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Exploiting low-complexity model is essential for efficient RL!
e Save computation/space/data
o Generalize across state or states and actions



Function approximation

Function approximation

The object of interest possesses some low-dimensional representation.

value function e Parametric:
Q-function e Linear combinations of features
e Neural networks

e transition kernel )

q e Nonparametric:

e rewar -
e Decision trees

e policy e Nearest neighbors

Today we will focus on differentiable function approximation and apply
first-order methods to incrementally update the underlying parameters for
on-policy evaluation.



Policy evaluation with linear function
approximation



Linear V/Q function approximation

The value/Q function is a linear combination of features:
V(s;w) = ¢(s) ",
Q(s,a;w) = (s, a) "v,
where
e ¢(s) maps the state space S to R%:;

e 9(s,a) maps the state-action space S x A to R%;

e w,v are the low-dimensional embeddings we wish to learn.

Typically, the number of features is much smaller than the dimension, i.e.
dy < |S], do < |S]]Al.

We assume the feature maps are known.



Feature selection

When the states/actions are numbers, function approximation for value
functions bears familiarity with that of interpolation and regression in

supervised learning.

Value function

Example features:

State/action (velocity, position, etc....)

polynomials, Fourier basis, radial basis functions,...



Incremental update with true value

Objective function:

Tw) = §Eomae [(V7(5) = Visi0))*] = 3Bamar [(V7(5) = 609) ).

=:J(s;w)

which is quadratic w.r.t. w.

e Given access to V7 (s), the stochastic gradient is evaluated as

Vaud (s;w) = = (V7(s) = ¢(s) w) ¢(s).

approx. error

e Update the weight w via
w4+ w—aVyJ(sw) =w+ « (V’r(s) - d)(s)Tw) o(s),

where « is the learning rate.



Incremental update with target value

However, in reality, we do not have access to V™ (s) (otherwise we won't
need to learn!).

Instead: replace V™ (s) by its target V] ,..(s) from MC or TD.

Tw) = SEpmr [ (Vi) = 9(5) )’

=:J(s;w)
Update the weight w via
w = w = aVyd(siw) = w+ a (Vigals) — o(s) Tw) é(s),

where « is the learning rate.



Examples of different targets

e In MC, use the return G;

w4 w+ « (Gt — ¢(5)Tw) o(s)

e In TD(0), use the TD target 7y + YV (s¢11,w) = 74 +yP(s5¢41) Tw

w = w4 a(re+70(siq1) w—@(se) " w) d(s)

e In TD()), use the A\-return G}

w4 w+a (G — ¢(s) w) ¢(s)

These are “semi-gradient” methods, since we only consider the gradient of
the function approximator, not the target.



Convergence of TD(0) with linear function
approximation



TD(0) with linear function approximation

Suppose we collect a trajectory following policy 7:

50,70,51,71,52,72,. -

TD(0) on a single trajectory:

Wiy < Wi + Oy (’f‘t +yp(se41) T wy — ¢(5t)th) B(s¢)

Does TD(0) converge on a single trajectory, and if so, what does it converge
to? How does the choice of feature vectors impact performance?
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Matrix representation

Feature matrix and reward vector: suppose S is finite with size S,

o) r(1)
_ T_ $(2)" Sxd _ r(2) s
@ = [6(1), 6(2).. ... 6(5) Dl ersd = | e,
o(5)" r(9)

where we assume ® is of full column rank.

Value function approximation: the value function is approximated as

Vi = ®w = [6(1), 0(2),...,6(S)] w € span(®).

Assumptions: the feature maps are bounded:

[o(s)ll2 <1 Vs€S
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The TD(0) update rule in matrix form

The update rule of TD(0) can be written as
W1 = wy — o (Agwy — by)
where

A = d(se) (9(50) — 70(s011)) | € RIXY,
by = ¢(St)Tt S Rd.

What is the fixed point of TD(0)? \

Intuition: If we let w;11 = wy, then TD(0) should approximately solve the
“average” version of this equation:

At’LUt ~ bt.
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Stochastic approximation view of TD(0)

State stationary distribution i of the Markov chain:

and u(s) >0 for all s € S.

Population version: averaging A; and b; over u:
EgonlAl] =@"D,(I —yP™)® := A € RT*
Egmplbt) = @' D,r:=b € RY

TD(0) applies stochastic approximation to solve the linear system of

equations:
Aw =b.

— but what is this, really?
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Best linear function approximation to V/"?

V7T

*

I

1

I

[ ]
I, (V™)

A natural projection criteria is span(®) {5 Du
. x 2
IL,(V™) = arg min » _ u(s) (V7(s) = ¢(s) "w)
sES

= arg min ||V™ — <1>w||i,
z=dw
where we weigh the importance of different states by u.
e The solution is

,(V*")=®(@®'D,®)'®"D, V",
=3

where X is the covariance w.r.t. the features weighted by pu:

Y= @TD;LQ) = ]ESNIL [¢(5)¢(5)T} :
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Projected Bellman equation

In TD(0), the target is the one-step look-ahead of V,, = dw:

T (Pw) =r +yP"dw

Project this back to span(®):
(1
4
1

min |77 (Pw) — @w\\i

Projected Bellman equation

dw =11, 7T (dw)

where I1,,(v) = argmin, ¢ g, ||z — v||2.

