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Topology for Distributed Inference on Graphs

Soummya Kar, Saeed Aldosari, and José M. F. Moura

Abstract—Let decision-makers collaborate to reach a decision. We
consider iterative distributed inference with local intersensor communica-
tion, which, under simplifying assumptions, is equivalent to distributed av-
erage consensus. We show that, under appropriate conditions, the topology
given by the nonbipartite Ramanujan graphs optimizes the convergence
rate of this distributed algorithm.

Index Terms—Algebraic connectivity, Cayley, consensus algorithm,
distributed detection, Laplacian, Ramanujan, random graphs, sensor
networks, small-world, spectral graph theory, topology optimization.

I. INTRODUCTION

We present the optimal topology design problem for distributed in-
ference in sensor networks; equivalent topology design questions arise
in many other applications, including when it is desired to minimize
the rate of diffusion of a viral infection, or to maximize (minimize) the
spread of a rumor. By topology, we mean the graph that determines the
connection or communication channels established among the sensors.
We constrain the topology to be sparse, i.e., the number M of chan-
nels is much smaller thanN2, where N is the number of sensors in the
network. We further constrain the topology and all graphs in this corre-
spondence to be a connected, simple, undirected graph, [1]. Distributed
inference, under simple conditions, is equivalent to average consensus,
a widely studied problem, e.g., [2]–[4]. The optimization of weights for
fast convergence of consensus on a fixed topology has been studied,
e.g., [5], while, simulations showing the impact of specific topologies
are presented in [6] and [7]. Our goal is to design the topology that
maximizes the speed of convergence of the distributed inference algo-
rithm, which has not received much attention. In general, designing con-
strained graphs with prescribed properties is a combinatorial problem.
The correspondence obtains a somewhat surprising result. Under the
appropriate conditions, the constrained design problem has a “closed
form” solution—the optimal topology is specified a priori; it is given
by a class of expanders, the Ramanujan graphs [8].

Section II describes distributed inference and consensus. Section III
presents the Ramanujan graphs as solution to the constrained optimal
topology design problem. Section IV shows numerically that the
Ramanujan networks are much faster than other topologies. Section V
designs new random regular graphs that closely track the performance
of Ramanujan topologies but can be constructed for an arbitrary
number of sensors, while Ramanujan graphs can only be constructed
for a sparse set of integer values of the number of sensors. Finally,
Section VI concludes the correspondence. An extended and more
detailed version of this correspondence is available on [9].
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II. DISTRIBUTED INFERENCE AND CONSENSUS

We consider the binary inference between hypotheses H0 and H1,
where the data at the sensors, conditioned on the hypothesisHm,m =
0,1, are independent, identically distributed (i.i.d.) Gauss random vari-
ables N (�m; �

2), �0 = ��, �1 = �. The local and global log-likeli-
hood ratios (llr) are

Hm : `n � N
2��m
�2

;
4�2

�2
;m = 0; 1; n = 1 � � �N (1)

Hm : ` =
1

N

N

n=1

`n � N
2��m
�2

;
4�2

N�2
;m = 0; 1: (2)

The global llr can be implemented locally by an iterative distributed
consensus algorithm, [2]. It defines the initial state of sensor n as
xn(0) = `n and, at iteration i, each sensor n communicates to its
neighbors its current state xn(i), and updates its state by a weighted
sum of its neighbors’ states. Let x(i) 2 <N collect the states of all the
N sensors at iteration i and x(0) = [`1 � � � `N ]T . Assuming noiseless
communication

x(i) = Wx(i� 1) = W i
x(0); i � 1: (3)

