
Model Checking In-The-Loop:

Finding Counterexamples by Systematic Simulation

Flavio Lerda†, James Kapinski§, Hitashyam Maka§, Edmund M. Clarke†, and Bruce H. Krogh§

† School of Computer Science
§ Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

Email: †{flerda|emc}@cs.cmu.edu, §{jpk3|hmaka|krogh}@andrew.cmu.edu

Abstract— Model checkers for program verification have
enjoyed considerable success in recent years. In the control
systems domain, however, they suffer from an inability to
account for the physical environment. For control systems,
simulation is the most widely used approach for validating
system designs. We present a new technique for finding coun-
terexamples that uses a software model checker to perform a
systematic simulation of the software implementation of a con-
troller coupled with a continuous plant. Instead of performing
a large set of independent simulations, our approach uses the
model checking notion of state-space exploration by piecing
together numerical simulations of the plant and transitions
of the controller. Our implementation of this technique uses
an explicit-state source-code model checker to analyze the
software and the MATLAB/Simulink environment to model and
simulate the plant. We present an illustrative example involving
a supervisory controller for an unmanned aerial vehicle (UAV).
We show that our technique is able to detect an error in the
controller design.

I. INTRODUCTION

The goal of model-based design of embedded software

is to reduce development time and cost by evaluating con-

trollers using computer-based models. This approach requires

methods for exploring the behaviors of dynamical systems.

While simulation can be used to evaluate system performance

for a specific set of parameters, exhaustive evaluation of sys-

tem behaviors over a range of parameters using simulation is

usually intractable. We investigate using formal verification

techniques to catch design errors by exploring the behaviors

of an embedded control system. Our approach combines a

software model checker with numerical simulation.

Model checking is an automated technique for checking

properties of finite-state systems [7], [14], [8]. If a given

property to be verified is not true, the model checking

algorithm produces a counterexample, which is a trace of

state transitions in the finite state system that violates the

property. In recent years, there has been considerable interest

in model checkers for software [3], [10], [5], [15]. One of

the main advantages of model checking compared to other

This research was sponsored by the Air Force Research Office (AFRO)
under contract no. FA9550-06-1-0312, by the General Motors Collab-
orative Research Lab at Carnegie Mellon University under grant no.
GM9100096UMA, and by the National Science Foundation (NSF) under
grant no. CCR-0411152.

validation techniques, such as simulation, is the ability to

explore the behaviors of a system exhaustively.

Embedded control systems are difficult to analyze using

model checking due to the controller’s interaction with a

continuous dynamic plant, which makes the system infinite

state. Various methods have been developed to formally ver-

ify hybrid automata, which can be used to model embedded

control systems [9], [12], [4], [6]. These techniques are

computationally expensive, however, and are able to analyze

only systems of low complexity.

Simulation is the most widely used technique for validat-

ing control system designs. Tools like MATLAB/Simulink

provide an environment for modeling and simulating control

systems [13], [2]. Recently, a MATLAB toolbox for veri-

fication was released, the Design Verification Toolbox [1],

but this tool only addresses the verification of discrete-time

components of Simulink models.

We present an approach that narrows the gap between

simulation and model checking of control systems. Using

a numerical simulator, we can capture the dynamics of the

plant accurately. By employing a model checker, we can

validate properties that are difficult to validate using standard

simulation, such as correctness of an implementation using

concurrent tasks communicating via shared variables. The

technique is implemented using an explicit-state source-

code model checker and the MATLAB/Simulink simulation

environment. We present an example based on the Stanford

Testbed of Autonomous Rotorcraft for Multi-Agent Control

(STARMAC) platform [11].

II. SYSTEM MODEL

We consider a sampled-data controller and a continuous-

time plant. A sampled-data controller is able to observe the

state of the plant only at discrete time instants, called sample

times. We assume that the sample times occur at multiples

of a fixed sampling period, ts. The software that implements

the controller is composed of a set of concurrent tasks. The

tasks execute periodically at the sample times. We assume

that the code of the controller executes instantaneously and

all tasks share the same clock. The plant is modeled as a set

of differential equations. Figure 1 shows the architecture of a

sampled-data system. For simplicity, we show the controller

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThB09.3

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 2734

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 24, 2008 at 17:00 from IEEE Xplore. Restrictions apply.

