ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference
 Low-rank matrix recovery via nonconvex optimization

Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2018

Outline

- Low-rank matrix completion and recovery
- Nuclear norm minimization (last lecture)
- RIP and low-rank matrix recovery
- Matrix completion
- Algorithms for nuclear norm minimization
- Non-convex methods (this lecture)
- Global landscape
- Spectral methods
- (Projected) gradient descent

Why nonconvex?

- Consider completing an $n \times n$ matrix, with rank r :

$$
\operatorname{minimize}_{\boldsymbol{X}} \quad\left\|\mathcal{P}_{\Omega}(\boldsymbol{X}-\boldsymbol{M})\right\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \operatorname{rank}(\boldsymbol{X}) \leq r,
$$

where $r \ll n$.

- The size of observation $|\Omega|$ is about $n r$ polylogn;
- The degrees of freedom in \boldsymbol{X} is about $n r$;
- Question: Can we develop algorithms that work with computational and memory complexity that nearly linear in n ?
- This means that we don't even want to store the matrix \boldsymbol{X} which takes n^{2} storage.
- A nonconvex approach will store and update a "low-dimensional" representation of \boldsymbol{X} throughout the execution of the algorithm.

Convex vs. nonconvex

minimize $_{\boldsymbol{x}} f(\boldsymbol{x})$

Computed by Woirnm|alphe

Compateat by Woilrom |A|pha

Prelude: low-rank matrix approximation - an optimization perspective

Low-rank matrix approximation / PCA

Given $\boldsymbol{M} \in \mathbb{R}^{n \times n}$ (not necessarily low-rank), solve the low-rank approximation problem (best rank- r approximation):

$$
\widehat{\boldsymbol{M}}=\operatorname{argmin}_{\boldsymbol{X}}\|\boldsymbol{X}-\boldsymbol{M}\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \operatorname{rank}(\boldsymbol{X}) \leq r .
$$

this is a nonconvex optimization problem.
The solution is known as the Eckart-Young theorem:

- denote the SVD of $\boldsymbol{M}=\sum_{i=1}^{n} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}$, where σ_{i} 's are in a descending order; then

$$
\widehat{\boldsymbol{M}}=\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}
$$

nonconvex, but tractable.

Optimization viewpoint

Let us factorize $\boldsymbol{X}=\boldsymbol{U} \boldsymbol{V}^{\top}$, where $\boldsymbol{U}, \boldsymbol{V} \in \mathbb{R}^{n \times r}$. Our problem is equivalent to

$$
\operatorname{minimize}_{\boldsymbol{U}, \boldsymbol{V}} f(\boldsymbol{U}, \boldsymbol{V}):=\left\|\boldsymbol{U} \boldsymbol{V}^{\top}-\boldsymbol{M}\right\|_{\mathrm{F}}^{2}
$$

- The size of $\boldsymbol{U}, \boldsymbol{V}$ are of $O(n r)$, which is much smaller than \boldsymbol{X};
- Identifiability issues: for any orthonormal $\boldsymbol{R} \in \mathbb{R}^{r \times r}$, we have

$$
\boldsymbol{U} \boldsymbol{V}^{\top}=(\alpha \boldsymbol{U} \boldsymbol{R})\left(\alpha^{-1} \boldsymbol{V} \boldsymbol{R}\right)^{\top} .
$$

If $(\boldsymbol{U}, \boldsymbol{V})$ is a global minimizer $(.$.$) , so does \left(\alpha \boldsymbol{U} \boldsymbol{R}, \alpha^{-1} \boldsymbol{V} \boldsymbol{R}\right)$.

Question: what does $f(\boldsymbol{U}, \boldsymbol{V})$ look like (landscape)? (we already found its global minima.)

The PSD case

For simplicity, consider the PSD case.

- Let \boldsymbol{M} be PSD, so that $\boldsymbol{M}=\sum_{i=1}^{n} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}$.
- Let $\boldsymbol{X}=\boldsymbol{U} \boldsymbol{U}^{\top}$, where $\boldsymbol{U} \in \mathbb{R}^{n \times r}$.

We're interested in the landscape of

$$
f(\boldsymbol{U}):=\frac{1}{4}\left\|\boldsymbol{U} \boldsymbol{U}^{\top}-\boldsymbol{M}\right\|_{\mathrm{F}}^{2} .
$$

Identifiability: for any orthonormal $\boldsymbol{R} \in \mathbb{R}^{r \times r}$, we have

$$
\boldsymbol{U} \boldsymbol{U}^{\top}=(\boldsymbol{U} \boldsymbol{R})(\boldsymbol{U} \boldsymbol{R})^{\top} .
$$

make the exposition even simpler: set $r=1$.

$$
f(\boldsymbol{u})=\frac{1}{4}\left\|\boldsymbol{u} \boldsymbol{u}^{\top}-\boldsymbol{M}\right\|_{\mathrm{F}}^{2} .
$$

Good news: benign landscape

Take $f(\boldsymbol{u})=\left\|\boldsymbol{u} \boldsymbol{u}^{\top}-\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\|_{\mathrm{F}}^{2}$.

Global optima: $\boldsymbol{x}= \pm\left[\begin{array}{l}1 \\ 1\end{array}\right]$, strict saddle $\boldsymbol{x}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. No "spurious" local minima.

