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Abstract—Random key predistribution scheme of Eschenauer
and Gligor (EG) is a typical solution for ensuring secure commu-
nications in a wireless sensor network (WSN). Connectivity of the
WSNs under this scheme has received much interest over the last
decade, and most of the existing work is based on the assumption
of unconstrained sensor-to-sensor communications. In this paper,
we study the k-connectivity of WSNs under the EG scheme
with physical link constraints; k-connectivity is defined as the
property that the network remains connected despite the failure
of any (k− 1) sensors. We use a simple communication model,
where unreliable wireless links are modeled as independent on/off
channels, and derive zero-one laws for the properties that i)
the WSN is k-connected, and ii) each sensor is connected
to at least k other sensors. These zero-one laws improve the
previous results by Rybarczyk on the k-connectivity under a fully
connected communication model. Moreover, under the on/off
channel model, we provide a stronger form of the zero-one law
for the 1-connectivity as compared to that given by Yağan.

Index Terms—Wireless sensor networks, key predistribution,
random key graphs, k-connectivity, minimum node degree.

I. INTRODUCTION

Many designs of secure wireless sensor networks (WSNs)

(e.g., [1], [5], [7]) rely on a basic random key predistribution

scheme proposed by Eschenauer and Gligor [10]. For keying

a network comprising n sensor nodes, this scheme uses an

offline key pool P containing Pn keys, where Pn is a function

of n. Before deployment, each node is independently equipped

with Kn distinct keys selected uniformly at random from

P ; here, Kn is also a function of n. The Kn keys in each

node comprise the node’s key ring. After deployment, two

communicating nodes can establish a secure link if they share

a key. More specifically, a secure link exists between two

nodes only if their key rings have at least one key in common,

as message secrecy and authenticity are obtained by using

efficient symmetric-key encryption modes [13], [15], [18].

In this paper, we consider the k-connectivity of secure

WSNs operating under the key predistribution scheme of

Eschenauer-Gligor. A network (or graph) is said to be k-

connected if it remains connected despite the deletion any

(k − 1) nodes1. A network is said to be simply connected

1The definition of k-connectivity given here is referred to as the k-vertex-
connectivity in the literature; k-edge-connectivity is defined similarly for
graphs that remain connected despite the deletion of any k − 1 edges. It
is worth noting that k-vertex-connectivity implies k-edge-connectivity [9].

if it is 1-connected. The k-connectivity also implies that for

each pair of nodes in the graph there exist at least k mutually

disjoint paths connecting them.

k-connectivity – a fundamental property of graphs –

is particularly important in secure sensor networks where

nodes operate autonomously and are physically unprotected.

For instance, k-connectivity provides communication security

against an adversary that is able to compromise up to k − 1
links by launching a sensor capture attack [4]; i.e., two sensors

can communicate securely as long as at least one of the k
disjoint paths connecting them consists of links that are not

compromised by the adversary. Also, k-connectivity improves

resiliency against network disconnection due to battery deple-

tion, in both normal mode of operation and under battery-

depletion attacks [16], [21]. Furthermore, it enables flexible

communication-load balancing across multiple paths so that

network energy consumption is distributed without penalizing

any access path [11], [22]. In addition, k-connectivity is useful

in terms of achieving consensus despite adversarial nodes

in the network. Specifically, it is known that for a network

to achieve consensus in the presence of adversarial nodes,

a necessary and sufficient condition is that the number of

adversary-controlled nodes be less than half of the network

connectivity and less than one third of the number of network

nodes [6], [28]. In other words, if k = 2f + 1 where f
is the number of adversary-controlled nodes, k-connectivity

guarantees that consensus can be reached in a network with

n ≫ f nodes.

With this motivation in mind, our goal is to study the

k-connectivity of secure WSNs and we will do so by an-

alyzing the induced random graph models. To begin with,

the basic key predistribution scheme is often modeled by

a random key graph, G(n,Kn, Pn), also known as a uni-

form random intersection graph, whose properties have been

extensively analyzed [2], [5], [19], [23], [27]. Random key

graphs have also recently been used for various applications,

e.g., cryptanalysis of hash functions [3], trust networks [14],

recommender systems using collaborative filtering [17], and

modeling “small world” networks [26]. The zero-one laws

for k-connectivity [20] and 1-connectivity [2], [19], [27] of

random key graphs have already been established. However,

in the context of wireless sensor networks, the application of



random key graph requires the assumption of a fully connected

wireless communication model; i.e., any pair of nodes have a

direct communication link in between.

