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Abstract

As IC technologies scale to finer feature sizes, it becomes increasingly
difficult to control the relative process variations. The increasing fluc-
tuations in manufacturing processes have introduced unavoidable and
significant uncertainty in circuit performance; hence ensuring manufac-
turability has been identified as one of the top priorities of today’s IC
design problems. In this paper, we review various statistical methodolo-
gies that have been recently developed to model, analyze, and optimize
performance variations at both transistor level and system level. The
following topics will be discussed in detail: sources of process varia-
tions, variation characterization and modeling, Monte Carlo analysis,
response surface modeling, statistical timing and leakage analysis, prob-
ability distribution extraction, parametric yield estimation and robust
IC optimization. These techniques provide the necessary CAD infras-
tructure that facilitates the bold move from deterministic, corner-based
IC design toward statistical and probabilistic design.



1
Introduction

As integrated circuit (IC) technologies continue shrinking to nanoscale,
there is increasing uncertainty in manufacturing process which makes it
continually more challenging to create a reliable, robust design that will
work properly under all manufacturing fluctuations. Large-scale process
variations have already become critical and can significantly impact
circuit performance even for today’s technologies [14, 72, 73, 100].
Figure 1.1 shows the relative process variations (3σ/mean) predicted
by the International Technology Roadmap for Semiconductors (ITRS)
[100]. These large-scale variations introduce numerous uncertainties in
circuit behavior and make it more difficult than ever to achieve a robust
IC design.

In addition, when we consider some of the promising new device
structures (e.g., carbon nano-tube [8, 34], FinFET [20], etc.) that have
been recently proposed to maintain the aggressive pace of IC technology
scaling, it is apparent that applying them to high-volume production
will be a challenging problem due to the manufacturing uncertainty, or
even their likelihood of failure. While it has already become extremely
difficult to reliably manufacture nano-scale devices and achieve high
product yield (defined as the proportion of the manufactured chips
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Fig. 1.1 Relative process variations (3σ/mean) predicted by [100].

that function correctly) with today’s technologies, it would be almost
impossible to do so affordably with tomorrow’s technologies using exist-
ing deterministic design methodologies. For this reason, a paradigm
shift in IC design is required to simultaneously improve circuit perfor-
mance and product yield when using manufacturing technologies that
present significant uncertainty.

The yield loss in a manufacturing process can be classified into two
broad categories: catastrophic (due to physical and structural defects,
e.g., open, short, etc.) and parametric (due to parametric variations
in process parameters, e.g., VTH, TOX, etc.). As process variations
become relatively large due to technology scaling, parametric yield loss
is becoming increasingly significant at 90 nm technologies and beyond.
Therefore, we focus on the parametric yield problem in this paper.
We will review a number of recently-developed techniques that handle
large-scale process variations at both transistor and system levels to
facilitate affordable statistical integrated circuit design. Especially, we
will focus on the following two questions:

• When should process variations be considered? Ideally, we
want to take into account process variations in the earliest
design stage. However, this strategy may not be necessary
and/or efficient in practice. During early-stage system-level
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design, many simplified models must be used to make the
large-scale design problem tractable. The errors of these
system-level models may be comparable to, or even larger
than, the uncertainties caused by process variations. In such
cases, it is not meaningful to model and analyze process
variations at system level. As the design moves from system
level down to circuit level, more accurate circuit-level mod-
els become available. We should start to consider process
variations at the stage where circuit models are sufficiently
accurate and process variations become the dominant uncer-
tainties that impact performance.

• How should process variations be considered? For example,
the simplest way to model process variations is to define a
number of process corners. That is, every process parameter
is assigned with a lower bound and an upper bound, and the
best-case and worst-case circuit performances are computed
by enumerating all possible combinations of the extreme
values of process parameters. The aforementioned corner
model is simple; however, such a corner-based approach may
result in large error, since it completely ignores the corre-
lation among different process parameters. In addition, it is
not guaranteed that the best/worst-case performance always
occurs at one of these corners. An alternative approach to
model process variations is to use statistical device models
where process parameters are modeled as random variables.
(More details on statistical device models can be found in
Chapter 2.) The statistical device model is much more accu-
rate, but also expensive, than the traditional corner model.

One of the major objectives of this paper is to review and compare
different statistical IC analysis and optimization techniques, and ana-
lyze their trade-offs for practical industrial applications. The following
topics will be covered in this paper:

• Sources of process variations and their models. We will
briefly review both front-end of line (FEOL) variations and
back-end of line (BEOL) variations in Chapter 2. Several
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techniques for variation characterization and modeling will
be presented for both device-level and chip-level applications.

• Transistor-level statistical methodologies. In Chapter 3,
we will discuss and compare a number of transistor-
level statistical modeling, analysis and optimization tech-
niques. In particular, the following topics will be covered:
Monte Carlo analysis, response surface modeling, proba-
bility distribution extraction, parametric yield estimation,
and robust transistor-level optimization. Several recently-
developed methodologies, including projection-based per-
formance modeling (PROBE) and asymptotic probability
extraction (APEX), will be described in detail.

• System-level statistical methodologies. Most system-level sta-
tistical analysis and optimization techniques utilize a hierar-
chical flow to partition the entire system into multiple small
blocks such that the large-size problem becomes tractable.
In Chapter 4, we will discuss a number of system-level sta-
tistical methodologies that have been recently proposed. In
particular, we will focus on the statistical timing and leakage
problems for large-scale digital systems.

Finally, we will conclude and propose several possible areas for
future research in Chapter 5.



2
Process Variations

Process variations are the deviations from the intended or designed
values for the structural or electrical parameters of concern. In this
paper, we focus on the parametric variations due to the continuously
varying structural or electrical parameters. For modern semiconductor
manufacturing processes, transistors and other active devices are first
fabricated on top of semiconductor substrate. After that, metal layers
are deposited to connect transistors and supply power. Based on the
manufacturing steps, parametric variations can be classified into two
broad categories: front-end of line (FEOL) variations for devices and
back-end of line (BEOL) variations for interconnects. In this chapter,
we briefly review the sources of these variations and their models.

2.1 Front-End of Line (FEOL) Variations

FEOL variations mainly refer to the variations at device level. The
major sources of FOEL variations consist of transistor gate length and
gate width variations, gate oxide thickness variations, doping-related
variations, etc. After transistors are fabricated, these variations can
be observed by measuring the corresponding device characteristics,
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including drain-source current (IDS), threshold voltage (VTH), gate
leakage current (IGate), etc. For example, poly critical dimension (CD)
variations can change IDS, and gate oxide thickness variations and
doping-related variations can change VTH.

In nano-scale IC technologies, transistor gate length, or poly crit-
ical dimension, can significantly vary due to its small feature size.
The sources of CD variations typically include exposure system varia-
tions, mask errors, and resist effects. Exposure system variations may
have optical, mechanical or illuminative explanations [108]. Optical
performance (e.g., flare) can introduce non-uniform exposure dose.
Mechanical performance (e.g., vibrations during reticle scanning and/or
wafer scanning) can cause focus variations. Illumination performance
is mainly related to the polarization control of the laser.

As shown in Figure 2.1, mask errors can be puncture, burr, blotch,
mask bias, etc. [118] Since mask errors affect all the dies within the
same mask, the variations caused by mask errors are systematic. Fur-
thermore, regions within a design with relatively low aerial-image con-
trast will be subject to larger amplification of mask errors.

Resist effects result in line edge roughness (LER) [7], as shown in
Figure 2.2. LER has caused little worry in the past since the critical
dimensions of MOSFETs were orders of magnitude larger than the
roughness. However, as the aggressive technology scaling moves into
nanometer regime, LER does not scale accordingly and becomes an
increasingly large fraction of the gate length.

Along with gate length, gate width also shows substantial varia-
tions. Since many transistors in a practical design typically have much

Fig. 2.1 Examples of mask error (showing puncture, burr, blotch, and mask bias).
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Fig. 2.2 A typical LER effect on poly.

bigger gate widths than their gate lengths, gate width variations are
not as dominant as gate length variations. However, for minimal-width
transistors, gate width variations can significantly impact transistor
performance.

Part of the transistor gate width variations comes from shallow
trench isolation (STI) polish [35]. STI is a method used for electrical
isolation of microstructures during IC manufacturing. It is a replace-
ment of the old Local Oxidation of Silicon (LOCOS) for technologies
beyond 0.35µm. STI uses a nitride mask to protect transistor regions
and expose isolation regions. It etches trenches into a wafer, and then
fills the trenches with oxide. Afterwards, it uses chemical mechanical
polishing (CMP) to polish away any excess oxide. During the etching
and filling step, some parts of the device area might be consumed (as
shown in Figure 2.3) and, therefore, the effective width of the poly
becomes smaller. This effect is especially significant for narrow-width
transistors.

Another source of gate width variations is from the rounding effect
due to patterning limitations, as shown in Figure 2.4. Rounding affects
both transistor gate length and gate width. In Figure 2.4, the effective
gate width for the left-most transistor is increased by the rounding
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Fig. 2.3 Top view of shallow trench isolation. (a) Top view of the drawn poly. (b) Right
edge of the ploy where part of its area is consumed by the etching and filling step.

Fig. 2.4 Example of rounding effect.

effect at diffusion. Meanwhile, the effective gate length is increased by
the rounding effect at poly for the right-most transistor. To mitigate
the problem, strict design rules must be applied so that the rounding
effect can be minimized.

Threshold voltage is another important device parameter that
exhibits significant variations. Threshold voltage variations consist of
two major components: (1) die-to-die variations and (2) random within-
die variations. The die-to-die variations mainly come from wafer-
level non-uniformity (e.g., non-uniform temperature distribution during
thermal oxidation). On the other hand, the random within-die varia-
tions are mainly caused by random channel dopant fluctuations and
poly dopant fluctuations. In today’s leading-edge manufacturing tech-
nologies, there are only about 500 dopant atoms in one MOSFET chan-
nel. The fluctuation of the number of dopant atoms affects the threshold
voltage of each device independently, and the resulting threshold volt-
age variation can be approximated as a zero-mean Normal distribution
whose standard deviation is inversely proportional to the square root
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of the effective gate width and the effective gate length [65, 84, 111]:

σ
(
∆V Random

TH

)
∼ 1√

WEff · LEff
, (2.1)

where WEff and LEff are the effective gate width and length,
respectively.

2.2 Back-End of Line (BEOL) Variations

BEOL variations refer to the variations of metal interconnects. For
example, metal width, metal thickness, and inter layer dielectric can
have both systematic and random variations. Subsequently, the electri-
cal parameters of interconnects including both resistance and capaci-
tance exhibit corresponding variability.

At 90 nm technology node, metal thickness variations can be up to
30%∼40% of the nominal thickness. Such large-scale variations can sig-
nificantly impact the resistance and capacitance of a wire and lead to
severe timing and/or signal integrity issues. Metal thickness variations
depend on wire width and metal density, and have short range inter-
actions [82]. Thickness variations are influenced by process maturity,
location of the metal layer in process stack and other process operating
conditions. One important source of metal thickness variations is the
copper loss during chemical mechanical polishing (CMP). Such copper
loss is a function of metal pattern density (erosion) and metal width
(dishing) as shown in Figure 2.5.
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Fig. 2.5 Metal thickness variations due to chemical mechanical polishing. (a) Ideal case
after copper CMP. (b) Realistic case after copper CMP.
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Fig. 2.6 ILD thickness variations due to chemical mechanical polishing. (a) ILD thickness
after oxide deposition but before oxide CMP. (b) ILD thickness after oxide CMP.

In addition to metal thickness, inter-layer dielectric (ILD) thick-
ness is another important process parameter that varies significantly
in nano-scale technologies. ILD is the dielectric that separates two
adjacent metal layers and it strongly impacts the parasitic capaci-
tance of metal interconnects. ILD thickness variations come from the
fluctuations of the oxide CMP polishing rate that are influenced by
the lower-layer metal density [110]. It can be modeled as a function of
the underlying metal pattern density and the pad planarization length,
as shown in Figure 2.6.

The third major component of BEOL variations is the metal
width/spacing variation. Metal width/spacing variations are primar-
ily due to lithography effects. The width variation of a critical wire
segment (also known as selective process biasing) is primarily deter-
mined by the metal width and the spacing to its neighbors. Process
engineers typically measure width variations in silicon and create a
two-dimensional table to model width variations as a function of
metal width and spacing. This table is typically incorporated into the
process-technology file that can be further used by the capacitance-
and-resistance extraction engine to account for the effect of width
variations.
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2.3 Variation Characterization

Modern IC manufacturing typically involves hundreds of, or even
thousands of, steps, and, therefore, the true causes of manufacturing
variations are highly complicated. For example, they can be caused by
fluctuations in equipment conditions, fluctuations in wafers, consum-
able material characteristics, layout and topography interactions with
the process, and their combinations. Generally, process variations man-
ifest themselves in both temporal and spatial manner. In this chapter,
we classify process variations into different categories based on their
statistical or geometrical properties. We also briefly describe the test
structures for variation characterization. Due to the difference in their
underlying nature, variations in different categories typically require
different test structures to characterize them.

2.3.1 Statistical Categorization

From statistical point of view, process variations can be classified into
two broad categories: systematic variations and random variations.
Systematic variations refer to the variation components that can be
attributed to a specific deterministic cause. It is usually dependent on
the component position in the die and its surrounding properties such
as metal density. For example, gate length and width variations contain
systematic components that mainly come from the fluctuations of focus
and exposure of the lithography system for different layout patterns.
Part of metal thickness variations is caused by CMP and, therefore, is
systematic.

Systematic variations are deterministic and can be predicted by
process simulations (e.g., lithograph simulation). However, accurately
predicting systematic variations may not be feasible for many practical
designs because of the following two reasons. First, accurate process
simulations can be extremely expensive and may not be applicable
to large-size circuits. Second, a lot of design information may not be
available at the earlier design stages, further limiting the accuracy of
process simulation. For example, placement and routing information is
not available at schematic design phase and, therefore, it is difficult
to predict systematic variations for schematic design. From this point
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of view, systematic variations can be viewed as the repeatable but
unpredictable modeling error due to the lack of computational resource
and/or design information.

On the other hand, random variations refer to the variation com-
ponents that correspond to unrepeatable uncertainties due to insuffi-
cient process control and intrinsic fluctuations. An important example
here is the threshold voltage variation caused by doping fluctuation. In
modern IC technologies, there are only about a few hundred dopant
atoms in one MOSFET channel. It would be extremely difficult, if not
impossible, to precisely count the dopant atoms during manufacturing.
Therefore, the fluctuations of the number of dopant atoms introduce
random threshold voltage variations for MOSFETs.

As IC technologies are scaled to smaller feature sizes in the future,
both systematic and random variations may further increase. To reduce
systematic variations, IC designers start to utilize restricted layout pat-
terns for both digital circuits [48, 86] and analog circuits [121, 123].
Random mismatches, however, can hardly be controlled by circuit lay-
out. As feature sizes become smaller and each transistor contains fewer
atoms in its gate channel, random mismatches are expected to become
the dominant variation component in 65 nm technologies and beyond.

2.3.2 Geometrical Categorization

According to the spatial scale of their manifestation, process varia-
tions can be classified into four different levels: lot-to-lot, wafer-to-wafer
(within-lot), die-to-die (within-wafer), and within-die [109]. The first
three variations are also called the inter-die variations: they model
the common/average variations across the die. The within-die varia-
tions are also called the intra-die variations or on-chip variations: they
model the individual, but spatially correlated, local variations within
the same die. Intra-die variations further consist of two different compo-
nents: correlated variations and independent mismatches. The spatial
correlation of intra-die variations is distance-dependent. Such a spatial
correlation occurs mainly because systematic variations are modeled as
random variables [109]. Figure 2.7 summarizes the geometrical catego-
rization of process variations.
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Fig. 2.7 Categorization of process variations according to geometrical scale.

2.3.3 Test Structures for Variation Characterization

Device parameters (e.g., gate length, gate width, etc.) can be directly
measured from the chip. However, such measurement is typically
expensive and sometimes even impossible. To avoid directly physi-
cal/mechanical measurement, various test structures are designed for
process characterization. These test structures can translate the device
parameters of interest to a set of electrical characteristics (e.g., ring
oscillator frequency, I–V curve) that are easy to measure.

Ring oscillator is an important test structure that has been widely
used to characterize inter-die variations and long-range correlated intra-
die variations [11, 77, 79, 80]. The performance of interest of a ring oscil-
lator is its oscillation frequency. The digital output of a ring oscillator
can be easily delivered out of chip and its frequency can be accurately
measured without any distortion. For this reason, ring oscillators can
be easily distributed at both wafer level and die level. The frequency
information of different ring oscillators is then collected to extract the
spatial map of process variations.

Most ring oscillators, however, are not sensitive to random mis-
matches, since the random per-transistor variations can be averaged
out when cascading a large number of inverter blocks to create a ring
oscillator. Recently, transistor array has been proposed as a promis-
ing approach for mismatch characterization [75]. The basic idea here
is to have a great number of regular transistors and measure the I–V
curve for each of them. A major design challenge for transistor array
is to build high-performance analog circuit to accurately deliver analog
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voltage and current signals out of chip for measurement through a lim-
ited number of I/O pins.

2.4 Variation Modeling

To facilitate statistical analysis and optimization of integrated circuits,
variation models must be carefully created to abstract and approximate
the physical phenomenon during IC manufacturing. The accuracy of
these models directly impact the quality of the final statistical anal-
ysis and optimization results at chip level. In this chapter, we briefly
review the statistical models at both device level and chip level. We do
not explicitly distinguish systematic and random variations and statis-
tically model both of them as random variables. It should be noted,
however, that systematic variations are not truly random. They are
modeled statistically, because accurately predicting their exact values
is not feasible due to the lack of computational resource and/or design
information.

2.4.1 Device-Level Variation Modeling

Commercial IC foundries started to incorporate manufacturing vari-
ation information into their device models long time ago. The early
variation-aware device models are mostly corner-based. Namely, in
addition to offering device models for nominal process conditions, addi-
tional models are provided for a number of process corners. Basic pro-
cess corners, for example, include FF (fast PMOS and fast NMOS), FS
(fast PMOS and slow NMOS), SF (slow PMOS and fast NMOS), and
SS (slow PMOS and slow NMOS).

While corner models have been widely used in the past, they suffer
from a few major limitations that become increasingly critical in nano-
scale technologies [71]. First, it is not guaranteed that the worst-case
performance always occurs at one of these corners. Different circuits
with different topologies and performance metrics typically show differ-
ent sensitivities with respect to process variations and, therefore, reach
the worst case at different process corners. In other words, the “realis-
tic” worst-case corner should be topology-dependent and performance-
dependent. Figure 2.8 shows the relative performance variations for an
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Fig. 2.8 Performance variations (normalized to [0, 1]) of an industrial voltage-controlled
oscillator design in a commercial 0.13µm CMOS process. (a) Center frequency. (b) Gain.
(c) Output voltage swing. (d) Power.

industrial voltage-controlled oscillator design in a commercial 0.13µm
CMOS process. The color maps in Figure 2.8 indicate the performance
sensitivities with respect to inter-die VTHP (threshold voltage of PMOS)
and VTHN (threshold voltage of NMOS) variations. Studying Figure 2.8,
one would notice that the performance gradients are completely differ-
ent for the four performance metrics of interest.

Second, corner models are typically created for inter-die varia-
tions only. Ignoring intra-die variations can result in either pessimistic
or erroneous results, depending on the circuit topology and perfor-
mance metric of interest. Figure 2.9(a) shows a simple digital path
that consists of several logic gates. Corner models assume that all gate
delays in this path are fully correlated and they reach the worst case
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(a)

(b)

Fig. 2.9 Ignoring intra-die variations can result in either pessimistic or erroneous results.
(a) A simple digital path (pessimistic results). (b) A simple sequential digital circuit with
D flip–flops (erroneous results).

simultaneously, thereby yielding pessimistic results. Such pessimistic
results may lead to unnecessary over-design which implies large chip
area and/or high power consumption for digital circuits.

While Figure 2.9(a) gives an example of pessimism, Figure 2.9(b)
shows another practical case where corner models yield erroneous
results if they are not correctly used. In this example, the clock path
delay (DCLK) must be greater than the data path delay (DDATA) to
avoid setup timing failure. Since DCLK and DDATA are not fully cor-
related due to intra-die variations, simulating both DCLK and DDATA

at the same corner (e.g., FF or SS) incorrectly assumes that DCLK

and DDATA perfectly track each other (i.e., simultaneously increase
or decrease), thereby yielding erroneous results. In this example, the
true worst case occurs when the clock path is fast and the data path
is slow.

In addition to the digital circuit examples in Figure 2.9, intra-die
variations are even more important for analog circuits. Many basic
analog building blocks (e.g., differential pair, current mirror, switched-
capacitor amplifier, etc.) rely on device matching to achieve the cor-
rect analog functionality. In other words, these circuits are designed to
be robust to inter-die variations, but they are extremely sensitive to
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intra-die variations (particularly, device mismatches). In these cases,
intra-die variations must be carefully considered for worst-case perfor-
mance analysis.

There have been various ways to improve corner models, e.g., replac-
ing manufacturer-defined corners by application-specific corners [101]
(also called user-defined corners). The basic idea here is to look at the
performance change with respect to process variations to determine the
specific location in the random variation space that yields the worst-
case performance value, as shown in Figure 2.10. In this case, intra-die
variations can also be incorporated to determine the worst-case cor-
ner. Considering intra-die variations for corner extraction, however,
will increase the problem complexity, as additional random variables
must be utilized to model intra-die variations, thereby resulting in a
higher-dimensional variation space.

Given a fixed circuit topology and a number of pre-defined perfor-
mance metrics, the aforementioned application-specific corners are not
fixed; instead, they depend on the design variable values of the circuit
(e.g., transistor sizes, bias current, etc.). In practice, a great number
of corners may be required to capture the worst-case performance over
a reasonable range of design variable values. For example, it is not
uncommon to end up with more than 1000 application-specific cor-
ners for an industrial mixed-signal design in 65 nm technologies. Such

VTHN

V∆ THP

Performance gradient and 
application-specific corer

Fig. 2.10 Extract application-specific worst-case corner based on performance gradient.
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vary ε1 dist = gauss std = 1
vary ε2 dist = gauss std = 1

model NMOS b∼4
+ type = n
+ tox = 4e-9 + 1e-10*ε ε1 – 1.3e-10* 2 + ...
+ vth0 = 0.6 + 0.24*ε ε1 + 0.3* 2 + ...
+ ...

Fig. 2.11 A simple example of statistical device model where ε1 and ε2 are used to model
inter-die variations.

a large number of corners can result in expensive simulation cost during
verification.

To address the fundamental limitations of corner models, many
commercial IC foundries start to provide statistical device models [104].
In these models, a number of random variables are defined to capture
both inter-die and intra-die variations and the device model param-
eters are represented as functions of these random variables. Taking
Figure 2.11 as an example, two independent random variables ε1 and
ε2 are extracted by principal component analysis (more details in Sec-
tion 2.4.3) to model the correlated inter-die variations of TOX and VTH.
It should be noted that an industrial statistical device model can be
much more complicated than the simple example in Figure 2.11, as
a great number of pre-defined random variables must be utilized to
capture all process variations with spatial correlation.

2.4.2 Chip-Level Correlation Modeling

As shown in Figure 2.7, process variations consist of three major com-
ponents: inter-die variations, on-chip long-range correlated variations,
and independent device mismatches. Good statistical device models
should accurately capture all these three components. At chip level,
the long-range correlated variations are most difficult to model. The
challenging problem here is how to use the silicon data measured by
test structures to accurately extract the spatial correlation for the entire
chip that consists of millions of transistors. To solve this problem, the
following two questions must be properly addressed: (1) What is the



350 Process Variations

correct correlation function that is distance-dependent? (2) How can
we efficiently and robustly handle the large problem size?

One useful approach for modeling correlated intra-die variations is
to partition the entire die into a number of grids [18], as shown in
Figure 2.12. The intra-die variations in the same grid are fully cor-
related, while those in close (far-away) grids are strongly (weakly)
correlated. Taking Figure 2.12 as an example, the gates a and b are
in the same grid and, therefore, their process parameters are fully
correlated. The gates a and c lie in two neighboring grids and their
process parameters are strongly correlated. The gates a and d sit
far away from each other and their process parameters are weekly
correlated.

The authors in [2] proposed another hierarchical approach for mod-
eling correlated intra-die variations. The key idea is to hierarchically
divide the entire chip into a number of regions using a multi-level quad-
tree partition, as shown in Figure 2.13. At each level i, the die area
is partitioned into 2i by 2i rectangles. The 0th level, for example,
contains one rectangle only that covers the entire chip. An indepen-
dent random variable εij is assigned to each region (i, j) to model
a portion of the total intra-die variations. The overall variation of
a gate k is expressed as the sum of the individual components εij

aa

bb

cc

dd

Fig. 2.12 Grid-based model for spatial correlation.
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Fig. 2.13 Hierarchical model for spatial correlation.

over all levels of the regions that overlap with the location of the
gate k.

The techniques proposed in [2] and [18] have been successfully
applied to many practical problems. Since both techniques rely on
partition, the trade-off between model accuracy and model com-
plexity can be easily controlled by the number of total partitions.
However, such partition-based approaches suffer from one major limi-
tation: the approximated correlation function is not continuous in dis-
tance. Discontinuity will appear at the boundary of every individual
region.

Most recently, several techniques have been proposed to address the
aforementioned discontinuity problem. The authors in [119] proposed
an efficient numerical algorithm to extract the spatial correlation func-
tion based on measurement data. The correlation extraction is formu-
lated as a nonlinear optimization problem that can be robustly and
efficiently solved by a projection-based algorithm. Bhardwaj et al. pro-
posed an alternative algorithm to address the similar problem [10]. The
algorithm proposed in [10] is based on the Karhunen–Loève expansion
borrowed from stochastic process theory. It attempts to find a compact
set of nonlinear basis functions to approximate the two-dimensional
spatial correlation.
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2.4.3 Principal Component Analysis

While many physical variations (e.g., ∆TOX, ∆VTH, etc.) are correlated,
most statistical analysis algorithms can handle independent random
variations much more easily than correlated variations. For example, it
is easy to draw independent sampling points from a random number
generator for Monte Carlo analysis (more details in Chapter 3). If one
wants to create correlated random samples, the computational cost
will be significantly increased [92]. For this reason, there is a need
to mathematically represent correlated physical variations by a set of
independent random variables. Principal component analysis (PCA)
[98] is a statistical method that finds a compact set of independent
factors to represent a multivariate Normal distribution. The random
variables from a multivariate Normal distribution are also called jointly
Normal.

