
CARNEGIE MELLON UNIVERSITY

CARNEGIE INSTITUTE OF TECHNOLOGY

SYSTEM SAFETY AS AN EMERGENT PROPERTY

IN COMPOSITE SYSTEMS

Jennifer Ann Black

Pittsburgh, Pennsylvania

April 20, 2009

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

for the degree of

DOCTOR OF PHILOSOPHY

in the department of

ELECTRICAL AND COMPUTER ENGINEERING

Advisor: Philip Koopman

Department Head: T. E. Schlesinger

Dean: Pradeep K. Khosla

Copyright c© 2009 Jennifer Ann Black

ALL RIGHTS RESERVED

“Ah,” said Arthur, “this is obviously some strange usage of the word ‘safe’

that I wasn’t previously aware of.”

- Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Abstract

Correctly specifying requirements for composite systems is essential to system safety. In a

distributed development environment, safety requirements must be clearly defined for sub-

systems. Unfortunately, decomposing non-functional requirements, also known as goals,

is not always straightforward. Quantifiable goals, such as cost or performance, may be

decomposed by allocating a fixed limit on each component. However, system safety is

usually not expressible as a sum of parts. Rather, it is considered to be emergent.

This thesis defines emergent and composable behaviors in the context of formally spec-

ified goals, and identifies useful special cases in which emergent system goals may be

partially composable. Indirect Control Path Analysis (ICPA) is introduced as a new tech-

nique for identifying and documenting safety goals for components, using control flow and

goal coverage strategies to guide goal elaboration.

ICPA was applied to a semi-autonomous automotive system from a commercial automo-

tive research laboratory and the goals and subgoals were monitored at run-time in a partial

implementation of the vehicle in a simulation environment. Violations of both the goals

and subgoals identified several critical design defects in the incomplete implementation. In

some situations, false positive detection at the subsystem level identified problems in the

subsystems that were masked by redundant goal coverage. False negative detection at the

subsystem level in some of the scenarios suggests the set of subsystem safety goals only

partially composes the system-level behavior. The results demonstrate proof of concept of

the ICPA technique for defining system safety subgoals in a real system.

i

Acknowledgments

This thesis is dedicated to my husband Eric, whose love and encouragement sustained

me through my struggles. Thank you for realizing this pilgrimage with me. I also thank

my Mom, Dad, and family, both immediate and extended, for their love, strength, and

endurance. You are the standard-bearers who guide my advance.

I thank my academic advisor Professor Philip Koopman for his guidance, for his collab-

oration, and for making this thesis possible. You have given me the opportunity to begin,

the tools to proceed, and the motivation to finish.

I thank Dr. Alan Baum for his advice and support as a committee member, a supervisor

during my internship at General Motors, and a friend. I also thank my committee members

Professor Dan Siewiorek and Professor John Knight for their time, feedback, and patience.

I thank Beth Latronico, Justin Ray, Susan Farrington, and Suzie Laurich-McIntyre for

lending their ears and shoulders from time to time. I also thank the researchers at GM R&D

and Honeywell Labs who shared their expertise and provided feedback on my research. In

particular, I thank Tom Fuhrman, Max Osella, Doug Rheaume, Shengbing Jiang, Mira

Supal, Larry Peruski, Michael Paulitsch, and Brendan Hall.

Finally, I thank my research sponsors for funding this endeavor. This work has been

supported by the General Motors-Carnegie Mellon University Vehicular Information Tech-

nology Collaborative Research Lab (GM-CMU VIT CRL), a National Science Foundation

Graduate Research Fellowship (NSF GRF), the United States Council for Automotive Re-

search (USCAR), a General Motors Fellowship, the Pennsylvania Infrastructure Technol-

ogy Alliance (PITA), Honeywell Labs, Bosch RTC, and Bombardier Transportation.