Critical points

Definition 7.1

A first-order critical point (stationary point) satisfies

$$
\nabla f(\boldsymbol{u})=0
$$

Figure credit: Li et al., 2016

Critical points of $f(\boldsymbol{u})$

Any $\boldsymbol{u} \in \mathbb{R}^{n}$ satisfies

$$
\nabla f(\boldsymbol{u})=\left(\boldsymbol{u}^{\top}-\boldsymbol{M}\right) \boldsymbol{u}=0
$$

$$
\begin{gathered}
\Uparrow \\
\boldsymbol{M} \boldsymbol{u}=\|\boldsymbol{u}\|_{2}^{2} \boldsymbol{u} \\
\Uparrow \downarrow
\end{gathered}
$$

\boldsymbol{u} aligns with eigenvectors of \boldsymbol{M}.
or

$$
\boldsymbol{u}=\mathbf{0}
$$

Critical points of $f(\boldsymbol{u})$

Any $\boldsymbol{u} \in \mathbb{R}^{n}$ satisfies

$$
\nabla f(\boldsymbol{u})=\left(\boldsymbol{u}^{\top}-\boldsymbol{M}\right) \boldsymbol{u}=0
$$

$$
\begin{gathered}
\Uparrow \\
\boldsymbol{M} \boldsymbol{u}=\|\boldsymbol{u}\|_{2}^{2} \boldsymbol{u} \\
\Uparrow
\end{gathered}
$$

\boldsymbol{u} aligns with eigenvectors of \boldsymbol{M}.
or

$$
\boldsymbol{u}=\mathbf{0}
$$

Since $\boldsymbol{M} \boldsymbol{u}_{i}=\sigma_{i} \boldsymbol{u}_{i}$, the set of critical points are given as

$$
\left\{\sqrt{\sigma_{i}} \boldsymbol{u}_{i}, i=1, \ldots, n\right\} .
$$

Categorization of critical points

Need to examine the Hessian:

$$
\nabla^{2} f(\boldsymbol{u}):=2 \boldsymbol{u} \boldsymbol{u}^{\top}+\|\boldsymbol{u}\|_{2}^{2} \boldsymbol{I}-\boldsymbol{M}
$$

- Plug in the non-zero critical points: $\tilde{\boldsymbol{u}}_{k}:=\sqrt{\sigma_{k}} \boldsymbol{u}_{k}$,

$$
\begin{aligned}
\nabla^{2} f\left(\tilde{\boldsymbol{u}}_{k}\right) & =2 \sigma_{k} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top}+\sigma_{k} \boldsymbol{I}-\boldsymbol{M} \\
& =2 \sigma_{k} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top}+\sigma_{k}\left(\sum_{i=1}^{n} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}\right)-\sum_{i=1}^{n} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} \\
& =\sum_{i \neq k}\left(\sigma_{k}-\sigma_{i}\right) \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}+2 \sigma_{k} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top}
\end{aligned}
$$

- Assume $\sigma_{1}>\sigma_{2}>\ldots>\sigma_{n}>0$:
- $k=1: \nabla^{2} f\left(\tilde{\boldsymbol{u}}_{1}\right) \succ 0 \rightarrow$ local minima
- $1<k \leq n: \lambda_{\min }\left(\nabla^{2} f\left(\tilde{\boldsymbol{u}}_{k}\right)\right)<0, \lambda_{\max }\left(\nabla^{2} f\left(\tilde{\boldsymbol{u}}_{k}\right)\right)>0, \rightarrow$ strict saddle
- $\boldsymbol{u}=0: \nabla^{2} f(0) \preceq 0 \rightarrow$ local maxima

Categorization of critical points

Need to examine the Hessian:

$$
\nabla^{2} f(\boldsymbol{u}):=2 \boldsymbol{u} \boldsymbol{u}^{\top}+\|\boldsymbol{u}\|_{2}^{2} \boldsymbol{I}-\boldsymbol{M}
$$

- Plug in the non-zero critical points: $\tilde{\boldsymbol{u}}_{k}:=\sqrt{\sigma_{k}} \boldsymbol{u}_{k}$,

$$
\begin{aligned}
\nabla^{2} f\left(\tilde{\boldsymbol{u}}_{k}\right) & =2 \sigma_{k} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top}+\sigma_{k} \boldsymbol{I}-\boldsymbol{M} \\
& =2 \sigma_{k} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top}+\sigma_{k}\left(\sum_{i=1}^{n} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}\right)-\sum_{i=1}^{n} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top} \\
& =\sum_{i \neq k}\left(\sigma_{k}-\sigma_{i}\right) \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}+2 \sigma_{k} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{\top}
\end{aligned}
$$

- Assume $\sigma_{1}>\sigma_{2} \geq \ldots \geq \sigma_{n} \geq 0$:
- $k=1: \nabla^{2} f\left(\tilde{\boldsymbol{u}}_{1}\right) \succ 0 \rightarrow$ local minima
- $1<k \leq n: \lambda_{\min }\left(\nabla^{2} f\left(\tilde{\boldsymbol{u}}_{k}\right)\right)<0, \lambda_{\max }\left(\nabla^{2} f\left(\tilde{\boldsymbol{u}}_{k}\right)\right)>0, \rightarrow$ strict saddle
- $\boldsymbol{u}=0: \nabla^{2} f(0) \prec 0 \rightarrow$ strict saddle

Summary

$$
f(\boldsymbol{U}):=\frac{1}{4}\left\|\boldsymbol{U} \boldsymbol{U}^{\top}-\boldsymbol{M}\right\|_{\mathrm{F}}^{2}, \quad \boldsymbol{U} \in \mathbb{R}^{n \times r}
$$

If $\sigma_{r}>\sigma_{r+1}$,

- all local minima are global: \boldsymbol{U} contains the top- r eigenvectors up to an orthonormal transformation;
- strict saddle points: all stationary points are saddle points except the global optimum.

Undersampled regime

Consider linear measurements:

$$
\boldsymbol{y}=\mathcal{A}(\boldsymbol{M}), \quad \boldsymbol{y} \in \mathbb{R}^{m}, \quad m \ll n^{2}
$$

where $\boldsymbol{M}=\boldsymbol{U}_{0} \boldsymbol{U}_{0}^{\top} \in \mathbb{R}^{n \times n}$ is rank- $r, r \ll n$, and PSD (for simplicity).