Given N process parameters X = [x1,x2, . . . ,xN ]T , the process vari-
ation ∆X = X − X0, where X0 is the mean value of X, is often
approximated as a zero-mean multivariate Normal distribution. The
correlation of ∆X can be represented by a symmetric, positive semi-
definite covariance matrix R. PCA decomposes R as

R = V · Σ · V T , (2.2)

where Σ = diag(λ1,λ2, . . . ,λN ) contains the eigenvalues of R, and
V = [V1,V2, . . . ,VN ] contains the corresponding eigenvectors that are
orthonormal, i.e., V TV = I (I is the identity matrix). Based on Σ
and V , PCA defines a set of new random variables:

∆Y = Σ−0.5 · V T · ∆X. (2.3)

These new random variables in ∆Y are called the principal com-
ponents or factors. It is easy to verify that all elements in ∆Y =
[∆y1,∆y2, . . . ,∆yN ]T are uncorrelated and satisfy the standard Nor-
mal distribution N(0,1) (i.e., zero mean and unit standard deviation):

E
(
∆Y · ∆Y T

)
= E

(
Σ−0.5 · V T · ∆X · ∆XT · V · Σ−0.5)

= Σ−0.5 · V T · E (∆X · ∆XT
) · V · Σ−0.5

= Σ−0.5 · V T · V · Σ · V T · V · Σ−0.5 = I, (2.4)
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where E(•) stands for the expected value operator. In addition, jointly
Normal random variables are mutually independent if and only if they
are uncorrelated [98]. Therefore, Equation (2.4) also implies that all
elements in ∆Y = [∆y1,∆y2, . . . ,∆yN ]T are mutually independent.

The essence of PCA can be interpreted as a coordinate rotation of
the space defined by the original random variables. In addition, if the
magnitudes of the eigenvalues {λi} decrease quickly, it is possible to use
a small number of random variables, i.e., a small subset of principal
components, to approximate the original N -dimensional space. More
details of PCA can be found in [98].

2.4.4 Non-Normal Process Variations

In most practical cases, process parameters are modeled as a multi-
variate Normal distribution, which allows us to apply many mathe-
matical techniques to simplify the statistical analysis problem. PCA,
for example, can decompose correlated jointly Normal variables into
independent ones. If the random variables are non-Normal, mutual
independence must be checked by high-order moments and, therefore,
PCA cannot be applied to such cases.

There are a few cases where process variations are non-Normal, as
observed from the measurement data. For example, systematic varia-
tions often exhibit non-Normal distributions, since they are not truly
random. In these cases, if the non-Normal variations are mutually inde-
pendent, they can be either directly incorporated into statistical anal-
ysis engine (e.g., for Monte Carlo analysis) or converted to Normal
distributions by a nonlinear transform. Next, we briefly describe the
nonlinear transform that converts independent non-Normal distribu-
tions to independent Normal distributions.

Given a set of random variables ∆X = [∆x1,∆x2, . . . ,∆xN ]T , we
assume that all these random variables {∆xi; i = 1,2, . . . ,N} are non-
Normal and mutually independent. A set of one-dimensional functions
{∆yi = gi(∆xi); i = 1,2, . . . ,N} can be constructed to convert ∆X to
∆Y = [∆y1,∆y2, . . . ,∆yN ]T such that {∆yi; i = 1,2, . . . ,N} are Normal
[98]. The transform function gi(•) can be found via the following two
steps [98].
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First, the random variable ∆xi is converted to a uniform distribu-
tion ∆ui ∈ [0,1] by defining

∆ui = cdf∆xi(∆xi), (2.5)

where cdf∆xi(•) is the cumulative distribution function of ∆xi. Since
any cumulative distribution function is monotonic, we have

P (∆ui ≤ t) = P
[
∆xi ≤ cdf−1

∆xi
(t)
]
, (2.6)

where P (•) denotes the probability and cdf−1
∆xi

(•) stands for the inverse
function of cdf∆xi(•). Therefore, the cumulative distribution function
of ∆ui is equal to

cdf∆ui(t) = P (∆ui ≤ t) = P
[
∆xi ≤ cdf−1

∆xi
(t)
]

= cdf∆xi

[
cdf−1

∆xi
(t)
]

= t.

(2.7)
Equation (2.7) shows the fact that ∆ui is a uniform distribution.

Second, we convert the uniform distribution ∆ui to a standard Nor-
mal distribution ∆yi by defining

∆yi = cdf−1
N(0,1)(∆ui), (2.8)

where cdfN(0,1)(•) is the cumulative distribution function of standard
Normal distribution. Given the uniform distribution ∆ui, the follow-
ing equation proves why ∆yi defined in (2.8) is a standard Normal
distribution

cdf∆yi(t) = P (∆yi ≤ t) = P
[
∆ui ≤ cdfN(0,1)(t)

]
= cdfN(0,1)(t). (2.9)

Since the random variables {∆xi; i = 1,2, . . . ,N} are mutually inde-
pendent, the random variables {∆yi; i = 1,2, . . . ,N} are also mutually
independent and their joint probability density function is given by

pdf∆Y (∆y1,∆y2, . . . ,∆yN )

= pdf∆y1
(∆y1) · pdf∆y2

(∆y2) · · ·pdf∆yN
(∆yN ). (2.10)

It is easy to verify that the random variables in ∆Y constitute a mul-
tivariate Normal distribution [98].

The aforementioned nonlinear transform approach, however, is not
applicable to correlated non-Normal distributions. At first glance, the
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nonlinear transform approach seems still valid. The one-dimensional
nonlinear functions {∆yi = gi(∆xi); i = 1,2, . . . ,N} can be constructed
to convert each non-Normal random variable ∆xi to a Normal variable
∆yi. Unfortunately, after the nonlinear transform is performed, the
random variables {∆yi; i = 1,2, . . . ,N} are not mutually independent
and their joint probability density function is not equal to the product
of the marginal probability density functions, i.e.,

pdf∆Y (∆y1,∆y2, . . . ,∆yN )

�= pdf∆y1
(∆y1) · pdf∆y2

(∆y2) · · ·pdf∆yN
(∆yN ). (2.11)

In this case, the random variables {∆yi; i = 1,2, . . . ,N} are not guar-
anteed to be a multivariate Normal distribution. In other words, even
if the random variables {∆yi; i = 1,2, . . . ,N} are marginally Normal,
they might not be jointly Normal [98]. This property can be understood
from the following example described in [98].

Consider two random variables ∆y1 and ∆y2, and their joint prob-
ability density function:

pdf∆Y (∆y1,∆y2) = pdf1(∆y1) · pdf2(∆y2)

·{1 + ρ · [2 · cdf1(∆y1) − 1]

· [2 · cdf2(∆y2) − 1]
}
, (2.12)

where |ρ| < 1, and pdf1(∆y1) and pdf2(∆y2) are two probability density
functions with respective cumulative distribution functions cdf1(∆y1)
and cdf2(∆y2). It is easy to verify that [98]

pdf∆Y (∆y1,∆y2) ≥ 0∫ +∞

−∞

∫ +∞

−∞
pdf∆Y (∆y1,∆y2) · d∆y1 · d∆y2 = 1.

(2.13)

Equation (2.13) shows that the function in (2.12) is a valid joint proba-
bility density function. In addition, directly integrating the joint prob-
ability density function yields [98]:∫ +∞

−∞
pdf∆Y (∆y1,∆y2) · d∆y2 = pdf1(∆y1)∫ +∞

−∞
pdf∆Y (∆y1,∆y2) · d∆y1 = pdf2(∆y2)

(2.14)
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implying that pdf1(∆y1) and pdf2(∆y2) in (2.12) are the marginal prob-
ability density functions of ∆y1 and ∆y2, respectively. In particular, let
pdf1(∆y1) and pdf2(∆y2) be Normal distributions. In this case, both
∆y1 and ∆y2 are marginally Normal; however, their joint probability
density function in (2.12) is not a multivariate Normal distribution.

Correlated non-Normal random variables must be characterized by
their joint probability density function, thereby making them extremely
difficult to handle in statistical analysis. Even Monte Carlo simula-
tion becomes impractical, if not impossible, in such cases, since it is
difficult to draw random samples from a general, multi-dimensional
joint probability density function [92, 94]. In addition, using corre-
lated non-Normal distributions also increases the difficulty of process
characterization, because extracting the multi-dimensional joint prob-
ability density function from silicon testing data is not trivial. For
these reasons, how to efficiently model and analyze correlated non-
Normal process variations remains an open topic in the IC design
community.

2.5 Manufacturing Yield

The large-scale process variations significantly impact circuit perfor-
mance in nano-scale technologies. From the product point of view, they
directly affect the manufacturing yield. Yield is defined as the propor-
tion of the manufactured chips that function correctly. As process vari-
ations become relatively large in 65 nm technologies and beyond, yield
becomes one of the top concerns for today’s integrated circuit design.
In this sub-section, we briefly review several important concepts related
to yield.

First of all, it is important to note that the yield of a specific prod-
uct manufactured with a specific technology is not static [61]. Yield
is typically low when a new process is initially developed. It must be
substantially improved before high-volume production is started. Oth-
erwise, the manufacturing cost would be extremely expensive or even
unaffordable. The yield improvement could be achieved via various tun-
ings by both design engineers and process engineers. Such a tuning
procedure is called yield learning, as shown in Figure 2.14.
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Fig. 2.14 Yield learning curve for a specific product manufactured with a specific technology.

The faults in a manufacturing process can be classified into two
broad categories: catastrophic faults (due to physical and structural
defects such as open, short, etc.) and parametric faults (due to para-
metric variations in process parameters such as VTH, TOX, etc.). Both
catastrophic faults and parametric faults play important roles in inte-
grated circuit manufacturing. In general, it is difficult to emphasize
one of them while completely ignoring the other. There are several
important observations of catastrophic and parametric faults for most
commercial manufacturing processes.

First, catastrophic faults are often critical at the initial stage when
a new technology node is developed. As the manufacturing technology
becomes mature, catastrophic faults can be significantly reduced and
parametric faults become increasingly important. Second, catastrophic
faults are most important for large-size circuits that consume large
silicon areas. For example, digital system-on-chip (SOC) designs and
memory circuits significantly suffer from catastrophic faults. Finally,
as process variations become relatively large due to technology scaling,
parametric faults are becoming increasingly crucial at 90 nm technolo-
gies and beyond.

In summary, the relative importance of catastrophic faults and para-
metric faults varies from time to time as manufacturing technologies
become more and more mature. It is also circuit-dependent and process-
dependent. Therefore, for a specific design, both catastrophic and para-
metric faults must be carefully studied for yield learning.
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Transistor-Level Statistical Methodologies

Transistor-level statistical analysis and optimization techniques focus
on a single circuit block consisting of a few hundred devices. A cir-
cuit block can be, for example, a standard library cell, an interconnect
wire, an analog amplifier, etc. Analyzing these circuit blocks involve
transistor-level simulation using SPICE-like engine (e.g., Cadence
SPECTRE, Synopsys HSPICE, etc.). For nano-scale IC technologies,
even though a circuit block is small, the corresponding statistical anal-
ysis and optimization problem is not trivial mainly because of the fol-
lowing reasons:

• Device models are extremely complex at 65 nm technolo-
gies and beyond. The state-of-the-art BSIM4 model contains
more than 20,000 lines of C code to describe the behavior
of a single MOS transistor! It, in turn, results in expen-
sive device model evaluation for transistor-level simulation.
In many practical applications, it is not uncommon that more
than 50% of the simulation time is consumed by device model
evaluation.

• Large-scale process variations must be characterized by com-
plex statistical models. A statistical device model typically

358
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contains a great number of random variables to capture
various device-level variations, thereby further increasing
device model complexity. For example, a commercial 65 nm
CMOS process may contain more than 300 independent
random variables to model inter-die variations. If device
mismatches are simultaneously considered, it will intro-
duce more than 10 additional random variables for every
transistor!

• Interconnect models become increasingly sophisticated. As
the continuous device scaling pushes operational frequency
to GHz region, a physical on-chip interconnect model can
consist of hundreds of (or even thousands of) RC elements.
In many high-speed applications (e.g., micro-processor pack-
age, high-speed data link, RF transceiver, etc.), parasitic
inductance starts to play an important role, which further
complicates both parasitic extraction and transistor-level
simulation.

In this chapter, we review various statistical techniques that
address the transistor-level analysis and optimization problem. Sev-
eral recently-developed methodologies, including projection-based per-
formance modeling (PROBE) and asymptotic probability extraction
(APEX), will be discussed in detail.

3.1 Monte Carlo Analysis

Monte Carlo analysis is an important technique for statistical circuit
analysis [92, 94]. It attempts to estimate the probability distribution
of the performance of interest (e.g., gain, bandwidth, power, etc.) via
three steps: (1) generating a set of random samples for process parame-
ters, (2) running transistor-level simulations and evaluating the perfor-
mance values at all sampling points, and (3) estimating the performance
distribution by bin-based histogram or advanced kernel smoothing
methods [102].

The relative cost of the aforementioned three steps is application-
dependent. In general, it is difficult to identify which one of these
steps dominates the overall computational time. For transistor-level
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Monte Carlo analysis, the second step is often the most time-consuming
part, since it involves a large number of expensive transistor-level
simulations.

The accuracy of Monte Carlo analysis depends on the number of
random samples. In practice, a huge number of sampling points are
required to achieve sufficient accuracy, which is one of the major lim-
itations of Monte Carlo analysis. Next, we will discuss this accuracy
issue in detail.

3.1.1 Accuracy of Monte Carlo Analysis

Monte Carlo analysis is a statistical sampling technique. Theoretically,
we cannot get identical results from two separate Monte Carlo simula-
tions. It, therefore, implies that Monte Carlo accuracy must be analyzed
by statistical methodologies. We will use the following simple example
to show such statistical analysis.

Assume that x is a random variable with standard Normal distribu-
tion (i.e., zero mean and unit variance) and we attempt to estimate its
mean value by Monte Carlo analysis. For this purpose, we randomly
pick up M sampling points {x1,x2, . . . ,xM} and estimate the mean
value by

µx =
1
M

·
M∑
i=1

xi, (3.1)

where µx is called a point estimator of the mean value [81].
Since {x1,x2, . . . ,xM} are drawn from a random number generator

that follows the probability distribution of x, all {x1,x2, . . . ,xM} are
standard Normal distributions. In addition, all {x1,x2, . . . ,xM} should
be mutually independent, if the random number generator is sufficiently
good, i.e., the period of its pseudo-random sequence is sufficiently large.
Given these two assumptions, we can theoretically calculate the first
two moments of µx

E(µx) = E

(
1
M

·
M∑
i=1

xi

)
=

1
M

·
M∑
i=1

E (xi) = 0 (3.2)
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E
(
µ2

x

)
= E


 1
M2 ·

(
M∑
i=1

xi

)2

 =

1
M2 ·

M∑
i=1

E
(
x2

i

)
=

1
M
. (3.3)

Equation (3.2) demonstrates that the expected value of µx is exactly
equal to the mean value of x. Therefore, the point estimator in (3.1)
is called an unbiased estimator [81]. The variance value in (3.3) has
a twofold meaning. First, given a finite value of M , the estimator µx

does not yield a deterministic value. In other words, we cannot get
identical results from two separate Monte Carlo simulations. Second, as
M increases, the variance in (3.3) decreases and, therefore, the accuracy
of Monte Carlo analysis is improved.

The accuracy of Monte Carlo analysis can be mathematically spec-
ified by a confidence interval [92]. The α-level confidence interval is
defined as an interval where the statistical measurement (e.g., the esti-
mator µx in the aforementioned example) falls corresponding to a given
probability α. For a fixed value of α, the α-level confidence interval
shrinks (meaning that Monte Carlo analysis becomes increasingly accu-
rate), as the number of random samples increases. However, due to the
statistical nature of Monte Carlo analysis, there is always a small prob-
ability (i.e., 1 − α) that the statistical measurement will fall outside the
confidence interval. From this point of view, even if a large number of
samples are used, Monte Carlo analysis may still (although unlikely)
yield a “wrong” result.

For a given accuracy specification defined by confidence interval,
we can calculate the required number of Monte Carlo sampling points
(i.e., M). In the aforementioned example, since all {x1,x2, . . . ,xM}
are Normal distributions, the estimator µx in (3.1) is a linear com-
bination of multiple Normal distributions and, therefore, is also Nor-
mal [81]. The 99.7%-level confidence interval is corresponding to
the ±3σ boundary of µx. If we require the 99.7%-level confidence
interval to be [−0.1,0.1], the required number of sampling points is
equal to

M ≥
(

3
0.1

)2

= 900. (3.4)



362 Transistor-Level Statistical Methodologies

If we require the 99.7%-level confidence interval to be [−0.01,0.01], the
required number of sampling points is equal to:

M ≥
(

3
0.01

)2

= 90,000. (3.5)

Studying (3.4) and (3.5), one would notice that Monte Carlo error
is only reduced by 10×, if the number of random sampling points is
increased by 100×. To achieve sufficient accuracy, a great number of
sampling points are required, which is one of the major limitations of
Monte Carlo analysis. In many practical problems, a typical selection
of the number of random samples is around 1,000 ∼ 10,000.

One major advantage of Monte Carlo analysis is that its accuracy
is independent of the underlying problem dimension (i.e., the number
of random variables in the stochastic system) [92, 94]. This property
implies that we do not have to increase the number of Monte Carlo
sampling points as problem dimension becomes increasingly large, e.g.,
when both inter-die variations and device mismatches must be simulta-
neously considered for statistical analysis. For this reason, Monte Carlo
analysis can be more attractive than other techniques (e.g., response
surface modeling methods) for large-dimension problems. A detailed
comparison between Monte Carlo analysis and other techniques will be
given in Section 3.2.4.

3.1.2 Latin Hypercube Sampling

As discussed in 3.1.1, Monte Carlo analysis often requires a large num-
ber of random sampling points, thereby resulting in expensive com-
putational cost. There are various techniques to control Monte Carlo
samples to reduce the overall analysis cost. Instead of directly draw-
ing random samples from a random number generator, these methods
attempt to create sampling points from a controlled random sequence
such that the estimation accuracy can be improved. Latin hypercube
sampling (LHS) [64, 83] is one of these fast Monte Carlo techniques
that we will discuss in detail in this sub-section.

The key idea of Latin hypercube sampling [64, 83] is to make sam-
pling point distribution close to the probability distribution function
of the random variable that we try to sample. In the one-dimensional
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Fig. 3.1 Five one-dimensional Latin hypercube samples for a single random variable x.

case where we attempt to generate M sampling points for a random
variable x, Latin hypercube sampling consists of two steps. First, the
cumulative distribution function cdfx(x) is evenly partitioned into M
regions. Second, a single sampling point is randomly selected in each
region. Figure 3.1 shows a simple example where five Latin hypercube
sampling points are created for the random variable x. In this exam-
ple, Latin hypercube sampling guarantees to select five sampling points
from five different regions and, therefore, it eliminates the possibility
that many sampling points come from the same small local region. Since
Latin hypercube sampling distributes the sampling points all over the
random space, it is more efficient than direct random sampling.

The efficacy of Latin hypercube sampling can be demonstrated by
the following simple example. Assume that x is a random variable with
standard Normal distribution (i.e., zero mean and unit variance) and
we want to estimate its mean value by (3.1) based on Monte Carlo
analysis. To compare Latin hypercube sampling with direct random
sampling, we estimate the mean value of x by both sampling schemes.
A number of experiments are conducted with different number of sam-
pling points (M = 10,100,1,000, and 10,000) such that we can study
the convergence rate of the error. In addition, given a fixed number of
sampling points (e.g., M = 10), 50 independent Monte Carlo analyses
are conducted to predict the probability distribution of the estimation
error.
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Fig. 3.2 Comparison of direct random sampling and Latin hypercube sampling. (a) Esti-
mated mean values from random samples. (b) Estimated mean values from Latin hypercube
samples.

Figure 3.2 shows the Monte Carlo analysis results and provides two
important observations. First, both sampling schemes yield smaller
error if a larger number of sampling points are utilized. Second, but
most importantly, Latin hypercube sampling consistently results in
smaller error (measured by the variance of the estimated mean value)
than direct random sampling in this example.

The aforementioned one-dimensional Latin hypercube sampling can
be easily extended to two-dimensional cases. Assume that we want to
generate M two-dimensional Latin hypercube samples for two inde-
pendent random variables x1 and x2. (Correlated Normal random vari-
ables can be decomposed to independent random variables by principal
component analysis.) We first create two independent one-dimensional
Latin hypercube sampling sets for x1 and x2, respectively. Each sam-
pling set consists of M samples. Next, we randomly combine the sam-
ples in these two sets to create M two-dimensional pairs. Figure 3.3
shows a simple example where five two-dimensional Latin hypercube
sampling points are created for the independent random variables x1

and x2. As shown in Figure 3.3, there is only a single grid filled with
one sampling point in each row (or column), and the sampling point
is randomly selected within that grid. As such, Latin hypercube sam-
pling distributes its samples all over the two-dimensional random space.
A high-dimensional Latin hypercube sampling can be similarly con-
structed [64, 83].
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Fig. 3.3 Five two-dimensional Latin hypercube samples for two independent random vari-
ables x1 and x2.

3.1.3 Importance Sampling

Importance sampling is another commonly-used approach to speed-up
Monte Carlo analysis [46, 92, 94]. The basic idea is to distort the orig-
inal probability density function pdfx(x) to reduce the variance of the
estimator. Mathematically, the expected value of a given performance
function f(x) is defined as

E(f) =
∫ +∞

−∞
f(x) · pdfx(x) · dx. (3.6)

Direct Monte Carlo analysis estimates E(f) by drawing random sam-
pling points from pdfx(x). Importance sampling, however, attempts to
find a distorted probability density function pdfy(y) such that choos-
ing random sampling points from pdfy(y) yields an estimation of E(f)
with smaller variance.

E(f) =
∫ +∞

−∞
f(y) · pdfy(y)

pdfy(y)
· pdfx(y) · dy

=
∫ +∞

−∞
f(y) · pdfx(y)

pdfy(y)
· pdfy(y) · dy. (3.7)

Equation (3.7) implies that if random sampling points are selected from
the distorted probability density function pdfy(y), the expected value
of f(y) · pdfx(y)/pdfy(y) is exactly equal to E(f). Therefore, E(f) can
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be estimated by the following unbiased estimator:

µf =
1
M

·
M∑
i=1

f(yi) · pdfx(yi)
pdfy(yi)

[
yi ∼ pdfy(y)

]
, (3.8)

where yi is the ith random sampling point selected from the probability
density function pdfy(y), andM is the total number of random samples.

It can be proven that if the distorted probability density function
pdfy(y) is proportional to f(y) · pdfx(y), i.e.,

f(y) · pdfx(y)
pdfy(y)

= k ⇒ pdfy(y) =
1
k

· f(y) · pdfx(y), (3.9)

where k is a constant, the Monte Carlo analysis using importance sam-
pling has minimal error, i.e., the variance of the estimator µf in (3.8) is
minimized [94]. In this “ideal” case, no matter which value is randomly
selected for y, the function f(y) · pdfx(y)/pdfy(y) is always equal to
the constant k and, therefore, the variance of the estimator µf in (3.8)
is equal to 0.

The ideal case in (3.9), however, cannot be easily applied to practi-
cal applications. It can be extremely difficult to draw random samples
from a general probability density function pdfy(y) = f(y) · pdfx(y)/k,
especially if the random variable y is multi-dimensional [92, 94].
Even in the one-dimensional case, selecting random sampling points
from pdfy(y) requires to know its cumulative distribution function
[81, 92]:

cdfy(y) =
∫ y

−∞
pdfy(y) · dy =

1
k

·
∫ y

−∞
f(y) · pdfx(y) · dy (3.10)

implying that the integral in (3.6) must be known in advance and there
would hence be no reason to run Monte Carlo analysis at all!

Based on these discussions, a practical selection of the distorted
probability density function pdfy(y) must satisfy the following two
constraints:

• Easy to sample. Random samples must be created from
pdfy(y) easily.
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• Minimizing estimator variance. pdfy(y) must be close to
f(y) · pdfx(y)/k as much as possible so that the estimator
variance (i.e., the error) can be minimized.

Finding the optimal probability density function pdfy(y) for impor-
tance sampling is not trivial in many practical applications. It is often
application-dependent and must be constructed by experience, which
is one of the key limitations of the importance sampling technique. For
integrated circuits, one important application of importance sampling
is to estimate the rare failure events of memory circuits, as reported
in [46]. In such applications, the optimal probability density function
pdfy(y) is optimized such that the rare failure events will occur with a
much higher probability and, therefore, they can be easily captured by
Monte Carlo analysis.

3.1.4 Quasi Monte Carlo Analysis

An alternative strategy for better controlling Monte Carlo samples is
to use so-called low-discrepancy samples which are deterministically
chosen to “more uniformly” sample the statistical distribution [92].
The technique is called Quasi Monte Carlo (QMC) and is widely used
in many application domains. For example, it is a standard method
in the computational finance world for evaluating complex financial
instruments under various forms of statistical uncertainty. The tech-
nique is applicable to the world of scaled semiconductor problems as
well: speedups of 10–50× have been demonstrated in [105] compared
with a direct Monte Carlo simulation.

A number of deterministic sequences can be constructed for Quasi
Monte Carlo analysis such that the divergence (a measure of Monte
Carlo analysis error) decreases in the order of O[(logM)N−1/M ] [92],
where M is the number of random samples and N is the underlying
problem dimension (i.e., the number of random variables in the stochas-
tic system). Compared with the direct Monte Carlo analysis that has
a divergence rate of O[1/sqrt(M)], Quasi Monte Carlo analysis can
offer a substantial gain, when N is small and M is large. However, for
high-dimensional problems where N is large, the benefit of using Quasi
Monte Carlo analysis may be difficult to justify.
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3.2 Statistical Performance Modeling

As previously discussed, Monte Carlo analysis requires a huge number
of sampling points to achieve sufficient accuracy. In practice, repeat-
edly running transistor-level simulations for so many times is often
time-consuming or even infeasible for large-size circuits. For example,
simulating an industrial phase-locked loop (PLL) or analog-to-digital
converter (ADC) at one single sampling point may take more than one
month on a stand-alone machine!

To overcome this difficulty, response surface modeling (also referred
to as performance modeling) has been widely used to reduce the com-
putational cost. The key idea here is to approximate the performance
of interest (e.g., delay, power, gain, etc.) as a polynomial function of
the process parameters that are modeled as random variables (e.g.,
VTH, TOX, etc.). Such a response surface model establishes an analyti-
cal dependence between device-level variations and circuit-level perfor-
mance so that statistical analysis can be further applied to estimate
the performance variation efficiently.

