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Outline

• Low-rank matrix completion and recovery

• Nuclear norm minimization (last lecture)

◦ RIP and low-rank matrix recovery
◦ Matrix completion
◦ Algorithms for nuclear norm minimization

• Non-convex methods (this lecture)

◦ Global landscape
◦ Spectral methods
◦ (Projected) gradient descent
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Why nonconvex?

• Consider completing an n× n matrix, with rank r:

minimizeX ‖PΩ(X −M)‖2F s.t. rank(X) ≤ r,

where r � n.
◦ The size of observation |Ω| is about nrpolylogn;
◦ The degrees of freedom in X is about nr;

• Question: Can we develop algorithms that work with
computational and memory complexity that nearly linear in n?

• This means that we don’t even want to store the matrix X
which takes n2 storage.

• A nonconvex approach will store and update a “low-dimensional”
representation of X throughout the execution of the algorithm.
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Convex vs. nonconvex

minimizex f(x)

convex vs. nonconvex
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Prelude: low-rank matrix approximation
— an optimization perspective
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Low-rank matrix approximation / PCA

Given M ∈ Rn×n (not necessarily low-rank), solve the low-rank
approximation problem (best rank-r approximation):

M̂ = argminX ‖X −M‖2F s.t. rank(X) ≤ r.

this is a nonconvex optimization problem.

The solution is known as the Eckart-Young theorem:
• denote the SVD of M =

∑n
i=1 σiuiv

>
i , where σi’s are in a

descending order; then

M̂ =
r∑
i=1

σiuiv
>
i .

nonconvex, but tractable.
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Optimization viewpoint

Let us factorize X = UV >, where U ,V ∈ Rn×r. Our problem is
equivalent to

minimizeU ,V f(U ,V ) := ‖UV > −M‖2F.

• The size of U ,V are of O(nr), which is much smaller than X;
• Identifiability issues: for any orthonormal R ∈ Rr×r, we have

UV > = (αUR)(α−1V R)>.

If (U ,V ) is a global minimizer (..), so does (αUR, α−1V R).

Question: what does f(U ,V ) look like (landscape)? (we already
found its global minima.)
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The PSD case
For simplicity, consider the PSD case.
• Let M be PSD, so that M =

∑n
i=1 σiuiu

>
i .

• Let X = UU>, where U ∈ Rn×r.

We’re interested in the landscape of

f(U) := 1
4‖UU> −M‖2F.

Identifiability: for any orthonormal R ∈ Rr×r, we have

UU> = (UR)(UR)>.

make the exposition even simpler: set r = 1.

f(u) = 1
4‖uu

> −M‖2F.
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Good news: benign landscape

Take f(u) =
∥∥∥∥∥uu> −

[
1 1
1 1

]∥∥∥∥∥
2

F
.

Global optima: x = ±
[
1
1

]
, strict saddle x =

[
0
0

]
. No “spurious”

local minima.
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Critical points

Definition 7.1
A first-order critical point (stationary point) satisfies

∇f(u) = 0.

Figure credit: Li et al., 2016
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Critical points of f(u)
Any u ∈ Rn satisfies

∇f(u) = (uu> −M)u = 0.

m

Mu = ‖u‖22u

m

u aligns with eigenvectors of M .

or
u = 0.

Since Mui = σiui, the set of critical points are given as

{
√
σiui, i = 1, . . . , n}.
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Categorization of critical points
Need to examine the Hessian:

∇2f(u) := 2uu> + ‖u‖22I −M .

• Plug in the non-zero critical points: ũk := √σkuk,

∇2f(ũk) = 2σkuku>k + σkI −M

= 2σkuku>k + σk

(
n∑
i=1

uiu
>
i

)
−

n∑
i=1

σiuiu
>
i

=
∑
i 6=k

(σk − σi)uiu>i + 2σkuku>k

• Assume σ1 > σ2 > . . . > σn > 0:
◦ k = 1: ∇2f(ũ1) � 0 → local minima
◦ 1 < k ≤ n: λmin(∇2f(ũk)) < 0, λmax(∇2f(ũk)) > 0, → strict

saddle
◦ u = 0: ∇2f(0) � 0 → local maxima
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Summary

f(U) := 1
4‖UU> −M‖2F, U ∈ Rn×r,

If σr > σr+1,

• all local minima are global: U contains the top-r eigenvectors
up to an orthonormal transformation;

• strict saddle points: all stationary points are saddle points
except the global optimum.
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Undersampled regime

Consider linear measurements:

y = A(M), y ∈ Rm, m� n2

where M = U0U
>
0 ∈ Rn×n is rank-r, r � n, and PSD (for

simplicity).