- The loss function we consider:

$$
f(\boldsymbol{U}):=\frac{1}{4}\left\|\mathcal{A}\left(\boldsymbol{U} \boldsymbol{U}^{\top}-\boldsymbol{M}\right)\right\|_{\mathrm{F}}^{2}
$$

- If $\mathbb{E}\left[\mathcal{A}^{*} \mathcal{A}\right]=\mathcal{I}$, then

$$
\mathbb{E}[f(\boldsymbol{U})]=\frac{1}{4}\left\|\boldsymbol{U} \boldsymbol{U}^{\top}-\boldsymbol{M}\right\|_{\mathrm{F}}^{2}
$$

- Does $f(\boldsymbol{U})$ inherit the benign landscape?

Landscape preserving under RIP

Recall the definition of RIP:

Definition 7.2

The rank- r restricted isometry constants δ_{r} is the smallest quantity

$$
\left(1-\delta_{r}\right)\|\boldsymbol{X}\|_{\mathrm{F}}^{2} \leq\|\mathcal{A}(\boldsymbol{X})\|_{\mathrm{F}}^{2} \leq\left(1+\delta_{r}\right)\|\boldsymbol{X}\|_{\mathrm{F}}^{2}, \quad \forall \boldsymbol{X}: \operatorname{rank}(\boldsymbol{X}) \leq r
$$

Landscape preserving under RIP

Recall the definition of RIP:

Definition 7.2

The rank- r restricted isometry constants δ_{r} is the smallest quantity

$$
\left(1-\delta_{r}\right)\|\boldsymbol{X}\|_{\mathrm{F}}^{2} \leq\|\mathcal{A}(\boldsymbol{X})\|_{\mathrm{F}}^{2} \leq\left(1+\delta_{r}\right)\|\boldsymbol{X}\|_{\mathrm{F}}^{2}, \quad \forall \boldsymbol{X}: \operatorname{rank}(\boldsymbol{X}) \leq r
$$

Theorem 7.3 (Bhojanapalli et al.' 2016, Ge et al.' 2017)
If \mathcal{A} satisfies the RIP with $\delta_{2 r}<\frac{1}{10}$, then $f(\boldsymbol{U})$ satisfies

- all local min are global: for any local minimum \boldsymbol{U} of $f(\boldsymbol{U})$, it satisfies $\boldsymbol{U} \boldsymbol{U}^{\top}=\boldsymbol{M}$;
- strict saddle points: for non-local min critical point \boldsymbol{U}, it satisfies $\lambda_{\text {min }}\left[\nabla^{2} f(\boldsymbol{U})\right] \leq-\frac{2}{5} \sigma_{r}$.

Proof of Theorem 7.3 when $r=1$

Without loss of generality, assume $\boldsymbol{M}=\boldsymbol{u}_{0} \boldsymbol{u}_{0}^{\top}$, and $\sigma_{1}=1$.

- Step 1: check all the critical points:

$$
\nabla f(\boldsymbol{u})=\sum_{i=1}^{m}\langle\boldsymbol{A}_{i}, \boldsymbol{u} \boldsymbol{u}^{\top}-\underbrace{\boldsymbol{u}_{0} \boldsymbol{u}_{0}^{\top}}_{\boldsymbol{M}}\rangle \boldsymbol{A}_{i} \boldsymbol{u}=0
$$

- Step 2: verify the Hessian at all the critical points:

$$
\nabla^{2} f(\boldsymbol{u})=\sum_{i=1}^{m}\left\langle\boldsymbol{A}_{i}, \boldsymbol{u} \boldsymbol{u}^{\top}-\boldsymbol{u}_{0} \boldsymbol{u}_{0}^{\top}\right\rangle \boldsymbol{A}_{i}+2 \boldsymbol{A}_{i} \boldsymbol{u} \boldsymbol{u}^{\top} \boldsymbol{A}_{i}^{\top}
$$

Proof of Theorem 7.3 when $r=1$

Proof: Assume \boldsymbol{u} is first-order optimal. Consider the descent direction: $\boldsymbol{\Delta}=\boldsymbol{u}-\boldsymbol{u}_{0}$:

$$
\begin{aligned}
\boldsymbol{\Delta}^{\top} \nabla^{2} f(\boldsymbol{u}) \boldsymbol{\Delta} & =\sum_{i=1}^{m}\left[\left\langle\boldsymbol{A}_{i}, \boldsymbol{u} \boldsymbol{u}^{\top}-\boldsymbol{u}_{0} \boldsymbol{u}_{0}^{\top}\right\rangle\left\langle\boldsymbol{A}_{i}, \boldsymbol{\Delta} \boldsymbol{\Delta}^{\top}\right\rangle+2\left\langle\boldsymbol{A}_{i}, \boldsymbol{u} \boldsymbol{\Delta}^{\top}\right\rangle^{2}\right] \\
& =\sum_{i=1}^{m}\left[\left\langle\boldsymbol{A}_{i}, \boldsymbol{\Delta} \boldsymbol{\Delta}^{\top}\right\rangle^{2}-3\left\langle\boldsymbol{A}_{i}, \boldsymbol{u} \boldsymbol{u}^{\top}-\boldsymbol{u}_{0} \boldsymbol{u}_{0}^{\top}\right\rangle^{2}\right]
\end{aligned}
$$

where we have used the first order optimality condition.

