorporates aggregated information and compensates for the compression errors, thus

leads to better consensus among agents and improved communication efficiency.

• Update global gradient estimate: Each client i updates the global gradient estimate v(t+1)
i according to

Line 6, where the last correction term—based on the difference of the gradients at consecutive models—

is known as a trick called gradient tracking [QL18, DLS16, NOS17]. The use of gradient tracking is

critical: as shall be seen momentarily, it contributes to the key difference from CHOCO-SGD that

enables the fast rate of O(1/ϵ2) without any bounded dissimilarity or bounded gradient assumptions.

Indeed, if we remove the control sequence G(t) and substitute Lines 6-8 by V (t+1) = ∇̃bF(X(t+1)), we

recover CHOCO-SGD from BEER.

• Update compressed surrogates with communication: To update {h(t)
j }j∈N (i), each client i first

computes a compressed message q(t+1)
h,i that encodes the difference x(t+1)

i − h(t)
i , and broadcasts

to its neighbors (cf. Line 4). Then, each client i updates {h(t)
j }j∈N (i) by aggregating the received

compressed messages {q(t+1)
h,j }j∈N (i) following Line 5. The updates of {g(t)j }j∈N (i) can be performed

similarly. Moreover, all the compressed messages can be sent in a single communication round at

one iteration, i.e., the communications in Lines 4 and 7 can be performed at once. This leverages

EF21 [RSF21] for communication compression, which is a better and simpler algorithm that deals with

biased compression operators compared with the error feedback (or error compensation, EF/EC)

framework [KRSJ19, SK20]. Using the control sequence G(t), BEER does not need to apply EF/EC

explicitly and can deal with the error implicitly.

CHAPTER 4. DECENTRALIZED STOCHASTIC ALGORITHM WITH COMMUNICATION COMPRESSION48

Algorithm 5 BEER: Better comprEssion for dEcentRalized optimization

1 Input: Initial point X(0) = x(0)1⊤, G(0) = H(0) = 0d×n, V (0) = ∇F(X(0)), step size η, mixing step size
γ, minibatch size b.

2 for t = 0, 1, . . . do

3 X(t+1) = X(t) + γH(t)(W − I)− ηV (t)

4 Q(t+1)
h = C(X(t+1) − H(t)) ▷ agent i sends q(t+1)

h,i to all its neighbors

5 H(t+1) = H(t) + Q(t+1)
h

6 V (t+1) = V (t) + γG(t)(W − I) + ∇̃bF(X(t+1))− ∇̃bF(X(t))

7 Q(t+1)
g = C(V (t+1) − G(t)) ▷ agent i sends q(t+1)

g,i to all its neighbors

8 G(t+1) = G(t) + Q(t+1)
g

4.3 Convergence guarantees

This section presents convergence guarantees of BEER for nonconvex objective functions (cf. Section 4.3.1)

and PL objective functions (cf. Section 4.3.2). The convergence analysis is based on a Lyapunov function

tailored for BEER, given by

Φ(t) = E[f (x(t))]− f ⋆ +
c1L
n

Ω(t)
1 +

c2(1 − α)2

nL
Ω(t)

2 +
c3L
n

Ω(t)
3 +

c4(1 − α)4

nL
Ω(t)

4 , (4.1)

where {ci} are some constants depend on specific settings, E[f (x(t))]− f ⋆ represents the sub-optimality

gap, and the errors {Ω(t)
i } are defined by

Ω(t)
1 := E

∥∥H(t) − X(t)∥∥2
F, Ω(t)

2 := E
∥∥G(t) − V (t)∥∥2

F, (4.2)

Ω(t)
3 := E

∥∥X(t) − x(t)1⊤
∥∥2

F, Ω(t)
4 := E

∥∥V (t) − v(t)1⊤
∥∥2

F.

Here, Ω(t)
1 and Ω(t)

2 denote the compression errors for X(t) and V (t) when approximated using the

compressed surrogates H(t) and G(t), respectively, and Ω(t)
3 and Ω(t)

4 denote the consensus errors of X(t)

and V (t).

4.3.1 Convergence for nonconvex objective functions

Theorem 7 presents the convergence results of BEER for nonconvex objective functions

Theorem 7 (Convergence in the nonconvex setting). Suppose Assumptions 1, 5 and 7 hold. There exist absolute

constants c1, c2, c3, c4, cγ, cη > 0, such that if we set γ = cγρ(1 − α), η = cηγ(1 − α)2/L, for the Lyapunov

function Φ(t) defined in (4.1), it holds

1
T

T−1

∑
t=0

E
∥∥∇ f (x(t))

∥∥2
2 ≤ 2(Φ(0) − Φ(T))

ηT
+

36c4σ2

cγbρL
.

CHAPTER 4. DECENTRALIZED STOCHASTIC ALGORITHM WITH COMMUNICATION COMPRESSION49

Theorem 7 shows the convergence results for BEER.

Full gradient case When we can access the full gradient, which is equivalent to σ2 = 0, BEER converges at a

rate of O(ϵ−2). This rate is faster than the O(ϵ−3) rate by CHOCO-SGD [KSJ19] and DeepSqueeze [TLQ+19],

and the O(ϵ−4) rate by SQuARM-SGD [SDGD21].

More specifically, to achieve an ϵ-first-order stationary point, BEER needs

O
(

1
(1 − α)3ρϵ2

)

communication rounds, where α and ρ are the mixing rate (cf. Definition 1) and the compression param-

eter (cf. Definition 5), respectively. In comparison, the state-of-the-art algorithm CHOCO-SGD [KSJ19]

converges in O
(

G
(1−α)2ρϵ3

)
communication rounds, with G being the bounded gradient parameter, namely,

Ezi∼Mi ∥∇ℓ(x; zi)∥2 ≤ G2. Therefore, BEER improves over CHOCO-SGD not only in terms of a better

dependency on ϵ, but also removing the bounded gradient assumption, which is significant since in

practice, G can be excessively large due to data heterogeneity across the clients.

The dependency on ρ of BEER is consistent with other compression schemes, such as CHOCO-SGD, Deep-

Squeeze and SQuARM-SGD for the nonconvex setting, as well as LEAD [KKJ+21] and EF-C-GT [LLHP22]

for the strongly convex setting.

As for the dependency on (1 − α)−1, BEER is slightly worse than CHOCO-SGD, where CHOCO-SGD

has a dependency of O
(
(1 − α)−2) whereas BEER has a dependency of O((1 − α)−3). This degeneration

is also seen in the analysis of uncompressed decentralized algorithms using gradient tracking [SLH20,

XKK22b], where the rate O((1 − α)−2) is worse than the rate of O((1 − α)−1) for basic decentralized SGD

algorithms [KDG03, LZZ+17] by a factor of 1 − α. In addition, both BEER and CHOCO-SGD use small

mixing step size γ to guarantee convergence, which makes the dependency on (1 − α)−1 worse than their

uncompressed counterparts.

Stochastic gradient case In the presence of local variance, the squared gradient norm of BEER has an

additional term that scales on the order of O
(

σ2

ρb

)
(ignoring other parameters). By choosing a sufficiently

large minibatch size b, i.e., b ≥ O
(

σ2

ρϵ2

)
, BEER maintains the iteration complexity

O
(

1
(1 − α)3ρϵ2

)

to reach an ϵ-first-order stationary point, without the bounded gradient assumption, thus inheriting similar

advantages over CHOCO-SGD as discussed earlier. In terms of local computation, the gradient oracle

complexity on a single client of BEER is

O
(

1
(1 − α)3ρϵ2 +

σ2

(1 − α)3ρ2ϵ4

)
.

CHAPTER 4. DECENTRALIZED STOCHASTIC ALGORITHM WITH COMMUNICATION COMPRESSION50

While our focus is on communication efficiency, to gain more insights, Table 1.4 summarizes both the

communication rounds and the gradient complexity for different decentralized stochastic methods. While

BEER does not require the bounded gradient assumption, it may lead to a worse gradient complexity in the

data homogeneous setting due to the use of large minibatch size. Fortunately, this only impacts the local

computation cost, and does not exacerbate the communication complexity, which is often the bottleneck. It

is of great interest to further refine the design and analysis of BEER in terms of the gradient complexity.

4.3.2 Convergence for PL objectives functions

Theorem 8 (Convergence under PL condition). Suppose Assumptions 1 and 5 to 7 hold. There exist absolute

constants c1, c2, c3, c4, cγ, cη > 0, such that if we set γ = cγρ(1 − α), η = cηγ(1 − α)2/L, for the Lyapunov

function Φ(t) in (4.1), it holds

Φ(T) ≤ (1 − µη)TΦ(0) +
36c4σ2

cγLbρ
.

Theorem 8 shows the convergence guarantees for BEER under the PL condition. If we can access full

local gradients (σ = 0), BEER converges linearly to the global optimum f ⋆ at a rate of O
(
κ log(1/ϵ)

)
. When

using stochastic gradients, BEER converges linearly to a neighborhood of size O
(

σ2

ρb
)

around the global

optimum.

4.4 Numerical experiments

This section presents numerical experiments on real-world datasets to showcase BEER’s superior ability to

handle data heterogeneity over agents, by running each experiment on unshuffled datasets and comparing

the performances with the state-of-the-art baseline algorithms both with and without communication

compression.

For all experiments, we split unshuffled datasets evenly to 10 agents that are connected by a ring

topology, so that we can simulate the scenario with high data heterogeneity across agents. Approximately,

for the a9a dataset, 5 agents receive data with label 1 and others receive data with label 0; for the MNIST

dataset, agent i receives data with label i. We use the FDLA matrix [XB04] as the mixing matrix to perform

weighted information aggregation to accelerate convergence. For each experiment, all algorithms are

initialized to the same staring point, and uses best-tuned learning rates and batch sizes.

Sections 4.4.1 and 4.4.2 compares BEER with 1) CHOCO-SGD [KSJ19], which is the state-of-the-art

nonconvex decentralized optimizing algorithm using communication compression, and 2) DSGD [LZZ+17]

and D2 [TLY+18], which are decentralized optimization algorithms without compression. Section 4.4.3

further evaluates the impact of communication network and compression operators.

CHAPTER 4. DECENTRALIZED STOCHASTIC ALGORITHM WITH COMMUNICATION COMPRESSION51

4.4.1 Logistic regression with nonconvex regularization

We first run experiments on logistic regression with a nonconvex regularizer [WJZ+19] on the a9a

dataset [CL11]. Similar to Section 3.3.1, following [WJZ+19], the objective function over a datum (a, b) is

defined as

ℓ(x; { f , l})) = log
(

1 + l exp(−x⊤ f)
)
+ λ

d

∑
i=1

x2
i

1 + x2
i

,

where { f , l} represents a training tuple, f ∈ Rd is the feature vector and l ∈ {0, 1} is the label, and λ is the

regularization parameter which is set to λ = 0.05.

0 500 1,000 1,500 2,000

0

0.5

1

1.5

Communication rounds

T
ra
in
in
g
gr
ad

ie
n
t
n
or
m BEER

CHOCO-SGD
DSGD
D2

0 500 1,000 1,500 2,000
0.2

0.4

0.6

0.8

Communication rounds

T
es
ti
n
g
ac
cu
ra
cy

BEER
CHOCO-SGD
DSGD
D2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·107

0

0.5

1

1.5

Communication bits

T
ra
in
in
g
gr
ad

ie
n
t
n
or
m BEER

CHOCO-SGD
DSGD
D2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·107
0.2

0.4

0.6

0.8

Communication bits

T
es
ti
n
g
ac
cu
ra
cy

BEER
CHOCO-SGD
DSGD
D2

Figure 4.1: The training gradient norm and testing accuracy against communication rounds (left two
panels) and communication bits (right two panels) for logistic regression with nonconvex regularization on
unshuffled a9a dataset. Both BEER and CHOCO-SGD employ the biased gsgd5 compression [AGL+17].

Figure 4.1 plots the training gradient norm and testing accuracy against communication rounds

and communication bits for logistic regression with nonconvex regularization. The algorithms with

communication compression (BEER and CHOCO-SGD [KSJ19]) converge faster than the uncompressed

algorithms (DSGD [LZZ+17] and D2 [TLY+18]) in terms of the communication bits. However, CHOCO-SGD

fails to converge to a small gradient norm due to its inability to tolerate a high level of data dissimilarity

across different agents. In contrast, BEER and D2 converge to the smallest gradient norm, while BEER

outperforms D2 in terms of communication bits. The results for testing accuracy are similar, where BEER

achieves the best testing accuracy and is the fastest.

4.4.2 One-hidden-layer neural network training

Similar to Section 3.3.2, we evaluate BEER by training a 1-hidden layer neural network on the MNIST dataset

[LJB+95]. The network uses 64 hidden neurons, sigmoid activation functions and cross-entropy loss, where

the loss function over a training pair { f , l} is defined as

ℓ(x; (f , l)) = CrossEntropy(softmax(W2 sigmoid(W1 f + c1) + c2), l).

Here the model parameter is defined by x = vec(W1, c1, W2, c2), where the dimensions of the network

parameters W1, c1, W2, c2 are 64 × 784, 64 × 1, 10 × 64, and 10 × 1, respectively.

CHAPTER 4. DECENTRALIZED STOCHASTIC ALGORITHM WITH COMMUNICATION COMPRESSION52

0 500 1,000 1,500 2,000
0

1

2

3

4

Communication rounds

T
ra
in
in
g
gr
ad

ie
n
t
n
or
m BEER

CHOCO-SGD
DSGD
D2

0 500 1,000 1,500 2,000

0.2

0.4

0.6

0.8

Communication rounds

T
es
ti
n
g
ac
cu
ra
cy

BEER
CHOCO-SGD
DSGD
D2

0 0.2 0.4 0.6 0.8 1 1.2

·1010

0

1

2

3

4

Communication bits

T
ra
in
in
g
gr
ad

ie
n
t
n
or
m BEER

CHOCO-SGD
DSGD
D2

0 0.2 0.4 0.6 0.8 1 1.2

·1010

0.2

0.4

0.6

0.8

Communication bits

T
es
ti
n
g
ac
cu
ra
cy

BEER
CHOCO-SGD
DSGD
D2

Figure 4.2: The training gradient norm and testing accuracy against communication rounds (left two
panels) and communication bits (right two panels) for classification on unshuffled MNIST dataset using
a 1-hidden-layer neural network. Both BEER and CHOCO-SGD employ the biased gsgd20 compression
[AGL+17].

Figure 4.2 plots the training gradient norm and testing accuracy against communication rounds and

communication bits for 1-hidden-layer neural network training. In terms of the final training gradient norm,

BEER converges to a solution comparable to D2 but at a lower communication cost, while CHOCO-SGD

and DSGD cannot converge due to the high data heterogeneity. In terms of testing accuracy, BEER and D2

have very similar performance, and outperform CHOCO-SGD and DSGD.

4.4.3 Network topology and compression operators

We further investigate the impact of communication network topology and compression operators on the

performance of BEER. We follow the same setup as Section 4.4.1 to run logistic regression with nonconvex

regularization (λ = 0.05) on the unshuffled a9a dataset, by splitting it evenly to 40 agents. All experiments

use the same best-tuned step size η = 0.5, batch size b = 100 and γ = 0.7.

Impacts of network topology Figure 4.3 shows the training gradient norm and testing accuracy of BEER

with respect to the communication rounds over different network topologies using the gsgd5 compression

[AGL+17]. Experimented topologies are ring topology (α = 0.978), star topology (α = 0.951), grid topology

(α = 0.937), and Erdős-Rényi topology with connectivity probability p = 0.5 and p = 0.2 (α = 0.49

and α = 0.23, respectively). Despite the huge differences in mixing rates, BEER can use nearly the same

hyper-parameters to obtain similar performance. The experiments complement our theoretical analysis

and show that BEER may converge way better in practice despite its cubic dependency of (1 − α)−1 in

Theorem 7.

Impacts of compression schemes Figure 4.4 shows the training gradient norm and testing accuracy

of BEER with respect to the communication rounds and communication bits on a ring topology using

different compression schemes: no compression, gsgd5 (cf. Example 2) and top10 (cf. Example 3). The

CHAPTER 4. DECENTRALIZED STOCHASTIC ALGORITHM WITH COMMUNICATION COMPRESSION53

0 500 1,000 1,500 2,000

0

0.5

1

1.5

Communication rounds

T
ra
in
in
g
gr
ad

ie
n
t
n
or
m Ring

Star
Grid
ER, p = 0.2
ER, p = 0.5

0 500 1,000 1,500 2,000
0.2

0.4

0.6

0.8

Communication rounds

T
es
ti
n
g
ac
cu
ra
cy

Ring
Star
Grid
ER, p = 0.2
ER, p = 0.5

Figure 4.3: The training gradient norm and testing accuracy against communication rounds for BEER
using the biased gsgd5 compression [AGL+17] for logistic regression with nonconvex regularization on
unshuffled a9a dataset.

compression parameters are chosen such that each compression operator transfers similar number of bits

per communication round. All experiments use the same best-tuned step size η = 0.5, batch size b = 100

and γ = 0.7, except that we use η = 0.005 and γ = 0.8 for top10 compression.

In terms of communication bits, using compression operators improves over the uncompressed baseline,

because all algorithms with compression converge to a solution with lower gradient norm and higher

testing accuracy at a lower communication cost. In terms of communication rounds and testing accuracy,

different compression operators can lead to significantly behaviors. For example, using gsgd5 compression

operator leads to faster converges than without compression, but using the top10 compression operator

leads to slower converges than without compression. In sum, BEER with gsgd5 reaches the highest final

testing accuracy while behaves similar to BEER without compression in terms of communication rounds,

which indicates the benefit of using communication compression.

0 500 1,000 1,500 2,000
0

0.2

0.4

0.6

0.8

Communication rounds

T
ra
in
in
g
gr
ad

ie
n
t
n
or
m

No compression
gsgd5
top10

0 500 1,000 1,500 2,000
0.2

0.4

0.6

0.8

Communication rounds

T
es
ti
n
g
ac
cu
ra
cy

No compression
gsgd5
top10

0 1 2 3 4 5

·107

0

0.2

0.4

0.6

0.8

Communication bits

T
ra
in
in
g
gr
ad

ie
n
t
n
or
m

No compression
gsgd5
top10

0 1 2 3 4 5

·107

0.2

0.4

0.6

0.8

Communication bits

T
es
ti
n
g
ac
cu
ra
cy

No compression
gsgd5
top10

Figure 4.4: The training gradient norm and testing accuracy against communication rounds (top two
panels) and communication bits (bottom two panels) for BEER using different compression schemes for
logistic regression with nonconvex regularization on unshuffled a9a dataset.

Chapter 5

Decentralized private stochastic algorithm with

communication compression

To enable large-scale machine learning in bandwidth-hungry environments such as wireless networks,

significant progress has been made recently in designing communication-efficient federated learning

algorithms with the aid of communication compression. On the other end, privacy-preserving, especially

at the client level, is another important desideratum that has not been addressed simultaneously in the

presence of advanced communication compression techniques yet. In this chapter, based on BEER, we

propose PORTER, a decentralized stochastic optimization algorithm for decentralized nonconvex ERM

problems (cf. (1.3)) which enhances the communication efficiency of private decentralized learning with

communication compression, by exploiting general compression operators, gradient clipping and local

differential privacy.

We provide the first theoretical analysis of private decentralized optimization algorithms using com-

munication compression and gradient clipping, and show explicit dependency on the mixing rate and

compression parameter. Furthermore, we provide numerical evidence that shows PORTER converges in

similar communication rounds without sacrificing privacy nor utility compared to server/client private

optimization algorithm SoteriaFL-SGD [LZLC22].

5.1 Preliminaries

5.1.1 Local differential privacy

In decentralized learning systems, all agents share potentially sensitive information with their neighbors.

If some agents are exploited by adversaries, the system will face a risk of privacy leaking even though

54

CHAPTER 5. DECENTRALIZED PRIVATE STOCHASTIC ALGORITHM WITH COMMUNICATION
COMPRESSION 55

the system-level privacy is protected. Therefore, we introduce local differential privacy (LDP) defined

Definition 7 following [DJW13, ABCP13, CABP13, XYD19, WXDX20, ZZY+21, LZLC22], which protects

each agent’s privacy from leaking to other agents.

Definition 7 (Local differential privacy (LDP)). A randomized mechanism M : Z → R with domain Z and

range R satisfies (ϵ, δ)-local differential privacy for client i, if for any two neighboring dataset Zi, Z
′
i ∈ Z at client i

and for any subset of outputs R ⊆ R, it holds that

P
(
M(Zi) ∈ R

)
≤ eϵP

(
M(Z

′
i) ∈ R

)
+ δ. (5.1)

The two datasets Zi and Z
′
i are called neighboring if they are only different by one data point at client i.

Definition 7 is a more stricter privacy guarantee because it can imply general differential privacy (DP).

Consequently, LDP requires a larger perturbation variance than general DP. To identify the impact of the

decentralized LDP setting compared to centralized DP setting, we define the baseline utility

ϕm =

√
d log(1/δ)

mϵ
, (5.2)

which can be understood as the final utility of a centralized system with m data samples that guarantees

(ϵ, δ)-DP. For typical private problems, the local sample size m has to be large enough for the privacy

perturbation to work, we impose a mild assumption that ϕm < 1. For example, the problem defined in (1.3)

has in total mn data samples, running an (ϵ, δ)-DP algorithm on one server that can access all data will

achieve 1
n ϕm utility in nϕ−1

m iterations.

5.1.2 The SoteriaFL algorithm framework

This section reviews SoteriaFL [LZLC22] (cf. Algorithm 6) as it has inspired the development of PORTER.

SoteriaFL is a unified framework for differentially private optimization algorithms with unbiased commu-

nication compression in the server/client setting, which employs shifted communication to compensate for

the error induced by compression, and can use various local sub-routines to produce an estimate of global

gradients, e.g., stochastic gradient descent (SGD) or stochastic variance reduced gradient (SVRG).

During each iteration, each agent 1) computes an estimate of the global gradient using a local sub-

routine, 2) adds a Gaussian perturbation to the gradient estimate to preserve privacy, and 3) communicates

the perturbed gradient with its neighbors using the shifted communication scheme. Instead of directly

compressing the perturbed gradients, SoteriaFL maintains a reference s(t)i and compresses the shifted

message g(t)i − s(t)i at each agent. This extra shift operation allows SoteriaFL achieve much better

convergence behavior (fewer communication rounds) than existing algorithms.

CHAPTER 5. DECENTRALIZED PRIVATE STOCHASTIC ALGORITHM WITH COMMUNICATION
COMPRESSION 56

Algorithm 6 SoteriaFL (a unified framework for compressed private FL)

1 initial point x(0), step size ηt, shift step size γt, variance σ2
p , initial reference s(0)i = 0d

2 for t = 0, 1, 2, . . . , T do

3 for each node i ∈ [n] do in parallel

4 Compute local gradient estimator g̃(t)i ▷ It allows many methods, e.g., SGD, SVRG, and SAGA.

5 Privacy: g(t)i = g̃(t)i + ξ
(t)
i , where ξ

(t)
i ∼ N (0, σ2

p I)

6 Compression: let v(t)
i = C t

i (g(t)i − s(t)i) and send to the server ▷ Shifted compression.

7 Update shift st+1
i = s(t)i + γtC t

i (g(t)i − s(t)i)

8 end each node Server aggregates compressed information vt = st + 1
n ∑n

i=1 vt
i

9 xt+1 = xt − ηtvt

10 st+1 = st + γt
1
n ∑n

i=1 vt
i

SoteriaFL-SGD is obtained by using mini-batch stochastic gradients as the gradient estimator for

Line 4. The theoretical analysis shows explicit dependency on the compression parameter, which helps to

better understand the communication-utility trade-off for private server/client optimization algorithms, as

show in Table 1.5. Compare the centralized DP setting, the server/client algorithm differentially private

algorithm DDP-SRM [WJEG19] reaches the same 1
n ϕm utility but at a worse n2dϕ−1

m iteration complexity.

SoteriaFL-SGD is also a server/client algorithm but with LDP guarantee, which reaches an even worse

utility but with potentially less iterations due to the stronger privacy constraint.

5.1.3 Gradient clipping

In practice, gradient clipping is frequently adopted to ensure the gradients are within a predetermined

region, so that the variance of privacy perturbation can be decided accordingly. The clipping operator we

adopt is a smooth clipping operator defined in Definition 8, which scales a vector into a ball of radius τ

centered at the origin. Another widely used clipping operator is the piece-wise linear clipping operator

defined in Definition 9, which scales inputs whenever its gradient norm is larger than τ and does nothing

otherwise.

Definition 8 (Smooth clipping operator). For x ∈ Rd, the clipping operator is defined as

Clipτ(x) =
τ

τ + ∥x∥2
x.

For X ∈ Rd×n, the distributed clipping operator is defined as

Clipτ(X) = [Clipτ(x1), . . . , Clipτ(xn)].

CHAPTER 5. DECENTRALIZED PRIVATE STOCHASTIC ALGORITHM WITH COMMUNICATION
COMPRESSION 57

Definition 9 (Piece-wise linear clipping operator). For x ∈ Rd, the clipping operator is defined as

Clipτ(x) = x min
{

1, τ/∥x∥2
}

.

9τ

0.9τ

τ

0 ∥x∥2

∥Clipτ (x)∥2

Smooth
Piece-wise

Figure 5.1: Illustration of input norm and clipped norm for the smooth clipping operator (Definition 8) and
piece-wise linear clipping operator (Definition 9), where τ is the clipping parameter.

Figure 5.1 plots the norm of a vector before and after clipping for these two clipping operators, which

shows most fundamental difference is when ∥x∥2 = τ, the piece-wise linear compression operator is

not smooth, which leads to more difficulties in theoretical analysis. When ∥x∥2 is small, these clipping

operators behave like identity transformation, which keeps the stationary point property of objective

functions.

5.2 The PORTER algorithm

We propose PORTER (Algorithm 7), a novel stochastic private decentralized optimization algorithm for

finding ν-stationary points of nonconvex finite-sum problems based on BEER, where gradient estimates V ,

stochastic gradients G, perturbation noise E, compressed surrogate Qx and Qv, and their corresponding

agent-wise values are defined analogously to (1.5).

Key ingredients of PORTER are: 1) gradient clipping, which ensures the norm of clipped gradients

are bounded by τ; 2) privacy perturbation, which adds a Gaussian noise to clipped gradients to achieve

privacy constraints; 3) compression with error feedback [RSF21], which accelerates the convergence with

biased compression operators; and 4) stochastic gradient tracking, tracks the global gradient locally at

each agent. The algorithm details explained in Section 4.2 also applies to PORTER, except PORTER doesn’t

explicitly show compressed messages as Lines 4 and 7, and PORTER adds perturbation to the stochastic

CHAPTER 5. DECENTRALIZED PRIVATE STOCHASTIC ALGORITHM WITH COMMUNICATION
COMPRESSION 58

Algorithm 7 PORTER

1 input: x(0), η, γ, τ, b, σp, T

2 initialize: V (0) = Q(0)
v = G(0)

p = 0d×n, Q(0)
x = X(0) = x(0)1⊤n

3 for t = 1, . . . , T do

4 G(t)
τ = 1

b ∑Z∈Z (t) Clipτ(∇ℓ(X(t−1); Z))

5 G(t)
p = G(t)

τ + E(t), where e(t)i ∼ N (0d, σ2
p Id)

6 Q(t)
v = Q(t−1)

v + C(V (t−1) − Q(t−1)
v) ▷ Communication

7 V (t) = V (t−1) + γQ(t)
v (W − In) + G(t)

p − G(t−1)
p

8 Q(t)
x = Q(t−1)

x + C(X(t−1) − Q(t−1)
x) ▷ Communication

9 X(t) = X(t−1) + γQ(t)
x (W − In)− ηV (t)

10 output: xout ∼ Uniform({x(t)i |i ∈ [n], t ∈ [T]}).

gradients. PORTER initializes gradient-related variables to 0d and other variables to the same random value

x(0), which improves the algorithm’s stability in early iterations and simplifies analysis but has no impact

on convergence rates.

5.3 Local differential privacy guarantee

Algorithm 7 adds a Gaussian noise e(t)i ∼ N (0d, σ2
p Id) to ensure privacy. Theorem 9 proves our algorithm

is (ϵ, δ)-private when setting the variance of Gaussian perturbation to be σ2
p = Tτ2b2ϕ2

m/d. The proof is

deferred to Appendix D.1.

Theorem 9 (Local differential privacy). Let ϕm =

√
d log(1/δ)

mϵ . For any ϵ ≤ T/m2 and δ ∈ (0, 1), Algorithm 7 is

(ϵ, δ)-LDP after T iterations if we set

σ2
p =

Tτ2b2 log(1/δ)

m2ϵ2 = Tτ2b2ϕ2
m/d. (5.3)

Using clipping operators guarantees all gradients’ ℓ2 norms are bounded by τ, i.e., ∀i, t,
∥∥g(t)τ,i

∥∥
2 ≤ τ.

Therefore, Theorem 9 holds for PORTER throughout.

5.4 Convergence with bounded gradient assumption

This section theoretically analyzes the convergence properties of PORTER under bounded gradient assump-

tion without gradient clipping. Section 5.3 shows PORTER is (ϵ, δ)-local differential private when using a

specific perturbation variance σ2
p = Tτ2b2ϕ2

m/d, then presents convergence analysis.

CHAPTER 5. DECENTRALIZED PRIVATE STOCHASTIC ALGORITHM WITH COMMUNICATION
COMPRESSION 59

Assumption 8 (Bounded sample gradient). For any x, y ∈ Rd and any datum z in dataset Z , it holds

∥∇ℓ(x; z)∥2 ≤ τ.

With Assumption 8, PORTER can omit the clipping operator and reduce to Algorithm 8. Here, we assume

b = 1.

Algorithm 8 PORTER with bounded gradient assumption

1 input: x(0), η, γ, τ, σp, T

2 initialize: V (0) = Q(0)
v = G(0)

p = 0d×n, Q(0)
x = X(0) = x(0)1⊤n

3 for t = 1, . . . , T do

4 G(t)
τ = ∇ℓ(X(t−1); Z(t))

5 G(t)
p = G(t)

τ + E(t), where e(t)i ∼ N (0d, σ2
p Id)

6 Q(t)
v = Q(t−1)

v + C(V (t−1) − Q(t−1)
v) ▷ Communicate

7 V (t) = V (t−1) + γQ(t)
v (W − In) + G(t)

p − G(t−1)
p

8 Q(t)
x = Q(t−1)

x + C(X(t−1) − Q(t−1)
x) ▷ Communicate

9 X(t) = X(t−1) + γQ(t)
x (W − In)− ηV (t)

10 output: xout ∼ Uniform({x(t)i |i ∈ [n], t ∈ [T]}).

Theorem 10 presents the convergence result of PORTER using general compression operators (Defini-

tion 5). The proof is deferred to Appendix D.2.

Theorem 10 (Convergence using general compression operators). Assume Assumptions 1, 2 and 8 hold. Use

general compression operators (Definition 5). Set γ = O
(
(1 − α)ρ

)
, η = O

(
γ4/3(1 − α)4/3ϕm/L

)
, T = ϕ−2

m , and

σ2
p = Tτ2ϕ2

m/d. Let ∆ = E
[

f (x(0))
]
− f ⋆, Algorithm 8 reaches O

(
(1 − α)−8/3ρ−4/3ϕm · max

{
τ2, L∆

})
utility

in T iterations.

We can compare each term of the final utility in Theorem 10 with the results of the server/client

algorithm SoteriaFL-SGD, due to a lack of theoretical analysis of comparable algorithms. 1) PORTER will

always reach the same final utility, whose dependency on the compression operator is O(ρ−4/3). We

can convert SoteriaFL-SGD’s rate (cf. Table 1.5) using the approximation ρ = 1/(1 + ω). When n is

not large enough compared to ω, or using aggressive compression (ω is large), SoteriaFL-SGD reaches

O
(
n−1ρ−2ϕm

)
utility, which is worse than PORTER, even though PORTER is a decentralized optimization

algorithm. 2) In terms of dependency on the baseline utility ϕm, due to extra complexities induced by the

decentralized setting, PORTER takes O(ϕ−2
m) iterations to reach O(ϕm) utility, which is worse than other

algorithms, e.g., SoteriaFL-SGD only takes O(ϕ−1
m) iterations.

CHAPTER 5. DECENTRALIZED PRIVATE STOCHASTIC ALGORITHM WITH COMMUNICATION
COMPRESSION 60

5.5 Convergence without bounded gradient assumption

When assuming the bounded gradient assumption (cf. Assumption 8), PORTER can skip the clipping

operator, and G(t)
τ,i becomes an unbiased estimator of the local gradient ∇ fi(x(t)i). However, Assumption 8

is rarely met in reality. For example, the gradient of a quadratic loss function is not bounded. Therefore, it

is of interest to examine convergence without the strong bounded gradient assumption, where we utilize

the gradient clipping operator Clipτ(·) to ensure gradients are bounded.

However, it is necessary to introduce milder assumptions, Assumptions 9 and 10, which limit the

deviation of local objective functions to the global objective function. Because stochastic gradients at

different agents will lose correct scaling after clipping, which will break the stationary point property at

local minima. For example, consider optimizing a one-dimensional objective function over a 3-agent fully

connected communication graph. Initialize every agent with x(0) = x⋆, where x⋆ is one of global local

minima. Assume local gradients are g1 = 1, g2 = 1 and g3 = −2, which leads to a global gradient of 03. If

we apply gradient clipping with τ = 1, Clip1(g1) = 0.5, Clip1(g2) = 0.5 and Clip1(g3) = −0.66, and the

global gradient is g′ = 0.33 ̸= 0.