• The loss function we consider:

f(U) := 1
4‖A(UU> −M)‖2F.

• If E[A∗A] = I, then

E[f(U)] = 1
4‖UU> −M‖2F.

• Does f(U) inherit the benign landscape?



16/45

Landscape preserving under RIP

Recall the definition of RIP:
Definition 7.2
The rank-r restricted isometry constants δr is the smallest quantity

(1− δr)‖X‖2F ≤ ‖A(X)‖2F ≤ (1 + δr)‖X‖2F, ∀X : rank(X) ≤ r

Theorem 7.3 (Bhojanapalli et al.’ 2016, Ge et al.’ 2017)

If A satisfies the RIP with δ2r <
1
10 , then f(U) satisfies

• all local min are global: for any local minimum U of f(U), it
satisfies UU> = M ;
• strict saddle points: for non-local min critical point U , it satisfies
λmin[∇2f(U)] ≤ −2

5σr.
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Proof of Theorem 7.3 when r = 1

Without loss of generality, assume M = u0u
>
0 , and σ1 = 1.

• Step 1: check all the critical points:

∇f(u) =
m∑
i=1
〈Ai,uu

> − u0u
>
0︸ ︷︷ ︸

M

〉Aiu = 0

• Step 2: verify the Hessian at all the critical points:

∇2f(u) =
m∑
i=1
〈Ai,uu

> − u0u
>
0 〉Ai + 2Aiuu

>A>i
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Proof of Theorem 7.3 when r = 1

Proof: Assume u is first-order optimal. Consider the descent
direction: ∆ = u− u0:

∆>∇2f(u)∆ =
m∑
i=1

[
〈Ai,uu

> − u0u
>
0 〉〈Ai,∆∆>〉+ 2〈Ai,u∆>〉2

]
=

m∑
i=1

[
〈Ai,∆∆>〉2 − 3〈Ai,uu

> − u0u
>
0 〉2

]
.

where we have used the first order optimality condition.
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Proof of Theorem 7.3 when r = 1

By the RIP property:

∆>∇2f(u)∆ =
m∑
i=1

[
〈Ai, (u− u0)(u− u0)>〉2 − 3〈Ai,uu

> − u0u
>
0 〉2

]
≤ (1 + δ)‖(u− u0)(u− u0)>‖2F − 3(1− δ)‖uu> − u0u

>
0 ‖2F

≤ [2(1 + δ)− 3(1− δ)]‖uu> − u0u
>
0 ‖2F

≤ −(1− 5δ)‖uu> − u0u
>
0 ‖2F

where we use

‖(u− u0)(u− u0)>‖2F ≤ 2‖uu> − u0u
>
0 ‖2F .
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Landscape without RIP

In matrix completion, we need to regularize the loss function by
promoting incoherent solutions: set

Q(U) =
m∑
i=1

(‖e>i U‖2 − α)4
+

where α is some regularization parameter, and z+ = max{z, 0}.

Consider the loss function

f(U) = 1
p
‖PΩ(UU> −M)‖2F + λQ(U)

where λ is a regularization parameter.
• adding Q(U) doesn’t affect the global optimizer if α is set

properly.
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MC doesn’t have spurious local minima

Theorem 7.4 (Ge et al, 2016)

If p & µ4r6 logn
n , α2 = Θ(µrσ1

n ) and λ = Θ( nµr ), then with probability
at least 1− n−1,
• all local min are global: for any local minimum U of f(U), it

satisfies UU> = M ;
• saddle points that are not local minima are strict saddle points.