Proof of Theorem 7.3 when $r=1$

By the RIP property:

$$
\begin{aligned}
& \boldsymbol{\Delta}^{\top} \nabla^{2} f(\boldsymbol{u}) \boldsymbol{\Delta}=\sum_{i=1}^{m}\left[\left\langle\boldsymbol{A}_{i},\left(\boldsymbol{u}-\boldsymbol{u}_{0}\right)\left(\boldsymbol{u}-\boldsymbol{u}_{0}\right)^{\top}\right\rangle^{2}-3\left\langle\boldsymbol{A}_{i}, \boldsymbol{u} \boldsymbol{u}^{\top}-\boldsymbol{u}_{0} \boldsymbol{u}_{0}^{\top}\right\rangle^{2}\right] \\
& \leq(1+\delta)\left\|\left(\boldsymbol{u}-\boldsymbol{u}_{0}\right)\left(\boldsymbol{u}-\boldsymbol{u}_{0}\right)^{\top}\right\|_{F}^{2}-3(1-\delta)\left\|\boldsymbol{u} \boldsymbol{u}^{\top}-\boldsymbol{u}_{0} \boldsymbol{u}_{0}^{\top}\right\|_{F}^{2} \\
& \leq[2(1+\delta)-3(1-\delta)]\left\|\boldsymbol{u} \boldsymbol{u}^{\top}-\boldsymbol{u}_{0} \boldsymbol{u}_{0}^{\top}\right\|_{F}^{2} \\
& \leq-(1-5 \delta)\left\|\boldsymbol{u} \boldsymbol{u}^{\top}-\boldsymbol{u}_{0} \boldsymbol{u}_{0}^{\top}\right\|_{F}^{2}
\end{aligned}
$$

where we use

$$
\left\|\left(\boldsymbol{u}-\boldsymbol{u}_{0}\right)\left(\boldsymbol{u}-\boldsymbol{u}_{0}\right)^{\top}\right\|_{F}^{2} \leq 2\left\|\boldsymbol{u} \boldsymbol{u}^{\top}-\boldsymbol{u}_{0} \boldsymbol{u}_{0}^{\top}\right\|_{F}^{2}
$$

Landscape without RIP

In matrix completion, we need to regularize the loss function by promoting incoherent solutions: set

$$
Q(\boldsymbol{U})=\sum_{i=1}^{m}\left(\left\|\boldsymbol{e}_{i}^{\top} \boldsymbol{U}\right\|_{2}-\alpha\right)_{+}^{4}
$$

where α is some regularization parameter, and $z_{+}=\max \{z, 0\}$.

Landscape without RIP

In matrix completion, we need to regularize the loss function by promoting incoherent solutions: set

$$
Q(\boldsymbol{U})=\sum_{i=1}^{m}\left(\left\|\boldsymbol{e}_{i}^{\top} \boldsymbol{U}\right\|_{2}-\alpha\right)_{+}^{4}
$$

where α is some regularization parameter, and $z_{+}=\max \{z, 0\}$.
Consider the loss function

$$
f(\boldsymbol{U})=\frac{1}{p}\left\|\mathcal{P}_{\Omega}\left(\boldsymbol{U} \boldsymbol{U}^{\top}-\boldsymbol{M}\right)\right\|_{F}^{2}+\lambda Q(\boldsymbol{U})
$$

where λ is a regularization parameter.

- adding $Q(\boldsymbol{U})$ doesn't affect the global optimizer if α is set properly.

MC doesn't have spurious local minima

Theorem 7.4 (Ge et al, 2016)

If $p \gtrsim \frac{\mu^{4} r^{6} \log n}{n}, \alpha^{2}=\Theta\left(\frac{\mu r \sigma_{1}}{n}\right)$ and $\lambda=\Theta\left(\frac{n}{\mu r}\right)$, then with probability at least $1-n^{-1}$,

- all local min are global: for any local minimum \boldsymbol{U} of $f(\boldsymbol{U})$, it satisfies $\boldsymbol{U} \boldsymbol{U}^{\top}=M$;
- saddle points that are not local minima are strict saddle points.
- saddle-point escaping algorithms can be used to guarantee convergence to local minima, which in our problem are global minima.
- active research area for constructing saddle-point escaping algorithms: (perturbed) gradient descent, trust-region methods, etc...

Spectral methods: a one-shot approach

Setup

- Consider $M \in \mathbb{R}^{n \times n}$ (square case for simplicity)
- $\operatorname{rank}(\boldsymbol{M})=r \ll n$
- The thin Singular value decomposition (SVD) of \boldsymbol{M} :

$$
\boldsymbol{M}=\underbrace{\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}}_{(2 n-r) r}=\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}
$$

where $\boldsymbol{\Sigma}=\left[\begin{array}{ccc}\sigma_{1} & & \\ & \ddots & \\ & & \sigma_{r}\end{array}\right]$ contain all singular values $\left\{\sigma_{i}\right\}$;
$\boldsymbol{U}:=\left[\boldsymbol{u}_{1}, \cdots, \boldsymbol{u}_{r}\right], \boldsymbol{V}:=\left[\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{r}\right]$ consist of singular vectors

Signal + noise

$(i, j) \in \Omega$ independently with prob. p

One can write observation $\mathcal{P}_{\Omega}(\boldsymbol{M})$ as

$$
\frac{1}{p} \mathcal{P}_{\Omega}(\boldsymbol{M})=\underbrace{\boldsymbol{M}}_{\text {signal }}+\underbrace{\frac{1}{p} \mathcal{P}_{\Omega}(\boldsymbol{M})-\boldsymbol{M}}_{\text {noise }}
$$

- Noise has mean zero: $\mathbb{E}\left[\frac{1}{p} \mathcal{P}_{\Omega}(\boldsymbol{M})\right]=\boldsymbol{M}$

Low-rank denoising

$$
\frac{1}{p} \mathcal{P}_{\Omega}(\boldsymbol{M})=\underbrace{\boldsymbol{M}}_{\text {low-rank signal }}+\underbrace{\frac{1}{p} \mathcal{P}_{\Omega}(\boldsymbol{M})-\boldsymbol{M}}_{:=\boldsymbol{E} \text { (zero-mean noise) }}
$$

Algorithm 7.1 Spectral method

$\hat{\boldsymbol{M}} \longleftarrow$ best rank- r approximation of $\frac{1}{p} \mathcal{P}_{\Omega}(\boldsymbol{M})$

The spectral method can be solved via power methods or Lanczos methods, and we don't need to realize the matrix $\frac{1}{p} \mathcal{P}_{\Omega}(\boldsymbol{M})$.