3.2.1 Response Surface (Performance) Modeling

Given a fixed circuit design, the circuit performance f can be approx-
imated as a linear response surface model of process parameters
[69, 73]:

f(X) = BTX + C, (3.11)

where X = [x1,x2, . . . ,xN ]T represents the random variables to model
process variations, B ∈ RN and C ∈ R stand for the model coefficients,
and N is the total number of the random variables of concern.

The linear approximation in (3.11) is efficient and accurate when
process variations are sufficiently small. However, the recent advances
in IC technologies suggest a need to revisit this assumption. As IC
technologies are scaled to finer feature sizes, process variations become
relatively larger. As reported in [73], the gate length variation can reach
±35% at 90 nm technologies and beyond. It, in turn, implies the impor-
tance of applying high-order (e.g., quadratic) response surface mod-
els to achieve high approximation accuracy [69]. Note that applying
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quadratic response surface models is especially important for analog
circuits, since many analog performances can be strongly nonlinear
in the presence of large-scale manufacturing variations. A quadratic
response surface model has the form of [69]:

f(X) = XTAX + BTX + C, (3.12)

where C ∈ R is the constant term, B ∈ RN contains the linear coeffi-
cients, and A ∈ RN×N contains the quadratic coefficients.

The unknown model coefficients in (3.11) and (3.12) can be deter-
mined by solving the over-determined linear equations at a number of
sampling points [69]:

BTXi + C = f̃i (i = 1,2, . . . ,S) (3.13)

XT
i AXi + BTXi + C = f̃i (i = 1,2, . . . ,S), (3.14)

where Xi and f̃i are the value of X and the exact value of f for the
ith sampling point, respectively, and S is the total number of sampling
points.

Quadratic response surface model is much more accurate than linear
response surface model in many practical applications. Figure 3.4 shows
the circuit schematic of a low noise amplifier designed in a commercial

Fig. 3.4 Circuit schematic of a low noise amplifier designed in a commercial 0.25µm BiC-
MOS process.
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0.25µm BiCMOS process. For this low noise amplifier, the variations of
both MOS transistors and passive components (capacitors and induc-
tors) are modeled. The probability distributions and the correlation
information of these variations are provided in the process design kit.
After principal component analysis, eight principal factors are identi-
fied to capture all process variations. The performance of the low noise
amplifier is characterized by eight different performance metrics. We
approximate these performance metrics by both linear and quadratic
response surface models. Table 3.1 shows the approximation error for
both models. In this example, the quadratic modeling error is 7.5×
smaller than the linear modeling error on average. In addition, it should
be noted that the nonlinear terms in the quadratic models are expected
to become increasingly important, as process variations become larger
in scaled IC technologies.

Using quadratic response surface model, however, significantly
increases the modeling cost. It is straightforward to verify that the
number of unknown coefficients in (3.12) is O(N2), where N is the
total number of the random variables to model process variations. If
the total number of random variables reaches 100, a quadratic approx-
imation will result in a 100 × 100 quadratic coefficient matrix con-
taining 10,000 coefficients! The overall computational cost of quadratic
response surface modeling consists of two portions:

• Simulation cost. i.e., the cost for running a transistor-level
simulator to determine the performance value f̃i at every
sampling point Xi. The number of simulation samples should
be greater than the number of unknown coefficients in order

Table 3.1 Response surface modeling error for low noise amplifier.

Performance Linear (%) Quadratic (%)
F0 1.76 0.14
S11 6.40 1.32
S12 3.44 0.61
S21 2.94 0.34
S22 5.56 3.47
NF 2.38 0.23
IIP3 4.49 0.91
Power 3.79 0.70
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to uniquely solve the linear equations in (3.14). Therefore, at
least O(N2) sampling points are required to fit the quadratic
model in (3.12). In practical applications, the number of sam-
ples is generally selected to be significantly larger than the
unknown coefficient number to avoid over-fitting. The sim-
ulation cost is typically the dominant portion of the over-
all computational cost, if the transistor-level simulation is
expensive for a given circuit.

• Fitting cost. i.e., the cost for solving the over-determined lin-
ear equations in (3.14). For the quadratic model in (3.12), the
fitting cost is on the order of O(N6).

The high computational cost of quadratic response surface model-
ing becomes one of the most challenging problems recently, especially
because intra-die variations (e.g., device mismatches) play an increas-
ingly important role in nano-scale technologies. These intra-die varia-
tions must be modeled by many additional random variables, thereby
significantly increasing the number of unknown model coefficients. This
makes quadratic response surface modeling much more expensive or
even infeasible in many practical nano-scale problems.

There are several techniques available to reduce quadratic response
surface modeling cost. Projection pursuit is one of the interesting and
useful techniques in this domain. The original work on projection pur-
suit was proposed by mathematicians in the early of 1980’s [33]. The
idea was recently adapted and tuned by Li et al. [57] to create an
efficient projection-based extraction algorithm (PROBE) for quadratic
response surface modeling. We will discuss the PROBE algorithm in
detail in the next sub-section.

3.2.2 Projection-Based Performance Modeling

3.2.2.1 Mathematic Formulation

The key disadvantage of the traditional quadratic response surface
modeling is the need to compute all elements of the matrix A in
(3.12). This matrix is often sparse and rank-deficient in many prac-
tical problems. Therefore, instead of finding the full-rank matrix A,
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PROBE [57] approximates A by another low-rank matrix AL. Such
a low-rank approximation problem can be stated as follows: given
a matrix A, find another matrix AL with rank p < rank (A) such
that their difference ‖AL − A‖F is minimized. Here, ‖ • ‖F denotes
the Frobenius norm, which is the square root of the sum of the
squares of all matrix elements. Without loss of generality, we assume
that A is symmetric in this paper, since any asymmetric quadratic
form XTAX can be converted to an equivalent symmetric form
0.5 · XT (A + AT )X [38].

From matrix theory [38], for any symmetric matrix A ∈ RN×N , the
optimal rank-p approximation with the least Frobenius-norm error is:

AL =
p∑

i=1

λiPiP
T
i , (3.15)

where λi is the ith dominant eigenvalue and Pi ∈ RN is the
ith dominant eigenvector. The eigenvectors in (3.15) define an
orthogonal projector P1P

T
1 + P2P

T
2 + · · · + PpP

T
p , and every column

in AL is the projection of every column in A onto the sub-
space span{P1,P2, . . . ,Pp}. PROBE uses this orthogonal projector for
quadratic response surface modeling, which is intuitively illustrated in
Figure 3.5.

The main advantage of the rank-p projection is that, for approx-
imating the matrix A ∈ RN×N in (3.12), only λi ∈ R and Pi ∈ RN

(i = 1,2, . . . ,p) should be determined, thus reducing the number of
problem unknowns to O(pN). In many practical applications, p is sig-
nificantly less than N and the number of unknown coefficients that
PROBE needs to solve is almost a linear function of N . Therefore,

Low-Rank ProjectionLow-Rank Projection

AA ALAL

Fig. 3.5 PROBE identifies the most critical directions where process variations significantly
impact a given circuit performance and then fits a quadratic response surface model along
these directions [57].
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compared with the problem size O(N2) of the traditional quadratic
modeling, PROBE is much more efficient and can be applied to large-
size problems.

3.2.2.2 Coefficient Fitting via Implicit Power Iteration

Since the matrix A in (3.12) is not known in advance, we cannot use
the traditional matrix computation algorithm to compute the domi-
nant eigenvalues λi and eigenvectors Pi that are required for low-rank
approximation. One approach for finding the optimal rank-pmodel is to
solve the following optimization problem for the unknown coefficients
λi and Pi (i = 1,2, . . . ,p) and B, C:

minimize ψ =
∑

i


XT

i


 p∑

j=1

λjPjP
T
j


Xi + BTXi + C − f̃i




2

subject to ‖Pj‖2 = 1 (j = 1, . . . ,p),

(3.16)

where ‖•‖2 denotes the 2-norm of a vector.
Compared with (3.12), Equation (3.16) approximates the matrix A

by λ1P1P
T
1 + λ2P2P

T
2 + · · · + λpPpP

T
p . Therefore, we can expect that

minimizing the cost function Ψ in (3.16) will converge λi and Pi to
the dominant eigenvalues and eigenvectors of the original matrix A,
respectively. Unfortunately, Ψ in (3.16) is a 6th-order polynomial and
may not be convex. In addition, the constraint set in (3.16) is speci-
fied by a quadratic equation and is not convex either. Therefore, the
optimization in (3.16) is not a convex programming problem and there
is no efficient optimization algorithm that can guarantee finding the
global optimum for Ψ.

Instead of solving the non-convex optimization problem in (3.16),
PROBE utilizes an implicit power iteration method to efficiently
extract the unknown coefficients λi and Pi (i = 1,2, . . . ,p). The implicit
power iteration solves a sequence of over-determined linear equations
and exhibits robust convergence. In what follows, we first describe the
implicit power iteration algorithm for rank-one approximation, and
then extend it to rank-p approximation.
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A. Rank-One Implicit Power Iteration

Algorithm 3.1 rank-one implicit power iteration.

(1) Start from a set of sampling points {Xi, f̃i; i = 1,2, . . . ,S},
where S is the total number of sampling points.

(2) Randomly select an initial vector Q0 ∈ RN and set k = 1.
(3) Compute Qk−1 = Qk−1/‖Qk−1‖2.
(4) Solve the over-determined linear equations for Qk, Bk, and

Ck:

XT
i QkQ

T
k−1Xi + BT

k Xi + Ck = f̃i (i = 1,2, . . . ,S). (3.17)

(5) If the residue:

ψk(Qk,Bk,Ck) =
∑

i

(
XT

i QkQ
T
k−1Xi + BT

k Xi + Ck − f̃i

)2

(3.18)
is unchanged, i.e.,

|ψk (Qk,Bk,Ck) − ψk−1 (Qk−1,Bk−1,Ck−1) | < ε, (3.19)

where ε is a pre-defined error tolerance, then go to Step (6).
Otherwise, k = k + 1 and return Step (3).

(6) The rank-one response surface model is:

f1(X) = XTQkQ
T
k−1X + BT

k X + Ck. (3.20)

Algorithm 3.1 outlines the implicit power iteration algorithm for
rank-one approximation. This algorithm repeatedly solves a sequence of
over-determined linear equations until convergence is identified. Next,
we explain why the implicit power iteration yields the optimal rank-
one approximation AL = λ1P1P

T
1 . Note that Step (4) in Algorithm 3.1

approximates the matrix A by QkQ
T
k−1, where Qk−1 is determined in

the previous iteration step. Finding such an optimal approximation is
equivalent to solving the over-determined linear equations:

QkQ
T
k−1 = A. (3.21)
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The least-square-error solution for (3.12) is given by [38]:

Qk = AQk−1 · (QT
k−1Qk−1

)−1
= AQk−1. (3.22)

In (3.22), Qk−1Q
T
k−1 = ||Qk−1||22 = 1, since Qk−1 is normalized in Step

(3) of Algorithm 3.1. Equation (3.22) reveals an interesting fact that
solving the over-determined linear equations in Step (4) “implicitly”
computes the matrix-vector product AQk−1, which is the basic opera-
tion required in the traditional power iteration for dominant eigenvector
computation [38].

Given an initial vector:

Q0 = α1P1 + α2P2 + · · · + αNPN , (3.23)

where Q0 is represented as the linear combination of all eigenvectors
of A, the kth iteration step yields:

Qk = AkQ0 = α1λ
k
1P1 + α2λ

k
2P2 + · · · + αNλ

k
NPN . (3.24)

In (3.24), we ignore the normalization Qk−1 = Qk−1/||Qk−1||2 which is
nothing else but a scaling factor. This scaling factor will not change the
direction of Qk. As long as α1 �= 0 in (3.23), i.e., P1 is not orthogonal to
the initial vector Q0, α1λ

k
1P1 (with |λ1| > |λ2| > · · ·) will become more

and more dominant over other terms. Qk will asymptotically approach
the direction of P1, as shown in Figure 3.6.

After the iteration in Algorithm 3.1 converges, we have Qk−1 =
Qk−1/||Qk−1||2 = P1 and Qk = AQk−1 = λ1P1. QkQ

T
k−1 is the opti-

mal rank-one approximation AL = λ1P1P
T
1 . Thus the aforementioned

implicit power iteration extracts the unknown coefficients λ1 and P1

P1

P2

P3

P1

P2

P3

P1

P2

P3

333222111 PPPQ kkk
k3322110 PPPQ

3332221111 PPPQ = α λ + α λ + α λ

= α= α + α + α λ + α λ + α λ

Q0 Q1 Qk

Fig. 3.6 Convergence of the implicit power iteration in a three-dimensional space.
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with guaranteed convergence, but in an implicit way (i.e., without
knowing the original matrix A). This “implicit” property is the key dif-
ference between the implicit power iteration and the traditional explicit
power iteration in [38].

The above discussion demonstrates that the implicit power iteration
is provably convergent if A is symmetric. For an asymmetric A, Qk−1

and Qk should iteratively converge to the directions of the dominant
left and right singular vectors of A to achieve the optimal rank-one
approximation. However, the global convergence of the implicit power
iteration is difficult to prove in this case.

B. Rank-p Implicit Power Iteration

Algorithm 3.2 rank-p implicit power iteration.

(1) Start from a set of sampling points {Xi, f̃i; i = 1,2, . . . ,S},
where S is the total number of sampling points.

(2) For each k = {1,2, . . . ,p}
(3) Apply Algorithm 3.1 to compute the rank-one approximation

gk(X).
(4) Update the sampling points:

f̃i = f̃i − gk(Xi) (i = 1,2, . . . ,S). (3.25)

(5) End For.
(6) The rank-p response surface model is

fp(X) = g1(X) + g2(X) + · · · + gp(X). (3.26)

Algorithm 3.2 shows the implicit power iteration algorithm for rank-
p approximation. Assuming that the unknown function can be approx-
imated as the full-rank quadratic form in (3.12), Algorithm 3.2 first
extracts its rank-one approximation:

g1(X) = XT (λ1P1P
T
1 )X + BTX + C. (3.27)
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Then, the component of g1(X) is subtracted from the full-rank
quadratic function in Step (4) of Algorithm 3.2, yielding:

f(X) − g1(X) = XT

(
N∑

i=2

λiPiP
T
i

)
X. (3.28)

Now λ2 and P2 become the dominant eigenvalue and eigenvector of
the quadratic function in (3.28), and they are extracted by the rank-
one implicit power iteration to generate g2(X). The rank-one implicit
power iteration and the subtraction are repeatedly applied for p times
until the rank-p approximation fp(X) is achieved.

Algorithm 3.2 assumes a given approximation rank p. In practi-
cal applications, the value of p can be iteratively determined based on
approximation error. For example, starting from a low-rank approxi-
mation, p should be iteratively increased if the modeling error remains
large.

3.2.2.3 PROBE vs. Traditional Techniques

There are several traditional techniques, such as principal component
analysis [98], variable screening [60], and projection pursuit [33], which
can be applied to reduce the computational cost of response surface
modeling. In this sub-section, we compare PROBE with these tradi-
tional techniques and highlight their difference.

A. PROBE vs. Principal Component Analysis

As discussed in Chapter 2, principal component analysis (PCA)
[98] is a statistical method that can reduce the number of random
variables required to approximate a given high-dimensional random
space. Given an N -dimensional multivariate Normal distribution X =
[x1,x2, . . . ,xN ]T and their covariance matrix R, PCA computes the
dominant eigenvalues and eigenvectors of R, and then constructs a set
of principal components Y = [y1,y2, . . . ,yK ]T , where K < N , to approx-
imate the original N -dimensional random space. After PCA, circuit
performances can be approximated as functions of the principal com-
ponents {yi; i = 1,2, . . . ,K} using response surface modeling. Since the
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Fig. 3.7 Combine PCA and PROBE to achieve minimal computational cost for quadratic
response surface modeling.

number of the principal components {yi; i = 1,2, . . . ,K} is less than
the number of the original variables {xi; i = 1,2, . . . ,N}, PCA reduces
the dimension size.

The result of PCA is uniquely determined by the covariance
matrix R of the random variables {xi; i = 1,2, . . . ,N}. It is inde-
pendent of a specific circuit performance f . In contrast, PROBE
reduces the problem dimension by carefully analyzing the depen-
dence between a specific performance f and the random process vari-
ations. PROBE will eliminate (or keep) one eigenvector Pi if and
only if f is strongly (or weakly) dependent on Pi. From this point
of view, PCA and PROBE rely on completely different mechanisms for
dimension reduction. In practice, both PCA and PROBE should be
applied sequentially to achieve the minimal modeling cost, as shown in
Figure 3.7.

B. PROBE vs. Variable Screening

Variable screening [60] is another traditional approach for reducing the
response surface modeling cost. Given a circuit performance f , variable
screening applies fractional factorial experimental design [66] and tries
to identify a subset (hopefully small) of the variables that have much
greater influence on f than the others. Compared with variable screen-
ing, PROBE also does a similar “screening,” but with an additional
coordinate rotation, as shown in Figure 3.8. The additional coordi-
nate rotation offers more flexibility to filter out unimportant variables,
thereby achieving better modeling accuracy and/or cheaper modeling
cost. From this point of view, PROBE can be viewed as a general-
ized variable screening which is an extension of the traditional variable
screening in [60].
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Fig. 3.8 Compared with variable screening, PROBE offers more flexibility to filter out
unimportant variables by an additional coordinate rotation.

C. PROBE vs. Projection Pursuit

Projection pursuit [33] attempts to approximate the unknown high-
dimensional nonlinear function by the sum of several smooth low-
dimensional functions. The authors in [33] utilize the one-dimensional
projection:

f(x) = g1(P T
1 X) + g2(P T

2 X) + · · · , (3.29)

where gi(•) is the pre-defined one-dimensional nonlinear function and
Pi ∈ RN defines the projection space. One of the main difficulties in the
traditional projection pursuit is to find the optimal projection vectors
Pi (i = 1,2, . . . ,p). The authors in [33] apply local optimization with
heuristics to search for the optimal Pi. Such an optimization can easily
get stuck at a local minimum. The PROBE algorithm is actually a
special case of the traditional projection pursuit, where all gi(•)’s are
quadratic functions. In this case, the theoretical solution of the optimal
projection vectors Pi (i = 1,2, . . . ,p) is known, i.e., they are determined
by the dominant eigenvalues and eigenvectors of the original quadratic
coefficient matrix A. These dominant eigenvalues and eigenvectors can
be extracted by the aforementioned implicit power iteration quickly
and robustly.

D. PROBE vs. Full-Rank Quadratic Modeling

The rank-p implicit power iteration in Algorithm 3.2 requires run-
ning the rank-one implicit power iteration for p times. Each rank-one
approximation needs to solve 2N + 1 unknown coefficients, for which
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the required number of samples is on the order of O(N) and solving
the over-determined linear equations in Step (4) of Algorithm 3.1 has
a complexity of O(N3). Therefore, a rank-p approximation requires
O(pN) simulation samples in total and the overall computational cost
for the rank-p implicit power iteration in Algorithm 3.2 is O(pN3).
In many practical applications, p is much less than N and, therefore,
PROBE is much more efficient than the traditional full-rank quadratic
modeling that requires O(N2) simulation samplings and has a fitting
cost of O(N6) for solving the over-determined linear equations.

Figure 3.9 compares the response surface modeling complexity
between PROBE and the traditional full-rank quadratic modeling. As
shown in Figure 3.9, if the total number of random process param-
eters reaches 200, a full-rank quadratic model contains more than
20,000 unknown coefficients while the rank-one PROBE approxima-
tion reduces the coefficient number to about 400, thereby achieving
significant speed-up in computational time.

To compare PROBE with other traditional techniques, a physical
implementation of the ISCAS’89 S27 benchmark circuit is created using
a commercial CMOS 90 nm process. Given a set of fixed gate sizes, the
longest path delay in the benchmark circuit (shown in Figure 3.10) is
a function of process variations. The probability distributions and the
correlation information of all process variations are obtained from the
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Fig. 3.9 Rank-one PROBE approximation significantly reduces the number of model coef-
ficients compared with the traditional full-rank quadratic response surface modeling.



3.2 Statistical Performance Modeling 381

Fig. 3.10 Schematic of the longest path in the ISCAS’89 S27 benchmark circuit.

0%

1%

2%

3%

4%

5%

6%

7%

Line 1 2 3 4 5 6 Quad

Approximation Rank (p)

E
rr

or

Delay (Rising)

Delay (Falling)

Fig. 3.11 Response surface modeling error for path delay.

process design kit. After principal component analysis, six principal
factors are identified to represent these variations.

Figure 3.11 shows the response surface modeling error when the
path delays of both rising and falling transitions are approximated
as the linear, rank-p quadratic (PROBE), and traditional full-rank
quadratic models. It is shown in Figure 3.11 that as p increase, the rank-
p modeling error asymptotically approaches the full-rank quadratic
modeling error. However, after p > 2, further increases in p do not have
a significant impact on reducing error. It, in turn, implies that a rank-
two model, instead of the full-rank quadratic model with rank six, is
sufficiently accurate in this example.

In summary, PROBE utilizes a new projection scheme to facili-
tate the trade-off between modeling accuracy and computational cost.
An implicit power iteration algorithm is presented to find the optimal
projection space and solve the unknown model coefficients. By using
the implicit power iteration, PROBE significantly reduces the model-
ing cost (both the required number of sampling points and the linear
equation size), thereby facilitating scaling to much larger problem sizes.
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The response surface models generated by PROBE can be incorporated
into a statistical analysis/optimization environment for accurate and
efficient yield analysis/optimization, which will be discussed in detail
in Sections 3.3 and 3.4.

3.2.3 Design of Experiments

One of the key problems for response surface modeling is to optimally
select the locations of sampling points such that a minimal number of
samples can be used to achieve good modeling quality. Such a sample
selection problem belongs to the broad research area called design of
experiments (DOE) [66]. An experiment is defined as a test or a series
of tests in which purposeful changes are made to the input variables of
a process or system so that we may observe and identify the reasons
for changes that may be observed in the output response. To fit the
response surface model f(X), we need to come up with the optimal
scheme to change X (i.e., the experiment) such that the changes of f
can be observed and used to accurately determine the unknown model
coefficients.

To further illustrate the importance of DOE, Figure 3.12 shows two
“bad” examples of sampling schemes. In Figure 3.12(a), no perturba-
tion is applied to x2 and therefore such a DOE cannot estimate the
dependence between the performance function f(x1, x2) and the vari-
able x2. On the other hand, the DOE in Figure 3.12(b) varies both
x1 and x2, and is sufficient for fitting a linear response surface model.

(a)

x2

x1

x2

x1x1

x2

x1

x2

(b)

Fig. 3.12 Two “bad” examples of design of experiments. (a) x2 is not varied and the impact
of x2 cannot be estimated for a linear model. (b) x1 and x2 are not varied simultaneously
and the cross-product term x1x2 cannot be estimated for a quadratic model.
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However, the DOE in Figure 3.12(b) does not vary x1 and x2 simulta-
neously and therefore it cannot estimate the cross-product term x1x2

for a quadratic response surface model.
Most DOE techniques for response surface modeling utilize one of

the following two sampling schemes:

• Deterministic sampling. Sampling points are deterministi-
cally selected based on the underlying model template (e.g.,
linear model, quadratic model, etc.). These sampling points
are optimized to minimize modeling error and, therefore, the
DOE quality can be well controlled. However, it is not triv-
ial to find an efficient deterministic sampling scheme for a
general, complicated model template (e.g., when applying
projection pursuit [33, 57]).

• Random sampling. Sampling points are randomly gener-
ated based on the probability distribution of random vari-
ables. For example, the Monte Carlo analysis discussed in
Section 3.1 is one of the possible approaches to create ran-
dom sampling points. The random sampling method is gen-
eral and easy to implement. It is useful especially when an
efficient deterministic sampling scheme is difficult to find for
a given model template. However, the statistical nature of
random sampling makes it difficult to achieve “guaranteed”
quality in practical applications.

3.2.4 Performance Modeling vs. Monte Carlo Analysis

Both response surface modeling and Monte Carlo analysis are widely
used for statistical circuit analysis. The relative efficiency of these two
methods is application-dependent. In general, if the number of ran-
dom process parameters is small, response surface modeling is often
more efficient than Monte Carlo analysis. In such cases, only a small
number of sampling points are required to fit the model. Otherwise,
if the number of random process parameters is large (e.g., when both
inter-die variations and device mismatches are simultaneously consid-
ered), Monte Carlo analysis is often preferable. Note that the accu-
racy of Monte Carlo analysis is independent of the underlying problem
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dimension, according to our discussion in Section 3.1.1. This property
implies that we do not have to increase the number of Monte Carlo
sampling points as problem dimension becomes increasingly large. For
this reason, Monte Carlo analysis can be quite attractive for large-
dimension problems.

3.3 Statistical Performance Analysis

The objective of statistical performance modeling is to estimate the
parametric yield, given the response surface models extracted in
Section 3.2. One straightforward approach for statistical performance
analysis is to run Monte Carlo analysis based on response surface
models. Such a model-based Monte Carlo analysis is fast, since it
does not require any additional transistor-level simulations. However,
an even faster statistical analysis engine is required for a number of
practical applications, e.g., when parametric yield estimation must
be repeatedly performed within the inner loop of an optimization
flow [24, 28, 51, 97]. For this reason, various more efficient statisti-
cal analysis techniques have been developed. In what follows, we will
first review the parametric yield estimation for a single performance
constraint and then extend our discussion to multiple performance
constraints.

Any single performance constraint can be expressed as the following
standard form:

f(X) ≤ 0, (3.30)

where f is the performance of interest, X = [x1,x2, . . . ,xN ]T represents
the random variables to model process variations, and N is the total
number of the random variables of concern. We assume that all ran-
dom variables in X are mutually independent and they satisfy the
standard Normal distribution N(0,1) (i.e., zero mean and unit stan-
dard deviation). Correlated Normal random variables can be decom-
posed to independent ones by PCA. The standard form in (3.30)
is ready to handle several extensions. For example, f(X) ≤ f0 and
f(X) ≥ f0 can be expressed as f(X) − f0 ≤ 0 and −f(X) + f0 ≤ 0,
respectively.
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Given the performance constraint in (3.30), the parametric yield is
defined as

Yield = P (f ≤ 0), (3.31)

where P (•) denotes the probability. If the function f(X) in (3.30) is
approximated as the linear response surface model in (3.11), the para-
metric yield estimation problem is trivial. In this case, the performance
f is Normal and its mean and variance can be, respectively, calcu-
lated by

µf = C (3.32)

σ2
f = ‖B‖2

2 , (3.33)

where ‖•‖2 denotes the 2-norm of a vector. Since a Normal distribution
is uniquely determined by its mean and variance, the parametric yield
can be easily estimated based on the cumulative distribution function
of the Normal distribution of f .