The entries of row n, Wnk , of the weight matrix W are nonzero if
sensors k and n are neighbors, i.e., there is a direct communication
channel among them. Determining the network topology under a con-
straint on the number of channels is then the problem of designing:
i) the structure of W , i.e., which ones are its zero entries, assuming a
fixed number of nonzero entries, and ii) the actual values of the nonzero
entries Wnk of W . We assume the common condition of a symmetric
W with equal weights, [10], i.e., W = I � �L. Matrix L = D � A
is the Laplacian of the graph, [11], where A is the adjacency matrix
(Ank = Akn = 1 if there is a communication channel among sensors
n and k, zero otherwise) and the degree matrix D is diagonal; its entry
dnn is the number (degree) of communication channels connecting n
to its neighbors. The degree dnn equals the number of 1’s in row n of
A. The Laplacian L is positive semidefinite, [11]; and, with its eigen-
values ordered as �1(L) = 0 � �2(L) � � � � � �N (L), it follows
that �2(L) > 0 since the topology is connected.

Denote the initial average as r = 1
T
x(0)=N where 1 = [1 � � � 1]T .

Convergence of (3) occurs if

lim
i!+1

W i =
1

N
11

T : (4)

We take the optimizing common weight, see [10] for details,

� =
2

�2(L) + �N (L)
: (5)

Result 1 (Rate of Convergence): For any connected topology, under
the equal weights assumption, the state sequence, fx(i)gi�0 converges
to the average of the initial state, x(0), with rate 
2 < 1, where


2 =
1� 


1 + 

; with 
 =

�2(L)

�N (L)
: (6)

Proof: The proof follows from the fact that the iterative update
(3) leads to

kx(i)� r1k � 
i2 kx(0)� r1k (7)

so that the convergence rate is 
2 (see [9] for details).
For distributed inference, let Pe(i; n) and Pe be the probabilities

of error associated with the local and the global minimum probability
of error detectors, respectively. Under the conditional independence
and Gauss assumptions, the local detectors simply threshold the current
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state xn(i) at sensor n and iteration i and the global detector thresholds
the global test statistic l.

Result 2 (Distributed Inference): For connected topologies,
limi!+1 Pe(i; n) = Pe, 8n.

Proof: It follows from bounding the probabilities of error, noting

2 < 1, and taking the limit i ! 1

Pe =erfc
�
p
N

�
� Pe(i; n)

= erfc
�
p
N

� [W 2i]nn
� erfc

�
p
N

� 1 + 
2i2 (N � 1)
: (8)

III. TOPOLOGY DESIGN: RAMANUJAN GRAPHS

Topology optimization: To maximize the convergence rate, 
2
should be made as small as possible, which in turn means that 
 should
be as large as possible, see (6). The topology design is then

max
G2 G


 = max
G2 G

�2(L)

�N(L)
(9)

where G denotes the set of simple connected graphs with N vertices
and at most M edges. Equation (9) restates the topology design as op-
timization of the spectral properties of graphs; see also [9] and [12].

A. Ramanujan Graphs

We study the spectral properties of k-regular graphs,1 motivate the
consideration of nonbipartite Ramanujan graphs, and, finally, estab-
lish their asymptotic (as N ! 1) optimality for the topology design
problem in (9) among the class of regular graphs. Then, we argue that
the class of nonbipartite Ramanujan graphs are also expected to per-
form better than the nonregular graphs, thus making them essentially
optimal. We first state a well-known result from algebraic graph theory.

Theorem 3 (Alon and Boppana [13], [14]): Let G = GN;k be a
k-regular graph onN vertices. Denote by �G(A) the absolute value of
the largest eigenvalue (in absolute value) of the adjacency matrix A of
the graph G, which is distinct from �k; in other words, �2G(A) is the
next to largest eigenvalue of A2. Then

lim inf
N!1

�G(A) � 2
p
k � 1: (10)

A second result, [13], also shows that, for an infinite family of k-reg-
ular graphs GN;k, for which the number of nodes N ! 1, the alge-
braic connectivity �2(L) is asymptotically bounded by

lim inf
N!1

�2(L) � k � 2
p
k � 1: (11)

Note that (11) is a direct upperbound on the limiting behavior of �2(L)
itself, while from (10) we may derive an upperbound on the limiting
behavior of �2(A) or of �N (A), depending if �2(A) � j�N (A)j or
�2(A) � j�N (A)j in the limit. We consider each of these two cases
separately.2

1) Consider the family G1 � G of regular graphs for which

lim
N!1

�2(A) � lim
N!1

j�N (A)j : (12)

1A graph is called k-regular if all vertices have the same degree k. A bipartite
graph is a graph in which the vertex set can be partitioned into two disjoint
subsets, such that no two vertices in the same subset are adjacent.