ii

Table of Contents

Abstract i

Acknowledgments ii

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Problem and scope . 2

1.2 Indirect Control Path Analysis . 4

1.3 Thesis contributions . 6

2 Background and Related Work 8

2.1 Overview . 8

2.2 System safety . 8

2.2.1 Hazard analysis . 10

2.3 Requirement elicitation, specification, and refinement 18

2.3.1 Specifying non-functional requirements 19

2.3.2 Goal Oriented Requirements Engineering (GORE) 20

2.4 Emergence . 25

2.4.1 Feature interaction . 26

2.5 Safety goal monitoring . 27

2.5.1 Safety kernels . 29

3 Emergence in Composite Systems 31

3.1 Overview . 31

3.1.1 Motivation . 32

3.1.2 And-reductions . 33

3.1.3 Scope . 35

3.2 Composable goals . 36

iii

TABLE OF CONTENTS

3.2.1 Fully composable . 37

3.2.2 Fully composable with redundancy 39

3.3 Emergent goals . 41

3.3.1 Emergent but partially composable 41

3.3.2 Emergent but partially composable with redundancy 44

3.3.3 Usefulness of partial composability 47

3.3.4 Conjunctive goals . 48

3.3.5 Disjunctive goals . 49

3.4 Composability . 51

3.5 Conclusion . 52

4 Indirect Control Path Analysis 53

4.1 Overview . 53

4.1.1 Motivation . 53

4.1.2 Tactics for resolving goal unrealizability 55

4.1.3 Scope . 57

4.2 Indirect control . 58

4.3 ICPA format . 62

4.4 ICPA procedure . 64

4.4.1 Identifying indirect control sources 65

4.4.2 Defining indirect control relationships 67

4.4.3 Applying elaboration tactics and goal coverage strategies 72

4.4.4 Iteration and completion . 75

4.5 Goal coverage strategies . 76

4.5.1 Goal assignment . 77

4.5.2 Goal scope . 85

4.5.3 Controllability, observability, and alternative/restrictive goals 87

4.6 Conclusion . 89

5 Evaluation 90

5.1 Overview . 90

5.1.1 Motivation . 90

5.1.2 Evaluation method . 91

5.2 Evaluation system . 93

5.2.1 Semi-autonomous automotive system 93

iv

TABLE OF CONTENTS

5.2.2 Simulation platform . 96

5.2.3 Vehicle-level safety goals . 96

5.3 ICPA and subsystem subgoals . 101

5.3.1 Goal and subgoal monitoring locations 102

5.3.2 Lessons from applying ICPA . 102

5.4 Evaluation scenarios and results . 105

5.4.1 Scenario 1: CA enabled, ACC enabled, stopped vehicle in path . . . 106

5.4.2 Scenario 2: CA engaged, ACC enabled, PA enabled, stopped vehi-

cle in path . 110

5.4.3 Scenario 3: CA engaged, ACC enabled, throttle pedal applied,

stopped vehicle in path . 113

5.4.4 Scenario 4: throttle pedal applied, ACC engaged, CA enabled, slow

vehicle in path . 118

5.4.5 Scenario 5: throttle pedal applied, ACC engaged, CA enabled,

brake pedal applied, slow vehicle in path 122

5.4.6 Scenario 6: throttle pedal applied, ACC engaged, CA enabled,

LCA engaged, slow vehicle in path 125

5.4.7 Scenario 7: in reverse, RCA enabled, stopped vehicle in path 130

5.4.8 Scenario 8: in reverse, ACC engaged, stopped vehicle in path . . . 131

5.4.9 Scenario 9: stopped, PA engaged, stopped vehicle in path 134

5.4.10 Scenario 10: stopped, ACC engaged, stopped vehicle in path 136

5.5 Conclusion . 138

6 Discussion 139

6.1 Lessons learned about the system . 139

6.1.1 Desired behaviors confirmed . 140

6.1.2 Problems identified . 140

6.1.3 General design insights . 143

6.2 Lessons learned about ICPA . 144

6.3 Conclusion . 150

7 Conclusion 151

7.1 Thesis contributions . 151

7.1.1 Formal definition of emergent and composable behaviors 151

7.1.2 Indirect Control Path Analysis (ICPA) 153

v

TABLE OF CONTENTS

7.1.3 Hierarchical safety monitoring . 154

7.2 Future work . 156

Appendix A: Logic Operators, Acronyms, and Definitions 158

A.1: Temporal logic operators . 159

A.2: Acronyms . 160

A.3: Definitions . 161

Appendix B: Goal Realizability Patterns and Alternative Goals 162

Appendix C: ICPA for a Semi-autonomous Automotive System 176

Appendix D: Evaluation Scenario Results 215

Bibliography 227

vi

List of Tables

2.1 Safety requirements pattern classification scheme from [10] 20

2.2 Goal pattern classifications from [20] . 23

3.1 Subgoals G1
1
,G2

1
,G3

1
,G1

2
,G2

2
for goal G . 35

3.2 Subgoals G1
1
,G2

1
,G3

1
,G1

2
,G2

2
for goal G, with emergence X1 and X2 43

4.1 Indirect control paths for goal Maintain[DoorClosedOrElevatorStopped] (1

of 2) . 69

4.2 Indirect control paths for goal Maintain[DoorClosedOrElevatorStopped] (2

of 2) . 70

4.3 Goal Elaboration for goal Maintain[DoorClosedOrElevatorStopped] 74

4.4 Subgoals of Maintain[DoorClosedOrElevatorStopped] for DoorController

and DriveController] . 82

4.5 Goal controllability and observability requirements for realizability of goals

of the form A⇒ B . 88

5.1 Safety goals for a semi-autonomous vehicle (1 of 2) 97

5.2 Safety goals for a semi-autonomous vehicle (2 of 2) 98

5.3 Monitoring locations of goals and subgoals. 103

B.1 Goal realizability patterns and alternative goals for A ⇒ B, lA ⇒ B, and

A⇒ l B . 163

B.2 Goal realizability patterns and alternative goals for A ∨ B⇒ C 164

B.3 Goal realizability patterns and alternative goals for lA ∨ B⇒ C 165

B.4 Goal realizability patterns and alternative goals for A ∨ B⇒ l C 166

B.5 Goal realizability patterns and alternative goals for A ∧ B⇒ C 167

B.6 Goal realizability patterns and alternative goals for lA ∧ B⇒ C 168

B.7 Goal realizability patterns and alternative goals for A ∧ B⇒ l C 169

B.8 Goal realizability patterns and alternative goals for A⇒ B ∧C 170

B.9 Goal realizability patterns and alternative goals for lA⇒ B ∧C 171

B.10 Goal realizability patterns and alternative goals for A⇒ l B ∧C 172

vii

LIST OF TABLES

B.11 Goal realizability patterns and alternative goals for A⇒ B ∨C 173

B.12 Goal realizability patterns and alternative goals for l A⇒ B ∨C 174

B.13 Goal realizability patterns and alternative goals for A⇒ l B ∨C 175

D.1 Goal and subgoal violations for Scenario 1 216

D.2 Goal and subgoal violations for Scenario 2 217

D.3 Goal and subgoal violations for Scenario 3 218

D.4 Goal and subgoal violations for Scenario 4 219

D.5 Goal and subgoal violations for Scenario 5 220

D.6 Goal and subgoal violations for Scenario 6 (1 of 2) 221

D.7 Goal and subgoal violations for Scenario 6 (2 of 2) 222

D.8 Goal and subgoal violations for Scenario 7 223

D.9 Goal and subgoal violations for Scenario 8 224

D.10 Goal and subgoal violations for Scenario 9 225

D.11 Goal and subgoal violations for Scenario 10 226

viii

List of Figures

1.1 Safety goal elaboration from system to subsystems 2

1.2 ICPA table layout and steps . 5

2.1 V-model of system development (adapted from [29]) 10

2.2 Partial fault tree for a semi-autonomous automotive system 12

2.3 Partial FMEA for a semi-autonomous automotive system 14

2.4 Modeling levels for a goal in GORE/KAOS 21

2.5 Temporal logic operators . 22

2.6 Goal Achieve[TrainProgress] from [44] 22

3.1 Complete and-reduction {G1,G2,G3} of goal G 33

3.2 And-reductions {G1
1
,G2

1
,G3

1
} and {G1

2
,G2

2
} of goal G 34

3.3 Goal G, fully composable by goals {G1,G2,G3} 38

3.4 Goal G, fully composable with redundancy by goals {G1
1
,G2

1
,G3

1
} and {G4

2
,G5

2
}

. 40

3.5 Goal G, partially composable by goals {G1,G2} with emergent behavior X . 42

