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Outline

e |ow-rank matrix completion and recovery

e Nuclear norm minimization (last lecture)

o RIP and low-rank matrix recovery
o Matrix completion

o Algorithms for nuclear norm minimization

e Non-convex methods (this lecture)

o Global landscape
o Spectral methods

o (Projected) gradient descent



Why nonconvex?

Consider completing an n X n matrix, with rank r:
minimizex |[Po(X — M)|? st. rank(X) <,

where r < n.

o The size of observation || is about nrpolylogn;
o The degrees of freedom in X is about nr;

Question: Can we develop algorithms that work with
computational and memory complexity that nearly linear in n?

This means that we don't even want to store the matrix X
which takes n? storage.

A nonconvex approach will store and update a “low-dimensional”
representation of X throughout the execution of the algorithm.



Convex vs. nonconvex

minimizeg f(x)

convex VS. nonconvex



Prelude: low-rank matrix approximation
— an optimization perspective



Low-rank matrix approximation / PCA

Given M € R™ ™ (not necessarily low-rank), solve the low-rank
approximation problem (best rank-r approximation):

M = argminy || X — M|z st. rank(X) <.
this is a nonconvex optimization problem.

The solution is known as the Eckart-Young theorem:

e denote the SVD of M =31, aiui'u;r, where o;'s are in a
descending order; then

r
M = ZO’Z"U/Z”UZT.
i=1

nonconvex, but tractable.



Optimization viewpoint

Let us factorize X = UV T, where U,V & R™". QOur problem is
equivalent to

minimizeyy v f(U,V) := |[UV — M|}

e The size of U,V are of O(nr), which is much smaller than X;

e Identifiability issues: for any orthonormal R € R"*", we have
UV' =(aUR)(a"'VR)".

If (U, V) is a global minimizer (..), so does (c(UR,a 'V R).

Question: what does f(U, V') look like (landscape)? (we already
found its global minima.)



The PSD case

For simplicity, consider the PSD case.
o Let M be PSD, so that M =", aiuiuiT.
e Let X =UU", where U € R™*".

We're interested in the landscape of

1
f(U) = LIIUU" = M.

Identifiability: for any orthonormal R € R"*", we have
UU'" = (UR)(UR)".
make the exposition even simpler: set r = 1.

1
flu) = {lluu” — M3,



Good news: benign landscape

2

Fx) = [xx" = 117|J7-

0 1
)

-1

Global optima: « = + 1

! , strict saddle « = B] No “spurious”

local minima.



Critical points

Definition 7.1

A first-order critical point (stationary point) satisfies

Vf(u)=0.

0 A

2 2

(a) strict saddle (b) local minimum (c) global minimum

Figure credit: Li et al., 2016
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Critical points of f(u)

Any u € R" satisfies
Vi(u)= (uuT — M)u =0.
i}
Mu = ||Ju3u

)

u aligns with eigenvectors of M.

or
u=0.



Critical points of f(u)

Any u € R" satisfies
Vi) = (uu' — M)u = 0.
)
Mu = |ul3u

)

u aligns with eigenvectors of M.

or
u=0.

Since Mu; = o;u;, the set of critical points are given as

{Voiui,i=1,...,n}.



Categorization of critical points

Need to examine the Hessian:

V2f(u) == 2uu' + ||u|3] — M.

e Plug in the non-zero critical points: uy := \/orug,

VQf(’lNl/k) = 2akuku,—§r + O'kI - M

n n
= 2akukuz + o (Z um?) — Z Uiuiu?
i=1 i=1
= Z(O’k — O’Z)’LI/Z’LLZT + 20kukug
itk

e Assume o1 > 09 > ... > o, > O:

o k=1: V2f(@1) = 0 — local minima

o 1<k <n: Amin(VEf(@r)) <0, Amax(V2f(@r)) > 0, — strict

saddle
o u=0: V2f(0) <0 — local maxima



Categorization of critical points

Need to examine the Hessian:

V2f(u) == 2uu' + ||u|3] — M.

e Plug in the non-zero critical points: uy := \/orug,

VQf(’lNl/k) = 2akuku,—§r + O'kI - M

n n
= 2akukuz + o (Z um?) — Z Uiuiu?
i=1 i=1
= Z(O’k — O’Z)’LI/Z’LLZT + 20kukug
itk

e Assume o1 > 09 > ... > 0,>0:

o k=1: V2f(@1) = 0 — local minima

o 1<k <n: Amin(VEf(@r)) <0, Amax(V2f(@r)) > 0, — strict

saddle
o u=0: V2f(0) < 0 — strict saddle



Summary

1
[U)=|UU" = M|, UeR™,
If o > opy1,

e all local minima are global: U contains the top-r eigenvectors
up to an orthonormal transformation;

e strict saddle points: all stationary points are saddle points
except the global optimum.