(resp. plant) observing the entire state of the plant (resp.

controller), however, our analysis does not require this. The

controller can observe a mapping g(x) of the plant state and

the plant can observe a mapping h(v) of the controller state.

Fig. 1. The architecture of a sampled-data system.

We use a single finite-state automaton to describe the

behavior of the controller, which represents a set of con-

currently executing tasks. In the following, we describe how

the finite-state automaton for the controller can be obtained

from the set of finite-state automata representing the tasks.

Let v ∈ V m be the controller variables shared among

the tasks, where V is a finite set of values. Each controller

task Ti is described as a finite-state automaton with shared

variables. Let Loci be the states of the automaton, called

local control locations. Let li,init , li,final ∈ Loci be two

specially designated control locations. At each sample time,

task Ti starts at control location li,init and ends at control

location li,final. Let Qi = Loci × V m represent the local

controller states of task Ti. The transitions of the task depend

on the state of the plant, x ∈ R
n. The local transition relation

of Ti is defined by δi : R
n → 2Qi×Qi . There exists a local

controller transition of Ti denoted by (li,v)
δi(x)
−−−→ (l′i,v

′) if

and only if ((li,v), (l′i,v
′)) ∈ δi(x). No transition is possible

from the final control location li,final.

Given a set of tasks T1, . . . , Tp, the controller is obtained

by composing the tasks using interleaving semantics, mean-

ing that there is no predetermined execution order between

the transitions of different tasks. Interleaving semantics is

used to model control software that is either implemented as

multiple threads or distributed among a set of processors.

The composed system is represented as a finite-state

automaton. Let Loc = Loc1 × . . . × Locp be the states

of the automaton, called the control locations. Let Linit =
(l1,init, . . . , lp,init) and Lfinal = (l1,final, . . . , lp,final) be

the initial and final control locations. Let Q = Loc ×
V m represent the controller states. The controller transi-

tion relation is defined by δ : R
n → 2Q×Q such that

(((l1, . . . , lp),v), ((l′1, . . . , l
′

p),v
′)) ∈ δ(x) if and only if

there exists a task Ti such that (li,v)
δi(x)
−−−→ (l′i,v

′) and

∀j 6= i : lj = l′j . Given two controller states q, q′ ∈ Q and a

plant state x, we denote (q, q′) ∈ δ(x) by q
δ(x)
−−−→ q′.

At each sample time, the controller starts executing at

control location Linit and stops when it reaches control

location Lfinal. We can define a transition relation ∆ :
R

n → 2Q×Q that represents the relation between the

states of the controller at the beginning and at the end

of each execution. Given a plant state x ∈ R
n, we

have that ((Linit,v), (Lfinal,v
′)) ∈ ∆(x), also denoted as

(Linit,v)
∆(x)
−−−→ (Lfinal,v

′)), if and only if there exists a

finite sequence of controller states q0 . . . qJ such that q0 =

((Linit,v), qJ = (Lfinal,v
′), and qj

δ(x)
−−−→ qj+1 for every

0 ≤ j < J .

A sampled-data control system is a tuple SDCS =
(Loc, Linit, Lfinal, V, δ, f, ts, Init), where:

• Loc is a finite set of control locations;

• Linit, Lfinal ∈ Loc are the first and last control locations

of each periodic execution of the controller;

• V is a finite set of values;

• δ : R
n → 2Q×Q is the controller transition relation;

• f : R
n × V m → R

n is Lipschitz continuous in its

first argument and describes the continuous flow of the

system as a function of the controller variables;

• ts > 0 is the sampling period of the controller. The

controller executes only at time instances corresponding

to non-negative multiples of ts;

• Init ⊂ Loc × V m × R
n is a finite set of initial states.