3.6 Goal G, partially composable with redundancy by goals {G1
1
,G2

1
,G3

1
}, {G1

2
,G2

2
}

with emergent behaviors X1, X2, and Y . 45

4.1 Introduce accuracy/actuation goal elaboration tactic from [46] 55

4.2 Split Lack of Monitorability/Controllability by Chaining goal elaboration

tactic from [46] . 56

4.3 Split Lack of Monitorability/Controllability by Case goal elaboration tactic

from [46] . 57

4.4 Indirect control paths . 58

4.5 Partial design of a distributed elevator control system 60

4.6 Goal restricting movement in an overweight elevator 61

4.7 ICPA table format . 62

4.8 Goal restricting door position and elevator movement in a distributed ele-

vator system . 66

ix

LIST OF FIGURES

4.9 Goal restricting elevator position in the hoistway 77

4.10 Goal restricting elevator drive movement in the hoistway 78

4.11 Goal requiring emergency braking to avoid exceeding the hoistway limit . . 79

4.12 Goal restricting elevator door movement 80

4.13 Goal restricting elevator drive movement 81

5.1 Semi-autonomous automotive system . 94

5.2 Scenario 1: CA begins a braking action, but cancels it briefly before begin-

ning it again. 108

5.3 Scenario 1: PA requests acceleration without being enabled. 109

5.4 Scenario 2: CA is not the source of the acceleration command when PA is

enabled, even though CA is selected to be in control of acceleration. 112

5.5 Scenario 3: CA engages to stop the host vehicle, even though throttle pedal

is applied. The CA braking action is intermittent, however, and fails to stop

the host vehicle before ‘hitting’ the parked vehicle in its path. 114

5.6 Scenario 3: ACC sends acceleration requests to control the vehicle to a set

speed of 0 m/s, even though ACC is not engaged. 116

5.7 Scenario 4: ACC acceleration request and jerk profile. 119

5.8 Scenario 4: ACC is engaged while the driver is applying the throttle pedal.

ACC briefly takes control of vehicle acceleration, but loses control again

until the driver releases the throttle pedal. ACC decelerates, then acceler-

ates the vehicle twice before the simulation terminates. 120

5.9 Scenario 5: The driver releases the throttle pedal. Control of acceleration

is gained by ACC 0.101 seconds later. 124

5.10 Scenario 6: LCA is enabled at time 5.0 s, and gains control of acceleration

and steering at time 5.001 s. At time 5.051, LCA requests steering, but the

steering command remains unchanged. 126

5.11 Scenario 6: Vehicle speed becomes negative, LCA and ACC are still active

and selected to control vehicle acceleration. 128

5.12 Scenario 7: RCA is enabled at the simulation start, but never engages to

stop the host vehicle before reaching the stopped vehicle behind it. 130

5.13 Scenario 8: After ACC is engaged at time 2.0 s, it is selected as the source

of the acceleration command at time 2.05 s. 132

x

LIST OF FIGURES

5.14 Scenario 9: When PA is engaged, it is selected as the source of the ac-

celeration command, but the acceleration command is not equal to the PA

acceleration request. 135

5.15 Scenario 10: When the driver attempts to engage ACC at time 2.0 s, ACC

does not become active, nor is it selected by the Arbiter to control steering.

The vehicle, however, does begin to accelerate. 137

C.1 ICPA for Achieve[AutoAccelBelowThreshold] (1 of 4) 177

C.2 ICPA for Achieve[AutoAccelBelowThreshold] (2 of 4) 178

C.3 ICPA for Achieve[AutoAccelBelowThreshold] (3 of 4) 179

C.4 ICPA for Achieve[AutoAccelBelowThreshold] (4 of 4) 180

C.5 ICPA for Achieve[AutoJerkBelowThreshold] (1 of 4) 181

C.6 ICPA for Achieve[AutoJerkBelowThreshold] (2 of 4) 182

C.7 ICPA for Achieve[AutoJerkBelowThreshold] (3 of 4) 183

C.8 ICPA for Achieve[AutoJerkBelowThreshold] (4 of 4) 184

C.9 ICPA for Achieve[SubsystemAccelSteeringAgreement] (1 of 5) 185

C.10 ICPA for Achieve[SubsystemAccelSteeringAgreement] (2 of 5) 186

C.11 ICPA for Achieve[SubsystemAccelSteeringAgreement] (3 of 5) 187

C.12 ICPA for Achieve[SubsystemAccelSteeringAgreement] (4 of 5) 188

C.13 ICPA for Achieve[SubsystemAccelSteeringAgreement] (5 of 5) 189

C.14 ICPA for Achieve[NoAutoAccelFromStop] (1 of 4) 190

C.15 ICPA for Achieve[NoAutoAccelFromStop] (2 of 4) 191

C.16 ICPA for Achieve[NoAutoAccelFromStop] (3 of 4) 192

C.17 ICPA for Achieve[NoAutoAccelFromStop] (4 of 4) 193

C.18 ICPA for Achieve[DriverForwardAccelOverride] (1 of 4) 194

C.19 ICPA for Achieve[DriverForwardAccelOverride] (2 of 4) 195

C.20 ICPA for Achieve[DriverForwardAccelOverride] (3 of 4) 196

C.21 ICPA for Achieve[DriverForwardAccelOverride] (4 of 4) 197

C.22 ICPA for Achieve[DriverBackwardAccelOverride] (1 of 4) 198

C.23 ICPA for Achieve[DriverBackwardAccelOverride] (2 of 4) 199

C.24 ICPA for Achieve[DriverBackwardAccelOverride] (3 of 4) 200

C.25 ICPA for Achieve[DriverBackwardAccelOverride] (4 of 4) 201

C.26 ICPA for Achieve[DriverSteeringOverride] (1 of 4) 202

C.27 ICPA for Achieve[DriverSteeringOverride] (2 of 4) 203

C.28 ICPA for Achieve[DriverSteeringOverride] (3 of 4) 204

xi

LIST OF FIGURES

C.29 ICPA for Achieve[DriverSteeringOverride] (4 of 4) 205

C.30 ICPA for Achieve[ForwardBlockAccelSteering] (1 of 4) 206

C.31 ICPA for Achieve[ForwardBlockAccelSteering] (2 of 4) 207

C.32 ICPA for Achieve[ForwardBlockAccelSteering] (3 of 4) 208

C.33 ICPA for Achieve[ForwardBlockAccelSteering] (4 of 4) 209

C.34 ICPA for Achieve[BackwardBlockAccelSteering] (1 of 5) 210

C.35 ICPA for Achieve[BackwardBlockAccelSteering] (2 of 5) 211

C.36 ICPA for Achieve[BackwardBlockAccelSteering] (3 of 5) 212

C.37 ICPA for Achieve[BackwardBlockAccelSteering] (4 of 5) 213

C.38 ICPA for Achieve[BackwardBlockAccelSteering] (5 of 5) 214

xii

Chapter 1

Introduction

Research has shown that system safety, defined by Leveson as “freedom from accidents or

losses” [50], is closely linked to the quality of requirements. One case study of safety-

critical software isolation revealed that some dependencies between safety-critical and

non-safety-critical components were missed during safety analysis [4]. Other research has

traced safety-related software errors and operational anomalies in spacecraft to latent re-

quirements, misunderstood requirements, and misunderstood interfaces between the phys-

ical system and the software [59][60].

System safety is difficult to define and ensure in a distributed development environment.

In one study of software errors in spacecraft [59], miscommunication between development

teams was the primary cause of safety-related interface faults. In other industries with less

regulation or less centralized oversight of development, the problem may be worse. For

example, in the automotive industry vehicle subsystems are often developed by different

internal departments or external suppliers. These suppliers may not have access to require-

ments for the vehicle as a whole, or for other subsystems. Similarly, vehicle manufacturers

may have little control over the development process or internal details of components pur-

chased from vendors. In order to manage safety at the subsystem level prior to system

integration, system safety requirements must be clearly defined for subsystems.

