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Outline

One-step thresholding (OST)

Orthogonal Matching Pursuit (OMP)

Iterative Hard Thresholding (IHT)

Compressive Sampling Matching Pursuit (CoSaMP)

iterative and simple, with explicit control of the sparsity level.



Greedy algorithms

Consider the noise-free measurements

y=Ax
where
e x € R? is k-sparse,
e A=lay,...,ap € R"? with unit-norm columns, i.e.

Our goal is to estimate the support and coefficients of x from y.



One-Step Thresholding



One-step thresholding

If « is 1-sparse as & = e; which is a basis vector in RP, then y is just
a;, and a natural way to determine ¢ is using matched filter:

— argmaxlgigp‘ (a’ia y)’

Algorithm 5.1 One-Step Thresholding (OST)

Input: Sparsity level k.

@ Compute:
z=A'y

@ Find the support as the indices of the k largest entries of |z|.




One-step thresholding

How well does it work?
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If the interference from other nonzero entries of x is small enough, it
is possible to read off the support of & from the largest entries of z.



Performance of OST

It is all about managing signal-to-interference ratio. Let the mutual
coherence of A be
= max [{a;, a;)|.
i#j
Theorem 5.1 (OST)

Suppose that x be a k-sparse signal. OST recovers the support of x if

min; || 2u
el ~ (L+p)

e We can recover x if its smallest non-zero entry is not too small.
o If |[z1| =--- = |zg|, the LHS becomes 1/k and for success
support recovery we require

R

| =
Sl-

which requires n > k2.



Proof of Theorem 5.1

Note that

z=Aly = ATA =

Gram matrix

o Wlog, assume x is k-sparse with the nonzero entries indexed by
{1,...,k}, in a descending order

|z1| > |z2| > ... > |xk]-
e To guarantee the success of OST, we want to show

min |z > max |z
1<i<k k+1<i<n



Lower bound min; ;< |2

For1 <7<k,

|zi| = |a] Az|

= la] (aizi + ) ajz;)|
i#i
=z +)_ajajuj|
i
> || = laf ajl|;|

> |ail = p(llelly — fi])
> (L4 p)lai] = pll]]s,

therefore, minlgigk ‘ZZ| > (1 + /L) min; |:El’ — ,u”a:Hl



Upper bound maxy1<;<, ||

Fork+1<i<n,

2| = la] Aal

k
-
= |a; Z a;z;|
j=1



Putting everything together

OST succeeds if
(14 p)min |2;| — pllzls > pllz:

which yields
(1 + p) min ;] > 2pf]]1.
or equivalently
min; || 24
s~ (14 p)




Better strategies?

e False alarms and miss detections are possible when the signal is
weak and interference is high.

e It is obvious better approaches exist, for example, by applying
iterations.

The idea is through iterations, we can either iteratively identify new
atoms in the sparse representation, or refine our earlier estimate.

e Orthogonal Matching Pursuit (OMP)

e lterative Hard Thresholding (IHT)

e Compressive Sampling Matching Pursuit (CoSaMP)



Orthogonal Matching Pursuit (OMP)



Orthogonal Matching Pursuit

Idea: select one index at every iteration.

Algorithm 5.2 Orthogonal Matching Pursuit (OMP)

Input: Sparsity level k.
Initialization: Let 7 =y, and Sy = 0.
fort=1,--- k:

@ Choose the atom that has the largest correlation with the

residual:
it = argmaxj|<aj,rl-,1>|
@ Add i; to the support set: Sy = {Si—1,};
© Update the residual as

= (I — AStATSt) Y.




Properties of OMP

e |t doesn't select the same atom twice. If j € S;_1 has been
selected,

(@, m1) = {a;, (I — As, AL )y)
= yT(I - AStAgt)a’j =0,

therefore 7 won't be selected again by OMP.

e If in each step OMP selects a correct index in T', in k iterations
it will select all indices in T and terminates.

e An alternative way to terminate OMP (without the knowledge of
k) is to examine the norm of the residual ||7;]|2 < e.