• saddle-point escaping algorithms can be used to guarantee
convergence to local minima, which in our problem are global
minima.
• active research area for constructing saddle-point escaping

algorithms: (perturbed) gradient descent, trust-region methods,
etc...
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Spectral methods: a one-shot approach
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Setup

• Consider M ∈ Rn×n (square case for simplicity)

• rank(M) = r � n

• The thin Singular value decomposition (SVD) of M :

M = UΣV >︸ ︷︷ ︸
(2n−r)r degrees of freedom

=
r∑
i=1

σiuiv
T
i

where Σ =

 σ1
. . .

σr

 contain all singular values {σi};

U := [u1, · · · ,ur], V := [v1, · · · ,vr] consist of singular vectors
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Signal + noise

(i, j) ∈ Ω independently with prob. p

One can write observation PΩ(M) as

1
p
PΩ(M) = M︸︷︷︸

signal

+ 1
p
PΩ(M)−M︸ ︷︷ ︸

noise

• Noise has mean zero: E
[

1
pPΩ(M)

]
= M
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Low-rank denoising

1
p
PΩ(M) = M︸︷︷︸

low-rank signal

+ 1
p
PΩ(M)−M︸ ︷︷ ︸

:=E (zero-mean noise)

Algorithm 7.1 Spectral method
M̂ ←− best rank-r approximation of 1

pPΩ(M)

The spectral method can be solved via power methods or Lanczos
methods, and we don’t need to realize the matrix 1

pPΩ(M).
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Histograms of singular values of PΩ(M)

A 104 × 104 random rank-3 matrix M with p = 0.003

Fig. credit: Keshavan, Montanari, Oh ’10
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Performance of spectral methods

Theorem 7.5 (Keshavan, Montanari, Oh ’10)

Suppose number of observed entries m obeys m & n logn. Then

‖M̂ −M‖F
‖M‖F

.
maxi,j |Mi,j |

1
n‖M‖F︸ ︷︷ ︸

:=ν

·

√
nr log2 n

m
,

• ν reflects whether energy of M is spread out, |Mi,j | . µr/n;

• When m� ν2n log2 n, estimate M̂ is very close to truth1

• Degrees of freedom � nr

−→ nearly-optimal sample complexity for incoherent matrices

1The logarithmic factor can be improved.
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Perturbation bounds

To ensure M̂ is good estimate, it suffices to control noise E

Lemma 7.6

Suppose rank(M) = r. For any perturbation E,

‖Pr(M + E)−M‖ ≤ 2‖E‖
‖Pr(M + E)−M‖F ≤ 2

√
2r‖E‖

where Pr(X) is best rank-r approximation of X.
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Prior on matrix perturbation theory

Lemma 7.7 (Weyl’s inequality, 1912)
Let M , E be n× n matrices. Then

|σk(M + E)− σk(M)| ≤ ‖E‖, k = 1, . . . , n.

Proof: Invoke the Courant-Fisher Minimax Characterization:

σk(A) = max
dim(S)=k

min
06=v∈S

‖Av‖2
‖v‖2

.
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Proof of Lemma 7.6

By matrix perturbation theory,

‖Pr(M + E)−M‖
triangle inequality

≤ ‖Pr(M + E)− (M + E)‖+ ‖(M + E)−M‖
≤ σr+1(M + E) + ‖E‖

Weyl’s inequality
≤ σr+1(M)︸ ︷︷ ︸

=0

+ ‖E‖+ ‖E‖ = 2‖E‖.

The 2nd inequality of Lemma 7.6 follows since both Pr(M + E) and
M are rank-r, and hence

‖Pr(M + E)−M‖F ≤
√

2r‖Pr(M + E)−M‖.
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Controlling the noise

Recall that entries of E = 1
pPΩ(M)−M are zero-mean and

independent.

A bit of random matrix theory ...