As shown in Table 3.1, the linear response surface model in (3.11)
may be inaccurate due to the large-scale process variations in nano-
scale technologies. For this reason, a quadratic response surface model
is often required in many practical applications to provide high model-
ing accuracy. Using quadratic response surface model, however, brings
about new challenges due to the nonlinear mapping between the process
variations X and the circuit performance f . The distribution of f is
no longer Normal, unlike the case of the linear model. In the next sub-
section, we describe an asymptotic probability extraction algorithm
(APEX [52, 54]) to efficiently estimate the random performance dis-
tribution (and therefore the parametric yield) for a given quadratic
response surface model.

3.3.1 Asymptotic Probability Extraction

Given the quadratic response surface model in (3.12), the objective of
APEX is to estimate the probability density function pdff (f) and the
cumulative distribution function cdff (f) for the performance f . APEX
applies moment matching to approximate the characteristic function
of f (i.e., the Fourier transform of the probability density function [81])
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Fig. 3.13 Overall flow of APEX.

by a rational functionH. H is conceptually considered to be of the form
of the transfer function of a linear time-invariant (LTI) system, and the
pdff (f) and the cdff (f) are approximated by the impulse response and
the step response of the LTI system H, respectively. Figure 3.13 shows
the overall flow of APEX.

3.3.1.1 Mathematic Formulation

APEX attempts to find an Mth order LTI system H whose impulse
response h(t) and step response s(t) are the optimal approximations for
pdff (f) and cdff (f), respectively. The variable t in h(t) and s(t) corre-
sponds to the variable f in pdff (f) and cdff (f). The optimal approxi-
mation is determined by matching the first 2M moments between h(t)
and pdff (f) for an Mth order approximation. In this sub-section, we
first describe the mathematical formulation of the APEX algorithm.
Next, APEX is linked to probability theory and we explain why it is
efficient in approximating PDF/CDF functions. Finally, we show that
the moment-matching method utilized in APEX is asymptotically con-
vergent when applied to quadratic response surface models.

Define the time moments [15, 87] for a given circuit performance f
whose probability density function is pdff (f) as follows:

sk =
(−1)k

k!

∫ +∞

−∞
fk · pdff (f) · df. (3.34)

In (3.34), the definition of time moments is identical to the traditional
definition of moments in probability theory except for the scaling factor
(−1)k/k!.
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Similarly, the time moments can be defined for an LTI system H

[15, 87]. Given an Mth order LTI system whose transfer function and
impulse response are

H(s) =
M∑
i=1

ai

s − bi
and h(t) =




M∑
i=1

aie
bit (if t ≥ 0)

0 (if t < 0)
. (3.35)

The time moments of H are defined as [15, 87]:

sk =
(−1)k

k!

∫ +∞

−∞
tk · h(t) · dt = −

M∑
i=1

ai

bk+1
i

. (3.36)

In (3.35), the poles {bi; i = 1,2, . . . ,M} and residues {ai; i = 1,
2, . . . ,M} are the 2M unknowns that need to be determined. Match-
ing the first 2M moments in (3.34) and (3.36) yields the following 2M
nonlinear equations:

−
(
a1

b1
+
a2

b2
+ · · · +

aM

bM

)
= s0

−
(
a1

b21
+
a2

b22
+ · · · +

aM

b2M

)
= s1 (3.37)

...
...

−
(
a1

b2M
1

+
a2

b2M
2

+ · · · +
aM

b2M
M

)
= s2M−1.

Equation (3.37) can be solved using the algorithm proposed in [15, 87].
It first solves the poles {bi} and then the residues {ai}. In what follows,
we briefly describe this two-step algorithm for solving (3.37).

In order to solve the poles {bi} in (3.37), the authors in [15, 87] first
formulate the following linear equations:

−




s0 s1 · · · sM−1

s1 s2 · · · sM
...

...
...

...
sM−1 sM · · · s2M−2


 ·




c0
c1
...

cM−1


 =




sM

sM+1
...

s2M−1


 . (3.38)

After solving (3.38) for {ci; i = 0,1, . . . ,M − 1}, the poles {bi} in (3.37)
are equal to the reciprocals of the roots of the following characteristic
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polynomial:

c0 + c1b
−1 + c2b

−1 + · · · + cM−1b
−M+1 + b−M = 0. (3.39)

The detailed proof of (3.38) and (3.39) can be found in [15, 87].
After the poles {bi} are known, substitute {bi} into (3.37) and the

residues {ai} can be solved by using the first M moments:

−



b−1
1 b−1

2 · · · b−1
M

b−2
1 b−2

2 · · · b−2
M

...
...

...
...

b−M
1 b−M

2 · · · b−M
M


 ·



a1

a2
...
aM


 =




s0
s1
...

sM−1


 . (3.40)

The aforementioned algorithm assumes that the poles {bi} are distinct.
Otherwise, if repeated poles exist, the unknown poles and residues must
be solved using a more comprehensive algorithm described in [15, 87].

Once the poles {bi} and residues {ai} are determined, the proba-
bility density function pdff (f) is optimally approximated by h(t) in
(3.35), and the cumulative distribution function cdff (f) is optimally
approximated by the step response:

s(t) =
∫ t

0
h(τ)dτ =




M∑
i=1

ai

bi
· (ebit − 1) (if t ≥ 0)

0 (if t < 0)

. (3.41)

The aforementioned moment-matching method was previously applied
to IC interconnect order reduction [15, 87] and is related to the Padé
approximation in linear control theory [12]. Next, we will explain
why such a moment-matching approach is efficient in approximating
PDF/CDF functions.

In probability theory, given a random variable f whose probability
density function is pdff (f), the characteristic function is defined as the
Fourier transform of pdff (f) [81]:

Φ(ω) =
∫ +∞

−∞
pdff (f) · ejωf · df =

∫ +∞

−∞
pdff (f) ·

+∞∑
k=0

(jωf)k

k!
· df.
(3.42)
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Substituting (3.34) into (3.42) yields:

Φ(ω) =
+∞∑
k=0

sk · (−jω)k. (3.43)

Equation (3.43) implies an important fact that the time moments
defined in (3.34) are related to the Taylor expansion of the charac-
teristic function at the expansion point ω = 0. Matching the first 2M
moments in (3.37) is equivalent to matching the first 2M Taylor expan-
sion coefficients between the original characteristic function Φ(ω) and
the approximated rational function H(s).

To explain why the moment-matching approach is efficient, we first
need to show two important properties that are described in [81]:

Theorem 3.1. A characteristic function has the maximal magnitude
at ω = 0, i.e., |Φ(ω)| ≤ Φ(0) = 1.

Theorem 3.2. A characteristic function Φ(ω) → 0 when ω → ∞.

Figure 3.14 shows the characteristic functions for several typical
random distributions. The above two properties imply an interesting
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Fig. 3.14 The characteristic functions of several typical distributions.
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fact: namely, given a random variable f , the magnitude of its character-
istic function decays as ω increases. Therefore, the optimally approx-
imated H(s) in (3.35) is a low-pass system. It is well-known that a
Taylor expansion is accurate around the expansion point. Since a low-
pass system is mainly determined by its behavior in the low-frequency
range (around ω = 0), it can be accurately approximated by matching
the first several Taylor coefficients at ω = 0, i.e., the moments. In addi-
tion, the rational function form utilized in APEX is an efficient form
to approximate the transfer function H(s) of a low-pass system. These
conclusions have been verified in other applications (e.g., IC intercon-
nect order reduction [15, 87]) and they provide the theoretical back-
ground to explain why APEX works well for PDF/CDF approximation.

We have intuitively explained why the moment-matching approach
is efficient in approximating PDF/CDF functions. However, there is a
theoretical question which might be raised: given a random variable,
can the PDF/CDF functions always be uniquely determined by its
moments? In general, the answer is no. It has been observed in math-
ematics that some probability distributions cannot be uniquely deter-
mined by their moments. One example described in [4] is the following
probability density function:

pdff (f) =



e−0.5·[ln(f)]2

√
2πf

· {1 + a · sin[2π · ln(f)]} (if f > 0)

0 (if f ≤ 0)
, (3.44)

where a ∈ [−1,1]. It can be verified that all moments of the probabil-
ity density function pdff (f) in (3.44) are independent of a, although
varying a changes pdff (f) significantly [4]. It, in turn, implies that the
probability density function in (3.44) cannot be uniquely determined
by its moments.

However, there are special cases for which the moment problem
is guaranteed to converge, i.e., the PDF/CDF functions are uniquely
determined by the moments. The following Carleman theorem states
one of those special cases and gives a sufficient condition for the con-
vergence of the moment problem.

Theorem 3.3 (Carleman [4]). A probability distribution on the
interval (−∞,+∞) can be uniquely determined by its moments
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{mk; k = 1,2, . . .} if:

+∞∑
k=1

(m2k)
−1
2k = ∞. (3.45)

Based on the Carleman theorem, it can be proven that the moment-
matching approach utilized in APEX is asymptotically convergent
when applied to quadratic response surface models. Namely, given a
quadratic response surface model f that is a quadratic function of nor-
mally distributed random variables, the probability distribution of f
can be uniquely determined by its moments {mk; k = 1,2, . . . ,K} when
K approaches infinity, i.e., K → +∞. The asymptotic convergence of
APEX can be formally stated by the following theorem. The detailed
proof of Theorem 3.4 is given in [52].

Theorem 3.4. Given the quadratic response surface model f(X)
in (3.12) where all random variables in X are mutually independent
and satisfy the standard Normal distribution N(0,1), the probabil-
ity distribution of f can be uniquely determined by its moments
{mk; k = 1,2, . . .}.

APEX is derived from the classical moment problem [4] that has
been widely studied by mathematicians for over one hundred years,
focusing on the theoretical aspects of the problem, e.g., the existence
and uniqueness of the solution. Details of these theoretical results can
be found in [4] or other recent publications, e.g., [103]. APEX aims to
solve the moment problem efficiently, i.e., to improve the approximation
accuracy and reduce the computational cost for practical applications.
Next, we will discuss several important implementation algorithms in
detail. A complete discussion of all implementation issues can be found
in [52].

3.3.1.2 Binomial Moment Evaluation

A key operation required in APEX is the computation of the high
order time moments defined in (3.34) for a given random variable f .
Such a time moment evaluation is equivalent to computing the expected
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values of {fk; k = 0,1, . . . ,2M − 1}. Given the quadratic response sur-
face model in (3.12), fk can be represented as a high order polynomial
of X:

fk(x) =
∑

i

ci · xα1i
1 · xα2i

2 · · ·xαNi
N , (3.46)

where xi is the ith element in the vector X, ci is the coefficient of the
ith product term, and αij is the positive integer exponent. Since the
random variables in X are mutually independent, we have:

E(fk) =
∑

i

ci · E (xα1i
1 ) · E (xα2i

2 ) · · ·E (xαNi
N

)
. (3.47)

In addition, remember that all random variables in X satisfy the stan-
dard Normal distribution N(0,1), which yields [81]:

E(xk) =




1 (if k = 0)
0 (if k = 1,3,5, . . .)
1 · 3 · · ·(k − 1) (if k = 2,4,6, . . .)

. (3.48)

Substituting (3.48) into (3.47), the expected value of fk can be
determined.

The above computation scheme is called direct moment evalua-
tion. The key disadvantage of such a moment evaluation is that, as
k increases, the total number of the product terms in (3.47) will expo-
nentially increase, thereby quickly making the computation infeasible.
To overcome this difficulty, a novel binomial moment evaluation scheme
is developed in [52]. It recursively computes the high order moments
without explicitly constructing the high order polynomial fk in (3.47).
The binomial moment evaluation consists of two steps: quadratic model
diagonalization and moment evaluation.

A. Quadratic Model Diagonalization

The first step of binomial moment evaluation is to remove the cross
product terms in the quadratic response surface model (3.12), thereby
yielding a much simpler, but equivalent, quadratic model. According
to matrix theory [38], any symmetric matrix A ∈ RN×N can be diago-
nalized as:

A = U · Λ · UT , (3.49)
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where Λ = diag(σ1,σ2, . . . ,σN ) contains the eigenvalues of A and U =
[U1,U2, . . . ,UN ] is an orthogonal matrix (i.e., UTU = I) containing the
eigenvectors. Define the new random variables Y = [y1,y2, . . . ,yN ]T as
follows:

Y = UT · X. (3.50)

Substituting (3.50) into (3.12) yields:

f(Y ) = Y T · Λ · Y + QT · Y + C =
N∑

i=1

(σi · y2
i + qi · yi) + C, (3.51)

where yi is the ith element in the vector Y and Q = [q1, q2, . . . , qN ]T =
UTB. Equation (3.51) implies that there is no cross product term in
the quadratic model after the diagonalization. In addition, the follow-
ing theorem guarantees that the random variables {yi; i = 1,2, . . . ,N}
defined in (3.50) are also independent and satisfy the standard Normal
distribution N(0,1). The detailed proof of Theorem 3.5 can be found
in [52].

Theorem 3.5. Given a set of independent random variables {xi; i =
1,2, . . . ,N} satisfying the standard Normal distribution N(0,1) and an
orthogonal matrix U , the random variables {yi; i = 1,2, . . . ,N} defined
in (3.50) are independent and satisfy the standard Normal distribution
N(0,1).

B. Moment Evaluation

Next, the simplified quadratic model (3.51) will be used for fast moment
evaluation. Based on (3.51), a set of new random variables can be
defined:

gi = σi · y2
i + qi · yi

hl =
l∑

i=1

gi + C =
l∑

i=1

(
σi · y2

i + qi · yi

)
+ C.

(3.52)

Comparing (3.52) with (3.51), it is easy to verify that when l = N ,
hN = f . Instead of computing the high order moments of f directly,
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the binomial moment evaluation iteratively computes the moments of
{hl; l = 1,2, . . . ,N}, as shown in Algorithm 3.3.

Algorithm 3.3 binomial moment evaluation.

(1) Start from h0 = C and compute E(hk
0) = Ck for each k =

{0,1, . . . ,2M − 1}. Set l = 1.
(2) For each k = {0,1, . . . ,2M − 1}
(3) Compute:

E(gk
l ) = E[(σl · y2

l + ql · yl)k]

=
k∑

i=0

(
k

i

)
· σi

lq
k−i
l · E(yk+i

l ) (3.53)

E(hk
l ) = E[(hl−1 + gl)k]

=
k∑

i=0

(
k

i

)
· E(hi

l−1) · E(gk−i
l ). (3.54)

(4) End For.
(5) If l = N , then go to Step (6). Otherwise, l = l + 1 and return

Step (2).
(6) For each k = {0,1, . . . ,2M − 1}, E(fk) = E(hk

N ).

Step (3) in Algorithm 3.3 is the key operation required by the bino-
mial moment evaluation. In Step (3), both (3.53) and (3.54) utilize
the binomial theorem to calculate the binomial series. Therefore, this
algorithm is referred to as binomial moment evaluation. In (3.53), the
expected value E(yk+i

l ) can be easily evaluated using the closed-form
expression (3.48), since yl satisfies the standard Normal distribution
N(0,1). Equation (3.54) utilizes the property that hl−1 and gl are
independent, because hl−1 is a function of {yi; i = 1,2, . . . , l − 1}, gl

is a function of yl, and all {yi; i = 1,2, . . . ,N} are mutually indepen-
dent (see Theorem 3.5). Therefore, E(hi

l−1 · gk−i
l ) = E(hi

l−1) · E(gk−i
l ),

where the values of E(hi
l−1) and E(gk−i

l ) are already computed in the
previous steps.
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The main advantage of the binomial moment evaluation is that,
unlike the direct moment evaluation in (3.47), it does not explicitly
construct the high order polynomial f k. Therefore, unlike the direct
moment evaluation where the total number of product terms expo-
nentially increases with k, both E(gk

l ) in (3.53) and E(hk
l ) in (3.54)

contain at most 2M product terms. Since k = {0,1, . . . ,2M − 1} and
l = {0,1, . . . ,N} for an Mth order APEX approximation with N inde-
pendent random variables, the total number of E(gk

l ) and E(hk
l ) that

need to be computed isO(MN). In addition, the matrix diagonalization
in (3.49) is only required once and has a complexity of O(N3). There-
fore, the computational complexity of the aforementioned algorithm
is O(M2N) + O(N3). In most circuit-level applications, N is small
(around 5 ∼ 100) after principal component analysis, and selecting
M = 7 ∼ 10 provides sufficient accuracy for moment matching. With
these typical values of M and N , the binomial moment evaluation is
extremely fast, as is demonstrated in [52, 54].

It should be noted that as long as the circuit performance f is
approximated as the quadratic model in (3.12) and the process vari-
ations are jointly Normal, the binomial moment evaluation yields the
exact high order moment values (except for numerical errors). There
is no further assumption or approximation made by the algorithm. For
non-Normal process variations, however, the binominal moment evalu-
ation algorithm cannot be easily applied.

In summary, the binomial moment evaluation utilizes statistical
independence theory to efficiently compute the high order moments
that are required by the moment matching of APEX. Compared with
the direct moment evaluation in (3.46)–(3.48) whose computational
complexity is O(NM ), the binomial moment evaluation reduces the
complexity to O(M2N) + O(N3).

3.3.1.3 Reverse Evaluation

In many practical applications, such as robust circuit optimization, the
best-case performance (e.g., the 1% point on CDF) and the worst-case
performance (e.g., the 99% point on CDF) are two important metrics
of interest. As discussed in Section 3.3.1.1, APEX matches the first
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f0 
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Accurate for Estimating
the 99% Point 
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the 1% Point 

pdff(-f) pdff(f) 

Fig. 3.15 Illustration of the reverse evaluation.

2M Taylor expansion coefficients between the original characteristic
function Φ(ω) and the approximated rational function H(s). Recall
that a Taylor expansion is most accurate around the expansion point
ω = 0. According to the final value theorem of Laplace transform, accu-
rately approximating Φ(ω) at ω = 0 provides an accurate pdff (f) at
f → ∞. It, in turn, implies that the moment-matching approach can
accurately estimate the 99% point of the random distribution, as shown
in Figure 3.15.

The above analysis motivates us to apply a reverse evaluation
scheme for accurately estimating the 1% point. As shown in Figure 3.15,
the reverse evaluation flips the original pdff (f) to pdff (−f). The 1%
point of the original pdff (f) now becomes the 99% point of the flipped
pdff (−f) which can be accurately evaluated by APEX.

3.3.1.4 A Digital Circuit Example

To compare APEX with other traditional techniques, a physical imple-
mentation of the ISCAS’89 S27 benchmark circuit is created using a
commercial CMOS 90 nm process. Given a set of fixed gate sizes, the
longest path delay in the benchmark circuit (shown in Figure 3.10)
is a function of process variations. The probability distributions and
the correlation information of process variations are obtained from the
process design kit. After PCA, six principal factors are identified to
model these variations. As shown in Figure 3.11, to approximate the
delay variation, the response surface modeling error is 5.92% for linear
model and 1.39% for quadratic model (4.5× difference). It is worth not-
ing that while the linear modeling error in this example is not extremely
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Table 3.2 Computational cost for moment evaluation.

Direct Binomial
Moment order # of product Computational Computational

terms time (Sec.) time (Sec.)
1 28 1.00 × 10−2 0.01
3 924 3.02 × 100 0.01
5 8008 2.33 × 102 0.01
6 18564 1.57 × 103 0.01
7 38760 8.43 × 103 0.01
8 74613 3.73 × 104 0.02

10 — — 0.02
15 — — 0.04
20 — — 0.07

large, as IC technologies are scaled to finer feature sizes, process varia-
tions will become relatively larger, thereby making the nonlinear terms
in the quadratic model even more important.

Table 3.2 compares the computational cost for the traditional direct
moment evaluation and the binomial moment evaluation. During the
direct moment evaluation, the number of product terms increases expo-
nentially, thereby making the computation task quickly infeasible. The
binomial moment evaluation, however, is extremely fast and achieves
more than 106× speedup over the direct moment evaluation in this
example.

Figure 3.16 shows the cumulative distribution functions for two dif-
ferent approximation orders. In Figure 3.16, the “exact” cumulative
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Fig. 3.16 The approximated cumulative distribution function of delay.
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distribution function is evaluated by a Monte Carlo simulation with
106 samples. Note that the CDF obtained from the low order approx-
imation (Order = 4) is not accurate and contains numerical oscilla-
tions. However, once the approximation order is increased to 8, these
oscillations are eliminated and the approximated CDF asymptotically
approaches the exact CDF. Similar behavior has been noted in moment
matching of interconnect circuits [15, 87].

Table 3.3 compares the estimation accuracy and speed for four dif-
ferent probability extraction approaches: linear regression, Legendre
approximation, Monte Carlo simulation with 104 samples, and APEX.
The linear regression approach approximates the performance f by a
best-fitted linear model with least-squared error, resulting in a Normal
probability distribution for f . The Legendre approximation is often
utilized in traditional mathematics. It expands the unknown probabil-
ity density function by the Legendre polynomials and determines the
expansion coefficients based on moment matching.

The delay values at several specific points of the cumulative distribu-
tion function are estimated by these probability extraction techniques.
The 1% point and the 99% point, for example, denote the best-case
delay, and the worst-case delay respectively. After the cumulative dis-
tribution function is obtained, the best-case delay, the worst-case delay
and all other specific points on CDF can be easily found using a binary
search algorithm. These delay values are compared with the Monte
Carlo simulation results with 106 samples. Their relative difference is
used as a measure of the estimation error for accuracy comparison, as
shown in Table 3.3. The computational cost in Table 3.3 is the total

Table 3.3 Estimation error (compared against Monte Carlo with 106 samples) and compu-
tational cost.

Linear Legendre MC (104 Samples) APEX
1% Point 1.43% 0.87% 0.13% 0.04%
10% Point 4.63% 0.02% 0.22% 0.01%
25% Point 5.76% 0.12% 0.04% 0.03%
50% Point 6.24% 0.04% 0.13% 0.02%
75% Point 5.77% 0.03% 0.26% 0.02%
90% Point 4.53% 0.15% 0.38% 0.03%
99% Point 0.18% 0.77% 0.86% 0.09%
Cost (Sec.) 0.04 0.16 1.56 0.18
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computational time for estimating the unknown probability density
function (PDF) and cumulative distribution function (CDF).

Note from Table 3.3 that the linear regression approach has the
largest error. APEX achieves a speedup of 8.7× over the Monte Carlo
simulation with 104 samples, while still providing better accuracy. In
this example, applying reverse evaluation on pdff (−f) reduces the 1%
point estimation error by 4×, from 0.20% to 0.04%. This observation
demonstrates the efficacy of the reverse evaluation method described
in 3.3.1.3.

In summary, we describe an asymptotic probability extraction
(APEX) method for estimating the non-Normal random distribu-
tion resulting from quadratic response surface modeling. Applying
APEX results in better accuracy than a Monte Carlo simula-
tion with 104 samples and achieves up to 10× more efficiency. In
Sections 3.3.3 and 3.3.4, we will further discuss how to utilize APEX
as a fundamental tool to solve various parametric yield estimation
problems.

3.3.2 Convolution-Based Probability Extraction

In addition to APEX, an alternative approach for probability extraction
is based on numerical convolution [125]. In this sub-section, we first
show the mathematic formulation of the convolution-based technique,
and then compare these two methods (i.e., APEX vs. convolution) in
Section 3.3.2.2.

3.3.2.1 Mathematic Formulation

Given the diagonalized quadratic model in (3.51) and the quadratic
functions {gi; i = 1,2, . . . ,N} defined in (3.52), the performance f can
be expressed as a linear function of {gi; i = 1,2, . . . ,N} and the constant
term C:

f(g1,g2, . . . ,gN ) =
N∑

i=1

gi + C. (3.55)
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The quadratic functions {gi; i = 1,2, . . . ,N} in (3.52) can be re-written
as the form of

gi = ai · (yi + bi)2 + ci, (3.56)

where

ai = σi bi =
qi
2σi

ci = − q2i
4σi

. (3.57)

Since the random variable yi satisfies the standard Normal distribu-
tion N(0,1), the probability density function of gi can be analytically
calculated [125]:

pdfgi
(gi) =




0 (ai > 0, gi < ci)

exp
{

−
[√

(gi−ci)/ai−bi

]2/
2
}

+exp
{

−
[√

(gi−ci)/a+bi

]2/
2
}

2·
√

2π·ai·(gi−ci)
(ai > 0, gi ≥ ci)

(3.58)

pdfgi
(gi) =




exp
{

−
[√

(gi−ci)/ai−bi

]2/
2
}

+exp
{

−
[√

(gi−ci)/a+bi

]2/
2
}

2·
√

2π·ai·(gi−ci)
(ai > 0, gi ≤ ci)

0 (ai < 0, gi > ci)

(3.59)
In addition, {gi; i = 1,2, . . . ,N} are mutually independent, because
{yi; i = 1,2, . . . ,N} are mutually independent (see Theorem 3.5) and
gi is a function of yi. Therefore, the probability density function of f
is determined by

pdff (f) = pdfg1
(f − C) ⊗ pdfg2

(f − C) ⊗ ·· · ⊗ pdfgN
(f − C),

(3.60)
where ⊗ denotes the operator of convolution, i.e.,

f(t) ⊗ g(t) =
∫ +∞

−∞
f(t − τ) · g(τ) · dτ. (3.61)

Note that the probability density function in (3.60) is shifted by the
constant term C of the performance function (3.55). The convolutions
in (3.60) can be computed by multiple, one-dimensional numerical inte-
grations [125].
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3.3.2.2 APEX vs. Convolution

For a practical application, either APEX or the convolution-based
approach could be applied for probability extraction. There are two
general factors that one should consider when comparing these two
algorithms.

First, the convolution-based approach can be difficult to apply, if
the variances of {gi; i = 1,2, . . . ,N} in (3.56) are widely spread. In such
cases, some of the gi’s have narrow probability distributions, while the
others have wide probability distributions, thereby making the numeri-
cal convolution (3.60) difficult to compute. Second, APEX is most suit-
able for estimating the extreme values of a probability distribution, i.e.,
the best-case and worst-case performance values. The reverse evalua-
tion method discussed in Section 3.3.1.3 should be selectively applied,
depending on the distribution tail of interest. APEX, however, cannot
produce accurate results for both distribution tails simultaneously. For
this reason, the convolution-based approach is preferable, if one wants
to estimate the complete probability density function including both
tails.