Unfortunately, decomposing non-functional requirements, also known as goals [18] or

1

CHAPTER 1. INTRODUCTION

...
Subsystem A

Safety Goals:
 G1

A1

 G2
A1, G2

A2, G2
A3, ... G2

Ak

 G3
A1, G3

A2

 ...
 Gi

A1, Gi
A2, Gi

A3, ... Gi
Am

Subsystem B
Safety Goals:
 G1

B1, G1
B2, G1

B3

 G3
B1, G3

B3, ... G3
Bn

 ...
 Gi

B1, Gi
B2

Subsystem C
Safety Goals:
 G1

C1 , G1
C2

 G2
C1

 ...
 Gi-1

C1

Subsystem
Safety Goals:
 G1

1, G1
2, G1

3, ... G1
p

 G2
1, G2

2

 G3 1, G3 2

 ...
 Gi

1, Gi
2, Gi

3

System
Safety Goals:

G1
G2
G3
...
Gi

Can this be done? If so, how?

Figure 1.1. Safety goal elaboration from system to subsystems

quality attributes [39][7], is not straightforward. Some quantitative goals, such as cost

or performance, may be decomposed by allocating a fixed limit on each component in

the functional decomposition [65]. However, other goals may be qualitative or not easily

represented as a sum of parts. For example, an automotive safety goal might be “the vehicle

shall experience zero collisions.” Unlike performance goals, where the concept of “time”

is the same for systems and subsystems, the concept of “collision” in system safety does

not have the same meaning at different levels of the system hierarchy.

1.1 Problem and scope

This thesis addresses the problem of defining safety goals for subsystems in a composite

system, which is illustrated in Figure 1.1, using the notation described in [41]. For each

system safety goal Gi there is some set of subgoals {Gαk
i
}, k = 1, 2, ..., j, where α is the

2

CHAPTER 1. INTRODUCTION

subsystem to which the subgoal is assigned. The primary research questions are:

• What does it mean for a goal to be composable or emergent?

• When is it possible to decompose a system-level goal?

• Is partial decomposition possible, and if so, is it useful?

• How can full or partial decomposition of system safety goals be achieved?

• How do we evaluate the value of a partial decomposition?

The problem scope is defined with respect to requirements engineering, hazard analysis,

and system decomposition:

Requirements engineering. Any system development process, safety-critical or not, be-

gins with requirements elicitation. Goal Oriented Requirements Engineering (GORE) [18]

is one approach to specifying system requirements from high-level system goals. In GORE,

goals are first refined into subgoals that can be assigned to individual agents (subsystems,

software components, the user, etc.), and then operationalized into functional requirements

(the behaviors that realize the goal). In general, the objective of goal elaboration is to find a

set of subgoals and operationalized requirements that satisfy the parent goal. With system

safety goals, the objective of goal elaboration is to analyze all agents that might impact

the safety goal and identify a set of subgoals and operationalized requirements for some

of those agents that satisfy the parent goal and also satisfy a goal coverage strategy. This

thesis proposes additional tactics for safety goal elaboration in the GORE framework.

Hazard analysis. In safety-critical system design, different hazard analysis techniques are

used throughout the development process to identify system hazards and their causes, and

to define requirements to avoid the hazards by eliminating their causes, or to control the

3

CHAPTER 1. INTRODUCTION

consequences of the hazards. Preliminary Hazard Analysis (PHA) may be used early in

requirements development to identify hazards related to general system functionality [50].

For example, a PHA in an automotive system might be used to identify hazards related

to acceleration, deceleration, steering, and driver distractions. As the system design pro-

gresses, Fault Tree Analysis (FTA) may be used to trace top-level hazards to the underlying

events that cause them [50]. An FTA of an unexpected deceleration hazard in an automotive

system might trace the hazard to a fault in object detection. The objective of the techniques

proposed in this thesis is not to identify hazards, root causes of hazards, or system safety

goals for avoiding the hazards. Rather, it is to identify subsystem safety goals that satisfy

the system goals that have been obtained from other hazard analysis techniques.

System decomposition. Decomposition is a common strategy for managing system com-

plexity that is applied to three different types of design attributes: structures, behaviors,

and goals [41]. In most systems, decomposition is applied to structures, behaviors, or some

combination of both. For example, an automotive system is decomposed by both behavior

(cruise control, electronic stability control, anti-lock braking, etc.) and structure (brakes,

transmission, steering, etc.). This thesis addresses the problem of decomposing system

safety goals along an existing structural + behavioral decomposition.

1.2 Indirect Control Path Analysis

This thesis proposes and evaluates a safety goal elaboration technique called Indirect Con-

trol Path Analysis (ICPA) [11][12]. ICPA is a top-down analysis approach, similar to FTA.

Whereas FTA traces a top-level hazard to its lower-level causal events, ICPA traces a top-

level state variable in a system safety goal through the design to the agents that influence

it. ICPA uses a table structure similar to Failure Modes and Effects Analysis (FMEA) [50]

4

CHAPTER 1. INTRODUCTION

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #

Goal Coverage Strategy
 Goal Assignment

Goal Elaboration

Subsystem Safety Goals

System Safety Goal
Indirect Control Path Analysis

3. D efi ne R el ati ons hi ps

Betw een Sour c es

2 . I d e n t if y I n d ir e ct

Co n t r o l S o u r ce s 4 . Ch o o s e G o a l

Co v e r a g e S tr a te g y5. A pply T actics for

Goal E labor ation

 Goal Scope

1 . D e f i n e S y s t e m S a f e t y

G o a l i n T e m p o r a l L o g i c

6 . R e s u ltin g
S u b g o a ls

Figure 1.2. ICPA table layout and steps

to record these indirect control relationships. Figure 1.2 shows the layout and steps of an

ICPA. Agents that indirectly influence a state variable belong to the indirect control path

and require further analysis of their relationships to the root variable.

A goal coverage strategy is a plan for allocating subgoals to ensure that a high-level

goal is met. Each strategy is defined by goal assignment and goal scope. Goal assignment

defines which indirect control sources have subgoals and how those subgoals relate to each

other (e.g., single responsibility, redundant responsibility, and coordinated responsibility).

Goal assignment may be driven by physical limitations of the system (e.g., actuation delays)

or by possible loss of monitorability and controllability by agents in the system. Goal scope

defines how closely the safety subgoals satisfy the system safety goal. Although it may be

possible for agents to satisfy the original safety goal exactly, it may sometimes be necessary

5

CHAPTER 1. INTRODUCTION

or desirable to assign subgoals that are more restrictive than the original safety goal. The

result of an ICPA is both a set of subsystem safety goals that satisfy the parent goal, and

a record of the critical assumptions, goal realizability tactics, and goal coverage strategies

used to define them.

1.3 Thesis contributions

This thesis makes the following contributions:

• I provide a formal definition of emergence within a framework of goal decom-

position. In GORE and ICPA, system safety goals are represented as temporal logic

expressions. This thesis defines emergent, fully composable, and emergent but par-

tially composable goals within this mathematical framework, both with and without

redundancy, and identifies useful special cases in which partial decomposition of

emergent safety goals is possible.

