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Demixing sparse and low-rank matrices

Suppose we are given a matrix

M= L + S eR"™
~~ ~—

low-rank sparse

Question: Can we hope to recover both L and S from M?



Principal component analysis (PCA)

e N samples X = [x1,x2,...,xy] € R™*V that are centered

e PCA: seeks r directions that explain most variance of data

minimizeL:rank(L):r ||X - LHF

o best rank-r approximation of X



Sensitivity to corruptions / outliers

What if some samples are corrupted (e.g. due to sensor errors /
attacks)?

Classical PCA fails even with a few outliers



Video surveillance

Separation of background (low-rank) and foreground (sparse)

Candes, Li, Ma, Wright '11



Graph clustering / community recovery

n nodes, 2 (or more) clusters

A friendship graph G: for any pair (i, 7),

1, if(i,j) €6

ij =
’ 0, else

e Goal: recover cluster structure

Edge density within clusters > edge density across clusters
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Graph clustering / community recovery

= L *

low-rank sparse

e An equivalent goal: recover ground truth matrix

1, if 7 and j are in same community
i =
’ 0, else

e Clustering <= robust PCA

~
N



When is decomposition possible?

Identifiability issues: a matrix might be simultaneously low-rank and
sparse!

1 00 0 1 01 1
0 0 0 0 010 0
VS.

000 ---0 100 --- 1
sparse and low-rank sparse but not low-rank

Nonzero entries of sparse component need to be spread out
— assume locations of nonzero entries are random / restrict the
number of nonzeros per row/column



When is decomposition possible?

Identifiability issues: a matrix might be simultaneously low-rank and
sparse!

1 1 1 1 1 1 1 1
1 11 1 000 0
VS.

111 -1 000 -0
low-rank and dense low-rank but sparse

Low-rank component needs to be incoherent.



Low-rank component: coherence

Definition 8.1
Coherence parameter iy of M = UXV' T is smallest quantity s.t.

max [U e < £
) n

and max ||V e? < mr
7 n




Low-rank component: joint coherence

Definition 8.2 (Joint coherence)
Joint coherence parameter 1o of M = UXV | is smallest quantity

s.t.
UV < /22
n

This prevents UV " from being too peaky.

o 11 < g < u%r, since

T Ty T T T par
[(UV )ijl =1e; UV e;| < lle; Ul - |V el < "

UVT 112 VT 112
jovTiz > Y ele Vel _ i (qppose v e, 2 = £17)
n n n n




Convex relaxation

minimizer, s rank(L) + A||S|lo, st. M =L+ S8

4

minimizer, s || L]« + A||S]1, st. M =L+ S

o || - ||« is nuclear norm; || - ||; is entry-wise ¢1 norm

e )\ > 0: regularization parameter that balances two terms

(8.1)



Theoretical guarantee

Theorem 8.3 (Candes, Li, Ma, Wright '11)
e rank(L) <

n .
~ max{p1,p2}logn’
e Nonzero entries of S are randomly located, and ||S||o < psn?® for

some constant ps > 0 (e.g. ps = 0.2).
Then (8.2) with A = 1/+/n is exact with high prob.

rank(L) can be quite high (up to n/polylog(n))
Parameter free: A =1/\/n

Ability to correct gross error: ||S||o =< n?

Sparse component S can have arbitrary magnitudes / signs!




Geometry

Fig. credit: Candes '14



Empirical success rate

0 01 02 03 04 05

rank(L)/n
n = 400

Fig. credit: Candes, Li, Ma, Wright '11



Dense error correction

Theorem 8.4 (Ganesh et al. '10, Chen et al. '13)
[ ] rank(L) S max{,u1,22}10g2”;
e Nonzero entries of S are randomly located, have random sign,
and ||S|lo = psn®.