3.3.3 Multiple Performance Constraints with Normal
Distributions

The aforementioned algorithms can only be applied to a single per-
formance metric, while the parametric yield value of most analog,
digital and mixed-signal circuits is defined by multiple performance
constraints. For example, a simple analog operational amplifier typ-
ically has more than ten performance metrics, including gain, band-
width, power, phase margin, gain margin, output swing, slew rate,
common-mode rejection ratio, common-mode input range, etc. For
most digital circuits, delay and power (both dynamic power and leak-
age power) are two most important performance metrics. Therefore,
the final parametric yield cannot be simply determined by a single per-
formance constraint; instead, it depends on multiple performance con-
straints. Similar to (3.30), all performance constraints can be expressed
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as the following standard form

fk(X) ≤ 0 (k = 1,2, . . . ,K), (3.62)

where fk is the kth performance of interest, X = [x1 x2, . . . ,xN ]T repre-
sents the random variables to model process variations, K is the total
number of performance constraints, and N is the total number of ran-
dom process variations.

Given the performance constraints in (3.62), the parametric yield is
determined by

Yield = P (f1 ≤ 0 & f2 ≤ 0 & · · · & fK ≤ 0), (3.63)

where P (•) denotes the probability. The probability in (3.63) depends
on all performance distributions as well as their correlations. The fol-
lowing simple example demonstrates why performance correlations play
an important role here.

Consider two performance metrics f1 and f2, and assume that both
of them satisfy the standard Normal distribution N(0,1) (i.e., zero
mean and unit variance). Substituting K = 2 into (3.63) yields:

Yield = P (f1 ≤ 0 & f2 ≤ 0). (3.64)

To demonstrate the importance of correlation, we consider two extreme
cases. First, if f1 and f2 are fully correlated, the parametric yield is

Yield = P (f1 ≤ 0) = P (f2 ≤ 0) = 0.5. (3.65)

The probability in (3.65) is equal to 0.5, because both f1 and f2 are
standard Normal distributions. On the other hand, if f1 and f2 are
mutually independent, we have:

Yield = P (f1 ≤ 0) · P (f2 ≤ 0) = 0.25. (3.66)

Comparing (3.65) and (3.66), we notice that different correlation val-
ues result in completely different parametric yield values in this exam-
ple. In practical applications, multiple performance metrics may be
neither fully correlated nor mutually independent, rendering a challeng-
ing parametric yield estimation problem. Next, we review several tech-
niques that address this yield estimation problem. In this sub-section,
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we assume that all performance functions are approximated as linear
response surface models and, therefore, all performance distributions
are Normal. More complicated cases where performance distributions
are non-Normal will be discussed in Section 3.3.4.

Given the linear response surface models for all performances of
interest:

fk(X) = BT
k X + Ck (k = 1,2, . . . ,K), (3.67)

where Bk ∈ RN and Ck ∈ R are the linear model coefficients for
the kth performance function, the parametric yield in (3.63) can be
expressed as:

Yield = P (BT
1 X + C1 ≤ 0 & BT

2 X + C2 ≤ 0

& · · · & BT
KX + CK ≤ 0). (3.68)

Define the feasible space as:

F =
{
X|BT

k X + Ck ≤ 0 (k = 1,2, . . . ,K)
}
. (3.69)

The feasible space in (3.69) is a polytope, since all performance models
are linear. The parametric yield in (3.68) is equal to the integral of the
probability density function pdfX(X) over the feasible space:

Yield =
∫

F
pdfX(X) · dX. (3.70)

The integral in (3.70) is N -dimensional. Accurately calculating it
by numerical integration can be extremely expensive, if N is large.
One practical approach is to compute the parametric yield in (3.70)
by Monte Carlo simulation. Details on Monte Carlo analysis can be
found in Section 3.1. Other than Monte Carlo analysis, an alternative
approach is to approximate the feasible space in (3.69) as an ellip-
soid (either the maximal inscribed ellipsoid shown in Figure 3.17(a)
or the minimal circumscribed ellipsoid shown in Figure 3.17(b)) and
then integrate the multi-dimensional probability density function over
the approximated ellipsoid. Such an ellipsoid approximation has been
widely used in both analog and digital applications [1, 6, 45, 99, 117].
Next, we will discuss the ellipsoid approximation technique in detail.
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x1

x2

x1

x2

(a) (b)

Fig. 3.17 Approximate the feasible space by an ellipsoid for parametric yield estimation.
(a) Maximal inscribed ellipsoid yields the lower bound of parametric yield. (b) Minimal
circumscribed ellipsoid yields the upper bound of parametric yield.

3.3.3.1 Maximal Inscribed Ellipsoid

An ellipsoid in the N -dimensional space can be defined as [13]:

Ω = {X = W · u + d|‖u‖2 ≤ 1} , (3.71)

where u ∈ RN and d ∈ RN are N -dimensional vectors and W ∈ RN×N

is an N -by-N symmetric, positive definite matrix. Substituting (3.71)
into (3.69) yields:

sup
‖u‖2≤1

(BT
k · W · u + BT

k · d + Ck) = ‖W · Bk‖2 + BT
k · d + Ck ≤ 0

(k = 1,2, . . . ,K), (3.72)

where sup(•) denotes the supremum (i.e., the least upper bound) of a
set. In addition, it can be shown that the volume of the ellipsoid in
(3.71) is proportional to det(W ) [13], where det(•) denotes the deter-
minant of a matrix. Therefore, finding the maximal inscribed ellipsoid
can be formulated as the following optimization problem:

maximize log[det(W )]
subject to ‖W · Bk‖2 + BT

k · d + Ck ≤ 0 (k = 1,2, . . . ,K).
(3.73)

The nonlinear optimization in (3.73) attempts to find the optimal
values of W and d such that the ellipsoid in (3.71) has the maximal
volume.
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Each nonlinear constraint in (3.73) consists of two parts: (1) the
matrix norm ||W · Bk||2 and (2) the linear function BT

k · d + Ck. Both
the matrix norm and the linear function are convex [13], and the non-
negative weighted sum of these two convex functions remains convex
[13]. For this reason, each nonlinear constraint in (3.73) is a sub-level
set of a convex function, which is a convex set. The final constraint set is
the intersection of all convex sub-level sets and, therefore, is convex. In
addition, by taking the log transformation of the determinant det(W ),
the cost function in (3.73) is concave [13]. Based on these observations,
the optimization in (3.73) is a convex programming problem, since it
maximizes a concave function over a convex constraint set. Several
robust and efficient algorithms for solving (3.73) can be found in [13].

As shown in Figure 3.17(a), the maximal inscribed ellipsoid does
not cover the entire feasible space. Therefore, the yield value estimated
from the maximal inscribed ellipsoid is a lower bound of the actual
parametric yield.

3.3.3.2 Minimal Circumscribed Ellipsoid

Another way to define an N -dimensional ellipsoid is in the form of [13]:

Ω =
{
X|‖WX + d‖2

2 ≤ 1
}
, (3.74)

where d ∈ RN is an N -dimensional vector and W ∈ RN×N is an
N -by-N symmetric, positive definite matrix. To guarantee that a poly-
tope is located inside an ellipsoid, it is necessary and sufficient to
force all vertexes of the polytope in the ellipsoid. In addition, it can
be shown that the volume of the ellipsoid in (3.74) is proportional to
det(W−1) [13]. Therefore, if the polytope in (3.69) has a set of vertexes
{Xi; i = 1,2, . . . ,S} where S is the total number of vertexes, finding
the minimal circumscribed ellipsoid can be formulated as the following
optimization problem:

minimize log[det(W−1)]

subject to ‖WXi + d‖2
2 ≤ 1 (i = 1,2, . . . ,S).

(3.75)

The nonlinear optimization in (3.75) attempts to find the optimal val-
ues ofW and d such that the ellipsoid in (3.74) has the minimal volume.
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Each nonlinear constraint in (3.75) is a positive, semi-definite
quadratic function which is convex. The final constraint set is the inter-
section of all convex sub-level sets and, therefore, is convex. In addition,
by taking the log transformation of the determinant det(W–1), the cost
function in (3.75) is convex [13]. For these reasons, the optimization in
(3.75) is a convex programming problem and it can be solved robustly
and efficiently by various algorithms [13].

As shown in Figure 3.17(b), the feasible space does not cover the
entire minimal circumscribed ellipsoid. Therefore, the yield value esti-
mated from the minimal circumscribed ellipsoid is an upper bound of
the actual parametric yield.

3.3.3.3 Parametric Yield Estimation over Ellipsoid

Once the feasible space is approximated as an ellipsoid (either the max-
imal inscribed ellipsoid in Section 3.3.3.1 or the minimal circumscribed
ellipsoid in Section 3.3.3.2), the next important step is to integrate the
probability density function pdfX(X) over the approximated ellipsoid
for yield estimation:

Yield =
∫

Ω
pdfX(X) · dX. (3.76)

Again, directly computing the multi-dimensional integral in (3.76) is
not trivial. However, the integration problem in (3.76) can be converted
to a probability extraction problem that is easy to solve.

The ellipsoid representations in (3.71) and (3.74) can be, respec-
tively, converted to the form of:{

X = W · u + d

‖u‖2 ≤ 1
⇒
{
u = W−1 · (X − d)
uTu ≤ 1

⇒ (X − d)T · (W−1)TW−1 · (X − d) ≤ 1

⇒ XT · (W−1)TW−1 · X − 2 · dT · (W−1)TW−1

·X + dT · (W−1)TW−1 · d ≤ 1 (3.77)

‖WX + d‖2
2 ≤ 1 ⇒ (WX + d)T · (WX + d) ≤ 1

⇒ XT · W TW · X + 2dT · W TW

·X + dT · W TW · d ≤ 1. (3.78)
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In other words, both ellipsoids can be represented by the following
standard form:

f(X) = XTAX + BTX + C ≤ 1. (3.79)

The function f(X) in (3.79) is quadratic. The parametric yield in
(3.76) is equal to the probability:

Yield = P (f ≤ 1) = cdff (f = 1). (3.80)

Given the quadratic function f(X) in (3.79), its cumulative distribution
function cdff (f) can be extracted using either APEX (Section 3.3.1) or
the convolution-based technique (Section 3.3.2). After that, the yield
value in (3.80) can be easily calculated.

In summary, given a set of performance constraints that are approx-
imated as linear response surface models, the aforementioned ellipsoid
technique approximates the feasible space (i.e., a polytope) by a max-
imal inscribed ellipsoid or a minimal circumscribe ellipsoid, as shown
in Figure 3.17. As such, the lower bound or the upper bound of the
parametric yield can be easily estimated.

3.3.4 Multiple Performance Constraints with Non-Normal
Distributions

If the performance functions are approximated as quadratic response
surface models, the parametric yield estimation problem becomes much
more difficult. Unlike the linear modeling case where the feasible space
is a convex polytope, the quadratic mapping between the perfor-
mance of interest and the random process parameters makes the feasible
space much more complicated. In general, when quadratic response sur-
face models are applied, the feasible space may be non-convex or even
discontinuous. Therefore, the ellipsoid approximation in Section 3.3.3
is no longer applicable.

In this sub-section, we describe a MAX(•) approximation technique
for efficient parametric yield estimation of multiple correlated non-
Normal performance distributions [55]. The key idea is to conceptually
map multiple performance constraints to a single auxiliary constraint
using MAX(•) operations. Given a number of performance constraints
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in (3.62), we define the additional auxiliary constraint as

faux(X) = MAX[f1(X),f2(X), . . . ,fK(X)]. (3.81)

It is straightforward to verify that the parametric yield in (3.63) can
be uniquely determined by the auxiliary constraint, i.e.,

Yield = P [faux(X) ≤ 0]. (3.82)

Even if all performance functions {fk(X); k = 1,2, . . . ,K} are
approximated as quadratic response surface models, the auxiliary con-
straint in (3.81) is not necessarily quadratic, due to the nonlinearity
of the MAX(•) operator. However, it is possible to approximate the
auxiliary constraint faux as a quadratic function of X. Such a MAX(•)
approximation problem was widely studied for statistical static timing
analysis [18, 19, 23, 113, 115, 124], and it has recently been tuned for
analog/RF applications in [55]. Various algorithms for MAX(•) approx-
imation are available and they will be discussed in detail in Chapter 4.

Once the auxiliary constraint in (3.81) is approximated as a
quadratic function, its cumulative distribution function can be easily
estimated using either APEX (Section 3.3.1) or the convolution-based
technique (Section 3.3.2) to calculate the parametric yield in (3.82).

Next, we will use the low noise amplifier in Figure 3.4 as an exam-
ple to demonstrate the efficacy of the aforementioned parametric yield
estimation algorithm. The performance of the low noise amplifier is
characterized by 8 specifications, as shown in Table 3.1. For testing
and comparison purpose, we randomly select 100 sets of different spec-
ification values and the parametric yield is estimated for each set of
these specifications. Figure 3.18 compares the yield estimation accuracy
for two different approaches: the traditional linear approximation and
the quadratic approximation. The parametric yield values estimated by
both techniques are compared against the Monte Carlo analysis results
with 104 random samples. Their absolute difference is used as a measure
of the estimation error for accuracy comparison.

As shown in Figure 3.18, the traditional linear approximation can-
not accurately capture the parametric yield of the low noise ampli-
fier and the maximal absolute yield estimation error reaches 11%. The
quadratic approximation achieves much better accuracy and it reduces
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Fig. 3.18 Absolute parametric yield estimation error for low noise amplifier.

the maximal error to 5%. On average, the quadratic approximation
is 3× more accurate than the traditional linear approximation in this
example.

3.4 Statistical Transistor-Level Optimization

The analysis techniques described in the previous sub-sections eventu-
ally facilitate statistical transistor-level optimization in the presence of
large-scale process variations. In this sub-section, we focus on the opti-
mization problems for analog, digital and mixed-signal circuits. The
techniques described in this sub-section mainly target for circuit-level
blocks, e.g., operational amplifier (analog), flip–flop (digital), sense
amplifier (memory), etc., although several of these algorithms have
been successfully applied to large-scale integrated systems (e.g., analog-
to-digital converters, phase-locked loop, etc.) that consist of a large
number of transistors.

The purpose of statistical optimization is to improve paramet-
ric yield. It takes a fixed circuit topology as input, statistically pre-
dicts random performance distributions, and optimizes the device sizes
to leave sufficient and necessary performance margins to accommo-
date large-scale process variations. In what follows, we first briefly
review several nominal and corner-based transistor-level optimization
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techniques and explain their limitations in Section 3.4.1. Next, we
extend our discussions to statistical transistor-level optimization in Sec-
tion 3.4.2 and show a two-step statistical transistor-level optimization
flow in Section 3.4.3.

3.4.1 Nominal and Corner-Based Transistor-Level
Optimization

Most algorithms for transistor-level optimization fall into one of
the following two categories: equation-based optimization [21, 31,
37, 41, 43, 44, 47, 62, 96, 114], and simulation-based optimization
[32, 39, 49, 50, 74, 85, 88, 107]. The equation-based approaches
utilize analytic performance models, where each circuit-level perfor-
mance (e.g. gain, bandwidth, etc.) is approximated as an analytical
function of design variables (e.g. transistor sizes, bias current, etc.).
These analytical models can be manually derived by hand analysis
[21, 31, 41, 43, 44, 47, 62, 96, 114], or automatically generated by
symbolic analysis [37]. The equation-based optimization is extremely
fast; however it only offers limited accuracy since generating analytic
equations for complicated performance metrics (e.g., nonlinear distor-
tion) is not trivial and requires various simplifications that ignore
many non-idealities. In contrast, the simulation-based methods run
numerical simulations to measure circuit performance. They are much
more accurate, but also much more expensive, than the equation-based
approaches. Note that achieving high accuracy for performance evalu-
ation is extremely important for statistical optimization. The process
variations in today’s IC technologies typically introduce 20% ∼ 30%
variations on circuit performance. If the performance evaluation error
is not sufficiently smaller than this value, the parametric yield cannot
be accurately predicted and optimized. A detailed review on transistor-
level optimization can be found in [36].

Nominal transistor-level optimization typically minimizes a cost
function (e.g., power) by pushing many other performance constraints
to their boundaries. Therefore, a nominally-optimized design can eas-
ily violate a number of performance specifications, if process variations
are considered, as shown in Figure 3.19. Most importantly, nominal
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Fig. 3.19 Nominal optimization pushes performance to specification boundary, corner-based
optimization often results in significant over-design, and statistical optimization leaves suf-
ficient and necessary performance margin to accommodate process variations.

optimization often results in unstable bias condition for analog circuits
and, therefore, makes the optimized circuits extremely sensitive to pro-
cess variations. This issue can be intuitively explained by the following
simple example.

Figure 3.20 shows the circuit schematic of a simple common-source
amplifier that consists of three devices: the NMOS transistor M , the
resistor R, and the capacitor C. Assume that we are interested in the
following optimization problem for this amplifier circuit:

minimize Power
subject to Gain ≥ 10.

(3.83)

R C

M

Fig. 3.20 Circuit schematic of a common-source amplifier.
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It is easy to verify that the performances Power and Gain can be
approximated by the first-order analytical equations [91]:

Power = VDD · IB
Gain =

2 · IB · R
VGS − VTH

(3.84)

where VDD denotes the power supply voltage, IB represents the bias
current, and VGS is the gate-to-source voltage of the NMOS transistor.
Substituting (3.84) into (3.83) yields:

minimize VDD · IB
subject to

2 · IB · R
VGS − VTH

≥ 10.
(3.85)

Studying (3.85), one would notice that the bias current IB must be
minimized to reduce power. Meanwhile, as IB is decreased, VGS − VTH

must be minimized to satisfy the gain requirement. The nominal opti-
mization, therefore, results in the bias condition:

VGS ≈ VTH. (3.86)

In other words, the NMOS transistor sits on the boundary between
“on” and “off.” In this case, a small increase in VTH due to process
variations can turn the transistor off and make the amplifier fail to
operate.

Based on these observations, nominal circuit optimization may fail
to set up a robust bias condition for analog circuits. Although the
bias condition is not explicitly defined as a performance specification,
it is extremely important to maintain the correct functionality of a
analog circuit and, therefore, is referred to as the implicit, topology-
given constraints in [32, 107]. The design space where all topology-
given constraints are satisfied is called the feasible region. It is a small
subset of the global analog design space, as shown in Figure 3.21. It
is observed that, in many practical applications, analog design space
is weakly nonlinear in feasible region [39, 107], while the global analog
design space is strongly nonlinear and contains many local minima.

To overcome the aforementioned limitation of nominal optimiza-
tion, corner-based optimization has often been utilized [21, 31, 32,
39, 41, 43, 44, 47, 49, 50, 62, 74, 85, 88, 96, 107, 114]. It optimizes
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Global Analog Design Space (Strongly Nonlinear)

Feasible Region
(Weakly Nonlinear)

Design Space 
Satisfying Spec

Fig. 3.21 Feasible region in analog design space.

the circuit at all process corners by combining the extreme values
of all process parameters. However, the corner-based approach suf-
fers from the problem that the total number of corners increases
exponentially with the number of independent process parameters.
For this reason, device mismatches cannot be efficiently handled by
the corner-based methodology. Furthermore, it is not guaranteed that
the worst-case performance will occur at one of these corners. As
discussed in Chapter 2, the realistic worst-case performance corner
is topology-dependent and performance-dependent. Simply combining
the extreme values of independent process parameters is pessimistic,
because it is unlikely for all process parameters to reach their worst-
case values simultaneously. Therefore, corner-based optimization often
results in significant over-design in practical applications, as shown in
Figure 3.19.

3.4.2 Statistical Transistor-Level Optimization

During the past two decades, many statistical techniques have been
proposed to address the large-scale process variation problem for inte-
grated circuit design. The objective of these statistical methodologies
is to accurately predict random performance distributions and then
optimize the device sizes to leave sufficient and necessary performance
margins to accommodate process variations. In other words, these sta-
tistical optimization methods attempt to improve parametric yield
while simultaneously reducing design pessimism (i.e., over-design), as
shown in Figure 3.19.
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Most statistical transistor-level optimization techniques can be
classified into four broad categories: (1) direct yield optimization
[29, 30, 97, 116], (2) worst-case optimization [24, 28, 51, 58], (3) design
centering [1, 6, 99, 117], and (4) infinite programming [67, 122].

The direct yield optimization methods [29, 30, 97, 116] search the
design space and estimate the parametric yield for each design point by
either numerical integration or Monte Carlo analysis. The design point
with maximal parametric yield is then selected as the final optimal
result. In many practical applications, estimating the exact parametric
yield is often expensive. It, in turn, motivates the development of many
other statistical optimization techniques that attempt to approximate
the actual parametric yield by various simplifications.

The worst-case optimization approaches [28, 24, 51, 58] optimize
the worst-case circuit performances, instead of nominal performances,
over all process variations. For example, the worst-case optimization
for a digital circuit block may have the form of:

minimize PowerWC

subject to DelayWC ≤ 100ps,
(3.87)

where PowerWC and DelayWC denote the worst-case power and delay,
respectively. These worst-case performance values are defined as the
tails of the corresponding probability density functions (PDF), e.g.,
the 99% point of the cumulative distribution function (CDF) for the
performance Delay in (3.87), as shown in Figure 3.22.

It should be noted that parametric yield cannot be uniquely deter-
mined by worst-case performance values. As shown in (3.63) and dis-
cussed in Section 3.3.3, parametric yield must be determined by all
performance distributions as well as their correlations. While the worst-
case optimization fully considers the random performance distributions,
it completely ignores the correlations between different performance
metrics. In general, given the performance constraints in (3.62) and
the parametric yield definition in (3.63), we have:

Yield = P (f1 ≤ 0 & f2 ≤ 0 · · · fK ≤ 0) ≤ P (fk ≤ 0)

(k = 1,2, . . . ,K). (3.88)
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Fig. 3.22 Definition of the worst-case delay.

Namely, the worst-case optimization can only guarantee a yield upper
bound and the actual parametric yield may be smaller.

The design centering approaches [1, 6, 99, 117] attempt to find
the optimal design that is furthest away from all constraint bound-
aries and is therefore least sensitive to process variations. In design
centering, the robustness of a design is assessed by the volume of
the approximated ellipsoid shown in Figure 3.17. The design yield-
ing maximal ellipsoid volume is selected as the final optimal result.
As discussed in Section 3.3.3, the approximated ellipsoid estimates
either the lower bound (for maximal inscribed ellipsoid) or the upper
bound (for minimal circumscribed ellipsoid) of the actual parameter
yield.

The infinite programming methods [67, 122] formulate the circuit
optimization problem as a nonlinear infinite programming where the
cost function and/or the constraints are defined over an infinite set
covering process variations. The first step for such an infinite program-
ming is to define an infinite set Ω to cover the random variation space
with a given confidence level ξ, i.e.,

P (X ∈ Ω) = ζ, (3.89)
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x1

x2

Fig. 3.23 x1 and x2 are independent and satisfy the standard Normal distribution N(0,1).
The values of x1 and x2 are most likely to fall in the two-dimensional ball.

where P (•) denotes the probability and X = [x1,x2, . . . ,xN ]T are the
random variables to model process variations. For the special case
where all random variables in X are mutually independent and sat-
isfy the standard Normal distribution N(0,1), the set Ω in (3.89) is an
N -dimensional ball and its radius is determined by the confidence level
ξ, as shown in Figure 3.23.

The infinite programming techniques attempt to minimize one cost
function while simultaneously satisfying all performance constraints
over the infinite set Ω. Taking the simple digital circuit application
in (3.87) as an example, the infinite programming can be formulated as

minimize Power
subject to sup

X∈Ω
(Delay) ≤ 100ps, (3.90)

where sup(•) denotes the supremum (i.e., the least upper bound) of
a set. Since the constraints of (3.90) are defined over an infinite set,
implying that the number of constraints is infinite, the optimization
in (3.90) is referred to as the infinite programming in mathematics.
Given the confidence level in (3.89) and the optimization formulation
in (3.90), it is easy to verify that ξ is the lower bound of the parametric
yield, if a feasible solution can be found for (3.90).
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3.4.3 A Two-Step Robust Design Flow

It is important to note that statistical transistor-level optimization for
analog circuits should not take a nominally-optimized design as the ini-
tial starting point. As discussed in Section 3.4.1, a nominally optimized
analog circuit does not have a stable bias condition and, therefore, the
design space is strongly nonlinear and contains many local minima
in the neighborhood. For this reason, starting from a nominally opti-
mized analog circuit, the statistical optimization may easily get stuck
at one of the local minima. In this sub-section, we will show a two-step
optimization flow to achieve robust transistor-level design for practical
applications.

The robust design flow described in this sub-section is facilitated
by a combination of equation-based optimization and simulation-based
optimization. The entire design flow consists of two steps. First, an ini-
tial design is created by the performance centering algorithm [59] based
on analytical design equations. The performance centering method is
a special design centering technique that can be applied to topology
selection at the earlier design stages. Simplified device and parasitic
models are utilized in this step to simplify design equations and speed
up nonlinear optimization. This first-step optimization provides a rapid
but coarse search over the global design space and finds a robust initial
design sitting in the feasible region.

Next, in the second step, taking the robust initial design as the
starting point, a robust analog/digital optimization algorithm (ROAD
[51, 58]) is applied with detailed device/parasitic/variation models to
perform a more fine-grained search and to optimize the worst-case cir-
cuit performance considering large-scale process variations. ROAD is a
special worst-case optimization tool that falls in the same category as
[24, 28].

3.4.3.1 Performance Centering

The objective of performance centering is to accomplish two important
tasks: (1) optimally compare and select circuit topologies for a given set
of design specifications; (2) quickly search the global design space and
create a robust initial design for further post-tuning. In other words,
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performance centering attempts to quickly search the global design
space and then create an initial design that can be used for detailed
implementation in the later design stages. For this purpose, equation-
based performance models are utilized in order to make the global
search problem tractable.