Undersampled regime

Consider linear measurements:
y=AM), ycR™ m<n?

where M = UOU(;r € R™ " is rank-r, r < n, and PSD (for
simplicity).

e The loss function we consider:
1
fU):= ZHA(UUT — M)|[}.

o If E[A*A] =T, then

E[f(U)] = {IUUT — M.

e Does f(U) inherit the benign landscape?



Landscape preserving under RIP

Recall the definition of RIP:

Definition 7.2
The rank-r restricted isometry constants 4, is the smallest quantity

(1= )X < JAX)E < (1 +6)[X[E VX :rank(X) <r




Landscape preserving under RIP

Recall the definition of RIP:

Definition 7.2
The rank-r restricted isometry constants 9, is the smallest quantity

(1= )X < JAX)E < (1 +6)[X[E VX :rank(X) <r

Theorem 7.3 (Bhojanapalli et al. 2016, Ge et al.” 2017)

If A satisfies the RIP with 6, < 15, then f(U) satisfies

e all local min are global: for any local minimum U of f(U), it
satisfies UU " = M ;

e strict saddle points: for non-local min critical point U, it satisfies
)\min[VQf(U)] S _%Ur-




Proof of Theorem 7.3 when r =1

Without loss of generality, assume M = uoug—, and o1 = 1.

e Step 1: check all the critical points:

m

Vi(u)= Z<Ai’ uu' —ugug )Aju =0
i=1 v

e Step 2: verify the Hessian at all the critical points:

V2f(u) = Z<Ai’ uu' —ugug )A; + 2A;uu’ A

i=1



Proof of Theorem 7.3 when r =1

Proof: Assume w is first-order optimal. Consider the descent
direction: A = u — ug:
m

ATV f(w)A =Y [<Ai,’U/LLT —woud ) (A;, AAT) + 2(A;, uATﬂ

@
I
—

[(Ai, AATY? —3(A; uu' — uoug)ﬂ .

.

s
Il
—

where we have used the first order optimality condition.



Proof of Theorem 7.3 when r =1

By the RIP property:

ATV S A=Y [(As (= wo)( = wo)T)? = 3(As, uu” — wgug )?|
=1

< (1+0) (w — o) (w — uo) "7 — 3(1 = 0)|Jun” — ugug |7

< [20146) =301 = O)]Jun’ — uoug |7

<

—(1=58)Jun’ — uoug ||7
where we use

(= w) (w — o) || < 2f|ua” — uoug [|7-



Landscape without RIP

In matrix completion, we need to regularize the loss function by
promoting incoherent solutions: set

m

QU)=> (lefUllz — o)}

i=1

where a is some regularization parameter, and z; = max{z,0}.



Landscape without RIP

In matrix completion, we need to regularize the loss function by
promoting incoherent solutions: set

Q) =3 (e Ul - a)t

i=1

where a is some regularization parameter, and z; = max{z,0}.
Consider the loss function

() = ;HPQ(UUT ~ M2+ AQU)

where )\ is a regularization parameter.
e adding Q(U) doesn't affect the global optimizer if « is set
properly.



MC doesn’t have spurious local minima

Theorem 7.4 (Ge et al, 2016)

Ifp> & ’"6nlog” o = O(H2) and X = ©(;;), then with probability
at least 1 —n—1,
e all local min are global: for any local minimum U of f(U), it
satisfies UU " = M ;

e saddle points that are not local minima are strict saddle points.

e saddle-point escaping algorithms can be used to guarantee
convergence to local minima, which in our problem are global
minima.

e active research area for constructing saddle-point escaping
algorithms: (perturbed) gradient descent, trust-region methods,
etc...



Spectral methods: a one-shot approach



Setup

e Consider M € R™*™ (square case for simplicity)
o rank(M)=r<n
e The thin Singular value decomposition (SVD) of M:

-
_ T _ P
M = Uxv = Do
(2n—r)r degrees of freedom =1
01
where ¥ = contain all singular values {o;};

Or
U:=[ui, - ,u], V:=][vy,- - ,v,] consist of singular vectors



Signal + noise

(i,7) € Q independently with prob. p

One can write observation Pq (M) as

o Noise has mean zero: E [%PQ(M)] =M



Low-rank denoising

Pa(M)= M+ Po(M)-M

. 4
low-rank signal | —]
:=F (zero-mean noise)

Algorithm 7.1 Spectral method

M <+— best rank-r approximation of %PQ(M)

The spectral method can be solved via power methods or Lanczos
methods, and we don’t need to realize the matrix ;Pq(M).