In this paper, we drop the assumption of a fully connected

communication model and study the k-connectivity of secure

WSNs under physical link constraints. To this end, we say that

a secure link exists between two nodes if and only if their key

rings have at least one key in common and the physical link

constraint between them is satisfied. Specifically, in this paper,

we consider a simple communication model that consists of

independent channels that are either on (with probability pn)

or off (with probability 1 − pn). Under this on/off channel

model, a secure link exists between two sensors as long as

their key rings have at least one key in common and the

channel between them is on. We denote the graph representing

the underlying network as Gon; see Section III for precise

definitions of the system model.

We derive zero-one laws in the random graph Gon for k-

connectivity and the property that the minimum node degree

is at least k; see Theorem 1. To the best of our knowledge,

these results constitute the first complete analysis of the k-

connectivity of WSNs under physical link constraints and

may provide useful design guidelines in dimensioning the EG

scheme; i.e., in selecting its parameters to ensure the desired

k-connectivity property. The main result of the paper also

implies a zero-one law for k-connectivity in random key graph

G(n,Kn, Pn) (see Corollary 2), and the established result is

shown to improve that given previously by Rybarczyk [19];

see Section IV-D for details. Moreover, for the 1-connectivity

of Gon, we provide a stronger form of the zero-one law as

compared to that given by Yağan [25]; see Section IV-D.

We organize the rest of the paper as follows: In Section

II, we survey the relevant results from the literature, while

in Section III we give a detailed description of the system

model Gon. The main results of the paper, namely the zero-

one laws for k-connectivity and minimum node degree in

Gon, are presented in Section IV along with a discussion

and comparison with the relevant results from literature. The

proofs of the main results are omitted here due to space

limitations, but all details can be found in [29].

II. RELATED WORK

Early work by Erdős and Rényi [8] and Gilbert [12]

introduces the random graph G(n, p), which is defined on n
nodes and there exists an edge between any two nodes with

probability p independently of all other edges. The probability

p can also be a function of n, in which case we refer to it as pn.

Throughout the paper, we refer to the random graph G(n, pn)
as an Erdős-Rényi (ER) graph following the convention in the

literature.

Erdős and Rényi [8] prove that when pn is lnn+αn

n
,

graph G(n, pn) is asymptotically almost surely2 (a.a.s.) con-

nected (resp., not connected) if limn→∞ αn = ∞ (resp.,

2We say that an event takes place asymptotically almost surely if its
probability approaches to 1 as n → ∞.

limn→∞ αn = −∞). In later work [9], they further ex-

plore k-connectivity in G(n, pn) and show that if pn =
lnn+(k−1) ln lnn+αn

n
, G(n, pn) is a.a.s. k-connected (resp., not

k-connected) if limn→∞ αn = ∞ (resp., limn→∞ αn = −∞).

Previous work [2], [19], [27] investigates the zero-one law

for connectivity in random key graph G(n,Kn, Pn), where

Pn and Kn are the key pool size and the key ring size, re-

spectively. Blackburn and Gerke [2] prove that if Kn ≥ 2 and

Pn = ⌊nξ⌋, where ξ is a positive constant, G(n,Kn, Pn) is

a.a.s. connected (resp., not connected) if lim infn→∞

K2

n
n

Pn lnn
>

1 (resp., lim supn→∞

K2

n
n

Pn lnn
< 1). Yağan and Makowski

[27] demonstrate that if3 Kn ≥ 2, Pn = Ω(n) and
K2

n

Pn

=
lnn+αn

n
, then G(n,Kn, Pn) is a.a.s. connected (resp., not

connected) if limn→∞ αn = ∞ (resp., limn→∞ αn = −∞).