Many research works [21, 31, 41, 43, 44, 47, 62, 96], have demon-
strated that most circuit-level performance specifications can be cast
as posynomial functions. The performances of interest include both
explicit constraints (e.g., gain, delay, etc.) and implicit constraints
(related to bias conditions [39, 107]). Let Z = [z1,z2, . . . ,zM ]T be M
real and positive design variables (e.g., bias current, transistor sizes,
etc.). A function f is called posynomial if it has the form of

f(Z) =
∑

i

ciz
α1i
1 zα2i

2 · · ·zαNi
M , (3.91)

where ci ∈ R+ and αij ∈ R. Note that the coefficients ci must be non-
negative, but the exponents αij ’s can be real values. If all performance
metrics are approximated as posynomial functions, circuit sizing can
be formulated as a geometric programming problem:

minimize f0(Z)
subject to fk(Z) ≤ 1 (k = 1, . . . ,K)

zm > 0 (m = 1, . . . ,M),
(3.92)

where f0,f1, . . . ,fK are normalized circuit performance metrics and
they are approximated as posynomial functions. The standard formu-
lation in (3.92) is ready to handle several extensions. For example,
a performance specification f(Z) ≥ 1 can be written as 1/f(Z) ≤ 1,
if 1/f(Z) can be approximated as a posynomial function [42]. The
geometric programming problem in (3.92) attempts to find the opti-
mal value of Z that minimizes f0 while satisfying all other constraints
{fk(Z) ≤ 1; k = 1,2, . . . ,K} and {zm > 0; m = 1,2, . . . ,M}. The opti-
mization in (3.92) can be converted to a convex programming problem
and solved in an extremely efficient way [13].

It should be noted, however, the posynomial models in (3.91) and
(3.92) may be inaccurate since they are derived from simplified device
models and circuit equations. The modeling error must be properly
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Fig. 3.24 Illustration of performance centering with two performance specifications q1
and q2.

considered within the optimization flow. For this purpose, a perfor-
mance centering approach is developed in [59] for initial global sizing.
The performance centering approach is derived from the traditional
design centering methods [1, 6, 99, 117]. It attempts to center the design
within the performance space and maximize the inscribed ellipsoid con-
strained by all performance boundaries, as shown in Figure 3.24. Impor-
tantly, the performance centering approach simultaneously maximizes
the design margin for all performance constraints such that the result-
ing ellipsoid volume represents a quality measure for a given circuit
topology. For example, since the models are known to be imprecise, a
small ellipsoid volume indicates that the performance specifications will
probably not be achievable in silicon. This ellipsoid volume, therefore,
can be used as a criterion for topology selection at the earlier design
stages.

Without loss of generality, we normalize all posynomial performance
constraints:

fk(Z) ≤ 1 (k = 1, . . . ,K), (3.93)

where {fk(Z); k = 1,2, . . . ,K} are posynomials and K is the total num-
ber of performance constraints. It should be noted that the formulation
in (3.93) is substantially different from the form in (3.62). First, the
performance constraints in (3.93) are represented as functions of the
design variables Z (for circuit optimization), while those in (3.62) are
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functions of the random process variations X (for parametric yield
estimation). Second, Equation (3.93) contains both explicit constraints
(e.g., gain, delay, etc.) and implicit constraints (related to bias condi-
tions [39], [107]), in order to prevent the optimization from converging
to an unstable bias condition. In (3.62), however, the parametric yield
is determined by explicit constraints only.

Given (3.93), the performance centering problem can be formu-
lated as

maximize ε1 · ε2 · · ·εK

subject to εk = 1 − fk(Z) (k = 1,2, . . . ,K)
εk > 0 (k = 1,2, . . . ,K)
zm > 0 (m = 1,2, . . . ,M).

(3.94)

where {εk; k = 1,2, . . . ,K} are a set of variables that represent the
lengths of the ellipsoid axes (see Figure 3.24). The optimization in
(3.94) solves the optimal values of {εk; k = 1,2, . . . ,K} and {zm; m =
1,2, . . . ,M} by maximizing the ellipsoid volume ε1 · ε2 · · ·εK . Such an
optimization can also be generalized to use other cost functions to
measure the ellipsoid size, e.g. ε21 + ε22 + · · · + ε2K .

The optimization problem in (3.94) does not match the standard
geometric programming form in (3.92), since it maximizes a posynomial
cost function with multiple posynomial equality constraints. However,
Equation (3.94) can be equivalently converted to:

minimize ε−1
1 · ε−1

2 · · ·ε−1
K

subject to fk(Z) + εk ≤ 1 (k = 1,2, . . . ,K)
εk > 0 (k = 1,2, . . . ,K)
zm > 0 (m = 1,2, . . . ,M).

(3.95)

Comparing (3.94) and (3.95), we note that maximizing the cost function
ε1 · ε2 · · ·εK in (3.94) is equivalent to minimizing the cost function ε−1

1 ·
ε−1
2 · · ·ε−1

K in (3.95). In addition, since maximizing ε1 · ε2 · · ·εK always
pushes all {εk; k = 1,2, . . . ,K} to their maximal values, the inequal-
ity constraints {fk(Z) + εk ≤ 1; k = 1,2, . . . ,K} in (3.95) will become
active, i.e. reach {qk(X) + εk = 1; k = 1,2, . . . ,K}, after the optimiza-
tion. According to these observations, we conclude that the optimiza-
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tion problems in (3.94) and (3.95) are equivalent. This conclusion can
be formally proven by using the Karush–Kuhn–Tucker optimality con-
dition in optimization theory [9].

Equation (3.95) is a geometric programming problem and, there-
fore, can be solved efficiently. Solving the optimization in (3.95) yields:
(1) the maximal ellipsoid volume in the performance space that can be
used as a criterion to compare different circuit topologies and (2) the
initial values for all design variables that can be used as the starting
point for further detailed sizing.

Shown in Figure 3.25 are the circuit schematics of two operational
amplifiers (Op Amp). As an example, our design objective is to select
the optimal circuit topology from Figure 3.25(a) and Figure 3.25(b) for
the performance specifications in Table 3.4. Both operational amplifiers
are implemented with a commercial BiCMOS 0.25µm process in this
example.

We construct the posynomial performance models for both oper-
ational amplifiers, and formulate the performance centering problem
as (3.95). The details of the design equations can be found in [42].
Given these posynomial equations, the performance centering problem
in (3.95) can be efficiently solved using geometric programming, tak-
ing 1 ∼ 2 seconds for this amplifier design example on a SUN – 1 GHz
server.

(a) (b)

Fig. 3.25 Circuit schematics of two operational amplifiers. (a) A simple two-stage opera-
tional amplifier. (b) A folded-cascode two-stage operational amplifier.
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Table 3.4 Design specifications for operational amplifier.

Performance Specification
VDD (V) = 2.5
Gain (dB) ≥ 100
UGF (MHz) ≥ 10
Phase Margin (degree) ≥ 60
Slew Rate (V/µs) ≥ 20
Swing (V) ≥ 0.5
Power (mW) ≤ 20

Figure 3.26 compares the operational amplifier topologies in terms
of the maximized ellipsoid volume in the performance space. As we
would expect, the two-stage folded-cascode topology is better than the
simple two-stage topology when the power supply voltage is sufficiently
high to provide the necessary voltage headroom. In this example, we
find that a sufficient voltage is 2.5 V, whereas, the folded-cascode topol-
ogy appears to be inferior to the simple two-stage topology once the
supply voltage is dropped to 2.0 V. Perhaps less obvious, however, we
find that for extremely high gain specification, the quality measure (i.e.
the ellipsoid volume) for the simple Op Amp once again falls below that
for the folded-cascode Op Amp, even at a 2.0 V supply. This indicates
that the folded-cascode configuration would provide a better topology
for detailed implementation even at VDD = 2.0 V if the gain requirement
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Fig. 3.26 Maximized ellipsoid volume in performance space when applying different gain
and VDD specifications for operational amplifier.
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is high enough. Given the performance specifications in Table 3.4, the
folded-cascode Op Amp topology in Figure 3.25(b) provides larger per-
formance margin (i.e., larger ellipsoid volume) and, therefore, repre-
sents our preferred topology for these performance specifications.

It is important to note that as IC technologies continue to scale,
many traditional analog circuit topologies will begin to break down
owing to reduced power supply voltages and/or device non-idealities
such as excessive leakage current. It is essential to understand the lim-
itation of each topology at the earlier design stages and select the best
topology for detailed circuit implementation in the later design stages.

3.4.3.2 Robust Analog/Digital Optimization (ROAD)

Once the circuit topology and the initial device sizing are determined,
detailed circuit optimization based on accurate transistor-level simu-
lation should be further applied to improve parametric yield and/or
circuit performance. The robust analog/digital design tool (ROAD
[51, 58]) uses a combination of response surface modeling, statistical
analysis, and nonlinear programming. Figure 3.27 outlines the ROAD
optimization flow which consists of three major steps.

• Run transistor-level simulation and fit the quadratic response
surface models {fk(Z,X); k = 1,2, . . . ,K} for all circuit per-
formances in the local design space, where fi stands for

Response Surface Modeling
fi (Z, X)

Worst-Case Analysis & Modeling
gi (Z)

Nonlinear Programming

ROAD
Optimization

Fig. 3.27 ROAD optimization flow.
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the ith circuit performance, Z = [z1,z2, . . . ,zM ]T contains the
design variables and X = [x1,x2, . . . ,xN ]T contains the ran-
dom process parameters.

• Based on the response surface models {fk(Z,X); k =
1,2, . . . ,K}, apply statistical analysis to extract the
probability distributions of all performance metrics. Fit the
worst-case performance models {gk(Z); k = 1,2, . . . ,K} as
functions of the design variables {zm; m = 1,2, . . . ,M}. The
worst-case performance gk can be defined as the 1% or 99%
point of the cumulative distribution function, for example.

• Using these pre-extracted worst-case performance models,
optimize the circuit by nonlinear programming.

The fitting and optimization procedure in Figure 3.27 is repeatedly
applied to successively narrowed local design spaces during ROAD iter-
ations, as shown in Figure 3.28. Since ROAD sets up all performance
constraints with process variations and the performance models become
increasingly accurate in the successively narrowed local design space, it
can converge to an accurate design with high parametric yield. It should
be noted, however, that since ROAD is a local optimization tool, the
initial starting point can have a significant impact on the quality of
the final optimized design. For example, if a bad initial design is used,
ROAD can even fail to converge.

Feasible Region

Optimal
Design

Local Design Space Narrowed Local Design Space 

Initial 
Point

Fig. 3.28 Successive ROAD iterations.
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Table 3.5 ROAD optimization result for operational amplifier.

Performance Specification Nominal Worst-case
Gain (dB) ≥ 100 102.7 100.0
UGF (MHz) ≥ 10 10.9 10.0
Phase margin (degree) ≥ 60 63.5 60.0
Slew rate (V/µs) ≥ 20 20.5 19.9
Swing (V) ≥ 0.5 1.00 1.00
Power (mW) ≤ 20 0.79 0.86

We apply ROAD to the operational amplifier example in
Figure 3.25(b), using the performance centering result in Section 3.4.3.1
as the initial starting point. Table 3.5 shows the nominal and worst-case
performance values after ROAD optimization. The worst-case perfor-
mance values are measured at the 1% or 99% points of the cumulative
distribution functions that are extracted from 1000 transistor-level
Monte Carlo simulations in Cadence SPECTRE. It is shown in
Table 3.5 that ROAD leaves sufficient margin for each performance
metric. These additional performance margins help the operational
amplifier to meet performance specifications under process variations.



4
System-Level Statistical Methodologies

As we move from transistor level toward system level, one major
challenge for statistical analysis and optimization stems from the
underlying large problem size that has a twofold meaning. First, a full
integrated system typically contains millions of transistors and, hence,
the circuit size is huge. Second, to capture the intra-die variations of
the entire system, a large number of random variables must be uti-
lized. For example, if we attempt to model the per-transistor random
doping variation that is expected to be the dominant variation compo-
nent at 45 nm technologies and beyond [4], the total number of random
variables may reach 103 ∼ 106 for large-scale integrated systems. These
two issues make system-level analysis and optimization extremely dif-
ficult, especially if quadratic response surface models must be utilized
to capture non-Normal performance distributions. In such cases, if the
total number of random variables reaches 106, a quadratic approxima-
tion will result in a 106 × 106 quadratic coefficient matrix containing
1012 coefficients! The challenging problem is how to facilitate accurate
and affordable statistical analysis and optimization for such a large
problem size.

426
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Recently, a number of special techniques have been proposed to
address the system-level statistical analysis problem. These techniques
typically utilize a hierarchical flow to partition a large-size system into
multiple small pieces such that the statistical analysis and optimization
problem becomes tractable. In addition, advanced numerical algorithms
are proposed to efficiently manipulate the large number of random
variables that model both inter-die and intra-die variations. Depend-
ing on the application of interest, various algorithms are developed
to explore the trade-offs between analysis accuracy and computational
complexity.

In this chapter, we focus on the statistical methodologies for full-
chip digital integrated circuits. In particular, full-chip statistical timing
analysis and leakage analysis will be discussed in detail.

4.1 Statistical Timing Analysis

The purpose of timing analysis is to verify the timing constraints
(including both setup constraints and hold constraints) for a full-
chip digital circuit. Timing analysis can be either dynamic or static.
Dynamic timing analysis implies the simulation of a circuit from a
given start time to a given end time. The inputs to the circuit dur-
ing this period are fully specified. These input signals are called input
patterns or input vectors. The circuit response is then solved by either
SPICE or other fast simulators [25, 27]. Static timing analysis, on the
other hand, attempts to characterize a circuit for all time, independent
of its input signals [95]. It is often used to estimate the delay of an
interconnected set of combinational logic blocks between the flip–flops
of a digital circuit.

Timing analysis can also be classified into two broad categories:
path-based and block-based. Path-based timing analysis predicts the
maximal delay for a number of pre-selected logic paths. It can
be conducted with the consideration of random process variations
[5, 40, 45, 70, 78, 76]. The path-based technique is efficient and accurate
if a few critical paths can be easily identified. For example, it has been
widely used for the timing analysis of micro-processor circuits [5]. On
the other hand, block-based timing analysis propagates arrival times
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on a timing graph in a breadth-first order. It does not require pre-
selecting any critical paths and its computational complexity linearly
scales with circuit size. The block-based technique has been widely used
for the full-chip timing analysis of digital circuits where many equally
critical paths may exist after timing optimization.

In this chapter, we mainly focus on block-based static timing
analysis. We first introduce several important concepts for nominal
block-based static timing analysis in Section 4.1.1. Next, statisti-
cal block-based static timing analysis will be discussed in detail in
Section 4.1.2.

4.1.1 Nominal Block-Based Static Timing Analysis

Given a circuit netlist, block-based timing analysis translates the netlist
into a timing graph, i.e., a weighted directed graph G = (V,E) where
each node Vi ∈ V denotes a primary input, output or internal net, each
edge Ei = 〈Vm,Vn〉 ∈ E denotes a timing arc, and the weight D(Vm,Vn)
of Ei stands for the delay value from the node Vm to the node Vn. In
addition, a source/sink node is conceptually added before/after the
primary inputs/outputs so that the timing graph can be analyzed as
a single-input single-output network. Figure 4.1 shows a simple timing
graph example.

There are several key concepts in nominal block-based timing anal-
ysis. They are briefly summarized as follows. It is important to note
that the following terminologies are only defined for latest arrival time
and required time. However, our discussions can be extended to earliest
arrival time and required time easily.

• The arrival time (AT) at a node Vi is the latest time that the
signal becomes stable at Vi. It is determined by the longest
path from the source node to Vi.

• The required time (RT) at a node Vi is the latest time that
the signal is allowed to become stable at Vi. It is determined
by the longest path from Vi to the sink node.

• Slack is the difference between the required time and the
arrival time, i.e., RT − AT. Therefore, positive slack means
that the timing constraint is satisfied, while negative slack
means that the timing constraint is failed.
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Fig. 4.1 A simple timing graph example.

• Critical path is the longest path between the source node and
the sink node. In nominal timing analysis, all nodes along the
critical path have the same (smallest) slack.

The purpose of nominal static timing analysis is to compute the
arrival time, required time and slack at each node and then iden-
tify the critical path. Taking the arrival time as an example, static
timing analysis starts from the source node, propagates the arrival
times through each timing arc by a breadth-first traversal, and even-
tually reaches the sink node. Two atomic operations, i.e., SUM(•) and
MAX(•) as shown in Figure 4.2, are repeatedly applied during such a
traversal.

i ji j
D(i, j)

i

AT1

AT2

i

AT1

AT2

SUM(•) MAX(•)

AT(j) = AT(i) + D(i, j) AT(i) = MAX(AT1, AT2)

Fig. 4.2 Atomic operations for static timing analysis.
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After the nominal static timing analysis is complete, the resulting
critical path and slack values provide the information that is required
for timing optimization. Roughly speaking, the gates and intercon-
nects along the critical path (where the slacks are small) can be up-
sized to improve circuit speed, while those along the non-critical paths
(where the slacks are large) can be down-sized to save chip area or
power consumption. Of course, there are more subtle implications with
up/down-sizing gates that can be shown as counter-examples to this
over-simplification of the problem. For example, the increase in gate
capacitance with upsizing may create a larger delay increase on the
upstream logic stage, than the improvement in delay due to increas-
ing the drive strength of the logic stage that is resized. Such cases
are readily handled with accurate delay models and proper sensitivity
information.

4.1.2 Statistical Block-Based Timing Analysis

Unlike nominal timing analysis, the gate/interconnect delays in statis-
tical timing analysis are all modeled as random variables to account for
large-scale process variations. That means, the weight D(Vm,Vn) asso-
ciated with a timing arc is a random variable, instead of a determinis-
tic value. Therefore, the two atomic operations, SUM(•) and MAX(•),
must handle statistical distributions. Many numerical algorithms have
been proposed to perform statistical SUM(•) and MAX(•) operations.
Next, we briefly review these algorithms and highlight their advantages
and limitations. We will focus on the SUM(•) and MAX(•) of two ran-
dom variables, since multi-variable operations can be broken down into
multiple two-variable cases.

4.1.2.1 PDF/CDF Propagation

A random variable can be described by its probability density function
(PDF) and cumulative distribution function (CDF). The timing analy-
sis algorithms proposed in [3, 26] estimate the PDF’s and the CDF’s of
arrival times and directly propagate the random distributions through
SUM(•) and MAX(•). These algorithms can handle random variations
with arbitrary distributions (e.g., not limited to Normal distributions);
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however, all random distributions must be mutually independent such
that the SUM(•) and MAX(•) operations are easy to evaluate.

Given two independent random variables x and y, the corresponding
statistical SUM(•) and MAX(•) can be implemented using the follow-
ing equations [3, 26]:

pdfx+y(t) =
∫

pdfx(t − τ) · pdfy(τ) · dτ (4.1)

cdfMAX(x,y)(t) = cdfx(t) · cdfy(t), (4.2)

where pdf(•) and cdf(•) denote the probability density function and
the cumulative distribution function, respectively. If the random vari-
ables are correlated, however, their joint probability density function
cannot be simply represented as the product of all marginal probabil-
ity density functions. In this case, calculating the probability distri-
bution for SUM(•) and MAX(•) involves the numerical integration of
a multi-dimensional PDF/CDF for which the computational complex-
ity increases exponentially with the total number of random variables,
thereby quickly making the computation task infeasible.

In practice, arrival times become correlated because of path-sharing
(i.e., re-convergent fan-out) and/or process-sharing (i.e., correlated pro-
cess variations). Figure 4.3 illustrates two simple examples for cor-
related arrival times. In Figure 4.3(a), the total delay is equal to

D1
D2

D3

D1
D2

D3

(a)

A

B
C

A

B
C

(b)

Fig. 4.3 Arrival times become correlated due to two reasons. (a) Path-sharing makes arrival
time correlated. (b) Process sharing makes arrival time correlated.
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MAX(D1 + D2,D1 + D3), where D1 + D2 and D1 + D3 share the
same component D1 and, therefore, are correlated. On the other hand,
process-sharing can occur for both inter-die and intra-die variations.
Inter-die variations are shared by all logic gates on the same die, thereby
making gate delays correlated. Intra-die variations contain long-range
correlated components and their correlation typically decays over dis-
tance. Taking Figure 4.3(b) as an example, the delays of A and B have
a higher correlation than the delays of A and C.

4.1.2.2 Delay Model Propagation

To address the aforementioned correlation problem, several statistical
timing analysis techniques [18, 19, 113, 115, 124, 125] are recently devel-
oped where delay variations are approximated as the linear models:

x = BT
x · ε + Cx =

N∑
i=1

Bxi · εi + Cx (4.3)

y = BT
y · ε + Cy =

N∑
i=1

Byi · εi + Cy (4.4)

or the quadratic models:

x = εT · Ax · ε + BT
x · ε + Cx

=
N∑

i=1

i∑
j=1

Axij · εi · εj +
N∑

i=1

Bxi · εi + Cx (4.5)

y = εT · Ay · ε + BT
y · ε + Cy

=
N∑

i=1

i∑
j=1

Ayij · εi · εj +
N∑

i=1

Byi · εi + Cy, (4.6)

where Cx,Cy ∈ R are the constant terms, Bx,By ∈ RN contain the
linear coefficients, Ax,Ay ∈ RN×N contain the quadratic coefficients,
ε = [ε1,ε2, . . . ,εN ]T contains a set of random variables to model pro-
cess variations and N is the total number of these random variables.
For most practical applications, {εi; i = 1,2, . . . ,N} can be modeled
as independent standard Normal distributions. Note that correlated
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Normal random variables can be decomposed to uncorrelated random
variables by principal component analysis.

Given the delay models in (4.3)–(4.6), the basic operation in statis-
tical timing analysis is to evaluate SUM(x,y) or MAX(x,y) and approx-
imate the result as a new delay model of {εi; i = 1,2, . . . ,N}. In other
words, unlike the PDF/CDF propagation discussed in Section 4.1.2.1
where only independent probability distributions are considered, the
delay model propagation approximates all arrival times as functions
of {εi; i = 1,2, . . . ,N} such that the correlation information can be
preserved.

For the linear delay models in (4.3) and (4.4), the SUM(•) operation
can be easily handled by

x + y = (Bx + By)T · ε + (Cx + Cy). (4.7)

A similar formulation can be derived for the quadratic delay models in
(4.5) and (4.6):

x + y = εT · (Ax + Ay) · ε + (Bx + By)T · ε + (Cx + Cy). (4.8)

In (4.7) and (4.8), since the SUM(•) operator is linear, adding two linear
(or quadratic) models results in a new linear (or quadratic) model. The
MAX(•) operator, however, is nonlinear and is much more difficult
to approximate. In Sections 4.1.2.3 and 4.1.2.4, we will show various
algorithms to efficiently perform statistical MAX(•) operation.

4.1.2.3 First-Order (Linear) MAX(•) Approximation

To perform the statistical operation MAX(x,y), the authors of [18, 113]
propose to find an approximated linear model for z ≈ MAX(x,y) by
matching the first and second order moments. Assume that x and y are
approximated as the linear delay models (4.3) and (4.4), respectively.
If MAX(x,y) is approximated as a linear combination of x and y, z ≈
MAX(x,y) can be expressed as the following linear function:

z = BT
z · ε + Cz =

N∑
i=1

Bzi · εi + Cz, (4.9)
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where Cz ∈ R is the constant term and Bz ∈ RN contains the linear
coefficients. It is easy to verify the following relations:

E(z) = Cz +
N∑

i=1

Bzi · E(εi) = Cz (4.10)

E(z · εi) = E(Cz · εi) +
N∑

j=1

Bzi · E(εi · εj) = Bzi , (4.11)

where E(•) denotes the expected value. The mean and covariance val-
ues in (4.10) and (4.11) can be calculated by using the formula derived
in [23]. Algorithm 4.1 summarizes the major steps for the aforemen-
tioned linear MAX(•) approximation.

Algorithm 4.1 linear MAX(•) approximation for two corre-
lated Normal random variables.

(1) Start from the linear delay models for x and y in (4.3) and
(4.4).

(2) Calculate the first and second order moments for x and y:

µx = Cx (4.12)

µy = Cy (4.13)

σx =

√√√√ N∑
i=1

B2
xi

(4.14)

σy =

√√√√ N∑
i=1

B2
yi

(4.15)

ρxy =
1

σx · σx
·

N∑
i=1

Bxi · Byi . (4.16)

(3) Calculate the coefficients:

α =
√
σ2

x + σ2
y − 2 · ρxy · σx · σy (4.17)

β =
µx − µy

α
. (4.18)
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(4) Calculate the constant term Cz:

Cz = E(z) = µx · Φ(β) + µy · Φ(−β) + α · ϕ(β), (4.19)

where φ(•) and Φ(•) are the probability density function and
the cumulative distribution function of standard Normal dis-
tribution, respectively:

ϕ(x) =
1√
2π

· e−x2
2 (4.20)

Φ(x) =
∫ x

−∞
ϕ(x) · dx. (4.21)

(5) For each i = {1,2, . . . ,N}
(6) Calculate the linear coefficient Bzi :

Bzi = E(z · εi) = Bxi · Φ(β) + Byi · Φ(−β). (4.22)

(7) End For.
(8) Substituting (4.19) and (4.22) into (4.9) yields the approxi-

mated linear model for z ≈ MAX(x,y).

In addition to the aforementioned technique based on moment
matching, another approach for MAX(•) approximation is based on
the tightness probability proposed in [115]:

MAX(x,y) ≈ z = P (x ≥ y) · x + P (y ≥ x) · y + Cz, (4.23)

where P (•) denotes the probability and the constant term Cz is deter-
mined by matching the mean value between MAX(x,y) and z. In (4.23),
P (x ≥ y) and P (y ≥ x) are referred to as the tightness probabilities
of x and y, respectively. Intuitively, the linear model in (4.23) is the
weighted sum of x and y. The weight for x (or y) is large if x (or y) is
likely to be greater than y (or x).

If the random variables x and y in (4.23) are Normal, it can be
proven that the tightness probability formulation in (4.23) and the
moment-matching formulation in (4.10), (4.11) are exactly equivalent.
The concept of tightness probability is related to the first-order Taylor
expansion [53]. To show this relation, the authors of [53] prove that the
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tightness probability is equal to the first-order statistical sensitivity:

P (x ≥ y) =
∂{E[MAX(x,y)]}

∂{E[x]} (4.24)

P (y ≥ x) =
∂{E[MAX(x,y)]}

∂{E[y]} . (4.25)

In other words, although the MAX(•) operator is not analytical (i.e.,
does not have continuous derivatives), it can be statistically approxi-
mated as the form of (4.23)–(4.25) that is similar to the traditional Tay-
lor expansion. Therefore, the linear approximation in (4.23) is referred
to as the first-order statistical Taylor expansion. In Section 4.1.2.4,
we will further show that the aforementioned statistical Taylor expan-
sion can be extended to second order to achieve better approximation
accuracy.

4.1.2.4 Second-Order (Quadratic) MAX(•) Approximation

Recently, various quadratic approximations have been proposed to han-
dle the MAX(•) operator [55, 124]. These techniques are more accurate,
but also more expensive, than a simple linear approximation. In prac-
tice, quadratic MAX(•) approximations should be selectively applied,
depending on the accuracy and complexity requirements of a specific
application.