Assumption 9 (Bounded gradient dissimilarity). ∀x ∈ Rd and i ∈ [n],
∥∥∇ f (x)−∇ fi(x)

∥∥
2 ≤ 1

12

∥∥∇ f (x)
∥∥

2.

Assumption 10 (Bounded local variance). ∀x ∈ Rd and i ∈ [n], Ez∼Zi∥∇ fi(x)−∇ℓ(x; z)∥2
2 ≤ σ2

g .

As an initial step to understand the clipping operation, we study a variant of PORTER, which applies the

clipping to the mini-batch gradient, i.e. Line 4 is modified to

G(t) =
1
b ∑

Z∈Z (t)

∇ℓ(X(t−1); Z) (5.4a)

G(t)
τ = Clipτ(G

(t)), (5.4b)

which is also a widely used operation in deep learning training. However, the privacy guarantee does not

apply to this variation anymore. Theorem 11 describes the convergence behavior of the modified version of

Algorithm 7 in this case. The proof is deferred to Appendix D.3.

Theorem 11 (Convergence without bounded gradient assumptions). Assume Assumptions 1, 2, 9 and 10

hold and use general compression operators (Definition 5). Let ∆ = E
[

f (x(0))
]
− f ⋆ and ν = O

(
ρ−

2
3 (1 −

α)−
4
3 σ1/2

g ϕ1/4
m
)
. Set γ = O((1 − α)ρ), η = O

(
L−1γ

4
3 (1 − α)

4
3
√

bL∆ϕm/τ
)
, b = O(σ2

g ν−2), τ = ν, σ2
p =

Tτ2ϕ2
m/d, and T = (bϕm)−1 = O

(
ρ

4
3 (1 − α)

8
3 ϕ−1

m
)
, Algorithm 7 with mini-batch clipping (5.4) reaches a ν-first-

order stationary point in no more than T iterations, i.e.,

min
t∈[T]

E
∥∥∇ f (x(t))

∥∥
2 ≤ ν. (5.5)

CHAPTER 5. DECENTRALIZED PRIVATE STOCHASTIC ALGORITHM WITH COMMUNICATION
COMPRESSION 61

Theorem 11 establishes a simple framework for analyzing algorithms that use gradient clipping without

strong assumptions, which results in a clean deterministic bound of the iterations to reach a ν-stationary

point. In contrast, most works that analyze gradient clipping require stronger assumptions. We believe our

technique can be applied to analyze the original version of PORTER too, which will be left to future work.

5.6 Numerical experiments

This section presents numerical experiments on the a9a dataset to numerically examine the performance of

PORTER, with comparison to the state-of-the-art server/client private optimization algorithm SoteriaFL-SGD,

which also utilizes communication compression and guarantees local differential privacy. More specifically,

we evaluate the convergence of utility and accuracy in terms of communication rounds and communication

bits, to analyze the privacy-utility-communication trade-offs of different optimization algorithms.

For all experiments, we split shuffled datasets evenly to 10 agents that are connected by an Erdős-Rényi

random graph with connecting probability p = 0.8. We use the FDLA matrix [XB04] as the mixing matrix to

perform weighted information aggregation to accelerate convergence. We use biased random sparsification

(cf. Example 1) for all algorithms where k = ⌊ d
20⌋, i.e., the compressor randomly selects 5% elements

from each vector. We also apply gradient clipping with τ = 1 to all algorithms for simplicity. For each

experiment, all algorithms are initialized to the same staring point, and use best-tuned learning rates, batch

size 1 and σp =
τ
√

T log(1/δ)
mϵ .

5.6.1 Logistic regression with nonconvex regularization

We run experiments on logistic regression with nonconvex regularization [WJZ+19] on the a9a dataset

[CL11] for different privacy settings. Similar to Section 3.3.1, following [WJZ+19], the objective function is

defined as

ℓ(x; { f , l}) = log
(

1 + l exp(−x⊤ f)
)
+ λ

d

∑
i=1

x2
i

1 + x2
i

,

where { f , l} represents a training tuple, f ∈ Rd is the feature vector and l ∈ {0, 1} is the label, and λ is the

regularization parameter which is set to λ = 0.2.

Figure 5.2 and Figure 5.3 show the convergence results of PORTER and SoteriaFL-SGD for logistic re-

gression with nonconvex regularization on the a9a dataset to reach (10−2, 10−3)-LDP and (10−1, 10−3)-LDP,

respectively. Under (10−2, 10−3)-LDP, which is a more stricter privacy setting, PORTER converges faster than

SoteriaFL-SGD in test accuracy, while PORTER converges slightly slower in train utility. Under (10−1, 10−3)-

LDP, PORTER performs SoteriaFL-SGD slightly worse than SoteriaFL-SGD. The results highlight PORTER’s

CHAPTER 5. DECENTRALIZED PRIVATE STOCHASTIC ALGORITHM WITH COMMUNICATION
COMPRESSION 62

0 10 20 30 40 50
1

1.5

2

2.5

Communication rounds

T
ra
in

u
ti
li
ty

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

Communication rounds

T
es
t
a
cc
u
ra
cy

DP-BEER
SoteriaFL-SGD

Figure 5.2: The train utility and test accuracy vs. communication rounds for logistic regression with
nonconvex regularization on the a9a dataset when guaranteeing (10−2, 10−3)-LDP. Both PORTER and
SoteriaFL-SGD employ random162,biased compression (cf. Example 1).

0 10 20 30 40 50

0.5

1

1.5

2

2.5

Communication rounds

T
ra
in

u
ti
li
ty

0 10 20 30 40 50
0.3

0.4

0.5

0.6

0.7

0.8

Communication rounds

T
es
t
ac
cu
ra
cy

DP-BEER
SoteriaFL-SGD

Figure 5.3: The train utility and test accuracy vs. communication rounds for logistic regression with
nonconvex regularization on the a9a dataset when guaranteeing (10−1, 10−3)-LDP. Both PORTER and
SoteriaFL-SGD employ random162,biased compression (cf. Example 1).

communication efficiency by showing it can achieve similar performance as its server/client counterpart,

i.e. SoteriaFL-SGD, especially under strict privacy constraints.

5.6.2 One-hidden-layer neural network training

Similar to Section 4.4.2, we evaluate PORTER by training a one-hidden layer neural network on the MNIST

dataset [LJB+95]. The network uses 64 hidden neurons, sigmoid activation functions and cross-entropy

loss, where the loss function over a training pair { f , l} is defined as

ℓ(x; (f , l)) = CrossEntropy(softmax(W2 sigmoid(W1 f + c1) + c2), l).

Here the model parameter is defined by x = vec(W1, c1, W2, c2), where the dimensions of the network

parameters W1, c1, W2, c2 are 64 × 784, 64 × 1, 10 × 64, and 10 × 1, respectively.

Figures 5.4 and 5.5 show the convergence results of PORTER and SoteriaFL-SGD for training a one-

hidden-layer neural network on the MNIST dataset to reach (10−2, 10−3)-LDP and (10−1, 10−3)-LDP,

respectively. PORTER Under both privacy settings, PORTER converges at a similar rate as SoteriaFL-SGD

in train utility. However, in terms of convergence in test accuracy, PORTER outperforms SoteriaFL-SGD

CHAPTER 5. DECENTRALIZED PRIVATE STOCHASTIC ALGORITHM WITH COMMUNICATION
COMPRESSION 63

0 50 100 150 200

1

1.5

2

Communication rounds

T
ra
in

u
ti
li
ty

0 50 100 150 200

0.1

0.15

0.2

0.25

0.3

Communication rounds

T
es
t
a
cc
u
ra
cy

DP-BEER
SoteriaFL-SGD

Figure 5.4: The train utility and test accuracy vs. communication rounds for training a one-hidden-
layer neural network on the MNIST dataset when guaranteeing (10−2, 10−3)-LDP. Both PORTER and
SoteriaFL-SGD employ random2583,biased compression (cf. Example 1).

0 50 100 150 200

0.5

1

1.5

Communication rounds

T
ra
in

u
ti
li
ty

0 50 100 150 200

0.2

0.4

0.6

Communication rounds

T
es
t
ac
cu

ra
cy

DP-BEER
SoteriaFL-SGD

Figure 5.5: The train utility and test accuracy vs. communication rounds for training a one-hidden-
layer neural network on the MNIST dataset when guaranteeing (10−1, 10−3)-LDP. Both PORTER and
SoteriaFL-SGD employ random2583,biased compression (cf. Example 1).

under the more stricter (10−2, 10−3)-LDP, while the two algorithms have similar performance under the

other setting. This experiment again empathizes PORTER’s communication efficiency by comparing to the

server/client algorithm SoteriaFL-SGD.

Chapter 6

Conclusions

The main focuses of this thesis are theoretical and practical communication and computation efficiency

of decentralized optimization algorithms, where these algorithms leverage techniques such as gradient

tracking, Newton-type updates, stochastic recursive gradients, communication compression and differential

privacy.

We start from the Network-DANE algorithm in Chapter 2, which adapts Newton-type updates to the

decentralized setting using gradient tracking and extra mixing, and achieves a condition number free (up to

a log factor) communication complexity for quadratic objectives. Network-DANE indicates that it is possible

to perform more local computation, i.e., solving a strongly convex optimization local problem at each agent,

and more communication per iteration, i.e., extra mixing, to reduce overall communication complexity.

Next, we propose DESTRESS, a stochastic recursive gradient algorithm, in Chapter 3. DESTRESS employs

recursive stochastic gradients, stochastic gradient tracking and extra mixing, which results in an optimal

IFO-complexity for arbitrary nonconvex ERM problems and improved communication complexity upon

existing works. DESTRESS reaches both communication and computation efficiency at the same time, which

emphasizes the efficacy of gradient tracking, extra mixing and stochastic algorithms.

Then, we propose BEER and PORTER in Chapters 4 and 5, respectively. While these two algorithms

share a similar structure that uses gradient tracking, communication compression and error feedback, they

focus on different perspectives. BEER achieves an improved communication complexity but at the cost of

worse IFO complexity, while being able to converge under high data heterogeneity. On top of BEER, PORTER

adds gradient clipping and privacy perturbation to gradients to protect the privacy of each agent, with

explicit utility and communication complexity. The development of BEER and PORTER shows that by using

gradient tracking and communication compression, the efficiency of decentralized optimization algorithms

can be significantly improved, and these algorithms can be easily extended to suit new problems, e.g.,

64

CHAPTER 6. CONCLUSIONS 65

privacy-preserving decentralized optimization.

Appendix A

Appendix for Chapter 2

A.1 Derivation of Equation (2.6)

We observe that

f j(x)−
〈
∇ f j(x(t)), x

〉
= 1

2 x⊤Hjx − x⊤Hjx(t) + constant = 1
2
(
x − x(t)

)⊤Hj
(

x − x(t)
)
+ constant,

which allows us to derive a closed-form expression for x(t)j as follows

x(t)j = arg min
x∈Rd

{
1
2
(

x − x(t)
)⊤Hj

(
x − x(t)

)
+
〈
∇ f
(
x(t)
)
, x − x(t)

〉
+

µ

2

∥∥x − x(t)
∥∥2

2

}

= arg min
x∈Rd

{
1
2
(

x − x(t)
)⊤ (Hj + µI

) (
x − x(t)

)
+
〈
∇ f
(
x(t)
)
, x − x(t)

〉}

= x(t) −
(

Hj + µId
)−1 ∇ f

(
x(t)
)
.

A.2 Proof of Theorem 1 and Theorem 2

This sections proves the convergence rate of Network-DANE for quadratic losses. When local and global loss

functions are quadratic, we can solve (2.9) explicitly. Specifically, Algorithm 1 can be alternatively written

as Algorithm 9 below.

For simplicity, we first proceed with the proof as if K = 1, then replace α with αK in the last step, and

we let H = ∇2 f (x) = 1
n ∑n

j=1 H j be the Hessian of the global loss function. From the definition of the

homogeneity parameter β, we have ∥H − H j∥2 ≤ β for all j = 1, . . . , n. In addition, we recall the notation

in Definition 2, (2.3) and (2.4), and define the error vector as follows

e(t) =




√
n∥y(t) − y⋆∥2

∥y(t) − 1n ⊗ y(t)∥2

L−1∥s(t) −∇ f (y(t))∥2




. (A.2)

66

APPENDIX A. APPENDIX FOR CHAPTER 2 67

Algorithm 9 Network-DANE for quadratic losses (2.10)

1 for t = 1, 2, · · · do

2

y(t) = (W ⊗ Id)x(t−1), (A.1a)

s(t) = (W ⊗ Id)s
(t−1) + H

(
y(t) − y(t−1)), (A.1b)

x(t) = y(t−1) − (H + µInd)
−1s(t−1), (A.1c)

where y(t) and s(t) are defined in (2.3), H := diag(H1, · · · , Hn) ∈ Rnd×nd, and Hi is defined in
(2.10).

Establishing the convergence of Network-DANE relies on characterization of the per-iteration dynamics

of e(t) for quadratic losses. Towards this end, we state the following key lemma — which is established in

Appendix A.5 — that plays a crucial role in the analysis.

Lemma 1. Let η = 1
σ+µ and γ = L

L+µ . Suppose that Assumptions 3 and 4 hold. Then one has

e(t) ≤




θ1 γηβ + ηβ η2Lβ

αγηβ α + αηL αηL
β
L + θ1

β
L + αγηβ

β
L α

β
L + α + 1 + γηβ

β
L + ηβ

β
L + α

β
L + αηβ α + γηβ

β
L + αηβ




︸ ︷︷ ︸
=: G

e(t−1). (A.3)

Here, a ≤ b indicates that ai ≤ bi for all entries i.

In what follows, we invoke this result to establish Theorems 1 and 2 separately.

A.2.1 Proof of Theorem 1

By the choice of µ stated in Theorem 1, we can show that

γ < 1 and ηβ ≤ ηL < 1. (A.4)

In view of Lemma 1, we can obtain

e(t) ≤ G1e(t−1)

with a simplified matrix

G1 :=




θ1 2ηβ η2Lβ

αγηβ α + αηL αηL

3 β
L 7 α + 2ηβ




, (A.5)

where e(t) is defined in (A.2). We first invoke an argument from [WYWH18] to show that e(t) converges

linearly at a rate not exceeding ρ(G1). Given that G1 is a positive matrix (i.e. all of its entries are strictly

APPENDIX A. APPENDIX FOR CHAPTER 2 68

greater than zero), one can invoke the Perron-Frobenius Theorem to show that: there exists a real-valued

positive number ρ(G1) ∈ R — the spectral radius of G1 — such that (i) ρ(G1) is an algebraically simple

eigenvalue of G1 associated with a strictly positive eigenvector χ, (ii) all other eigenvalues of G1 are strictly

smaller in magnitude than ρ(G1). Therefore, there exists some constant C > 0 such that e0 ≤ Cχ, and

consequently,

e(1) ≤ G1e(0) ≤ CG1χ = Cρ(G1)χ. (A.6)

Invoking this argument recursively for all t, we arrive at

e(t) ≤ C
(
ρ(G1)

)t
χ. (A.7)

Therefore, the rest of this proof boils down to upper bounding ρ(G1). Rearrange the characteristic

polynomial of G1, given by

f1(λ) =det
(
λI − G1

)

=(λ − θ1)p1(λ) + αγη2β2(2α + 4ηβ − 2θ1 − 7ηL)− 3η2β2(α − αηL + θ1), (A.8)

where p1(λ) is the following function obtained by direct computation

p1(λ) = (λ − α − αηL)(λ − α − 2ηβ)− 7αηL − 2αγη2β2 − 3η2β2. (A.9)

From the Perron-Frobenius Theorem, we know that ρ(G1) is a simple positive root of f1(λ) (so that

f1(ρ(G1)) = 0). However, it is difficult to compute it directly. In what follows, we seek to first upper bound

ρ(G1) by

ρ1 := λ0 = max

{
1 + θ1

2
, α +

140ηL
1 − α

(β

σ
+ 1
)

,
1 + α

2
+ 2ηβ

}
, (A.10)

then demonstrate that λ0 < 1, which ensures linear convergence, and finally replace α with αK for the final

result.

Step 1: bounding ρ(G1) by λ0. The following calculation aims to verify the fact that: for all λ ≥ λ0, one

has f1(λ) > 0, and hence ρ(G1) ≤ λ0. Recall the definition of θ1 in (2.13). When λ ≥ λ0 ≥ 1+θ1
2 , one has

λ − θ1 ≥1 − θ1

2

=
1
2

σ

σ + µ

(
1 − L

L + µ

β

σ + µ − β

β

σ

)

≥ 1
4

σ

σ + µ
. (A.11)

APPENDIX A. APPENDIX FOR CHAPTER 2 69

In order for the last inequality to hold, we must make sure that




σ + µ ≥ 3β2

σ , if β ≥ σ;

σ + µ ≥ 3σ, otherwise.
(A.12)

Note that the above relationship is guaranteed by the condition σ + µ ≥ 140L
(1−α)2

(
β
σ + 1

)
. When λ ≥ λ0,

using (A.4), we can lower bound the first term of p1(λ) by

(λ − α − αηL)(λ − α − 2ηβ) ≥1 − α

2

(140ηL
1 − α

(β

σ
+ 1
)
− αηL

)

>69ηL
(β

σ
+ 1
)

.

We can lower bound p1(λ) by incorporating (A.4) as

p1(λ) = (λ − α − αηL)(λ − α − 2ηβ)− 7αηL − 2αγη2β2 − 3η2β2

> 69ηL
(β

σ
+ 1
)
− 12ηL

> 68κηβ. (A.13)

As a result of (A.11) and (A.13), when λ ≥ λ0, the characteristic polynomial (A.8) satisfies

f1(λ) ≥ (λ − θ1)p1(λ) + αγη2β2(2α + 4ηβ − 2θ1 − 7ηL)− 3η2β2(α − αηL + θ1)

>
1
4

ησ · 68κηβ − 9αγη2β2 − 3η2β2(α + θ1)

> 17ηβηL − 9αγη2β2 − 6η2β2 > 0.

Therefore, any λ that exceeds λ0 cannot be a root of f1(·). This implies that the spectral radius ρ(G1), of

necessity, obeys ρ(G1) < λ0.

Step 2: bounding λ0. This step verifies that all three terms in (A.10) are smaller than 1, thus leading to

the conclusion λ0 < 1.

• First, observe that if (A.12) is satisfied, we have 1+θ1
2 ≤ 1 − 1

4 ησ < 1.

• When σ + µ ≥ 140L
(1−α)2

(
β
σ + 1

)
, the second term in (A.10) obeys α + 140ηL

1−α

(
β
σ + 1

)
≤ 1.

• Finally, the third term in (A.10) is also less than 1, since

1 + α

2
+ 2ηβ ≤ 1 + α

2
+

(1 − α)2

70
β

β
σ + 1

1
L
≤ 1 + α

2
+

(1 − α)2

70
≤ 1 − 1 − α

2
+

1 − α

70
< 1.

Step 3: replacing α with αK. This step gives the final results as

ρ1 = max

{
1 + θ1

2
, αK +

140ηL
1 − αK

(β

σ
+ 1
)

,
1 + αK

2
+ 2ηβ

}
.

APPENDIX A. APPENDIX FOR CHAPTER 2 70

A.2.2 Proof of Theorem 2

By the assumption σ + µ ≥ 360σ
(

β2

σ2 + 1
)

and αK ≤ 1
2κ as we can prove that ηβ < 1 and αKηL ≤ 1

2 . The

characteristic polynomial (A.8) in Appendix A.2.1 can then be lower bounded by

f1(λ) = det (λI − G1)

=(λ − θ1)
(
(λ − αK − αKηL)(λ − αK − 2ηβ)− 7αKηL − 2αKγη2β2 − 3η2β2

)

+ αKγη2β2(2αK + 4ηβ − 2θ1 − 7ηL)− 3η2β2(αK − αKηL + θ1)

≥ (λ − θ1)
(
(λ − αK − 1

2
ησ)(λ − αK − 2ηβ)− 7

2
ησ − ηση2β2 − 3η2β2

)

+ αKγη2β2(2αK + 4ηβ − 2θ1 − 7ηL)− 3η2β2(αK − αKηL + θ1), (A.14)

provided that λ obeys

λ ≥ max

{
1 + θ1

2
, αK + 180ησ

(β2

σ2 + 1
)

,
1 + αK

2
+ 2ηβ

}
.

Given that all conditions in (A.12) are satisfied, we can show η2β2 ≤ ησ · β2

360σ2(β2/σ2+1) < ησ < 1. One can

thus continue to lower bound (A.14) by

f1(λ) > (λ − θ1)
(
(λ − αK − 1

2
ησ)(λ − αK − 2ηβ)− 8ησ

)
− 11η2β2

>
1
4

ησ
{1

4

[
180ησ

(β2

σ2 + 1
)
− 1

2
ησ
]
− 8ησ

}
− 11η2β2

>
1
4

ησ
{

45ηβ
β

σ
+ 44ησ − 8ησ

}
− 11η2β2

>
45
4

ηβ − 11η2σ2

> 0.

Consequently, following similar arguments as in Appendix A.2.1, we can show that: under the conditions

of Theorem 2, the spectral radius of G1 can be upper bounded by

ρ(G1) ≤ 1 − C
β2

σ2 + 1
,

where C is some sufficiently small positive constant. This immediately tells us that: to reach ϵ-accuracy,

Network-DANE takes at most O
((β2

σ2 + 1
)

log(1/ϵ)
)

iterations. For each iteration, Network-DANE needs

K ≍ log(1/2κ)

log α
≲

log κ

1 − α

rounds of communication, where we have used the elementary inequality 1 − α < log(1/α). Putting all

this together leads to a communication complexity at most O
(

log κ · (β2/σ2+1) log(1/ϵ)
1−α

)
.

APPENDIX A. APPENDIX FOR CHAPTER 2 71

A.3 Proofs of Theorem 3 and Theorem 4

This sections establishes the convergence rate of Network-DANE for smooth and strongly convex loss

functions, following the analysis approach adopted in the proof of Theorem 1. Similarly, we first proceed

with the proof as if K = 1, then replace α with αK in the last step. The following key lemma plays a crucial

role, which characterizes the per-iteration dynamics of the proposed Network-DANE for general smooth

strongly convex losses. The proof of this lemma is deferred to Appendix A.6.

Lemma 2. Recall the notation in Lemma 1. Suppose that Assumption 3 holds, and
(β

σ+µ

)2 ≤ σ
σ+2µ . One has

e(t) ≤




θ2 ηL γηL

αγηL α + αηL αηL
β
L + θ2

β
L + αγηβ α + 1 + α

β
L + ηβ + α

β
L + αηβ α + γηβ + αηβ




︸ ︷︷ ︸
=: G′

e(t−1). (A.15)

Here, e(t) is the error vector defined in (A.2), and the notation a ≤ b indicates that ai ≤ bi for all entries i.

A.3.1 Proof of Theorem 3

Under the conditions of Theorem 3, the inequalities stated in (A.4) remain valid. In addition, when

σ + µ = 170κL
(1−α)2 , we can verify that

(β

σ + µ

)2
=

(1 − α)4β2

1702κ2L2 ≤ (1 − α)2

1702κ2 <
1
2
· (1 − α)2

170κ2 =
1
2
· σ

σ + µ
<

σ

σ + 2µ
.

When σ + µ ≥ 170κL
(1−α)2 , the LHS decreases faster than the RHS, thus the requirement of Lemma 2 is met. In

view of Lemma 2 as well as the fact θ2 ≤ 1, we can replace G′ by a simplified matrix that dominates G′:

G2 :=




θ2 2ηL γηL

αγηL α + αηL αηL

3 β
L 7 α + 2ηβ




. (A.16)

The above matrix G2 is similar to G1 in (A.5) in the quadratic case, except that the quantity β in the first

two rows of G1 is replaced by L (thus leading to a worse convergence rate).

Similar to the proof of Theorem 1, we shall upper bound ρ(G2) — the spectral radius of G2. To locate

the eigenvalues of G2, we rearrange the characteristic polynomial of G2 as follows

f2(λ) =det (λI − G2)

=(λ − θ2)p2(λ) + αγη2L2 (2α + 4ηβ − 2θ2 − 7γ)− 3ηβ (2αηL − γ(α + αηL − θ2)) , (A.17)

APPENDIX A. APPENDIX FOR CHAPTER 2 72

where p2(λ) is the following function obtained by direct computation

p2(λ) = (λ − α − αηL)(λ − α − 2ηβ)− 7αηL − 2αγη2L2 − 3γηβ.

From the Perron-Frobenius Theorem, ρ(G2) is a simple positive root of the equation f2(λ) = 0. However, it

is hard to calculate it directly. In what follows, we seek to first upper bound ρ(G2) by

ρ2 := λ0 = max
{

1 + θ2

2
, α +

170κηL
1 − α

,
1 + α

2
+ 2ηβ

}
, (A.18)

and then demonstrate that λ0 < 1, which in turn ensures linear convergence.

Step 1: bounding ρ(G2) by λ0. The following calculation aims to verify the fact that f2(λ) > 0 holds for

all λ ≥ λ0 , so that ρ(G2) ≤ λ0. Recalling the definition of θ2 in Lemma 2, we see that when λ ≥ λ0 ≥ 1+θ2
2 ,

λ − θ2 ≥ 1 − θ2

2

=
1
2

η
(

σ − β
√
(1 − ηµ)(1 + ηµ)

)

≥ 1
2

η
(

σ − β
√

2(1 − ηµ)
)
>

1
4

ησ, (A.19)

where we have used the fact ηµ < 1 to reach the second inequality. For the last inequality to hold, we need

to make sure




σ + µ ≥ 10β2

σ , β ≥ σ

σ + µ ≥ 10σ, otherwise
(A.20)

which is guaranteed by the assumption σ + µ ≥ 170κL
(1−α)2 .

Similarly, when λ ≥ λ0, the first term of p2(λ) can be lower bounded by

(λ − α − αηL)(λ − α − 2ηβ) ≥1 − α

2

(170κηL
1 − α

− αηL
)
> 80κηL.

Then, using (A.4) we can bound p2(λ) by

p2(λ) = (λ − α − αηL)(λ − α − 2ηβ)− 7αηL − 2αγη2L2 − 3γηβ

> 80κηL − 12ηL ≥ 68κηL. (A.21)

By virtue of (A.19) and (A.21), it is seen that when λ ≥ λ0, the characteristic polynomial f2(λ) in (A.17)

satisfies

f2(λ) >
1
4

ησ · 68κηL − 8αγη2L2 − 9ηβηL > 0.

Therefore, any λ that exceeds λ0 cannot possibly be a root of f2(·). This implies that the spectral radius

necessarily obeys ρ(G2) < λ0.

APPENDIX A. APPENDIX FOR CHAPTER 2 73

Step 2: bounding λ0. This step verifies that the three terms in the expression of λ0 in (A.18) is smaller

than 1, allowing us to conclude that λ0 < 1.

• First, observe that if (A.20) is satisfied, then we have 1+θ2
2 ≤ 1 − 1

4 ησ < 1.

• When σ + µ ≥ 170κL
(1−α)2 , the second term is α + 170κηL

1−α ≤ 1.

• We conclude the proof by checking that the third term is also less than 1, namely,

1 + α

2
+ 2ηβ ≤ 1 + α

2
+

(1 − α)2

85
1
κ

β

L
≤ 1 + α

2
+

(1 − α)2

85
≤ 1 − 1 − α

2
+

1 − α

85
.

Step 3: replacing α with αK. This step gives the final results as

ρ2 = max

{
1 + θ2

2
, αK +

170κηL
1 − αK ,

1 + αK

2
+ 2ηβ

}
.

A.3.2 Proof of Theorem 4

We first verify the assumption of Lemma 2. When σ + µ = 360L
(

β
σ + 1

)
,

(β

σ + µ

)2
=

β2

3602L2(β
σ + 1)2

≤ β

3602κL(β
σ + 1)

<
1
2
· 1

360κ(β
σ + 1)

=
1
2
· σ

σ + µ
<

σ

σ + 2µ
.

Therefore, Lemma 2 still holds.

By the assumption αK ≤ 1
2κ , we can further lower bound the characteristic polynomial (A.17) in

Appendix A.3.1 as follows:

f2(λ) = det
(
λI − G2

)

= (λ − θ2)
(
(λ − αK − αKηL)(λ − αK − 2ηβ)− 7αKηL − 2αKγη2L2 − 3γηβ

)

+ αKγη2L2
(

2αK + 4ηβ − 2θ2 − 7γ
)
− 3ηβ

(
2αKηL − γ(αK + αKηL − θ2)

)

≥ (λ − θ2)
(
(λ − αK − 1

2
ησ)(λ − αK − 2ηβ)− 7

2
ησ − ηση2L2 − 3γηβ

)

− ηση2L2(θ2 +
7
2

γ)− 3ηβ
(

ησ + γθ2

)

> (λ − θ2)
(
(λ − αK − 1

2
ησ)(λ − αK − 2ηβ)− 8ησ

)
− 5ηση2L2 − 6ηβηL, (A.22)

providing λ obeys

λ ≥ max

{
1 + θ2

2
, αK + 180ηL

(β

σ
+ 1
)

,
1 + αK

2
+ 2ηβ

}
.

We can further lower bound (A.22) by

f2(λ) ≥
1
4

ησ

{
1
4

[
180ηL

(β

σ
+ 1
)
− 1

2
ησ
]
− 8ησ

}
− 5ηση2L2 − 6ηβηL > 0,

APPENDIX A. APPENDIX FOR CHAPTER 2 74

as long as µ satisfies σ + µ ≥ 360L
(β

σ + 1
)
. Therefore, following similar arguments as adopted in

Appendix A.3.1, the spectral radius of G2 can be upper bounded by

ρ(G2) ≤ 1 − C

κ(β
σ + 1)

,

where C is a small positive constant. Consequently, to reach ϵ-accuracy, Network-DANE takes at most

O
(

κ
(β

σ + 1
)

log(1/ϵ)
)

iterations and O
(

log κ · κ(β/σ+1) log(1/ϵ)
1−α

)
communication rounds.

A.4 Proof of Theorem 5

The proof strategy of Theorem 5 is similar in spirit to the convergence proof of Network-DANE, where we

will carefully build a linear system that tracks the coupling of the consensus error and the optimization

error. Under the assumptions in Theorem 5, we can assume that 1 − 3ακ − 3β/σ > 0. Let

ζ = 1/(1 − 3ακ − 3β/σ).

In what follows, we first introduce two key lemmas that connect the convergence behavior of Network-SVRG

in the network setting to their server/client counterparts (namely, D-SVRG) studied in [CZC+20]. Lemma 3,

proved in Appendix A.7, creates the linear system characterizing the iteration dynamics of Network-SVRG.

Lemma 3. Under the assumptions in Theorem 5, Network-SVRG satisfies

E[e(t)] ≤




(
ν(1 + 3ακ + 4 β

σ) +
β
σ

)
ζ 8 β

σ ζ αζ/κ ζ/16

1/2 0 0 0

8
(β

σ

)2 64
(β

σ

)2 4α2 ακ/2

64ακ 0 0 0




︸ ︷︷ ︸
:=G3

E[e(t−1)], (A.23)

where the error vector is defined as

e(t) =




∑n
j=1
(

f (x(t)j)− f (y⋆)
)

∑n
j=1
(

f (y(t)
j)− f (y⋆)

)
/2

∥s(t) −∇ f (y(t))∥2
2/σ

32L∥y(t) − 1n ⊗ y(t)∥2
2/α




.

Here, ν ≤ 1
2

σ−2β
σ−3β is the convergence rate of D-SVRG in the server/client setting under the same assumptions

[CZC+20, Theorem 1].

Since every term in the matrices of linear systems of Lemma 3 is non-negative, all eigenvalues of

G3 are bounded by the maximum of the sum of rows according to the Gershgorin circle theorem. For

APPENDIX A. APPENDIX FOR CHAPTER 2 75

Network-SVRG, by setting α = 1
70κ , which needs K ≍ O(logα 1/κ) = O

(
log κ/(1 − α)

)
, we can ensure that

the sum of the first row is bounded by 5/6, and the sums of other rows are also bounded by a constant

smaller than 1, under the assumption β ≤ σ/200. Therefore, invoking the Gershgorin circle theorem,

the spectral radius is bounded by a constant smaller than 1. To achieve ε-accuracy, the total number of

iterations needed is O (log(1/ε)) and thus the communication complexity is O
(

log κ · log(1/ε)
1−α

)
.

A.5 Proof of Lemma 1

The proof is divided into several steps. (i) In Appendix A.5.1, we bound the convergence error
√

n∥x(t) −
y⋆∥2; (ii) in Appendix A.5.2, we bound the parameter consensus error ∥x(t) − 1n ⊗ x(t)∥2; (iii) in Ap-

pendix A.5.3, we bound the gradient estimation error ∥s(t)j −∇ f (y(t))∥2; (iv) finally, we create induction

inequalities of ∥y(t) − 1n ⊗ y(t)∥2,
√

n∥y(t) − y⋆∥2 and ∥s(t)j −∇ f (y(t))∥2 in Appendix A.5.4 to conclude

the proof.