• I create a technique for guiding system safety goal elaboration in a directed and

documented way. Indirect Control Path Analysis (ICPA) is a technique for decom-

posing system safety goals from the system level to the subsystem level. Decomposi-

tion is guided by architectural control flow and formal representation of system goals

and indirect control paths. It provides a structured, deliberate, and documented anal-

ysis of potential subgoal agents and goal coverage strategies. It also allows demon-

stration by mathematical proof or model-checking that the set of subsystem goals

produced with ICPA partially or fully compose the system goals under a specified set

of critical assumptions.

• I demonstrate that monitoring of system safety goals and subgoals can detect

some hazards at run-time. In this thesis, ICPA is applied to a semi-autonomous

6

CHAPTER 1. INTRODUCTION

automotive system from a commercial automotive research lab. The safety goals

for the system and key subsystems are monitored at run-time in a simulation-based

implementation of the vehicle. Results demonstrate that monitoring of safety goals at

the subsystem level can detect system safety-related errors. In addition, monitoring

of safety goals at both the system and subsystem level is valuable for identifying

certain safety-related errors that may be imperceptible to system testers or the driver.

The remainder of this thesis is organized as follows. Chapter 2 presents background

information and related work. Emergence is defined in the context of formally specified

goals for composite systems in Chapter 3. ICPA is introduced in Chapter 4. In Chapter 5,

ICPA is evaluated in a simulation-based implementation of a semi-autonomous automotive

system. A discussion of those results is found in Chapter 6. Chapter 7 presents conclusions

and future work.

7

Chapter 2

Background and Related Work

2.1 Overview

This chapter describes the background work related to the ICPA technique for elaborating

system safety goals in composite systems. Section 2.2 describes background information

on system safety and hazard analysis techniques related to the work presented in this thesis.

Section 2.3 presents background on structuring, eliciting, and refining requirements, as

well as related approaches to defining and elaborating system safety goals. Section 2.4

describes the problem of emergence in composite systems. Finally, Section 2.5 describes

related work in run-time monitoring of system safety properties.

2.2 System safety

The application domain for this thesis is safety-critical distributed embedded systems. An

embedded system is a system that includes computer control but is not used for general-

purpose computing. An embedded system is distributed if control is divided among sub-

systems or components, rather than centralized in one dedicated control unit. Within the

scope of this thesis, the term safety refers to system safety, which Leveson defines as “free-

dom from accidents or losses” [50]. A safety-critical system is one that can directly or

indirectly contribute to a loss event. The definition of a loss is dependent on the domain,

8

CHAPTER 2. BACKGROUND AND RELATED WORK

and can be very broad (loss of life, bodily injury, loss of system, financial cost, etc.). Some

examples of safety-critical distributed embedded systems are cars, aircraft, and elevators.

Hazards are system states in which an accident could eventually occur [50]. The combi-

nation of the likelihood that a hazard will occur and its consequences is risk [80]. The goal

of safety engineering is to reduce risk, either by reducing the likelihood that the hazard will

occur, or by reducing its consequences. Although in most systems it may not be possible

to eliminate all hazards, it is still important to try to reduce risk as much as possible.

Hazards can arise when faults manifest as errors in the system. Avizienis et al. define

an error as a deviation in correct system state, and a fault as its root cause [6]. A fault

could be in hardware (e.g. a sensor that fails ‘ON’) or software (e.g. buffer overflow).

Sometimes the fault is in the requirements, design, or implementation. Some research has

shown that critical software errors result more often from defects in the requirements and

misunderstandings about the software/system interface than from implementation defects

(e.g., source code bugs) [59][60].

Safety is considered a non-functional system property. Non-functional properties, also

known as goals [18] or quality attributes [39][7], are not specific actions the system must

perform, but rather are characteristics the system should exhibit while doing whatever it

does. Other examples of non-functional system properties are dependability, performance,

cost, and maintainability. The focus of safety is hazard prevention; thus, safety require-

ments often take the form of constraints on system behavior.

A common misconception about safety engineering is the belief that designing a system

to be reliable will also make it safe. Although safety and reliability are related, they are

not equivalent. Whereas the goal of a reliable system is continuation of correct service, the

goal of a safe system is prevention of accidents or losses. For example, if the throttle of an

automobile fails such that the throttle is closed and the vehicle rolls to a stop, the system

9

CHAPTER 2. BACKGROUND AND RELATED WORK

Requirements

System Specification

Subsystem
Implementation

Subsystem
Specification

Subsystem
Test

System Integration &
Test

Acceptance Test

Verification

Verification

Validation

 De c o m p o s i ti o n & De fi n i ti o n
 I n

t e g
r a t

i o n
 & V e

r i f i
c a t

i o n

Figure 2.1. Vmodel of system development (adapted from [29])

might remain safe, even though it has lost service and is not reliable. Likewise, a system

that is reliable might not be safe for a given set of environmental operating conditions (e.g.,

a vehicle that is correctly driving down the road with another vehicle in its path).

2.2.1 Hazard analysis

Hazard analysis provides a structured method of reasoning about hazard causation through-

out the system development life cycle. One common representation of this cycle is the

“Vee” model developed by NASA for the Software Management and Assurance Program

(SMAP) [29]. A similar model of software development called the V-model was developed

simultaneously by the European technology company IABG for the Federal Ministry of De-

fense of the Republic of Germany for use in military information technology systems [34].

Figure 2.1 shows a basic V-model adapted from the one presented in [29]. Design activities

10

CHAPTER 2. BACKGROUND AND RELATED WORK

on the left side of the V represent decomposition, from high-level system requirements to

low-level component specifications. Activities along the right side of the V integrate com-

ponents to form the complete system and verify and validate the implementation against

the requirements and design specification. Traceability occurs between stages as the cycle

progresses.

In the context of this V-model, hazard analysis begins during requirements specification

and continues at each subsequent stage of development. In the early stages, hazard analysis

is used to identify hazards, reason about their underlying causes, assess their risks, and de-

velop measures to eliminate them, reduce their occurrence, or mitigate their consequences.

Later, hazard analysis is used to verify that these measures have been implemented cor-

rectly. Traditional systems safety engineering relies on a variety of hazard analysis tech-

niques, each with slightly different requirements and goals. This section describes four

different hazard analysis techniques related to the work presented in this thesis.

Preliminary Hazard Analysis (PHA). Safety requirements elicitation typically begins

with Preliminary Hazard Analysis (PHA) very early in development, during the require-

ments engineering stage [28]. The PHA produces a list of general hazards related to both

the application domain and the particular application under review. It also usually includes

some indication of hazard severity. As the development process and the system design

progress, prevention and mitigation techniques are added for each hazard in the PHA. Be-

cause PHA occurs so early in development, it is generally a system-level analysis used

to identify system-level safety goals. The ICPA technique presented in this thesis, which

focuses on defining subsystem safety requirements from system safety requirements, does

not replace the PHA, but complements it.