Histograms of singular values of $\mathcal{P}_{\Omega}(M)$

A $10^{4} \times 10^{4}$ random rank-3 matrix \boldsymbol{M} with $p=0.003$

Fig. credit: Keshavan, Montanari, Oh '10

Performance of spectral methods

Theorem 7.5 (Keshavan, Montanari, Oh '10)

Suppose number of observed entries m obeys $m \gtrsim n \log n$. Then

$$
\frac{\|\widehat{\boldsymbol{M}}-\boldsymbol{M}\|_{\mathrm{F}}}{\|\boldsymbol{M}\|_{\mathrm{F}}} \lesssim \underbrace{\frac{\max _{i, j}\left|M_{i, j}\right|}{\frac{1}{n}\|\boldsymbol{M}\|_{\mathrm{F}}}}_{:=\nu} \cdot \sqrt{\frac{n r \log ^{2} n}{m}}
$$

- ν reflects whether energy of \boldsymbol{M} is spread out, $\left|M_{i, j}\right| \lesssim \mu r / n$;
- When $m \gg \nu^{2} n \log ^{2} n$, estimate $\hat{\boldsymbol{M}}$ is very close to truth ${ }^{1}$
- Degrees of freedom $\asymp n r$
\longrightarrow nearly-optimal sample complexity for incoherent matrices
${ }^{1}$ The logarithmic factor can be improved.

Perturbation bounds

To ensure $\widehat{\boldsymbol{M}}$ is good estimate, it suffices to control noise \boldsymbol{E}

Lemma 7.6

Suppose $\operatorname{rank}(\boldsymbol{M})=r$. For any perturbation \boldsymbol{E},

$$
\begin{aligned}
\left\|\mathcal{P}_{r}(\boldsymbol{M}+\boldsymbol{E})-\boldsymbol{M}\right\| & \leq 2\|\boldsymbol{E}\| \\
\left\|\mathcal{P}_{r}(\boldsymbol{M}+\boldsymbol{E})-\boldsymbol{M}\right\|_{\mathrm{F}} & \leq 2 \sqrt{2 r}\|\boldsymbol{E}\|
\end{aligned}
$$

where $\mathcal{P}_{r}(\boldsymbol{X})$ is best rank-r approximation of \boldsymbol{X}.

Prior on matrix perturbation theory

Lemma 7.7 (Weyl's inequality, 1912)
Let $\boldsymbol{M}, \boldsymbol{E}$ be $n \times n$ matrices. Then

$$
\left|\sigma_{k}(\boldsymbol{M}+\boldsymbol{E})-\sigma_{k}(\boldsymbol{M})\right| \leq\|\boldsymbol{E}\|, \quad k=1, \ldots, n
$$

Proof: Invoke the Courant-Fisher Minimax Characterization:

$$
\sigma_{k}(\boldsymbol{A})=\max _{\operatorname{dim}(\mathcal{S})=k} \min _{0 \neq \boldsymbol{v} \in \mathcal{S}} \frac{\|\boldsymbol{A} \boldsymbol{v}\|_{2}}{\|\boldsymbol{v}\|_{2}} .
$$

Proof of Lemma 7.6

By matrix perturbation theory,

$$
\left\|\mathcal{P}_{r}(\boldsymbol{M}+\boldsymbol{E})-\boldsymbol{M}\right\|
$$

triangle inequality

$$
\begin{array}{ll}
\leq & \left\|\mathcal{P}_{r}(\boldsymbol{M}+\boldsymbol{E})-(\boldsymbol{M}+\boldsymbol{E})\right\|+\|(\boldsymbol{M}+\boldsymbol{E})-\boldsymbol{M}\| \\
\leq & \sigma_{r+1}(\boldsymbol{M}+\boldsymbol{E})+\|\boldsymbol{E}\|
\end{array}
$$

Weyl's inequality

$$
\underbrace{\sigma_{r+1}(\boldsymbol{M})}_{=0}+\|\boldsymbol{E}\|+\|\boldsymbol{E}\|=2\|\boldsymbol{E}\| \text {. }
$$

The 2nd inequality of Lemma 7.6 follows since both $\mathcal{P}_{r}(\boldsymbol{M}+\boldsymbol{E})$ and M are rank- r, and hence

$$
\left\|\mathcal{P}_{r}(\boldsymbol{M}+\boldsymbol{E})-\boldsymbol{M}\right\|_{\mathrm{F}} \leq \sqrt{2 r}\left\|\mathcal{P}_{r}(\boldsymbol{M}+\boldsymbol{E})-\boldsymbol{M}\right\| .
$$

Controlling the noise

Recall that entries of $\boldsymbol{E}=\frac{1}{p} \mathcal{P}_{\Omega}(\boldsymbol{M})-\boldsymbol{M}$ are zero-mean and independent.

A bit of random matrix theory ...

Lemma 7.8 (Chapter 2.3, Tao '12)

Suppose $\boldsymbol{X} \in \mathbb{R}^{n \times n}$ is a random symmetric matrix obeying

- $\left\{X_{i, j}: i<j\right\}$ are independent
- $\mathbb{E}\left[X_{i, j}\right]=0$ and $\operatorname{Var}\left[X_{i, j}\right] \lesssim 1$
- $\max _{i, j}\left|X_{i, j}\right| \lesssim \sqrt{n}$

Then $\|\boldsymbol{X}\| \lesssim \sqrt{n} \log n$.

