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Outline

• One-step thresholding (OST)
• Orthogonal Matching Pursuit (OMP)
• Iterative Hard Thresholding (IHT)
• Compressive Sampling Matching Pursuit (CoSaMP)

iterative and simple, with explicit control of the sparsity level.
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Greedy algorithms

Consider the noise-free measurements

y = Ax

where

• x ∈ Rp is k-sparse,
• A = [a1, . . . ,ap] ∈ Rn×p with unit-norm columns, i.e.
‖ai‖2 = 1.

Our goal is to estimate the support and coefficients of x from y.
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One-Step Thresholding
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One-step thresholding

If x is 1-sparse as x = ei which is a basis vector in Rp, then y is just
ai, and a natural way to determine i is using matched filter:

i∗ = argmax1≤i≤p|〈ai,y〉|

Algorithm 5.1 One-Step Thresholding (OST)
Input: Sparsity level k.

1 Compute:
z = ATy

2 Find the support as the indices of the k largest entries of |z|.
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One-step thresholding

How well does it work?
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If the interference from other nonzero entries of x is small enough, it
is possible to read off the support of x from the largest entries of z.
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Performance of OST
It is all about managing signal-to-interference ratio. Let the mutual
coherence of A be

µ = max
i 6=j
|〈ai,aj〉|.

Theorem 5.1 (OST)

Suppose that x be a k-sparse signal. OST recovers the support of x if

mini |xi|
‖x‖1

>
2µ

(1 + µ) .

• We can recover x if its smallest non-zero entry is not too small.
• If |x1| = · · · = |xk|, the LHS becomes 1/k and for success

support recovery we require
1
k
& µ ∼ 1√

n

which requires n & k2.
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Proof of Theorem 5.1

Note that

z = ATy = ATA︸ ︷︷ ︸
Gram matrix

x

• Wlog, assume x is k-sparse with the nonzero entries indexed by
{1, . . . , k}, in a descending order

|x1| ≥ |x2| ≥ . . . ≥ |xk|.

• To guarantee the success of OST, we want to show

min
1≤i≤k

|zi| > max
k+1≤i≤n

|zi|.
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Lower bound min1≤i≤k |zi|

For 1 ≤ i ≤ k,

|zi| = |aT
i Ax|

= |aT
i (aixi +

∑
j 6=i

ajxj)|

= |xi +
∑
j 6=i

aT
i ajxj |

≥ |xi| −
∑
j 6=i
|aT
i aj ||xj |

≥ |xi| − µ(‖x‖1 − |xi|)
≥ (1 + µ)|xi| − µ‖x‖1,

therefore, min1≤i≤k |zi| ≥ (1 + µ) mini |xi| − µ‖x‖1.
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Upper bound maxk+1≤i≤n |zi|

For k + 1 ≤ i ≤ n,

|zi| = |aT
i Ax|

= |aT
i

k∑
j=1

ajxj |

≤
k∑
j=1
|aT
i aj ||xj |

≤ µ‖x‖1
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Putting everything together

OST succeeds if

(1 + µ) min
i
|xi| − µ‖x‖1 > µ‖x‖1

which yields
(1 + µ) min

i
|xi| > 2µ‖x‖1.

or equivalently
mini |xi|
‖x‖1

>
2µ

(1 + µ) .



12/36

Better strategies?

• False alarms and miss detections are possible when the signal is
weak and interference is high.
• It is obvious better approaches exist, for example, by applying

iterations.

The idea is through iterations, we can either iteratively identify new
atoms in the sparse representation, or refine our earlier estimate.

• Orthogonal Matching Pursuit (OMP)
• Iterative Hard Thresholding (IHT)
• Compressive Sampling Matching Pursuit (CoSaMP)
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Orthogonal Matching Pursuit (OMP)
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Orthogonal Matching Pursuit

Idea: select one index at every iteration.

