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Demixing sparse and low-rank matrices

Suppose we are given a matrix

M = L︸︷︷︸
low-rank

+ S︸︷︷︸
sparse

∈ Rn×n

Question: Can we hope to recover both L and S from M?
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Principal component analysis (PCA)

• N samples X = [x1,x2, . . . ,xN ] ∈ Rn×N that are centered

• PCA: seeks r directions that explain most variance of data

minimizeL:rank(L)=r ‖X −L‖F

◦ best rank-r approximation of X
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Sensitivity to corruptions / outliers

What if some samples are corrupted (e.g. due to sensor errors /
attacks)?

Classical PCA fails even with a few outliers
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Video surveillance

Separation of background (low-rank) and foreground (sparse)

Candes, Li, Ma, Wright ’11



Graph clustering / community recovery

• n nodes, 2 (or more) clusters

• A friendship graph G: for any pair (i, j),

Mi,j =
{

1, if (i, j) ∈ G
0, else

• Edge density within clusters > edge density across clusters

• Goal: recover cluster structure

6/26
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Graph clustering / community recovery

M = L︸︷︷︸
low-rank

+ M −L︸ ︷︷ ︸
sparse

• An equivalent goal: recover ground truth matrix

Li,j =
{

1, if i and j are in same community
0, else

• Clustering ⇐⇒ robust PCA
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When is decomposition possible?

Identifiability issues: a matrix might be simultaneously low-rank and
sparse! 

1 0 0 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0


︸ ︷︷ ︸

sparse and low-rank

vs.


1 0 1 · · · 1
0 1 0 · · · 0
...

...
... . . . ...

1 0 0 · · · 1


︸ ︷︷ ︸
sparse but not low-rank

Nonzero entries of sparse component need to be spread out
— assume locations of nonzero entries are random / restrict the

number of nonzeros per row/column


1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

1 1 1 · · · 1


︸ ︷︷ ︸

low-rank and dense

vs.


1 1 1 · · · 1
0 0 0 · · · 0
...

...
...

0 0 0 · · · 0


︸ ︷︷ ︸

low-rank but sparse

Low-rank component needs to be incoherent.
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...
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...
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Low-rank component needs to be incoherent.
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Low-rank component: coherence

Definition 8.1
Coherence parameter µ1 of M = UΣV > is smallest quantity s.t.

max
i
‖U>ei‖2 ≤

µ1r

n
and max

i
‖V >ei‖2 ≤

µ1r

n
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Low-rank component: joint coherence

Definition 8.2 (Joint coherence)
Joint coherence parameter µ2 of M = UΣV > is smallest quantity
s.t.

‖UV >‖∞ ≤
√
µ2r

n2

This prevents UV > from being too peaky.
• µ1 ≤ µ2 ≤ µ2

1r, since

|(UV >)ij | = |e>
i UV >ej | ≤ ‖e>

i U‖ · ‖V >ej‖ ≤
µ1r

n

‖UV >‖2
∞ ≥

‖UV >ej‖2
F

n
= ‖V

>ej‖2

n
= µ1r

n2 (suppose ‖V >ej‖2 = µ1r

n
)
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Convex relaxation

minimizeL,S rank(L) + λ‖S‖0, s.t. M = L + S (8.1)

⇓

minimizeL,S ‖L‖∗ + λ‖S‖1, s.t. M = L + S (8.2)

• ‖ · ‖∗ is nuclear norm; ‖ · ‖1 is entry-wise `1 norm
• λ > 0: regularization parameter that balances two terms
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Theoretical guarantee

Theorem 8.3 (Candes, Li, Ma, Wright ’11)

• rank(L) . n
max{µ1,µ2} log2 n

;

• Nonzero entries of S are randomly located, and ‖S‖0 ≤ ρsn2 for
some constant ρs > 0 (e.g. ρs = 0.2).

Then (8.2) with λ = 1/
√
n is exact with high prob.

• rank(L) can be quite high (up to n/polylog(n))

• Parameter free: λ = 1/
√
n

• Ability to correct gross error: ‖S‖0 � n2

• Sparse component S can have arbitrary magnitudes / signs!
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Geometry

Fig. credit: Candes ’14
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Empirical success rate

rank(L)/n ⇢s

1

ra
nk

(L
)/

n
⇢

s

1

n = 400

Fig. credit: Candes, Li, Ma, Wright ’11
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Dense error correction

Theorem 8.4 (Ganesh et al. ’10, Chen et al. ’13)

• rank(L) . n
max{µ1,µ2} log2 n

;
• Nonzero entries of S are randomly located, have random sign,

and ‖S‖0 = ρsn
2.

Then (8.2) with λ �
√

1−ρs
ρsn

succeeds with high prob., provided that

1− ρs︸ ︷︷ ︸
non-corruption rate

&

√
max{µ1, µ2}rpolylog(n)

n

• When additive corruptions have random signs, (8.2) works even
when a dominant fraction of entries are corrupted
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Is joint coherence needed?

