ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

Robust PCA

Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2018

Demixing sparse and low-rank matrices

Suppose we are given a matrix

$$
M=\underbrace{\boldsymbol{L}}_{\text {low-rank }}+\underbrace{\boldsymbol{S}}_{\text {sparse }} \in \mathbb{R}^{n \times n}
$$

Question: Can we hope to recover both L and S from \boldsymbol{M} ?

Principal component analysis (PCA)

- N samples $\boldsymbol{X}=\left[\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right] \in \mathbb{R}^{n \times N}$ that are centered
- PCA: seeks r directions that explain most variance of data

$$
\operatorname{minimize}_{\boldsymbol{L}: \operatorname{rank}(\boldsymbol{L})=r} \quad\|\boldsymbol{X}-\boldsymbol{L}\|_{\mathrm{F}}
$$

- best rank-r approximation of \boldsymbol{X}

Sensitivity to corruptions / outliers

What if some samples are corrupted (e.g. due to sensor errors / attacks)?

Classical PCA fails even with a few outliers

Video surveillance

Separation of background (low-rank) and foreground (sparse)

Candes, Li, Ma, Wright '11

Graph clustering / community recovery

- n nodes, 2 (or more) clusters
- A friendship graph \mathcal{G} : for any pair (i, j),

$$
M_{i, j}= \begin{cases}1, & \text { if }(i, j) \in \mathcal{G} \\ 0, & \text { else }\end{cases}
$$

- Edge density within clusters > edge density across clusters
- Goal: recover cluster structure

Graph clustering / community recovery

- An equivalent goal: recover ground truth matrix

$$
L_{i, j}= \begin{cases}1, & \text { if } i \text { and } j \text { are in same community } \\ 0, & \text { else }\end{cases}
$$

- Clustering \Longleftrightarrow robust PCA

When is decomposition possible?

Identifiability issues: a matrix might be simultaneously low-rank and sparse!

$$
\underbrace{\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]}_{\text {sparse and low-rank }} \text { vs. } \underbrace{\left[\begin{array}{ccccc}
1 & 0 & 1 & \cdots & 1 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & \cdots & 1
\end{array}\right]}_{\text {sparse but not low-rank }}
$$

Nonzero entries of sparse component need to be spread out

- assume locations of nonzero entries are random / restrict the number of nonzeros per row/column

When is decomposition possible?

Identifiability issues: a matrix might be simultaneously low-rank and sparse!

Low-rank component needs to be incoherent.

Low-rank component: coherence

Definition 8.1

Coherence parameter μ_{1} of $\boldsymbol{M}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$ is smallest quantity s.t.

$$
\max _{i}\left\|\boldsymbol{U}^{\top} \boldsymbol{e}_{i}\right\|^{2} \leq \frac{\mu_{1} r}{n} \quad \text { and } \quad \max _{i}\left\|\boldsymbol{V}^{\top} \boldsymbol{e}_{i}\right\|^{2} \leq \frac{\mu_{1} r}{n}
$$

Low-rank component: joint coherence

Definition 8.2 (Joint coherence)

Joint coherence parameter μ_{2} of $\boldsymbol{M}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$ is smallest quantity s.t.

$$
\left\|\boldsymbol{U} \boldsymbol{V}^{\top}\right\|_{\infty} \leq \sqrt{\frac{\mu_{2} r}{n^{2}}}
$$

This prevents $\boldsymbol{U} \boldsymbol{V}^{\top}$ from being too peaky.

- $\mu_{1} \leq \mu_{2} \leq \mu_{1}^{2} r$, since

$$
\begin{gathered}
\left|\left(\boldsymbol{U} \boldsymbol{V}^{\top}\right)_{i j}\right|=\left|\boldsymbol{e}_{i}^{\top} \boldsymbol{U} \boldsymbol{V}^{\top} \boldsymbol{e}_{j}\right| \leq\left\|\boldsymbol{e}_{i}^{\top} \boldsymbol{U}\right\| \cdot\left\|\boldsymbol{V}^{\top} \boldsymbol{e}_{j}\right\| \leq \frac{\mu_{1} r}{n} \\
\left\|\boldsymbol{U} \boldsymbol{V}^{\top}\right\|_{\infty}^{2} \geq \frac{\left\|\boldsymbol{U} \boldsymbol{V}^{\top} \boldsymbol{e}_{j}\right\|_{\mathrm{F}}^{2}}{n}=\frac{\left\|\boldsymbol{V}^{\top} \boldsymbol{e}_{j}\right\|^{2}}{n}=\frac{\mu_{1} r}{n^{2}}\left(\text { suppose }\left\|\boldsymbol{V}^{\top} \boldsymbol{e}_{j}\right\|^{2}=\frac{\mu_{1} r}{n}\right. \text {) }
\end{gathered}
$$