Rybarczyk [19] obtains the same result without requiring

Pn = Ω(n). She also establishes [20, Remark 1, p. 5]

a zero-one law for k-connectivity in G(n,Kn, Pn) by ex-

ploiting the similarity between G(n,Kn, Pn) and a random

intersection graph via a coupling argument. Specifically, she

proves that if Kn ≥ 2, Pn = Θ(nξ) for some ξ > 1, and
K2

n

Pn
= lnn+(k−1) ln lnn+αn

n
, then G(n,Kn, Pn) is a.a.s. k-

connected (resp., not k-connected) if limn→∞ αn = ∞ (resp.,

limn→∞ αn = −∞).

Recently Yağan [25] gives a zero-one law for connectivity

(i.e., 1-connectivity) in graph G(n,Kn, Pn)∩G(n, pn), which

is the intersection of random key graph G(n,Kn, Pn) and

ER graph G(n, pn), and clearly is equivalent to our system

model Gon; see Section III. Specifically, he shows that if

Kn ≥ 2, Pn = Ω(n) and pn·
[

1− (Pn−Kn

Kn
)

(Pn

Kn
)

]

∼ c lnn
n

hold, and

limn→∞(pn lnn) exists, then graph G(n,Kn, Pn)∩G(n, pn)
is a.a.s. connected (resp., not connected) if c > 1 (resp.,

c < 1).

A comparison of our results with the related work is given

in Section IV-D.

III. THE SYSTEM MODEL Gon

Consider a vertex set V = {v1, v2, . . . , vn}. For each node

vi ∈ V , we define Si as the key ring of node vi; i.e., the set

of Kn distinct keys of node vi that are selected uniformly at

random from a key pool P of Pn keys. The random key graph,

denoted G(n,Kn, Pn), is defined on the vertex set V through

the following notion of adjacency: Between any two distinct

nodes vi and vj , there exists an undirected edge, denoted Kij ,

if their key rings have at least one key in common; i.e.,

Kij = [Si ∩ Sj 6= ∅].
3We use the standard asymptotic notation o(·), O(·),Θ(·),Ω(·),∼. That

is, given two positive functions f(n) and g(n),

1) f(n) = o (g(n)) means limn→∞

f(n)
g(n)

= 0.

2) f(n) = O (g(n)) means that there exist positive constants c1 and N1

such that f(n) ≤ c1g(n) for all n ≥ N1.
3) f(n) = Ω (g(n)) means that there exist positive constants c2 and N2

such that f(n) ≥ c2g(n) for all n ≥ N2.
4) f(n) = Θ (g(n)) means f(n) = O (g(n)) and f(n) = Ω (g(n)).

5) f(n) ∼ g(n) means limn→∞

f(n)
g(n)

= 1.



As mentioned in Section I, here we assume a communi-

cation model that consists of independent channels that are

either on (with probability pn) or off (with probability 1−pn).

For distinct nodes vi and vj , let Cij denote the event that

the communication channel between them is on. The events

{Cij , 1 ≤ i < j ≤ n} are mutually independent such that

P [Cij ] = pn, 1 ≤ i < j ≤ n. (1)

This communication model can be modeled by an Erdős-Rényi

graph G(n, pn) on the vertices V such that there exists an

edge between nodes vi and vj if the communication channel

between them is on; i.e., if the event Cij takes place.

Finally, the graph Gon(n,Kn, Pn, pn) is defined on the

vertices V such that two distinct nodes vi and vj have an

edge in between, denoted Eij , if the events Kij and Cij take

place at the same time. In other words, we have

Eij = Kij ∩ Cij , 1 ≤ i < j ≤ n (2)

so that

Gon(n,Kn, Pn, pn) = G(n,Kn, Pn) ∩G(n, pn). (3)

Throughout, we simplify the notation by writing Gon instead

of Gon(n,Kn, Pn, pn).
Throughout, we let ps(Kn, Pn) be the probability that the

key rings of two distinct nodes share at least one key and

let pe(Kn, Pn, pn) be the probability that there exists a link

between two distinct nodes in Gon. For simplicity, we write

ps(Kn, Pn) as ps and write pe(Kn, Pn, pn) as pe. Then for

any two distinct nodes vi and vj , we have

ps := P[Kij ]. (4)