Algorithm 5.2 Orthogonal Matching Pursuit (OMP)
Input: Sparsity level k.
Initialization: Let r0 = y, and S0 = ∅.
for t = 1, · · · , k:

1 Choose the atom that has the largest correlation with the
residual:

it = argmaxj |〈aj , ri−1〉|
2 Add it to the support set: St = {St−1, it};
3 Update the residual as

rt =
(
I −AStA

†
St

)
y.
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Properties of OMP

• It doesn’t select the same atom twice. If j ∈ St−1 has been
selected,

〈aj , rt−1〉 = 〈aj , (I −AStA
†
St

)y〉

= yT(I −AStA
†
St

)aj = 0,

therefore j won’t be selected again by OMP.
• If in each step OMP selects a correct index in T , in k iterations

it will select all indices in T and terminates.
• An alternative way to terminate OMP (without the knowledge of
k) is to examine the norm of the residual ‖rj‖2 < ε.
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Exact Recovery Condition (ERC) for OMP

Theorem 5.2 (ERC, Tropp 2004)

Suppose that x be a k-sparse signal supported on T . OMP recovers
x whenever

max
a∈T c

‖A†Ta‖1 < 1

where † denotes pseudo-inverse.

• This condition also guarantees the success of Basis Pursuit (`1
minimization), see [Tropp 2004].
• Interestingly enough, this condition only depends on A, not on

the coefficients of x - much improved from OST.
• A natural question is when does this condition hold?
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Exact Recovery Condition (ERC)

Theorem 5.3 (Tropp 2004)

ERC holds for every superposition of k atoms from A whenever

k <
1
2(µ−1 + 1)

• Same condition that guarantees unique sparse solution for `0/`1
minimization.
• Since µ = O( 1√

n
), we recover sparsity level up to k . O(1/

√
n).
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Proof for Theorem 5.2

• Proceed by induction.
• After t steps, assume OMP has already identified t correct

indices in T . We would like to develop a condition that
guarantees the next selected atom is also in T .
• Motivated by our earlier discussions with OST, we only need to

examine if the ratio

ρ(rt) =

∥∥∥AT
T crt

∥∥∥
∞∥∥AT

Trt
∥∥
∞

< 1.

Realizing that rt ∈ Span(AT ), we write

rt = ATA
†
Trt = AT (AT

TAT )−1AT
Trt = (A†T )TAT

Trt.
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Proof for Theorem 5.2

• This allows us to bound

ρ(rt) =

∥∥∥AT
T crt

∥∥∥
∞∥∥AT

Trt
∥∥
∞
≤

∥∥∥AT
T c(A†T )TAT

Trt
∥∥∥
∞∥∥AT

Trt
∥∥
∞

≤
∥∥∥AT

T c(A†T )T
∥∥∥
∞,∞

where the last inequality follows from the definition of the matrix
norm ‖ · ‖p,p

‖R‖p,p := max
x

‖Rx‖p
‖x‖p

.

It is easy to check (by yourself) that
◦ ‖R‖∞,∞ equals the maximum absolute row sum of R;
◦ ‖R‖1,1 equals the maximum absolute column sum of R;

• We have

ρ(rt) ≤
∥∥∥AT

T c(A†T )T
∥∥∥
∞,∞

=
∥∥∥A†TAT c

∥∥∥
1,1

= max
i∈T c

∥∥∥A†Tai∥∥∥1
.
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Proof of Theorem 5.3

• Recall the ERC can be upper bounded as

max
i∈T c

∥∥∥A†Tai∥∥∥1
= max

i∈T c

∥∥∥(AT
TAT )−1AT

Tai
∥∥∥

1

≤
∥∥∥(AT

TAT )−1
∥∥∥

1,1
max
i∈T c

∥∥∥AT
Tai

∥∥∥
1
, (∗)

where the second term can be bounded by the Babel function

max
i∈T c

∥∥∥AT
Tai

∥∥∥
1

= max
i∈T c

∑
j∈T
|〈aj ,ai〉| ≤ kµ.

• For the first term, we set off to write AT
TAT as

AT
TAT = I + Φ

where φij = 〈aTi ,aTj 〉, and

‖Φ‖1,1 = max
l

∑
j 6=l
|〈aTl

,aTj 〉| ≤ µ(k − 1).
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Proof of Theorem 5.3 continued

If ‖Φ‖1,1 < 1, the von Neumann series
∑∞
k=0(−Φ)k converges to

(I + Φ)−1, we can compute∥∥∥(AT
TAT )−1

∥∥∥
1,1

=
∥∥∥(I + Φ)−1

∥∥∥
1,1

=
∥∥∥∥∥
∞∑
k=0

(−Φ)k
∥∥∥∥∥

1,1

≤
∞∑
k=0
‖(−Φ)‖k1,1 = 1

1− ‖Φ‖1,1
≤ 1

1− µ(k − 1) .

