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Outline

e Definition of sparse and compressible signals
Reference: S. Foucart and H. Rauhut. A Mathematical Introduction to
Compressive Sensing, Chapter 1.

e Uniqueness and identifiability using spark and coherence
Reference: Donoho, D. L., & Elad, M. Optimally sparse representation in
general (nonorthogonal) dictionaries via ¢; minimization. 2003.

e /1 minimization, and sufficient condition for recovery using RIP

Reference: E. J. Candes. The restricted isometry property and its
implications for compressed sensing. 2008.
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Signals that are exactly sparse

Consider a signal x € R".

Definition 1. [Support] The support of a vector x € R" is the index set of
Its nonzero entries, I.e.

supp(z) = {j € [n] : ; £ 0}
where [n| ={1,...,n}.
Definition 2. [k-sparse signal] The signal x is called k-sparse, if

|lzllo := |supp(z)| < .

Note: ||x||o is called the sparsity level of .
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Sparse signhals belong to union-of-subspace models

There're (Z’) subspaces of dimension k.
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Compressible signals

We're also interested in signals that are approximately sparse. This is measured
by how well they can be approximated by sparse signals.

Definition 3. [Best k-term approximation] Denote the index set of the k-

largest entries of |x| as Sx. The best k-term approximation xj, of x is defined
as

. x;, 1€S

The k-term approximation error in £, norm is then given as

1/p
|l — wpllp = | > ol

i€ Sk

Compressibility: A signal is called compressible if ||x — x||, decays fast in k.
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Example of compressible signals

Proposition 1. [Compressibility] For any ¢ > p > 0 and x € R",

1
|2 = @il < e @l

Example: set g =2 and 0 < p < 1, we have

1
HIB o wkHQ < k»l/p—l/QHpr'

Consider a signal x € B := {z € R" : [[2]|, < 1}. Then x is compressible
when 0 < p < 1. [Geometrically, the ¢,-ball is pointy when 0 < p < 1 in high
dimension. |
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Proof of Proposition [1: Without loss of generality we assume the coefficients of
a is ordered in descending order of magnitudes. We then have

n

le — @plld = ) |a;]9 (by definition)

j=k+1
mn
= |z Y Ja Pl |k )
j=k+1
mn
<okl > Jal? (|l ekl < 1)
j=k+1
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Compressive acquisition of sparse signals

o Let A € R™*"™ be the measurement/sensing matrix. Consider, for start,

noise-free measurements:
y=Ax € R"™,

where m < n. We are interested in reconstructing x from y.

e Since we want to motivate sparse solutions, we could seek the sparsest signal
satisfying the observation:

(PO:) @ = argmin ||x||g subjectto y = Ax.

€T

where || - [|o counts the number of nonzero entries.

e Although this algorithm is NP-hard, we can still analyze when it is expected
to work.
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Spark and uniqueness

Question:  What properties do we seek in A regardless of complexity of
reconstruction algorithms?

Definition 4. [Spark] Let Spark(A) be the size of the smallest linearly
dependent subset of columns of A.

Basic Fact: 2 < Spark(A) < m + 1.

Theorem 1. [Uniqueness, Donoho and Elad 2002] A representation y =
Ax is necessarily the sparsest possible if ||x||qg < Spark(A)/2.

Proof: If  and «’ satisfy Ax = Ax’, with ||2'||o < ||x|o, then
Alx —2') =0

for ||x—a’||g < Spark(A), which contradicts with definition of Spark. Therefore,
x = x’ and x is the sparsest solution of y = Ax.
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Mutual coherence

Definition 5. [Mutual Coherence] Let

p = p(A) == max |(a;,a;)|
177

. where a; and a; are normalized columns of A.
e 1 (A) < 1if the columns of A are pairwise independent.

e Spark(A) > 1/u(A) [can be shown by the Gershgorin circle’'s theorem].

e \Welch bound asserts

>
= n(m—1)
which roughly gives ;1 = O(1/4/m) for a “well-behaved” A.
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Gershgorin circle’s theorem

Lemma 2. [Gershgorin circle’s theorem] The eigenvalues of an n xn matrix
M with entries m;;, 1 <i,57 < n, lie in the union of n discs d; = d;(c;,13),
1 <1 <mn, centered at ¢; = m;; and with radius r; = } ., [mi;|.