It is easy to derive ps in terms of Kn and Pn as shown in

previous work [2], [19], [27]. In fact, we have

ps = P[Si ∩ Sj 6= ∅] =







1− (Pn−Kn

Kn
)

(Pn

Kn
)

, if Pn ≥ 2Kn,

1 if Pn < 2Kn.
(5)

Given (2), the independence of the events Cij and Kij yields

pe := P[Eij ] = P[Cij ] · P[Kij] = pn · ps (6)

from (1) and (4). Substituting (5) into (6), we obtain

pe = pn ·
[

1−
(

Pn−Kn

Kn

)

(

Pn

Kn

)

]

if Pn ≥ 2Kn. (7)

IV. MAIN RESULTS AND DISCUSSION

A. A Zero-One Law for k-Connectivity in Graph Gon

Recall that we denote by Gon the random graph induced

by the EG scheme under the on/off channel model. The main

result of this paper, given below, establishes zero-one laws for

k-connectivity and for the property that the minimum node

degree is no less than k in graph Gon. Note that throughout

this paper, k is a positive integer and does not scale with n.

We refer to any pair of mappings K,P : N0 → N0 as a

scaling as long as it satisfies the natural conditions Kn ≤ Pn

for each n = 1, 2, . . .. Similarly, any mapping p : N0 → (0, 1)
defines a scaling.

Theorem 1. Consider a positive integer k, and scalings K,P :
N0 → N0, p : N0 → (0, 1) such that Kn ≥ 2 for all n
sufficiently large. We define a sequence α : N0 → R such that

for any n ∈ N0, we have

pe =
lnn+ (k − 1) ln lnn+ αn

n
. (8)

The properties (a) and (b) below hold.

(a) If
K2

n

Pn

= o(1) and either pen = Ω(1) or pen = o(1),
then

lim
n→∞

P [Gon is k-connected ] = 0 if lim
n→∞

αn = −∞, (9)

and

lim
n→∞

P

[

Minimum node degree

of Gon is no less than k

]

= 0 if lim
n→∞

αn = −∞.

(10)

(b) If Pn = Ω(n) and Kn

Pn
= o(1), then

lim
n→∞

P [Gon is k-connected ] = 1 if lim
n→∞

αn = ∞, (11)

and

lim
n→∞

P

[

Minimum node degree

of Gon is no less than k

]

= 1 if lim
n→∞

αn = ∞.

(12)

Note that if we combine (9) and (11), we obtain the zero-

one law for k-connectivity in Gon, whereas combining (10)

and (12) leads to the zero-one law for the minimum node

degree. Therefore, Theorem 1 presents the zero-one laws of

k-connectivity and the minimum node degree in graph Gon.

We also see from (8) that the critical scaling for both properties

is given by pe = lnn+(k−1) ln lnn

n
. The sequence αn : N0 →

R defined through (8) therefore measures by how much the

probability pe deviates from the critical scaling.

In case (b) of Theorem 1, the conditions Pn = Ω(n)
and Kn

Pn

= o(1) indicate that the size of the key pool Pn

should grow at least linearly with the number of sensor

nodes in the network, and should grow unboundedly with

the size of each key ring. These conditions are enforced here

merely for technical reasons, but they hold trivially in practical

wireless sensor network applications [4], [5], [10]. Again, the

condition
K2

n

Pn

= o(1) enforced for the zero-law in Theorem

1 is not a stringent one since Pn is expected to be several

orders of magnitude larger than Kn. Finally, the condition

that either pen = Ω(1) or pen = o(1) is made to avoid

degenerate situations. In fact, in most cases of interest it holds

that pen = Ω(1) as otherwise graph Gon becomes trivially

disconnected. To see this, notice that pen is an upper bound

on the expected degree of a node and that the expected number

of edges in the graph is less than pen
2; yet, a connected graph

on n nodes must have at least n− 1 edges.