Exact Recovery Condition (ERC) for OMP

Theorem 5.2 (ERC, Tropp 2004)

Suppose that x be a k-sparse signal supported on T'. OMP recovers
x whenever

max HATTaHl <1

acTe®

where | denotes pseudo-inverse.

e This condition also guarantees the success of Basis Pursuit (/1
minimization), see [Tropp 2004].

e Interestingly enough, this condition only depends on A, not on
the coefficients of & - much improved from OST.

e A natural question is when does this condition hold?



Exact Recovery Condition (ERC)

Theorem 5.3 (Tropp 2004)

ERC holds for every superposition of k atoms from A whenever

1
k< 5(,&_1 + 1)

e Same condition that guarantees unique sparse solution for ¢y/¢;
minimization.

e Since it = O(-L), we recover sparsity level up to k < O(1//n).

n



Proof for Theorem 5.2

Proceed by induction.

After t steps, assume OMP has already identified ¢ correct
indices in T'. We would like to develop a condition that
guarantees the next selected atom is also in T'.

Motivated by our earlier discussions with OST, we only need to
examine if the ratio

a1
4z,

= 1.
P = AT

Realizing that r, € Span(Ar), we write

re = ApAlr, = Ar(ALAD) " ATr, = (AT ATr,.



Proof for Theorem 5.2

This allows us to bound

Ak, AT abTAR ]

p(re) = <
JAT7| o JAT7| o

< Jarcai|

00,00

where the last inequality follows from the definition of the matrix
norm || - {|pp
| Rl

]l

|R|pp = max

It is easy to check (by yourself) that

0 ||R||co,00 equals the maximum absolute row sum of R;
o ||R||1,1 equals the maximum absolute column sum of R;

We have

= Imax

p(re) < HA;C(ATT)THOO,OO = HATTATC pq T max

A}ai 1




Proof of Theorem 5.3

e Recall the ERC can be upper bounded as

T T —1 4T

max ||ALa;|| = max||(ArA Ara;

ieTe 17T I T GeTe (ArAr)~ Ara; 1
< ’ATA ’1H max ||ALa; *
< |AFan |, max|atal] . @

where the second term can be bounded by the Babel function

max || AtT.a; | = nax Z {aj, a;)| < kp.
JET

ie’Te

i€Te
e For the first term, we set off to write A}AT as
ATAr =T+ @
where ¢;; = (ar;, ar;), and

@10 = max 3 [{ar;, az,)| < p(k — 1).
J#l



Proof of Theorem 5.3 continued

If || ®]]1.1 < 1, the von Neumann series 3 3° o(—®)* converges to
(I +®)~!, we can compute

H(AIT“AT)AHM - H(I+ q))AHLl
- [ -ay
k=0 1,1
1 1
<Z|I ||11 1— @1 = 1—pk—1)

Plugging this into (*), a sufficient condition to guarantee ERC is

wk
1—p(k—1)

which gives k < $(1+ p1).

<1



OMP Performance via RIP

Theorem 5.4 (OMP via RIP, Davenport and Wakin, 2010)

Suppose that A satisfies the RIP of order k 4+ 1 with isometry
constant §j11 < ﬁ Then for any k-sparse signal x, OMP will
recover it exactly from in k iterations.

e Under Gaussian design, we can guarantee RIP constant with
n 2> klogp/d? = O(k?logp) measurements.



Iterative Hard Thresholding (IHT)



IHT as Proximal Gradient Descent

Consider the non-convex optimization problem directly:
min ||y — Az|3 st ||zl < k.
Solve by proximal gradient descent:

0, if allo <k

min |y — Az|3 + g(z), where g(w)Z{
oo, else

e gradient descent:
2eat —py AT(Az! —y)
—————
gradient of %Hy*AazHQ

e projection: keep only k largest (in magnitude) entries



Iterative hard thresholding (IHT)

Algorithm 5.3 lIterative Hard Thresholding (IHT)

Input: Sparsity level k.
fort=0,1,---:

't =Py (wt — A" (Az' — y))

where Py (x) := arg ”n‘r‘link |z — || is best k-term approximation of x.
Z|lo=

e For appropriate step size, it converges to a local minimum of
min ||y — Az||3 st |z < k.

e Every iteration produces a k-sparse solution.