16



Fixed-point of projected Bellman equation

The fixed-point of projected Bellman equation satisfies:

w=(®"D,®)"'®"D,(r +yP"dw),

(®"D,®)w=®" D, (r + yP"dw)
®'D,(I-~vP")ow=a"D,r
N—_——
=:A =:b

— TD(0) applies stochastic approximation to solve this!
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Asymptotic convergence

Theorem 1 ([Tsitsiklis and Van Roy, 1997])

TD converges to the fixed point w* of the projected Bellman equation

dw =11, 7 (Pw)

2
w

oo o0
g oy =00 and E a? < oo.
t=0 t=0

where I1,,(v) = argmin, c4,, ||z — v|

as long

In addition,

™ 1 ™ ™
Vo = V7l = Gy V" = V7l
N——— N———

TD error approx. error

e asymptotic convergence

e approximation error
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Proof

1
Vigr = V™|, < —— |[II,VT = V7|,
[ Iy < 1= 11,, I
TD error approx. error
Proof:
[Pw® = V7,

< ||(I)ul* — HMVWHM + ||HMV7r — V’THH (triangle inequality)
< LT (Qw*) = V™|l + [[ILVT = VT,
< IT(@w™) = V7| + [TLVT = V7|,
< IT(@w*) =TVl + ML VT = V7T,
<A @w = VT, + VT = VT,

(fixed point)
(nonexpansiveness of II,,)
(Bellman equation)

(Bellman contraction)
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Finite-time convergence of TD(0) with LFA

T
i _ 1
Polyak-Ruppert averaging: wr = T ;wl

Theorem 2

Under i.i.d. data, consider any 0 < § <1, and 0 < e < max{l, ||w*|s}.
There exists some universal constant C' > 0 such that

[wr —w*|ls <e

with probability at least 1 — §, provided that the sample size exceeds

T > o maxs $(s) T2 6(s)) (1 + [[w*|[3,) log(d/5)
(1—7v)%

Interpretation: when ||w*||% > 1, e-accuracy as soon as

"LHU’*”% Amax ()
T> — "o h = ———=,
R T—mpe where & N (%)
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Extensions



Applying TD(0) to on-policy control

SARSA with linear function approximation:

e Approximate the on-policy Q-function with

Q(s,a;w) = P(s,a) v,

e Policy evaluation: apply TD(0) to update the weight

Vp1 6 v+ a (e + (i1, ar) o — (se, an) Tve) (s, ar)

e Policy improvement: e-greedy policy improvement.
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Least-squares TD (LSTD)

[Bradtke and Barto, 1996]: Given a collection of training data
(56, V™ (s)),  t=0,...,T—1

We can also instead minimize the batch loss:

T-1

Jw) =" (V7(se) — o) w)”

t=0

with the hope this leads to estimates with lower variance.

Step 1: Setting V,,J(w) = 0, we have

~

(V™ (s¢) — (50) Tw) d(s¢) = 0

~
Il
o
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Solution to LSTD

Step 2: Replace V™ (s;) by the target r; + y¢(s;11) T w to obtain

T—-1
D (re 4+ 7(se41) "w — ¢(se) "w) é(se) = 0.
t=0
T-1 —L o
— w= ( P(st)(P(se) — ’Y¢(St+1))T> (Z Tt¢(5t)> :
t=0 t=0

e Recall

Ap = @(se)(o(se) — 7417(5t+1))T eR™ by = ¢(sy)ry € R

e Aggregate the stochastic equations

Tl T-1
A= Ay = d(s) (D(s) — Y (5041))
t=0 t=0
T-1 T-1
b= by = d(s¢)r(sy) = w=A""p
t=0 t=0
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LSTD vs TD

Tl T—1
A= Z A= B(st) (¢(5t) - 7¢(5t+1))
t=0 t=0
T—1 T—1
/l; = Z bt = ¢(St)Tt — w = A\_llg
t=0 t=0

e Can be solved by direct calculation, or TD with experience replay.
e More sample efficient than TD.

o Computationally more expensive than TD, but can be made relatively
efficient via recursive calculation by applying rank-one updates.
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Beyond linear function approximation

Objective function:

Hw) = L [(V7(0) - V(5w

=:J(s;w)
where V(s;w) is a differentiable function approximator.
e Given access to V7 (s), the stochastic gradient is evaluated as

Vwd(s;w) = (VT (s) = V(s;w)) Vi, V(s;w).

approx. error

e Update the weight w via
w<—w—aVyJ(siw) =w+ a(VT(s) = V(s;w)) Vi,V (s;w),

where « is the learning rate.
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TD-Gammon

— [Tesauro, 1995]

JUMO L Z € ¥ SO LB 6 OFLLZHCHYLSH OLLLBL 610Z IZEZET YT SZ A

o Value network: three-layer neural network
o Self-play: millions of games played against itself
e Beat the best human player of backgammon at the time
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