B. Results with an approximation of probability ps

An analog of Theorem 1 can be given with a simpler

form of the scaling than (8); i.e., with ps replaced by the

more easily expressed quantity K2
n/Pn, and hence with pe

replaced by pnK
2
n/Pn. In fact, in the case of random key

graph G(n,Kn, Pn), it is a common practice [2], [19], [27]

to replace ps by
K2

n

Pn
, owing mostly to the fact that [27]

ps ∼
K2

n

Pn

if
K2

n

Pn

= o(1). (13)

However, when random key graph G(n,Kn, Pn) is intersected

with an ER graph G(n, pn) (i.e., for Gon) this simplification

does not occur naturally (even under (13)), and as seen below,

simpler forms of the zero-one laws are obtained at the expense

of extra conditions enforced on the parameters Kn and Pn.

Corollary 1. Consider a positive integer k, and scalings

K,P : N0 → N0, p : N0 → (0, 1) such that Kn ≥ 2 for

all n sufficiently large. We define a sequence α : N0 → R

such that for any n ∈ N0, we have

pn · K
2
n

Pn

=
lnn+ (k − 1) ln lnn+ αn

n
. (14)

The properties (a) and (b) below hold.

(a) If
K2

n

Pn

= O( 1
lnn

) and limn→∞[lnn+ (k − 1) ln lnn +
αn] = ∞, then

lim
n→∞

P [Gon is k-connected ] = 0 if lim
n→∞

αn = −∞,

(15)

and

lim
n→∞

P

[

Minimum node degree

of Gon is no less than k

]

= 0 if lim
n→∞

αn = −∞.

(16)

(b) If Pn = Ω(n) and
K2

n

Pn

= O( 1
lnn

), then

lim
n→∞

P [Gon is k-connected ] = 1 if lim
n→∞

αn = ∞, (17)

and

lim
n→∞

P

[

Minimum node degree

of Gon is no less than k

]

= 1 if lim
n→∞

αn = ∞.

(18)

Note that the condition
K2

n

Pn

= O( 1
lnn

) enforced in Corollary

1 implies both Kn

Pn

= o(1) and
K2

n

Pn

= o(1), and thus it is a

stronger condition than those enforced in Theorem 1.

C. A Zero-One Law for k-Connectivity in Random Key Graphs

We now provide a useful corollary of Theorem 1 that gives

a zero-one law for k-connectivity in the random key graph

G(n,Kn, Pn). As discussed in Section IV-D below, this result

improves the one given implicitly by Rybarczyk [20].

Corollary 2. Consider a positive integer k, and scalings

K,P : N0 → N0 such that Kn ≥ 2 for all n sufficiently

large. With α : N0 → R given by

K2
n

Pn

=
lnn+ (k − 1) ln lnn+ αn

n
, n = 1, 2, . . . , (19)

the following two properties hold.

(a) If either n
K2

n

Pn

= Ω(1) or n
K2

n

Pn

= o(1), then

lim
n→∞

P [G(n,Kn, Pn) is k-connected] = 0 if lim
n→∞

αn = −∞.

(b) If Pn = Ω(n), then

lim
n→∞

P [G(n,Kn, Pn) is k-connected] = 1 if lim
n→∞

αn = ∞.

D. Discussion and Comparison with Related Results

As already noted in the literature [2], [8], [9], [19], [20],

[27], Erdős-Rényi graph G(n, pn) and random key graph

G(n,Kn, Pn) have similar k-connectivity properties when

they are matched through their link probabilities; i.e. when

pn = ps with ps defined in (5). In particular, Erdős and Rényi

[9] has shown that if pn = lnn+(k−1) ln lnn+αn

n
, then G(n, pn)

is a.a.s. k-connected (resp., not k-connected) if limn→∞ αn =
∞ (resp., limn→∞ αn = −∞). Similarly, Rybarczyk [20]

has proven that under some extra conditions (i.e., Pn =
Θ(nξ) with ξ > 1) that if ps = lnn+(k−1) ln lnn+αn

n
, then

G(n,Kn, Pn) is a.a.s. k-connected (resp., not k-connected) if

limn→∞ αn = ∞ (resp., limn→∞ αn = −∞).