Then (8.2) with \ < \/1/;7"”3 succeeds with high prob., provided that

- < \/max{ul,,ug}rpolylog(n)
~ n

non-corruption rate

e When additive corruptions have random signs, (8.2) works even
when a dominant fraction of entries are corrupted



Is joint coherence needed?

e Matrix completion: does not need p9

e Robust PCA: so far we need uo

Question: can we remove u9? can we recover L with rank up to

TTpolyloa(n] (rather than ) with a constant fraction
of outliers?

n
max{p1,uz2}polylog(n)

Answer: no (example: planted clique)



Planted clique problem

Setup: a graph G of n nodes generated as follows
1. connect each pair of nodes independently with prob. 0.5

2. pick ng nodes and make them a clique (fully connected)

Goal: find hidden clique from G

Information theoretically, one can recover a clique if ng > 2logy n



Conjecture on computational barrier

Conjecture: V constant € > 0, if ng < nY%5=€ then no tractable
algorithm can find the clique from G with prob. 1 — o(1)

— often used as hardness assumption

Lemma 8.5

If there is an algorithm that allows recovery of any L from M with

rank(L) < Tpolylog(my+ then the above conjecture is violated




Proof of Lemma 8.5

Suppose L is true adjacency matrix,

1, if 4,7 are both in the clique
i»j =
0, else

Let A be adjacency matrix of G, and generate M s.t.

{Ai,j, with prob. 2/3
ij =

0, else
Therefore, one can write

M =L+ M - L
—_——
each entry is nonzero w.p. 1/3



Proof of Lemma 8.5

Note that

3
3‘310

on

Hy = — and 2

If there is an algorithm that can recover any L of rank

from M, then

n
rank(L) =1 < ——M—— <
(L)=1=< p1polylog(n)

n
p1polylog(n)

no > polylog(n)

But this contradicts the conjecture (which claims computational

infeasibility to recover L unless ng > n%5—0(1))



Matrix completion with corruptions

What if we have missing data + corruptions?

e Observed entries
M;j = Lij + Sij,  (i,7) € Q
for some observation set (2, where S = (S;;) is sparse

e A natural extension of RPCA
minimizer, s ||L||« + A||S|[i s.t. Pa(M) = Po(L + S)

e Theorems 8.3 - 8.4 easily extend to this setting



Efficient algorithm: proximal method

In the presence of noise, one needs to solve
minimize s || L. +A|S]h + 5I1M — L - S|}

which can be solved efficiently via proximal method

Algorithm 8.1 Iterative soft-thresholding

fort=0,1,---:
L+ =7, (M-S
Stt+1 = Y/ (M—Ltﬂ)

where T is singular-value thresholding operator, and 1 is soft
thresholding operator




Nonconvex approach

Alternatively, we can directly solve the nonconvex problem without
relaxation with the assumptions

e rank(L) < r; if we write the SVD of L =UXV T, set
X*=Ux"? Yy*=vxY/2

e the non-zero entries of S are “spread out” (no more than «
fraction of non-zeros per row/column), but otherwise arbitrary.

Sy = {S e R™"™: HS77’ 0o < an; HSZJHO < om}

1
minimizex y ses, |M — XY ' —S|3+ Z—lHXTX ~-Y'Y|}

quadratic loss fix scaling ambiguity

where XY € R™*",



Gradient descent and hard thresholding

minimizeX7y7563a F(X, Y, S)
where F(X,Y,8):=|M - XYY" -S| + X" X -Y Y|}

Algorithm 8.2 Gradient descent + Hard thresholding for RPCA

Input: M, r, o, v, n.
Spectral initialization: Set S° = H.,(M). Let U°ZVOT be the

rank-r SVD of M? := Po(M — S); set X° = U° (29" and
YO — yO (20)1/2.
fort=0,1,2,...,T—1do
O Hard thresholding: S =H.,(M — X'Y'T).
@ Gradient updates:
X = Xt~ pVxF (Xt7Yt, St—H) 7

Yt =Y pVy F (Xt7 Y, St+1) .




Efficient nonconvex recovery

Theorem 8.6 (Yi et al. '16)

Set v =2 and n=1/(360max). Suppose that

< o 1 1
aSmin ——, ——5— ;.
pVer3 pRAr
The nonconvex approach (GD+HT) satisfies

1
288k

tytT _ 7l < "o 32
HXY LHFN(l ) BIRT 0 Omax

e O(rlog1/e) iterations to reach e-accuracy.

e For adversarial outliers, the optimal fraction of a = O(1/pu17);
the bound is worse by a factor of /r.

e extendable to partial observation case.
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