Convex relaxation

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{L}, \boldsymbol{S}} \quad \operatorname{rank}(\boldsymbol{L})+\lambda\|\boldsymbol{S}\|_{0}, \quad \text { s.t. } \quad \boldsymbol{M}=\boldsymbol{L}+\boldsymbol{S} \tag{8.1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{minimize}_{\boldsymbol{L}, \boldsymbol{S}} \quad\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}, \quad \text { s.t. } \quad \boldsymbol{M}=\boldsymbol{L}+\boldsymbol{S} \tag{8.2}
\end{equation*}
$$

- $\|\cdot\|_{*}$ is nuclear norm; $\|\cdot\|_{1}$ is entry-wise ℓ_{1} norm
- $\lambda>0$: regularization parameter that balances two terms

Theoretical guarantee

Theorem 8.3 (Candes, Li, Ma, Wright '11)

- $\operatorname{rank}(\boldsymbol{L}) \lesssim \frac{n}{\max \left\{\mu_{1}, \mu_{2}\right\} \log ^{2} n}$;
- Nonzero entries of \boldsymbol{S} are randomly located, and $\|\boldsymbol{S}\|_{0} \leq \rho_{s} n^{2}$ for some constant $\rho_{s}>0$ (e.g. $\rho_{s}=0.2$).
Then (8.2) with $\lambda=1 / \sqrt{n}$ is exact with high prob.
- $\operatorname{rank}(\boldsymbol{L})$ can be quite high (up to $n / \operatorname{polylog}(n)$)
- Parameter free: $\lambda=1 / \sqrt{n}$
- Ability to correct gross error: $\|\boldsymbol{S}\|_{0} \asymp n^{2}$
- Sparse component S can have arbitrary magnitudes / signs!

Geometry

Fig. credit: Candes '14

Empirical success rate

Fig. credit: Candes, Li, Ma, Wright '11

Dense error correction

Theorem 8.4 (Ganesh et al. '10, Chen et al. '13)

- $\operatorname{rank}(\boldsymbol{L}) \lesssim \frac{n}{\max \left\{\mu_{1}, \mu_{2}\right\} \log ^{2} n}$;
- Nonzero entries of \boldsymbol{S} are randomly located, have random sign, and $\|\boldsymbol{S}\|_{0}=\rho_{s} n^{2}$.
Then (8.2) with $\lambda \asymp \sqrt{\frac{1-\rho_{s}}{\rho_{s} n}}$ succeeds with high prob., provided that

$$
\underbrace{1-\rho_{s}} \gtrsim \sqrt{\frac{\max \left\{\mu_{1}, \mu_{2}\right\} r \operatorname{poly} \log (n)}{n}}
$$

non-corruption rate

- When additive corruptions have random signs, (8.2) works even when a dominant fraction of entries are corrupted

Is joint coherence needed?

- Matrix completion: does not need μ_{2}
- Robust PCA: so far we need μ_{2}

Question: can we remove μ_{2} ? can we recover L with rank up to $\frac{n}{\mu_{1} \operatorname{polylog}(n)}$ (rather than $\frac{n}{\max \left\{\mu_{1}, \mu_{2}\right\} \operatorname{polylog}(n)}$) with a constant fraction of outliers?

Answer: no (example: planted clique)

Planted clique problem

Setup: a graph \mathcal{G} of n nodes generated as follows

1. connect each pair of nodes independently with prob. 0.5
2. pick n_{0} nodes and make them a clique (fully connected)

Goal: find hidden clique from \mathcal{G}

Information theoretically, one can recover a clique if $n_{0}>2 \log _{2} n$

Conjecture on computational barrier

Conjecture: \forall constant $\epsilon>0$, if $n_{0} \leq n^{0.5-\epsilon}$, then no tractable algorithm can find the clique from \mathcal{G} with prob. $1-o(1)$

- often used as hardness assumption

Lemma 8.5

If there is an algorithm that allows recovery of any \boldsymbol{L} from \boldsymbol{M} with $\operatorname{rank}(\boldsymbol{L}) \leq \frac{n}{\mu_{1} \text { polylog }(n)}$, then the above conjecture is violated

Proof of Lemma 8.5

Suppose L is true adjacency matrix,

$$
L_{i, j}= \begin{cases}1, & \text { if } i, j \text { are both in the clique } \\ 0, & \text { else }\end{cases}
$$