Lemma 7.8 (Chapter 2.3, Tao ’12)

Suppose X ∈ Rn×n is a random symmetric matrix obeying
• {Xi,j : i < j} are independent

• E[Xi,j ] = 0 and Var[Xi,j ] . 1

• maxi,j |Xi,j | .
√
n

Then ‖X‖ .
√
n logn.
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Proof of Theorem 7.5

If we look at the zero-mean matrix Ẽ =
√
p

µ/nE, then

Var
[
Ẽi,j

]
= p(1− p) ·

( √
p

µ/n
· 1
p
Mi,j

)2
≤
(
Mi,j

µ/n

)2
. 1,

|Ẽi,j | ≤
|Mi,j |√
pµ/n

.
1
√
p
,

where we have used the fact

|Mi,j | =
∣∣e>
i UΣV >ej

∣∣ ≤ ‖U>ei‖ · σ1 · ‖V >ej‖
(by our assumptions)

.
µr

n
� µ

n

Lemma 7.8 tells us that if p & logn
n , then

‖Ẽ‖ .
√
n logn ⇐⇒ ‖E‖ . µ

√
pn

logn

This together with Lemma 7.6 and the fact m � pn2 establishes Theorem
7.5.
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Gradient methods: iterative refinements
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Iterative methods: an overview

minimizeU ,V f(U ,V ) := ‖PΩ(UV > −M)‖2F.

• Gradient descent: (our focus)

Ut+1 = PU
[
Ut − ηt∇Uf(Ut,Vt)

]
,

Vt+1 = PV
[
Vt − ηt∇V f(Ut,Vt)

]
.

where ηt is the step size and PU , PV denote the Euclidean
projection onto some contraint sets;
• Alternating minimization: One optimizes U , V alternatively

while fixing the other, which is a convex problem.
Ut+1 = argminU f(U ,Vt),
Vt+1 = argminV f(Ut+1,V ).
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Gradient descent for matrix completion

minimizeX∈Rn×r f(X) =
∑

(j,k)∈Ω

(
e>j XX>ek −Mj,k

)2

Algorithm 7.2 Gradient descent for MC
Input: Y = [Yj,k]1≤j,k≤n, r, p.
Spectral initialization: Let U0Σ0U0> be the rank-r eigendecom-
position of

M0 := 1
p
PΩ(Y ),

and set X0 = U0 (Σ0)1/2.
Gradient updates: for t = 0, 1, 2, . . . , T − 1 do

Xt+1 = Xt − ηt∇f
(
Xt
)
.
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Gradient descent for matrix completion
Define the optimal transform from the tth iterate Xt to X\ as

Qt := argminR∈Or×r

∥∥∥XtR−X\
∥∥∥

F
.

Theorem 7.9 (Ma et al., 2017)
Suppose M = X\X\> is rank-r, incoherent and well-conditioned.
Vanilla GD (with spectral initialization) achieves
• ‖XtQt −X\‖F . ρtµr 1√

np‖X
\‖F,

•
∥∥XtQt −X\

∥∥ . ρtµr 1√
np‖X

\‖, (spectral)

•
∥∥XtQt −X\

∥∥
2,∞ . ρtµr

√
logn
np ‖X

\‖2,∞, (incoherence)
where ρ = 1− σminη

5 < 1, if step size η � 1/σmax and sample
complexity n2p & µ3nr3 log3 n.

• linear convergence of
∥∥∥XtXt> −M \

∥∥∥ in Frobenius, spectral
and infinity norms.
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Numerical evidence for noiseless data

50 100 150 200 250 300 350 400 450 500
10-15

10-10

10-5

100

Figure 7.1: Relative error of XtXt> (measured by ‖·‖F , ‖·‖ , ‖·‖∞)
vs. iteration count for matrix completion, where n = 1000, r = 10, p = 0.1,
and ηt = 0.2.
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Numerical evidence for noisy data
Set SNR := ‖M\‖2

F
n2σ2 .