10 ¢

4 2 3 :
Example : take M = | -2 -5 &8 S
1 0 3
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Sufficient condition using mutual coherence

Theorem 3. [Equivalence, Donoho and Elad 2002] The sparsest solution
to y = Ax is unique if ||x|

1 1

e The largest recoverable sparsity of « is k ~ O(1/u) = O(y/m), which is
square-root in the number of measurements.

e [ his result is deterministic.

e Requires the signal to be exactly sparse, which is not always practical.
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Sparse Recovery via /; Minimization

Since the above ¢35 minimization is NP-hard. We would like to take its convex
relaxation, which leads to the /1 minimization, or basis pursuit:

(BP:) & = argmin ||x||; subjectto y= Ax.

T

e The BP algorithm does not assume knowledge of the sparsity level to perform.

e Compare this with the usual wisdom of /5 minimization:

&y, = argmin ||x||2 subjectto y = Aw.
€T

which has a closed form solution
QAJEQ — ATya

where T denotes pseudo-inverse.

Page 13



A numerical example

Let's run an example using CVX (http://cvxr.com/cvx/).
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http://cvxr.com/cvx/

Geometry of basis pursuit
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Restricted isometry property

Definition 6. [Restricted Isometry Property (RIP)] /f A satisfies the
restricted isometry property (RIP) with §sp, then for any two k-sparse vectors

x1 and x5:

|A(x1 — x2)

2
1 — g < H2§1—|-52k-

|1 — 2|3

X1

d*(1 —dgz) < (d')* < d2(1+5%j'"“"

If 02, < 1, this implies the ¢y problem has a unique k-sparse solution.
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RIP matrices preserve orthogonality between sparse vectors

Proposition 2.
[(Ax1, Azo)| < 05 46,1 |2]|2][2

for all &1, x5 that are supported on disjoint subsets T1,T5 C [n] with |T1| < s1
and |T2‘ < S9.

Proof: Without loss of generality assume ||x1]|2 = ||x2|]2 = 1. Applying the
parallelogram identity, which says

Az, Azo)| = ~|||Az1 + Axs|)5 — ||Azy + Axsl|5)

S = ] =

< 2(1 + 531+32) o 2(1 R 5314—32)‘ < 681+82'
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Restricted isometry property

Theorem 4. [Performance of BP via RIP, Candés, Tao, Romberg, 2006]
If 5o, < /2 — 1, then for any vector x, the solution to basis pursuit satisfies

|& — ]y < Cok™"/?|| — @41
where x;, is the best k-term approximation of x for some constant Cj,.

e exact recovery if x is exactly k-sparse.

e Many random ensembles (e.g. Gaussian, sub-Gaussian, partial DFT) satisfies
the RIP as soon as (we'll return to this point)

m ~ O(klog(n/k))

e The proof of theorem is particularly elegant.
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Proof of Theorem {4

Proof of Theorem {4 Set & = x + h. We already show Ah = 0. The goal is to
establish that h = 0 when A satisfies the desired RIP.

The first step is to decompose h into a sum of vectors ht,, hr,, hy,, ..., each
of sparsity at most k. Here, Ty corresponds to the locations of the k largest
coefficients of x; T to the locations of the k largest coefficients of hTOc, T5 to
the locations of the next k largest coefficients of hre, and so on.

The proof proceeds in two steps:

1. the first step shows that the size of h outside of T,UI; is essentially bounded
by that of h on Ty U Tj.

2. the second step shows that ||h7,ur,||2 is appropriately small.
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Proof continued

Step 1: Note that for each 57 > 2,
1

Izl> < VElhr, o < -

1P, [l

therefore

1 1
>l lle < 7= 3 Iy Iy = -l

Jj=2 j>1
This allows us to bound

1
lryoryellz < 11D hrllz <) llhyll2 < ﬁHthHl-

J=2 J=2

Given £ = x + h is the optimal solution, we have

||y >l +hlly= > |oi+hil + > |2+ hy

i€Ty €T

> |znpll = Mhzlls + lhrgll = lzzgll, (%)
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which gives
lhzslly < [[haglly + 2l = lemll + [zl

< [[haplls + 2zl := Aol + 2l — 2k ]l1-

Combining with (*), we have
1 1 2
[h(ryury)ell2 < ﬁHthHl < ﬁHhToul + ﬁ“m — x|

Step 2: We next bound ||hp,ur||2. Note that

0= Ah = Ahgur, + ) Ahg,

J=2

we have by RIP

(1 — i) lhryur |3 < [[ARzur |13 = [(Ahryor, Y Ahg)|.
J2>2
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Using Proposition 2, we have for j > 2

‘<AhToUT17 AthH < ‘<AhTov Ath>| + |<AhT1> AthH
< dak(|hrpll2 + Ry [l2) |y |2
< 52k\/§|‘hTOUT1H2HthH27

which gives
(1 - 52/%)“hT0UT1||§ < Z |<AhToUT17 Ath>|
Jj=>2
< V200|lhrur 2 ) | by 2