Let S = Loc × V m × R
n denote the set of system

states. Evolutions of the plant over a sampling period ts
are defined implicitly by the set of differential equations

ẋ = f(x,v). Let F : V m → 2R
n
×R

n

be the discrete-

time update function, such that (x,x′) ∈ F (v) if and only

if there exists a differentiable function ξx

v
: [0, ts] → R

n

such that ξ̇x

v
(t) = f(ξx

v
(t),v) for all t ∈ [0, ts], ξx

v
(0) = x,

and ξx

v
(ts) = x′. There exists a plant transition from x to

x′ when the controller variables are equal to v, denoted by

x
F (v)
−−−→ x′, if and only if (x,x′) ∈ F (v).
There exists a system-level transition between two system

states s = (L,v,x) and s′ = (L′,v′,x′), denoted by s =⇒
s′, if and only if either:

• (L,v)
δ(x)
−−−→ (L′,v′) and x = x′; or

• x
F (v)
−−−→ x′, L = Lfinal, L′ = Linit, and v = v′.

If the former holds, we call s =⇒ s′ a system-level controller

transition; if the latter holds, we call s =⇒ s′ a system-level

plant transition.

A trace of an SDCS is a finite sequence of system states

σ = s0 . . . sK , such that s0 ∈ Init, and, for every 0 ≤ k <

K, there exists a system-level transition sk =⇒ sk+1. Given

a trace σ, duration(σ) denotes the amount of time elapsed

between the first state and the last state of σ, and it is defined

inductively as follows:

• For a trace σ = s0, duration(σ) = 0.

• For a trace σ = s0 . . . sK such that sK−1 =⇒
sK is a system-level controller transition,

duration(s0 . . . sK) = duration(s0 . . . sK−1), since

we assume the controller transitions execute

instantaneously.

• For a trace σ = s0 . . . sK such that sK−1 =⇒ sK is

a system-level plant transition, duration(s0 . . . sK) =
duration(s0 . . . sK−1) + ts.

The system state s ∈ S of an SDCS is reachable within a

time bound T if and only if there exists a trace σ = s0 . . . sK

such that sK = s and duration(σ) ≤ T . A system state s

2735

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 24, 2008 at 17:00 from IEEE Xplore. Restrictions apply.

is a deadlock state if there does not exist a system state s′

such that s =⇒ s′. A deadlock state is a state from which no

transition is possible. An SDCS has a deadlock within time

bound T if and only if a deadlock state is reachable within

T . A state s = (L,v,x) is a livelock state if and only if there

exists an infinite sequence of controller states, q0q1 . . ., such

that q0 = (L,v) and, for every i ≥ 0, qi
δ(x)
−−−→ qi+1. A

livelock corresponds to an infinite loop in the controller. An

SDCS has a livelock within time bound T if and only if there

exists a livelock state that is reachable within T .

Given a set of unsafe system states U ⊂ S, an SDCS is

safe within time bound T if and only if there exists no unsafe

system state s ∈ U that is reachable within T and the system

has no deadlock or livelock within time bound T .

III. ANALYSIS TECHNIQUE

This section presents a technique for checking bounded-

time safety of an SDCS. The approach, called systematic

simulation, uses a model checker to guide the search for

counterexamples. The algorithm efficiently analyzes simula-

tion traces to determine if a system can reach an unsafe state,

a deadlock, or a livelock within a given time bound.

A. Systematic Simulation

Simulation is a validation technique that generates the

traces of a system. For a continuous system specified as

a set of differential equations, numerical methods are used

to generate traces of the system. Tools such as MAT-

LAB/Simulink [2] are used for modeling and simulating

dynamical systems. A simulation trace corresponds to one

possible evolution of the dynamical system: all inputs must

be fixed, and therefore the simulation is deterministic.

Model checking is a verification technique that is able to

check that all possible behaviors of a system satisfy a given

property. In this context, a system is allowed to be non-

deterministic. Systems modeled as an SDCS exhibit non-

deterministic behavior due to the following: (i) the inter-

leaving of concurrent tasks; (ii) multiple initial states; and

(iii) non-determinism in the controller finite state automaton,

which can be used to model external inputs to the controller.