Histograms of singular values of Po(M)
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Fig. credit: Keshavan, Montanari, Oh '10



Performance of spectral methods

Theorem 7.5 (Keshavan, Montanari, Oh '10)

Suppose number of observed entries m obeys m 2 nlogmn. Then

|IM — M||p o max;; |Mij|  [nr log®n
Mg~ LMl mo
—_———

=V

o v reflects whether energy of M is spread out, |M; ;| < pr/n;
e When m > v2nlog? n, estimate M is very close to truth?

e Degrees of freedom < nr

— nearly-optimal sample complexity for incoherent matrices

'The logarithmic factor can be improved.



Perturbation bounds

M (rank-r)

M+ E
P (M +E)—- (M+E)

P, (M +E)

To ensure M is good estimate, it suffices to control noise E2

Lemma 7.6

Suppose rank(M ) = r. For any perturbation E,
[Pr(M + E) - M| <2[E|
IPr(M + E) - Mllp <2V2r|E|

where P, (X)) is best rank-r approximation of X.




Prior on matrix perturbation theory

Lemma 7.7 (Weyl’s inequality, 1912)
Let M, E be n x n matrices. Then

lox(M + E) —op(M)| < |E|, k=1,...,n.

Proof: Invoke the Courant-Fisher Minimax Characterization:

|| Av|l2

A) = .
or(A) = max min S




Proof of Lemma 7.6

By matrix perturbation theory,

IPr(M + E) — M|

triangle inequality

< [Pr(M + E) — (M + E)|| + (M + E) - M|
< or1(M + E) + || E|

Weyl's inequality
or1(M) + | E| + [ E| = 2[E].
N——r

=0

The 2nd inequality of Lemma 7.6 follows since both P.(M + E) and
M are rank-r, and hence

[P-(M + E) — M|[r < V2r||P:(M + E) — M|.



Controlling the noise

Recall that entries of E = %PQ(M) — M are zero-mean and
independent.

A bit of random matrix theory ...

Lemma 7.8 (Chapter 2.3, Tao '12)

Suppose X € R™" " js a random symmetric matrix obeying
o {X;;:i<j} are independent
e E[X; ;] =0 and Var[X; ;] <1
e max; ;| X; | Svn

Then | X || < /nlogn.




Proof of Theorem 7.5

If we look at the zero-mean matrix E = %E then

Var [E;;] = p(l—p)'(\/ﬁ %M )2 < <MH>2 S L

i pT /n
- M, - 1
| Ei 5 (M, S —,
VD1 VP
where we have used the fact
(by our assumptions) ur U
|Mi ;| = e/ USVTej| < [[UTeif - o1 - [V e S ket
Lemma 7.8 tells us that if p > loi", then
I1B| S Vilogn <+ |E| < —=logn

NZD

This together with Lemma 7.6 and the fact m =< pn? establishes Theorem
7.5.



Gradient methods: iterative refinements



Iterative methods: an overview

minimizey v f(U,V) := HPQ(UVT — M)|3.

e Gradient descent: (our focus)

U1 =Pu [Ut — e Vu f(Us, ‘/t)},
Viyi=Pv [‘/t —n:Vy f(Us, Vi)]

where 7, is the step size and Pys, Py denote the Euclidean
projection onto some contraint sets;

e Alternating minimization: One optimizes U, V alternatively
while fixing the other, which is a convex problem.

Uiy1 = argming f(U,V,),
Vi1 = argminy f(Up1, V).



Gradient descent for matrix completion

minimizex cpnxr  f(X) = Z (GIXXTek_Mj,k)Q

(4,k)eQ

Algorithm 7.2 Gradient descent for MC

Input: Y = [Yj i, pcp 70 P
Spectral initialization: Let U’S°U°T be the rank-r eigendecom-

position of
1
M = 57>Q(Y),

and set X9 =pU"Y (20)1/2.