A.5.1 Convergence error

We begin by defining an auxiliary variable x+j , which can be seen as the result of one local iterate (2.9) of

the original DANE algorithm initialized at y(t−1):

x+j = argmin
x

{
f j(x)−

〈
∇ f j(y(t−1))−∇ f (y(t−1)), x

〉
+

µ

2
∥x − y(t−1)∥2

2

}
. (A.24)

Following the same convention as in previous definitions, we also define

x+ =
1
n ∑

j
x+j . (A.25)

Given that the function we optimize at each agent is strongly convex, the local optimality conditions of

(A.24) and (2.9) are as follows:

∇ f j(x+j) + µ(x+j − y⋆) =∇(f j − f)(y(t−1)) + µ(y(t−1) − y⋆), (A.26a)

∇ f j(x(t−1)
j) + µ(x(t−1)

j − y⋆) =∇ f j(y
(t−1)
j)− s(t−1)

j + µ(y(t−1)
j − y⋆). (A.26b)

Taking the average of (A.26) over j = 1, . . . , n, we obtain another set of optimality conditions:

1
n ∑

j
∇ f j(x+j) + µ(x+ − y⋆) =µ(y(t−1) − y⋆), (A.27a)

1
n ∑

j
∇ f j(x(t−1)

j) + µ(x(t−1) − y⋆) =µ(y(t−1) − y⋆), (A.27b)

where we use the fact ∑j s(t−1)
j = ∑j ∇ f j(y

(t−1)
j) due to the property of gradient tracking (2.2).

APPENDIX A. APPENDIX FOR CHAPTER 2 76

In view of the triangle inequality, the convergence error can be decomposed as

∥x(t−1) − y⋆∥2 ≤ ∥x(t−1) − x+∥2 + ∥x+ − y⋆∥2, (A.28)

where the first term is the error caused by inaccurate gradient estimate, and the second term is the progress

of DANE initialized at y(t−1).

1. For the first term ∥x(t−1) − x+∥2, we first plug in the Hessian of the quadratic losses to solve for

x(t−1)
j and x+j explicitly as

x(t−1)
j =y(t−1)

j − (H j + µId)
−1s(t−1)

j , (A.29a)

x+j =y(t−1) − (H j + µId)
−1∇ f (y(t−1)). (A.29b)

The first error term ∥x(t−1) − x+∥2 can be written as

∥x(t−1) − x+∥2

=
∥∥∥
(1

n
1⊤n ⊗ Id

)
(x(t−1) − x+)

∥∥∥
2

=
∥∥∥
(1

n
1⊤n ⊗ Id

)(
y(t−1) − 1n ⊗ y(t−1) − (H + µInd)

−1∇ f (1n ⊗ y(t−1)) + (H + µInd)
−1s(t−1)

)∥∥∥
2

=
∥∥∥
(1

n
1⊤n ⊗ Id

)
(H + µInd)

−1(s(t−1) −∇ f (1n ⊗ y(t−1))
)∥∥∥

2
,

where the last line follows from the definition of y(t−1). Then, we add and subtract (In ⊗ H + µInd)
−1

and rearrange terms, obtaining

∥x(t−1) − x+∥2

=
∥∥∥
(1

n
1⊤n ⊗ Id

)(
(H + µInd)

−1 − (In ⊗ H + µInd)
−1
)(

s(t−1) −∇ f (1n ⊗ y(t−1))
)

+
(1

n
1⊤n ⊗ Id

)
(In ⊗ H + µInd)

−1(s(t−1) −∇ f (1n ⊗ y(t−1))
)∥∥∥

2

=
∥∥∥
(1

n
1⊤n ⊗ Id

)
(H + µInd)

−1(In ⊗ H − H)(In ⊗ H + µInd)
−1(s(t−1) −∇ f (y(t−1))

)

+
(1

n
1⊤n ⊗ Id

)
(H + µInd)

−1(In ⊗ H − H)(In ⊗ H + µInd)
−1(∇ f (y(t−1))−∇ f (1n ⊗ y(t−1))

)

+
(1

n
1⊤n ⊗ Id

)
(In ⊗ H + µInd)

−1(H − In ⊗ H)(y(t−1) − 1n ⊗ y(t−1))
∥∥∥

2
(A.30)

≤
∥∥∥
(1

n
1⊤n ⊗ Id

)∥∥∥
2

∥∥∥(H + µInd)
−1(In ⊗ H − H)(In ⊗ H + µInd)

−1
∥∥∥

2
∥s(t−1) −∇ f (y(t−1))∥2

+
∥∥∥
(1

n
1⊤n ⊗ Id

)∥∥∥
2

∥∥∥(H + µInd)
−1(In ⊗ H − H)

(
Ind + µIn ⊗ H−1

)−1∥∥∥
2
∥y(t−1) − 1n ⊗ y(t−1)∥2

+
∥∥∥
(1

n
1⊤n ⊗ Id

)∥∥∥
2

∥∥∥(In ⊗ H + µInd)
−1(H − In ⊗ H)

∥∥∥
2
∥y(t−1) − 1n ⊗ y(t−1)∥2.

The last term in (A.30) follows from the identity

(1
n

1⊤n ⊗ Id

)
(In ⊗ H + µInd)

−1(s(t−1) −∇ f (1n ⊗ y(t−1))
)

APPENDIX A. APPENDIX FOR CHAPTER 2 77

=(H + µId)
−1
(1

n
1⊤n ⊗ Id

)(
s(t−1) −∇ f (1n ⊗ y(t−1))

)

=(H + µId)
−1
(1

n
1⊤n ⊗ Id

)(
Hy(t−1) − 1n ⊗ Hy(t−1))

=(H + µId)
−1
(1

n
1⊤n ⊗ Id

)(
Hy(t−1) − 1n ⊗ Hy(t−1))

=
(1

n
1⊤n ⊗ Id

)
(In ⊗ H + µInd)

−1H(y(t−1) − 1n ⊗ y(t−1))

=
(1

n
1⊤n ⊗ Id

)
(In ⊗ H + µInd)

−1(H − In ⊗ H)(y(t−1) − 1n ⊗ y(t−1)).

Taken together with the identity ∥ 1
n 1⊤n ⊗ Id∥2 = 1√

n , the assumption ∥H j − H∥2 ≤ β, and the bound

∥(H + µInd)
−1∥2 ≤ 1

σ+µ and
∥∥∥
(

Ind + µIn ⊗ H−1)−1
∥∥∥

2
≤ L

L+µ , we can further bound (A.30) by

√
n∥x(t−1) − x+∥2 ≤ 1

σ + µ

β

σ + µ
∥s(t−1) −∇ f (y(t−1))∥2

+
(L

L + µ

β

σ + µ
+

β

σ + µ

)
∥y(t−1) − 1n ⊗ y(t−1)∥2. (A.31)

2. Regarding the second term ∥x+ − y⋆∥2, we provide a slightly improved bound compared to [SSZ14].

In view of (A.29b),

∥x+ − y⋆∥2 =
∥∥∥y(t−1) − y⋆ − 1

n ∑
j
(H j + µId)

−1∇ f (y(t−1))
∥∥∥

2

=
∥∥∥
(

I − 1
n

n

∑
i=1

(H i + µI)−1H
)
(y(t−1) − y⋆)

∥∥∥
2

≤
∥∥∥I − 1

n

n

∑
i=1

(H i + µI)−1H
∥∥∥

2
∥y(t−1) − y⋆∥2. (A.32)

Then, we use the triangle inequality to break the convergence rate in (A.32) into two parts:

∥∥∥I − 1
n

n

∑
i=1

(H i + µI)−1H
∥∥∥

2

≤
∥∥∥I − (H + µI)−1H

∥∥∥
2
+
∥∥∥ 1

n

n

∑
i=1

(
(H i + µI)−1 − (H + µI)−1

)
H
∥∥∥

2
. (A.33)

When H ⪰ σId, it is straightforward to check that the first term of (A.33) is upper bounded by

∥∥∥I − (H + µI)−1H
∥∥∥

2
≤ 1 − σ

σ + µ
.

Regarding the second term of (A.33), let ∆i := H i − H and use the definition of β, one derives

∥∥(H + µI)−1∆i
∥∥

2 ≤
∥∥(H + µI)−1∥∥

2 ·
∥∥∆i
∥∥

2 ≤ β

σ + µ
< 1 (A.34)

under our hypothesis β < µ + σ. In addition,

∥∥∥ 1
n

n

∑
i=1

(
(H i + µI)−1 − (H + µI)−1

)
H
∥∥∥

2

APPENDIX A. APPENDIX FOR CHAPTER 2 78

=
∥∥∥ 1

n

n

∑
i=1

(∞

∑
m=0

(−1)m[(H + µI)−1∆i]
m(H + µI)−1 − (H + µI)−1

)
H
∥∥∥

2
(A.35)

=
∥∥∥ 1

n

n

∑
i=1

(∞

∑
m=2

(−1)m[(H + µI)−1∆i]
m(H + µI)−1

)
H
∥∥∥

2
(A.36)

≤ 1
n

n

∑
i=1

∞

∑
m=2

∥(H + µI)−1∥m
2 · ∥∆i∥m

2 ·
∥∥(I + µH−1

)−1∥∥
2

≤
∞

∑
m=2

(σ + µ)−mβm L
L + µ

=
L

L + µ

β2

(σ + µ)(σ + µ − β)
.

Here, the line (A.35) is an expansion based on the Neumann series (whose convergence is guaranteed

by (A.34))

(Hi + µI)−1 = (H + µI + ∆i)
−1 =

(
I + (H + µI)−1∆i

)−1
(H + µI)−1

=

{
∞

∑
m=0

(−1)m[(H + µI)−1∆i
]m
}
(H + µI)−1.

The identity (A.36) holds since ∑n
i=1 ∆i = 0, and hence the summation in (A.36) effectively starts at

m = 2.

Putting the above two bounds together back in (A.33), we arrive at

∥∥∥I − 1
n

n

∑
i=1

(H i + µI)−1H
∥∥∥

2
≤θ1 = 1 − σ

σ + µ
+

L
L + µ

β2

(σ + µ)(σ + µ − β)
. (A.37)

Putting together (A.31) and (A.37), and plugging back into (A.28), we can bound the convergence error

by:

√
n
∥∥y(t) − y⋆

∥∥
2 =

√
n
∥∥x(t−1) − y⋆

∥∥
2

≤ θ1
√

n
∥∥y(t−1) − y⋆

∥∥
2 +

1
σ + µ

β

σ + µ

∥∥s(t−1) −∇ f (y(t−1))
∥∥

2

+
(L

L + µ

β

σ + µ
+

β

σ + µ

)∥∥y(t−1) − 1n ⊗ y(t−1)∥∥
2. (A.38)

A.5.2 Consensus error

Using the identity y(t) =
(

1
n 1⊤n ⊗ Id

)
y(t) and the update rule (A.1c), we can demonstrate that

∥∥∥y(t) − 1n ⊗ y(t)
∥∥∥

2

=

∥∥∥∥
(

Ind −
1
n

1n1⊤n ⊗ Id

)
y(t)
∥∥∥∥

2

=

∥∥∥∥
(

Ind −
1
n

1n1⊤n ⊗ Id

)
(W ⊗ Id)

(
y(t−1) − (H + µInd)

−1s(t−1)
)∥∥∥∥

2

≤
∥∥∥∥
(

WK − 1
n

1n1⊤n

)
⊗ Id

∥∥∥∥
2

∥∥∥∥y(t−1) − 1n ⊗ y(t−1) −
(

Ind −
1
n

1n1⊤n ⊗ Id

) (
(H + µInd)

−1s(t−1)
)∥∥∥∥

2
(A.39)

APPENDIX A. APPENDIX FOR CHAPTER 2 79

≤α∥y(t−1) − 1n ⊗ y(t−1)∥2 + α

∥∥∥∥
(

Ind −
1
n

1n1⊤n ⊗ Id

)
(H + µInd)

−1s(t−1)
∥∥∥∥

2
, (A.40)

where (A.39) is due to the following equality:
(

Ind −
1
n

1n1⊤n ⊗ Id

)
(W ⊗ Id) =

[(
WK − 1

n
1n1⊤n

)
⊗ Id

] (
Ind −

1
n

1n1⊤n ⊗ Id

)
,

which holds because the property of the averaging operator
(

1
n 1n1⊤n ⊗ Id

)
,

(
1
n

1n1⊤n ⊗ Id

)(
Ind −

1
n

1n1⊤n ⊗ Id

)
=
[1

n
1n1⊤n

(
Id −

1
n

1n1⊤n ⊗ Id

)]
⊗ In = 0,

and the fact that (A ⊗ B)(C ⊗ D) = (AC)⊗ (BD).

We rearrange the second term in (A.40) as
∥∥∥∥
(

Ind −
1
n

1n1⊤n ⊗ Id

)
(H + µInd)

−1s(t−1)
∥∥∥∥

2

=
∥∥∥
(

Ind −
1
n

1n1⊤n ⊗ Id

)
(H + µInd)

−1
(

s(t−1) −∇ f (y(t−1))
)

+
(

Ind −
1
n

1n1⊤n ⊗ Id

)
(H + µInd)

−1
(
∇ f (y(t−1))−∇ f (1n ⊗ y(t−1))

)

+
(

Ind −
1
n

1n1⊤n ⊗ Id

)
(H + µInd)

−1
(
∇ f (1n ⊗ y(t−1))−∇ f (1n ⊗ y⋆)

)∥∥∥
2

=
∥∥∥
(

Ind −
1
n

1n1⊤n ⊗ Id

)
(H + µInd)

−1
(

s(t−1) −∇ f (y(t−1))
)

+
(

Ind −
1
n

1n1⊤n ⊗ Id

)
(H + µInd)

−1(In ⊗ H)(y(t−1) − 1n ⊗ y(t−1))

+
(

Ind −
1
n

1n1⊤n ⊗ Id

)(
(H + µInd)

−1 − (In ⊗ H + µInd)
−1
)
(In ⊗ H)(1n ⊗ y(t−1) − 1n ⊗ y⋆)

∥∥∥
2
.

Using similar trick as in (A.30), the above quantity can be further upper bounded as
∥∥∥∥
(

Ind −
1
n

1n1⊤n ⊗ Id

)
(H + µInd)

−1s(t−1)
∥∥∥∥

2

≤
∥∥∥Ind −

1
n

1n1⊤n ⊗ Id

∥∥∥
2

∥∥(H + µInd)
−1∥∥

2

∥∥s(t−1) −∇ f (y(t−1))
∥∥

2

+
∥∥∥Ind −

1
n

1n1⊤n ⊗ Id

∥∥∥
2

∥∥∥(H + µInd)
−1
∥∥∥

2

∥∥In ⊗ H
∥∥

2∥y(t−1) − 1n ⊗ y(t−1)∥2

+
√

n
∥∥∥Ind −

1
n

1n1⊤n ⊗ Id

∥∥∥
2

∥∥∥(H + µInd)
−1(In ⊗ H − H)(Ind + µIn ⊗ H−1

)−1
∥∥∥

2
∥y(t−1) − y⋆∥2. (A.41)

Combine (A.40) and (A.41), we conclude that

∥∥y(t) − 1n ⊗ y(t)∥∥
2 ≤

(
α +

αL
σ + µ

)∥∥y(t−1) − 1n ⊗ y(t−1)∥∥
2 +

α

σ + µ

∥∥s(t−1) −∇ f (y(t−1))
∥∥

2

+
αL

L + µ

β

σ + µ

√
n
∥∥y(t−1) − y⋆

∥∥
2. (A.42)

A.5.3 Gradient estimation error

In view of the fundamental theorem of calculus and the definition of β, it holds that

∥∥∇(f − f j)(x)−∇(f − f j)(y)
∥∥

2 =

∥∥∥∥
[∫ 1

0
∇2(f − f j)

(
cx + (1 − c)y

)
dc
]
(x − y)

∥∥∥∥
2
≤ β∥x − y∥2.

APPENDIX A. APPENDIX FOR CHAPTER 2 80

To begin, the update formulas (2.7) and (2.8) are equivalent to

y(t) =(W ⊗ Id)x(t−1), (A.43)

s(t) =(W ⊗ Id)s
(t−1) +∇F(y(t))−∇F(y(t−1)). (A.44)

Note that, since

(
W − 1

n 1n1⊤n
)K

=
(

W − 1
n 1n1⊤n

) (
W − 1

n 1n1⊤n
)
· · ·
(

W − 1
n 1n1⊤n

)

=
(

W2 − 1
n 1n1⊤n

)
· · ·
(

W − 1
n 1n1⊤n

)
= WK − 1

n 1n1⊤n ,

we have the mixing rate of WK is

α := ∥WK − 1
n 1n1⊤n ∥ = ∥W − 1

n 1n1⊤n ∥K = αK
0 .

In view of the equivalent update rule (A.44),

∥s(t) −∇ f (y(t))∥2 =
∥∥∥(W ⊗ Id)s

(t−1) +∇F(y(t))−∇F(y(t−1))−∇ f (y(t))
∥∥∥

2

=
∥∥∥(W ⊗ Id)

(
s(t−1) −∇ f (y(t−1))

)
+ (W ⊗ Id)∇ f (y(t−1))

+∇F(y(t))−∇F(y(t−1))−∇ f (y(t))
∥∥∥

2

=
∥∥∥(W ⊗ Id)

(
s(t−1) −∇ f (y(t−1))

)
+∇(F − f)(y(t))

+ (W ⊗ Id)∇ f (y(t−1))−∇F(y(t−1))
∥∥∥

2

Subtract and add
(
(1

n 1n1⊤n)⊗ Id

)(
s(t−1) −∇ f (y(t−1))

)
, ∇(f − F)(1n ⊗ y(t)) and ∇(f − F)(1n ⊗ y⋆) to

the previous equation, and rearrange terms,

∥s(t) −∇ f (y(t))∥2 =
∥∥∥
[
(W ⊗ Id)− (

1
n

1n1⊤n)⊗ Id

](
s(t−1) −∇ f (y(t−1))

)

+∇(F − f)(y(t))−∇(F − f)(1n ⊗ y⋆)

+ (W ⊗ Id)
(
∇ f (y(t−1))−∇ f (1n ⊗ y⋆)

)
−
[
∇F(y(t−1))−∇F(1n ⊗ y⋆)

]

+
[
(

1
n

1n1⊤n)⊗ Id

](
s(t−1) −∇ f (y(t−1))

)∥∥∥
2

≤α
∥∥s(t−1) −∇ f (y(t−1))

∥∥
2 + β∥y(t) − 1n ⊗ y⋆∥2

+
∥∥∥(W ⊗ Id)

(
∇ f (y(t−1))−∇ f (1n ⊗ y⋆)

)
−
[
∇F(y(t−1))−∇F(1n ⊗ y⋆)

]

+

[
(

1
n

1n1⊤n)⊗ Id

] (
s(t−1) −∇ f (y(t−1))

) ∥∥∥
2
. (A.45)

Using the facts
[
(1

n 1n1⊤n) ⊗ Id

]
s(t−1) =

[
(1

n 1n1⊤n) ⊗ Id

]
∇F(y(t−1)) and

[
(1

n 1n1⊤n) ⊗ Id

]
∇(F − f)(1n ⊗

y⋆) = 0, the last term of (A.45) becomes

∥∥∥
[
(W ⊗ Id)− (

1
n

1n1⊤n)⊗ Id

](
∇(f − F)(y(t−1))−∇(f − F)(1n ⊗ y(t−1))

)

APPENDIX A. APPENDIX FOR CHAPTER 2 81

+
(
∇(f − F)(1n ⊗ y(t−1))−∇(f − F)(1n ⊗ y⋆)

)

+
[
(W ⊗ Id)− Ind

](
∇F(y(t−1))−∇F(1n ⊗ y(t−1))

)∥∥∥
2

≤
∥∥∥(W ⊗ Id)− (

1
n

1n1⊤n)⊗ Id

∥∥∥
2
∥∇(f − F)(y(t−1))−∇(f − F)(1n ⊗ y(t−1))∥2

+ ∥∇(f − F)(1n ⊗ y(t−1))−∇(f − F)(1n ⊗ y⋆)∥2

+
∥∥∥(W ⊗ Id)− Ind

∥∥∥
2
∥∇F(y(t−1))−∇F(1n ⊗ y(t−1))∥2

≤αβ∥y(t−1) − 1n ⊗ y(t−1)∥2 + β
√

n∥y(t−1) − y⋆∥2 + (α + 1)L∥y(t−1) − 1n ⊗ y(t−1)∥2. (A.46)

We used
∥∥∥(W ⊗ Id)− Ind

∥∥∥
2
=
∥∥∥(W ⊗ Id)−

(
1
n 1⊤n ⊗ Id

)
+
(

1
n 1⊤n ⊗ Id

)
− Ind

∥∥∥
2
≤
∥∥∥(W ⊗ Id)−

(
1
n 1⊤n ⊗

Id

)∥∥∥
2
+
∥∥∥
(

1
n 1⊤n ⊗ Id

)
− Ind

∥∥∥
2
≤ α + 1 to obtain the last inequality.

Combining (A.45) and (A.46), we obtain the bound

∥s(t) −∇ f (y(t))∥2 ≤α
∥∥s(t−1) −∇ f (y(t−1))

∥∥
2 + β∥y(t) − 1n ⊗ y(t)∥2 + β

√
n∥y(t) − y⋆∥2

+
(
αβ + (α + 1)L

)
∥y(t−1) − 1n ⊗ y(t−1)∥2 + β

√
n∥y(t−1) − y⋆∥2. (A.47)

A.5.4 Linear system

Recall the definitions η = 1
σ+µ , γ = L

L+σ and the error vector (2.13). Combining (A.38), (A.42) and (A.47)

leads to the matrix G defined in (A.3).

A.6 Proof of Lemma 2

The proof follows the same procedures as the proof of Lemma 1. (i) In Appendix A.6.1, we bound

the convergence error
√

n∥y(t) − y⋆∥2; (ii) in Appendix A.6.2, we bound the parameter consensus error

∥y(t) − 1n ⊗ y(t)∥2; (iii) finally, using the bound we obtained in Appendix A.5.3 of the gradient estimation

error, we create induction inequalities of ∥y(t) − 1n ⊗ y(t)∥2,
√

n∥y(t) − y⋆∥2 and L−1∥s(t)j −∇ f (y(t))∥2 in

Appendix A.6.3 to conclude the proof. For consistency and simplicity, we use the same definitions of x+ in

(A.25), η = 1
σ+µ , and γ = L

L+σ as in the proof of Lemma 1.

A.6.1 Convergence error

We continue to decompose the convergence error as (A.28), and bound the two terms respectively.

1. For the term ∥x(t−1) − x+∥2, we first subtract (A.26a) from (A.26b), which gives

∇ f j(x(t−1)
j)−∇ f j(x+j) + µ(x(t−1)

j − x+j) = ∇ f (y(t−1)
j)− s(t−1)

j

APPENDIX A. APPENDIX FOR CHAPTER 2 82

+∇(f − f j)(y(t−1))−∇(f − f j)(y
(t−1)
j) + µ(y(t−1)

j − y(t−1)),

then use the strong convexity of f j(·) and the definition of β to bound both sides,

∥∇ f j(x(t−1)
j)−∇ f j(x+j) + µ(x(t−1)

j − x+j)∥2 ≥ (σ + µ)∥x(t−1)
j − x+j ∥2,

∥∥∇ f (y(t−1)
j)− s(t−1)

j +∇(f − f j)(y(t−1))−∇(f − f j)(y
(t−1)
j) + µ(y(t−1)

j − y(t−1))
∥∥

2

≤(β + µ)∥y(t−1)
j − y(t−1)∥2 + ∥∇ f (y(t−1)

j)− s(t−1)
j ∥2.

Therefore, combining the above two inequalities, we have

∥x(t−1)
j − x+j ∥2 ≤ 1

σ + µ
∥∇ f (y(t−1)

j)− s(t−1)
j ∥2 +

β + µ

σ + µ
∥y(t−1)

j − y(t−1)∥2. (A.48)

Subtracting the optimality conditions in (A.27),

0 ∈ 1
n ∑

j
∇ f j(x(t−1)

j)− 1
n ∑

j
∇ f j(x+j) + µ(x(t−1) − x+)

=
1
n ∑

j

(
∇ f j(x(t−1)

j)− Lx(t−1)
j

)
− 1

n ∑
j

(
∇ f j(x+j)− Lx+j

)
+ (L + µ)(x(t−1) − x+).

Note the gradient of the function Lx −∇ f j(x) is a (L − σ)-Lipschitz function. Taking the ℓ2 norm

and plugging in (A.48), we have

∥x(t−1) − x+∥2 ≤ 1
L + µ

∥∥∥ 1
n ∑

j

([
Lx(t−1)

j −∇ f j(x(t−1)
j)

]
−
[
Lx+j −∇ f j(x+j)

]) ∥∥∥
2

≤ 1
L + µ

1
n ∑

j

∥∥∥
[
Lx(t−1)

j −∇ f j(x(t−1)
j)

]
−
[
Lx+j −∇ f j(x+j)

]∥∥∥
2

≤ L − σ

L + µ

1
n ∑

j

∥∥x(t−1)
j − x+j

∥∥
2

≤ L − σ

L + µ

1
σ + µ

1
n ∑

j

∥∥∇ f (y(t−1)
j)− s(t−1)

j

∥∥
2 +

L − σ

L + µ

β + µ

σ + µ

1
n ∑

j

∥∥y(t−1)
j − y(t−1)∥∥

2, (A.49)

where the last line follows (A.48).

2. For the second term ∥x+ − y⋆∥2, because of the assumption
(β

σ+µ

)2 ≤ σ
σ+2µ , we can invoke [FGW21,

Theorem 3.1], which is a careful analysis of the error of DANE, and bound the error as

∥x+ − y⋆∥2 ≤
β

σ+µ

√
σ2 + 2σµ + µ

σ + µ
∥y − y⋆∥2 := θ2∥y(t−1) − y⋆∥2. (A.50)

Putting together (A.49) and (A.50), and plugging back into (A.28), we can bound the convergence error

by:

√
n∥y(t) − y⋆∥2 =

√
n∥x(t−1) − y⋆∥2

≤θ2
√

n∥y(t−1) − y⋆∥2 +
1

L + µ

L
σ + µ

∥∇ f (y(t−1))− s(t−1)∥2

+
β + µ

L + µ

L
σ + µ

∥y(t−1) − 1n ⊗ y(t−1)∥2. (A.51)

APPENDIX A. APPENDIX FOR CHAPTER 2 83

A.6.2 Consensus error

Let H(t)
j =

∫ 1
0 ∇2 f j

(
cx(t)j + (1 − c)y(t)

j
)

dc and H(t) = diag(H(t)
1 , H(t)

2 , . . . , H(t)
n). Via the fundamental

theorem of calculus, we can solve for x(t−1)
j from the optimality condition (A.26b) as

x(t−1)
j = y(t−1)

j − (H(t−1)
j + µId)

−1s(t−1)
j . (A.52)

Similar to (A.40), we decompose the consensus error as

∥y(t) − 1n ⊗ y(t)∥2 ≤α∥y(t−1) − 1n ⊗ y(t−1)∥2 + α
∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
(H(t−1) + µInd)

−1s(t−1)
∥∥∥

2

(A.53)

Then, we bound (A.53). Adding and subtracting terms and using the triangle inequality,

∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
(H(t−1) + µInd)

−1s(t−1)
∥∥∥

2

≤
∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
(H(t−1) + µInd)

−1
(

s(t−1) −∇ f (y(t−1)) +∇ f (y(t−1))−∇ f (1n ⊗ y(t−1))
)∥∥∥

2

+
∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
(H(t−1) + µInd)

−1∇ f (1n ⊗ y(t−1))
∥∥∥

2
(A.54)

We can bound the first term in (A.54) as

∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
(H(t−1) + µInd)

−1
(

s(t−1) −∇ f (y(t−1)) +∇ f (y(t−1))−∇ f (1n ⊗ y(t−1))
)∥∥∥

2

≤
∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
(H(t−1) + µInd)

−1
∥∥∥

2

∥∥s(t−1) −∇ f (y(t−1)) +∇ f (y(t−1))−∇ f (1n ⊗ y(t−1))
∥∥

2

≤ 1
σ + µ

(
∥s(t−1) −∇ f (y(t−1))∥2 + ∥∇ f (y(t−1))−∇ f (1n ⊗ y(t−1))∥2

)

≤ 1
σ + µ

(
∥s(t−1) −∇ f (y(t−1))∥2 + L∥y(t−1) − 1n ⊗ y(t−1)∥2

)
(A.55)

Then, for the second term in (A.54),

∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
(H(t−1) + µInd)

−1∇ f (1n ⊗ y(t−1))
∥∥∥

2

=
∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)(
(H(t−1) + µInd)

−1 −
(
(L + µ)Ind

)−1
)
∇ f (1n ⊗ y(t−1))

∥∥∥
2

≤
∥∥∥(H(t−1) + µInd)

−1(LInd − H(t−1))
(
(L + µ)Ind

)−1∇ f (1n ⊗ y(t−1))
∥∥∥

2

≤ L − σ

L + µ

L
σ + µ

√
n∥y(t−1) − y⋆∥2 (A.56)

Therefore, by combing (A.53), (A.54), (A.55) and (A.56), we can bound the consensus error by:

∥y(t) − 1n ⊗ y(t)∥2 ≤
(

α +
αL

σ + µ

)
∥y(t−1) − 1n ⊗ y(t−1)∥2

+
α

σ + µ
∥∇ f (y(t−1))− s(t−1)∥2 +

αL
L + µ

L
σ + µ

√
n∥y(t−1) − y⋆∥2. (A.57)

APPENDIX A. APPENDIX FOR CHAPTER 2 84

A.6.3 Linear system

Combining (A.47), (A.57), (A.51), we reach the matrix claimed in (A.15).

A.7 Proof of Lemma 3

The proof follows similar procedures as the proof of Lemma 1. (i) In Appendix A.7.1, we bound the

expected function value convergence errors E
[

∑n
j=1
(

f (x(t)j) − f (y⋆)
)]

and E
[

∑n
j=1
(

f (y(t)
j) − f (y⋆)

)]
;

(ii) in Appendix A.7.2, we bound the expected parameter consensus error E∥y(t) − 1n ⊗ y(t)∥2
2; (iii) in

Appendix A.7.3, we bound the expected parameter consensus error E∥y(t) − 1n ⊗ y(t)∥2
2; (iv) finally, we

create induction inequalities of E
[

∑n
j=1
(

f (x(t)j)− f (y⋆)
)]

, E
[

∑n
j=1
(

f (y(t)
j)− f (y⋆)

)]
, E∥y(t) − 1n ⊗ y(t)∥2

2

and E∥y(t) − 1n ⊗ y(t)∥2
2 to conclude the proof. Expectations in this section are conditioned on x(t−1), y(t−1)

and s(t−1), if not specified.

A.7.1 Function value convergence error

First, we bound the function value convergence error of y(t) using the previous estimate x(t−1). By the

strong convexity of f (·) and the assumption of α ≤ 1/κ,

n

∑
j=1

f (y(t)
j) ≤n f (y(t−1)) +

L
2
∥y(t) − 1n ⊗ y(t)∥2

2

≤n f (x(t−1)) +
α2L

2
∥x(t−1) − 1n ⊗ x(t)∥2

2

≤n f (x(t−1)) +
σ

2
∥x(t−1) − 1n ⊗ x(t)∥2

2

=
n

∑
j=1

(
f (x(t−1)) +

〈
∇ f (x(t−1)), x(t−1)

j − x(t−1)
〉
+

σ

2
∥x(t−1)

j − x(t)∥2
2

)

≤
n

∑
j=1

f (x(t−1)
j). (A.58)

Next, we bound the function value convergence error after local update, ∑n
j=1
(

f (y(t)
j)− f (y⋆)

)
. By

constructing the following helper function, we can connect local updates of Network-SVRG to that of

D-SVRG [CZC+20], which is the counterpart of SVRG in the server/client setting. For agent j at the tth

time, we define the corrected sample loss function as

ℓ̃(j)(x; z) = ℓ(x; z) +
〈

s(t)j −∇ f (y(t)
j), x − y(t)

j

〉
.

Then, define the corrected local and global loss functions as

h(t,j)i (x) =
1
m ∑

z∈Mi

ℓ̃(j)(x; z) = fi(x) +
〈

s(t)j −∇ f (y(t)
j), x − y(t)

j

〉
,

APPENDIX A. APPENDIX FOR CHAPTER 2 85

h(t,j)(x) =
1
n ∑

i
h(t,j)i (x) = f (x) +

〈
s(t)j −∇ f (y(t)

j), x − y(t)
j

〉
. (A.59)

Here, h(t,j)(·) and h(t,j)i (·) are σ-strongly convex and L-smooth functions, and
∥∥h(t,j)i (x)− h(t,j)(x)

∥∥
2 ≤ β by

the definition of β. Let h(t,j)∗ denote the optimum value of h(t,j)(·).
The key observation is that the local update (2.20) at agent j is the same as the update at agent j when

applying D-SVRG to optimize h(t,j) initialized with y(t)
j . This is true because ∀z ∈ Mj, the sample gradient

and global gradient used in D-SVRG updates at y(t)
j satisfy

∇ℓ̃(j)(u; z)−∇ℓ̃(j)(u′; z) = ∇ℓ(u′; z)−∇ℓ(u; z), and ∇h(t,j)(y(t)
j) = s(t)j ,

which agree with (2.20). Therefore, we can apply [CZC+20, Theorem 1] to bound the optimization error of

optimizing h(t,j)

E
[

h(t,j)(x(t)j)− h(t,j)∗
]
< ν

(
h(t,j)(y(t)

j)− h(t)∗
)

, (A.60)

where x(t)j is the output at agent j produced by running one iteration of Alg. 3, which is also the output

of running one iteration of D-SVRG at the same agent, ν is the convergence rate of D-SVRG, which can

be bounded by ν ≤ 1 − 1
2

σ−2β
σ−3β when choosing step size δ = 1

40L
(
1 − 4β

σ

)
and the number of local updates

S = 160 L
σ

(
1 − 4β

σ

)−2.

