## Homework 3

Due date: Wednesday, Mar. 7, 2018 (in class)

## 1. Proximal methods (40 points)

Recall that the proximal operator of a convex function $h$ is defined as

$$
\operatorname{prox}_{h}(\boldsymbol{x}):=\arg \min _{\boldsymbol{z}}\left\{\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{z}\|^{2}+h(\boldsymbol{z})\right\}
$$

(a) Suppose that $f(\boldsymbol{x})=\|\boldsymbol{x}\|_{2}$. Show that

$$
\operatorname{prox}_{\lambda f}(\boldsymbol{x}):=\left(1-\frac{\lambda}{\|\boldsymbol{x}\|_{2}}\right)_{+} \boldsymbol{x}
$$

where $(a)_{+}:=\max \{a, 0\}$.
(b) Suppose that $f(\boldsymbol{x})=h(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{x}-\boldsymbol{a}\|^{2}$. Show that

$$
\operatorname{prox}_{\lambda f}(\boldsymbol{x}):=\operatorname{prox}_{\frac{\lambda}{1+\lambda \rho} h}\left(\frac{1}{1+\lambda \rho} \boldsymbol{x}+\frac{\lambda \rho}{1+\lambda \rho} \boldsymbol{a}\right) .
$$

(c) Suppose that $f(\boldsymbol{x})=h(\boldsymbol{x})+\boldsymbol{a}^{\top} \boldsymbol{x}+\boldsymbol{b}$. Show that

$$
\operatorname{prox}_{\lambda f}(\boldsymbol{x}):=\operatorname{prox}_{\lambda h}(\boldsymbol{x}-\lambda \boldsymbol{a})
$$

(d) Show that a point $\boldsymbol{x}^{*}$ is the minimizer of $h(\cdot)$ if and only if

$$
\boldsymbol{x}^{*}=\operatorname{prox}_{h}\left(\boldsymbol{x}^{*}\right) .
$$

This simple observation is the motivation of the so-called proximal minimization algorithm, which finds the optimizer of $h$ by the iterative procedure

$$
\boldsymbol{x}^{t+1}=\operatorname{prox}_{\lambda h}\left(\boldsymbol{x}^{t}\right)
$$

2. Iterative Hard Thresholding (30 points) (Foucart and Rauhut, Problem 6.21)

Let $\boldsymbol{x} \in \mathbb{R}^{p}$ be a $s$-sparse vector, and given $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ for some measurement matrix $\boldsymbol{A}$. Denote the restricted isometry constant $\delta_{s} \geq 0$ of $\boldsymbol{A}$ is the smallest constant such that

$$
\begin{equation*}
\left(1-\delta_{s}\right)\|\boldsymbol{x}\|_{2}^{2} \leq\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} \leq\left(1+\delta_{s}\right)\|\boldsymbol{x}\|_{2}^{2} \tag{1}
\end{equation*}
$$

holds for all $s$-sparse vector $\boldsymbol{x} \in \mathbb{R}^{p}$.
Assume we are given a sequence of iterates $\boldsymbol{x}_{n}$, as

$$
\begin{equation*}
\boldsymbol{x}_{n+1}=H_{s}\left(\boldsymbol{x}_{n}+\mu \boldsymbol{A}^{\top}\left(\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}_{n}\right)\right) \tag{2}
\end{equation*}
$$

where $\boldsymbol{x}_{0}$ is an initial $s$-sparse vector, and the hard thresholding operator $H_{s}$ keeps the $s$ largest absolute entries of a vector. This is the iterative hard thresholding algorithm discussed in class. We will determine $\mu$ later.
(a) Establish the identity

$$
\left\|\boldsymbol{A}\left(\boldsymbol{x}_{n+1}-\boldsymbol{x}\right)\right\|_{2}^{2}-\left\|\boldsymbol{A}\left(\boldsymbol{x}_{n}-\boldsymbol{x}\right)\right\|_{2}^{2}=\left\|\boldsymbol{A}\left(\boldsymbol{x}_{n+1}-\boldsymbol{x}_{n}\right)\right\|_{2}^{2}+2\left\langle\boldsymbol{x}_{n}-\boldsymbol{x}_{n+1}, \boldsymbol{A}^{\top} \boldsymbol{A}\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right)\right\rangle
$$

(b) Establish the inequality

$$
2 \mu\left\langle\boldsymbol{x}_{n}-\boldsymbol{x}_{n+1}, \boldsymbol{A}^{\top} \boldsymbol{A}\left(\boldsymbol{x}-\boldsymbol{x}_{n}\right)\right\rangle \leq\left\|\boldsymbol{x}_{n}-\boldsymbol{x}\right\|_{2}^{2}-2 \mu\left\|\boldsymbol{A}\left(\boldsymbol{x}_{n}-\boldsymbol{x}\right)\right\|_{2}^{2}-\left\|\boldsymbol{x}_{n+1}-\boldsymbol{x}_{n}\right\|_{2}^{2} .
$$

(c) Derive the inequality

$$
\left\|\boldsymbol{A}\left(\boldsymbol{x}_{n+1}-\boldsymbol{x}\right)\right\|_{2}^{2} \leq\left(1-\frac{1}{\mu\left(1+\delta_{2 s}\right)}\right)\left\|\boldsymbol{A}\left(\boldsymbol{x}_{n+1}-\boldsymbol{x}_{n}\right)\right\|_{2}^{2}+\left(\frac{1}{\mu\left(1-\delta_{2 s}\right)}-1\right)\left\|\boldsymbol{A}\left(\boldsymbol{x}_{n}-\boldsymbol{x}\right)\right\|_{2}^{2}
$$

Deduce that the sequence $\boldsymbol{x}_{n}$ converges to $\boldsymbol{x}$ when $1+\delta_{2 s}<\frac{1}{\mu}<2\left(1-\delta_{2 s}\right)$. Conclude by justifying the choice $\mu=3 / 4$ under the condition $\delta_{2 s}<1 / 3$.

## 3. Subgradient of nuclear norm (30 points)

The nuclear norm to low-rank matrix recovery plays a similar role as the $\ell_{1}$ norm to sparse recovery.
(a) Find the subgradient of the nuclear norm.
(b) Use (a) to find the optimality condition of a nuclear-norm regularized optimization problem:

$$
\min _{\boldsymbol{X} \in \mathbb{R}^{n \times n}}\|\boldsymbol{y}-\mathcal{A}(\boldsymbol{X})\|_{2}^{2}+\lambda\|\boldsymbol{X}\|_{*}
$$

where $\mathcal{A}(): \mathbb{R}^{n \times n} \mapsto \mathbb{R}^{m}$ is a linear operator, $\boldsymbol{y} \in \mathbb{R}^{m}$, and $\lambda>0$ is a regularization parameter.