Gradient updates: fort =0,1,2,...,7 — 1 do

X = Xt Vf (Xt) _




Gradient descent for matrix completion

Define the optimal transform from the tth iterate X* to X7 as
X'R- Xt
F

Q' = argmingeorxr

Theorem 7.9 (Ma et al., 2017)

Suppose M = X" X" s rank-r, incoherent and well-conditioned.
Vanilla GD (with spectral initialization ) achieves

o |X'Q — X*|r S p!
. |X'Q - X S pur
o |XIQN X5, <o W‘,/%HX“HQW, (incoherence)

where p = 1 — 222 < 1, if step size ) X 1/0pmaz and sample
complexity n’p > p®nr®log3 n.

(spectral)




Gradient descent for matrix completion

Define the optimal transform from the tth iterate X* to X7 as
X'R- Xt
F

Q' = argmingeorxr

Theorem 7.9 (Ma et al., 2017)

Suppose M = X" X" s rank-r, incoherent and well-conditioned.
Vanilla GD (with spectral initialization ) achieves

o |X'Q — X*|r S p!
. |X'Q - X S pur
o |XIQN X5, <o W‘,/%HX“HQW, (incoherence)

where p = 1 — 222 < 1, if step size ) X 1/0pmaz and sample
complexity n’p > p®nr®log3 n.

(spectral)

e linear convergence of HXtXtT - MuH in Frobenius, spectral
and infinity norms.



Numerical evidence for noiseless data
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Figure 7.1: Relative error of X*X*T (measured by |||/, [I[[, |-l
vs. iteration count for matrix completion, where n = 1000, » = 10, p = 0.1,
and n; = 0.2



Numerical evidence for noisy data
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Figure 7.2: Squared relative error of the estimate X (measured by
I-1g s 11 H||200) and M = XX (measured by |-]|_) vs. SNR, where
n =500, r =10, p=0.1, and n; = 0.2.



Restricted strong convexity and smoothness

Lemma 7.10 (Restricted strong convexity and smoothness)

Suppose that n?p > Ck?urnlogn for some C > 0. Then with high
probability, the Hessian V2 f(X) obeys

vee (V)T V2f (X)vec (V) > Ur;in V& (restricted strong convexit

HVQf (X)H < gamax (smoothness)

for all X and V =Y Hy — Z, Hy := argmingcorxr |[Y R — Z||;
satisfying
‘X - X“H <e HX“H (incoherence region),

2,00 2,00

o [|Z - XP|| < 8] XFl,

y)

where ¢ < 1/1/r3purlog?n and § < 1/k.




Linear convergence induction |

Given the definition of Q**!, we have

Jxeter - x| < xtver - X
| xt - avr (x9)] @ - x|,

X pwixe) x,

D x1Q - gV (X1Q") — (X — 4V (7))

=

“

)

F

where (i) follows from the GD rule, (ii) follows from the identity
Vf(X'R)=Vf(X") R for any R € O™, and (iii) follows from
V(X" =o0.



Linear convergence induction Il

The fundamental theorem of calculus reveals

vec [XtQt _Vi(X'QY) — (Xh _ an(Xh))}
= vecC [XtQt — Xu} — 1 -vec [Vf(XtQt> - Vf (Xh>}

— < — / V2f(X dT)VeC (X Q' - )7 (7.1)

where we denote X (7) := X%+ 7(X*Q" — X"). Taking the squared
Euclidean norm of both sides of the equality (7.1) leads to

o? = vec(X'Q' — X" (I, — nA)? vec(X'Q' — X7)
2 2
< |xtQ - x| 4ot xie - x|
— 2 vee(X'Q' — X1 T A vee(X'Q' — X¥),  (7.2)



Linear convergence induction Ill

Based on the incoherence of X and Xt vr € [0,1],

@ -x, < xie - x, < conn BRI,

incoherence hypothesis

Taking X = X (7),Y = X! and Z = X" in Lemma 7.10, one can
easily verify the assumptions therein given np > x31%r3nlog® n.
Hence,

veo(X'Q" — X" A vec(X'Q" — X") > "f;in IxtQ — x*|?

and
-‘l g max-



Linear convergence induction IV

Substituting these two inequalities into (7.2) yields

25 2
CM2 < <1 + ZnQUIQnaX - Umin”) HXth - Xu“]%‘

Omin
< (1- 72 | x'Q! - X

as long as 0 < 1 < (201in) /(2502

max

), which further implies that
Omin t it b
a<(1-==n)[XQ - X%

The incoherence hypothesis is important for fast convergence: the
fact that X stays incoherent throughout the execution is called
“implicit regularization” and can be established by a leave-one-out
analysis trick [Ma et al., 2017].
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