Next, we relate function value descent of h(t,j) to the function value descent of f . Plug in (A.59) and

rearrange terms,

f (x(t)j)− f (y⋆) =h(t,j)(x(t)j)− (1 − ν) f (y⋆)− ν f (y⋆)−
〈

s(t)j −∇ f (y(t)
j), x(t)j − y(t)

j

〉

=h(t,j)(x(t)j)− (1 − ν)h(t,j)(yopt)− ν f (y⋆)

−
〈

s(t)j −∇ f (y(t)
j), x(t)j − y(t)

j − (1 − ν)
(

yopt − y(t)
j

)〉

≤h(t,j)(x(t)j)− (1 − ν)h(t,j)∗ − ν f (y⋆)

−
〈

s(t)j −∇ f (y(t)
j), x(t)j − y(t)

j − (1 − ν)
(

yopt − y(t)
j

)〉

=h(t,j)(x(t)j)− h(t,j)∗ + ν
(

h(t,j)∗ − f (y⋆)
)

−
〈

s(t)j −∇ f (y(t)
j), x(t)j − y(t)

j − (1 − ν)
(

yopt − y(t)
j

)〉
,

where we used h(t,j)(y⋆) ≥ h(t,j)∗ and ν ≤ 1 to reach the last inequality.

Taking expectation on both sides and combining with (A.60), we reach the following function value

descent of f (·):

E
[

f (x(t)j)− f (y⋆)
]
≤ν
(

h(t,j)(y(t)
j)− h(t,j)∗

)
+ ν
(

h(t,j)∗ − f (y⋆)
)

APPENDIX A. APPENDIX FOR CHAPTER 2 86

− E
[〈

s(t)j −∇ f (y(t)
j), x(t)j − y(t)

j − (1 − ν)
(

yopt − y(t)
j

)〉]

=ν
(

f (y(t)
j)− f (y⋆)

)
− E

[〈
s(t)j −∇ f (y(t)

j), x(t)j − yopt − ν(y(t)
j − yopt)

〉]
,

where the last line follows from (A.59). Summing the previous inequality over all agents and using matrix

notations, we obtain the following inequality

E

[
n

∑
j=1

f (x(t)j)− f (y⋆)

]
≤ν

[
n

∑
j=1

f (y(t)
j)− f (y⋆)

]
− E

[〈
s(t) −∇ f (y(t)), x(t) − 1n ⊗ yopt

〉]

+ νE
[〈

s(t) −∇ f (y(t)), y(t) − 1n ⊗ yopt
〉]

. (A.61)

Our next step is to carefully bound the last two error terms in (A.61).

∣∣∣
〈

s(t) −∇ f (y(t)), x(t) − 1n ⊗ yopt
〉 ∣∣∣

≤∥s(t) −∇ f (y(t))∥2∥x(t) − 1n ⊗ yopt∥2

≤
(

α∥st−1 −∇ f (y(t−1))∥2 + 2L∥y(t−1) − 1n ⊗ y(t−1)∥2

+ 2β∥y(t−1) − 1n ⊗ yopt∥2 + β∥y(t) − 1n ⊗ yopt∥2

)
∥x(t) − 1n ⊗ yopt∥2

≤1
2

αL−1∥st−1 −∇ f (y(t−1))∥2
2 + α−1L∥y(t−1) − 1n ⊗ y(t−1)∥2

2 +
3
2

αL∥x(t) − 1n ⊗ yopt∥2
2

+ β∥y(t−1) − 1n ⊗ yopt∥2
2 +

β

2
∥y(t) − 1n ⊗ yopt∥2

2 +
3β

2
∥x(t) − 1n ⊗ yopt∥2

2, (A.62)

where the first inequality is due to (A.72), and the last inequality is obtained by Cauchy-Schwarz inequality.

Similar to (A.61), because of the strong convexity of loss functions, we have

∥y(t) − 1n ⊗ y⋆∥2
2 ≤ 2

σ ∑
j

(
f (y(t)

j)− f (y⋆)
)

.

Then, we can further bound (A.62) as

∣∣∣
〈

s(t) −∇ f (y(t)), x(t) − y⋆
〉 ∣∣∣ ≤1

2
αL−1∥st−1 −∇ f (y(t−1))∥2

2 + α−1L∥y(t−1) − y(t−1)∥2
2

+
2β

σ

n

∑
j=1

(
f (y(t−1)

j)− f (y⋆)
)
+

β

σ

n

∑
j=1

(
f (x(t−1)

j)− f (y⋆)
)

+
(3β

σ
+ 3κα

) n

∑
j=1

(
f (x(t)j)− f (y⋆)

)
. (A.63)

Similarly, we have the same bound applicable for the last term of (A.61):

∣∣∣
〈

s(t) −∇ f (y(t)), y(t) − yopt
〉 ∣∣∣ ≤1

2
αL−1∥st−1 −∇ f (y(t−1))∥2

2 + α−1L∥y(t−1) − y(t−1)∥2
2

+
2β

σ

n

∑
j=1

(
f (y(t−1)

j)− f (y⋆)
)
+

β

σ

n

∑
j=1

(
f (x(t−1)

j)− f (y⋆)
)

+

(
3β

σ
+ 3κα

) n

∑
j=1

(
f (x(t−1)

j)− f (y⋆)
)

, (A.64)

APPENDIX A. APPENDIX FOR CHAPTER 2 87

where the last term is due to (A.58).

Put together (A.62), (A.63) and (A.64) and taking expectation, we reach the following bound

E

[
n

∑
j=1

(
f (x(t)j)− f (y⋆)

)]
≤
(

ν
(
1 + 3ακ +

4β

σ

)
+

β

σ

) n

∑
j=1

(
f (x(t−1)

j)− f (y⋆)
)

+αL−1∥st−1 −∇ f (y(t−1))∥2
2 + 2α−1L∥y(t−1) − y(t−1)∥2

2

+
4β

σ

n

∑
j=1

(
f (y(t−1)

j)− f (y⋆)
)
+

(
3β

σ
+ 3κα

)
E

[
n

∑
j=1

(
f (x(t)j)− f (y⋆)

)]
.

(A.65)

Rearranging terms, we proved the advertised bound.

A.7.2 Consensus error

We first bound the consensus error ∥y(t) − 1n ⊗ y(t)∥2
2/(αL). Similar to (A.40),

∥y(t) − 1n ⊗ y(t)∥2
2 ≤α2∥x(t−1) − 1n ⊗ x(t−1)∥2

2

=α2∥x(t−1) − 1n ⊗ yopt∥2
2 − nα2∥y⋆ − x(t−1)∥2

≤α2∥x(t−1) − 1n ⊗ yopt∥2
2. (A.66)

Then, using the strong convexity of f (·),

∥y(t) − 1n ⊗ y(t)∥2
2 ≤α2

n

∑
j=1

∥x(t−1)
j − yopt∥2

2

≤2α2

σ

n

∑
j=1

(
f (x(t−1)

j)− f (y⋆)
)

. (A.67)

A.7.3 Gradient estimation error

To bound the gradient estimation error, we note that

∥s(t) −∇ f (y(t))∥2 =∥(W ⊗ Id)s
t−1 +∇F(y(t))−∇F(y(t−1))−∇ f (y(t))∥2

=
∥∥∥(W ⊗ Id)

(
st−1 −∇ f (y(t−1))

)
+ (W ⊗ Id)∇ f (y(t−1))−∇ f (y(t−1))

+∇F(y(t))−∇F(y(t−1)) +∇ f (y(t−1))−∇ f (y(t))
∥∥∥

2

≤
∥∥∥(W ⊗ Id)

(
st−1 −∇ f (y(t−1))

)∥∥∥
2
+
∥∥∥(W ⊗ Id)∇ f (y(t−1))−∇ f (y(t−1))

∥∥∥
2

+ ∥∇(F − f)(y(t)) +∇(F − f)(y(t−1))∥2. (A.68)

We then bound the three terms in (A.68) respectively.

APPENDIX A. APPENDIX FOR CHAPTER 2 88

1. The first term can be bounded as

∥(W ⊗ Id)(s
t−1 −∇ f (y(t−1)))∥2

=
∥∥∥(W ⊗ Id)

(
st−1 −∇ f (y(t−1))

)
−
(
(

1
n

1n1⊤n)⊗ Id

)(
st−1 −∇ f (y(t−1))

)∥∥∥
2

+
∥∥∥
(
(

1
n

1n1⊤n)⊗ Id

)(
st−1 −∇ f (y(t−1))

)∥∥∥
2

≤α∥st−1 −∇ f (y(t−1))∥2 +
∥∥∥
(
(

1
n

1n1⊤n)⊗ Id

)(
st−1 −∇ f (y(t−1))

)∥∥∥
2

=α∥st−1 −∇ f (y(t−1))∥2 +
∥∥∥
(
(

1
n

1n1⊤n)⊗ Id

)(
∇(F − f)(yt−1)−∇(F − f)(yopt)

)∥∥∥
2

≤α∥st−1 −∇ f (y(t−1))∥2 + β∥y(t−1) − yopt∥2, (A.69)

where we used the fact
∥∥∥
(
(1

n 1n1⊤n)⊗ Id

)∥∥∥
2
= 1 and the definition of β to reach the last inequality.

2. As for the second term in (A.68), we have

∥∥∥(W ⊗ Id)∇ f (y(t−1))−∇ f (y(t−1))
∥∥∥

2

≤
∥∥∥(W ⊗ Id)∇ f (y(t−1))−

(
(

1
n

1n1⊤n)⊗ Id

)
∇ f (y(t−1))

∥∥∥
2

+
∥∥∥
(
(

1
n

1n1⊤n)⊗ Id

)
∇ f (y(t−1))−∇ f (y(t−1))

∥∥∥
2

≤2
∥∥∥
(
(

1
n

1n1⊤n)⊗ Id

)
∇ f (y(t−1))−∇ f (y(t−1))

∥∥∥
2

≤2∥∇ f (y(t−1))−∇ f (y(t−1))∥2

≤2L∥y(t−1) − y(t−1)∥2, (A.70)

where the third inequality follows from the similar trick we used to obtain (A.66).

3. Using the triangle inequality and the definition of β, the last term in (A.68) can be bounded by

∥∇(F − f)(y(t)) +∇(F − f)(y(t−1))∥2 ≤ β∥y(t) − yopt∥2 + β∥y(t−1) − yopt∥2. (A.71)

Combining (A.68), (A.69), (A.70) and (A.71), the gradient estimation error can be bounded by

∥s(t) −∇ f (y(t))∥2 ≤α∥st−1 −∇ f (y(t−1))∥2 + 2β∥y(t−1) − yopt∥2

+ β∥y(t) − yopt∥2 + 2L∥y(t−1) − y(t−1)∥2. (A.72)

Because of the strong convexity, ∥y − yopt∥2
2 ≤ 2

σ ∑n
j=1
(

f (yj)− f (y⋆)
)
. Combining with (A.58), we

reached the following bound

∥s(t) −∇ f (y(t))∥2
2 ≤4α2∥st−1 −∇ f (y(t−1))∥2

2 +
32β2

σ

n

∑
j=1

(
f (y(t−1)

j)− f (y⋆)
)

+
8β2

σ

n

∑
j=1

(
f (x(t−1)

j)− f (y⋆)
)
+ 16L2∥y(t−1) − y(t−1)∥2

2. (A.73)

APPENDIX A. APPENDIX FOR CHAPTER 2 89

A.7.4 Linear System

Combining (A.58), (A.67), (A.65), and (A.73), we obtain the claimed linear system.

Appendix B

Appendix for Chapter 3

B.1 Experiment details

For completeness, we list two baseline algorithms, DSGD [NO09, LZZ+17] (cf. Algorithm 10) and GT-

SARAH [XKK22a] (cf. Algorithm 11), which are compared numerically against the proposed DESTRESS

algorithm in Section 3.3.

Algorithm 10 Decentralized stochastic gradient descent (DSGD)

1 input: initial parameter x(0), initial step size η0, number of iterations T.

2 initialization: set x(0)i = x(0).

3 for t = 1, . . . , T do

4 Each agent i samples a mini-batch Z (t)
i from Mi uniformly at random, and then performs the

following updates:

g(t)i =
1
b ∑

zi∈Z (t)
i

∇ℓ(u(t)
i ; zi).

5 Update via local communication: x(t+1) = (W ⊗ Id)(x(t) − η0√
t
g(t)).

6 output: xout = x(T).

B.2 Proof of Theorem 6

For notation simplicity, let

αin = αKin , αout = αKout

throughout the proof. We define the global gradient ∇ f (x) ∈ Rnd of an (nd)-dimensional vector x =
[
x⊤1 , · · · , x⊤n

]⊤ analogously to Section 2.1.3.

90

APPENDIX B. APPENDIX FOR CHAPTER 3 91

Algorithm 11 GT-SARAH

1 input: initial parameter x(0), step size η, number of outer loops T, number of inner loops q.

2 initialization: set v(0) = y(0) = ∇F(x(0)).

3 for t = 1, . . . , T do

4 Update via local communication x(t) = (W ⊗ Id)x(t−1) − ηy(t−1).

5 if mod (t, q) = 0 then

6 v(t) = ∇F(x(t)).

7 else

8 Each agent i samples a mini-batch Z (t)
i from Mi uniformly at random, and then performs the

following updates:

v(t)
i =

1
b ∑

zi∈Z (t)
i

(
∇ℓ(x(t)i ; zi)−∇ℓ(x(t−1)

i ; zi)
)
+ v(t−1)

i .

9 Update via local communication y(t) = (W ⊗ Id)y(t−1) + v(t) − v(t−1).

10 output: xout = x(T).

The following fact is a straightforward consequence of our assumption on the mixing matrix W in

Definition 1.

Fact 1. Let x =
[
x⊤1 , · · · , x⊤n

]⊤, and x = 1
n ∑n

i=1 xi, where xi ∈ Rd. For a mixing matrix W ∈ Rn×n satisfying

Definition 1, we have

1.
(

1
n 1⊤n ⊗ Id

)
(W ⊗ Id)x =

(
1
n 1⊤n ⊗ Id

)
x = x;

2.
(

Ind − (1
n 1n1⊤n)⊗ Id

)
(W ⊗ Id) = (W ⊗ Id − (1

n 1n1⊤n)⊗ Id)
(

Ind − (1
n 1n1⊤n)⊗ Id

)
.

To begin with, we introduce a key lemma that upper bounds the norm of the gradient of the global loss

function evaluated at the average local estimates over n agents, in terms of the function value difference

at the beginning and the end of the inner loop, the gradient estimation error, and the norm of gradient

estimates.

Lemma 4 (Inner loop induction). Assume Assumption 2 holds. After S ≥ 1 inner loops, one has

S−1

∑
s=0

∥∇ f (u(t),s)∥2
2 ≤ 2

η

(
f (u(t),0)− f (u(t),S)

)

+
S−1

∑
s=0

∥∥∇ f (u(t),s)− v(t),s∥∥2
2 − (1 − ηL)

S−1

∑
s=0

∥∥v(t),s∥∥2
2.

Proof of Lemma 4. The local update rule (3.1a), combined with Lemma 1, yields

u(t),s+1 = u(t),s − ηv(t),s.

APPENDIX B. APPENDIX FOR CHAPTER 3 92

By Assumption 2, we have

f (u(t),s+1) = f (u(t),s − ηv(t),s)

≤ f (u(t),s)−
〈
∇ f (u(t),s), ηv(t),s〉+ L

2

∥∥ηv(t),s∥∥2
2

= f (u(t),s)− η

2

∥∥∇ f (u(t),s)
∥∥2

2 +
η

2

∥∥∇ f (u(t),s)− v(t),s∥∥2
2 −

(η

2
− η2L

2

)∥∥v(t),s∥∥2
2, (B.1)

where the last equality is obtained by applying −⟨a, b⟩ = 1
2
(
∥a − b∥2

2 − ∥a∥2
2 − ∥b∥2

2
)
. Summing over

s = 0, . . . , S − 1 finishes the proof.

Because the output xout is chosen from
{

u(t),s−1
i |i ∈ [n], t ∈ [T], s ∈ [S]

}
uniformly at random, we can

compute the expectation of the output’s gradient as follows:

nTSE
∥∥∇ f (xout)

∥∥2
2 =

n

∑
i=1

T

∑
t=1

S−1

∑
s=0

E
∥∥∇ f (u(t),s

i)
∥∥2

2

(i)
=

T

∑
t=1

S−1

∑
s=0

E
∥∥∇ f (u(t),s)

∥∥2
2

=
T

∑
t=1

S−1

∑
s=0

E
∥∥∇ f (u(t),s)−∇ f (1n ⊗ u(t),s) +∇ f (1n ⊗ u(t),s)

∥∥2
2

(ii)
≤ 2

T

∑
t=1

S−1

∑
s=0

(
E
∥∥∇ f (u(t),s)−∇ f (1n ⊗ u(t),s)

∥∥2
2 + E

∥∥∇ f (1n ⊗ u(t),s)
∥∥2

2

)

(iii)
≤ 2

T

∑
t=1

S−1

∑
s=0

(
L2E

∥∥u(t),s − 1n ⊗ u(t),s∥∥2
2 + nE

∥∥∇ f (u(t),s)
∥∥2

2

)
, (B.2)

where (i) follows from the change of notation using the stacked gradient, (ii) follows from the Cauchy-

Schwartz inequality, and (iii) follows from Assumption 2. Then, in view of Lemma 4, (B.2) can be further

bounded by

nTSE
∥∥∇ f (xout)

∥∥2
2 ≤ 4n

η

(
E[f (x(0))]− f ∗

)
+ 2L2

T

∑
t=1

S−1

∑
s=0

E
∥∥u(t),s − 1n ⊗ u(t),s∥∥2

2

+ 2n
T

∑
t=1

S−1

∑
s=0

(
E
∥∥∇ f (u(t),s)− v(t),s∥∥2

2 − (1 − ηL)E
∥∥v(t),s∥∥2

2

)
, (B.3)

where we use u(t),0 = x(t) and f (u(t),S) ≥ f ∗.

Next, we present Lemmas 5 and 6 to bound the double sum in (B.3), whose proofs can be found in

Appendix B.4 and Appendix B.5, respectively.

Lemma 5 (Sum of inner loop errors). Assuming all conditions in Theorem 6 hold. For all t > 0, we can bound the

summation of inner loop errors as

2L2
S−1

∑
s=0

E
∥∥u(t),s − 1n ⊗ u(t),s∥∥2

2 + 2n
S−1

∑
s=0

E
∥∥∇ f (u(t),s)− v(t),s∥∥2

2

≤ 64L2

1 − αin
·
(S

npb
+ 1
)

E
∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2

2 + 2α2
inE
∥∥s(t−1) − 1n ⊗ s(t−1)∥∥2

2 +
2n
25

S

∑
s=1

E
∥∥v(t),s−1∥∥2

2.

APPENDIX B. APPENDIX FOR CHAPTER 3 93

Lemma 6 (Sum of outer loop gradient estimation error and consensus error). Assuming all conditions in

Theorem 6 hold. We have

64L2

1 − αin
·
(S

npb
+ 1
) T

∑
t=1

E
∥∥x(t) − 1n ⊗ x(t)

∥∥2
2 + 2α2

in

T

∑
t=1

E
∥∥s(t) − 1n ⊗ s(t)

∥∥2
2 ≤ 11n

25

T

∑
t=1

S−1

∑
s=0

E
∥∥v(t),s∥∥2

2.

Using Lemma 5, (B.3) can be bounded as follows:

nTSE
∥∥∇ f (xout)

∥∥2
2 <

4n
η

(
E[f (x(t),0)]− f ∗

)
− 2n

(24
25

− ηL
) T

∑
t=1

S−1

∑
s=0

E
∥∥v(t),s∥∥2

2

+
64L2

1 − αin
·
(S

npb
+ 1
) T−1

∑
t=0

E
∥∥x(t) − 1n ⊗ x(t)

∥∥2
2 + 2α2

in

T−1

∑
t=0

E
∥∥s(t) − 1n ⊗ s(t)

∥∥2
2, (B.4)

where we bound the sum of inner loop errors L2 ∑S−1
s=0 E

∥∥u(t),s − 1n ⊗ u(t),s
∥∥2

2 and n ∑S−1
s=0 E

∥∥∇ f (u(t),s)−
v(t),s

∥∥2
2 by the initial value of each inner loop E

∥∥x(t) − 1n ⊗ x(t)
∥∥2

2 and E
∥∥s(t) − 1n ⊗ s(t)

∥∥2
2, and the

summation of the norm of average inner loop gradient estimator n ∑S
s=1 E

∥∥v(t),s−1
∥∥2

2.

By Lemma 6, (B.4) can be further bounded as

nTSE
∥∥∇ f (xout)

∥∥2
2 ≤ 4n

η

(
E[f (x(t),0)]− f ∗

)
− 2n

(37
50

− ηL
) T

∑
t=1

S−1

∑
s=0

E
∥∥v(t),s∥∥2

2

<
4n
η

(
E[f (x(t),0)]− f ∗

)
,

which concludes the proof.

B.3 Proof of Corollary 3

Without loss of generality, we assume n ≥ 2. Otherwise, the problem reduces to the centralized setting with

a single agent n = 1, and the bound holds trivially. We will confirm the choice of parameters in Corollary 3

in the following paragraphs, and finally obtain the IFO complexity and communication complexity.

Step size η We first assume αin ≤ p
2 ≤ 1

2 and αout ≤ 1√
npb+1

≤ 1
2 , which will be proved to hold shortly,

then we can verify the step size choice meets the requirement in (3.3) as:

(1 − αin)3(1 − αout)

1 + αKin αKout
√

pnb
· 1

10L
(√

S/(npb) + 1
) ≥ (1/2)4

2
· 1

20L
=

1
640L

.

Mixing steps Kin and Kout Using Chebyshev’s acceleration [AS14] to implement the mixing steps, it

amounts to an improved mixing rate of αcheb ≍ 1 −
√

2(1 − α), when the original mixing rate α is close to

1. Set Kin =
⌈

log(2/p)√
1−α

⌉
and Kout =

⌈
log(

√
npb+1)√

1−α

⌉
. We are now positioned to examine the effective mixing

rate αin = αKin
cheb and αout = αKout

cheb, as follows

αout = αKout
cheb

(i)
≤ α

log(
√

npb+1)√
1−α

cheb ≍ α

√
2 log(

√
npb+1)

1−αcheb
cheb

(ii)
≤ α

√
2 log(

√
npb+1)

− log αcheb
cheb <

1√
npb + 1

(iii)
≤ 1

2
,

APPENDIX B. APPENDIX FOR CHAPTER 3 94

where (i) follows from Kout =

⌈
log(

√
npb+1)√

1−α

⌉
, (ii) follows from log x ≤ x − 1, ∀x > 0, and (iii) follows from

n ≥ 1 and b ≥ 1. By a similar argument, we have αin = αKin
cheb ≤ p

2 .

Complexity Plugging in the selected parameters into (3.4) in Theorem 6, We have

E
∥∥∇ f (xout)

∥∥2
2 ≤ 4

ηTS

(
E[f (x(t),0)]− f ∗

)
= O

(L
T
√

mn

)
.

Consequently, the outer iteration complexity is T = O
(

1 + L
(mn)1/2ϵ2

)
. With this in place, we summarize the

communication and IFO complexities as follows:

• The communication complexity is

T · (SKin + Kout) = O
((mn)1/2 log

(
2(n/m)1/2 + 2

)
+ log

(
(mn)1/4 + 1

)
√

1 − α
·
(

1 +
L

(mn)1/2ϵ2

))

= O
(log

(
(n/m)1/2 + 2

)
√

1 − α
·
(
(mn)1/2 +

L
ϵ2

))
,

where we use 2/p =
2⌈√m/n⌉√

m/n
≤ 2(

√
m/n+1)√
m/n

= 2(
√

n/m + 1) to bound Kin.

• The IFO complexity is T · (Spb + 2m) = O
(

m + (m/n)1/2L
ϵ2

)
.

B.4 Proof of Lemma 5

This section proves Lemma 5. Appendices B.4.1 and B.4.2 bounds the expected inner loop gradient

estimation error and consensus errors by their previous values and the sum of inner loop gradient

estimator’s norms, Appendix B.4.3 then creates a linear system to compute the summation of inner loop

errors using their initial values of each inner loop, which concludes the proof.

B.4.1 Sum of inner loop gradient estimation errors

To begin with, note that the gradient estimation error at the s-th inner loop iteration can be written as

E
∥∥∇ f (u(t),s)− v(t),s∥∥2

2

= E

∥∥∥
(1

n
1⊤n ⊗ Id

)(
∇F(1n ⊗ u(t),s)− v(t),s

)∥∥∥
2

2

= E

∥∥∥
(1

n
1⊤n ⊗ Id

)(
∇F(1n ⊗ u(t),s)−∇F(u(t),s)

)
+
(1

n
1⊤n ⊗ Id

)(
∇F(u(t),s)− v(t),s)∥∥∥

2

2

≤ 2E

∥∥∥
(1

n
1⊤n ⊗ Id

)(
∇F(1n ⊗ u(t),s)−∇F(u(t),s)

)∥∥∥
2

2
+ 2E

∥∥∥
(1

n
1⊤n ⊗ Id

)(
∇F(u(t),s)− v(t),s)∥∥∥

2

2

≤ 2L2

n
E
∥∥u(t),s − 1n ⊗ u(t),s∥∥2

2 + 2E

∥∥∥
(1

n
1⊤n ⊗ Id

)(
∇F(u(t),s)− v(t),s)∥∥∥

2

2
, (B.5)

APPENDIX B. APPENDIX FOR CHAPTER 3 95

where the first equality follows from (2.4), and the last inequality is due to Assumption 2. To continue, the

expectation of the second term in (B.5) can be bounded as

E

∥∥∥
(1

n
1⊤n ⊗ Id

)(
∇F(u(t),s)− v(t),s

)∥∥∥
2

2

= E

∥∥∥
(1

n
1⊤n ⊗ Id

)((
∇F(u(t),s)− v(t),s)−

(
∇F(u(t),s−1)− v(t),s−1)+

(
∇F(u(t),s−1)− v(t),s−1))∥∥∥

2

2
(i)
= E

∥∥∥
(1

n
1⊤n ⊗ Id

)((
∇F(u(t),s)− v(t),s)−

(
∇F(u(t),s−1)− v(t),s−1))∥∥∥

2

2

+ E

∥∥∥
(1

n
1⊤n ⊗ Id

)(
∇F(u(t),s−1)− v(t),s−1)∥∥∥

2

2

(ii)
=

s

∑
k=1

E

∥∥∥
(1

n
1⊤n ⊗ Id

)((
∇F(u(t),k)− v(t),k)−

(
∇F(u(t),k−1)− v(t),k−1))∥∥∥

2

2

+ E

∥∥∥
(1

n
1⊤n ⊗ Id

)(
∇F(u(t),0)− v(t),0)∥∥∥

2

2

(iii)
=

s

∑
k=1

E

∥∥∥
(1

n
1⊤n ⊗ Id

)((
∇F(u(t),k)− v(t),k)−

(
∇F(u(t),k−1)− v(t),k−1))∥∥∥

2

2
. (B.6)

Here, (i) follows from the expectation with respect to the activating indicator λ
(t),s
i and random samples

Z (t),s, conditioned on u(t),s−1 and v(t),s−1:

E

[(1
n

1⊤n ⊗ Id

)(
∇F(u(t),s)− v(t),s)∣∣∣u(t),s−1, v(t),s−1

]

=
1
n

n

∑
i=1

∇ fi(u
(t),s
i)− v(t),s−1

− E

[
1

npb ∑
i

λ
(t),s
i ∑

zi∈Z (t),s
i

(
∇ℓ(u(t),s

i ; zi)−∇ℓ(u(t),s−1
i ; zi)

)∣∣∣u(t),s−1, v(t),s−1

]

=
1
n

n

∑
i=1

∇ fi(u
(t),s
i)− 1

np ∑
i

E
[
λ
(t),s
i
](

∇ fi(u
(t),s
i)−∇ fi(u

(t),s−1
i)

)
− v(t),s−1

=
1
n

n

∑
i=1

∇ fi(u
(t),s−1
i)− v(t),s−1

=
(1

n
1⊤n ⊗ Id

)(
∇F(u(t),s−1)− v(t),s−1), (B.7)

(ii) follows by recursively applying the relation obtained from (i); and (iii) follows from the property of

gradient tracking, i.e.

(1
n

1⊤n ⊗ Id

)
∇F(u(t),0) =

1
n

n

∑
i=1

∇ fi(u
(t),0
i) =

1
n

n

∑
i=1

∇ fi(x(t−1)
i) = s(t−1) = v(t),0, (B.8)

which leads to
(

1
n 1⊤n ⊗ Id

)(
∇F(u(t),0)− v(t),0) = 0.

We now continue to bound each term in (B.6), which can be viewed as the variance of the stochastic

gradient, as

E

∥∥∥
(1

n
1⊤n ⊗ Id

)((
∇F(u(t),s)− v(t),s)−

(
∇F(u(t),s−1)− v(t),s−1))∥∥∥

2

2

APPENDIX B. APPENDIX FOR CHAPTER 3 96

(i)
= E

∥∥∥∥∥
1

nb

n

∑
i=1

∑
zi∈Z (t),s

i

((
∇ fi(u

(t),s
i)−∇ fi(u

(t),s−1
i)

)
− λ

(t),s
i
p
(
∇ℓ(u(t),s

i ; zi)−∇ℓ(u(t),s−1
i ; zi)

))
∥∥∥∥∥

2

2

(ii)
=

1
n2b2

n

∑
i=1

∑
zi∈Z (t),s

i

E

∥∥∥
(
∇ fi(u

(t),s
i)−∇ fi(u

(t),s−1
i)

)
− λ

(t),s
i
p
(
∇ℓ(u(t),s

i ; zi)−∇ℓ(u(t),s−1
i ; zi)

)∥∥∥
2

2

(iii)
=

1
n2 p2b2

n

∑
i=1

∑
zi∈Z (t),s

i

E
[(

λ
(t),s
i
)2
]
E
∥∥∇ℓ(u(t),s

i ; zi)−∇ℓ(u(t),s−1
i ; zi)

∥∥2
2

− 1
n2b

E
∥∥∇F(u(t),s)−∇F(u(t),s−1)

∥∥2
2

≤ L2

n2 pb
E
∥∥u(t),s − u(t),s−1∥∥2

2, (B.9)

where (i) follows from the update rules (3.1b) and (3.1c), (ii) follows from the independence of samples

and E
[
λ
(t),s
i
]
= p, (iii) follows from similar argument with (B.7), and the last inequality follows from

Assumption 2 and E
[(

λ
(t),s
i
)2
]
= p.

In view of (3.1a), the difference between inner loop variables in (B.9) can be bounded deterministically

as

∥∥u(t),s − u(t),s−1∥∥2
2

=
∥∥(W in ⊗ Id)(u

(t),s−1 − ηv(t),s−1)− u(t),s−1∥∥2
2

(i)
=
∥∥∥
(
(W in ⊗ Id)− Ind

)
(u(t),s−1 − 1n ⊗ u(t),s−1)

− η
(
(W in ⊗ Id)− (

1
n

1n1⊤n)⊗ Id

)
(v(t),s−1 − 1n ⊗ v(t),s−1)− η1n ⊗ v(t),s−1

∥∥∥
2

2
(ii)
=
∥∥∥
(
(W in ⊗ Id)− Ind

)
(u(t),s−1 − 1n ⊗ u(t),s−1)

− η
(
(W in ⊗ Id)− (

1
n

1n1⊤n)⊗ Id

)
(v(t),s−1 − 1n ⊗ v(t),s−1)

∥∥∥
2

2
+ η2n

∥∥v(t),s−1∥∥2
2

≤ 8
∥∥u(t),s−1 − 1n ⊗ u(t),s−1∥2

2 + 2α2
inη2∥∥v(t),s−1 − 1n ⊗ v(t),s−1∥∥2

2 + η2n
∥∥v(t),s−1∥∥2

2, (B.10)

where (i) and (ii) follow from
(
(W in ⊗ Id)− Ind

)
(1n ⊗ x) = 0 and

(
(W in ⊗ Id)− (1

n 1n1⊤n)⊗ Id
)
(1n ⊗ x) = 0

for any mean vector x; and the last inequality follows from the property of the mixing matrix
∥∥(W in ⊗

Id)− Ind
∥∥

op ≤ 2 and
∥∥(W in ⊗ Id)− (1

n 1n1⊤n)⊗ Id
∥∥

op ≤ αin.

Plugging (B.9) and (B.10) into (B.6), we can further obtain

E

∥∥∥
(
(

1
n

1n1⊤n)⊗ Id

)(
∇F(u(t),s)− v(t),s

)∥∥∥
2

2

≤ L2

n2 pb

s

∑
k=1

E
∥∥u(t),k − u(t),k−1∥∥2

2

≤ 8L2

n2 pb

s−1

∑
k=0

E
∥∥u(t),k − 1n ⊗ u(t),k∥2

2 +
2α2

inη2L2

n2 pb

s−1

∑
k=0

E
∥∥v(t),k − 1n ⊗ v(t),k∥∥2

2 +
η2L2

npb

s−1

∑
k=0

E
∥∥v(t),k∥∥2

2.