In contrast to simulation, where each simulation is inde-

pendent, in model checking the set of generated traces forms

a graph (see Figure 2). This leads to a saving in terms of

simulation time, as simulation traces that share a common

prefix are not executed twice.

The algorithm used by our approach is shown in Figure 3

and Figure 4. The main function (Figure 3) takes as inputs

an SDCS, a set of unsafe states U , and a time bound T . It

can return four possible answers:

• SAFE if the system is safe within time bound T and

no deadlock or livelock is reachable within time bound

T ;

• (UNSAFE, path) if the system is unsafe; path is a trace

that leads to an unsafe state;

• (DEADLOCK, path) if a deadlock is reachable within

T ; path is a trace that leads to a deadlock state;

(a) Standard simulation (b) Systematic simulation

Fig. 2. Standard simulation (a) generates traces one at a time. Systematic
simulation (b) exploits the common prefixes of traces to make the analysis
more efficient.

• (LIVELOCK, path) if a livelock is reachable within

T ; path is a trace that leads to a livelock state.

The main function calls the function explore for each

initial state of SDCS and appropriately interprets the result.

The function explore (Figure 4) takes as arguments the

system state state, the time horizon τ , and the sequence of

states path. This function performs a depth-first search of

the graph reachable from state up to time τ .

The function explore first adds the current state to the

sequence path (line 14) and then checks if an unsafe state has

been reached (line 16), in which case it returns immediately.

Otherwise, explore checks if the current state is a livelock

state (lines 18-23). Next, the current state and time horizon

are compared with the set of already visited states (line 25),

which is stored in the global variable visited: if there

exists a state in visited that is equal to the current one

with a larger or equal time horizon the search continues with

a different branch; otherwise, the current state is added to the

set of visited states (line 27).

Lines 30-34 correspond to a system-level plant transition

and are executed if the current location, state.L, is equal to

Lfinal. First, explore checks that the time horizon is large

enough to allow a plant transition, whose duration is equal

to the sampling time ts. Line 32 represents the invocation

of the numerical simulation procedure using state.x as the

initial state and state.v as the value of the inputs. Line 34

continues the exploration by invoking explore recursively

starting from the next state and with a shorter time horizon.

Lines 37-43 correspond to a system-level controller tran-

sition. The set of possible successors is computed at line

37. If no discrete transition is possible (line 38) a deadlock

is reported. Otherwise, the successors are explored, one at a

time, by the loop at lines 39-42. In this case, the time horizon

is unchanged during the recursive call (line 42).

The pseudocode in Figures 3 and 4 is based on the

algorithm for explicit-state model checking [8], which uses

2736

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 24, 2008 at 17:00 from IEEE Xplore. Restrictions apply.

1: // Check the time-bound safety of an SDCS

2: global SDCS; // A sampled-data control system.

3: global U; // A set of unsafe states.

4: global T; // A time bound.

5: global visited ← {}; // Visited states, initially empty.

6: main:

7: // Perform a depth-first search for each initial state

8: foreach (state ∈ Init)

9: result ← explore(state, T, ());

10: if(result 6= SAFE BRANCH) return result;

11: return SAFE;

Fig. 3. The main procedure of the systematic simulation algorithm.

a depth-first search of the state transition graph. We have

implemented this algorithm by modifying the search pro-

cedure of an existing model checker. The major additions

are livelock detection (lines 18-23), storing of time horizons

together with states in the visited set (lines 25-27), and the

computation of plant transitions using numerical simulation

(lines 30-34).

B. Approximate Equivalence

The systematic simulation approach presented in the pre-

vious section exhaustively explores all possible behaviors

of an SDCS. By using a model checker, the technique is

more efficient than using standard simulation to enumer-

ate all traces. The approach, however, requires substantial

computational resources when applied to complex systems.

For such systems, the number of traces is exponential in

the time bound and the number of tasks and inputs. The

model checker has to explore all traces, even if many of

them are similar to each other. In this section, we present an

approach that prunes the simulation graph by ignoring some

of the traces that are similar. This is a heuristic approach,

which, unlike the previous algorithm, can possibly fail to

detect unsafe behaviors in an SDCS, but is useful in finding

errors in large systems.