Proof of Theorem 7.5

If we look at the zero-mean matrix $\tilde{\boldsymbol{E}}=\frac{\sqrt{p}}{\mu / n} \boldsymbol{E}$, then

$$
\begin{aligned}
\operatorname{Var}\left[\tilde{E}_{i, j}\right] & =p(1-p) \cdot\left(\frac{\sqrt{p}}{\mu / n} \cdot \frac{1}{p} M_{i, j}\right)^{2} \leq\left(\frac{M_{i, j}}{\mu / n}\right)^{2} \lesssim 1, \\
\left|\tilde{E}_{i, j}\right| & \leq \frac{\left|M_{i, j}\right|}{\sqrt{p} \mu / n} \lesssim \frac{1}{\sqrt{p}},
\end{aligned}
$$

where we have used the fact

$$
\left|M_{i, j}\right|=\left|\boldsymbol{e}_{i}^{\top} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top} \boldsymbol{e}_{j}\right| \leq\left\|\boldsymbol{U}^{\top} \boldsymbol{e}_{i}\right\| \cdot \sigma_{1} \cdot\left\|\boldsymbol{V}^{\top} \boldsymbol{e}_{j}\right\| \stackrel{\text { (by our assumptions) }}{\lesssim} \frac{\mu r}{n} \asymp \frac{\mu}{n}
$$

Lemma 7.8 tells us that if $p \gtrsim \frac{\log n}{n}$, then

$$
\|\tilde{\boldsymbol{E}}\| \lesssim \sqrt{n} \log n \quad \Longleftrightarrow \quad\|\boldsymbol{E}\| \lesssim \frac{\mu}{\sqrt{p n}} \log n
$$

This together with Lemma 7.6 and the fact $m \asymp p n^{2}$ establishes Theorem 7.5.

Gradient methods: iterative refinements

Iterative methods: an overview

$$
\operatorname{minimize}_{\boldsymbol{U}, \boldsymbol{V}} f(\boldsymbol{U}, \boldsymbol{V}):=\left\|\mathcal{P}_{\Omega}\left(\boldsymbol{U} \boldsymbol{V}^{\top}-\boldsymbol{M}\right)\right\|_{\mathrm{F}}^{2} .
$$

- Gradient descent: (our focus)

$$
\begin{aligned}
\boldsymbol{U}_{t+1} & =\mathcal{P}_{\boldsymbol{U}}\left[\boldsymbol{U}_{t}-\eta_{t} \nabla_{\boldsymbol{U}} f\left(\boldsymbol{U}_{t}, \boldsymbol{V}_{t}\right)\right], \\
\boldsymbol{V}_{t+1} & =\mathcal{P}_{\boldsymbol{V}}\left[\boldsymbol{V}_{t}-\eta_{t} \nabla_{\boldsymbol{V}} f\left(\boldsymbol{U}_{t}, \boldsymbol{V}_{t}\right)\right] .
\end{aligned}
$$

where η_{t} is the step size and $\mathcal{P}_{\boldsymbol{U}}, \mathcal{P}_{\boldsymbol{V}}$ denote the Euclidean projection onto some contraint sets;

- Alternating minimization: One optimizes $\boldsymbol{U}, \boldsymbol{V}$ alternatively while fixing the other, which is a convex problem.

$$
\begin{aligned}
\boldsymbol{U}_{t+1} & =\operatorname{argmin}_{\boldsymbol{U}} f\left(\boldsymbol{U}, \boldsymbol{V}_{t}\right), \\
\boldsymbol{V}_{t+1} & =\operatorname{argmin}_{\boldsymbol{V}} f\left(\boldsymbol{U}_{t+1}, \boldsymbol{V}\right) .
\end{aligned}
$$

Gradient descent for matrix completion

$$
\operatorname{minimize}_{\boldsymbol{X} \in \mathbb{R}^{n \times r}} \quad f(\boldsymbol{X})=\sum_{(j, k) \in \Omega}\left(\boldsymbol{e}_{j}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{e}_{k}-M_{j, k}\right)^{2}
$$

Algorithm 7.2 Gradient descent for MC
Input: $\boldsymbol{Y}=\left[Y_{j, k}\right]_{1 \leq j, k \leq n}, r, p$.
Spectral initialization: Let $\boldsymbol{U}^{0} \boldsymbol{\Sigma}^{0} \boldsymbol{U}^{0 \top}$ be the rank- r eigendecomposition of

$$
\boldsymbol{M}^{0}:=\frac{1}{p} \mathcal{P}_{\Omega}(\boldsymbol{Y})
$$

and set $\boldsymbol{X}^{0}=\boldsymbol{U}^{0}\left(\boldsymbol{\Sigma}^{0}\right)^{1 / 2}$.
Gradient updates: for $t=0,1,2, \ldots, T-1$ do

$$
\boldsymbol{X}^{t+1}=\boldsymbol{X}^{t}-\eta_{t} \nabla f\left(\boldsymbol{X}^{t}\right)
$$

Gradient descent for matrix completion

Define the optimal transform from the t th iterate \boldsymbol{X}^{t} to $\boldsymbol{X}^{\natural}$ as

$$
\boldsymbol{Q}^{t}:=\operatorname{argmin}_{\boldsymbol{R} \in \mathcal{O}^{r \times r}}\left\|\boldsymbol{X}^{t} \boldsymbol{R}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}}
$$

Theorem 7.9 (Ma et al., 2017)

Suppose $\boldsymbol{M}=\boldsymbol{X}^{\natural} \boldsymbol{X}^{\natural \top}$ is rank-r, incoherent and well-conditioned. Vanilla GD (with spectral initialization) achieves

- $\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}} \lesssim \rho^{t} \mu r \frac{1}{\sqrt{n p}}\left\|\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}}$,
- $\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\| \lesssim \rho^{t} \mu r \frac{1}{\sqrt{n p}}\left\|\boldsymbol{X}^{\natural}\right\|, \quad$ (spectral)
- $\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\|_{2, \infty} \lesssim \rho^{t} \mu r \sqrt{\frac{\log n}{n p}}\left\|\boldsymbol{X}^{\natural}\right\|_{2, \infty}, \quad$ (incoherence)
where $\rho=1-\frac{\sigma_{\min } \eta}{5}<1$, if step size $\eta \asymp 1 / \sigma_{\max }$ and sample complexity $n^{2} p \gtrsim \mu^{3} n r^{3} \log ^{3} n$.