11

CHAPTER 2. BACKGROUND AND RELATED WORK

Unintended
sudden acceleration

Driver presses
throttle pedal
instead of brake

Throttle accidentally
applied instead of brake

Autonomous control
changes from

decelerate to accelerate

Object’s
 features exceed

detection
algorithm’s

margin of error

Object detection misses
object that is there

Sensor is
blocked

Higher priority
subsystem
aborts

deceleration

Lower priority
subsystem
requests

acceleration

Figure 2.2. Partial fault tree for a semiautonomous automotive system

Fault Tree Analysis (FTA). As the subsystem requirements and design specification is

completed, other hazard analysis is used to identify component-level sources of system

12

CHAPTER 2. BACKGROUND AND RELATED WORK

hazards. FTA is a backward search technique that starts from a hazard and traces through

its causal event chain to identify the fault or failure in the system that is the root cause [85].

Figure 2.2 shows a partial fault tree for a semi-autonomous automotive system. Component

failure events are connected by logical AND and OR operators to indicate when an output

event requires all or at least one input event. This allows failure scenarios to be constructed

and simplified using Boolean algebra. In Figure 2.2, the hazard Unintended sudden accel-

eration could occur if a high-priority subsystem cancels an attempt to decelerate the vehicle

at the same time as a low-priority subsystem requests a vehicle acceleration.

The goal of a traditional FTA is to identify and eliminate single-point failure scenarios,

indicated by paths up the fault tree that traverse no AND gates. In the case of hardware

failures, redundancy can be used to eliminate or mitigate the hazard. Although fault tree

generation is manual, determination of hazard probability from component failure rates (if

known) could be automated.

Software fault tree analysis (SFTA) [55] was the first significant attempt to adapt a tra-

ditional hazard analysis for software verification. This was also the first paper to define

software safety as distinct from safety in traditional electromechanical systems. Other

work in SFTA can be found in [32][63][22]. SFTA traces hazardous software outputs back

through the code to the logic or input failures that could cause them. The results of the

code-level SFTA are then used to determine where run-time assertions might be neces-

sary. Leveson and Harvey provide templates for SFTA using symbols found in traditional

FTA [55]. These templates demonstrate how common code structures, such as if-then-else

and while loops, can be broken down into fault trees. Although code-level SFTA can be

useful for identifying coding defects, such as not checking for infinite loop execution, it

does not address faults in requirements that are common sources of hazards in software

systems.

13

CHAPTER 2. BACKGROUND AND RELATED WORK

Component Failure Modes Causes EffectsProbability
Long-range
radar
sensor

False positive Signal noise Could cause
Collision
Avoidance to
randomly stop
vehicle

3 x 10-2/hr

False negative Signal noise 1 x 10-2/hr Could cause
Collision
Avoidance to miss
an object

Figure 2.3. Partial FMEA for a semiautonomous automotive system

Both FTA and ICPA are backward search techniques. The primary difference between

FTA and ICPA is that fault trees trace hazards through the design to identify the underlying

faults that cause them, whereas ICPA traces high-level safety goals through the design to

define safety requirements for the subsystems and components. ICPA is concerned with

defining goals for the functional behavior of components, rather than identifying faults that

could cause those goals to be violated. A secondary difference is that FTA is recorded in a

tree structure, whereas ICPA is recorded in tabular format.

Failure Modes and Effects Analysis (FMEA). FMEA is a forward search technique that

lists potential faults in components and identifies their possible effects on the system [50].

This analysis is done manually by domain experts and produces a list of components, their

failure types, and the resulting system effects in tabular form. A variant of FMEA is the

Failure Modes, Effects, and Criticality Analysis (FMECA), which includes additional anal-

ysis of the criticality of each failure mode. Detailed instructions for performing a hardware

FMECA can be found in [83]. Figure 2.3 shows a partial FMEA for a semi-autonomous

automotive system that lists potential failure modes for a long-range radar sensor.

14

CHAPTER 2. BACKGROUND AND RELATED WORK

The goal of traditional FMEA is to identify components whose failure might lead to a

hazard. Using this information, systems engineers can modify the design, usually by adding

redundancy, to remove the hazard or reduce its consequences. One advantage of this type of

hazard analysis is that the list of components, though possibly extensive, is usually known

at the time of analysis. One possible disadvantage, particularly for software, is that all

failure modes of those components might not be known.

Like traditional FMEA, Software Failure Modes and Effects Analysis (SFMEA) is a

forward search technique that lists potential faults in software components and identifies

their possible effects on the system [62][61][63][30]. Failure modes of software, how-

ever, are often more numerous and more complex than their hardware counterparts. Lutz

and Woodhouse propose analyzing eight different software component failure modes [62].

Data failure modes represent faults in communication between components and include

absent, incorrect, mistimed, or duplicate data. Event failure modes represent faults in soft-

ware processes (programs in execution) and include abnormal process termination, process

omission, incorrect logic, or mistimed events. For example, a critical mode flag (data)

that suffers an incorrect value fault might cause the system to be set to an incorrect mode

[62]. One that suffers a mistimed data fault might cause a delay in setting the system to the

appropriate mode.

One key difference between SFMEA and SFTA is that SFMEA is performed on the

requirements, rather than on the code. In their analysis of the Cassini spacecraft, Lutz and

Woodhouse identified forty-eight issues in the requirements, twenty-five of which required

changes to the requirements [62]. Four of the changes involved unresolved specification

requirements and were linked to failure modes that had not previously been considered. It is

important to note that this version of SFMEA only identifies which faulty software output

behavior, with respect to its interaction with the rest of the system, is hazardous enough

15

CHAPTER 2. BACKGROUND AND RELATED WORK

to warrant more analysis; SFTA is still required to trace that faulty output behavior to its

source (processor fault, sensor input fault, faulty software logic, etc.). In this capacity,

SFMEA can be used to reduce the scope of SFTA, as Lutz and Woodhouse do in their

analysis. It may also be possible to use SFMEA to trace faults in software inputs forward

to hazardous software outputs, but this use of SFMEA is not explored.

The primary difference between FMEA and ICPA is that the former is forward search

while the latter is backward. FMEA traces component failures through the system to the

hazards they might produce, whereas ICPA traces system safety goals through the system

architecture to define subsystem safety goals. One similarity between FMEA and ICPA is

the use of tables for recording details of the analysis. Another is that both techniques are

concerned with component I/O, with FMEA focusing on fault models of component I/O

and ICPA focusing on the controllability and observability of system state by components.

STamP Analysis (STPA). Leveson introduced a new approach for accident reasoning us-

ing systems theory called Systems-Theoretic Accident Model and Process (STAMP) [52][54].

This new model is based on the assertion that traditional hazard analysis techniques do not

work for software-intensive systems because software is complex and non-linear. Because

most hazards in complex software-intensive systems are not caused by component faults,

but rather by failures in requirements to adequately address safety, tracing the paths from

hazards back to component failure and vice versa will not detect many common sources of

hazards in software systems. In contrast, STAMP attributes hazards to control processes

that fail to enforce safety constraints. This might occur because the control process itself is

inadequate or inadequately executed, or because of inadequate feedback to the control pro-

cess. For example, an inadequate control action might be a flaw in the control process for

monitoring constraints or an overlooked hazard which was not assigned a safety constraint.