Explicit-state model checkers compute the set of reachable

states iteratively by constructing a graph using the transition

relation of the model. When the model checker encounters

a state that is equal to a state that has already been visited

(line 25 in Figure 4), the transitions starting from that state

are not explored. Doing so would only lead to states that

have already been encountered. In this section we present an

approach that replaces the notion of state equality in model

checking with state equivalence based on an approximation

of the plant state. This is a heuristic approach that enables

the technique to analyze larger systems. While the approach

is able to efficiently search for counterexamples, it does not

explore all possible system behaviors. As such it can show

that the system is unsafe, but it cannot prove that a system

is safe.

We introduce the notion of approximate equivalence for

an SDCS. Two system states, s = (L,v,x) and s′ =
(L′,v′,x′), are approximately equivalent when L = L′,

12: // Perform a depth-first search starting at state

13: function explore(state, τ , path)

14: path ← path · state;

15: // Check for unsafe states

16: if (s ∈ U) return (UNSAFE, path);

17: // Detect livelocks

18: if (∃ N < path.length:

19: path[N] = state ∧

20: ∀ N ≤ k < path.length:

21: (path[k].q, path[k+1].q) ∈ δ ∧

22: path[k].x = path[k+1].x)

23: return (LIVELOCK, path);

24: // Compare to already visited states

25: if (∃ (s,t) ∈ visited: s = state ∧ t ≥ τ)

26: return SAFE BRANCH;

27: visited ← visited ∪ {(state, τ)};

28: // Perform a plant transition

29: if (state.L = Lfinal)

30: // Stop if time horizon is less than sampling time

31: if (τ < ts) return SAFE BRANCH;

32: state.x ← F(state.x, state.v);

33: state.L ← Linit;

34: return explore(state, τ - ts, path);

35: // Perform a controller transition

36: else

37: succs ← {q’ | (state.q, q’) ∈ δ(state.x)};

38: if (succs = ∅) return (DEADLOCK, path);

39: foreach (q’ ∈ succs)

40: state.q ← q’;

41: result ← explore(state, τ , path);

42: if (result 6= SAFE BRANCH) return result;

43: return SAFE BRANCH;

Fig. 4. The explore function.

v = v′, and x and x′ satisfy a proximity criterion based

on their positions in R
n. In our implementation, a grid is

applied to the state space of the plant; the criterion on the

positions of x and x′ that we use is that both x and x′ should

occupy the same grid element. When our algorithm reaches a

state that is approximately equivalent to a previously visited

one, the transitions starting from that state are not explored.

We call this operation path pruning (see Figure 5).

The heuristic approach presented here is not sound in

that it is not guaranteed to find a counterexample if one

exists. This is because the traces neglected may lead to an

unsafe system state: while two plant states may be close to

each other at a given point in time, they may lead to states

that are far from each other. This behavior is characteristic

of differential equations, where apparently simple dynamics

may lead to chaotic behavior. We are currently working

on an approach that has similar advantages to approximate

2737

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 24, 2008 at 17:00 from IEEE Xplore. Restrictions apply.

(a) Approximate equivalence (b) Path pruning

Fig. 5. Approximate equivalence (a) identifies states that have the same
controller state and similar plant states. This enables pruning (b) parts of
the graph.

equivalence but is able to prove bounded-time safety of an

SDCS.

For stable affine plant dynamics, we can determine a Lya-

punov function, V(x) = xT Px, where P ∈ R
n×n is positive

definite. We define a Lyapunov ellipsoid with center xc and

size α ≥ 0 as E(xc,P, α) = {x|(x − xc)
T P(x − xc) ≤

α}, where the matrix P determines the shape. Lyapunov

ellipsoids have the following property. Given two plant states

x and y such that y ∈ E(x,P, α), if x
F (v)
−−−→ x′ and

y
F (v)
−−−→ y′, then y′ ∈ E(x′,P, α). Consequently, if we know

that x and y are sufficiently close, meaning if ‖x−y‖P ≤ α

for a given α > 0, then we know that x′ and y′ remain

sufficiently close, that is ‖x′−y′‖P ≤ α (see Figure 6). We

will use this property of Lyapunov ellipsoids to define an

equivalence relation which preserves bounded-time safety.