2We assume that the limits in (10) and (11) exist. Otherwise, we can extract
subsequences, which actually converge.

Since �2(A) > 0 and �N (A) � 0, it follows successively

lim
N!1

�N (A) � � 2
p
k � 1

lim
N!1

�N (L) � k + 2
p
k � 1: (13)

Combining (13) with (11), we get the asymptotic upper bound on



lim
N!1


(N) = lim
N!1

�2(L)

�N (L)
� k � 2

p
k � 1

k + 2 (k � 1)
: (14)

2) Consider the family G2 � G of regular graphs for which

lim
N!1

�2(A) � lim
N!1

j�N (A)j : (15)

Now Theorem (3) is inconclusive. From �k � �N (A) � 0, we
deduce that k � �N (L) � 2k. Combining this with (11), we get
the asymptotic upper bound

lim
N!1

�2(L)

�N (L)
� k � 2

p
k � 1

k
: (16)

We now consider the class of Ramanujan graphs.
Definition 4 (Ramanujan Graphs): A k-regular graph G = GN;k

on N vertices is Ramanujan if

�G(A) � 2
p
k � 1: (17)

Graphs with small �G(A) (often called graphs with large spectral gap
in the literature) are called expander graphs, and the Ramanujan graphs
are one of the best explicit expanders known. Note that Theorem 3 and
(10) show that, for general graphs, �G(A) is in the limit lower bounded
by 2

p
k � 1, while for Ramanujan graphs �G(A) is, for every finiteN ,

upper bounded by 2
p
k � 1.

From (17), it follows that, for nonbipartite Ramanujan graphs,3 the
graphs of interest to us, we have the following bounds:

�2(A) � 2
p
k � 1 (18)

�N (A) � � 2
p
k � 1: (19)

Equations (18) and (19) give, for nonbipartite Ramanujan graphs,

�2(L) � k � 2
p
k � 1

�N (L) � k + 2
p
k � 1

and, hence, for nonbipartite Ramanujan graphs,


 =
�2(L)

�N (L)
� k � 2

p
k � 1

k + 2
p
k � 1

: (20)

This is a key result. It shows that for nonbipartite Ramanujan graphs
the eigenratio parameter 
 is lower bounded by (20). It will explain in
what sense Ramanujan graphs are “optimal” topologies for the design
problem stated in (9), as we discuss next. To show this, we compare the
lower bound (20) on 
 for Ramanujan graphs with the asymptotic upper
bounds (14) and (16) on 
 for generic k-regular graphs. We consider
the two cases separately again.

1) For the family G1, the lower bound on (20) and the upper bound
on (14) are the same. Since for any value of N , (20) shows that 

is above the bound, we conclude that, in the limit of large N , the
eigenratio 
 for nonbipartite Ramanujan graphs approaches the
bound from above. This contrasts with regular non-Ramanujan

3For connected nonbipartite k-regular graphs, the eigenvalues � (A),
� (A) are nontrivial.
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graphs for which in the limit of large N the eigenratio 
 stays
below the bound. For the family G1 of graphs, we can then state
the following optimality result.

Proposition 5: Consider the topology optimization problem for
distributed inference given in (9) and with graphs restricted to the
family G1. Then, as N ! 1, the class of k-regular nonbipartite
Ramanujan graphs are optimal among G1, where k = b2M=Nc.