APPENDIX B. APPENDIX FOR CHAPTER 3 97

Using (B.5) and the previous inequality, we can bound the summation of inner loop gradient estimation

errors as

S−1

∑
s=0

E
∥∥∇ f (u(t),s)− v(t),s∥∥2

2

≤ 2L2

n

S−1

∑
s=0

E
∥∥u(t),s − 1n ⊗ u(t),s∥∥2

2 + 2
S−1

∑
s=0

E

∥∥∥
(1

n
1⊤n ⊗ Id

)(
∇F(u(t),s)− v(t),s)∥∥∥

2

2

≤ 2L2

n

S−1

∑
s=0

E
∥∥u(t),s − 1n ⊗ u(t),s∥∥2

2 +
16L2

n2 pb

S−1

∑
s=0

s−1

∑
k=0

E
∥∥u(t),k − 1n ⊗ u(t),k∥∥2

2

+
4α2

inη2L2

n2 pb

S−1

∑
s=0

s−1

∑
k=0

E
∥∥v(t),k − 1n ⊗ v(t),k∥∥2

2 +
2η2L2

npb

S−1

∑
s=0

s−1

∑
k=0

E
∥∥v(t),k∥∥2

2

≤
(8S

npb
+ 1
)
· 2L2

n

S−1

∑
s=0

E
∥∥u(t),s − 1n ⊗ u(t),s∥∥2

2

+
4Sα2

inη2L2

n2 pb

S−1

∑
s=0

E
∥∥v(t),s − 1n ⊗ v(t),s∥∥2

2 +
2Sη2L2

npb

S−1

∑
s=0

E
∥∥v(t),s∥∥2

2,

where the last inequality is obtained by relaxing the upper bound of the summation w.r.t. k from s − 1 to

S − 1.

The quantity of interest can be now bounded as

2L2
S−1

∑
s=0

E
∥∥u(t),s−1n ⊗ u(t),s∥∥2

2 + 2n
S−1

∑
s=0

E
∥∥∇ f (u(t),s)− v(t),s∥∥2

2

≤
(4S

npb
+ 1
)
· 8L2

S−1

∑
s=0

E
∥∥u(t),s − 1n ⊗ u(t),s∥∥2

2

+
8Sα2

inη2L2

npb

S−1

∑
s=0

E
∥∥v(t),s − 1n ⊗ v(t),s∥∥2

2 +
4Sη2L2

pb

S−1

∑
s=0

E
∥∥v(t),s∥∥2

2 (B.11)

B.4.2 Sum of inner loop consensus errors

Using the update rule (3.1a), the variable consensus error can be expanded deterministically as follows:

∥∥u(t),s − 1n ⊗ u(t),s∥∥2
2 =

∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
(W in ⊗ Id)(u

(t),s−1 − ηv(t),s−1)
∥∥∥

2

2
(i)
≤ α2

in

∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
(u(t),s−1 − ηv(t),s−1)

∥∥∥
2

2

≤ 2α2
in

1 + α2
in

∥∥u(t),s−1 − 1n ⊗ u(t),s−1∥∥2
2 +

2α2
inη2

1 − α2
in

∥∥v(t),s−1 − 1n ⊗ v(t),s−1∥∥2
2, (B.12)

where (i) follows from the fact

(
Ind − (

1
n

1n1⊤n)⊗ Id

)
(W ⊗ Id) =

(
W ⊗ Id − (

1
n

1n1⊤n)⊗ Id

)(
Ind − (

1
n

1n1⊤n)⊗ Id

)

and the definition of the mixing rate. The last inequality follows from the elementary inequality 2⟨a, b⟩ ≤
1−α2

in
1+α2

in
∥a∥2

2 +
1+α2

in
1−α2

in
∥b∥2

2, so that ∥a + b∥2
2 ≤ 2

1+α2
in
∥a∥2

2 +
2

1−α2
in
∥b∥2

2.

APPENDIX B. APPENDIX FOR CHAPTER 3 98

Furthermore, using the update rules (3.1b) and (3.1c) and defining Λ(t),s = 1
p diag(λ(t),s

1 , λ
(t),s
2 , . . . , λ

(t),s
n)⊗

Id, the gradient consensus error can be similarly expanded as follows:

∥∥v(t),s − 1n ⊗ v(t),s∥∥2
2

=
∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
(W in ⊗ Id)g(t),s

∥∥∥
2

2

≤ α2
in

∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
g(t),s

∥∥∥
2

2
(i)
≤ 2α2

in
1 + α2

in

∥∥v(t),s−1 − 1n ⊗ v(t),s−1∥∥2
2

+
2α2

in
1 − α2

in
· 1

b ∑
z∈Z (t),s

∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
Λ(t),s(∇ℓ(u(t),s; z)−∇ℓ(u(t),s−1; z)

)∥∥∥
2

2

(ii)
≤ 2α2

in
1 + α2

in

∥∥v(t),s−1 − 1n ⊗ v(t),s−1∥∥2
2 +

2α2
inL2

(1 − α2
in)p2

∥∥u(t),s − u(t),s−1∥∥2
2

(iii)
≤ 2α2

in
1 + α2

in

∥∥v(t),s−1 − 1n ⊗ v(t),s−1∥∥2
2 +

2α2
inL2

(1 − α2
in)p2

(
8
∥∥u(t),s−1 − 1n ⊗ u(t),s−1∥2

2

+ 2α2
inη2∥∥v(t),s−1 − 1n ⊗ v(t),s−1∥∥2

2 + η2n
∥∥v(t),s−1∥∥2

2

)

=
(2α2

in
1 + α2

in
+

4α4
inη2L2

(1 − α2
in)p2

)∥∥v(t),s−1 − 1n ⊗ v(t),s−1∥∥2
2

+
16α2

inL2

(1 − α2
in)p2

∥∥u(t),s−1 − 1n ⊗ u(t),s−1∥∥2
2 +

2α2
inη2L2

(1 − α2
in)p2

· n
∥∥v(t),s−1∥∥2

2, (B.13)

where the second term in (i) is obtained by Jensen’s inequality, (ii) follows from Assumption 2 and
∥∥Λ(t),s∥∥

op ≤ 1
p , and (iii) follows from (B.10).

B.4.3 Linear system

Let e(t),s =




L2E
∥∥u(t),s − 1n ⊗ u(t),s

∥∥2
2

E
∥∥v(t),s − 1n ⊗ v(t),s

∥∥2
2


, and b(t),s =

2α2
inη2L2

(1−α2
in)p2




0

nE
∥∥v(t),s

∥∥2
2


. By taking expectation of

(B.12) and (B.13), we can construct the following linear system

e(t),s ≤




2α2
in

1+α2
in

2α2
inη2L2

1−α2
in

16α2
in

(1−α2
in)p2

2α2
in

1+α2
in
+

4α4
inη2L2

(1−α2
in)p2


 e(t),s−1 + b(t),s−1

≤




αin
2α2

inη2L2

1−αin

16α2
in

(1−αin)p2 αin +
4α4

inη2L2

(1−αin)p2




︸ ︷︷ ︸
=:Gin

e(t),s−1 + b(t),s−1 = Gine(t),s−1 + b(t),s−1, (B.14)

where the second inequality is due to 2αin < 1 + α2
in and 1 + αin ≥ 1. Telescope the above inequality to

obtain

e(t),s ≤Gs
ine(t),0 +

s

∑
k=1

Gs−k
in b(t),k−1. (B.15)

APPENDIX B. APPENDIX FOR CHAPTER 3 99

Thus, the sum of the consensus errors can be bounded by

S−1

∑
s=0

e(t),s ≤ e(t),0 +
S−1

∑
s=1

(
Gs

ine(t),0 +
s

∑
k=1

Gs−k
in b(t),k−1

i

)

=
S−1

∑
s=0

Gs
ine(t),0 +

S−1

∑
s=1

s

∑
k=1

Gs−k
in b(t),k−1

(i)
=

S−1

∑
s=0

Gs
ine(t),0 +

S−1

∑
k=1

S−1−k

∑
s=0

Gs
inb(t),k−1

(ii)
≤

S−1

∑
s=0

Gs
ine(t),0 +

S−1

∑
k=1

S−1

∑
s=0

Gs
inb(t),k−1

(iii)
≤

∞

∑
s=0

Gs
in

(
e(t),0 +

S−1

∑
s=0

b(t),s
)

(B.16)

where (i) follows by changing the order of summation, (ii) and (iii) follows from the nonnegativity of Gin

and b(t),s respectively. To continue, we begin with the following claim about Gin which will be proved

momentarily.

Claim 1. Under the choice of η in Theorem 6, the eigenvalues of Gin are in (−1, 1), and the Neumann series

converges,

∞

∑
s=0

Gs
in = (I2 − Gin)

−1 ≤




2
1−αin

4α2
inη2L2

(1−αin)3

32α2
in

(1−αin)3 p2
2

1−αin


 . (B.17)

Let ς⊤in =

[
8
(

4S
pnb + 1

)
8Sα2

inη2L2

pnb

]
, in view of Claim 1, the summation of consensus erros in (B.11) can

be bounded as

(4S
npb

+ 1
)
· 8L2

S−1

∑
s=0

E
∥∥u(t),s − 1n ⊗ u(t),s∥∥2

2 +
8Sα2

inη2L2

npb

S−1

∑
s=0

E
∥∥v(t),s − 1n ⊗ v(t),s∥∥2

2

= ς⊤in
S−1

∑
s=0

e(t),s

≤ ς⊤in
(∞

∑
s=0

Gs
in

)(
e(t),0 +

S−1

∑
k=0

b(t),k
)

≤ ς⊤in
(

I2 − Gin
)−1
(

e(t),0 +
S−1

∑
s=0

b(t),s
)

,

and

ς⊤in
(

I2 − Gin
)−1 ≤

[
16

1−αin

(
4S

npb + 1
)
+

32α2
in

(1−αin)3 p2 · 8Sα2
inη2L2

pnb
32α2

inη2L2

(1−αin)3 ·
(

4S
npb + 1

)
+ 2

1−αin
· 8Sα2

inη2L2

npb

]

≤
[

16
1−αin

(
4S

npb + 1
)
+

3α2
in

(1−αin)p2
128α2

inη2L2

(1−αin)3 ·
(

S
npb + 1

)
+

16α2
in(1−αin)

100

]

≤
[

64
1−αin

(
S

npb + 1
)

2α2
in

]
,

APPENDIX B. APPENDIX FOR CHAPTER 3 100

where we use (3.3), ηL ≤ (1−αin)3(1−αout)

10
(

1+αinαout
√

npb
)(√

S/(npb)+1
) ≤ (1−αin)3(1−αout)

10
(√

S/(pnb)+1
) , to prove the last two inequali-

ties.

Therefore, (B.11) can be bounded as

2L2
S−1

∑
s=0

E
∥∥u(t),s − 1n ⊗ u(t),s∥∥2

2 + 2n
S−1

∑
s=0

E
∥∥∇ f (u(t),s)− v(t),s∥∥2

2

≤ ς⊤in
(

I2 − Gin
)−1
(

e(t),0 +
S−1

∑
s=0

b(t),s
)
+

4Sη2L2

pb

S−1

∑
s=0

E
∥∥v(t),s∥∥2

2

≤ 64L2

1 − αin
·
(S

npb
+ 1
)

E
∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2

2 + 2α2
inE
∥∥s(t−1) − 1n ⊗ s(t−1)∥∥2

2

+
(4α4

inη2L2

(1 − αin)2 p2 +
4Sη2L2

npb

)
· n

S

∑
s=1

E
∥∥v(t),s−1∥∥2

2

<
64L2

1 − αin
·
(S

npb
+ 1
)

E
∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2

2 + 2α2
inE
∥∥s(t−1) − 1n ⊗ s(t−1)∥∥2

2

+
2n
25

S

∑
s=1

E
∥∥v(t),s−1∥∥2

2,

where the last inequality is proved by incorporating (3.3) as 4α4
inη2L2

(1−αin)2 p2 ≤ 4α2
inη2L2

(1−αin)2 <
4α2

in
(1−αin)2 · (1−αin)6

100 ≤ 1
25

and 4Sη2L2

npb ≤ S
npb · 4

100
(√

S/(npb)+1
)2 < 1

25 .

Proof of Claim 1. By the definition of Gin in (B.14), the characteristic polynomial of Gin is

f (λ) = (αin − λ)
(

αin +
4α4

inη2L2

(1 − αin)p2 − λ
)
− 32α4

inη2L2

(1 − αin)2 p2 .

By (3.3), ηL ≤ (1−αin)3(1−αout)

10
(

1+αinαout
√

npb
)(√

S/(npb)+1
) ≤ (1−αin)3

10 and αin ≤ p, we have 32α4
inη2L2

(1−αin)2 p2 ≤ 32α2
inη2L2

(1−αin)2 ≤
32
100 α2

in(1 − αin)4 < 1, so that f (−1) ≥ 1 − 32α4
inη2L2

(1−αin)2 > 0, and

f (1) = (1 − αin)
2 − 4α4

inη2L2

p2 − 32α4
inη2L2

(1 − αin)2 p2

≥ (1 − αin)
2 − 36α4

inη2L2

(1 − αin)2 p2

> (1 − αin)
2 − 36

100
(1 − αin)

4 > 0.

Because f (αin) ≤ 0, all eigenvalues of Gin are in (−1, 1), then the Neumann series converges, yielding

∞

∑
s=0

Gs
in = (I2 − Gin)

−1

=
1 − αin

(1 − αin)4 p2 − 4
(
(1 − αin)2 + 8

)
α4

inη2L2



(1 − αin)2 p2 − 4α4

inη2L2 2α2
inη2L2 p2

16α2
in (1 − αin)2 p2




≤ 1 − αin
(1 − αin)4 p2 − 4

(
(1 − αin)2 + 8

)
α4

inη2L2



(1 − αin)2 p2 2α2

inη2L2 p2

16α2
in (1 − αin)2 p2




APPENDIX B. APPENDIX FOR CHAPTER 3 101

(i)
≤ 1 − αin

(1 − αin)4 p2 − 36α4
inη2L2



(1 − αin)2 p2 2α2

inη2L2 p2

16α2
in (1 − αin)2 p2




(ii)
≤




2
1−αin

4α2
inη2L2

(1−αin)3

32α2
in

(1−αin)3 p2
2

1−αin


 ,

where (i) and (ii) follow the fact (1 − αin)2 ≤ 1, and (1 − αin)4 p2 − 36α4
inη2L2 ≥ (1 − αin)4 p2 − 36

100 α4
in(1 −

αin)6 ≥ (1 − αin)4 p2 − 36
100 α2

in(1 − αin)6 p2 > 1
2 (1 − αin)4 p2 due to (3.3).

B.5 Proof of Lemma 6

This section proves Lemma 6. In the following subsections, Appendices B.5.1 and B.5.2 derive induction

inequalities for the consensus errors and Appendix B.5.3 creates a linear system of consensus errors to

compute the summation.

B.5.1 Sum of outer loop variable consensus errors

The variable consensus error can be bounded deterministically as following,

∥∥x(t) − 1n ⊗ x(t)
∥∥2

2

=
∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
x(t)
∥∥∥

2

2
(i)
=
∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
u(t),S

∥∥∥
2

2
(ii)
=
∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
(W in ⊗ Id)

(
u(t),S−1 − ηv(t),S−1

)∥∥∥
2

2

≤ α2
in

∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)(
u(t),S−1 − ηv(t),S−1

)∥∥∥
2

2

≤ 2α2
in

1 + α2
in

∥∥u(t),S−1 − 1n ⊗ u(t),S−1∥∥2
2 +

2α2
inη2

1 − α2
in

∥∥v(t),S−1 − 1n ⊗ v(t),S−1∥∥2
2,

where (i) uses x(t) = u(t),S, (ii) uses the update rule (3.1a), and the last two inequalities follow from similar

reasoning as (B.12). Apply the same reasoning to 2α2
in

1+α2
in

∥∥u(t),S−1 − 1n ⊗ u(t),S−1
∥∥2

2 and use 2α2
in

1+α2
in
≤ 1, we can

prove

∥∥x(t) − 1n ⊗ x(t)
∥∥2

2 ≤
(2α2

in
1 + α2

in

)S∥∥u(t),0 − 1n ⊗ u(t),0∥∥2
2 +

2α2
inη2

1 − α2
in

S−1

∑
s=0

∥∥v(t),s − 1n ⊗ v(t),s∥∥2
2

=
(2α2

in
1 + α2

in

)S∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2
2 +

2α2
inη2

1 − α2
in

S−1

∑
s=0

∥∥v(t),s − 1n ⊗ v(t),s∥∥2
2, (B.18)

where the last equality follows from x(t−1) = u(t),0.

APPENDIX B. APPENDIX FOR CHAPTER 3 102

Take expectation of the previous inequality, by (B.16), we can further compute the summation in (B.18)

as follows

S−1

∑
s=0

E
∥∥v(t),s − 1n ⊗ v(t),s∥∥2

2 ≤ 32α2
inL2

(1 − αin)3 p2 E
∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2

2

+
2

1 − αin

(
E
∥∥s(t−1) − 1n ⊗ s(t−1)∥∥2

2 +
2α2

inη2L2

(1 − α2
in)p2

· n
S−1

∑
s=0

E
∥∥v(t),s∥∥

)
.

Together with x(t) = u(t),0 and s(t) = v(t),0, (B.18) can be further bounded as

E
∥∥x(t) − 1n ⊗ x(t)

∥∥2
2 ≤

((2α2
in

1 + α2
in

)S
+

2α2
inη2L2

1 − α2
in

· 32α2
in

(1 − αin)3 p2

)
E
∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2

2

+
2α2

inη2

1 − α2
in
· 2

1 − αin

(∥∥s(t−1) − 1n ⊗ s(t−1)E
∥∥2

2 +
2α2

inη2L2

(1 − α2
in)p2

· n
S−1

∑
s=0

E
∥∥v(t),s∥∥

)

< αinE
∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2

2

+
4α2

inη2

(1 − αin)2

(
E
∥∥s(t−1) − 1n ⊗ s(t−1)∥∥2

2 +
2α2

inη2L2

(1 − αin)p2 · n
S−1

∑
s=0

E
∥∥v(t),s∥∥

)
. (B.19)

The last inequality is obtained by using (3.3) and the fact that 0 ≤ αin < 1 as follows

(2α2
in

1 + α2
in

)S
+

2α2
inη2L2

1 − α2
in

· 32α2
in

(1 − αin)3 p2 =
(2α2

in
1 + α2

in

)S
+

α2
in(1 − αin)2

1 + αin
· 64α2

inη2L2

(1 − αin)6 p2

<
2α2

in
1 + α2

in
+

64
100

· α2
in(1 − αin)2

1 + αin

≤ 2α2
in

1 + α2
in
+

αin(1 − αin)2

1 + α2
in

= αin.

B.5.2 Sum of outer loop gradient estimation consensus errors

In view of the update rule for the gradient tracking term (3.2) and reorganize terms,

∥∥s(t) − 1n ⊗ s(t)
∥∥2

2 =
∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
s(t)
∥∥∥

2

2

=
∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)
(Wout ⊗ Id)

(
s(t−1) +∇F(x(t))−∇F(x(t−1))

)∥∥∥
2

2

≤ 2α2
out

1 + α2
out

∥∥s(t−1) − 1n ⊗ s(t−1)∥∥2
2

+
2α2

out
1 − α2

out

∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)(
∇F(x(t))−∇F(x(t−1))

)∥∥∥
2

2
, (B.20)

which follows from similar reasonings as (B.12). The second term can be further decomposed as

∥∥∥
(

Ind − (
1
n

1n1⊤n)⊗ Id

)(
∇F(x(t))−∇F(x(t−1))

)∥∥∥
2

2

≤
∥∥∇F(x(t))−∇F(x(t−1))

∥∥2
2

≤ L2∥∥(x(t) − 1n ⊗ x(t))− (x(t−1) − 1n ⊗ x(t−1)) + (1n ⊗ x(t) − 1n ⊗ x(t−1))
∥∥2

2

APPENDIX B. APPENDIX FOR CHAPTER 3 103

= L2∥∥(x(t) − 1n ⊗ x(t))− (x(t−1) − 1n ⊗ x(t−1))
∥∥2

2 + nL2∥∥x(t) − x(t−1)∥∥2
2

≤ 2L2∥∥x(t) − 1n ⊗ x(t)
∥∥2

2 + 2L2∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2
2 + Sη2L2 · n

S−1

∑
s=0

∥∥v(t),s∥∥2
2, (B.21)

where the last line follows from the update rule (3.1a) by identifying x(t) − x(t−1) = η ∑S−1
s=0 v(t),s and

Cauchy-Schwartz inequality.

With (B.21), (B.20) can be further bounded as follows

∥∥s(t) − 1n ⊗ s(t)
∥∥2

2 ≤ 2α2
out

1 + α2
out

∥∥s(t−1) − 1n ⊗ s(t−1)∥∥2
2 +

2α2
out

1 − α2
out

(
2L2∥∥x(t) − 1n ⊗ x(t)

∥∥2
2

+ 2L2∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2
2 + Sη2L2 · n

S−1

∑
s=0

∥∥v(t),s∥∥2
2

)

≤ αout
∥∥s(t−1) − 1n ⊗ s(t−1)∥∥2

2 +
2α2

out
1 − αout

(
2L2∥∥x(t) − 1n ⊗ x(t)

∥∥2
2

+ 2L2∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2
2 + Sη2L2 · n

S−1

∑
s=0

∥∥v(t),s∥∥2
2

)
. (B.22)

Combine with (B.19), after taking expectations, (B.22) can be further bounded as

E
∥∥s(t) − 1n ⊗ s(t)

∥∥2
2 < αoutE

∥∥s(t−1) − 1n ⊗ s(t−1)∥∥2
2 +

4α2
outL2

1 − αout
E
∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2

2

+
2α2

outSη2L2

1 − αout
· n

S−1

∑
s=0

E
∥∥v(t),s∥∥2

2 +
4α2

outL2

1 − αout

(
αinE

∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2
2

+
4α2

inη2

(1 − αin)2

(
E
∥∥s(t−1) − 1n ⊗ s(t−1)∥∥2

2 +
2α2

inη2L2

(1 − αin)p2 · n
S−1

∑
s=0

E
∥∥v(t),s∥∥2

2

))

=
(

αout +
4α2

outL2

1 − αout
· 4α2

inη2

(1 − αin)2

)
E
∥∥s(t−1) − 1n ⊗ s(t−1)∥∥2

2

+
4α2

outL2

1 − αout
(1 + αin)E

∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2
2

+
(2α2

outSη2L2

1 − αout
+

4α2
outL2

1 − αout
· 4α2

inη2

(1 − αin)2 · 2α2
inη2L2

(1 − αin)p2

)
· n

S−1

∑
s=0

E
∥∥v(t),s∥∥2

2

(i)
<
(

αout +
4α2

outL2

1 − αout
· 4α2

inη2

(1 − αin)2

)
E
∥∥s(t−1) − 1n ⊗ s(t−1)∥∥2

2

+
4α2

outL2

1 − αout
(1 + αin)E

∥∥x(t−1) − 1n ⊗ x(t−1)∥∥2
2

+
3α2

outSη2L2

1 − αout
· n

S−1

∑
s=0

E
∥∥v(t),s∥∥2

2, (B.23)

where (i) is obtained by applying the condition in (3.3) as follows

4α2
outL2

1 − αout
· 4α2

inη2

(1 − αin)2 · 2α2
inη2L2

(1 − αin)p2 =
α2

outη
2L2

1 − αout
· 32α4

inη2L2

(1 − αin)3 p2

≤ α2
outSη2L2

1 − αout
· 32α2

in(1 − αin)6

100(1 − αin)3

≤ α2
outSη2L2

1 − αout
,

APPENDIX B. APPENDIX FOR CHAPTER 3 104

where the inequalities are obtained by using S ≥ 1 and 0 ≤ αin < 1.

B.5.3 Linear system

Defining e(t) := e(t),0 =




L2E
∥∥x(t) − 1n ⊗ x(t)

∥∥2
2

E
∥∥s(t) − 1n ⊗ s(t)

∥∥2
2


 and b′(t) =




8α4
inη4L4

(1−αin)3 p2 · n ∑S−1
s=0 E

∥∥v(t),s
∥∥2

2

3α2
outSη2L2

1−αout
· n ∑S−1

s=0 E
∥∥v(t),s

∥∥2
2


, we construct

a linear system by putting together (B.19) and (B.23) as

e(t) ≤




αin
4α2

inη2L2

(1−αin)2

4α2
out

1−αout
(1 + αin) αout +

4α2
out

1−αout
· 4α2

inη2L2

(1−αin)2




︸ ︷︷ ︸
=:Gout

e(t−1) + b′(t) = Goute(t−1) + b′(t). (B.24)

Then, following the same argument as (B.16), we obtain

T

∑
t=1

e(t) ≤
∞

∑
t=1

Gt
out

(
e(0) +

T

∑
t=1

b′(t)
)

. (B.25)

Before continuing, we state the following claim about Gout which will be proven momentarily.

Claim 2. Under the choice of η in Theorem 6, the eigenvalues of Gout are in (−1, 1), and the Neumann series

converges,

∞

∑
t=0

Gt
out = (I2 − Gout)

−1 ≤




2
1−αin

8α2
inη2L2

(1−αin)3(1−αout)

16α2
out

(1−αin)(1−αout)2
2

1−αout


 .

With Claim 2 in hand, and the fact that e(0) = 0, we can bound the summation of outer loop consensus

errors by

64L2

1 − αin
·
(S

npb
+ 1
) T

∑
t=1

E
∥∥x(t) − 1n ⊗ x(t)

∥∥2
2 +

2α2
in

1 − αin

T

∑
t=1

E
∥∥s(t) − 1n ⊗ s(t)

∥∥2
2

= ς⊤out

T

∑
t=1

e(t)

≤ ς⊤out(I2 − Gout)
−1
(

e(0) +
T

∑
t=1

b′(t)
)

= ς⊤out(I2 − Gout)
−1

T

∑
t=1

b′(t), (B.26)

where ς⊤out =

[
64

1−αin
·
(

S
npb + 1

)
2α2

in
1−αin

]
.

Note that by elementary calculations,

ς⊤out(I2 − Gout)
−1

≤
[

64
1−αin

(
S

npb + 1
)

2α2
in

]



2
1−αin

8α2
inη2L2

(1−αin)3(1−αout)

16α2
out

(1−αin)(1−αout)2
2

1−αout




APPENDIX B. APPENDIX FOR CHAPTER 3 105

=

[
64

1−αin

(
S

npb + 1
)
· 2

1−αin
+

32α2
inα2

out
(1−αin)(1−αout)2

64
1−αin

(
S

npb + 1
)
· 8α2

inη2L2

(1−αin)3(1−αout)
+

4α2
in

1−αout

]

(i)
<

[
128

(1−αin)2

(
S

npb + 1
)
+

32α2
inα2

out
(1−αin)(1−αout)2 6α2

in +
4α2

in
1−αout

]

(ii)
<

[
128

(1−αin)2

(
S

npb + 1
)
+

32α2
inα2

out
(1−αin)(1−αout)2

10α2
in

1−αout

]
,

where we use (3.3) to prove (i), and 1/(1 − αin) ≥ 1 and 1/(1 − αout) ≥ 1 to prove (ii).

Thus, (B.26) can be bounded using (3.3) as

ς⊤out(I2 − Gout)
−1




8α4
inη4L4

(1−αin)3 p2

3α2
outSη2L2

1−αout




≤
(

128
(1 − αin)2

(S
npb

+ 1
)
+

32α2
inα2

out
(1 − αin)(1 − αout)2

)
8α4

inη4L4

(1 − αin)3 p2 +
10α2

in
1 − αout

· 3α2
outSη2L2

1 − αout

=
1024α4

inη4L4

(1 − αin)5 p2

(S
npb

+ 1
)
+

256α6
inα2

outη
4L4

(1 − αin)4(1 − αout)2 p2 +
30α2

inα2
outnpb · S/(npb)
(1 − αout)2 · η2L2

≤ 11α4
inη2L2 + 3α6

inα2
outη

2L2 +
30

100

<
11
25

,

which concludes the proof.

Proof of Claim 2. For simplicity, denote c = 4α2
inη2L2

(1−αin)2 and d = 4α2
out

1−αout
. Then Gout can be written as

Gout =




αin c

d(1 + αin) αout + cd


 ,

whose characteristic polynomial is

f (λ) = (αin − λ)(αout + cd − λ)− (1 + αin)cd.

First, note that f (1) can be bounded by

f (1) = (αin − 1)(αout + cd − 1)− (1 + αin)cd

= (1 − αin)(1 − αout)− 2cd > 0,

where the last inequality is due to the choice of η, namely,

cd =
4α2

out
1 − αout

· 4α2
inη2L2

(1 − αin)2 ≤ 1
6
(1 − αin)(1 − αout).

Combined with the trivial fact that f (−1) > 0 and f (αin) ≤ 0, all eigenvalues of Gout are in (−1, 1).

Consequently, the Neumann series converges, leading to

∞

∑
t=0

Gt
out = (I2 − Gout)

−1 =




(1−αin)2(1−αout)2−16α2
inα2

outη2L2

(1−αin)3(1−αout)2−32α2
inα2

outη2L2
4α2

in(1−αout)η2L2

(1−αin)3(1−αout)2−32α2
inα2

outη2L2

4(1−αin)2(1+αin)α2
out

(1−αin)3(1−αout)2−32α2
inα2

outη2L2
(1−αin)3(1−αout)

(1−αin)3(1−αout)2−32α2
inα2

outη2L2




APPENDIX B. APPENDIX FOR CHAPTER 3 106

≤




2
1−αin

8α2
inη2L2

(1−αin)3(1−αout)

16α2
out

(1−αin)(1−αout)2
2

1−αout


 ,

where we use the condition in (3.3) to prove 32α2
inα2

outη
2L2 ≤ 32

100 (1 − αin)6(1 − αout)2 < 1
2 (1 − αin)3(1 −

αout)2 to bound the denominator.

Appendix C

Appendix for Chapter 4

C.1 Technical lemmas

We first recall some classical inequalities that helps our derivation.

Proposition 1. Let {v1, . . . , vτ} be a set of τ vectors in Rd. Then, ∀β > 0, we have

⟨vi, vj⟩ ≤
β

2
∥u∥2 +

1
2β

∥v∥2, (C.1)

∥vi + vj∥2 ≤ (1 + β)∥vi∥2 +

(
1 +

1
β

)
∥vj∥2, (C.2)

∥∥∥∥∥
τ

∑
i=1

vi

∥∥∥∥∥

2

≤ τ
τ

∑
i=1

∥vi∥2. (C.3)

Here, (C.1) is referred as the Cauchy-Schwarz inequality, (C.2) and (C.3) are referred as Young’s inequality.

Additional notation The following notation will be used throughout our proof:

∇F(x) := [∇ f1(x),∇ f2(x), . . . ,∇ fn(x)], ∇̃bF(x) := [∇̃b f1(x), ∇̃b f2(x), . . . , ∇̃b fn(x)].

Properties of the mixing matrix We make note of several useful properties of the mixing matrix in the

following lemma.

Lemma 7. Let W be a mixing matrix satisfying Definition 1. For any matrix M ∈ Rd×n and m = 1
n M1n, we have

∥∥∥MW − m1⊤n
∥∥∥

2

F
=
∥∥∥MW − m1⊤n W

∥∥∥
2

F
≤ α

∥∥∥M − m1⊤n
∥∥∥

2

F
. (C.4)

In addition, for any γ ∈ (0, 1], the matrix W̃ = I + γ(W − I) satisfies Definition 1 with a spectral gap at least

γ(1 − α).

107

APPENDIX C. APPENDIX FOR CHAPTER 4 108

Proof. The first claim follows from the spectral decomposition of W . Since W is a doubly stochastic matrix,

the largest absolute eigenvalue of W is 1 and the corresponding eigenvector is 1n. Let v2, . . . , vn be the

eigenvectors of W corresponding to the remaining eigenvalues. Then, we have

∥∥∥MW − m1⊤n
∥∥∥

2

F
=
∥∥∥MW − m1⊤n W

∥∥∥
2

F
=

r

∑
i=1

∥W(mi − mi1n)∥2
2,

where the first equality follows from 1⊤n W = 1⊤n , mi denotes the transpose of i-th row of matrix M, and mi

denotes the average of mi. Now we decompose mi − mi1n using the eigenvectors of W . Noting that

1⊤n (mi − mi1n) = 1⊤n mi − 1⊤n 1n
1
n

1⊤n mi = 0,

and thus we can write

mi − mi1n =
n

∑
j=2

cjvj

for some {cj}n
j=2. Then, we have

∥W(mi −mi1n)∥2
2 = ∥W

n

∑
j=2

cjvj∥2
2 ≤ (1− (1− α))2

n

∑
j=2

c2
j ≤ (1− (1− α))

n

∑
j=2

c2
j = (1− (1− α))∥mi −mi1n∥2

2,

and we conclude the proof of this claim.

For the second claim, recall the fact that if v is an eigenvector of W corresponding to the eigenvalue λ,

then v is also an eigenvector of W̃ with the corresponding eigenvalue (1 − γ) + γλ. This claim follows

from simple computation based on this relation.

A key consequence of gradient tracking Before diving in the proofs of the main theorems, we record a

key property of gradient tracking. Specifically, we have the following lemma.