Let \boldsymbol{A} be adjacency matrix of \mathcal{G}, and generate \boldsymbol{M} s.t.

$$
M_{i, j}= \begin{cases}A_{i, j}, & \text { with prob. } 2 / 3 \\ 0, & \text { else }\end{cases}
$$

Therefore, one can write

$$
M=L+\underbrace{\boldsymbol{M - L}}_{\text {each entry is nonzero w.p. } 1 / 3}
$$

Proof of Lemma 8.5

Note that

$$
\mu_{1}=\frac{n}{n_{0}} \quad \text { and } \quad \mu_{2}=\frac{n^{2}}{n_{0}^{2}}
$$

If there is an algorithm that can recover any L of rank $\frac{n}{\mu_{1} \operatorname{polylog}(n)}$ from M, then

$$
\operatorname{rank}(\boldsymbol{L})=1 \leq \frac{n}{\mu_{1} \operatorname{polylog}(n)} \quad \Longleftrightarrow \quad n_{0} \geq \operatorname{poly} \log (n)
$$

But this contradicts the conjecture (which claims computational infeasibility to recover L unless $n_{0} \geq n^{0.5-o(1)}$)

Matrix completion with corruptions

What if we have missing data + corruptions?

- Observed entries

$$
M_{i j}=L_{i j}+S_{i j}, \quad(i, j) \in \Omega
$$

for some observation set Ω, where $\boldsymbol{S}=\left(S_{i j}\right)$ is sparse

- A natural extension of RPCA

$$
\operatorname{minimize}_{\boldsymbol{L}, \boldsymbol{S}} \quad\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1} \quad \text { s.t. } \mathcal{P}_{\Omega}(\boldsymbol{M})=\mathcal{P}_{\Omega}(\boldsymbol{L}+\boldsymbol{S})
$$

- Theorems 8.3-8.4 easily extend to this setting

Efficient algorithm: proximal method

In the presence of noise, one needs to solve

$$
\operatorname{minimize}_{\boldsymbol{L}, \boldsymbol{S}} \quad\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1}+\frac{\mu}{2}\|\boldsymbol{M}-\boldsymbol{L}-\boldsymbol{S}\|_{\mathrm{F}}^{2}
$$

which can be solved efficiently via proximal method

Algorithm 8.1 Iterative soft-thresholding

$$
\text { for } t=0,1, \cdots \text { : }
$$

$$
\begin{aligned}
\boldsymbol{L}^{t+1} & =\mathcal{T}_{1 / \mu}\left(\boldsymbol{M}-\boldsymbol{S}^{t}\right) \\
\boldsymbol{S}^{t+1} & =\psi_{\lambda / \mu}\left(\boldsymbol{M}-\boldsymbol{L}^{t+1}\right)
\end{aligned}
$$

where \mathcal{T} is singular-value thresholding operator, and ψ is soft thresholding operator

Nonconvex approach

Alternatively, we can directly solve the nonconvex problem without relaxation with the assumptions

- $\operatorname{rank}(\boldsymbol{L}) \leq r$; if we write the SVD of $\boldsymbol{L}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$, set

$$
\boldsymbol{X}^{\star}=\boldsymbol{U} \boldsymbol{\Sigma}^{1 / 2} ; \quad \boldsymbol{Y}^{\star}=\boldsymbol{V} \boldsymbol{\Sigma}^{1 / 2}
$$

- the non-zero entries of \boldsymbol{S} are "spread out" (no more than α fraction of non-zeros per row/column), but otherwise arbitrary.

$$
\mathcal{S}_{\alpha}=\left\{\boldsymbol{S} \in \mathbb{R}^{n \times n}: \quad\left\|\boldsymbol{S}_{i,:}\right\|_{0} \leq \alpha n ;\left\|\boldsymbol{S}_{:, j}\right\|_{0} \leq \alpha n\right\}
$$

$$
\operatorname{minimize}_{\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{S} \in \mathcal{S}_{\alpha}} \underbrace{\left\|\boldsymbol{M}-\boldsymbol{X} \boldsymbol{Y}^{\top}-\boldsymbol{S}\right\|_{\mathrm{F}}^{2}}_{\text {quadratic loss }}+\underbrace{\frac{1}{4}\left\|\boldsymbol{X}^{\top} \boldsymbol{X}-\boldsymbol{Y}^{\top} \boldsymbol{Y}\right\|_{\mathrm{F}}^{2}}_{\text {fix scaling ambiguity }}
$$

where $\boldsymbol{X}, \boldsymbol{Y} \in \mathbb{R}^{n \times r}$.