2) For the family G2, the bound (16) does not help in asserting that
Ramanujan graphs have faster convergence than these generic
graphs. This is because

k � 2
p
k � 1

k + 2
p
k � 1

<
k � 2

p
k � 1

k

i.e., the lower bound (20) for Ramanujan graphs is smaller than
the upper bound (16). Although for the family G2 we cannot state
a result like Proposition 5, we note that the ratio of two quantities
is usually much more sensitive to variations in the numerator than
to variations of the denominator. Because Ramanujan graphs op-
timize the algebraic connectivity of the graph, i.e., �2(L), we still
expect 
 to be much larger for Ramanujan graphs than for other
graphs. We show in Section IV by simulation this to be true for
broad classes of graphs, including, structured graphs, small-world
graphs, and Erdös-Renýi random graphs.
Regular versus nonregular graphs: Proposition 5 asserts the

optimality of Ramanujan graphs for the family G1 of regular graphs.
We address here the same question but contrasting regular versus non-
regular graphs. We recall an inequality on the eigenratio 
 for non-
regular graphs, which shows that the class of nonbipartite Ramanujan
graphs are expected to perform better than many classes of nonregular
graphs. Using standard spectral graph theoretic results, it can be shown
that (see [15]) for any graph G


 =
�2(L)

�N (L)
� kmin
kmax

(21)

where kmin and kmax are the minimum and maximum node degrees,
respectively. Equation (21) shows that, for graphs with large hetero-
geneity (large spread) in degree distribution, the value of 
 is small,
and, hence, such networks are not good from the point of view of dis-
tributed inference and consensus.

B. Ramanujan Graphs: Explicit Algebraic Construction

Explicit constructions of k-regular Ramanujan graphs (both bi-
partite and nonbipartite) were given independently by Lubotzky–
Phillips–Sarnak (LPS) [14] and Margulis [16], for the case where the
degree k is such that k � 1 is a prime. The LPS construction was
extended to cover the cases where k � 1 is a prime power by Mor-
genstern [17]. However, recently, many probabilistic methods have
been developed for constructing expander families. In particular, [18]
develops a new graph product that constructs expanders of arbitrary
degree and size with high probability. The nonbipartite Ramanujan
graphs used in this correspondence are based on a construction given
in [14], and we call them LPS-II graphs in the sequel.

LPS-II construction: The LPS-II construction gives k-regular
nonbipartite Ramanujan graphs on N vertices, where k = p + 1 and
N = q+1, and p, q are two unequal primes congruent to 1 mod 4, such
that the Legendre symbol (p=q) = 1. The LPS-II graphs are Cayley
graphs over the group P 1(Fq) = f0; 1; . . . ; q�1;1g, called the Pro-
jective line over Fq ,4 and which is basically the set of integers modulo
q, with an additional “infinite” element inserted in it. The LPS-II graphs

4F is the field of integers modulo the prime q.

Fig. 1. LPS-II graph. Number of vertices N = 42 and degree k = 6.

thus obtained may have a few loops [19]; this does not pose a problem
because their removal does not affect the Laplacian matrix nor its spec-
trum. This is because the Laplacian L = D � A, and a loop at vertex
n adds the same term to both Dnn and Ann, which is canceled when
taking the difference. As an example of an LPS-II Ramanujan graph,
we take p = 5 and q = 41. (It can be verified that p; q � 1 mod(4)
and the Legendre symbol, (p=q) = 1.) Thus, we have a nonbipartite
Ramanujan graph, which is 6-regular and has 42 vertices. Fig. 1 shows
the graph obtained.

IV. EXPERIMENTAL RESULTS

We compare Ramanujan graphs, which are regular graphs, with reg-
ular and nonregular graphs. Define the average degree kavg of a graph
G as

kavg =
2jEj
jV j

where jEj is the number of edges and jV j the number of vertices in G.
In this section, we use the symbols and terms k and kavg interchange-
ably: specifically, k stands for the degree in regular graphs and for the
average degree in nonregular graphs. We contrast Ramanujan graphs
(RG) with three classes of graphs detailed below: regular ring lattices
(RRL), Watts–Strogatz small world graphs, in particular what we refer
to as WS-I graphs; and Erdös-Renýi graphs. We describe briefly below
the three classes of graphs used to benchmark the Ramanujan graphs.