Fig. 6. If y is within a Lyapunov ellipsoid of size α centered at x, and
x
′ and y

′ are plant states reachable from x and y, then y
′ is within a

Lyapunov ellipsoid of size α centered at x
′.

IV. EXPERIMENTAL EVALUATION

We implemented our technique by extending an existing

explicit-state source code model checker. The tool we chose

is Java PathFinder [15]. While the main purpose of the

tool is to verify Java programs, it is able to handle the

subset of C that is common to the two languages. We were

able to check the code automatically generated using the

MathWorks’ Real-Time Workshop with only minor syntactic

modifications. The main reasons for choosing this tool were

that it was readily available and it could be extended to im-

plement our approach. In future work, we plan to investigate

using alternative model checkers, especially tools that are

aimed at C/C++. We used MATLAB/Simulink to model the

plant and controller and to provide simulation traces for the

systematic simulation analysis.

We extended the existing model checker in the following

way. We added an additional component to the state of the

system corresponding to the state of the plant. The plant

state is represented by a set of floating-point values for each

of the continuous state variables. We extended the transition

system constructed by the model checker to include plant

transitions.

Separate concurrent processes are modeled explicitly in

the model checker; the model checker automatically trans-

forms the separate tasks into a single nondeterministic tran-

sition system. Plant transitions are computed using the MAT-

LAB/Simulink numerical integration solver (this corresponds

to line 32 in Figure 4). Given the sampling period ts, the

current plant state x, and the value of the program state v,

MATLAB/Simulink returns the state x′ that is reached at

time ts.

In the following, we present experimental results we ob-

tained by applying our technique to an example based on the

Stanford Testbed of Autonomous Rotorcraft for Multi-Agent

Control (STARMAC). STARMAC is a quadrotor unmanned

aerial vehicle (UAV) under development at Stanford Univer-

sity [11]. We obtained a Simulink model of the STARMAC

system from the Stanford development team. We believe

that the model is correct and does not contain an error.

We constructed a new system model, the Reconnaissance

Mission (RM) model, that includes a supervisory controller

that we designed. We used our technique to detect an error

in the RM model.

The vehicle, shown in Figure 7, is composed of a computer

controller and power supply at its center, which is attached to

a frame on which four rotors are mounted. The controller of

the vehicle is organized on three levels illustrated in Figure 8.

The inner loop controller sends thrust commands to the four

rotors based on the pitch, roll, yaw, and altitude commands

that it receives from the outer loop controller. The latter

commands are based on the position command (in three

dimensions) that the supervisory controller generates. The

supervisor makes its decision based on the current position

of the vehicle.

We constructed a supervisory controller whose purpose is

to guide the vehicle through a sequence of waypoints.1 The

controller must be robust with respect to invalid waypoints,

meaning that it has to guarantee that the vehicle will not

reach an altitude below 1 meter unless it is taking off or

landing (corresponding to the first and last waypoint in

the sequence). The supervisory controller is modeled using

1Note that this controller was implemented to demonstrate the ability of
the model checker to find error conditions. It is not the original supervisory
controller designed for the STARMAC.

2738

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 24, 2008 at 17:00 from IEEE Xplore. Restrictions apply.

Fig. 7. An illustration of the Stanford Testbed of Autonomous Rotorcraft
for Multi-Agent Control.

Fig. 8. Vehicle block diagram.

Stateflow diagrams. The implementation uses the following

interleaved tasks, illustrated in Figure 9:

• Waypoint Tracking - takes the vehicle through a set

of positions given by a waypoint list. It checks the

proximity of the vehicle to the target waypoint and, if

the vehicle is close to the target, it then picks the next

waypoint from the list and issues the command to the

STARMAC Quadrotor.