A STAMP hazard analysis (STPA) [53][25] begins with defining the control architecture

16

CHAPTER 2. BACKGROUND AND RELATED WORK

of the system. Once controllers and control flow are known, failure modes are identified for

each component in the architecture. The four types of control failures are missing control,

incorrect or unsafe control, late control, and premature stop of control [53]. These types of

subsystem control failures are then traced to potential causes using a formal model of the

system and control failures in the SpecTrm-RL language [14].

One tenet of the STAMP hazard model is that safety analysis of components cannot

be separated from safety analysis of the system. Leveson asserts that although the sys-

tem itself may be hierarchical, certain properties such as safety emerge only at the highest

level of the hierarchy, and that individual components are neither safe nor unsafe outside

the context of the system. In this view of safety, separating hazard analysis of any com-

ponents from system-level analysis is not appropriate. However, the component control

constraints generated during the STPA process are comparable to the concept of safety

goals for subsystems in the ICPA framework. Similar to ICPA, the STPA analysis is based

on the control architecture of the system. Unlike ICPA, which uses backward search from

safety goals defined at the system level through the control architecture to define safety

goals for components, STPA uses forward search from components to system hazards. The

backward search in STPA is used to identify the source of component control failures.

PARCEL. Johnson introduced the Programmable electronics systems Analysis for Root

Causes and Experience-based Learning (PARCEL) [38][37] hazard analysis technique for

software-intensive systems. It traces accidents and incidents back to failures in the soft-

ware development cycle. The main idea of PARCEL is that adverse events occur when

development processes fail to meet safety-critical system development standards, such as

IEC61508 [35] or DO-178B [73]. PARCEL utilizes flow charts with specific questions to

trace incidents back to the process failures that caused them. It then applies a modified

version of Events and Causal Factors (ECF) analysis from the Department of Energy [23],

17

CHAPTER 2. BACKGROUND AND RELATED WORK

which is an event based modeling technique. Together, STAMP and PARCEL can be used

to identify both the control failures and development process failures that contribute to

incidents or accidents.

2.3 Requirement elicitation, specification, and refinement

Requirements engineering is defined by Nuseibeh and Easterbrook as the process of iden-

tifying and documenting the purpose of a system “in a form that is amenable to analysis,

communication, and subsequent implementation”[67]. The primary tasks of requirements

engineering are eliciting, modeling and analyzing, communicating, agreeing, and evolving.

Although most of these tasks occur early in the design process (e.g., during the first stage of

the V-model shown in Figure 2.1), requirements are often updated as a result of subsequent

development activities.

In the emerging field of computer systems engineering, Ross and Schoman first iden-

tified the need for a requirements development practice more similar in rigor to the one

applied in manufacturing processes [75] [43]. They called for requirements definition to

include context analysis (the objective of the system), a functional specification (what the

system should do), and design constraints (how the system should be built), with full doc-

umentation of each component. Ross introduced the Structured Analysis (SA) language as

a framework for modeling understanding, not only for requirements development but also

for any other work that produces an intellectual product [74]. SA uses both text and graph-

ical representations of software components and functions. It also allowed for hierarchical

representation of system designs.

Feather introduced formal reasoning about specification of agents in composite sys-

tems [26]. He proposed separate specifications for describing the decomposition of a

system into components and for describing composite system behavior. Specifications of

18

CHAPTER 2. BACKGROUND AND RELATED WORK

component behaviors were derived by pruning (eliminating behaviors which violate some

constraint) and decomposing constraints to assign to agents.

2.3.1 Specifying non-functional requirements

Mylopoulos et al. proposed a framework for specifying non-functional requirements in

composite systems [65]. In their process-oriented approach, non-functional requirements

were defined in terms of goals, links between goals, methods for goal refinement, correla-

tion rules, and a labeling structure for linking goals to design decisions. It also included a

detailed decomposition of two types of non-functional requirement, accuracy goals (infor-

mation correctness) and performance goals (execution time and storage space). Similar to

ICPA, accuracy goals were decomposed by assigning a separate goal to each component

of the information (e.g. report accuracy was divided by report types, report sections, and

function and input parameters). Performance decomposition divides the performance goal

as a sum-of-parts (e.g., response time goals for an operation are the sum of the response

times of the different parts of the operation).

Leveson’s intent specifications are another approach to specifying non-functional re-

quirements [51]. Intent specifications provide hierarchical system abstraction that relies on

means-to-ends representation, rather than part-to-whole. Various levels in the intent hier-

archy include system purpose, system design principles, black box behavior, physical and

logical function, and physical realization. Safety-related constraints are defined as system

design principles. This approach provides a framework for expressing system safety goals,

but does not offer tactics for safety goal decomposition.

Bitsch attempted to make formal specification of safety requirements easier for non-

formalists by introducing a set of formal temporal logic patterns that map to safety require-

ments written in a natural language [9][10]. Table 2.1 displays the classification scheme.

19

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.1. Safety requirements pattern classification scheme from [10]
Static Safety Requirements (Invariants)

Dynamic Safety Safety Requirements Beginning of Validity

Safety Requirements about Chronological Duration of Validity

Requirements with Temporal Succession Beginning & Duration

Dependencies Safety Requirements Time Triggering

with Explicit Time Event Triggering

Safety Requirements about General Access Guarantee

A disadvantage of formal specification is that non-formalists may be reluctant to use for-

mal requirements, particularly in the early analysis and design stages when creating safety

requirements is begun [10][31]. Formalizing an existing requirement written in natural lan-

guage may be easier than trying to identify new requirements entirely within a formalized

framework.

In Bitsch’s technique, requirements are first classified as static or dynamic based on

whether they apply to one or multiple system states. Dynamic requirements are further

classified based on the type of temporal dependency. Each classification is mapped to a

specific formula in Computation Tree Logic (CTL). The catalog of patterns provides a clear

explanation of the logical expression in natural language. Although the primary purpose of

the technique is to translate from natural language to temporal logic, the patterns could be

applied in reverse to invariants obtained from pattern reduction.

2.3.2 Goal Oriented Requirements Engineering (GORE)

This thesis builds primarily upon Goal-Oriented Requirements Engineering (GORE), intro-

duced by Dardenne, van Lamsweerde, and Fickas [18][44]. In this approach, requirements

engineers first define a set of high-level goals (objectives to be achieved by the composite

system). Agents are entities within the system or external users of the system that perform

the actions needed to achieve the goals [18][46][47]. At the highest level, these objectives

20

CHAPTER 2. BACKGROUND AND RELATED WORK

A B

VehicleAcceleration.Source = CollisionAvoidance
 (VehicleAcceleration.Value = 1.3 m/s2) 2 m/s2

M e ta L e v e l

va: VehicleAcceleration
IsSubsystem(va.Source) va.Value 2 m/s2

I n s ta n c e L e v e l

D o m a i n L e v e l

Figure 2.4. Modeling levels for a goal in GORE/KAOS

are nonoperational; no single agent within the system can achieve the goal alone. Through

requirements elaboration, goals and subgoals are operationalized into actions (the behav-

iors that achieve the goal) and refined until they can be assigned to individual agents (a

subsystem, a software component, the user, etc.) [19][20][45][46][47][48][49].