Linear convergence of IHT under RIP

Theorem 5.5 (Blumensath & Davies '09)

Suppose x is k-sparse, and RIP constant s, < 1/2. Then taking

we =1 gives
" — || < (2031)" [« — |

e Under Gaussian design, need n = O(k log p) measurements.
e Under RIP, IHT attains e-accuracy within O(log %) iterations

e Each iteration takes time proportional to a matrix-vector product



Numerical performance of IHT

Relative error
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Proof of Theorem 5.5

Let z :=x! — AT (Ax? — y) = 2 — AT A(x? — x). By definition of Py,

Iz —zP>] &2 -2

k-sparse best k-sparse

= H:c“'l — :1:||2 — 2<wt+1 —z,z—x)+ ||z — a:||2

= |zt -z < 2@ -2 z—x)
2zt —x, (I- ATA)(z! — x))
< 205z - ]| - [lat — ] (5.1)

which gives
lz** — a|| < 2834]|2" — |

as claimed. Here, (5.1) follows from the following fact (homework)

[(u, (I —ATA)v)| <5full - [v]| with s = [supp (u) U supp (v)|



Compressive Sampling Matching Pursuit
(CoSaMP)!

1See also Subspace Pursuit by Dai and Milenkovic



CoSaMP

Idea: add more to the support and then prune.

Algorithm 5.4 Compressive Sampling Matching Pursuit (CoSaMP)

Input: Sparsity level k.
Initialization: Let ro =y, ° =0, and S = 0.
fort=1,2,---:

@ Identify the support €2; of the 2k largest coefficients of

T .
zt=A'"7ri_1;

@ Merge support: S; = ; Usupp(xi~!)

© Least-squares estimation: bg = Ajrgy, bge = 0;
Q Prune: x! = b, as the k-term approximation to bg;

@ Residual update: r; = y — Ax?




Performance of CoSaMP via RIP

Theorem 5.6 (Needell and Tropp, 2008)

Assume A satisfies the RIP with o1 < 0.05. For any k-sparse signal
x, the reconstruction in the tth iteration x' is k-sparse, and satisfies

Hazt+1 — :cH2 <0.26-||z" — z||2.

Moreover, CoSaMP is exact after at most 6(k + 1) iterations.

e Under Gaussian design, need n = O(klogp) measurements.

e Under RIP, CoSaMP attains e-accuracy within O(log %)
iterations

e Each iteration takes more time compared to IHT.



Iteration Count of CoSaMP

The number of iterations is at most 6(k + 1), and could be as small
as log k.
It heavily relies on the coefficient profile.
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Ficurg 1. Illustration of two unit-norm signals with sharply different profiles.



Phase transition for inverse problems

Suppose A € R™*P js i.i.d. Gaussian, and consider
minimizegere f(x) (5.2)
st. y=Ax

Key: using convex geometry

(5.2) succeeds

)
{h:Ah =0} N D(f,z) = {0}

)
stat-dim({h : Ah = 0}) + stat-dim(D(f,x)) <p (by Theorem 77)

= p—n




Phase transition for inverse problems

Suppose A € R™ P is i.i.d. Gaussian, and consider
minimizezerr  f()

st. y=Ax
Theorem 5.7 (Amelunxen, Lotz, McCoy & Tropp '13)

n > stat-dim(D(f,x)) + ©(1/plogp)
= (5.2) succeeds with high prob.

n < stat-dim(D(f,x)) — ©(1/plogp)
= (5.2) fails with high prob.

Statistical dimension:

stat-dim (D (|| - 1, @) )

= %1% {k (1 + 72) +(p—k) \/E/m(z — T)Qe_zzdz}



Numerical phase transition

Compressed sensing with ¢; minimization
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Figure credit: Amelunxen, Lotz, McCoy, & Tropp '13



Benchmark result by Donoho and Maleki

Comparison of Different Algorithms
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Figure 5.1: Phase Transitions of several algorithms at the standard suite. p
is sparsity level and ¢ is subsampling ratio. [Donoho and Maleki, 2009].
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