• Waypoint Monitor - checks if the altitude command

of the next waypoint is below 1.1 meters and, if so, it

adjusts the altitude command to 1.1 meters.

• Command Latch - maintains the last command until

the next waypoint command is issued.

The tasks communicate among themselves using shared

variables.

Fig. 9. Block diagram of the supervisory controller.

The MATLAB/Simulink model of the RM system includes

the supervisory controller, the outer loop controller, the

inner loop controller, and the dynamics of the vehicle (see

Figure 8). Since the inner and outer control loops operate at

a much faster clock rate than the supervisor, we model them

as part of the RM plant and take the supervisor to be the

RM controller.

The RM plant model corresponds to a set of non-linear

differential equations with over 39 continuous-valued state

variables. The interaction between the plant and the super-

visory controller occurs by means of position commands (in

the x, y, and z coordinates) sent by the supervisor to the

plant, and position sensor values sent by the plant to the

supervisor.

The property that we want to check is that the vehicle

never flies below the minimum safe altitude of 1 meter,

unless it is taking off or landing.

We used the technique described in Section III to search

for a counterexample. The tool explores the traces of the sys-

tem until it reaches an unsafe state and the counterexample

shown in Figure 10 is generated. The horizontal axis in the

figure represents time, the vertical one represents the altitude.

The dashed curve is the actual altitude of the vehicle as it

evolves with the passing of time. The solid curve represents

the altitude command generated by the controller. The trace

is a counterexample because at the end of the trace the

altitude reaches a value below 1 meter and the vehicle is

neither taking off nor landing. The circles on the diagram

mark the sampling times and may correspond to multiple

controller transitions.

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time (seconds)

z
cmd

z

z
min

Fig. 10. Counterexample trace.

The counterexample is due to the interleaving of the tasks.

In this particular trace the Waypoint Monitor task executes

before the Waypoint Tracking task at time t = 7 seconds and

therefore sees the previous value of target position.

Since this value is valid (its altitude component is above

1.1 meters) the value is not changed. After that, the

Waypoint Tracking task executes and target position

is set equal to the fourth waypoint, which contains an

invalid altitude value (see Figure 11). The value of

waypoint available is set to true and the Command

Latch task records the incorrect value. At this point the

vehicle starts to decrease its altitude towards the waypoint

at altitude 0.5 meters. At the next sample time, the Way-

point Monitor task corrects the value, but it is too late

as waypoint available is now set to false and the

Command Latch task does not update its interval value until

the next waypoint is generated. One sampling time later

the vehicle altitude becomes lower than the minimum safe

altitude and an error is reported by our tool.

2739

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 24, 2008 at 17:00 from IEEE Xplore. Restrictions apply.

x y z

1 0.0 0.0 0.0

2 2.0 1.3 1.2

3 0.2 2.0 1.5

4 1.8 1.1 0.5

5 1.2 0.4 1.5

6 0.0 0.0 0.0

Fig. 11. List of waypoints used in the experimental evaluation

As shown in Figure 12, during the analysis with a time

bound of 15 seconds, the tool generated 131,158 states before

detecting the error. This required about 11 minutes and

928MB of memory. The counterexample shown in Figure 10

contains 1346 transitions, of which 9 are plant transitions

and the rest are controller transitions. The large number of

controller transitions is due to the fact that the software

is modeled at the statement level in order to be able to

check the interleaving of the tasks. During the analysis,

the tool encountered 140,673 states equivalent to previously

visited states, marked as revisited states in the table. In

the example we analyzed most of the revisited states were

actually identical to previously visited states. We believe

this is due to the fact that most of the revisited states are

obtained by a different interleaving of the tasks: different

task orderings during execution often led to the same state.

The approach, however, is able to detect those cases where

a different ordering leads to a different behavior, as in the

counterexample shown above. The results for different values

of the time bound are shown in Figure 12. Notice that no

counterexample is found for a time bound of 5 seconds

(first row in the table), since the duration of the shortest

counterexample trace is 9 seconds.