Assume that MAX(x,y) is approximated as a quadratic model:

MAX(x,y) ≈ z = εT · Az · ε + BT
z · ε + Cz

=
N∑

i=1

i∑
j=1

Azij · εi · εj +
N∑

i=1

Bzi · εi + Cz, (4.26)

where Cz ∈ R is the constant term, Bz ∈ RN contains the linear co-
efficients, and Az ∈ RN×N contains the quadratic coefficients. The
random variables {εi; i = 1,2, . . . ,N} are used to model process varia-
tions and they are independent standard Normal distributions. Given
the quadratic model in (4.26), it is easy to verify the following
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equations [124]:

E(z) =
N∑

i=1

Azii + Cz (4.27)

E(z · εi) = Bzi (4.28)

E(z · εi · εj) = Azij (i �= j) (4.29)

E(z · ε2i ) = 3 · Azii +
N∑

j=1,j �=i

Azjj + Cz. (4.30)

If the moment values in (4.27)–(4.30) are available, the model coef-
ficients in (4.26) can be solved via a set of linear equations [124].
Such a quadratic MAX(•) approximation is referred to as the moment-
matching technique.

Another method for quadratic MAX(•) approximation is based on
the second-order statistical Taylor expansion proposed in [55]. It starts
from converting a two-variable MAX(•) operator to a single-variable
one:

MAX(x,y) = x + MAX(0, t), (4.31)

where

t = y − x. (4.32)

Next, a second-order statistical Taylor expansion will be utilized to
approximate the single-variable operator MAX(0, t).

Extending the first-order statistical Taylor expansion in (4.23)–
(4.25) to second order and expanding MAX(0, t) at the expansion point
E[t] yield:

MAX(0, t) = 0.5 · λ2 · {t − E[t]}2 + λ1 · {t − E[t]} + λ0, (4.33)

where the linear and quadratic coefficients λ1 and λ2 are determined
by the statistical derivatives:

λ1 =
d{E[MAX(0, t)]}

d{E[t]} (4.34)

λ2 =
d2{E[MAX(0, t)]}

d{E[t]}2 =
dλ1

d{E[t]} (4.35)
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and the constant term λ0 is determined by matching the mean value:

λ0 = E[MAX(0, t)] − 0.5 · λ2 · E[{t − E[t]}2]. (4.36)

Next, we show how to compute the coefficients λ0, λ1, and λ2 in (4.34)–
(4.36) efficiently.

As summarized in Section 4.1.2.3, the first-order derivative in (4.34)
is equal to the probability:

λ1 =
d{E[MAX(0, t)]}

d{E[t]} = P (t ≥ 0) = 1 − CDFt(0), (4.37)

where CDFt(•) stands for the cumulative distribution function of the
random variable t. If both x and y in (4.32) are approximated as
quadratic models of the random variables {εi; i = 1,2, . . . ,N}, t is
equal to y − x and, therefore, is also a quadratic function of {εi; i =
1,2, . . . ,N}:

t(ε) = εT · At · ε + BT
t · ε + Ct, (4.38)

where At,Bt, and Ct are the model coefficients. Given (4.38), the cumu-
lative distribution function of t can be extracted using the algorithms
discussed in Chapter 3.

Substituting (4.37) into (4.35) yields:

λ2 =
d[1 − CDFt(0)]

d{E[t]} . (4.39)

To calculate the derivative value in (4.39), we re-write t as:

t = µ + δ, (4.40)

where µ is the mean value of t and δ = t − µ is a random variable with
zero mean. Substituting (4.40) into (4.39) yields:

λ2 =
d [1 − CDFµ+δ(0)]

dµ
=
d [1 − CDFδ(−µ)]

dµ

= PDFδ(−µ) = PDFµ+δ(0) = PDFt(0), (4.41)

where PDFt(•) stands for the probability density function of the ran-
dom variable t. Since t is represented as the quadratic function in (4.38),



4.1 Statistical Timing Analysis 439

0 t

MAX(0, t)

Fig. 4.4 The single variable function MAX(0, t).

PDFt can be extracted by the algorithms discussed in Chapter 3 to cal-
culate λ2 in (4.41).

Importantly, the quadratic coefficient λ2 in (4.41) has two interest-
ing properties:

• λ2 = PDFt(0) is non-negative. Intuitively, as shown in
Figure 4.4, the function MAX(0, t) is convex and, there-
fore, the quadratic model coefficient should be non-negative
[13].

• λ2 indicates the nonlinearity of MAX(0, t). Considering
the first two cases in Figure 4.5, MAX(0, t) can be accu-
rately approximated as linear models, i.e., MAX(0, t) ≈ 0
and MAX(0, t) ≈ t, respectively. This is consistent with the
fact that PDFt(0) ≈ 0 in both cases. In the third case of

MAX(0, t) is
almost linear

0 t

PDF(t)

0 t

PDF(t)

0 t

PDF(t)

MAX(0, t) is
strongly nonlinear

Case 1

Case 2

Case 3

Fig. 4.5 Three different cases for the MAX(0, t) approximation.
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Figure 4.5, however, MAX(0, t) is strongly nonlinear, corre-
sponding to a non-zero PDFt(0).

After λ1 and λ2 are extracted, computing the constant term λ0

in (4.36) requires further knowing E[MAX(0, t)] and E[{t − E[t]}2].
E[MAX(0, t)] can be calculated using the following one-dimensional
numerical integration:

E [MAX(0, t)] =
∫ +∞

0
τ · PDFt(τ) · dτ. (4.42)

Since t is a quadratic function of {εi; i = 1,2, . . . ,N} shown in (4.38),
its second-order central moment E[{t − E[t]}2] can be determined by
the following analytical equation [125]:

E
[{t − [t]}2] = BT

t · Bt + 2 · TRACE(At · At), (4.43)

where TRACE(•) represents the trace of a matrix (the sum of all diago-
nal elements). Substituting (4.41)–(4.43) into (4.36) yields the constant
term λ0.

After the coefficients λ0, λ1, and λ2 are known, MAX(0, t) in (4.33)
can be approximated as a quadratic function of the random variables
{εi; i = 1,2, . . . ,N} by substituting (4.38) into (4.33) and ignoring all
high-order terms.

To demonstrate the efficacy of the second-order statistical Taylor
expansion, we consider a simple example to approximate MAX(x,y)
where x ∼ N(0,1/9) and y ∼ N(0,1) are independent and Normal.
Figure 4.6 shows the probability density functions of the random vari-
ables x and y. In this example, MAX(x,y) is strongly nonlinear, because
the probability density functions of x and y are significantly overlapped.
It, in turn, allows us to test the efficacy of the second-order statis-
tical Taylor expansion and compare it with a simple linear MAX(•)
approximation.

Three different approaches, namely, the linear approximation, the
second-order statistical Taylor expansion and the Monte Carlo analy-
sis with 104 random samples, are applied to estimate the probability
distribution of MAX(x,y). Figure 4.7 shows the probability density
functions estimated by these techniques. In this example, the distribu-
tion of MAX(x,y) is not symmetric due to the nonlinearity. The simple
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Fig. 4.6 The probability density functions of x and y.
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Fig. 4.7 The estimated probability density functions of MAX(x,y).

linear approximation cannot capture such a non-zero skewness and,
therefore, results in large approximation error, especially at both tails
of the probability density function. The quadratic MAX(•) approxima-
tion, however, accurately models the non-zero skewness by including
second-order terms.
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4.2 Statistical Timing Sensitivity Analysis

While we discussed many statistical timing analysis algorithms in the
previous sub-section, a new methodology for using timing analysis
results to guide timing optimization and explore the trade-off between
performance, yield and cost is required in the statistical domain. In
nominal timing analysis, critical path and slack are two important
concepts that have been widely utilized for timing optimization, but
the inclusion of large-scale process variations renders these concepts
obsolete.

First, the delay of each path is a random variable, instead of a deter-
ministic value, in statistical timing analysis. As such, every path can be
critical (i.e., have the maximal delay) with certain probability. Second,
the slacks at all nodes are random variables that are statistically cou-
pled. The overall timing performance is determined by the distributions
of all these slacks, as well as their correlations. It implies that individ-
ual slack at a single node is not meaningful and cannot be utilized
as a criterion to guide timing optimization. Therefore, the traditional
critical path and slack definitions are no longer valid, and new criteria
are required to accommodate the special properties of statistical timing
analysis/optimization.

In this sub-section, we describe a new concept of statistical tim-
ing sensitivity to guide timing optimization of logic circuits with
large-scale parameter variations. We define the statistical sensitivi-
ties for both paths and arcs. The path sensitivity provides a the-
oretical framework from which we can study and analyze timing
constraints under process variations. The arc sensitivity is an effi-
cient metric to assess the criticality of each arc in the timing graph,
which is useful for timing optimization. We prove that the path sen-
sitivity is exactly equal to the probability that a path is critical,
and the arc sensitivity is exactly equal to the probability that an
arc sits on the critical path. The path sensitivity and the arc sen-
sitivity discussed in this sub-section are theoretically equivalent to
the path criticality and the edge criticality proposed in [115, 120].
More details on path criticality and edge criticality can be found in
Section 4.3.
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4.2.1 Statistics of Slack and Critical Path

We first give a comprehensive study on slack and critical path in statis-
tical timing analysis. We will highlight the differences between nominal
and statistical timing analyses and explain the reasons why the tra-
ditional concepts of slack and critical path become ineffective in the
presence of process variations.

4.2.1.1 Slack

In nominal timing analysis, slack is utilized as a metric to measure
how tightly the timing constraint is satisfied. A negative slack means
that the timing constraint has not been met, while a (small) positive
slack means that the timing constraint has been (marginally) satisfied.
In statistical timing analysis, however, it is difficult to make such a
straightforward judgment, since all slacks are random variables instead
of deterministic values. For instance, Figure 4.8 shows two slack distri-
butions computed from statistical timing analysis. The node V1 presents
a larger probability that the slack is positive than the node V2. How-
ever, the worst-case (i.e., the smallest) slack at V1 is more negative than
that at V2. In this case, it is hard to conclude which slack distribution
is better using a simple criterion.

More importantly, the slacks in a timing graph are statistically cou-
pled and must be considered concurrently to determine the timing per-
formance. In nominal timing analysis, it is well-known that the timing
constraint is satisfied if and only if all slacks in the timing graph are
positive. In statistical timing analysis, this condition can be stated as

0 Slack

PDF

Slack V1

Slack V2

Fig. 4.8 Two slack distributions in statistical timing analysis.
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follows: the probability that the timing constraint is satisfied is equal
to the probability that all slacks are positive:

P (Satisfy Timing Constraint) = P [SlackV1 ≥ 0 & SlackV 2 ≥ 0 · · · ].
(4.44)

Studying (4.44), one would find that such a probability depends on
all slack distributions, as well as their correlations. Unlike the nomi-
nal timing analysis where slacks are deterministic without correlations,
knowing individual slack distributions in statistical timing analysis is
insufficient to assess the timing performance. The probability in (4.44)
cannot be accurately estimated if the slack correlations are ignored.
The above analysis implies an important fact that an individual slack
distribution at one node may not be meaningful in statistical timing
analysis.

However, it should be noted that there exist some “important”
nodes in a timing graph whose slacks have special meanings. Given
a timing graph, we define a node VIN as an important node if all paths
in the timing graph pass VIN. Based on this definition, the source node
and the sink node are two important nodes in any timing graph, since
all paths start from the source node and terminate at the sink node.
In some special timing graphs, it is possible to find other important
nodes. For example, the node e in Figure 4.1 is an important node by
this definition. The importance of the node is that, if VIN is an impor-
tant node, the probability in (4.44) can be uniquely determined by the
slack at VIN:

P (Satisfy Timing Constraint) = P [SlackVIN ≥ 0]. (4.45)

The physical meaning of (4.45) can be intuitively explained by the
concept of Monte Carlo analysis. When a timing graph is simulated by
Monte Carlo analysis, a delay sample (i.e., a set of deterministic delay
values for all timing arcs) is drawn from the random variable space for
each Monte Carlo run. The probability P (Satisfy Timing Constraint) is
equal to Num1 (the number of samples for which the timing constraint
is satisfied) divided by Num (the total number of Monte Carlo samples).
Similarly, the probability SlackVIN ≥ 0 is equal to Num2 (the number of
samples for which the slack at VIN is positive) divided by Num. In each
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Monte Carlo run, the timing constraint is failed if and only if there is
a path P whose delay is larger than the specification. In this case, the
slack at VIN must be negative since all paths pass the important node
VIN and, therefore, VIN must sit on the path P . The above analysis
implies that Num1 is equal to Num2, yielding Equation (4.45).

Equations (4.44) and (4.45) indicate another difference between
nominal and statistical timing analyses. In nominal timing analysis, the
slack at any node along the critical path uniquely determines the tim-
ing performance. In statistical timing analysis, however, only the slack
at an important node uniquely determines the timing performance.
Compared with the critical path nodes in nominal timing analysis,
important nodes belong to a much smaller subset, since they must be
included in all paths in a timing graph.

Following (4.45), it is sufficient to check the slacks only for impor-
tant nodes, e.g., the source node or the sink node. Therefore, using the
concept of important node simplifies the timing verification procedure.
This conclusion is also consistent with our intuition: the timing perfor-
mance is determined by the maximal delay from the source node to the
sink node. Therefore, the slacks at these two nodes are of most interest
for timing verification.

4.2.1.2 Critical Path

Similar to slack, there are key differences between nominal and sta-
tistical timing analyses on critical path. First, given a timing graph,
the maximal delay from the source node to the sink node can be
expressed as

D = MAX(DP1,DP2, . . .), (4.46)

where DPi is the delay of the ith path. In nominal timing analysis,
D = DPi if and only if the path Pi is critical. In statistical timing
analysis, however, every path can be critical with certain probability.
Although it is possible to define the most critical path as the path Pi

that has the largest probability to be critical, the maximal circuit delay
in (4.46) must be determined by all paths, instead of the most critical
path only.
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Second, the most critical path is difficult to identify in statistical
timing analysis. In nominal timing analysis, the critical path can be
identified using slack since all nodes along the critical path have the
same (smallest) slack. In statistical timing analysis, however, this prop-
erty is no longer valid and all slacks are random variables.

Finally, but most importantly, the critical path concept is not so
helpful for statistical timing optimization. In nominal case, the gates
and interconnects along the critical (or non-critical) path are repeat-
edly selected for up (or down) sizing. This strategy is becoming inef-
fective under process variations. One important reason is that many
paths may have similar probabilities to be critical and all these paths
must be selected for timing optimization. Even in nominal case, many
paths in a timing graph can be equally critical, which is so-called “slack
wall.” This multiple-critical-path problem is more pronounced in sta-
tistical timing analysis, since more paths can have overlapped delay
distributions due to large-scale process variations. In addition to this
multiple-critical-path problem, we will demonstrate in Section 4.2.2
that selecting the gates and interconnects along the most critical (or
least critical) path for up (or down) sizing may not be the best choice
under a statistical modeling assumption.

4.2.2 Concept of Statistical Timing Sensitivity

In this sub-section, we define the concept of statistical timing sensitiv-
ity. Two different sensitivities, i.e., path sensitivity and arc sensitivity,
are discussed. Path sensitivity provides a theoretical framework to
study and analyze timing constraints under process variations. Arc
sensitivity provides an efficient criterion to select the most critical
gates/interconnects for timing optimization.

4.2.2.1 Path Sensitivity

In nominal timing analysis, the critical path is of great interest since
it uniquely determines the maximal circuit delay. If the delay of the
critical path is increased (or decreased) by a small perturbation ε, the
maximal circuit delay is increased (or decreased) by ε correspondingly.
Therefore, given the maximal circuit delay D in (4.46), the dependence



4.2 Statistical Timing Sensitivity Analysis 447

between D and the individual path delay DPi can be mathematically
represented as the path sensitivity:

SPath
Pi

=
∂D

∂DPi

=
{

1 (If Pi is critical)
0 (Otherwise)

. (4.47)

From the sensitivity point of view, a critical path is important since
it has non-zero sensitivity and all other non-critical paths have zero
sensitivity. The maximal circuit delay can be changed if and only if
the critical path delay is changed. This is the underlying reason why
critical path is important for timing optimization. It is the sensitivity
(instead of the critical path itself) that provides an important criterion
to guide timing optimization. A path is more (or less) important if it
has a larger (or smaller) path sensitivity.

In statistical timing analysis, all path delays are random variables.
Although directly computing sensitivity between two random variables
seems infeasible, the path sensitivity can be defined by their expected
values (i.e., moments). One simple definition for path sensitivity is to
use the first order moment, i.e.,

SPath
Pi

=
∂E(D)
∂E(DPi)

. (4.48)

The path sensitivity in (4.48) models the mean value dependence
between the maximal circuit delay D and the individual path delay
DPi. The path sensitivity in (4.48) has several important properties.
The detailed proofs of the following theorems can be found in [53].

Theorem 4.1. The path sensitivity in (4.48) satisfies:∑
i

SPath
Pi

= 1. (4.49)

Theorem 4.2. Given the maximal circuit delay D = MAX
(DP1 ,DP2 , . . .) where DPi is the delay of the ith path, if the proba-
bility P [DPi = MAX(DPj , j �= i)] is equal to 0, then the path sensitivity
in (4.48) is equal to the probability that the path Pi is critical, i.e.,

SPath
Pi

= P (DPi ≥ DP1 & DPi ≥ DP2 & · · ·). (4.50)
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4.2.2.2 Arc Sensitivity

In nominal timing optimization, the gates and interconnects along the
critical path are important, since the maximal circuit delay is sensitive
to their delays. Following this reasoning, the importance of a given gate
or interconnect can be assessed by the following arc sensitivity:

SArc
Ai

=
∂D

∂DAi

=
∑

k

SPath
Pk

· ∂DPk

∂DAi

=
{

1 (Ai is on critical path)
0 (Otherwise)

,

(4.51)

where D is the maximal circuit delay given in (4.46), DAi denotes the
gate/interconnect delay associated with the ith arc, andDPk represents
the delay of the kth path. In (4.51), the path sensitivity SPath

Pk
is non-

zero (i.e., equal to 1) if and only if the kth path Pk is critical. In
addition, the derivative ∂DPk/∂DAi is non-zero (i.e., equal to 1) if and
only if the ith arc Ai sits on the kth path Pk, since the path delay DPk

is equal to the sum of all arc delays DAi ’s that belong to this path.
These observations yield the conclusion that the arc sensitivity SArc

Ai
is

non-zero if and only if Ai is on the critical path. The arc sensitivity
explains why the gates and interconnects along the critical path are
important for timing optimization. A gate/interconnect is more (or
less) important if it has a larger (or smaller) arc sensitivity.

The aforementioned sensitivity concept can be extended to statis-
tical timing analysis. In statistical case, we define the arc sensitivity
using the first order moment:

SArc
Ai

=
∂E(D)
∂E(DAi)

. (4.52)

The arc sensitivity in (4.52) has the following important property.

Theorem 4.3. Let DPi be the delay of the ith path. If the probabil-
ity P [DPi = MAX(DPj , j �= i)] = 0 for any {i = 1,2, . . .}, then the arc
sensitivity in (4.52) is equal to:

SArc
Ai

=
∑

Ai∈Pk

SPath
Pk

. (4.53)

The detailed proof of Theorem 4.3 can be found in [53]. Remem-
ber that SPath

Pk
is equal to the probability that the kth path Pk
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is critical (see Theorem 4.2). Therefore, the arc sensitivity defined
in (4.52) is exactly equal to the probability that the arc sits on the
critical path.

The arc sensitivity defined in (4.52) provides an effective criterion
to select the most important gates and interconnects for up/down siz-
ing. Roughly speaking, for statistical timing optimization, the gates
and interconnects with large arc sensitivities are critical to the maxi-
mal circuit delay and in general should be up-sized to improve circuit
speed, while the others with small arc sensitivities can be down-sized
to save chip area and power consumption. Next, using the concept of
arc sensitivity, we explain the reason why repeatedly selecting the gates
and interconnects along the most critical (or least critical) path for up
(or down) sizing can be ineffective in statistical case.

Consider a simple timing graph including three paths, as shown
in Figure 4.9. Assume that the path sensitivity SPath

P1
= SPath

P2
= 0.3

and SPath
P3

= 0.4. Therefore, P3 is the most critical path since it has
the largest path sensitivity and is most likely to have the maximal
delay. Using the traditional concept of critical path, the arc A2 should
be selected for up-sizing in order to reduce the circuit delay. How-
ever, according to Theorem 4.3, it is easy to verify that SArc

A1
=Path

P1
+

SPath
P2

= 0.6 and SArc
A2

= SPath
P3

= 0.4. The arc A1 has a more significant
impact on the maximal circuit delay and should be selected for up-
sizing, although it does not sit on the most critical path. In this exam-
ple, using the traditional concept of critical path selects the wrong arc,

bb

ff

c

dd

ga

P1

P2

P3

A1

A2
ee

Fig. 4.9 A simple timing graph to illustrate the application of arc sensitivity.
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since it does not consider the non-zero path sensitivities of other less
critical paths. These non-zero sensitivities make it possible that chang-
ing an arc delay can change the maximal circuit delay through multiple
paths. In Figure 4.9, the arc A1 can change the maximal circuit delay
through two paths P1 and P2, while the arc A2 can change the maximal
circuit delay only through one path P3. Therefore, the arc A1 eventu-
ally becomes more critical than A2, although neither P1 nor P2 is the
most critical path.

4.2.2.3 Summary of Statistical Timing Sensitivity

We have defined two statistical timing sensitivities (i.e., path sensitivity
and arc sensitivity) and shown the theoretical link between probability
and sensitivity. The aforementioned sensitivity-based framework has
three unique properties:

• Distribution-independent. The theoretical results for path
sensitivity and arc sensitivity do not rely on specific prob-
ability distributions for gate/interconnect delays and arrival
times.

• Correlation-aware. The aforementioned sensitivity-based
framework does not rely on any assumption of statistical
independence and it can handle correlated arrival times.
Theorems 4.1–4.3 are valid, even if the path/arc delays are
correlated.

• Computation-efficient. Sensitivity values can be efficiently
computed, as will be further discussed in Section 4.2.3.

4.2.3 Computation of Statistical Timing Sensitivity

In this sub-section, we describe the numerical algorithm for comput-
ing arc sensitivities. We first develop the sensitivity equations for two
atomic operations: SUM(•) and MAX(•). Next, we show how to prop-
agate sensitivity values throughout the timing graph, using a single
breadth-first graph traversal.

The sensitivity analysis should be conducted after the statistical
timing analysis is complete. Therefore, we assume that the timing anal-
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ysis results are already available before the sensitivity analysis begins.
We further assume that the gate/interconnect delays and the arrival
times can be approximated as Normal distributions.

4.2.3.1 Atomic Operations

A key function in statistical timing analysis is to propagate arrival
times throughout a timing graph. In order to do that, two atomic oper-
ations are required, i.e., SUM(•) and MAX(•), as shown in Figure 4.2.
Since multi-variable operations can be easily broken down into multiple
two-variable cases, the remainder of this sub-section focuses on the sen-
sitivity computation for SUM(•) and MAX(•) of two random variables,
i.e., z = x + y and z = MAX(x,y) where x, y, and z are approximated
as the linear delay models in (4.3), (4.4), and (4.9), respectively. The
random variables {εi; i = 1,2, . . . ,N} in these equations are used to
model process variations and they are independent standard Normal
distributions.

Given the operation z = x + y or z = MAX(x,y) where x, y, and z
are in the form of (4.3), (4.4), and (4.9), we define the sensitivity matrix
Qz←x as,

Qz←x =




∂Cz

∂Cx

∂Cz

∂Bx1

· · · ∂Cz

∂BxN

∂Bz1

∂Cx

∂Bz1

∂Bx1

· · · ∂Bz1

∂BxN

...
...

...
...

∂BzN

∂Cx

∂BzN

∂Bx1

· · · ∂BzN

∂BxN



. (4.54)

The sensitivity matrix Qz←y can be similarly defined.
The sensitivity matrix in (4.54) provides the quantitative informa-

tion that how much the coefficients Cz or {Bzi ; i = 1,2, . . . ,N} will be
changed if there is a small perturbation on Cx or {Bxi ; i = 1,2, . . . ,N}.
Next, we derive the mathematical formulas of the sensitivity matrices
for both SUM(•) and MAX(•) operations.
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For the SUM(•) operation z = x + y, it is easy to verify that:

Cz = Cx + Cy (4.55)

Bzi = Bxi + Byi (i = 1,2, . . . ,N). (4.56)

Therefore, the sensitivity matrix Qz←x is an identity matrix.
For the MAX(•) operation z = MAX(x,y), it can be proven that

[53]:

∂Cz

∂Cx
= Φ(β) (4.57)

∂Cz

∂Bxi

=
∂Bzi

∂Cx
=
ϕ(β) · (Bxi − Byi)

α
(i = 1,2, . . . ,N) (4.58)

∂Bzi

∂Bxi

= Φ(β) − β · ϕ(β) · (Bxi − Byi)
2

α2 (i = 1,2, . . . ,N) (4.59)

∂Bzi

∂Bxj

= −β · ϕ(β) · (Bxi − Byi) · (Bxj − Byj )
α2

(i, j = 1,2, . . . ,N ; i �= j), (4.60)

where φ(•) and Φ(•) are the probability density function and the cumu-
lative distribution function of standard Normal distribution defined in
(4.20), (4.21) respectively, and the coefficients α and β are defined in
(4.17), (4.18) respectively. Equations (4.57)–(4.60) can be derived by
directly following the mathematic formulations in [23]. The sensitiv-
ity matrix Qz←y can be similarly calculated, since both SUM(•) and
MAX(•) are symmetric.

4.2.3.2 Sensitivity Propagation

Once the atomic operations are available, they can be applied to prop-
agate the sensitivity matrices throughout the timing graph. Next, we
use the simple timing graph in Figure 4.1 as an example to illustrate
the key idea of sensitivity propagating. In this example, propagating
the sensitivity matrices can be achieved through the following steps.

(1) Start from the MAX(•) operation at the sink node, i.e.,
D = MAX[AT(f) + D(f, sink), AT(g) + D(g, sink)], where
D denotes the arrival time at the sink node (i.e., the max-
imal circuit delay), AT(i) represents the arrival time at the
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node i, and D(i, j) stands for the delay of the arc 〈i, j〉.
Compute the sensitivity matrices QD←[AT(f)+D(f,sink)] and
QD←[AT(g)+D(g,sink)] using (4.57)–(4.60).