Gradient descent for matrix completion

Define the optimal transform from the t th iterate \boldsymbol{X}^{t} to $\boldsymbol{X}^{\natural}$ as

$$
\boldsymbol{Q}^{t}:=\operatorname{argmin}_{\boldsymbol{R} \in \mathcal{O}^{r \times r}}\left\|\boldsymbol{X}^{t} \boldsymbol{R}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}}
$$

Theorem 7.9 (Ma et al., 2017)

Suppose $\boldsymbol{M}=\boldsymbol{X}^{\natural} \boldsymbol{X}^{\natural \top}$ is rank-r, incoherent and well-conditioned. Vanilla GD (with spectral initialization) achieves

- $\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}} \lesssim \rho^{t} \mu r \frac{1}{\sqrt{n p}}\left\|\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}}$,
- $\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\| \lesssim \rho^{t} \mu r \frac{1}{\sqrt{n p}}\left\|\boldsymbol{X}^{\natural}\right\|, \quad$ (spectral)
- $\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\|_{2, \infty} \lesssim \rho^{t} \mu r \sqrt{\frac{\log n}{n p}}\left\|\boldsymbol{X}^{\natural}\right\|_{2, \infty}, \quad$ (incoherence)
where $\rho=1-\frac{\sigma_{\min } \eta}{5}<1$, if step size $\eta \asymp 1 / \sigma_{\max }$ and sample complexity $n^{2} p \gtrsim \mu^{3} n r^{3} \log ^{3} n$.
- linear convergence of $\left\|\boldsymbol{X}^{t} \boldsymbol{X}^{t \top}-\boldsymbol{M}^{\natural}\right\|$ in Frobenius, spectral and infinity norms.

Numerical evidence for noiseless data

Figure 7.1: Relative error of $\boldsymbol{X}^{t} \boldsymbol{X}^{t \top}$ (measured by $\|\cdot\|_{F},\|\cdot\|,\|\cdot\|_{\infty}$) vs. iteration count for matrix completion, where $n=1000, r=10, p=0.1$, and $\eta_{t}=0.2$.

Numerical evidence for noisy data

Set SNR $:=\frac{\left\|M^{\natural}\right\|_{\mathrm{F}}^{2}}{n^{2} \sigma^{2}}$.

Figure 7.2: Squared relative error of the estimate $\hat{\boldsymbol{X}}$ (measured by $\|\cdot\|_{\mathrm{F}},\|\cdot\|,\|\cdot\|_{2, \infty}$) and $\hat{\boldsymbol{M}}=\hat{\boldsymbol{X}} \hat{\boldsymbol{X}}^{\top}$ (measured by $\|\cdot\|_{\infty}$) vs. SNR, where $n=500, r=10, p=0.1$, and $\eta_{t}=0.2$.

Restricted strong convexity and smoothness

Lemma 7.10 (Restricted strong convexity and smoothness)

Suppose that $n^{2} p \geq C \kappa^{2} \mu r n \log n$ for some $C>0$. Then with high probability, the Hessian $\nabla^{2} f(\boldsymbol{X})$ obeys
$\operatorname{vec}(\boldsymbol{V})^{\top} \nabla^{2} f(\boldsymbol{X}) \operatorname{vec}(\boldsymbol{V}) \geq \frac{\sigma_{\text {min }}}{2}\|\boldsymbol{V}\|_{\mathrm{F}}^{2} \quad$ (restricted strong convexity)

$$
\left\|\nabla^{2} f(\boldsymbol{X})\right\| \leq \frac{5}{2} \sigma_{\max } \quad \text { (smoothness) }
$$

for all \boldsymbol{X} and $\boldsymbol{V}=\boldsymbol{Y} \boldsymbol{H}_{Y}-\boldsymbol{Z}, \boldsymbol{H}_{Y}:=\arg \min _{\boldsymbol{R} \in \mathcal{O}^{r \times r}}\|\boldsymbol{Y} \boldsymbol{R}-\boldsymbol{Z}\|_{\mathrm{F}}$ satisfying

- $\left\|\boldsymbol{X}-\boldsymbol{X}^{\natural}\right\|_{2, \infty} \leq \epsilon\left\|\boldsymbol{X}^{\natural}\right\|_{2, \infty}$ (incoherence region),
- $\left\|\boldsymbol{Z}-\boldsymbol{X}^{\natural}\right\| \leq \delta\left\|\boldsymbol{X}^{\natural}\right\|$,
where $\epsilon \ll 1 / \sqrt{\kappa^{3} \mu r \log ^{2} n}$ and $\delta \ll 1 / \kappa$.

Linear convergence induction I

Given the definition of Q^{t+1}, we have

$$
\left\|\boldsymbol{X}^{t+1} \boldsymbol{Q}^{t+1}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}} \leq\left\|\boldsymbol{X}^{t+1} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}}
$$

$$
\stackrel{(\mathrm{i})}{=}\left\|\left[\boldsymbol{X}^{t}-\eta \nabla f\left(\boldsymbol{X}^{t}\right)\right] \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}}
$$

$$
\stackrel{(i i)}{=}\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\eta \nabla f\left(\boldsymbol{X}^{t} \boldsymbol{Q}^{t}\right)-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}}
$$

$$
\stackrel{(\mathrm{iii})}{=} \underbrace{\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\eta \nabla f\left(\boldsymbol{X}^{t} \boldsymbol{Q}^{t}\right)-\left(\boldsymbol{X}^{\natural}-\eta \nabla f\left(\boldsymbol{X}^{\natural}\right)\right)\right\|_{F}}_{:=\alpha},
$$

where (i) follows from the GD rule, (ii) follows from the identity $\nabla f\left(\boldsymbol{X}^{t} \boldsymbol{R}\right)=\nabla f\left(\boldsymbol{X}^{t}\right) \boldsymbol{R}$ for any $\boldsymbol{R} \in \mathcal{O}^{r \times r}$, and (iii) follows from $\nabla f\left(\boldsymbol{X}^{\natural}\right)=\mathbf{0}$.