The analogy between these two results could be exploited to

conjecture similar k-connectivity results for our system model

Gon. To see this, recall from (3) that

Gon = G(n,Kn, Pn) ∩G(n, pn). (20)

Since G(n,Kn, Pn) and G(n, ps) have similar k-connectivity

properties, it would seem intuitive to replace G(n,Kn, Pn)
with G(n, ps) in the above equation (20). Then, using

Gon ≃ G(n, ps) ∩G(n, pn) = G(n, pnps) = G(n, pe),

we would automatically obtain Theorem 1 via the afore-

mentioned result of Erdős and Rényi [9]. Unfortunately,

such heuristic approaches can not be taken for granted as

G(n,Kn, Pn) 6= G(n, ps) in general. For instance, the two

graphs are shown [24], [26] to exhibit quite different charac-

teristics in terms of properties including clustering coefficient,

number of triangles, etc. To this end, Theorem 1 formally

validates the above intuition for the k-connectivity property. It

is also worth mentioning that we established [29] Theorem 1

with a direct proof that does not rely on coupling arguments

between random key graph and ER graph.

We now compare our results with those of Rybarczyk [20]

for the k-connectivity of random key graph G(n,Kn, Pn). As

already noted, Rybarczyk [20, Remark 1, p. 5] has established

an analog of Corollary 2, but under assumptions much stronger

than ours. In particular, her result requires Pn = Θ(nξ) where

ξ > 1. In comparison, Corollary 2 established here enforces

only Pn = Ω(n), which is clearly a much weaker condition

than Pn = Θ(nξ) with ξ > 1. More importantly, our condition



Pn = Ω(n) requires (from (19)) only Kn = Ω(
√
lnn) for the

one-law to hold; i.e., for Gon to be k-connected. However, the

condition Pn = Θ(nξ) with ξ > 1 enforced in [20] requires

the key ring sizes to satisfy Kn = Ω(
√
nξ−1 lnn) with ξ −

1 > 0. This condition not only constitutes a much stronger

requirement than Kn = Ω(
√
lnn), but it also renders the k-

connectivity result given in [20] not applicable in the context

of WSNs. This is because Kn controls the number of keys

kept in each sensor’s memory, and should be very small [10]

due to limited memory and computational capability of sensor

nodes; in general Kn = O(lnn) is accepted [5] as a reasonable

bound on the key ring sizes.

Finally, we compare Theorem 1 with the zero-one law given

by Yağan [25] for the 1-connectivity of Gon. As mentioned in

Section II above, he shows that if

pe ∼ c
lnn

n
=

lnn+ (c− 1) lnn

n
, (21)

then Gon is a.a.s. connected (resp., not connected) if c > 1
(resp., c < 1). This is done under the additional conditions

that Pn = Ω(n) (required only for the one-law) and that

limn→∞ pn lnn exists (required only for the zero-law). On

the other hand, Theorem 1 given here establishes (by setting

k = 1) that, if

pe =
lnn+ αn

n
, (22)

then Gon is a.a.s. connected (resp., not connected) if

limn→∞ αn = ∞ (resp., limn→∞ αn = −∞). This result

relies on the extra conditions Pn = Ω(n) and Kn

Pn

= o(1) for

the one-law and on
K2

n

Pn

= o(1) for the zero-law.

Comparing (21) and (22), we see that our 1-connectivity

result for Gon is somewhat more fine-grained than Yağan’s

[25]. This is because, a deviation of αn = ±Ω(lnn) is re-

quired to get the zero-one law in the form (21), whereas in our

formulation (22), it suffices to have an unbounded deviation;

e.g., even αn = ± ln ln · · · lnn will do. Put differently, we

cover the case of c = 1 in (21) (i.e., the case when pe ∼ lnn
n

)

and show that Gon could be a.a.s. connected or not connected,

depending on the limit of αn; in fact, if (21) holds with c > 1,

we see from Theorem 1 that Gon is not only 1-connected

but also k-connected for any k = 1, 2, . . .. However, it is

worth noting that the additional conditions assumed in [25]

are weaker than those we enforce in Theorem 1 for k = 1.
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[24] O. Yağan and A. M. Makowski, “On the existence of triangles in
random key graphs,” in Proc. of 47th Annual Allerton Conference on
Communication, Control, and Computing (Allerton 2009), October 2009,
pp. 1567 –1574.
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