Gradient descent and hard thresholding

$$
\operatorname{minimize}_{\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{S} \in \mathcal{S}_{\alpha}} F(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{S})
$$

where $F(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{S}):=\left\|\boldsymbol{M}-\boldsymbol{X} \boldsymbol{Y}^{\top}-\boldsymbol{S}\right\|_{\mathrm{F}}^{2}+\frac{1}{4}\left\|\boldsymbol{X}^{\top} \boldsymbol{X}-\boldsymbol{Y}^{\top} \boldsymbol{Y}\right\|_{\mathrm{F}}^{2}$.
Algorithm 8.2 Gradient descent + Hard thresholding for RPCA
Input: $\boldsymbol{M}, r, \alpha, \gamma, \eta$.
Spectral initialization: Set $\boldsymbol{S}^{0}=\mathcal{H}_{\gamma \alpha}(\boldsymbol{M})$. Let $\boldsymbol{U}^{0} \boldsymbol{\Sigma}^{0} \boldsymbol{V}^{0 \top}$ be the rank- r SVD of $\boldsymbol{M}^{0}:=\mathcal{P}_{\Omega}(\boldsymbol{M}-\boldsymbol{S})$; set $\boldsymbol{X}^{0}=\boldsymbol{U}^{0}\left(\boldsymbol{\Sigma}^{0}\right)^{1 / 2}$ and $\boldsymbol{Y}^{0}=\boldsymbol{V}^{0}\left(\boldsymbol{\Sigma}^{0}\right)^{1 / 2}$.
for $t=0,1,2, \ldots, T-1$ do
(1) Hard thresholding: $\boldsymbol{S}^{t+1}=\mathcal{H}_{\gamma \alpha}\left(\boldsymbol{M}-\boldsymbol{X}^{t} \boldsymbol{Y}^{t \top}\right)$.
(2) Gradient updates:

$$
\begin{aligned}
& \boldsymbol{X}^{t+1}=\boldsymbol{X}^{t}-\eta \nabla_{\boldsymbol{X}} F\left(\boldsymbol{X}^{t}, \boldsymbol{Y}^{t}, \boldsymbol{S}^{t+1}\right) \\
& \boldsymbol{Y}^{t+1}=\boldsymbol{Y}^{t}-\eta \nabla_{\boldsymbol{Y}} F\left(\boldsymbol{X}^{t}, \boldsymbol{Y}^{t}, \boldsymbol{S}^{t+1}\right) .
\end{aligned}
$$

Efficient nonconvex recovery

Theorem 8.6 (Yi et al. '16)

Set $\gamma=2$ and $\eta=1 /\left(36 \sigma_{\max }\right)$. Suppose that

$$
\alpha \lesssim \min \left\{\frac{1}{\mu_{1} \sqrt{\kappa r^{3}}}, \frac{1}{\mu_{1} \kappa^{2} r}\right\}
$$

The nonconvex approach $(G D+H T)$ satisfies

$$
\left\|\boldsymbol{X}^{t} \boldsymbol{Y}^{t^{\top}}-\boldsymbol{L}\right\|_{\mathrm{F}}^{2} \lesssim\left(1-\frac{1}{288 \kappa}\right)^{t} \mu_{1}^{2} \kappa r^{3} \alpha^{2} \sigma_{\max }
$$

- $O(\kappa \log 1 / \epsilon)$ iterations to reach ϵ-accuracy.
- For adversarial outliers, the optimal fraction of $\alpha=O\left(1 / \mu_{1} r\right)$; the bound is worse by a factor of \sqrt{r}.
- extendable to partial observation case.

Reference

[1] "Robust principal component analysis?," E. Candes, X. Li, Y. Ma, and J. Wright, Journal of ACM, 2011.
[2] "Rank-sparsity incoherence for matrix decomposition," V. Chandrasekaran, S. Sanghavi, P. Parrilo, and A. Willsky, SIAM Journal on Optimization, 2011.
[3] "Incoherence-optimal matrix completion," Y. Chen, IEEE Transactions on Information Theory, 2015.
[4] "Dense error correction for low-rank matrices via principal component pursuit," A. Ganesh, J. Wright, X. Li, E. Candes, Y. Ma, ISIT, 2010.
[5] "Low-rank matrix recovery from errors and erasures," Y. Chen, A. Jalali, S. Sanghavi, C. Caramanis, IEEE Transactions on Information Theory, 2013.
[6] "Fast Algorithms for Robust PCA via Gradient Descent," X. Yi, D. Park, Y. Chen, and C. Caramanis, NIPS, 2016.