Time Running Memory Reached Revisited

bound time usage states states

5s1 5:50s 795MB 112,057 131,781

10s 1:12s 25MB 2,470 2,449

15s 11:31s 928MB 131,158 140,673
1No counterexample found.

Fig. 12. Running times, memory usage, number of reached states, and
number of revisited states for different time bounds and with and without
approximate equivalence.

V. CONCLUSIONS

This paper presents an approach for the validation of

sampled-data control systems where the controller is imple-

mented as a set of concurrent tasks and the plant is described

by a set of differential equations. We have implemented

our approach using an explicit-state source code model

checker for handling the controller and MATLAB/Simulink

for simulating models of the plant.

Our approach uses numerical simulation in conjunction

with a model checker to provide an efficient way to explore

a large set of system behaviors and detect possible errors.

One of the main advantages of this approach is that it can

accurately model the controller and is able to find errors that

are difficult to identify using simulation. By using a source

code model checker and MATLAB/Simulink, we believe

these techniques can be used to address industrial problems.

As described in Section III, we are currently working

on a technique based on ellipsoids and Lyapunov functions

to strengthen the results that can be obtained using our

technique. We are also implementing the method using a

model checker that handles C/C++ directly in order to

increase the applicability of our approach.

REFERENCES

[1] Simulink Design Verifier User’s Guide. The MathWorks, 2007.
[2] Using Simulink. The MathWorks, 2007.
[3] Thomas Ball and Sriram K. Rajamani. Bebop: A Symbolic Model

Checker for Boolean Programs. In Proc. of the 7th International SPIN

Workshop, 2000.
[4] Oleg Botchkarev and Stavros Tripakis. Verification of Hybrid Systems

with Linear Differential Inclusions Using Ellipsoidal Approximations.
In Proc. of the 3rd International Workshop on Hybrid Systems:

Computation and Control. Springer-Verlag, 2000.
[5] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and

Helmut Veith. Modular Verification of Software Components in C. In
Proc. of the 25th International Conference on Software Engineering,
2003.

[6] Alongkrit Chutinan and Bruce H. Krogh. Verification of Infinite State
Dynamic Systems Using Approximate Quotient Transition Systems.
IEEE Transactions on Automatic Control, 46(9):1401–1410, 2001.

[7] Edmund M. Clarke and E. Allen Emerson. Synthesis of Synchro-
nization Skeletons for Branching Time Temporal Logic. In Proc. of

Workshop on Logic of Programs, 1981.
[8] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model

Checking. MIT Press, 2000.
[9] Thomas A. Henzinger. The Theory of Hybrid Automata. In Proc.

of the 11th Annual IEEE Symposium on Logic in Computer Science,
1996.

[10] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire
Sutre. Lazy Abstraction. In Proc. of the 29th Symposium on Principles

of Programming Languages, 2002.
[11] Gabriel M. Hoffmann, Haomiao Huang, Steven L. Waslander, and

Claire J. Tomlin. Quadrotor Helicopter Flight Dynamics and Control:
Theory and Experiment. In Proc. of the AIAA Guidance, Navigation,

and Control Conference, 2007.
[12] Stefan Kowalewski, Sebastian Engell, Jörg Preußig, and Olaf Sturs-

berg. Verification of Logic Controllers for Continuous Plants Using
Timed Condition/Event-System Models. Automatica, 35(3):505–518,
1999.

[13] Klaus D. Müller-Glaser, Gerd Frick, Eric Sax, and Markus Kühl.
Multiparadigm Modeling in Embedded Systems Design. IEEE Trans-

actions on Control Systems Technology, 12(2):279–292, March 2004.
[14] J. P. Queille and J. Sifakis. Specification and Verification of Concurrent

Systems in CESAR. In Proc. of the 5th International Symposium on

Programming, 1982.
[15] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park,

and Flavio Lerda. Model Checking Programs. Automated Software

Engineering, 10(2):203–232, 2003.

2740

Authorized licensed use limited to: Carnegie Mellon. Downloaded on October 24, 2008 at 17:00 from IEEE Xplore. Restrictions apply.