Plugging this into (*), a sufficient condition to guarantee ERC is

µk

1− µ(k − 1) < 1

which gives k < 1
2(1 + µ−1).
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OMP Performance via RIP

Theorem 5.4 (OMP via RIP, Davenport and Wakin, 2010)
Suppose that A satisfies the RIP of order k + 1 with isometry
constant δk+1 <

1
3
√
k

. Then for any k-sparse signal x, OMP will
recover it exactly from in k iterations.

• Under Gaussian design, we can guarantee RIP constant with
n & k log p/δ2

k = O(k2 log p) measurements.
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Iterative Hard Thresholding (IHT)
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IHT as Proximal Gradient Descent

Consider the non-convex optimization problem directly:

min ‖y −Ax‖22 s.t. ‖x‖0 ≤ k.

Solve by proximal gradient descent:

min ‖y −Ax‖22 + g(x), where g(x) =
{

0, if ‖x‖0 ≤ k
∞, else

• gradient descent:

zt ← xt − µt A>(Axt − y)︸ ︷︷ ︸
gradient of 1

2‖y−Ax‖2

• projection: keep only k largest (in magnitude) entries
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Iterative hard thresholding (IHT)

Algorithm 5.3 Iterative Hard Thresholding (IHT)
Input: Sparsity level k.

for t = 0, 1, · · · :

xt+1 = Pk
(
xt − µtA>(Axt − y)

)
where Pk(x) := arg min

‖z‖0=k
‖z−x‖ is best k-term approximation of x.

• For appropriate step size, it converges to a local minimum of

min ‖y −Ax‖22 s.t. ‖x‖0 ≤ k.

• Every iteration produces a k-sparse solution.
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Linear convergence of IHT under RIP

Theorem 5.5 (Blumensath & Davies ’09)

Suppose x is k-sparse, and RIP constant δ3k < 1/2. Then taking
µt ≡ 1 gives

‖xt − x‖ ≤ (2δ3k)t ‖x0 − x‖

• Under Gaussian design, need n = O(k log p) measurements.

• Under RIP, IHT attains ε-accuracy within O
(

log 1
ε

)
iterations

• Each iteration takes time proportional to a matrix-vector product
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Numerical performance of IHT

Relative error ‖x
t−x‖
‖x‖ vs. iteration count t

(n = 100, k = 5, p = 1000, Ai,j ∼ N (0, 1/n))
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Proof of Theorem 5.5
Let z := xt −A>(Axt − y) = xt −A>A(xt − x). By definition of Pk,

‖ x︸︷︷︸
k-sparse

− z‖2 ≥ ‖ xt+1︸︷︷︸
best k-sparse

− z‖2

= ‖xt+1 − x‖2 − 2〈xt+1 − x, z − x〉+ ‖z − x‖2

=⇒ ‖xt+1 − x‖2 ≤ 2〈xt+1 − x, z − x〉
= 2

〈
xt+1 − x, (I −A>A)(xt − x)

〉
≤ 2δ3k‖xt+1 − x‖ · ‖xt − x‖ (5.1)

which gives
‖xt+1 − x‖ ≤ 2δ3k‖xt − x‖

as claimed. Here, (5.1) follows from the following fact (homework)

|〈u, (I −A>A)v〉| ≤ δs‖u‖ · ‖v‖ with s = |supp (u) ∪ supp (v)|
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Compressive Sampling Matching Pursuit
(CoSaMP)1

1See also Subspace Pursuit by Dai and Milenkovic
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CoSaMP

Idea: add more to the support and then prune.

Algorithm 5.4 Compressive Sampling Matching Pursuit (CoSaMP)
Input: Sparsity level k.
Initialization: Let r0 = y, x0 = 0, and S = ∅.
for t = 1, 2, · · · :

1 Identify the support Ωt of the 2k largest coefficients of

zt = ATrt−1;

2 Merge support: St = Ωt ∪ supp(xt−1);
3 Least-squares estimation: bS = A†Sy, bSc = 0;
4 Prune: xt = bk as the k-term approximation to bS ;
5 Residual update: rt = y −Axt
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Performance of CoSaMP via RIP

Theorem 5.6 (Needell and Tropp, 2008)
Assume A satisfies the RIP with δ2k ≤ 0.05. For any k-sparse signal
x, the reconstruction in the tth iteration xt is k-sparse, and satisfies∥∥∥xt+1 − x

∥∥∥
2
≤ 0.26 · ‖xt − x‖2.