Linear convergence induction II

The fundamental theorem of calculus reveals

$$
\begin{align*}
\operatorname{vec} & {\left[\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\eta \nabla f\left(\boldsymbol{X}^{t} \boldsymbol{Q}^{t}\right)-\left(\boldsymbol{X}^{\natural}-\eta \nabla f\left(\boldsymbol{X}^{\natural}\right)\right)\right] } \\
& =\operatorname{vec}\left[\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right]-\eta \cdot \operatorname{vec}\left[\nabla f\left(\boldsymbol{X}^{t} \boldsymbol{Q}^{t}\right)-\nabla f\left(\boldsymbol{X}^{\natural}\right)\right] \\
& =(\boldsymbol{I}_{n r}-\eta \underbrace{\int_{0}^{1} \nabla^{2} f(\boldsymbol{X}(\tau)) \mathrm{d} \tau}_{:=\boldsymbol{A}}) \operatorname{vec}\left(\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right), \tag{7.1}
\end{align*}
$$

where we denote $\boldsymbol{X}(\tau):=\boldsymbol{X}^{\natural}+\tau\left(\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right)$. Taking the squared Euclidean norm of both sides of the equality (7.1) leads to

$$
\begin{align*}
\alpha^{2}= & \operatorname{vec}\left(\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right)^{\top}\left(\boldsymbol{I}_{n r}-\eta \boldsymbol{A}\right)^{2} \operatorname{vec}\left(\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right) \\
\leq & \left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}}^{2}+\eta^{2}\|\boldsymbol{A}\|^{2}\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}}^{2} \\
& -2 \eta \operatorname{vec}\left(\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right)^{\top} \boldsymbol{A} \operatorname{vec}\left(\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right), \tag{7.2}
\end{align*}
$$

Linear convergence induction III

Based on the incoherence of $\boldsymbol{X}^{\natural}$ and $\boldsymbol{X}^{t}, \forall \tau \in[0,1]$,

$$
\left\|\boldsymbol{X}(\tau)-\boldsymbol{X}^{\natural}\right\|_{2, \infty} \leq \underbrace{\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\|_{2, \infty} \leq C \mu r \sqrt{\frac{\log n}{n p}}\left\|\boldsymbol{X}^{\natural}\right\|_{2, \infty}}_{\text {incoherence hypothesis }} .
$$

Taking $\boldsymbol{X}=\boldsymbol{X}(\tau), \boldsymbol{Y}=\boldsymbol{X}^{t}$ and $\boldsymbol{Z}=\boldsymbol{X}^{\natural}$ in Lemma 7.10, one can easily verify the assumptions therein given $n^{2} p \gg \kappa^{3} \mu^{3} r^{3} n \log ^{3} n$. Hence,

$$
\operatorname{vec}\left(\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right)^{\top} \boldsymbol{A} \operatorname{vec}\left(\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right) \geq \frac{\sigma_{\mathrm{min}}}{2}\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}}^{2}
$$

and

$$
\|\boldsymbol{A}\| \leq \frac{5}{2} \sigma_{\max }
$$

Linear convergence induction IV

Substituting these two inequalities into (7.2) yields

$$
\begin{aligned}
\alpha^{2} & \leq\left(1+\frac{25}{4} \eta^{2} \sigma_{\max }^{2}-\sigma_{\min } \eta\right)\left\|\boldsymbol{X}^{t} \hat{\boldsymbol{H}}^{t}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}}^{2} \\
& \leq\left(1-\frac{\sigma_{\min }}{2} \eta\right)\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}}^{2}
\end{aligned}
$$

as long as $0<\eta \leq\left(2 \sigma_{\min }\right) /\left(25 \sigma_{\max }^{2}\right)$, which further implies that

$$
\alpha \leq\left(1-\frac{\sigma_{\min }}{4} \eta\right)\left\|\boldsymbol{X}^{t} \boldsymbol{Q}^{t}-\boldsymbol{X}^{\natural}\right\|_{\mathrm{F}} .
$$

The incoherence hypothesis is important for fast convergence: the fact that \boldsymbol{X}^{t} stays incoherent throughout the execution is called "implicit regularization" and can be established by a leave-one-out analysis trick [Ma et al., 2017].

Reference

[1] "Guaranteed matrix completion via non-convex factorization," R. Sun, T. Luo, IEEE Transactions on Information Theory, 2016.
[2] "The rotation of eigenvectors by a perturbation," C. Davis, and W. Kahan, SIAM Journal on Numerical Analysis, 1970.
[3] "Matrix completion from a few entries," R. Keshavan, A. Montanari, and S. Oh, IEEE Transactions on Information Theory, 2010.
[4] "Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees," Y. Chen and M. Wainwright, arXiv preprint arXiv:1509.03025, 2015.
[5] "Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion and Blind Deconvolution," C. Ma, K. Wang, Y. Chi and Y. Chen, arXiv preprint arXiv:1711.10467, 2017.

Reference

[6] "No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis," R. Ge, C. Jin, and Y. Zheng, ICML, 2017.
[7] "Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization," X. Li et al., arXiv preprint arxiv:1612.09296, 2016.
[8] "Topics in random matrix theory," T. Tao, American mathematical society, 2012.
[9] "Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation," Y. Chen, and Y. Chi, arXiv preprint arXiv:1802.08397, 2018.
[10] "How to escape saddle points efficiently," Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan, M. I, arXiv preprint arXiv:1703.00887, 2017.