(2) PropagateQD←[AT(f)+D(f,sink)] to the node f through the arc
〈f, sink〉. Based on the chain rule of the derivatives,
QD←AT(f) = QD←[AT(f)+D(f,sink)] · Q[AT(f)+D(f,sink)]←AT(f)
and

QD←D(f,sink) = QD←[AT(f)+D(f,sink)]

·Q[AT(f)+D(f,sink)]←D(f,sink)

Q[AT(f)+D(f,sink)]←AT(f) and Q[AT(f)+D(f,sink)]←D(f,sink) are
identity matrices due to the SUM(•) operation.

(3) Similarly propagate QD←[AT(g)+D(g,sink)] to the node g

through the arc 〈g, sink〉. Determine QD←AT(g) and
QD←D(g,sink).

(4) Propagate QD←AT(f) and QD←AT(g) to the node e, yield-
ing QD←D(e,f) = QD←AT(f), QD←D(e,g) = QD←AT(g) and
QD←AT(e) = QD←AT(f) + QD←AT(g). Note that the out-
degree of the node e is equal to two. Therefore, the sensitivity
matrices QD←AT(f) and QD←AT(g) should be added together
at the node e to compute QD←AT(e). Its physical meaning is
that a small perturbation on AT(e) can change the maximal
circuit delay D through two different paths {e → f → sink}
and {e → g → sink}.

(5) Continue propagating the sensitivity matrices until the
source node is reached.

In general, the sensitivity propagation involves a single breadth-first
graph traversal from the sink node to the source node with successive
matrix multiplications. The computational complexity of such a sensi-
tivity propagation is linear in circuit size. After the sensitivity propa-
gation, the sensitivity matrix QD←D(i,j) between the maximal circuit
delay D and each arc delay D(i, j) is determined. Based on these sen-
sitivity matrices, the arc sensitivity can be easily computed by a quick
post-processing. For example, the arc sensitivity defined in (4.52) is the
(1, 1)th element in QD←D(i,j) (see the sensitivity matrix definition in
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(4.54)), i.e.,

SArc
<i,j> = [1 0 · · · ] · QD←D(i,j) · [1 0 · · · ]T . (4.61)

4.3 Statistical Timing Criticality

The path sensitivity and the arc sensitivity discussed in Section 4.2 are
theoretically equivalent to the path criticality and the edge criticality
proposed in [115, 120]. In other words, the path criticality is equal to
the probability that a path is critical, and the edge criticality is equal to
the probability that an edge sits on the critical path. In this sub-section,
we describe the numerical algorithm proposed in [120] for computing
edge criticality. The computational complexity of this algorithm is also
linear in circuit size.

To efficiently compute the edge criticality, the authors of [120] define
the following terminologies:

• The edge slack of an edge is the maximum delay of all paths
going through the edge.

• The complement edge slack of an edge is the maximum delay
of all paths not going through the edge.

Note that these “slack” definitions are different from the traditional
slack definition in Section 4.1.1. It is easy to verify that the edge crit-
icality is the probability that the edge slack is greater than the com-
plement edge slack [120]. For a given edge e = 〈i, j〉, if both the edge
slack Se and the complement edge slack Sẽ are approximated as Normal
distributions, Se − Sẽ is also Normal and the corresponding edge criti-
cality can be calculated based on the cumulative distribution function
of Se − Sẽ.

In a timing graph, the set of paths going through an edge e = 〈i, j〉
forms an edge flow graph Ge that consists of three parts: the edge input
cone, the edge e itself, and the edge output cone. The edge slack Se of
the edge e is equal to

Se = DIncone + De + DOutcone, (4.62)

where DIncone is the delay of the edge input cone, De is the delay of the
edge e, and DOutcone is the delay of the edge output cone. Based on the
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definitions of arrival time and required time in Section 4.1.1, the edge
slack of e = 〈i, j〉 can be expressed as [120]:

Se = ATi + De − RTj , (4.63)

where ATi is the arrival time at the node i and RTj is the required
time at the node j. Therefore, after the statistical timing analysis is
complete, all edge slacks can be easily computed by a simple post-
processing.

The computation of the complement edge slack is more complicated
and requires to borrow the cutset concept from network theory. A cut-
set between the source and the sink is defined as a set of edges whose
removal from the graph disconnects the source and the sink. In particu-
lar, a cutset is referred to as the minimal separating cutset, if it satisfies
the condition that any two paths from the source to the sink have only
one common edge in the cutset. Using the algorithm in [120], a set of
minimal separating cutsets can be found to cover a given timing graph.

Given a minimal separating cutset Ce containing the edge e, let
Cẽ = Ce − {e} be a set of all the cutset edges except e. Then the set
of all paths going through the edges in Cẽ is identical to the set of
all paths not going through the edge e. For this reason, the statistical
maximum of all edge slacks of the edges in Cẽ is exactly equal to the
complement slack of the edge e.

A binary partition tree can be used to efficiently compute the com-
plement edge slacks of all edges in a minimal separating cutset [120].
The key idea is to re-use the intermediate complement slack values to
reduce the computational complexity. As shown in Figure 4.10, each

aa bb cc dd

Fig. 4.10 A binary partition tree for efficiently computing the complement edge slacks for
the edges a, b, c, and d.
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leaf node in the binary partition tree represents one edge of the cutset.
Each non-leaf node defines two sets of edges: the set of the node’s chil-
dren and the set of the edges that are not the node’s children. With each
node of the tree, we associate a node slack and a complement node slack.
The node slack is the maximum of all edge slacks of its child edges. The
complement node slack is the maximum of all edge slacks of the non-
child edges. For a leaf node, these two slacks are exactly the edge slack
and the complement edge slack. All node slacks and complement node
slacks in the binary partition tree can be calculated by a bottom-up
tree traversal followed by a top-down tree traversal [120], as shown in
Algorithm 4.2. The computational complexity of Algorithm 4.2 is linear
in tree size.

Algorithm 4.2 complement edge slack computation by a
binary partition tree.

(1) Construct a binary partition tree of the cutset edges.
(2) Assign edge slacks to the leaf nodes.
(3) Traverse the tree bottom-up. For each non-leaf node, com-

pute the node slack as the maximum of its children’s node
slacks.

(4) Set the complement node slack of the root node as negative
infinity.

(5) Traverse the tree top-down. For each node, compute the com-
plement node slack as the maximum of its parent’s comple-
ment node slack and its sibling node’s node slack.

4.4 Statistical Leakage Analysis

In addition to timing variation, leakage variation is another critical
issue at nano scale. The predicted leakage power is expected to reach
50% of the total chip power within the next few technology generations
[4]. Therefore, accurately modeling and analyzing leakage power has
been identified as one of the top priorities for today’s IC design.

The most important leakage components in nanoscale CMOS tech-
nologies include sub-threshold leakage and gate tunneling leakage [93].
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The sub-threshold leakage is due to the weak inversion when gate
voltage is below the threshold voltage. At the same time, the reduc-
tion of gate oxide thickness facilitates tunneling of electrons through
gate oxide, creating the gate leakage. Both of these leakage components
are significant for sub-100 nm technologies and must be considered for
leakage analysis.

Unlike many other performances (e.g., delay), leakage power varies
substantially with process variations, which increases the difficulty of
leakage estimation. Leakage variations can reach 20×, while delays
only vary about 30%. The large-scale leakage variations occur, because
leakage current exponentially depends on several process parameters
such as VTH and TOX [93]. For this reason, leakage variation is typically
analyzed in log domain. Most statistical leakage analysis techniques
[17, 56, 68, 89, 106] approximate the logarithm of the leakage current
log(ILeak) as a function of random process variations. The existing
statistical leakage analysis techniques can be classified into two
broad categories: log-Normal approximation (linear leakage modeling
for log(ILeak) [17, 68, 89, 106]) and non-log-Normal approximation
(quadratic leakage modeling for log(ILeak) [56]). In what follows,
we first describe the log-Normal approximation in Section 4.4.1 and
then the non-log-Normal approximation will be discussed in detail in
Section 4.4.2.

4.4.1 Log-Normal Approximation

A statistical leakage analysis flow typically contains two major
steps: (1) standard cell library characterization and (2) full-chip
leakage modeling. The objective of the standard cell library char-
acterization is to approximate the leakage current of each logic
cell by a response surface model. This modeling step is typically
based on transistor-level simulations (or measurement models if
available).

log(ICelli) = BT
Celli · ε + CCelli, (4.64)

where BCelli ∈ RN contains the linear model coefficients, CCelli ∈ R is
the constant term, ε = [ε1,ε2, . . . ,εN ]T contains a set of independent
standard Normal distributions to model process variations and N is



458 System-Level Statistical Methodologies

the total number of these random variables. In (4.64), log(ICelli) is the
linear combination of multiple Normal distributions and, therefore, is
Normal. It follows that ICelli is log-Normal [81].

It is well-known that leakage current depends on input vector. The
cell leakage in (4.64) can be the leakage current for a fixed input state
or the average leakage current over all input states. For simplicity, we
will not distinguish these two cases in this paper.

Given the leakage models of all individual cells, the full-chip leakage
current is the sum of all cell leakage currents:

IChip = ICell1 + ICell2 + · · · + ICellM (4.65)

where M is the total number of logic cells in a chip. Equation (4.65)
implies that the full-chip leakage current is the sum of many log-Normal
distributions. Theoretically, the sum of multiple log-Normal distribu-
tions is not known to have a closed form. However, it can be approx-
imated as a log-Normal distribution by using the Wilkinson’s method
[17] to match the first two moments of IChip in (4.65):

E(IChip) =
M∑
i=1

emCelli+0.5·σ2
Celli (4.66)

E
(
I2
Chip

)
=

M∑
i=1

e2·mCelli+2·σ2
Celli + 2 ·

M−1∑
i=1

M∑
j=i+1

emCelli+mCellj

·e0.5·(σ2
Celli+σ2

Cellj+2·ρij ·σCelli·σCellj). (4.67)

If log(ICelli) and log(ICellj) are both approximated as the linear
response surface model in (4.64), the mean mCelli, the standard devi-
ation σCelli and the correlation coefficient ρij in (4.66) and (4.67), can
be calculated by

mCelli = CCelli (4.68)

σCelli = ‖BCelli‖2 (4.69)

ρij =
BT

Celli · BCellj

σCelli · σCellj
, (4.70)
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where ||•||2 denotes the 2-norm of a vector. Since we approximate IChip

as a log-Normal distribution, log(IChip) is Normal and its mean and
standard deviation are determined by [17]:

E [log(IChip)] = 2 · log [E(IChip)] − 0.5 · log
[
E(I2

Chip)
]

(4.71)

σ2 [log(IChip)] = log
[
E(I2

Chip)
] − 2 · log [E(IChip)] . (4.72)

Substitute (4.66), (4.67) into (4.71), (4.72) yields the approximated
log-Normal distribution for the full-chip leakage current.

4.4.2 Non-Log-Normal Approximation

Given the increasingly larger variations in nanoscale technologies, the
aforementioned log-Normal approximation may result in inaccurate
results, as it relies on the linear cell-level leakage model in (4.64) and
only matches the first two moments for the chip-level leakage current
in (4.65)–(4.72). To achieve higher accuracy, a quadratic approxima-
tion can be used, which, however, significantly increases the compu-
tational cost. For example, the total number of random variables can
reach 103 ∼ 106 to model both inter-die and intra-die variations for
a practical industrial design. In this case, a quadratic approximation
will result in a 106 × 106 quadratic coefficient matrix containing 1012

coefficients!
The authors of [56] propose a projection-based algorithm to extract

the optimal low-rank quadratic model for full-chip statistical leak-
age analysis. The algorithm proposed in [56] is facilitated by explor-
ing the underlying sparse structure of the problem. Namely, any
intra-die variation only impacts the leakage power in a small local
region. Considering this sparse property, the statistical leakage anal-
ysis problem is formulated as a special form that can be efficiently
solved by the Arnoldi algorithm and the orthogonal iteration borrowed
from matrix computations. As such, an accurate low-rank quadratic
model can be extracted with linear computational complexity in
circuit size.

The statistical leakage analysis proposed in [56] starts from the stan-
dard cell library characterization where PROBE [57] is applied to fit



460 System-Level Statistical Methodologies

the rank-K leakage model for each cell:

log(ICelli) =
K∑

k=1

λCellik · (P T
Cellik · ε)2 + BT

Celli · ε + CCelli, (4.73)

where λCellik, CCelli ∈ R, and PCellik, BCelli ∈ RN are the model coeffi-
cients. In many practical applications, both PCellik and BCelli are large
but sparse, since many random variables in ε model the intra-die vari-
ations of the cells that are far away from the ith cell and they do not
impact the leakage ICelli.

To simplify the notation, we define the following symbols to repre-
sent all cell leakage models in a matrix form:

log(ICell) = [log(ICell1) log(ICell2) · · · log(ICellM )]T (4.74)

ΛCellk = [λCell1k λCell2k · · · λCellMk]
T (4.75)

PCellk = [PCell1k PCell2k · · · PCellMk] (4.76)

BCell = [BCell1 BCell2 · · · BCellM ] (4.77)

CCell = [CCell1 CCell2 · · · CCellM ]T . (4.78)

Comparing (4.74)–(4.78) with (4.73), it is easy to verify that:

log(ICell) =
K∑

k=1

ΛCellk ⊗ (
P T

Cellk · ε) ⊗ (
P T

Cellk · ε) + BT
Cell · ε + CCell,

(4.79)
where ⊗ stands for the point-wise multiplication, i.e., [a1 a2 · · · ]T ⊗
[b1 b2 · · · ]T = [a1b1 a2b2 · · · ]T .

Using the cell leakage model in (4.79), we next describe the algo-
rithm to efficiently extract the low-rank quadratic model of the full-chip
leakage current. As shown in (4.65), the full-chip leakage current is the
sum of all cell leakage currents. Applying the log transform to both
sides of (4.65) yields:

log(IChip) = log[elog(ICell1) + elog(ICell2) + · · · + elog(ICellM )]. (4.80)

Substituting (4.79) into (4.80) and applying a second order Taylor
expansion, after some mathematical manipulations we obtain a
quadratic model in the form of:

log(IChip) = εT · AChip · ε + BT
Chip · ε + CChip, (4.81)
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where the model coefficients are given by:

CChip = log
(

1
α

)
(4.82)

BChip = α · BCell · Φ (4.83)

AChip = α ·
K∑

k=1

PCellk · diag(Φ ⊗ ΛCellk) · P T
Cellk

+
α

2
· BCell · diag(Φ) · BT

Cell

−α
2

2
· BCell · ΦΦT · BT

Cell. (4.84)

In (4.82)–(4.84), diag([a1 a2 · · · ]T ) stands for the diagonal matrix with
the elements {a1,a2, . . .} and:

α =
1

eCCell1 + eCCell2 + · · · + eCCellM
(4.85)

Φ =
[
eCCell1 eCCell2 · · · eCCellM

]T
. (4.86)

The values of α and Φ in (4.85), (4.86) can be computed with linear
computational complexity. After α and Φ are known, the model coef-
ficients CChip and BChip can be evaluated from (4.82), (4.83). Because
the matrix BCell in (4.83) is sparse, computing the matrix-vector prod-
uct BCellΦ has linear computational complexity. Therefore, both CChip

in (4.82) and BChip in (4.83) can be extracted with linear complexity.
The major difficulty, however, stems from the non-sparse quadratic

coefficient matrix AChip in (4.84). This non-sparse feature can be under-
stood from the last term at the right-hand side of (4.84). The vec-
tor Φ is dense and, therefore, ΦΦT is a dense matrix. It follows that
BCellΦΦTBT

Cell is dense, although BCell is sparse. For this reason, it
would be extremely expensive to explicitly construct the quadratic coef-
ficient matrix AChip based on (4.84).

To overcome this problem, the authors of [56] propose an iterative
algorithm that consists of two steps: (1) Krylov subspace generation
and (2) orthogonal iteration. Instead of finding the full matrix AChip,
the proposed algorithm attempts to find an optimal low-rank approxi-
mation of AChip.
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According to matrix theory [38], the optimal rank-R approxima-
tion of AChip is determined by the dominant eigenvalues {λChip1,
λChip2, . . . ,λChipR} and eigenvectors {PChip1,PChip2, . . . ,PChipR}. The
subspace generated by all linear combinations of these dominant
eigenvectors is called the dominant invariant subspace [38] and is
denoted as:

span{PChip1,PChip2, . . . ,PChipR}. (4.87)

It is well-known that the dominant invariant subspace in (4.87) can be
approximated by the following Krylov subspace [38]:

span
{
Q0,AChip · Q0,A

2
Chip · Q0, . . . ,A

R−1
Chip · Q0

}
, (4.88)

where Q0 ∈ RN is a non-zero vector that is not orthogonal to any dom-
inant eigenvectors. We first show the algorithm to extract the Krylov
subspace which gives a good approximation of the dominant invariant
subspace. The extracted Krylov subspace is then used as a starting
point for an orthogonal iteration such that the orthogonal iteration
could converge to the dominant invariant subspace quickly.

The Arnoldi algorithm from matrix computations [38] is adapted to
generate the Krylov subspace. The Arnoldi algorithm has been applied
to various large-scale numerical problems and its numerical stability
has been well-demonstrated for many applications, most notably, IC
interconnect model order reduction [15]. Algorithm 4.3 summarizes a
simplified implementation of the Arnoldi algorithm.

Algorithm 4.3 simplified Arnoldi algorithm.

(1) Randomly select an initial vector Q0 ∈ RN .
(2) Q1 = Q0/||Q0||F .
(3) For each r = {2,3, . . . ,R}
(4) Compute Qr as:

Qr = AChip · Qr−1

= α ·
K∑

k=1

PCellk · diag(Φ ⊗ ΛCellk) · P T
Cellk · Qr−1



4.4 Statistical Leakage Analysis 463

+
α

2
· BCell · diag(Φ) · BT

Cell · Qr−1

− α2

2
· BCell · ΦΦT · BT

Cell · Qr−1 (4.89)

(5) Orthogonalize Qr to all Qi (i = 1,2, . . . , r − 1).
(6) Qr = Qr/||Qr||F .
(7) End For.
(8) Construct the Krylov subspace:

Q = [QR · · · Q2 Q1] . (4.90)

Step (4) in Algorithm 4.3 is the key step of the Arnoldi algorithm. It
computes the matrix-vector product Qr = AChipQr−1. Since the matrix
AChip is large and dense, Equation (4.89) does not construct the matrix
AChip explicitly. Instead, it computes AChipQr−1 implicitly, i.e., mul-
tiplying all terms in (4.84) by Qr−1 separately and then adding them
together. It is easy to verify that AChip in (4.84) is the sum of the
products of many sparse or low-rank matrices. Therefore, the implicit
matrix-vector product in (4.89) can be computed with linear compu-
tational complexity. Taking the last term in (4.89) as an example,
there are four steps to compute BCellΦΦTBT

CellQr−1, including: (1)
S1 = BT

CellQr−1 (sparse matrix multiplied by a vector); (2) S2 = ΦTS1

(dot product of two vectors); (3) S3 = ΦS2 (vector multiplied by a
scalar); and (4) S4 = BCellS3 (sparse matrix multiplied by a vector).
All these four steps have linear computational complexity.

The Krylov subspace computed from Algorithm 4.3 is not exactly
equal to the dominant invariant subspace. Starting from the matrix Q
in (4.90), the next step is to apply an orthogonal iteration [38] which
exactly converges to the dominant invariant subspace. Theoretically,
the orthogonal iteration can start from any matrix. However, since
the Krylov subspace Q gives a good approximation of the dominant
invariant subspace, using Q as the starting point helps the orthogonal
iteration to reach convergence quickly.

Algorithm 4.4 shows a simplified implementation of the orthogonal
iteration algorithm. In (4.91), Q(i−1) ∈ RN×R is a matrix containing
only a few columns, because R is typically small (e.g., around 10) in
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most applications. Therefore, similar to (4.89), Z(i) in (4.91) can be
computed with linear complexity. For the same reason, the QR fac-
torization in Step (5) of Algorithm 4.4 also has linear computational
complexity, since Z(i) ∈ RN×R contains only a few columns.

Algorithm 4.4 simplified orthogonal iteration algorithm.

(1) Start from the matrix Q ∈ RN×R in (4.90).
(2) Q(1) = Q, where the superscript stands for the iteration

index.
(3) For each i = {2,3, . . .}
(4) Compute Zi as:

Z(i) = AChip · Q(i−1)

= α ·
K∑

k=1

PCellk · diag(Φ ⊗ ΛCellk) · P T
Cellk · Q(i−1)

+
α

2
· BCell · diag(Φ) · BT

Cell · Q(i−1) ·

− α2

2
· BCell · ΦΦT · BT

Cell · Q(i−1) (4.91)

(5) Q(i)U (i) = Z(i) (QR factorization).
(6) End For.
(7) Construct the matrices:

QChip = Q(i) (4.92)

UChip = U (i). (4.93)

The orthogonal iteration in Algorithm 4.4 is provably convergent if
the columns in the initial matrix Q are not orthogonal to the dominant
invariant subspace [38]. After the orthogonal iteration converges, the
optimal rank-R approximation of AChip is determined by the matrices
QChip and UChip in (4.92) and (4.93) [38]:

ÃChip = QChip · UChip · QT
Chip. (4.94)
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Combining (4.94) with (4.81) yields:

log(IChip) = εT · (QChip · UChip · QT
Chip

) · ε + BT
Chipε + CChip, (4.95)

where CChip and BChip are given in (4.82) and (4.83).
Algorithms 4.3 and 4.4 assume a given approximation rank R. In

practice, the value of R can be iteratively determined based on the
approximation error. For example, starting from a low-rank approxi-
mation, R should be iteratively increased if the modeling error remains
large. In most cases, selecting R in the range of 5 ∼ 15 provides suf-
ficient accuracy. The aforementioned algorithm only involves simple
vector operations and sparse matrix-vector multiplications; therefore,
its computational complexity is linear in circuit size.

The quadratic function in (4.95) is N -dimensional, where N is
typically large. It is not easy to estimate the leakage distribution
directly from (4.95). Algorithm 4.5 describes a quadratic model com-
paction algorithm that converts the high-dimensional model to a low-
dimensional one, while keeping the leakage distribution unchanged. It
can be proven that the quadratic models in (4.95) and (4.97) are equiv-
alent and the random variables {δi; i = 1,2, . . . ,R + 1} defined in (4.96)
are independent standard Normal distributions [56].

Algorithm 4.5 quadratic model compaction algorithm.

(1) Start from the quadratic model in (4.95).
(2) QComp · [UCompBComp] = [QChipBChip] (QR factorization).
(3) Define a set of new random variables:

δ = QT
Comp · ε. (4.96)

(4) Construct the low-dimensional quadratic model:

log(IChip) = δT · (UCompUChipU
T
Comp

) · δ + BT
Comp · δ + CChip.

(4.97)

The quadratic function in (4.97) has a dimension of R + 1 which
is much smaller than N . Based on (4.97), the PDF/CDF of log(IChip)
can be efficiently extracted using the algorithms described in Chapter 3.
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Fig. 4.11 Statistical leakage distribution for C432.

After that, the PDF/CDF of IChip can be easily computed by a simple
nonlinear transform [81].

To demonstrate the efficacy of the non-log-Normal approximation,
C432 (one of the ISCAS’85 benchmark circuits) is synthesized using
a commercial 90 nm CMOS process. Figure 4.11 shows the leakage
distributions extracted by three different approaches: the log-Normal
approximation, the rank-10 quadratic approximation and the Monte
Carlo analysis with 104 samples. As shown in Figure 4.11, the log-
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Fig. 4.12 Eigenvalue distribution for C432.



4.4 Statistical Leakage Analysis 467

Normal approximation yields large errors, especially at both tails of
the PDF which are often the points of great concern. In this example,
the log-Normal approximation yields 14.93% error for worst-case leak-
age estimation, where the worst-case leakage is measured at the 99%
point on the corresponding cumulative distribution function. The rank-
10 quadratic approximation reduces the estimation error to 4.18%.

For testing and comparison, the full-rank quadratic leakage model
is extracted for this example. Figure 4.12 shows the magnitude of the
eigenvalues of the quadratic coefficient matrix. Note that there are only
a few dominant eigenvalues. Figure 4.12 explains the reason why the
low-rank quadratic approximation is efficient in this example.



5
Robust Design of Future ICs

Most existing robust IC design methodologies attempt to accurately
predict performance distributions and then leave sufficient perfor-
mance margins to accommodate process variations. As variations
become more significant in the future, the continuously increasing
performance margin can make it quickly infeasible to achieve high-
performance IC design. For this reason, a paradigm shift in today’s IC
design methodologies is required to facilitate high yield, high perfor-
mance electronic products that are based on less reliable nano-scale
devices.

Toward this goal, the idea of adaptive post-silicon tuning has been
proposed and successfully applied to various applications [16, 22, 63, 90,
112]. Instead of over-designing a fixed circuit to cover all process vari-
ations, adaptive post-silicon tuning dynamically configures and tunes
the design based on the additional information that becomes available
after manufacturing is complete, as shown in Figure 5.1.

For digital circuit applications, adaptive supply voltage and adap-
tive body bias are two widely-used techniques to reduce delay and
leakage variations [22, 63, 112]. For analog circuit applications, device
mismatch is one of the major design challenges and dynamic element
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Fig. 5.1 Adaptive post-silicon tuning is one of the promising solutions to facilitate the future
scaling of IC technologies.

matching has been applied to reduce random mismatches for analog
devices (not only for transistors but also for resistors, capacitors, etc.)
[16, 90].

The concept of tunable design poses a number of new challenges and
opportunities. Extensive researches are required to solve the following
problems.

• Tunable circuit architecture. Circuit configurability can be
achieved in various ways, including: (1) continuous config-
uration on circuit parameters (e.g., power supply voltage,
bias current, etc.); and (2) discrete configuration to change
circuit topology and/or device size using switches (e.g.,
metal interconnects during manufacturing, CMOS switches
post manufacturing, etc.). Advanced materials and devices
such as phase-change switch and FinFET could possibly
be applied to improve circuit performance. Exploring vari-
ous tunable circuit architectures and analyzing their perfor-
mance trade-offs would be an interesting research topic in the
future.

• Analysis and design of tunable circuit. Traditional IC anal-
ysis and design methodologies were primarily developed for
deterministic (i.e., fixed) circuit architectures. These tech-
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niques, therefore, are ill-equipped to handle tunable circuits,
due to their dynamic and configurable nature. To address
this problem, a new CAD infrastructure is required to sta-
tistically analyze and optimize tunable circuits for adaptive
post-silicon tuning.
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