Comparison studies: The numerical studies show the superi-
ority of the Ramanujan graphs (RG) over the other three classes of
graphs: RRL, WS-I, and ER graphs. We carry out three types of com-
parisons: 1) convergence speed Sc defined as Sc = 1=Tc, where the
convergence time Tc is the number of iterations required for Pe;n(i) to
reach within 10% of the global probability of error Pe, averaged over
all sensor nodes; 2) the 
 parameters for the RG and each of the other
three classes of graphs; and 3) the algebraic connectivity �2(L) for the
RG and each of the other three classes of graphs. To simplify the com-
parisons, we subscript the 
 parameter by the corresponding acronym,
e.g., 
RG to represent the eigenratio of the Ramanujan graph. We also
define the following comparison parameters

 (RRL) =
Sc;RG
Sc;RRL

; �(RRL) =

RG

RRL

;

and

�(RRL) =
�2;RG(L)

�2;RRL(L)
: (22)

Ramanujan graphs and regular ring lattices: These are highly
structured regular networks with the nodes placed on a ring, each con-
necting to k=2 nodes to the left and k=2 nodes to the right. Fig. 2 com-
pares RG with RRL graphs. The right panel plots  (RRL), the center
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Fig. 2. Spectral properties of LPS-II and RRL graphs, k = 18, varying N : left: ratio of convergence speed  (RRL); center: ratio �(RRL) of � (L)=� (L);
right: ratio �(RRL) of � (L).

Fig. 3. Spectral properties of LPS-II and WS-I graphs, N = 6038, k = 18, varying p left: S ; center: eigenratio 
 = � (L)=� (L); right: algebraic
connectivity � .

Fig. 4. Spectral properties of LPS-II and ER graphs, k = 18, varying N : left: convergence speed S ; center: eigenratio 
 = � (L)=� (L); right: algebraic
connectivity � .

panel displays �(RRL), and the right panel shows �(RRL) when the
degree k = 18 and the number of nodes N varies. The RGs converge
3 orders of magnitude faster than the RRLs, the 
 parameters can be
up to 3500 times faster, and the algebraic connectivity for the RGs can
be up to 4000 times larger than for the RRLs.

Ramanujan graphs and Watts–Strogatz graphs (WS-I):
Small world graphs were introduced in [20]. Start with an RRL and
randomly rewire all links with the same probability pw . The resulting
graph has the same number of links as the initial starting RRL seed,
but may not be regular. The pw controls the “randomness” of the graph
(pw = 0 corresponds to the original RRL, while pw = 1 results in a
random network). We call this construction the WS-I construction. In
[6] and [7], we show that the WS-I graphs yield better convergence
rates among the different models of small world graphs considered in
that paper (WS-I, WS-II, and the Kleinberg model [21]). Hence, we
restrict attention here to WS-I graphs.

The parameters are N = 6038 and k = 18. For WS-I, we vary
0 � pw � 1. Fig. 3 shows on the left panel the convergence speed Sc.

The top horizontal line is Sc for the RG—it is flat because the graph is
the same regardless of pw . The three lines below correspond to the WS-I
topologies. For each value of pw, we generate 150 WS-I graphs. The top
WS-I line corresponds, at eachpw , to the topologies (among the 150 gen-
erated) with maximum convergence rate, the medium line to the average
convergence rate (averaged over the 150 random topologies generated),
and the bottom line to the topologies (among the 150 generated) with
worst convergence rate. Similarly, the center and right panels on Fig. 3
compare the eigenratio parameters 
 (center panel) and the algebraic
connectivity �2 (right panel). For example, the RG improves by 50%
the 
 eigenratio over the best WS-I topology (in this case for pw = :8).