Lemma 8. If v(0) = 1
n ∇̃bF(X(0))1n, then for any t ≥ 1, we have

v(t) =
1
n
∇̃bF(X(t))1n, (C.5)

and

x(t+1) = x(t) − η

n
∇̃bF(X(t))1n. (C.6)

Proof. We first prove (C.5) by induction. For the base case (t = 0), the relation (C.5) is obviously true by the

means of initialization. Now suppose that at the t-th iteration, the relation (C.5) is true, i.e.,

v(t) =
1
n
∇̃bF(X(t))1n,

APPENDIX C. APPENDIX FOR CHAPTER 4 109

then at the (t + 1)-th iteration, we have

v(t+1) =
1
n

V (t+1)1n

=
1
n

V (t)1n +
1
n

γG(t)(W − I)1n +
1
n

(
∇̃bF(X(t+1))− ∇̃bF(X(t))

)
1n (C.7)

=
1
n

V (t)1n +
1
n

(
∇̃bF(X(t+1))− ∇̃bF(X(t))

)
1n

=
1
n
∇̃bF(X(t+1))1n.

where (C.7) follows from the update rule of BEER (cf. Line 6), the penultimate line follows from W1n = 1n,

and the last line follows from the induction hypothesis at the t-th iteration. Thus the induction hypothesis

is also true at the (t + 1)-th iteration, and we complete the proof of (C.5).

For (C.6), it follows from the update rule of BEER (cf. Line 3) that

x(t+1) = x(t) +
γ

n
H(t)(W − I)1 − η

n
V (t)1

= x(t) − ηv(t) = x(t) − η

n
∇̃bF(X(t))1n,

where the second line uses W1n = 1n and (C.5).

C.2 Recursive relations of main errors

For convenience, we repeat the definitions in (4.2) below.

(compression approximation error:) Ω(t)
1 = E

∥∥∥H(t) − X(t)
∥∥∥

2

F
, Ω(t)

2 = E

∥∥∥G(t) − V (t)
∥∥∥

2

F
,

(consensus error:) Ω(t)
3 = E

∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F
, Ω(t)

4 = E

∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F
,

(gradient norm:) Ω(t)
5 = E∥v(t)∥2

2.

Lemma 9 creates induction inequalities for {Ω(t)
i } that captures the approximation errors induced

by compression and the consensus errors due to the decentralized setting. Then, we can show that the

Lyapunov function defined in (4.1) descends, which leads to the claimed convergence results in Theorem 7

and Theorem 8.

Lemma 9. Suppose Assumptions 5 and 7 hold, then for any t ≥ 0, we have

Ω(t+1)
1 ≤

(
1 − ρ

2
+

6γ2C
ρ

)
Ω(t)

1 + 0 · Ω(t)
2 +

6γ2C
ρ

Ω(t)
3 +

6η2

ρ
Ω(t)

4 +
6nη2

ρ
Ω(t)

5 , (C.8a)

Ω(t+1)
2 ≤ 18γ2CL2

ρ
Ω(t)

1 +

(
1 − ρ

2
+

6γ2C
ρ

)
Ω(t)

2 +
18γ2CL2

ρ
Ω(t)

3

+
6γ2C + 18L2η2

ρ
Ω(t)

4 +
18L2η2n

ρ
Ω(t)

5 +
12nσ2

bρ
, (C.8b)

APPENDIX C. APPENDIX FOR CHAPTER 4 110

Ω(t+1)
3 ≤ 6γC

(1 − α)
Ω(t)

1 + 0 · Ω(t)
2 +

(
1 − γ(1 − α)

2

)
Ω(t)

3 +
6η2

γ(1 − α)
Ω(t)

4 + 0 · Ω(t)
5 , (C.8c)

Ω(t+1)
4 ≤ 18γCL2

(1 − α)
Ω(t)

1 +
6γC

(1 − α)
Ω(t)

2 +
18γCL2

(1 − α)
Ω(t)

3 +

(
1 − γ(1 − α)

2
+

18L2η2

γ(1 − α)

)
Ω(t)

4

+
18nη2L2

γ(1 − α)
· Ω(t)

5 +
12nσ2

bγ(1 − α)
, (C.8d)

where

C =
∥∥W − I

∥∥2
op = σmax(W − I)2 (C.9)

is the square of the maximum singular value of the matrix W − I.

Note that the eigenvalues of W and I all lies in [−1, 1], and thus clearly C ≤ 4.

Proof. We will establish the inequalities in (C.8) one by one.

Bounding Ω(t)
1 in (C.8a) First from the update rule of BEER (cf. Line 5), we have

∥∥∥H(t+1) − X(t+1)
∥∥∥

2

F
=
∥∥∥H(t) + C(X(t+1) − H(t))− X(t+1)

∥∥∥
2

F

≤ (1 − ρ)
∥∥∥X(t+1) − H(t)

∥∥∥
2

F

≤
(

1 − ρ

2

) ∥∥∥X(t) − H(t)
∥∥∥

2

F
+

2
ρ

∥∥∥X(t+1) − X(t)
∥∥∥

2

F
, (C.10)

where the first inequality comes from the definition of compression operators (Definition 5) and the second

inequality comes from Young’s inequality. It then boils down to bound
∥∥∥X(t+1) − X(t)

∥∥∥
2

F
, for which we

have
∥∥∥X(t+1) − X(t)

∥∥∥
2

F
=
∥∥∥γH(t)(W − I)− ηV (t)

∥∥∥
2

F
(C.11)

=
∥∥∥γ(H(t) − X(t))(W − I) + γ(X(t) − x(t)1⊤n)(W − I)− ηV (t)

∥∥∥
2

F

≤ 3γ2C
∥∥∥X(t) − H(t)

∥∥∥
F
+ 3γ2C

∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F
+ 3η2

∥∥∥V (t)
∥∥∥

2

F

= 3γ2C
∥∥∥X(t) − H(t)

∥∥∥
F
+ 3γ2C

∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F
+ 3η2

∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F
+ 3η2n∥v(t)∥2

2,

(C.12)

where in the first line we use the update rule of BEER (cf. Line 3), in the second line we use the property of

the mixing matrix 1⊤n W = 1⊤n , and in the third line, we apply Young’s inequality (cf. (C.3)). In the fourth

line, we use ∥v∥2
2 = ∥v − v̄1n∥2

2 + nv̄2 for any vector v with an average v̄. Plugging this back into (C.10),

we get
∥∥∥H(t+1) − X(t+1)

∥∥∥
2

F
≤
(

1 − ρ

2
+

6γ2C
ρ

)∥∥∥X(t) − H(t)
∥∥∥

2

F
+

6γ2C
ρ

∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F

+
6η2

ρ

∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F
+

6nη2

ρ
∥v(t)∥2

2.

Plugging in the definitions of Ω(t)
i , we obtain (C.8a).

APPENDIX C. APPENDIX FOR CHAPTER 4 111

Bounding Ω(t)
2 in (C.8b) Similar to the derivation of (C.8a), by applying the update rule of G(t) in BEER

(Line 8), and Young’s inequality, we have

∥∥∥V (t+1) − G(t+1)
∥∥∥

2

F
=
∥∥∥G(t) + C(V (t+1) − G(t))− V (t+1)

∥∥∥
2

F

≤ (1 − ρ)
∥∥∥G(t) − V (t+1)

∥∥∥
2

F

≤
(

1 − ρ

2

) ∥∥∥G(t) − V (t)
∥∥∥

2

F
+

2
ρ

∥∥∥V (t+1) − V (t)
∥∥∥

2

F
. (C.13)

It then boils down to bound
∥∥∥V (t+1) − V (t)

∥∥∥
2

F
. By the update rule of BEER (cf. Line 6), we have

∥∥∥V (t+1) − V (t)
∥∥∥

2

F
=
∥∥∥γG(t)(W − I) + (∇̃bF(X(t+1))− ∇̃bF(X(t)))

∥∥∥
2

F

=
∥∥∥γ(G(t) − V (t))(W − I) + γ(V (t) − v(t)1⊤n)(W − I) + (∇̃bF(X(t+1))− ∇̃bF(X(t))

∥∥∥
2

F
(i)
≤ 3γ2C

∥∥∥G(t) − V (t)
∥∥∥

2

F
+ 3γ2C

∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F
+ 3

∥∥∥∇̃bF(X(t+1))− ∇̃bF(X(t))
∥∥∥

2

F
(ii)
≤ 3γ2C

∥∥∥G(t) − V (t)
∥∥∥

2

F
+ 3γ2C

∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F
+ 3

∥∥∥∇F(X(t+1))−∇F(X(t))
∥∥∥

2

F
+

6nσ2

b
(iii)
≤ 3γ2C

∥∥∥G(t) − V (t)
∥∥∥

2

F
+ 3γ2C

∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F
+ 3L2

∥∥∥X(t+1) − X(t)
∥∥∥

2

F
+

6nσ2

b
(iv)
≤ 3γ2C

∥∥∥G(t) − V (t)
∥∥∥

2

F
+ (3γ2C + 9L2η2)

∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F

+ 9γ2CL2
∥∥∥X(t) − H(t)

∥∥∥
2

F
+ 9γ2CL2

∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F
+ 9L2η2n∥v(t)∥2

2 +
6nσ2

b
,

where (i) comes from Young’s inequality (cf. (C.3)) and basic facts of matrix norm (cf. (C.9)), (ii) comes

from the bounded variance assumption (Assumption 7), (iii) comes from the smoothness assumption

(Assumption 5), and (iv) follows from (C.12). Combining the above inequality with (C.13), we have

∥∥∥V (t+1) − G(t+1)
∥∥∥

2

F
≤
(

1 − ρ

2

) ∥∥∥G(t) − V (t)
∥∥∥

2

F
+

2
ρ

∥∥∥V (t+1) − V (t)
∥∥∥

2

F

≤
(

1 − ρ

2
+

6γ2C
ρ

)∥∥∥G(t) − V (t)
∥∥∥

2

F
+

6γ2C + 18L2η2

ρ

∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F

+
18γ2CL2

ρ

∥∥∥X(t) − H(t)
∥∥∥

2

F
+

18γ2CL2

ρ

∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F
+

18L2η2n
ρ

∥v(t)∥2
2 +

12nσ2

bρ
.

Plugging in the definitions of Ω(t)
i , we obtain (C.8b).

Bounding Ω(t)
3 in (C.8c) To bound the consensus error

∥∥∥X(t+1) − x(t+1)1⊤n
∥∥∥

2

F
, by the update rule of BEER

(cf. Line 3), we have

∥∥∥X(t+1) − x(t+1)1⊤n
∥∥∥

2

F

=
∥∥∥X(t) + γH(t)(W − I)− ηV (t) − x(t)1⊤n + ηv(t)1⊤n

∥∥∥
2

F
(i)
=
∥∥∥X(t)W̃ − x(t)1⊤n + γ(H(t) − X(t))(W − I)− ηV (t) + ηv(t)1⊤n

∥∥∥
2

F

APPENDIX C. APPENDIX FOR CHAPTER 4 112

(ii)
≤ (1 + β)(1 − γ(1 − α))

∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F
+

(
1 +

1
β

)(
2γ2

∥∥∥(H(t) − X(t))(W − I)
∥∥∥

2

F
+ 2η2

∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F

)

(iii)
≤
(

1 − γ(1 − α)

2

)∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F
+

(
1 +

2
γ(1 − α)

)(
2γ2

∥∥∥(H(t) − X(t))(W − I)
∥∥∥

2

F
+ 2η2

∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F

)

(iv)
≤
(

1 − γ(1 − α)

2

)∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F
+

(
1 +

2
γ(1 − α)

)(
2γ2C

∥∥∥H(t) − X(t)
∥∥∥

2

F
+ 2η2

∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F

)

≤
(

1 − γ(1 − α)

2

)∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F
+

6γC
(1 − α)

∥∥∥H(t) − X(t)
∥∥∥

2

F
+

6η2

γ(1 − α)

∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F
,

where (i) follows from the definition W̃ = I + γ(W − I), (ii) follows from applying Young’s inequality

twice and Lemma 7, i.e.

∥∥∥X(t)W̃ − x(t)1⊤n
∥∥∥

F
≤ (1 − γ(1 − α))

∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F
,

(iii) follows by choosing β = γ(1 − α)/2, and (iv) uses the definition of C (cf. (C.9)). Plugging in the

definitions of Ω(t)
i , we obtain (C.8c).

Bounding Ω(t)
4 in (C.8d) First, note that

∥∥∥V (t+1) − v(t+1)1⊤n
∥∥∥

2

F
=
∥∥∥V (t+1) − v(t)1⊤n + v(t)1⊤n − v(t+1)1⊤n

∥∥∥
2

F

=
∥∥∥V (t+1) − v(t)1⊤n

∥∥∥
2

F
− n∥v(t+1) − v(t)∥2

2

≤
∥∥∥V (t+1) − v(t)1⊤n

∥∥∥
2

F
.

Thus by the update rule of BEER (cf. Line 6), we have

∥∥∥V (t+1) − v(t+1)1⊤n
∥∥∥

2

F

≤
∥∥∥V (t+1) − v(t)1⊤n

∥∥∥
2

F

=
∥∥∥V (t) + γG(t+1)(W − I) + ∇̃bF(X(t+1))− ∇̃bF(X(t))− v(t)1⊤n

∥∥∥
2

F

=
∥∥∥(V (t)W̃ − v(t)1⊤n) + γ(G(t+1) − V (t))(W − I) + (∇̃bF(X(t+1))− ∇̃bF(X(t)))

∥∥∥
2

F
(i)
≤
(

1 − γ(1 − α)

2

)∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F
+

(
1 +

2
γ(1 − α)

)(
2γ2C

∥∥∥G(t) − V (t)
∥∥∥

2

F
+ 2L2

∥∥∥X(t+1) − X(t)
∥∥∥

2

F
+

4nσ2

b

)

(ii)
≤
(

1 − γ(1 − α)

2

)∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F
+

6γC
(1 − α)

∥∥∥G(t) − V (t)
∥∥∥

2

F
+

6L2

γ(1 − α)

∥∥∥X(t+1) − X(t)
∥∥∥

2

F
+

12nσ2

bγ(1 − α)

≤
(

1 − γ(1 − α)

2
+

18L2η2

γ(1 − α)

)∥∥∥V (t) − v(t)1⊤n
∥∥∥

2

F
+

6γC
(1 − α)

∥∥∥G(t) − V (t)
∥∥∥

2

F

+
18γCL2

(1 − α)

∥∥∥X(t) − H(t)
∥∥∥

2

F
+

18γCL2

(1 − α)

∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F
+

18nη2L2

γ(1 − α)
∥v(t)∥2

2 +
12nσ2

bγ(1 − α)
,

where (i) and (ii) are obtained similarly as the derivation of (C.8c), and the last line follows from (C.12).

Thus, we can get (C.8d) by plugging in the definitions of Ω(t)
i and conclude the proof.

APPENDIX C. APPENDIX FOR CHAPTER 4 113

C.3 Proof of Theorem 7

This proof makes use of Lemma 8 and Lemma 9 to construct a Lyapunov function and then demonstrates

its descending property using a linear system argument.

Step 1: establishing a descent property of the function value First, we have the following inequality

captures the “descent” of the function value.

f (x(t+1))
(i)
≤ f (x(t))− η

〈
v(t),∇ f (x(t))

〉
+

η2L
2

∥v(t)∥2
2

= f (x(t))− η

2
∥∇ f (x(t))∥2

2 −
η

2
∥v(t)∥2

2 +
η

2

∥∥∇ f (x(t))− v(t)∥∥2
2 +

η2L
2

∥v(t)∥2
2

= f (x(t))− η

2
∥∇ f (x(t))∥2

2 +
η

2

∥∥∇ f (x(t))− v(t)∥∥2
2 −

(
η

2
− η2L

2

)
∥v(t)∥2

2

(ii)
≤ f (x(t))− η

2
∥∇ f (x(t))∥2

2 +
η

2n2 ∥∇F(x(t))1n − ∇̃bF(X(t))1n∥2
2 −

(
η

2
− η2L

2

)
∥v(t)∥2

2

= f (x(t))− η

2
∥∇ f (x(t))∥2

2 +
η

2n2 ∥∇F(x(t))1n −∇F(X(t))1n∥2
2 −

(
η

2
− η2L

2

)
∥v(t)∥2

2

+
η

2n2 ∥∇F(X(t))1n − ∇̃bF(X(t))1n∥2
2

+
η

n2

〈
∇F(X(t))1n − ∇̃bF(X(t))1n,∇F(x(t))1n −∇F(X(t))1n

〉
,

where (i) comes from the L-smooth assumption (Assumption 5), (ii) comes from Lemma 8. Take expectation

on both sides, and using the bounded variance assumption (Assumption 7) and independence of stochastic

samples, we get

E f (x(t+1)) ≤ E f (x(t))− η

2
E∥∇ f (x(t))∥2

2 +
η

2n2 E∥∇F(x(t))1n −∇F(X(t))1n∥2
2 −

(
η

2
− η2L

2

)
E∥v(t)∥2

2 +
ησ2

2bn
(i)
≤ E f (x(t))− η

2
E∥∇ f (x(t))∥2

2 +
η

2n
E

∥∥∥∇F(X(t))−∇F(x(t))
∥∥∥

2

F
−
(

η

2
− η2L

2

)
E∥v(t)∥2

2 +
ησ2

2bn
(ii)
≤ E f (x(t))− η

2
E∥∇ f (x(t))∥2

2 +
ηL2

2n
E

∥∥∥X(t) − x(t)1⊤n
∥∥∥

2

F
−
(

η

2
− η2L

2

)
E∥v(t)∥2

2 +
ησ2

2bn
,

where (i) comes from Young’s inequality, and (ii) comes from the L-smooth assumption (Assumption 5)

again. Finally, by substituting definitions of Ω(t)
3 and Ω(t)

5 , we reach

E f (x(t+1)) ≤ E f (x(t))− η

2
E∥∇ f (x(t))∥2

2 +
ηL2

2n
Ω(t)

3 −
(

η

2
− η2L

2

)
Ω(t)

5 +
ησ2

2bn
. (C.14)

Step 2: constructing the Lyapunov function By representing

Ω(t) = [Ω(t)
1 Ω(t)

2 Ω(t)
3 Ω(t)

4]⊤, (C.15)

APPENDIX C. APPENDIX FOR CHAPTER 4 114

Lemma 9 can be written more compactly as

Ω(t+1) ≤




1 − ρ
2 + 6γ2C

ρ 0 6γ2C
ρ

6η2

ρ

18γ2CL2

ρ 1 − ρ
2 + 6γ2C

ρ
18γ2CL2

ρ
6γ2C+18L2η2

ρ

6γC
(1−α)

0 1 − γ(1−α)
2

6η2

γ(1−α)

18γCL2

(1−α)
6γC
(1−α)

18γCL2

(1−α)
1 − γ(1−α)

2 + 18L2η2

γ(1−α)




︸ ︷︷ ︸
=:A

Ω(t) +




6nη2

ρ

18L2η2n
ρ

0
18nη2L2

γ(1−α)




︸ ︷︷ ︸
=:b1

Ω(t)
5 +




0

12n
ρ

0

12n
γ(1−α)




︸ ︷︷ ︸
=:b2

σ2

b
.

(C.16)

Define the Lyapunov function

Φ(t) = E f (x(t))− f ⋆ +
c1L
n

· Ω(t)
1 +

c2(1 − α)2

nL
· Ω(t)

2 +
c3L
n

· Ω(t)
3 +

c4(1 − α)2

nL
Ω(t)

4

= E f (x(t))− f ⋆ + s⊤Ω(t), (C.17)

where

s =

[
c1L
n

c2(1 − α)2

nL
c3L
n

c4(1 − α)2

nL

]

for some constants c1, c2, c3, c4 that will be specified later.

By (C.16) from Lemma 9 and the descent property (C.14), we have

Φ(t+1) = E f (x(t+1))− f ⋆ + s⊤Ω(t+1)

≤ E f (x(t))− f ⋆ − η

2
E∥∇ f (x(t))∥2

2 +
ηL2

2n
Ω(t)

3 −
(

η

2
− η2L

2

)
Ω(t)

5 +
ησ2

2bn

+ s⊤
(

AΩ(t) + Ω(t)
5 b1 +

σ2

b
b2

)
(C.18)

≤ Φ(t) − η

2
E∥∇ f (x(t))∥2

2 −
(

η

2
− η2L

2

)
Ω(t)

5 +
ησ2

2bn
+ (s⊤A − s⊤ + q⊤)Ω(t) + s⊤(Ω(t)

5 b1 + b2
σ2

b
)

= Φ(t) − η

2
E∥∇ f (x(t))∥2

2 + (s⊤A − s⊤ + q⊤)Ω(t) −
(

η

2
− η2L

2
− s⊤b1

)
Ω(t)

5 +
(η

2n
+ s⊤b2

) σ2

b
,

where q = [0 0 ηL2

2n 0]⊤. For a moment we assume that there exist some constants c1, c2, c3, c4 > 0 such

that

s⊤(A − I) + q⊤ ≤ 0, (C.19a)

η

2
− η2L

2
− s⊤b1 ≥ 0, (C.19b)

leading to

Φ(t+1) ≤ Φ(t) − η

2
E∥∇ f (x(t))∥2

2 +
(η

2n
+ s⊤b2

) σ2

b
≤ Φ(t) − η

2
E∥∇ f (x(t))∥2

2 +
36c4σ2

cγLbρ
.

The proof is thus completed by recursing the above relation over t = 0, . . . , T − 1.

APPENDIX C. APPENDIX FOR CHAPTER 4 115

Step 3: verifying (C.19) It boils down to verify (C.19) is feasible, and it is equivalent to verify there exist

parameters c1, c2, c3, c4, γ, η > 0 satisfying the following matrix inequality:




I − A⊤

−b1


diag

[
L
n

,
(1 − α)2

nL
,

L
n

,
(1 − α)2

nL

]




c1

c2

c3

c4



≥




q
η2L

2 − η
2


 .

Note that by choosing γ = cγ(1 − α)ρ, η = cηγ(1 − α)2/L, and setting cγ ≤ 1
6
√

C
and cη ≤ 1

9 , we get

1 − ρ

2
+

6γ2C
ρ

≤ 1 − ρ

4
, 1 − γ(1 − α)

2
+

18L2η2

γ(1 − α)
≤ 1 − γ(1 − α)

4
. (C.20)

Now, it suffices to show that there exist c1, c2, c3, c4, cγ, cη > 0 such that the following inequalities are

satisfied:



ρL
4n − 18c2

γρ(1−α)4L
n − 6cγρL

n − 18Ccγρ(1−α)2L
n

0 ρ(1−α)2

4nL 0 − 6Ccγρ(1−α)2

nL

− 6cγ(1−α)γCL
n − 18cγ(1−α)γL

n
γ(1−α)L

2n − 18Cγ(1−α)L
n

− 6c2
η cγγ(1−α)3

nL − 6Cγ(1−α)3(1+3c2
η(1−α)4)

nL − 6c2
ηγ(1−α)3

nL
γ(1−α)3

4nL

−12cηcγ(1 − α)3 η
2 −36cηcγ(1 − α)5 η

2 0 −36cη(1 − α) η
2







c1

c2

c3

c4



≥




0

0
cηγ(1−α)L

2n

0
(
cηcγρ(1 − α)3 − 1

) η
2




.

Given ρ ≤ 1, (1 − α) ≤ 1, this can be further reduced to show the existence of c1, c2, c3, c4, cγ, cη > 0 such

that



1 −72Cc2
γ −24Ccγ −72Ccγ

0 1 0 −24Ccγ

−12Ccγ −35Ccγ 1 −36C

−24c2
ηcγ −24cγ(1 + 3c2

η) −24c2
η 1

−12cηcγ −36cηcγ 0 −36cη







c1

c2

c3

c4



≥




0

0

cη

0

−1 + cηcγ




.

This can be easily verified by noting that as long as cη and cγ are set sufficiently small, it is straightforward

to find feasible c1, c2, c3, c4.

C.4 Proof of Theorem 8

The proof strategy of Theorem 8 is similar to that of Theorem 7. However, we need to create a slightly

different linear system to improve convergence under the new assumption.

Denote κ := L/µ. Taking the same Lyapunov function Φ(t) in (C.17), by the same argument of

Appendix C.3 up to (C.18), we have

Φ(t+1) ≤ E f (x(t))− f ⋆ − η

2
E∥∇ f (x(t))∥2

2 +
ηL2

2n
Ω(t)

3 −
(

η

2
− η2L

2

)
Ω(t)

5 +
ησ2

2bn
+ s⊤

(
AΩ(t) + Ω(t)

5 b1 +
σ2

b
b2

)

APPENDIX C. APPENDIX FOR CHAPTER 4 116

≤ (1 − ηµ)(E f (x(t))− f ⋆) + (s⊤A + q⊤)Ω(t) −
(

η

2
− η2L

2
− s⊤b1

)
Ω(t)

5 +
(η

2n
+ s⊤b2

) σ2

b

= (1 − ηµ)Φ(t) +
(

s⊤A − (1 − ηµ)s⊤ + q⊤
)

Ω(t) −
(

η

2
− η2L

2
− s⊤b1

)
Ω(t)

5 +
(η

2n
+ s⊤b2

) σ2

b
,

where q = [0 0 ηL2

2n 0]⊤, and the second inequality follows from the PL condition (Assumption 6). If

we can establish that there exist there exist some constants c1, c2, c3, c4 such that

s⊤(A − (1 − ηµ)I) + q⊤ ≤ 0, (C.21a)

η

2
− η2L

2
− s⊤b1 ≥ 0, (C.21b)

we arrive at

Φ(t+1) ≤ (1 − ηµ)Φ(t) +
(η

2n
+ s⊤b2

) σ2

b
≤ (1 − ηµ)Φ(t) +

36c4σ2

cγLbρ
.

Recursing the above relation then complete the proof.

It then boils down to establish (C.21). By similar arguments as Appendix C.3, in view of (C.20) and

ρ ≤ 1, (1 − α) ≤ 1, it is sufficient to show there exist constants c1, c2, c3, c4, cγ, cη > 0 such that




1 − 4cηcγ

κ −72Cc2
γ −24Ccγ −72Ccγ

0 1 − 4cηcγ

κ 0 −24Ccγ

−12Ccγ −35Ccγ 1 − 2cη

κ −36C

−24c2
ηcγ −24cγ(1 + 3c2

η) −24c2
η 1 − 4cη

κ

−12cηcγ −36cηcγ 0 −36cη







c1

c2

c3

c4



≥




0

0

cη

0

−1 + cηcγ




.

This can be easily verified by noting that as long as cη and cγ are set sufficiently small, it is straightforward

to find feasible c1, c2, c3, c4.

Appendix D

Appendix for Chapter 5

D.1 Proof of Theorem 9

This section proves Theorem 9 in the following steps: 1) define privacy loss and moment generating

function, 2) define mechanisms and sub-mechanisms, 3) bound overall moment generating function and

show the choice of perturbation variance satisfies all conditions.

Moment generating function Let o and aux denote an outcome and an auxiliary input, respectively.

Then, we can define the privacy loss of an outcome o on neighboring dataset Z and Zi as

c(o;M, aux, Z, Zi) = log
P
(
M(aux, Z) = o

)

P
(
M(aux, Zi) = o

) ,

and its log moment generating functions as

αMi (λ; aux, Z, Zi) = log Eo∼M(aux,Z)
[

exp
(
λc(o;M, aux, Z, Zi)

)]
.

Take maximum over conditions, the unconditioned log moment generating function is

α̂Mi (λ) = max
aux,Z,Zi

αMi (λ; aux, Z, Zi).

Sub-mechanisms Definition 7 defines the LDP mechanism, but it is not enough to model decentralized

algorithms. To model the perturbation operation happens on agent i at time t, we define a sub-mechanism

as M(t)
i : D → R, where i ∈ [n], t ∈ [T], which can be understood as the perturbation added on agent i

at time t. In addition, we define another mechanism C : R → R to model the compression operator and

C ◦M(t)
i to represent the full update at an agent, and use M to represent the full algorithm.

117

APPENDIX D. APPENDIX FOR CHAPTER 5 118

Proof of LDP The overall log moment generating function for agent i can be bounded using [LZLC22,

Lemma 2] as

α̂Mi (λ) ≤
T

∑
t=1

α̂
C◦M(t)

i
i (λ) ≤

T

∑
t=1

α̂
M(t)

i
i (λ).

Let q = b
m denote the probability each data sample is chose. For agent i and λ > 0, assume q ≤ τ

16σp

and λ ≤ σ2
p

τ2 log τ
qσp

. We can apply [ACG+16, Lemma 3] to bound each α̂
M(t)

i
i (λ) as

α̂M
(t)
i (λ) ≤ q2λ(λ + 1)τ2

(1 − q)σ2
p

+ O
(q3λ3τ3

σ3
p

)
= O

(q2λ2τ2

σ2
p

)
.

To conclude the proof, we can verify there exists some λ that satisfies the following inequalities when

choosing σp =
τq
√

T log(1/δ)
ϵ and q = b

m ,

(Tqτλ

σp

)2
≤ λϵ

2
,

exp(−λϵ/2) ≤ δ,

λ ≤
σ2

p

τ2 log
τ

qσp
.

D.2 Proof of Theorem 10

This section proves Theorem 10 in the following 4 subsections: Appendix D.2.1 derives the descent

inequality, Appendices D.2.2 and D.2.3 create two linear systems to bound the sum of consensus errors in

the descent inequality, and finally Appendix D.2.4 specifies hyper parameters to obtain convergence rate.

To reuse this section’s results in Appendix D.3, we assume Assumption 10 in deriving descent lemma

and linear systems, and lift this assumption when computing convergence rate in Appendix D.2.4 using

σg ≤ 2τ.

D.2.1 Function value descent

Using Taylor expansion, and taking expectation conditioned on time t,

Et
[

f (x(t+1))− f (x(t))
]
≤ Et⟨∇ f (x(t)),−ηv(t+1)⟩+ L

2
Et
∥∥ηv(t+1)∥∥2

2

= −η⟨∇ f (x(t)), Et[v(t+1)]⟩+ η2L
2

Et
∥∥v(t+1)∥∥2

2

= −η⟨∇ f (x(t)), Et[g
(t+1)
τ + e(t+1)]⟩+ η2L

2
Et
∥∥v(t+1)∥∥2

2,

where the last equality is due to v(t) = g(t)p that can be proved by induction.

Because Et[e
(t)
i] = 0d and stochastic gradients are unbiased,

Et
[

f (x(t+1))− f (x(t))
]

APPENDIX D. APPENDIX FOR CHAPTER 5 119

= −η⟨∇ f (x(t)),∇F(X(t))(1
n 1n)⟩+

η2L
2

Et
∥∥v(t+1)∥∥2

2

=
η

2

(∥∥∇ f (x(t))−∇F(X(t))(1
n 1n)

∥∥2
2 −

∥∥∇ f (x(t))
∥∥2

2 −
∥∥∇F(X(t))(1

n 1n)
∥∥2

2

)
+

η2L
2

Et
∥∥v(t+1)∥∥2

2

≤ −η

2

∥∥∇ f (x(t))
∥∥2

2 +
ηL2

2n
∥∥X(t) − x(t)1⊤n

∥∥2
F +

η2L
2

Et
∥∥v(t+1)∥∥2

2 −
η

2

∥∥∇F(X(t))(1
n 1n)

∥∥2
2, (D.1)

where the last inequality is due to Assumption 2.

Let ∆ = E
[

f (x(0))
]
− f ⋆. Take full expectation and average (D.1) over t = 1, . . . , T, the expected utility

can be bounded by

1
T

T

∑
t=1

E
∥∥∇ f (x(t))

∥∥2
2 ≤ 2∆

ηT
+

1
T
· L2

n

T

∑
t=1

E
∥∥X(t) − x(t)1⊤n

∥∥2
F

+
1
T
· ηL

T

∑
t=1

E
∥∥v(t+1)∥∥2

2 −
1
T

T

∑
t=1

E
∥∥∇F(X(t))(1

n 1n)
∥∥2

2. (D.2)

D.2.2 Sum of variable consensus errors

This subsection creates a linear system to bound ∑T
t=1 E

∥∥X(t) − x(t)1⊤n
∥∥2

F by ∑T
t=1 E

∥∥V (t) − v(t)1⊤n
∥∥2

F and

∑T
t=1 E

∥∥v(t)
∥∥2

2. To simplify notations, let Ŵ = In + γ(W − In), and denote the mixing rate of Ŵ by

α̂ =
∥∥Ŵ − (1

n 1n1⊤n)
∥∥

op. Lemma 10 analyzes the mixing rate of the regularized mxing matrix.

Lemma 10 (Mixing rate of regularized mixing matrix). Assuming 0 < γ ≤ 1. The mixing rate of Ŵ can be

bounded as

α̂ ≤ 1 + γ(α − 1). (D.3)

Proof of Lemma 10. Let λ1 = 1 > λ2 ≥ . . . ≥ λn > −1 denote the eigenvalues of W . Corresponding

eigenvalues of Ŵ are 1 + γ(λi − 1), i = 1, . . . , n.

The mixing rate of Ŵ is

α̂ = max
{∣∣1 + γ(λ2 − 1)

∣∣,
∣∣1 + γ(λn − 1)

∣∣}

≤ max
{
|1 − γ|+ γ|λ2|, |1 − γ|+ γ|λn|

}

= 1 + γ(α − 1).