10 20 30 40 50 60 70 80
-90

-80

-70

-60

-50

-40

-30

-20

-10

Figure 7.2: Squared relative error of the estimate X̂ (measured by
‖·‖F , ‖·‖ , ‖·‖2,∞) and M̂ = X̂X̂> (measured by ‖·‖∞) vs. SNR, where
n = 500, r = 10, p = 0.1, and ηt = 0.2.
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Restricted strong convexity and smoothness

Lemma 7.10 (Restricted strong convexity and smoothness)

Suppose that n2p ≥ Cκ2µrn logn for some C > 0. Then with high
probability, the Hessian ∇2f(X) obeys

vec (V )>∇2f (X) vec (V ) ≥ σmin
2 ‖V ‖2F (restricted strong convexity)

∥∥∥∇2f (X)
∥∥∥ ≤ 5

2σmax (smoothness)

for all X and V = Y HY −Z, HY := arg minR∈Or×r ‖Y R−Z‖F
satisfying
•
∥∥∥X −X\

∥∥∥
2,∞
≤ ε

∥∥∥X\
∥∥∥

2,∞
(incoherence region),

• ‖Z −X\‖ ≤ δ‖X\‖,

where ε� 1/
√
κ3µr log2 n and δ � 1/κ.
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Linear convergence induction I

Given the definition of Qt+1, we have∥∥∥Xt+1Qt+1 −X\
∥∥∥

F
≤
∥∥∥Xt+1Qt −X\

∥∥∥
F

(i)=
∥∥∥[Xt − η∇f

(
Xt
)]

Qt −X\
∥∥∥

F
(ii)=
∥∥∥XtQt − η∇f

(
XtQt)−X\

∥∥∥
F

(iii)=
∥∥∥XtQt − η∇f

(
XtQt)− (X\ − η∇f

(
X\))∥∥∥

F︸ ︷︷ ︸
:=α

,

where (i) follows from the GD rule, (ii) follows from the identity
∇f(XtR) = ∇f

(
Xt
)
R for any R ∈ Or×r, and (iii) follows from

∇f(X\) = 0.
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Linear convergence induction II
The fundamental theorem of calculus reveals

vec
[
XtQt − η∇f

(
XtQt)− (X\ − η∇f

(
X\))]

= vec
[
XtQt −X\

]
− η · vec

[
∇f
(
XtQt)−∇f (X\

)]
=
(
Inr − η

∫ 1

0
∇2f (X(τ)) dτ︸ ︷︷ ︸

:=A

)
vec

(
XtQt −X\

)
, (7.1)

where we denote X(τ) := X\ + τ(XtQt −X\). Taking the squared
Euclidean norm of both sides of the equality (7.1) leads to

α2 = vec
(
XtQt −X\)> (Inr − ηA)2 vec

(
XtQt −X\)

≤
∥∥∥XtQt −X\

∥∥∥2

F
+ η2 ‖A‖2

∥∥∥XtQt −X\
∥∥∥2

F

− 2η vec
(
XtQt −X\)>A vec

(
XtQt −X\), (7.2)
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Linear convergence induction III

Based on the incoherence of X\ and Xt, ∀τ ∈ [0, 1],

∥∥∥X (τ)−X\
∥∥∥

2,∞
≤
∥∥∥XtQt −X\

∥∥∥
2,∞
≤ Cµr

√
logn
np

∥∥∥X\
∥∥∥

2,∞︸ ︷︷ ︸
incoherence hypothesis

.

Taking X = X (τ) ,Y = Xt and Z = X\ in Lemma 7.10, one can
easily verify the assumptions therein given n2p� κ3µ3r3n log3 n.
Hence,

vec
(
XtQt −X\)>A vec

(
XtQt −X\) ≥ σmin

2
∥∥XtQt −X\

∥∥2
F

and
‖A‖ ≤ 5

2σmax.
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Linear convergence induction IV

Substituting these two inequalities into (7.2) yields

α2 ≤
(

1 + 25
4 η

2σ2
max − σminη

)∥∥XtĤt −X\
∥∥2

F

≤
(

1− σmin
2 η

)∥∥XtQt −X\
∥∥2

F

as long as 0 < η ≤ (2σmin)/(25σ2
max), which further implies that

α ≤
(

1− σmin
4 η

)∥∥XtQt −X\
∥∥

F.

The incoherence hypothesis is important for fast convergence: the
fact that Xt stays incoherent throughout the execution is called
“implicit regularization” and can be established by a leave-one-out
analysis trick [Ma et al., 2017].
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