Moreover, CoSaMP is exact after at most 6(k + 1) iterations.

• Under Gaussian design, need n = O(k log p) measurements.

• Under RIP, CoSaMP attains ε-accuracy within O
(

log 1
ε

)
iterations

• Each iteration takes more time compared to IHT.
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Iteration Count of CoSaMP

The number of iterations is at most 6(k + 1), and could be as small
as log k.
It heavily relies on the coefficient profile.
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Phase transition for inverse problems
Suppose A ∈ Rn×p is i.i.d. Gaussian, and consider

minimizex∈Rp f(x) (5.2)
s.t. y = Ax

Key: using convex geometry

(5.2) succeeds
m

{h : Ah = 0} ∩ D(f,x) = {0}
m

stat-dim({h : Ah = 0})︸ ︷︷ ︸
= p−n

+ stat-dim(D(f,x)) ≤ p (by Theorem ??)

Theorem 5.7 (Amelunxen, Lotz, McCoy & Tropp ’13)

n > stat-dim(D(f,x)) + Θ(
√
p log p)

=⇒ (5.2) succeeds with high prob.
n < stat-dim(D(f,x))−Θ(

√
p log p)

=⇒ (5.2) fails with high prob.

Statistical dimension:
stat-dim

(
D (‖ · ‖1,x)

)
= inf

τ≥0

{
k
(
1 + τ2

)
+ (p− k)

√
2
π

∫ ∞
τ

(z − τ)2e−z
2dz

}
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Numerical phase transition
PHASE TRANSITIONS IN RANDOM CONVEX PROGRAMS 9
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FIGURE 2.4: Phase transitions for regularized linear inverse problems. [left] Recovery of sparse vectors.
The empirical probability that the `1 minimization problem (2.5) identifies a sparse vector x0 2 R100 given
random linear measurements z0 = Ax0. [right] Recovery of low-rank matrices. The empirical probability that
the S1 minimization problem (2.6) identifies a low-rank matrix X0 2R30£30 given random linear measurements
z0 =A (X0). In each panel, the heat map indicates the empirical probability of success (black = 0%; white =
100%). The yellow curve marks the theoretical prediction of the phase transition from Theorem II; the red curve
traces the 50% success isocline calculated from the data.

by Theorem II, where the number m of measurements equals the statistical dimension of the appropriate
descent cone; the statistical dimension formulas are drawn from Sections 4.3 and 4.4. See Appendix A for the
experimental protocol.

In both examples, the theoretical prediction of Theorem II coincides almost perfectly with the 50% success
isocline. Furthermore, the phase transition takes place over a range of O(

p
d) values of m, as promised.

Although Theorem II does not explain why the transition region tapers at the bottom-left and top-right
corners of each plot, we have established a more detailed version of Theorem I that allows us to predict this
phenomenon as well; see Section 7.1.

2.6. Demixing problems with a random model. In a demixing problem [MT14b], we observe a superposi-
tion of two structured vectors, and we aim to extract the two constituents from the mixture. More precisely,
suppose that we have acquired a vector z0 2Rd of the form

z0 = x0 +U y0 (2.7)

where x0, y0 2 Rd are unknown and U 2 Rd£d is a known orthogonal matrix. If we wish to identify the pair
(x0, y0), we must assume that each component is structured to reduce the number of degrees of freedom.
In addition, if the two types of structure are coherent (i.e., aligned with each other), it may be impossible
to disentangle them, so it is expedient to include the matrix U to model the relative orientation of the two
constituent signals.

2.6.1. Solving demixing problems with convex optimization. Suppose that f and g are proper convex functions
on Rd that promote the structures we expect to find in x0 and y0. Then we can frame the convex optimization
problem

minimize f (x) subject to g (y) ∑ g (y0) and z0 = x +U y . (2.8)
In other words, we seek structured vectors x and y that are consistent with the observation z0. This
approach requires the side information g (y0), so a Lagrangian formulation is sometimes more natural in
practice [MT14b, Sec. 1.2.4]. Here are two concrete examples of the demixing program (2.8) that are adapted
from the literature.

Figure credit: Amelunxen, Lotz, McCoy, & Tropp ’13
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Benchmark result by Donoho and Maleki

Figure 5.1: Phase Transitions of several algorithms at the standard suite. ρ
is sparsity level and δ is subsampling ratio. [Donoho and Maleki, 2009].
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