Variable consensus error

Take expectation conditioned on time t, and use Young’s inequality, the variable consensus error can be

bounded as

Et
∥∥X(t+1) − x(t+1)1⊤n

∥∥2
F

APPENDIX D. APPENDIX FOR CHAPTER 5 120

= Et

∥∥∥
(

X(t) + γQ(t+1)
x (W − In)− ηV (t+1)

)(
In − (1

n 1n1⊤n)
)∥∥∥

2

F

= Et

∥∥∥
(
X(t) − x(t)1⊤n

)(
Ŵ − (1

n 1n1⊤n)
)
+ γ(Q(t+1)

x − X(t))(W − In)− ηV (t+1)(In − (1
n 1n1⊤n)

)∥∥∥
2

F

≤ 2
1 + α̂2

∥∥(X(t) − x(t)1⊤n
)(

Ŵ − (1
n 1n1⊤n)

)∥∥2
F

+
2

1 − α̂2 Et

∥∥∥γ(Q(t+1)
x − X(t))(W − In)− ηV (t+1)(In − (1

n 1n1⊤n)
)∥∥∥

2

F

≤ 2
1 + α̂2

∥∥(X(t) − x(t)1⊤n
)(

Ŵ − (1
n 1n1⊤n)

)∥∥2
F

+
4

1 − α̂2 Et

∥∥∥γ(Q(t+1)
x − X(t))(W − In)

∥∥∥
2

F
+

4
1 − α̂2 Et

∥∥∥ηV (t+1)(In − (1
n 1n1⊤n)

)∥∥∥
2

F
(i)
≤ 2α̂2

1 + α̂2

∥∥X(t) − x(t)1⊤n
∥∥2

F +
16γ2

1 − α̂2 Et
∥∥Q(t+1)

x − X(t)∥∥2
F +

4η2

1 − α̂2 Et
∥∥V (t+1) − v(t+1)1⊤n

∥∥2
F

(ii)
≤ α̂

∥∥X(t) − x(t)1⊤n
∥∥2

F +
16(1 − ρ)γ2

1 − α̂

∥∥Q(t)
x − X(t)∥∥2

F +
4η2

1 − α̂
Et
∥∥V (t+1) − v(t+1)1⊤n

∥∥2
F, (D.4)

where (i) is obtained by ∥W − In∥op ≤ 2, (ii) uses 2α̂ ≤ 1 + α̂2, 1 − α̂ ≤ 1 − α̂2 and Definition 5.

Variable quantization error

Assume γ satisfies the following inequality (which will be verified in Appendix D.2.4)

γ2 ≤ ρ2

96(1 − ρ)
. (D.5)

Take expectation conditioned on time t, the variable quantization error can be decomposed and bounded

as

Et
∥∥Q(t+1)

x − X(t+1)∥∥2
F

= Et
∥∥Q(t)

x + C(X(t) − Q(t)
x)− X(t+1)∥∥2

F

= Et
∥∥C(X(t) − Q(t)

x)− (X(t) − Q(t)
x)− (X(t+1) − X(t))

∥∥2
F

(i)
≤ 2

1 + (1 − ρ)
Et
∥∥C(X(t) − Q(t)

x)− (X(t) − Q(t)
x)
∥∥2

F +
2

1 − (1 − ρ)
Et
∥∥X(t+1) − X(t)∥∥2

F

(ii)
≤ 2(1 − ρ)

1 + (1 − ρ)

∥∥X(t) − Q(t)
x
∥∥2

F +
2
ρ

Et
∥∥X(t+1) − X(t)∥∥2

F

=
2(1 − ρ)

1 + (1 − ρ)

∥∥X(t) − Q(t)
x
∥∥2

F

+
2
ρ

Et
∥∥γ(Q(t+1)

x − X(t))(W − In) + γ(X(t) − x(t)1⊤n)(W − In)− ηV (t+1)∥∥2
F

(iii)
≤
(

1 − ρ

2

)∥∥X(t) − Q(t)
x
∥∥2

F +
24γ2

ρ
Et
∥∥Q(t+1)

x − X(t)∥∥2
F +

24γ2

ρ

∥∥X(t) − x(t)1⊤n
∥∥2

F +
6η2

ρ
Et
∥∥V (t+1)∥∥2

F

≤
(

1 − ρ

2
+

24(1 − ρ)γ2

ρ

)∥∥Q(t)
x − X(t)∥∥2

F +
24γ2

ρ

∥∥X(t) − x(t)1⊤n
∥∥2

F +
6η2

ρ
Et
∥∥V (t+1)∥∥2

F

(iv)
≤
(

1 − ρ

4

)∥∥Q(t)
x − X(t)∥∥2

F +
24γ2

ρ

∥∥X(t) − x(t)1⊤n
∥∥2

F +
6η2

ρ
Et
∥∥V (t+1)∥∥2

F, (D.6)

APPENDIX D. APPENDIX FOR CHAPTER 5 121

where (i) is obtained by applying Young’s inequality, (ii) uses Definition 5, (iii) uses the fact
∥∥W − In

∥∥
op ≤ 2,

and (iv) uses (D.5).

Linear system

Let e(t)1 =



∥∥X(t) − x(t)1⊤n

∥∥2
F∥∥Q(t)

x − X(t)∥∥2
F


, we can take full expectation and rewrite (D.4) and (D.6) in matrix form as

E[e(t+1)
1] ≤




α̂
16(1−ρ)γ2

1−α̂

24γ2

ρ 1 − ρ
4


E[e(t)1] +




4η2

1−α̂ E
∥∥V (t+1) − v(t+1)1⊤n

∥∥2
F

6η2

ρ E
∥∥V (t+1)∥∥2

F




:= G1E[e(t)1] + b(t)
1 . (D.7)

We can compute (In − G1)
−1 and verify all its entries are positive:

(In − G1)
−1 =

1

(1 − α̂) · ρ
4 − 16(1−ρ)γ2

1−α̂ · 24γ2

ρ




ρ
4

16(1−ρ)γ2

1−α̂

24γ2

ρ 1 − α̂




≤ 1
1
8 (1 − α̂)ρ




ρ
4

16(1−ρ)γ2

1−α̂

24γ2

ρ 1 − α̂


 , (D.8)

where we assume the following inequality to to prove (D.8), which will be validated in Appendix D.2.4:

(1 − α̂) · ρ

4
− 16(1 − ρ)γ2

1 − α̂
· 24γ2

ρ
≥ 1

8
(1 − α̂)ρ. (D.9)

Sum expected error vectors E[e(t)1] over t = 1, . . . , T,

T

∑
t=1

E[e(t)1] ≤
T

∑
t=1

(G1E[e(t−1)
1] + b(t−1)

1)

≤ G1

T

∑
t=1

E[e(t)1] + G1E[e(0)1] +
T

∑
t=1

b(t−1)
1 .

Reorganize terms, multiply (In − G1)
−1 on both sides and use e(0)1 = 02, the sum of error vectors can

be bounded as

T

∑
t=1

E[e(t)1] ≤ (In − G1)
−1

T−1

∑
t=0

b(t)
1 . (D.10)

The sum of consensus error can be computed as

T

∑
t=1

E
∥∥X(t) − x(t)1⊤n

∥∥2
F

≤
[

1 0

]
(In − G)−1

T−1

∑
t=0

b(t)
1

APPENDIX D. APPENDIX FOR CHAPTER 5 122

=
1

1
8 (1 − α̂)ρ

[
ρ
4

16(1−ρ)γ2

1−α̂

]



4η2

1−α̂ ∑T
t=1 E

∥∥V (t) − v(t)1⊤n
∥∥2

F
6η2

ρ ∑T
t=1 E

∥∥V (t)∥∥2
F




=
η2

1
8 (1 − α̂)ρ

(ρ

1 − α̂

T

∑
t=1

E
∥∥V (t) − v(t)1⊤n

∥∥2
F +

16(1 − ρ)γ2

1 − α̂
· 6

ρ

T

∑
t=1

E
∥∥V (t)∥∥2

F

)

(i)
=

8η2

(1 − α̂)ρ

(ρ

1 − α̂
+

96(1 − ρ)γ2

(1 − α̂)ρ

) T

∑
t=1

E
∥∥V (t) − v(t)1⊤n

∥∥2
F +

768(1 − ρ)γ2η2

(1 − α̂)2ρ2

T

∑
t=1

nE
∥∥v(t)∥∥2

F

(ii)
≤ 16η2

(1 − α̂)2

T

∑
t=1

E
∥∥V (t) − v(t)1⊤n

∥∥2
F +

768(1 − ρ)γ2η2

(1 − α̂)2ρ2

T

∑
t=1

nE
∥∥v(t)∥∥2

F, (D.11)

where we use the equality
∥∥V (t)∥∥2

F =
∥∥V (t) − v(t)1⊤n

∥∥2
F + n∥v(t)∥2

2 for (i) and use (D.5) for (ii).

D.2.3 Sum of gradient consensus errors

This section creates a linear system to bound the sum of gradient consensus error ∑T
t=1 E

∥∥V (t) − v(t)1⊤n
∥∥2

F

by ∑T
t=1 E

∥∥v(t)
∥∥2

2 and constant terms.

Gradient consensus error

Take expectation conditioned on time t and reorganize terms, the gradient consensus error can be expanded

as

Et
∥∥V (t+1) − v(t+1)1⊤n

∥∥2
F

= Et

∥∥∥
(

V (t) + γQ(t+1)
v (W − In) + G(t+1)

p − G(t)
p

)(
In − (1

n 1n1⊤n)
)∥∥∥

2

F

= Et

∥∥∥
(
V (t) − v(t)1⊤n

)(
Ŵ − (1

n 1n1⊤n)
)
+ γ

(
Q(t+1)

v − V (t))(W − In) +
(
G(t+1)

p − G(t)
p
)(

In − (1
n 1n1⊤n)

)∥∥∥
2

F
.

Then, take full expectation, use the update formula and Young’s inequality similarly to (D.4),

E
∥∥V (t+1) − v(t+1)1⊤n

∥∥2
F

≤ 2α̂2

1 + α̂2

∥∥V (t) − v(t)1⊤n
∥∥2

F

+
2

1 − α̂2 E

∥∥∥γ
(
Q(t+1)

v − V (t))(W − In) +
(
G(t+1)

p − G(t)
p
)(

In − (1
n 1n1⊤n)

)∥∥∥
2

F

≤ α̂
∥∥V (t) − v(t)1⊤n

∥∥2
F +

4
1 − α̂

E
∥∥γ
(
Q(t+1)

v − V (t))(W − In)
∥∥2

F

+
4

1 − α̂
E
∥∥(G(t+1)

p − G(t)
p
)(

In − (1
n 1n1⊤n)

)∥∥2
F

(i)
≤ α̂

∥∥V (t) − v(t)1⊤n
∥∥2

F +
16γ2

1 − α̂
E
∥∥Q(t+1)

v − V (t)∥∥2
F +

4
1 − α̂

E
∥∥G(t+1)

p − G(t)
p
∥∥2

F

(ii)
≤ α̂

∥∥V (t) − v(t)1⊤n
∥∥2

F +
16(1 − ρ)γ2

1 − α̂
E
∥∥Q(t)

v − V (t)∥∥2
F +

16n(τ2 + σ2
pd)

1 − α̂
, (D.12)

APPENDIX D. APPENDIX FOR CHAPTER 5 123

where (i) is proved using the facts
∥∥W − In

∥∥
op ≤ 2 and

∥∥In − (1
n 1n1⊤n)

∥∥
op ≤ 1, (ii) is due to Definition 5

and

E
∥∥G(t+1)

p − G(t)
p
∥∥2

F ≤ 2E
∥∥G(t+1)

p
∥∥2

F + 2E
∥∥G(t)

p
∥∥2

F

= 2
(
E
∥∥G(t+1)

τ

∥∥2
F + nσ2

pd
)
+ 2
(
E
∥∥G(t)

τ

∥∥2
F + nσ2

pd
)

≤ 4n(τ2 + σ2
pd). (D.13)

Gradient quantization error

Et
∥∥Q(t+1)

v − V (t+1)∥∥2
F = Et

∥∥(Q(t+1)
v − V (t))− (V (t+1) − V (t))

∥∥2
F

≤ 2
1 + (1 − ρ)

Et
∥∥Q(t+1)

v − V (t)∥∥2
F +

2
1 − (1 − ρ)

Et
∥∥V (t+1) − V (t)∥∥2

F

≤ 2(1 − ρ)

2 − ρ

∥∥Q(t)
v − V (t)∥∥2

F +
2
ρ

Et
∥∥γQ(t+1)

v (W − In) + G(t+1)
p − G(t)

p
∥∥2

F

≤ 2(1 − ρ)

2 − ρ

∥∥Q(t)
v − V (t)∥∥2

F +
6γ2

ρ
Et
∥∥(Q(t+1)

v − V (t))(W − In)
∥∥2

F

+
6γ2

ρ

∥∥V (t)(W − In)
∥∥2

F +
6
ρ

Et
∥∥G(t+1)

p − G(t)
p
∥∥2

F

(i)
≤
(

1 − ρ

2
+

24γ2(1 − ρ)

ρ

)∥∥Q(t)
v − V (t)∥∥2

F +
24γ2

ρ

∥∥V (t) − v(t)1⊤n
∥∥2

F +
24n(τ2 + σ2

pd)
ρ

(ii)
≤
(

1 − ρ

4

)∥∥Q(t)
v − V (t)∥∥2

F +
24γ2

ρ

∥∥V (t) − v(t)1⊤n
∥∥2

F +
24n(τ2 + σ2

pd)
ρ

, (D.14)

where we use (D.13) and the fact 2(1−ρ)
2−ρ = 1 − ρ

2−ρ ≥ 1 − ρ
2 when ρ ≥ 0 to reach (i) and use (D.5) to reach

(ii).

Linear system

Let e(t)2 =



∥∥V (t) − v(t)1⊤n

∥∥2
F∥∥Q(t)

v − V (t)∥∥2
F


. We can write (D.12) and (D.14) in matrix form as

E[e(t+1)
2] ≤




α̂
16(1−ρ)γ2

1−α̂

24γ2

ρ 1 − ρ
4


E[e(t)2] +




16n(τ2+σ2
pd)

1−α̂

24n(τ2+σ2
pd)

ρ




:= G2E[e(t)2] + b(t)
2 .

Because G2 = G1, we can use the same argument as in Appendix D.2.2, and use (D.8) to prove

T

∑
t=1

E
∥∥V (t) − v(t)1⊤n

∥∥2
F ≤

[
1 0

]
(In − G2)

−1
(

E[e(0)2] +
T−1

∑
t=0

b(t)
2

)

≤ 1
1
8 (1 − α̂)ρ

[
ρ
4

16(1−ρ)γ2

1−α̂

]



16Tn(τ2+σ2
pd)

1−α̂

24Tn(τ2+σ2
pd)

ρ




APPENDIX D. APPENDIX FOR CHAPTER 5 124

=
Tn(τ2 + σ2

pd)
1
8 (1 − α̂)ρ

·
(ρ

4
· 16

1 − α̂
+

16(1 − ρ)γ2

1 − α̂
· 24

ρ

)

≤
Tn(τ2 + σ2

pd)
1
8 (1 − α̂)ρ

·
(4ρ

1 − α̂
+

4ρ

1 − α̂

)

=
64

(1 − α̂)2 Tn(τ2 + σ2
pd), (D.15)

where we use (D.5) to prove the last inequality.

With (D.15), we can bound (D.11) by

T

∑
t=1

E
∥∥X(t) − x(t)1⊤n

∥∥2
F

≤ 16η2

(1 − α̂)2

T

∑
t=1

E
∥∥V (t) − v(t)1⊤n

∥∥2
F +

768(1 − ρ)γ2η2

(1 − α̂)2ρ2

T

∑
t=1

nE
∥∥v(t)∥∥2

F

≤ 16η2

(1 − α̂)2 · 64
(1 − α̂)2 Tn(τ2 + σ2

pd) +
768(1 − ρ)γ2η2

(1 − α̂)2ρ2

T

∑
t=1

nE
∥∥v(t)∥∥2

F

≤ 1024η2

(1 − α̂)4 Tn(τ2 + σ2
pd) +

8η2

(1 − α̂)2

T

∑
t=1

nE
∥∥v(t)∥∥2

F, (D.16)

where we use (D.5) again to prove the last inequality.

D.2.4 Convergence rate

Note bounded gradient assumption can imply Assumption 10 for some σg ≤ 2τ, we can bound the expected

norm of average gradient estimate as

E
∥∥v(t)∥∥2

2 = E
∥∥g(t)p

∥∥2
2

= E
∥∥g(t)τ

∥∥2
2 +

σ2
pd
n

≤ E
∥∥∇F(X(t))(1

n 1n)
∥∥2

2 +
σ2

g

b
+

σ2
pd
n

≤ E
∥∥∇F(X(t))(1

n 1n)
∥∥2

2 +
4τ2

b
+

σ2
pd
n

. (D.17)

We assume

ηL ≤ 1
8
(1 − α̂)

4
3 . (D.18)

Using (D.16) (D.17), expected utility (D.2) can be bounded by

1
T

T

∑
t=1

E∥∇ f (x(t))∥2
2 ≤ 2∆

ηT
+

1
T
· L2

n

T

∑
t=1

E
∥∥X(t) − x(t)1⊤n

∥∥2
F

+
1
T

T

∑
t=1

ηLE∥v(t)∥2
2 −

1
T

T

∑
t=1

E
∥∥∇F(X(t))(1

n 1n)
∥∥2

2

APPENDIX D. APPENDIX FOR CHAPTER 5 125

≤ 2∆
ηT

+
1
T
· L2

n

(1024η2

(1 − α̂)4 Tn(τ2 + σ2
pd) +

8η2

(1 − α̂)2

T

∑
t=1

nE
∥∥v(t)∥∥2

2

)

+
1
T

T

∑
t=1

ηLE∥v(t)∥2
2 −

1
T

T

∑
t=1

E
∥∥∇F(X(t))(1

n 1n)
∥∥2

2

(i)
≤ 2∆

ηT
+

1024η2L2

(1 − α̂)4 (τ2 + σ2
pd) +

2ηL

(1 − α̂)
4
3 T

T

∑
t=1

E∥v(t)∥2
2 −

1
T

T

∑
t=1

E
∥∥∇F(X(t))(1

n 1n)
∥∥2

2

≤ 2∆
ηT

+
1024η2L2

(1 − α̂)4 (τ2 + σ2
pd) +

2ηL

(1 − α̂)
4
3

(4τ2

b
+

σ2
pd
n

)

(ii)
=

2∆
ηT

+
1024η2L2τ2

(1 − α̂)4 (1 + Tϕ2
m) +

8ηLτ2

(1 − α̂)
4
3
(1 + Tϕ2

m)

(iii)
=

2∆
ηT

+
2048η2L2τ2

(1 − α̂)4 +
16ηLτ2

(1 − α̂)
4
3

(D.19)

where we use (D.18) for (i), substitute b = 1 and σ2
pd =

(
τ
√

T log(1/δ)
mϵ

)2
= Tτ2ϕ2

m for (ii), and substitute

T = ϕ−2
m for (iii).

We set the step size as

η =
γ

4
3 (1 − α)

4
3

32
· ϕm

L
,

(D.19) can be further bounded as

1
T

T

∑
t=1

E∥∇ f (x(t))∥2
2 ≤ 64L∆ϕm

γ
4
3 (1 − α)

4
3
+

2τ2ϕ2
m

(1 − α̂)
4
3
+

τ2ϕm

2

≤ 64L∆ϕm

γ
4
3 (1 − α)

4
3
+

3τ2ϕm

(1 − α̂)
4
3

≤ 67ϕm

γ
4
3 (1 − α)

4
3

max
{

τ2, L∆
}

,

where we use the assumption in (5.2) that ϕm < 1 to prove the second inequality, and use Lemma 10 to

reach the last inequality.

Lastly, set the hyper parameter γ as

γ =
1

100
(1 − α)ρ.

We can now verify conditions (D.5), (D.9) and the condition on η are all met to conclude the proof:

γ2 ≤ ρ2

10000
⇒ (D.5)

γ4 = γ2 · (1 − α)2ρ2

10000
≤ (1 − α̂)2ρ2

10000
⇒ (D.9)

ηL ≤ (1 − α̂)
4
3

32
⇒ (D.18)

APPENDIX D. APPENDIX FOR CHAPTER 5 126

D.3 Proof of Theorem 11

This section proves Theorem 11 in 2 subsections. Appendix D.3.1 derives the descent inequality using results

from Appendices D.2.2 and D.2.3. Appendix D.3.2 first assumes all expected gradient norm E
∥∥∇ f (x(t))

∥∥
2

are greater than a threshold ν (i.e. E
∥∥∇ f (x(t))

∥∥
2 ≥ ν for all t = 1, . . . , T), then specifies parameters and

proves the average of expected gradient norm is smaller than that threshold 1
T ∑T

t=1 E
∥∥∇ f (x(t))

∥∥
2 ≤ ν,

which contradicts the assumption hence proves the algorithm reaches E
∥∥∇ f (x(t))

∥∥
2 ≤ ν within T steps.

D.3.1 Function value descent

Let δ
(t)
i = τ

τ+∥g(t)i ∥2
and δ(t) = τ

τ+∥∇ f (x(t))∥2
. Similar to Appendix D.2.1, use Taylor expansion and take

expectation conditioned on t, we can expand the function value descent as

Et
[

f (x(t+1))− f (x(t))
]

≤ Et⟨∇ f (x(t)),−ηv(t+1)⟩+ L
2

Et
∥∥ηv(t+1)∥∥2

2

= −ηEt
〈
∇ f (x(t)), g(t+1)

p
〉
+

η2L
2

Et
∥∥v(t+1)∥∥2

2

= −ηEt
〈
∇ f (x(t)), g(t+1)

τ

〉
+

η2L
2

Et
∥∥v(t+1)∥∥2

2

= −ηEt
〈
∇ f (x(t)), Clipτ(∇ f (x(t)))

〉
+ ηEt

〈
∇ f (x(t)), Clipτ(∇ f (x(t)))− g(t+1)

τ

〉
+

η2L
2

Et
∥∥v(t+1)∥∥2

2

= −ηδ(t)
∥∥∇ f (x(t))

∥∥2
2 + ηEt

〈
∇ f (x(t)), Clipτ(∇ f (x(t)))− g(t+1)

τ

〉
+

η2L
2

Et
∥∥v(t+1)∥∥2

2

≤ −ηδ(t)
∥∥∇ f (x(t))

∥∥2
2 + η

∥∥∇ f (x(t))
∥∥

2Et
∥∥Clipτ(∇ f (x(t)))− g(t+1)

τ

∥∥
2 +

η2L
2

Et
∥∥v(t+1)∥∥2

2. (D.20)

The Et
∥∥Clipτ(∇ f (x(t)))− g(t+1)

τ

∥∥
2 term in (D.20) is the error introduced by gradient clipping, which can

be analyzed by splitting it to 4 terms as following

Et
∥∥Clipτ(∇ f (x(t)))− g(t+1)

τ

∥∥
2

= Et

∥∥∥ 1
n

n

∑
i=1

τ

τ + ∥g(t)i ∥2

g(t)i − τ

τ + ∥∇ f (x(t))∥2
∇ f (x(t))

∥∥∥
2

= Et

∥∥∥∥∥
1
n

n

∑
i=1

(τ

τ + ∥g(t)i ∥2

g(t)i − τ

τ + ∥∇ fi(x(t)i)∥2

g(t)i

)

+
1
n

n

∑
i=1

(τ

τ + ∥∇ fi(x(t)i)∥2

g(t)i − τ

τ + ∥∇ fi(x(t)i)∥2

∇ fi(x(t)i)
)

+
1
n

n

∑
i=1

(τ

τ + ∥∇ fi(x(t)i)∥2

∇ fi(x(t)i)− τ

τ + ∥∇ f (x(t))∥2
∇ fi(x(t)i)

)

+
1
n

n

∑
i=1

(τ

τ + ∥∇ f (x(t))∥2
∇ fi(x(t)i)− τ

τ + ∥∇ f (x(t))∥2
∇ f (x(t))

)∥∥∥∥∥
2

APPENDIX D. APPENDIX FOR CHAPTER 5 127

≤ 1
n

n

∑
i=1

Et

∥∥∥∥∥
(τ

τ + ∥g(t)i ∥2

− τ

τ + ∥∇ fi(x(t)i)∥2

)
g(t)i

∥∥∥∥∥
2

(D.21)

+
1
n

n

∑
i=1

Et

∥∥∥∥∥
τ

τ + ∥∇ fi(x(t)i)∥2

(
g(t)i −∇ fi(x(t)i)

)
∥∥∥∥∥

2

(D.22)

+
1
n

n

∑
i=1

∥∥∥∥∥
(τ

τ + ∥∇ fi(x(t)i)∥2

− τ

τ + ∥∇ f (x(t))∥2

)
∇ fi(x(t)i)

∥∥∥∥∥
2

(D.23)

+

∥∥∥∥∥
τ

τ + ∥∇ f (x(t))∥2

(1
n

n

∑
i=1

∇ fi(x(t)i)−∇ f (x(t))
)∥∥∥∥∥

2

. (D.24)

Next, we bound each term separately using triangle inequality, Assumptions 9 and 10.

Bound the first term (D.21) as

1
n

n

∑
i=1

Et

∥∥∥∥∥
(τ

τ +
∥∥g(t)i

∥∥
2

− τ

τ +
∥∥∇ fi(x(t)i)

∥∥
2

)
g(t)i

∥∥∥∥∥
2

=
1
n

n

∑
i=1

Et

∥∥∥∥∥
τ(
∥∥g(t)i

∥∥
2 −

∥∥∇ fi(x(t)i)
∥∥

2)

(τ +
∥∥g(t)i

∥∥
2)(τ +

∥∥∇ fi(x(t)i)
∥∥

2)
g(t)i

∥∥∥∥∥
2

=
1
n

n

∑
i=1

Et

(∣∣∣
∥∥g(t)i

∥∥
2 −

∥∥∇ fi(x(t)i)
∥∥

2

∣∣∣ · τ

τ +
∥∥∇ fi(x(t)i)

∥∥
2

·
∥∥g(t)i

∥∥
2

τ +
∥∥g(t)i

∥∥
2

)

≤ 1
n

n

∑
i=1

Et

∣∣∣
∥∥g(t)i

∥∥
2 −

∥∥∇ fi(x(t)i)
∥∥

2

∣∣∣

≤ 1
n

n

∑
i=1

√
Et
(∥∥g(t)i

∥∥
2 −

∥∥∇ fi(x(t)i)
∥∥

2

)2

=
1
n

n

∑
i=1

√
Et
(∥∥g(t)i

∥∥2
2 +

∥∥∇ fi(x(t)i)
∥∥2

2 − 2
∥∥g(t)i

∥∥
2

∥∥∇ fi(x(t)i)
∥∥

2

)

≤ 1
n

n

∑
i=1

√
Et
(∥∥g(t)i

∥∥2
2 +

∥∥∇ fi(x(t)i)
∥∥2

2 − 2⟨g(t)i ,∇ fi(x(t)i)⟩
)

=
1
n

n

∑
i=1

√
Et
∥∥g(t)i −∇ fi(x(t)i)

∥∥2
2

≤ σg√
b

. (D.25)

Bound the second term (D.22) as

1
n

n

∑
i=1

Et

∥∥∥∥∥
τ

τ +
∥∥∇ fi(x(t)i)

∥∥
2

(
g(t)i −∇ fi(x(t)i)

)
∥∥∥∥∥

2

≤ 1
n

n

∑
i=1

τσg/
√

b

τ +
∥∥∇ fi(x(t)i)

∥∥
2

≤ σg√
b

. (D.26)

Bound the third term (D.23) as

1
n

n

∑
i=1

∥∥∥∥∥
(τ

τ +
∥∥∇ fi(x(t)i)

∥∥
2

− τ

τ +
∥∥∇ f (x(t))

∥∥
2

)
∇ fi(x(t)i)

∥∥∥∥∥
2

=
1
n

n

∑
i=1

∥∥∥∥∥
τ
(∥∥∇ fi(x(t)i)

∥∥
2 −

∥∥∇ f (x(t))
∥∥

2

)
(
τ +

∥∥∇ fi(x(t)i)
∥∥

2

)(
τ +

∥∥∇ f (x(t))
∥∥

2

)∇ fi(x(t)i)

∥∥∥∥∥
2

APPENDIX D. APPENDIX FOR CHAPTER 5 128

≤ 1
n

n

∑
i=1

τ
∣∣∣
∥∥∇ fi(x(t)i)

∥∥
2 −

∥∥∇ f (x(t))
∥∥

2

∣∣∣
τ +

∥∥∇ f (x(t))
∥∥

2

≤ 1
n

n

∑
i=1

δ(t)
∣∣∣
∥∥∇ fi(x(t)i)

∥∥
2 −

∥∥∇ fi(x(t))
∥∥

2

∣∣∣+ 1
n

n

∑
i=1

δ(t)
∣∣∣
∥∥∇ fi(x(t))

∥∥
2 −

∥∥∇ f (x(t))
∥∥

2

∣∣∣

≤ 1
n

n

∑
i=1

δ(t)L
∥∥x(t)i − x(t)

∥∥
2 +

1
n

n

∑
i=1

δ(t) · 1
12

∥∇ f (x(t))∥2

≤ δ(t)L√
n

∥∥X(t) − x(t)1⊤n
∥∥

F +
1

12
∥∇ f (x(t))∥2, (D.27)

where we use δ(t) ≤ 1 to reach the last inequality.

Bound (D.24) as
∥∥∥∥∥

τ

τ + ∥∇ f (x(t))∥2

(1
n

n

∑
i=1

∇ fi(x(t)i)−∇ f (x(t))
)∥∥∥∥∥

2

=
τ

τ +
∥∥∇ f (x(t))

∥∥
2

∥∥∇F(X(t))(1
n 1n)−∇ f (x(t))

∥∥
2

≤ δ(t)L√
n

∥∥X(t) − x(t)1⊤n
∥∥

F. (D.28)

Using (D.25), (D.26), (D.27) and (D.28), the function value descent inequality (D.20) becomes

Et
[

f (x(t+1))− f (x(t))
]
≤ −ηδ(t)

∥∥∇ f (x(t))
∥∥2

2 +
η2L

2
Et
∥∥v(t+1)∥∥2

2

+ η
∥∥∇ f (x(t))

∥∥
2Et
∥∥Clipτ

(
∇ f (x(t))

)
− g(t+1)

τ

∥∥
2

≤ −ηδ(t)
∥∥∇ f (x(t))

∥∥2
2 +

η2L
2

Et
∥∥v(t+1)∥∥2

2

+ η
∥∥∇ f (x(t))

∥∥
2

(2σg√
b
+

1
12

δ(t)∥∇ f (x(t))∥2 +
2δ(t)L√

n

∥∥X(t) − x(t)1⊤n
∥∥

F

)

= −11
12

ηδ(t)
∥∥∇ f (x(t))

∥∥2
2 +

η2L
2

Et
∥∥v(t+1)∥∥2

2

+ η
∥∥∇ f (x(t))

∥∥
2

(2σg√
b
+

2δ(t)L√
n

∥∥X(t) − x(t)1⊤n
∥∥

F

)

≤ − 5
12

ηδ(t)
∥∥∇ f (x(t))

∥∥2
2 +

η2L
2

Et
∥∥v(t+1)∥∥2

2

+
2ησg√

b

∥∥∇ f (x(t))
∥∥

2 +
2δ(t)ηL2

n
∥∥X(t) − x(t)1⊤n

∥∥2
F, (D.29)

where the last inequality is due to

η
∥∥∇ f (x(t))

∥∥
2 ·

2δ(t)L√
n

∥∥X(t) − x(t)1⊤n
∥∥

F

≤ ηδ(t) · 2 ·
√

1
2

∥∥∇ f (x(t))
∥∥2

2 ·
√

2L2

n
∥∥X(t) − x(t)1⊤n

∥∥2
F

≤ 1
2

ηδ(t)
∥∥∇ f (x(t))

∥∥2
2 +

2δ(t)ηL2

n
∥∥X(t) − x(t)1⊤n

∥∥2
F.

APPENDIX D. APPENDIX FOR CHAPTER 5 129

D.3.2 Convergence rate

Different from (D.17), with the use of gradient clipping operator, we can only bound the expected norm of

average gradient estimate as

E∥v(t)∥2
2 = E∥g(t)p ∥2

2

= E∥g(t)τ + e(t)∥2
2

= E∥g(t)τ ∥2
2 + E∥e(t)∥2

2

≤ τ2 +
σ2

pd
n

. (D.30)

Let ∆ = E
[

f (x(0))
]
− f ⋆. The techniques used is similar to that used in Appendix D.2, so that we can

reuse results from Appendices D.2.2 and D.2.3, namely (D.16), in the following proof. Take full expectation

and use (D.30), sum (D.29) over t = 1, . . . , T,

−∆ ≤ −5η

12

T

∑
t=1

E
(

δ(t)
∥∥∇ f (x(t))

∥∥2
2

)
+

2ησ√
b

T

∑
t=1

E
∥∥∇ f (x(t))

∥∥
2

+
2ηL2

n

T

∑
t=1

E
∥∥X(t) − x(t)1⊤n

∥∥2
F +

η2L
2

T

∑
t=1

E
∥∥v(t+1)∥∥2

2

≤ −5η

12

T

∑
t=1

E
(

δ(t)
∥∥∇ f (x(t))

∥∥2
2

)
+

2ησ√
b

T

∑
t=1

E
∥∥∇ f (x(t))

∥∥
2

+
2ηL2

n

(8η2

(1 − α̂)2

T

∑
t=1

nE
∥∥v(t)∥∥2

2 +
1024η2

(1 − α̂)4 Tn(τ2 + σ2
pd)
)
+

η2L
2

T

∑
t=1

E
∥∥v(t+1)∥∥2

2

= −5η

12

T

∑
t=1

E
(

δ(t)
∥∥∇ f (x(t))

∥∥2
2

)
+

2ησ√
b

T

∑
t=1

E
∥∥∇ f (x(t))

∥∥
2

+
16η3L2

(1 − α̂)2

(
τ2 +

σ2
pd
n

)
+

2048η3L2

(1 − α̂)4 T(τ2 + σ2
pd) +

η2LT
2

(
τ2 +

σ2
pd
n

)
. (D.31)

Compared to the descent inequality in Appendix D.2.4, (D.31) has a unique terms: E
(
δ(t)
∥∥∇ f (x(t))

∥∥2
2

)

which is expected norm of clipped gradients. To be able to analyze this terms, we need to use convexity

and monotonicity from Lemma 11.

