
ECE 18-898G: Sparsity, Structure and Inference Spring 2018

Homework 3

Due date: Wednesday, Mar. 7, 2018 (in class)

1. Proximal methods (40 points)

Recall that the proximal operator of a convex function h is defined as

proxh(x) := arg min
z

{
1

2
‖x− z‖2 + h(z)

}

(a) Suppose that f(x) = ‖x‖2. Show that

proxλf (x) :=

(
1− λ

‖x‖2

)
+

x,

where (a)+ := max{a, 0}.

(b) Suppose that f(x) = h(x) + ρ
2‖x− a‖2. Show that

proxλf (x) := prox λ
1+λρh

(
1

1 + λρ
x +

λρ

1 + λρ
a

)
.

(c) Suppose that f(x) = h(x) + a>x + b. Show that

proxλf (x) := proxλh(x− λa).

(d) Show that a point x∗ is the minimizer of h(·) if and only if

x∗ = proxh(x∗).

This simple observation is the motivation of the so-called proximal minimization algorithm, which finds the
optimizer of h by the iterative procedure

xt+1 = proxλh(xt).

2. Iterative Hard Thresholding (30 points) (Foucart and Rauhut, Problem 6.21)

Let x ∈ Rp be a s-sparse vector, and given y = Ax for some measurement matrix A. Denote the
restricted isometry constant δs ≥ 0 of A is the smallest constant such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 (1)

holds for all s-sparse vector x ∈ Rp.
Assume we are given a sequence of iterates xn, as

xn+1 = Hs(xn + µA>(y −Axn)) (2)
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where x0 is an initial s-sparse vector, and the hard thresholding operator Hs keeps the s largest absolute
entries of a vector. This is the iterative hard thresholding algorithm discussed in class. We will determine µ
later.

(a) Establish the identity

‖A(xn+1 − x)‖22 − ‖A(xn − x)‖22 = ‖A(xn+1 − xn)‖22 + 2〈xn − xn+1,A
>A(x− xn)〉

(b) Establish the inequality

2µ〈xn − xn+1,A
>A(x− xn)〉 ≤ ‖xn − x‖22 − 2µ‖A(xn − x)‖22 − ‖xn+1 − xn‖22.

(c) Derive the inequality

‖A(xn+1 − x)‖22 ≤
(

1− 1

µ(1 + δ2s)

)
‖A(xn+1 − xn)‖22 +

(
1

µ(1− δ2s)
− 1

)
‖A(xn − x)‖22.

Deduce that the sequence xn converges to x when 1 + δ2s <
1
µ < 2(1− δ2s). Conclude by justifying the

choice µ = 3/4 under the condition δ2s < 1/3.

3. Subgradient of nuclear norm (30 points)

The nuclear norm to low-rank matrix recovery plays a similar role as the `1 norm to sparse recovery.

(a) Find the subgradient of the nuclear norm.

(b) Use (a) to find the optimality condition of a nuclear-norm regularized optimization problem:

min
X∈Rn×n

‖y −A(X)‖22 + λ‖X‖∗

where A() : Rn×n 7→ Rm is a linear operator, y ∈ Rm, and λ > 0 is a regularization parameter.
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