• Matrix completion: does not need µ2

• Robust PCA: so far we need µ2

Question: can we remove µ2? can we recover L with rank up to
n

µ1polylog(n) (rather than n
max{µ1,µ2}polylog(n)) with a constant fraction

of outliers?

Answer: no (example: planted clique)
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Planted clique problem

Setup: a graph G of n nodes generated as follows

1. connect each pair of nodes independently with prob. 0.5

2. pick n0 nodes and make them a clique (fully connected)

Goal: find hidden clique from G

Information theoretically, one can recover a clique if n0 > 2 log2 n
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Conjecture on computational barrier

Conjecture: ∀ constant ε > 0, if n0 ≤ n0.5−ε, then no tractable
algorithm can find the clique from G with prob. 1− o(1)

— often used as hardness assumption

Lemma 8.5

If there is an algorithm that allows recovery of any L from M with
rank(L) ≤ n

µ1polylog(n) , then the above conjecture is violated
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Proof of Lemma 8.5

Suppose L is true adjacency matrix,

Li,j =
{

1, if i, j are both in the clique
0, else

Let A be adjacency matrix of G, and generate M s.t.

Mi,j =
{
Ai,j , with prob. 2/3
0, else

Therefore, one can write

M = L + M −L︸ ︷︷ ︸
each entry is nonzero w.p. 1/3
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Proof of Lemma 8.5

Note that
µ1 = n

n0
and µ2 = n2

n2
0

If there is an algorithm that can recover any L of rank n
µ1polylog(n)

from M , then

rank(L) = 1 ≤ n

µ1polylog(n) ⇐⇒ n0 ≥ polylog(n)

But this contradicts the conjecture (which claims computational
infeasibility to recover L unless n0 ≥ n0.5−o(1))
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Matrix completion with corruptions

What if we have missing data + corruptions?

• Observed entries

Mij = Lij + Sij , (i, j) ∈ Ω

for some observation set Ω, where S = (Sij) is sparse

• A natural extension of RPCA

minimizeL,S ‖L‖∗ + λ‖S‖1 s.t. PΩ(M) = PΩ(L + S)

• Theorems 8.3 - 8.4 easily extend to this setting
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Efficient algorithm: proximal method

In the presence of noise, one needs to solve

minimizeL,S ‖L‖∗ + λ‖S‖1 + µ

2 ‖M −L− S‖2F

which can be solved efficiently via proximal method

Algorithm 8.1 Iterative soft-thresholding
for t = 0, 1, · · · :

Lt+1 = T1/µ
(
M − St

)
St+1 = ψλ/µ

(
M −Lt+1

)
where T is singular-value thresholding operator, and ψ is soft
thresholding operator
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Nonconvex approach
Alternatively, we can directly solve the nonconvex problem without
relaxation with the assumptions
• rank(L) ≤ r; if we write the SVD of L = UΣV >, set

X? = UΣ1/2; Y ? = V Σ1/2.

• the non-zero entries of S are “spread out” (no more than α
fraction of non-zeros per row/column), but otherwise arbitrary.

Sα =
{
S ∈ Rn×n : ‖Si,:‖0 ≤ αn; ‖S:,j‖0 ≤ αn

}

minimizeX,Y ,S∈Sα ‖M −XY > − S‖2F︸ ︷︷ ︸
quadratic loss

+ 1
4‖X

>X − Y >Y ‖2F︸ ︷︷ ︸
fix scaling ambiguity

where X,Y ∈ Rn×r.
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Gradient descent and hard thresholding

minimizeX,Y ,S∈Sα F (X,Y ,S)
where F (X,Y ,S) := ‖M −XY > − S‖2F + 1

4‖X
>X − Y >Y ‖2F.

Algorithm 8.2 Gradient descent + Hard thresholding for RPCA
Input: M , r, α, γ, η.
Spectral initialization: Set S0 = Hγα(M). Let U0Σ0V 0> be the
rank-r SVD of M0 := PΩ(M − S); set X0 = U0 (Σ0)1/2 and
Y 0 = V 0 (Σ0)1/2.
for t = 0, 1, 2, . . . , T − 1 do

1 Hard thresholding: St+1 = Hγα(M −XtY t>).
2 Gradient updates:

Xt+1 = Xt − η∇XF
(
Xt,Y t,St+1

)
,

Y t+1 = Y t − η∇Y F
(
Xt,Y t,St+1

)
.
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Efficient nonconvex recovery

Theorem 8.6 (Yi et al. ’16)

Set γ = 2 and η = 1/(36σmax). Suppose that

α . min
{

1
µ1
√
κr3

,
1

µ1κ2r

}
.

The nonconvex approach (GD+HT) satisfies

∥∥∥XtY t> −L
∥∥∥2

F
.
(

1− 1
288κ

)t
µ2

1κr
3α2σmax

• O(κ log 1/ε) iterations to reach ε-accuracy.
• For adversarial outliers, the optimal fraction of α = O(1/µ1r);

the bound is worse by a factor of
√
r.

• extendable to partial observation case.
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