Ramanujan graphs and Erdös-Renýi graphs: These nonreg-
ular graphs randomly choose Nk=2 edges out of a total of (N(N �

1))=2 possible edges. Their degree distribution follows a binomial dis-
tribution, which in the limit of large N approaches the Poisson law.
Fig. 4 shows the results for topologies with different N (horizontal
axis). For each value of N , we generated 200 random Erdös-Renýi
graphs. In the panels of both Figures, the top line illustrates the re-
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Fig. 5. LPS-II and R3L graphs, k = 18, varying N : eigenratio 
 =
� (L)=� (L).

sults for the RG, while the three lines below show the results for the
Erdös-Renýi graphs—among these three, the top line is the topology
with best convergence rate among the 200 ER topologies, the middle
plot is the averaged convergence rate, averaged over the 200 topolo-
gies, and the bottom line corresponds to the worst topologies. Again,
for example, the 
 parameter of the RG is about twice as large than the

 parameter for the ER.

V. RANDOM REGULAR RAMANUJAN-LIKE GRAPHS

The RLS construction of the Ramanujan graphs restricts the values
of N , which may limit their application in practical scenarios. We
describe here briefly biased regular random graphs that can be con-
structed with arbitrary number of nodes N and average degree, whose
performance closely matches that of Ramanujan graphs. Reference
[22] argues that, in general, heterogeneity in the degree distribution re-
duces the eigenratio 
 = �2(L)=�N(L). There exist constructions of
random regular graphs, but these are difficult to implement especially
for very large number of vertices, see, e.g., [23] and references therein.
Our construction of random regular graphs is simple. We refer to the
graphs as random regular Ramanujan-like (R3L) graphs. It starts with
an arbitrary regular seed of degree k, e.g., an RRL with degree k (see
Section IV). Randomly choose (uniformly) a vertex (call it v1.) Next,
randomly choose a neighbor of v1 (call it v2), and randomly choose
a vertex not adjacent to v1 (call it v3). Now choose a neighbor of v3
(call it v4). Next remove the edges between v1 and v2, and between
v3 and v4. Finally, introduce edges between v1 and v3 and between
v2 and v4. (Care is taken so that no conflict arises in the process of
removing and forming the edges.) By construction, the graph remains
k-regular. Repeat the steps for a sufficiently large number of times,
which leads to a random regular graph with degree k.

Fig. 5 plots the eigenratio 
 = �2(L)=�N(L) for the RG and
the R3L graphs for different values of N with k = 18. We generate
100 R3L graphs for each value of N . The top three lines correspond
to the RG, the best R3L topologies, and the average value of 

over the 100 R3L graphs. We observe that the maximum values of

 = �2(L)=�N(L) are sometimes higher than those obtained with the
LPS-II graphs. Note also that, on average, the R3L graphs are quite
close to the LPS-II graphs in terms of the 
 = �2(L)=�N(L) ratio,
even for large values of N . This confirms that the R3L graphs are a
good alternative to the LPS-II graphs with the advantage that they can
be generated for arbitrary number of nodes N and degree k.

VI. CONCLUSION

The correspondence shows that the class of nonbipartite Ramanujan
graphs leads to topologies whose convergence speed in distributed in-

ference and average consensus is essentially optimal for a broad class
of networks. Numerical simulations verify that they outperform struc-
tured graphs, Erdös-Renýi random graphs, and small world graphs. Ra-
manujan graphs can be constructed only for a very restricted number
of nodes. To address this limitation of LPS-II, we described a novel
simple construction of random regular graphs (R3L graphs) that can
have an arbitrary number of nodes N and degree k. Simulations show
that the convergence of R3L tracks very closely that of the Ramanujan
LPS-II graphs. However, it should be noted that, from a network de-
ployment point of view, the Ramanujan graphs may not be physically
realizable always, for example, in a wireless communication scenario,
where nodes are deployed in an ad hoc manner with nearest neighbor
connectivity.
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