Jj=2

1
< \@5zthT0uT1HzﬁHthHl,

therefore

V202, 1
h <
| ﬂ”ﬂﬂz—(l—éﬂjv%

1
lhglly < p—=(llhmy 1 + 2[|@ — @[l1)

Vk

Page 22



where p := (1/_22"3 Since ||h1y|l1 < VE||hTll2 < VE||hr,u1 |2, We can bound

2p ||z — kaHl

P Vk

lhryuT |2 < -

Finally,

|z —zll2 = [[hll2 < [|hryur 2 + [[Ru)ell2

2
Izl + —=lz — x|

vk

1
< |hryur |2 + ﬁ
< 2||hryury |2 + \fH-’B — xk|1
_ 204 )@ — el

~ 1l-p Vk

Therefore, Cy := @. The requirement on do;, comes from the fact that we

need 1 — p > 0 to avoid the bound to blow up.
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/1 recovery in the noisy case

In the presence of additive measurement noise,
y = Ax + w,

where ||w||s < € is assumed to be bounded.

We can modify the BP algorithm in the following manner:

(BP-noisy:) & = argmin ||x||; subjectto |y — Ax|: <e.

T

Theorem 5. [Performance of BP via RIP, noisy case] If dy, < V2 — 1,
then for any vector x, the solution to basis pursuit (noisy case) satisfies

& — x||s < Cok™Y3||@ — xi||1 + Che.

where x;. is the best k-term approximation of x for some constants Cy and C}.
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Proof of Theorem

Again let's start by assuming & = @ + h. The key difference from the noiseless

case is that in Step 2, we now have

|Ah|2 = [|A(z — z)|[2 = I(y — Az) — (y — Az)]]2

< lly — Az[}z + [y — Az|z < 2e.

Therefore, we need to bound

||AhT0UT1H% = (Ah — Z Ath? AhToUT1>

J=2
< (Ah,Ahgr) — Y (Ahr, Ahgur)
<2e8p|lhryur ll2 I=2 _

bounded as before
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By plugging in this modification, we show

2(1 + r—x 20
(1+p)le =zl

- Rl <
|z — |2 = k|2 < T, T "
where
a_2\/1+52k
1=y
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Remarks

The theorems are quite strong, in the sense it holds for all signals once A
satisfies RIP.

The reconstruction quality relies on two quantities: the best k-term
approximation error and the noise level.

Our generalization of the performance guarantee from the noise-free case to
the noisy case is essentially effortless. However, we do need an upper bound
of the noise level in order to perform the algorithm.

A related algorithm is called LASSO, which has the form of

. .1
Llusso = argmin §Hy — A:I:||§ + A||x]|1,
€T

where A > 0 is called a regularization parameter. Another related algorithm
is called Dantizg selector. Both can be analyzed in a similar manner as the

BP using RIP.
Page 27



Which matrices satisfy RIP?

Random matrices with i.i.d. Gaussian entries satisfy RIP with high probability,

as long as
m 2 klog(n/k).

Random Partial DFT matrices, A = IqF', where I is an partial identity
matrix with rows indexed by the random subset €2, and F' is the DFT matrix,
satisfy RIP with high probability, as long as

m = Q| > klogn.

Similar results hold for random Partial Circulant/Toeplitz matrices, random
matrices with i.i.d. sub-Gaussian entries, etc...

All these are probabilistic, in the sense if we draw a random matrix following
the stated distribution, it will satisfy the RIP with high probability (i.e.
1 — exp(—cm)).
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Deterministic matrices satisfying RIP

Constructing deterministic matrices that satisfy RIP is difficult.

There're many benefits of having deterministic constructions: fast computation,

less storage, etc..
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A matrix @ is said to satisfy the ( K , 6)-restricted isometry property (RIP) if for every J{-sparse vector T,
2 2 2
(1 =0)l]|” < [|@]” < (1 + &) ||

Let ExRIP [z] denote the following statement: There exists an explicit family of deterministic matrices { @y},
where @, is M x N ( M ) and )f and N ( M ) / M are both arbitrarily large, such that each @ ,, satisfies
(K, 0)RIPwith K = Q(M*")forall¢ > (andwith § < 1/2

The goal is to make progress on the deterministic RIP matrix problem, that is, to prove ExRIP[1].

Despite the fact that such matrices are known to exist (due to random matrix arguments), almost all deterministic
constructions take ' — O( M 1/2 ), but one paper has broken this square-root bottleneck:

Explicit constructions of RIP matrices and related problems &

J. Bourgain, S. Dilworth, K. Ford, S. Konyagin, D. Kutzarova
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