Lemma 11. Let g(x) = x
c+x and h(x) = xg(x) = x2

c+x . When x ≥ 0, g(x) and h(x) increase monotonically, while

g(x) is concave and h(x) is convex.

Proof of Lemma 11. It is sufficient to prove Lemma 11 by evaluating the first-order and second-order

derivatives of g(x) and h(x).

Because g′(x) = (c+x)−x
(c+x)2 = c

(c+x)2 > 0 and h′(x) = g(x) + xg′(x) ≥ 0, g(x) and h(x) increase

monotonically.

g(x) is concave because g′′(x)− 2c(c+x)
(c+x)4 = − 2c

(c+x)3 < 0.

APPENDIX D. APPENDIX FOR CHAPTER 5 130

h(x) is convex because h′′(x) = 2g′(x) + xg′′(x) = 2c
(c+x)2 − 2cx

(c+x)3 = 2c2

(c+x)3 > 0.

Next, we substitute τ = ν (cf. Theorem 11), and assume the following inequality

E∥∇ f (x(t))∥2 ≥ ν. (D.32)

By Lemma 11, the expectation of clipped gradients can be bounded as

E
(

δ(t)
∥∥∇ f (x(t))

∥∥2
2

)
= E

(τ
∥∥∇ f (x(t))

∥∥2
2

τ +
∥∥∇ f (x(t))

∥∥
2

)

≥
τ
(
E
∥∥∇ f (x(t))

∥∥
2

)2

τ + E
∥∥∇ f (x(t))

∥∥
2

≥ τν

τ + ν
E
∥∥∇ f (x(t))

∥∥
2

=
ν

2
E
∥∥∇ f (x(t))

∥∥
2. (D.33)

Using (D.30), (D.33) and Assumptions 9 and 10, we can further bound the RHS of (D.31) as

−∆ ≤ −5ην

24

T

∑
t=1

E
∥∥∇ f (x(t))

∥∥
2 +

2ησg√
b

T

∑
t=1

E
∥∥∇ f (x(t))

∥∥
2

+
16η3L2

(1 − α̂)2

(
τ2 +

σ2
pd
n

)
+

2048η3L2

(1 − α̂)4 T(τ2 + σ2
pd) +

η2LT
2

(
τ2 +

σ2
pd
n

)

≤ −ην

8

T

∑
t=1

E
∥∥∇ f (x(t))

∥∥
2 +

2048Tη3L2

(1 − α̂)4 (τ2 + σ2
pd) +

3Tη2L
1 − α̂

(
τ2 +

σ2
pd
n

)

= −ην

8

T

∑
t=1

E
∥∥∇ f (x(t))

∥∥
2 +

2048Tη3L2τ2

(1 − α̂)4 (1 + Tb2ϕ2
m) +

3Tη2Lτ2

1 − α̂
(1 + Tb2ϕ2

m), (D.34)

where we use (D.18) and b =
(24σg

ν

)2 to prove the last inequality.

Reorganize terms, (D.34) can be further bounded as

1
T

T

∑
t=1

E
∥∥∇ f (x(t))

∥∥
2 ≤ 8∆

ηνT
+

16384η2L2ν

(1 − α̂)4 (1 + Tb2ϕ2
m) +

24ηLν

1 − α̂
(1 + Tb2ϕ2

m)

(i)
≤ 8∆bϕm

ην
+

32768η2L2ν

(1 − α̂)4 +
48ηLν

1 − α̂

(ii)
≤ 8∆bϕm

ην
+

4096ηLν

(1 − α̂)
8
3
+

48ηLν

1 − α̂
,

≤ 8∆bϕm

ην
+

4144ηLν

(1 − α̂)
8
3

, (D.35)

where we substitute T = (bϕm)−1 to prove (i), use (D.18) for (ii), and use (1 − α̂)−1 ≤ (1 − α̂)−8/3 to prove

the last inequality.

Set η = γ
4
3 (1−α)

4
3

24 ·
√

∆
L ·

√
bϕm
τ and γ = 1

100 (1− α)ρ, and use b =
(24σg

ν

)2, (D.35) can be further bounded

as

1
T

T

∑
t=1

E
∥∥∇ f (x(t))

∥∥
2 ≤ 192

√
L∆bϕm

(1 − α̂)
4
3

+
173
√

L∆bϕm

(1 − α̂)
4
3

APPENDIX D. APPENDIX FOR CHAPTER 5 131

=
365
√

L∆bϕm

(1 − α̂)
4
3

=
8760

√
L∆ϕm

(1 − α̂)
4
3

· σg

ν
. (D.36)

Choosing ν =

√
8760σg

√
L∆ϕm

(1−α̂)
4
3

, (D.36) simplifies to 1
T ∑T

t=1 E
∥∥∇ f (x(t))

∥∥
2 < ν, which further implies

∃t ∈ [T] such that E
∥∥∇ f (x(t))

∥∥
2 < ν. However, this contradicts the assumption (D.32), which leads to the

convergence results in the theorem.

Lastly, we can verify conditions (D.5), (D.9) and (D.18) are all met to conclude the proof:

γ2 ≤ ρ2

10000
⇒ (D.5)

γ4 = γ2 · (1 − α)2ρ2

10000
≤ (1 − α̂)2ρ2

10000
⇒ (D.9)

ηL =
γ

4
3 (1 − α)

4
3

24
·
√

bL∆ϕm

τ

= γ
4
3 (1 − α)

4
3 · σg

√
L∆ϕm

ν2

= γ
4
3 (1 − α)

4
3 · (1 − α̂)

4
3

8760
⇒ (D.18)

Bibliography

[ABCP13] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. Geo-

indistinguishability: Differential privacy for location-based systems. In Proceedings of the

2013 ACM SIGSAC Conference on Computer & Communications Security, CCS ’13, pages 901–914,

New York, NY, USA, November 2013. Association for Computing Machinery.

[ACCÖ21] S. Asoodeh, W.-N. Chen, F. P. Calmon, and A. Özgür. Differentially private federated learning:

An information-theoretic perspective. In 2021 IEEE International Symposium on Information

Theory (ISIT), pages 344–349, July 2021.

[ACG+16] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, pages 308–318, October 2016.

[AGL+17] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-efficient sgd

via gradient quantization and encoding. In Advances in Neural Information Processing Systems,

volume 30. Curran Associates, Inc., 2017.

[AHJ+18] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli. The

convergence of sparsified gradient methods. In Advances in Neural Information Processing

Systems, volume 31. Curran Associates, Inc., 2018.

[ALBR19] M. Assran, N. Loizou, N. Ballas, and M. Rabbat. Stochastic gradient push for distributed deep

learning. In International Conference on Machine Learning, pages 344–353. PMLR, 2019.

[AS14] M. Arioli and J. Scott. Chebyshev acceleration of iterative refinement. Numerical Algorithms,

66(3):591–608, 2014.

[AZ17] Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,

page 1200–1205, New York, NY, USA, 2017. Association for Computing Machinery.

132

BIBLIOGRAPHY 133

[AZH16] Z. Allen-Zhu and E. Hazan. Variance reduction for faster non-convex optimization. In

International Conference on Machine Learning, pages 699–707. PMLR, 2016.

[BBKW19] A. S. Berahas, R. Bollapragada, N. S. Keskar, and E. Wei. Balancing communication and

computation in distributed optimization. IEEE Transactions on Automatic Control, 64(8):3141–

3155, 2019.

[BBP13] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu. Advances in optimizing recurrent

networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages

8624–8628, May 2013.

[BBW21] A. S. Berahas, R. Bollapragada, and E. Wei. On the convergence of nested decentralized

gradient methods with multiple consensus and gradient steps. IEEE Transactions on Signal

Processing, 69:4192–4203, 2021.

[BJ13] P. Bianchi and J. Jakubowicz. Convergence of a multi-agent projected stochastic gradient

algorithm for non-convex optimization. IEEE Transactions on Automatic Control, 58(2):391–405,

February 2013.

[BPC+11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical

learning via the alternating direction method of multipliers. Foundations and Trends® in Machine

learning, 3(1):1–122, 2011.

[BT89] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: numerical methods,

volume 23. Prentice hall Englewood Cliffs, NJ, 1989.

[BT09] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse

problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[CABP13] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and C. Palamidessi. Broadening the

scope of differential privacy using metrics. In E. De Cristofaro and M. Wright, editors, Privacy

Enhancing Technologies, Lecture Notes in Computer Science, pages 82–102, Berlin, Heidelberg,

2013. Springer.

[CEBM22] E. Cyffers, M. Even, A. Bellet, and L. Massoulié. Muffliato: Peer-to-peer privacy amplification

for decentralized optimization and averaging. In Advances in Neural Information Processing

Systems, 2022.

BIBLIOGRAPHY 134

[CL11] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM Transactions

on Intelligent Systems and Technology (TIST), 2(3):1–27, May 2011.

[CSU+19] A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev. Distributed differential privacy via

shuffling. In Y. Ishai and V. Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Lecture

Notes in Computer Science, pages 375–403, Cham, 2019. Springer International Publishing.

[CWH20] X. Chen, S. Z. Wu, and M. Hong. Understanding gradient clipping in private SGD: A geometric

perspective. In Advances in Neural Information Processing Systems, volume 33, pages 13773–13782.

Curran Associates, Inc., 2020.

[CZC+20] S. Cen, H. Zhang, Y. Chi, W. Chen, and T.-Y. Liu. Convergence of distributed stochastic

variance reduced methods without sampling extra data. IEEE Transactions on Signal Processing,

68:3976–3989, 2020.

[DBLJ14] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with

support for non-strongly convex composite objectives. In Advances in neural information

processing systems, pages 1646–1654, 2014.

[Den12] L. Deng. The MNIST database of handwritten digit images for machine learning research

[best of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[DJW13] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical minimax rates. In

2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 429–438, October

2013.

[DKX+22] R. Das, S. Kale, Z. Xu, T. Zhang, and S. Sanghavi. Beyond uniform Lipschitz condition in

differentially private optimization. arXiv preprint arXiv:2206.10713, 2022.

[DLC+22] J. Du, S. Li, X. Chen, S. Chen, and M. Hong. Dynamic differential-privacy preserving sgd.

arXiv preprint arXiv:2111.00173, 2022.

[DLS16] P. Di Lorenzo and G. Scutari. Next: In-network nonconvex optimization. IEEE Transactions on

Signal and Information Processing over Networks, 2(2):120–136, 2016.

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private

data analysis. In S. Halevi and T. Rabin, editors, Theory of Cryptography, Lecture Notes in

Computer Science, pages 265–284, Berlin, Heidelberg, 2006. Springer.

BIBLIOGRAPHY 135

[DR14] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and

Trends® in Theoretical Computer Science, 9(3–4):211–407, August 2014.

[DSZOR15] C. M. De Sa, C. Zhang, K. Olukotun, and C. Ré. Taming the wild: A unified analysis of

Hogwild-style algorithms. Advances in Neural Information Processing Systems, 28, 2015.

[Dwo08] C. Dwork. Differential privacy: A survey of results. In M. Agrawal, D. Du, Z. Duan, and A. Li,

editors, Theory and Applications of Models of Computation, Lecture Notes in Computer Science,

pages 1–19, Berlin, Heidelberg, 2008. Springer.

[FGW21] J. Fan, Y. Guo, and K. Wang. Communication-efficient accurate statistical estimation. Journal of

the American Statistical Association, 0(0):1–11, August 2021.

[FKT20] V. Feldman, T. Koren, and K. Talwar. Private stochastic convex optimization: Optimal rates in

linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2020, pages 439–449, New York, NY, USA, June 2020. Association for Computing

Machinery.

[FLLZ18] C. Fang, C. J. Li, Z. Lin, and T. Zhang. SPIDER: Near-optimal non-convex optimization via

stochastic path-integrated differential estimator. In Advances in Neural Information Processing

Systems, pages 687–697, 2018.

[FSG+21] I. Fatkhullin, I. Sokolov, E. Gorbunov, Z. Li, and P. Richtárik. EF21 with bells & whistles:

Practical algorithmic extensions of modern error feedback. arXiv preprint arXiv:2110.03294,

2021.

[GBLR21] E. Gorbunov, K. P. Burlachenko, Z. Li, and P. Richtarik. MARINA: Faster non-convex dis-

tributed learning with compression. In Proceedings of the 38th International Conference on Machine

Learning, pages 3788–3798. PMLR, July 2021.

[GF20] L. V. Gambuzza and M. Frasca. Distributed control of multiconsensus. IEEE Transactions on

Automatic Control, 66(5):2032–2044, 2020.

[HAD+21] A. Hashemi, A. Acharya, R. Das, H. Vikalo, S. Sanghavi, and I. S. Dhillon. On the benefits of

multiple gossip steps in communication-constrained decentralized federated learning. IEEE

Transactions on Parallel and Distributed Systems, 2021.

[HDJ+20] X. Huang, Y. Ding, Z. L. Jiang, S. Qi, X. Wang, and Q. Liao. DP-FL: A novel differentially private

federated learning framework for the unbalanced data. World Wide Web, 23(4):2529–2545, July

2020.

BIBLIOGRAPHY 136

[HSZ+22] Y. Huang, Y. Sun, Z. Zhu, C. Yan, and J. Xu. Tackling data heterogeneity: A new unified

framework for decentralized sgd with sample-induced topology. In Proceedings of the 39th

International Conference on Machine Learning, pages 9310–9345. PMLR, June 2022.

[INS+19] R. Iyengar, J. P. Near, D. Song, O. Thakkar, A. Thakurta, and L. Wang. Towards practical

differentially private convex optimization. In 2019 IEEE Symposium on Security and Privacy

(SP), pages 299–316, May 2019.

[IW22] C. Iakovidou and E. Wei. S-NEAR-DGD: A flexible distributed stochastic gradient method for

inexact communication. IEEE Transactions on Automatic Control, 2022.

[JZ13] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance

reduction. In Advances in neural information processing systems, pages 315–323, 2013.

[KDG03] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information.

In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages

482–491, October 2003.

[KFI17] S. Kanai, Y. Fujiwara, and S. Iwamura. Preventing gradient explosions in gated recurrent units.

In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[KFJ18] S. Khirirat, H. R. Feyzmahdavian, and M. Johansson. Distributed learning with compressed

gradients. arXiv preprint arXiv:1806.06573, 2018.

[KKJ+21] D. Kovalev, A. Koloskova, M. Jaggi, P. Richtarik, and S. Stich. A linearly convergent algorithm

for decentralized optimization: Sending less bits for free! In Proceedings of The 24th International

Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning

Research, pages 4087–4095. PMLR, 13–15 Apr 2021.

[KLL16] J. Kim, J. K. Lee, and K. M. Lee. Accurate image super-resolution using very deep convolutional

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

1646–1654, 2016.

[KMR15] J. Konečnỳ, B. McMahan, and D. Ramage. Federated optimization: Distributed optimization

beyond the datacenter. arXiv preprint arXiv:1511.03575, 2015.

[KMY+16] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated

learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492,

2016.

BIBLIOGRAPHY 137

[KRSJ19] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error feedback fixes signsgd and other

gradient compression schemes. In International Conference on Machine Learning, pages 3252–3261.

PMLR, 2019.

[KSJ19] A. Koloskova, S. Stich, and M. Jaggi. Decentralized stochastic optimization and gossip

algorithms with compressed communication. In Proceedings of the 36th International Conference

on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 3478–3487.

PMLR, 09–15 Jun 2019.

[Lam01] L. Lamberg. Confidentiality and privacy of electronic medical records. JAMA, 285(24):3075–

3076, June 2001.

[LBZR21] Z. Li, H. Bao, X. Zhang, and P. Richtárik. Page: A simple and optimal probabilistic gradient

estimator for nonconvex optimization. In International Conference on Machine Learning, pages

6286–6295. PMLR, 2021.

[LCCC20] B. Li, S. Cen, Y. Chen, and Y. Chi. Communication-efficient distributed optimization in

networks with gradient tracking and variance reduction. Journal of Machine Learning Research,

21(180):1–51, 2020.

[LDS21] Y. Lu and C. De Sa. Optimal complexity in decentralized training. In International Conference

on Machine Learning, pages 7111–7123. PMLR, 2021.

[LFYL20] H. Li, C. Fang, W. Yin, and Z. Lin. Decentralized accelerated gradient methods with increasing

penalty parameters. IEEE Transactions on Signal Processing, 68:4855–4870, 2020.

[Li19] Z. Li. SSRGD: Simple stochastic recursive gradient descent for escaping saddle points. In

Advances in Neural Information Processing Systems, pages 1523–1533, 2019.

[LJB+95] Y. LeCun, L. D. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, U. A.

Muller, E. Sackinger, and P. Simard. Learning algorithms for classification: A comparison on

handwritten digit recognition. Neural networks: the statistical mechanics perspective, 261(276):2,

1995.

[LJCJ17] L. Lei, C. Ju, J. Chen, and M. I. Jordan. Non-convex finite-sum optimization via SCSG methods.

In Advances in Neural Information Processing Systems, volume 30, 2017.

[LKQR20] Z. Li, D. Kovalev, X. Qian, and P. Richtarik. Acceleration for compressed gradient descent in

distributed and federated optimization. In Proceedings of the 37th International Conference on

Machine Learning, pages 5895–5904. PMLR, November 2020.

BIBLIOGRAPHY 138

[LL18] Z. Li and J. Li. A simple proximal stochastic gradient method for nonsmooth nonconvex

optimization. In Advances in Neural Information Processing Systems, pages 5569–5579, 2018.

[LLC22] B. Li, Z. Li, and Y. Chi. DESTRESS: Computation-optimal and communication-efficient

decentralized nonconvex finite-sum optimization. SIAM Journal on Mathematics of Data Science,

4(3):1031–1051, September 2022.

[LLHP22] Y. Liao, Z. Li, K. Huang, and S. Pu. A compressed gradient tracking method for decentralized

optimization with linear convergence. IEEE Transactions on Automatic Control, 67(10):5622–5629,

2022.

[LLP23] Y. Liao, Z. Li, and S. Pu. A linearly convergent robust compressed Push-Pull method for

decentralized optimization. arXiv preprint arXiv:2303.07091, 2023.

[LR20] Z. Li and P. Richtárik. A unified analysis of stochastic gradient methods for nonconvex

federated optimization. arXiv preprint arXiv:2006.07013, 2020.

[LR21a] Z. Li and P. Richtarik. CANITA: Faster rates for distributed convex optimization with

communication compression. In Advances in Neural Information Processing Systems, volume 34,

pages 13770–13781. Curran Associates, Inc., 2021.

[LR21b] Z. Li and P. Richtárik. ZeroSARAH: Efficient nonconvex finite-sum optimization with zero

full gradient computation. arXiv preprint arXiv:2103.01447, 2021.

[LSY19] Z. Li, W. Shi, and M. Yan. A decentralized proximal-gradient method with network inde-

pendent step-sizes and separated convergence rates. IEEE Transactions on Signal Processing,

67(17):4494–4506, 2019.

[LY22] L. Luo and H. Ye. An optimal stochastic algorithm for decentralized nonconvex finite-sum

optimization. arXiv preprint arXiv:2210.13931, 2022.

[LZLC22] Z. Li, H. Zhao, B. Li, and Y. Chi. SoteriaFL: A unified framework for private federated

learning with communication compression. In Advances in Neural Information Processing

Systems, volume 35, pages 4285–4300. Curran Associates, Inc., 2022.

[LZZ+17] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu. Can decentralized algorithms

outperform centralized algorithms? a case study for decentralized parallel stochastic gradient

descent. In Advances in Neural Information Processing Systems, pages 5330–5340, 2017.

BIBLIOGRAPHY 139

[MGTR19] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik. Distributed learning with compressed

gradient differences. arXiv preprint arXiv:1901.09269, 2019.

[MMR+17] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient

learning of deep networks from decentralized data. In Artificial Intelligence and Statistics, pages

1273–1282, 2017.

[MS23] T. Murata and T. Suzuki. DIFF2: Differential private optimization via gradient differences for

nonconvex distributed learning. arXiv preprint arXiv:2302.03884, 2023.

[NBD22] M. Noble, A. Bellet, and A. Dieuleveut. Differentially private federated learning on hetero-

geneous data. In Proceedings of The 25th International Conference on Artificial Intelligence and

Statistics, pages 10110–10145. PMLR, May 2022.

[NLST17] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. SARAH: A novel method for machine

learning problems using stochastic recursive gradient. In International Conference on Machine

Learning, pages 2613–2621, 2017.

[NO09] A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization.

IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

[NOP10] A. Nedić, A. Ozdaglar, and P. A. Parrilo. Constrained consensus and optimization in multi-

agent networks. IEEE Transactions on Automatic Control, 55(4):922–938, 2010.

[NOR18] A. Nedić, A. Olshevsky, and M. G. Rabbat. Network topology and communication-computation

tradeoffs in decentralized optimization. Proceedings of the IEEE, 106(5):953–976, 2018.

[NOS17] A. Nedić, A. Olshevsky, and W. Shi. Achieving geometric convergence for distributed

optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.

[NvP+22] L. M. Nguyen, M. van Dijk, D. T. Phan, P. H. Nguyen, T.-W. Weng, and J. R. Kalagnanam.

Finite-sum smooth optimization with SARAH. Computational Optimization and Applications,

May 2022.

[PLW20] T. Pan, J. Liu, and J. Wang. D-SPIDER-SFO: A decentralized optimization algorithm with faster

convergence rate for nonconvex problems. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 34, pages 1619–1626, 2020.

BIBLIOGRAPHY 140

[PMB13] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks.

In Proceedings of the 30th International Conference on Machine Learning, pages 1310–1318. PMLR,

May 2013.

[Pol63] B. T. Polyak. Gradient methods for the minimisation of functionals. USSR Computational

Mathematics and Mathematical Physics, 3(4):864–878, 1963.

[QL18] G. Qu and N. Li. Harnessing smoothness to accelerate distributed optimization. IEEE

Transactions on Control of Network Systems, 5(3):1245–1260, 2018.

[RHS+16] S. J. Reddi, A. Hefny, S. Sra, B. Póczós, and A. Smola. Stochastic variance reduction for

nonconvex optimization. In International conference on machine learning, pages 314–323, 2016.

[RKR+16] S. J. Reddi, J. Konečnỳ, P. Richtárik, B. Póczós, and A. Smola. AIDE: fast and communication

efficient distributed optimization. arXiv preprint arXiv:1608.06879, 2016.

[RLDJ23] A. Reisizadeh, H. Li, S. Das, and A. Jadbabaie. Variance-reduced clipping for non-convex

optimization. arXiv preprint arXiv:2303.00883, 2023.

[RSF21] P. Richtarik, I. Sokolov, and I. Fatkhullin. EF21: A new, simpler, theoretically better, and

practically faster error feedback. In Advances in Neural Information Processing Systems, volume 34,

pages 4384–4396. Curran Associates, Inc., 2021.

[RSPS16] S. J. Reddi, S. Sra, B. Póczos, and A. Smola. Fast incremental method for smooth nonconvex

optimization. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 1971–1977.

IEEE, 2016.

[SBB+17] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié. Optimal algorithms for smooth and

strongly convex distributed optimization in networks. In International Conference on Machine

Learning, pages 3027–3036, 2017.

[SBB+18] K. Scaman, F. Bach, S. Bubeck, L. Massoulié, and Y. T. Lee. Optimal algorithms for non-smooth

distributed optimization in networks. In Advances in Neural Information Processing Systems,

pages 2740–2749, 2018.

[SCJ18] S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified SGD with memory. In Advances in Neural

Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

BIBLIOGRAPHY 141

[SDGD21] N. Singh, D. Data, J. George, and S. Diggavi. SQuARM-SGD: Communication-Efficient

Momentum SGD for Decentralized Optimization. IEEE Journal on Selected Areas in Information

Theory, 2(3):954–969, September 2021.

[SFD+14] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application

to data-parallel distributed training of speech DNNs. In Interspeech 2014, pages 1058–1062.

ISCA, September 2014.

[Sha07] D. Shah. Gossip algorithms. Foundations and Trends® in Networking, 3(1):1–125, 2007.

[SK20] S. U. Stich and S. P. Karimireddy. The error-feedback framework: Better rates for sgd with

delayed gradients and compressed updates. J. Mach. Learn. Res., 21(1), jan 2020.

[SLH20] H. Sun, S. Lu, and M. Hong. Improving the sample and communication complexity for

decentralized non-convex optimization: Joint gradient estimation and tracking. In International

Conference on Machine Learning, pages 9217–9228. PMLR, 2020.

[SLWY15a] W. Shi, Q. Ling, G. Wu, and W. Yin. EXTRA: An exact first-order algorithm for decentralized

consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

[SLWY15b] W. Shi, Q. Ling, G. Wu, and W. Yin. A proximal gradient algorithm for decentralized composite

optimization. IEEE Transactions on Signal Processing, 63(22):6013–6023, 2015.

[SS19] G. Scutari and Y. Sun. Distributed nonconvex constrained optimization over time-varying

digraphs. Mathematical Programming, 176(1-2):497–544, 2019.

[SSZ14] O. Shamir, N. Srebro, and T. Zhang. Communication-efficient distributed optimization using

an approximate Newton-type method. In International conference on machine learning, pages

1000–1008, 2014.

[TGZ+18] H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu. Communication compression for decentralized

training. Advances in Neural Information Processing Systems, 31:7652–7662, 2018.

[TLQ+19] H. Tang, X. Lian, S. Qiu, L. Yuan, C. Zhang, T. Zhang, and J. Liu. Deepsqueeze: Decentralization

meets error-compensated compression. arXiv preprint arXiv:1907.07346, 2019.

[TLY+18] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu. D2: Decentralized training over decentralized

data. In International Conference on Machine Learning, pages 4848–4856. PMLR, 2018.

BIBLIOGRAPHY 142

[TMHP20] H. Taheri, A. Mokhtari, H. Hassani, and R. Pedarsani. Quantized decentralized stochastic

learning over directed graphs. In Proceedings of the 37th International Conference on Machine

Learning, pages 9324–9333. PMLR, November 2020.

[WJ21] J. Wang and G. Joshi. Cooperative SGD: A unified framework for the design and analysis of

local-update SGD algorithms. The Journal of Machine Learning Research, 22(1):213:9709–213:9758,

January 2021.

[WJEG19] L. Wang, B. Jayaraman, D. Evans, and Q. Gu. Efficient privacy-preserving stochastic nonconvex

optimization. arXiv preprint arXiv:1910.13659, 2019.

[WJZ+19] Z. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh. SpiderBoost and momentum: Faster variance

reduction algorithms. In Advances in Neural Information Processing Systems, pages 2406–2416,

2019.

[WXDX20] D. Wang, H. Xiao, S. Devadas, and J. Xu. On differentially private stochastic convex opti-

mization with heavy-tailed data. In Proceedings of the 37th International Conference on Machine

Learning, pages 10081–10091. PMLR, November 2020.

[WYWH18] H.-T. Wai, Z. Yang, P. Z. Wang, and M. Hong. Multi-agent reinforcement learning via double

averaging primal-dual optimization. In Advances in Neural Information Processing Systems, pages

9649–9660, 2018.

[WYX17] D. Wang, M. Ye, and J. Xu. Differentially private empirical risk minimization revisited: Faster

and more general. Advances in Neural Information Processing Systems, 30, 2017.

[XB04] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters,

53(1):65–78, September 2004.

[XKK22a] R. Xin, U. A. Khan, and S. Kar. Fast decentralized nonconvex finite-sum optimization with

recursive variance reduction. SIAM Journal on Optimization, 32(1):1–28, March 2022.

[XKK22b] R. Xin, U. A. Khan, and S. Kar. A Fast Randomized Incremental Gradient Method for

Decentralized Nonconvex Optimization. IEEE Transactions on Automatic Control, 67(10):5150–

5165, October 2022.

[XSKK19] R. Xin, A. K. Sahu, U. A. Khan, and S. Kar. Distributed stochastic optimization with gradient

tracking over strongly-connected networks. In 2019 IEEE 58th Conference on Decision and Control

(CDC), pages 8353–8358, 2019.

BIBLIOGRAPHY 143

[XXK17] C. Xi, R. Xin, and U. A. Khan. ADD-OPT: Accelerated distributed directed optimization. IEEE

Transactions on Automatic Control, 63(5):1329–1339, 2017.

[XYD19] H. Xiao, Y. Ye, and S. Devadas. Local differential privacy in decentralized optimization. arXiv

preprint arXiv:1902.06101, 2019.

[XZ14] L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance

reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

[YCC+23] Y. Yan, J. Chen, P.-Y. Chen, X. Cui, S. Lu, and Y. Xu. Compressed decentralized proximal

stochastic gradient method for nonconvex composite problems with heterogeneous data. arXiv

preprint arXiv:2302.14252, 2023.

[YGG17] Y. You, I. Gitman, and B. Ginsburg. Scaling SGD batch size to 32k for ImageNet training.

Technical Report UCB/EECS-2017-156, EECS Department, University of California, Berkeley,

Sep 2017.

[YYZS18] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed. Exact diffusion for distributed optimization and

learning – part I: Algorithm development. IEEE Transactions on Signal Processing, 67(3):708–723,

2018.

[YZLZ20] H. Ye, Z. Zhou, L. Luo, and T. Zhang. Decentralized accelerated proximal gradient descent.

Advances in Neural Information Processing Systems, 33:18308–18317, 2020.

[ZBLR21] H. Zhao, K. Burlachenko, Z. Li, and P. Richtárik. Faster rates for compressed federated learning

with client-variance reduction. arXiv preprint arXiv:2112.13097, 2021.

[ZCH+22] X. Zhang, X. Chen, M. Hong, S. Wu, and J. Yi. Understanding clipping for federated learn-

ing: Convergence and client-level differential privacy. In Proceedings of the 39th International

Conference on Machine Learning, pages 26048–26067. PMLR, June 2022.

[ZHSJ20] J. Zhang, T. He, S. Sra, and A. Jadbabaie. Why gradient clipping accelerates training: A

theoretical justification for adaptivity. In International Conference on Learning Representations,

March 2020.

[ZJFW20] B. Zhang, J. Jin, C. Fang, and L. Wang. Improved analysis of clipping algorithms for non-

convex optimization. In Advances in Neural Information Processing Systems, volume 33, pages

15511–15521. Curran Associates, Inc., 2020.

BIBLIOGRAPHY 144

[ZKL18] X. Zhang, M. M. Khalili, and M. Liu. Improving the privacy and accuracy of ADMM-based

distributed algorithms. In Proceedings of the 35th International Conference on Machine Learning,

pages 5796–5805. PMLR, July 2018.

[ZKL20] X. Zhang, M. M. Khalili, and M. Liu. Recycled ADMM: Improving the privacy and accuracy

of distributed algorithms. IEEE Transactions on Information Forensics and Security, 15:1723–1734,

2020.

[ZKV+20] J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. J. Reddi, S. Kumar, and S. Sra. Why are adaptive

methods good for attention models? arXiv preprint arXiv:1912.03194, October 2020.

[ZLL+22] H. Zhao, B. Li, Z. Li, P. Richtárik, and Y. Chi. Beer: Fast O (1/T) rate for decentralized

nonconvex optimization with communication compression. Advances in Neural Information

Processing Systems, 35, 2022.

[ZM10] M. Zhu and S. Martínez. Discrete-time dynamic average consensus. Automatica, 46(2):322–329,

2010.

[ZP23] Y. Zhou and S. Pu. Private and accurate decentralized optimization via encrypted and

structured functional perturbation. IEEE Control Systems Letters, 7:1339–1344, 2023.

[ZXG18] D. Zhou, P. Xu, and Q. Gu. Stochastic nested variance reduction for nonconvex optimization.

Advances in Neural Information Processing Systems, 31:3921–3932, 2018.

[ZY19] J. Zhang and K. You. Decentralized stochastic gradient tracking for non-convex empirical risk

minimization. arXiv preprint arXiv:1909.02712, 2019.

[ZZY+21] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato, and K.-Y. Lam. Local

differential privacy-based federated learning for Internet of Things. IEEE Internet of Things

Journal, 8(11):8836–8853, June 2021.

	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Problem formulation
	Contributions
	Related works
	Notation
	Thesis organization

	Decentralized Newton-style algorithm
	Preliminaries
	The Network-DANE algorithm
	Convergence guarantees
	Extension to nonsmooth composite optimization
	Extension with variance reduction
	Numerical experiments

	Decentralized stochastic recursive gradient algorithm
	The DESTRESS algorithm
	Convergence guarantees
	Numerical experiments

	Decentralized stochastic algorithm with communication compression
	Preliminaries
	The BEER algorithm
	Convergence guarantees
	Numerical experiments

	Decentralized private stochastic algorithm with communication compression
	Preliminaries
	The PORTER algorithm
	Local differential privacy guarantee
	Convergence with bounded gradient assumption
	Convergence without bounded gradient assumption
	Numerical experiments

	Conclusions
	Appendix for Chapter 2
	Derivation of Equation (2.6)
	Proof of Theorem 1 and Theorem 2
	Proofs of Theorem 3 and Theorem 4
	Proof of Theorem 5
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Appendix for Chapter 3
	Experiment details
	Proof of Theorem 6
	Proof of Corollary 3
	Proof of Lemma 5
	Proof of Lemma 6

	Appendix for Chapter 4
	Technical lemmas
	Recursive relations of main errors
	Proof of Theorem 7
	Proof of Theorem 8

	Appendix for Chapter 5
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11

	Bibliography