GORE operates in three levels of system modeling: the meta, domain, and instance

levels [18]. These levels are shown in Figure 2.4 for a single goal. The highest level, the

meta level, refers to the abstract concepts such as “goals,” “agents,” and “actions,” and how

they interact. The domain level refers to a specific instance of the meta-model, such as a set

of specific goals and agents for a given system implementation. Finally, the instance level

refers to a specific instance of the model defined at domain level. This could be an instance

of an action performed by an agent at specific time during system execution.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

P true in current state

¬P false in current state

lP true in previous state

�P true in some previous state

nP true in all previous states

mP true in next state

♦P true in current or some future state

qP true in current and all future states

P ∧ Q P AND Q

P ∨ Q P OR Q

P→ Q P implies Q in current state

P⇒ Q q(P→ Q); P implies Q in all states

P⇔ Q P iff Q in all states

ln<T P true for duration T in previous state

l�<T P true at least once in duration T in previous state

@P l¬P ∧ P; true in current state, false in previous state

S0 � P True in the initial state

Γ ⊢ P P is syntactically derivable from the premises Γ

Γ 0 P P is not syntactically derivable from the premises Γ

Figure 2.5. Temporal logic operators

Knowledge Acquisition in autOmated Specification (KAOS) framework. KAOS is the

requirements specification language used in GORE [18]. KAOS includes formal defini-

tions in temporal first-order logic [42] for components of the system meta-model, including

agents, actions, entities, and goals, as well as the relationships between them. Figure 2.5

lists the temporal operators of KAOS. Formal representation makes system goals explicit

and facilitates analysis. An example of a goal for a train control system from [44] is shown

in Figure 2.6.

Goal: Achieve[TrainProgress]

InformalDef: The train shall progress through consecutive blocks.

FormalDef: (∀ tr: Train, b: Block) [On(tr, b)⇒ ♦On(tr, b+1)]

Figure 2.6. Goal Achieve[TrainProgress] from [44]

22

CHAPTER 2. BACKGROUND AND RELATED WORK

Table 2.2. Goal pattern classifications from [20]
Goal Class GoalPattern

Achieve P⇒ ♦Q

Cease P⇒ ♦¬Q

Maintain P⇒ qQ

Avoid P⇒ q¬Q

Refinement patterns. One advantage of using formal specifications is that goal structure

can guide elaboration. Darimont and van Lamsweerde identified formal refinement patterns

for elaborating goal-oriented requirements [19][20]. They identified four general patterns

for goals: achieve, cease, maintain, and avoid, as shown in shown in Table 2.2 [19, 20].

In this context, safety goals are expressed in the avoid pattern (P ⇒ q ¬Q), where P

represents the predicate, Q represents the hazardous condition to be avoided, q signifies

something that will hold always in the future,⇒ signifies entails, and ¬ is the NOT operator.

High-level goals are refined into sub-goals by AND/OR graph reduction from the field

of Artificial Intelligence [66], by applying formal refinement patterns for logical expres-

sions [19, 20], and by identifying subgoals that are realizable by particular agents [47]. In

AND/OR reduction, goals are broken-down into a set of subgoals that all must be satisfied

(connected with an AND operator) or a set of alternative goals (connected with an OR op-

erator). Formal refinement patterns identify possible combinations of subgoal patterns that

meet the parent goal. For example, a parent goal in the achieve form (P ⇒ ♦Q), where

⇒ indicates a material implication and ♦ signifies eventually, could be replaced by two

achieve subgoals of the forms (P⇒ ♦R) and (R⇒ ♦Q).

Darimont and van Lamsweerde offer a refinement pattern specifically for safety goals in

which safety goals are refined by introducing subgoals for monitoring and responding to

an alarm event [20]. The alarm is triggered early enough to give the response mechanism

a finite period of time to correct the problem and prevent the original safety goal from

23

CHAPTER 2. BACKGROUND AND RELATED WORK

being violated. This provides a template for a general monitoring structure, but gives little

guidance on how to define what to monitor. In addition, it allocates all responsibility for

achieving the goal to the alarm/response agents. Although this is a common technique for

hazard reduction, it is not the only one and may not be desirable for all systems.

Goal realizability. Not every set of subgoals that can be defined to satisfy a parent goal

is actually realizable in the system. In the KAOS framework, goal realizability is driven

by monitorability and controllability of system state variables. Letier and van Lamsweerde

defined a goal to be strictly realizable by an agent if the agent has the ability to monitor

all state variables to be monitored and control all state variables to be controlled that are

necessary to satisfy the goal [46][47]. More formally, a goal relation can be expressed as

G(M,C), where G is the goal to be realized in the system, M is the set of variables in the

goal to be monitored, and C is the set of variables in the goal to be controlled. A goal is

realizable by an agent if M is a subset of the variables monitored by agent ag and C is a

subset of the variables controlled by agent ag, (M ⊆ Mon(ag) and C ⊆ Ctrl(ag)).

Letier and van Lamsweerde classified unrealizable goals into the following categories:

lack of monitorability, lack of control, reference to future, goal unsatisfiability, and not

finitely violable goal. Consider a goal of the form (A ⇒ B). Realizability of this goal

requires an agent with the ability to control both A and B. If an agent has the ability to

monitor A and control B, the goal is still not realizable due to a reference to the future (the

agent cannot monitor A and control B in the same state). The goal lA⇒ B could be real-

izable by an agent with the ability to monitor A and control B. Letier and van Lamsweerde

also provide several goal patterns to help identify and resolve goal unrealizability.

24

CHAPTER 2. BACKGROUND AND RELATED WORK

2.4 Emergence

Safety goal elaboration is complicated by the emergent nature of system safety. Emergence

had been observed in natural systems as early as the time of Aristotle, who recognized there

were systems in which, “the whole is something beside the parts” [5]. The term emergent

was first defined by Lewes [57], who asserted that a resultant system could be expressed

as a sum or product of its components’ outputs, whereas the outputs of components in an

emergent system are fundamentally different, both from each other and from the resulting

system behavior:

Add heat to heat and there is a measurable resultant; but add heat to different

substances, and you get various effects, qualitatively unlike...

Emergence has also been studied in complex systems such as artificial life [16][21] and

agent-based systems [72]. Cariani [16] differentiates among three types of emergence:

computational, thermodynamic, or relative to a model. Whereas computational emergence

focuses on identifying emergent behaviors that arise from local computations, emergence

relative to a model is more concerned with how emergent properties of the system affect

the behavior of its components.

Darley [21] asserts that, similar to the halting problem [82], determining whether or not

a system is emergent is undecidable, and the best predictor of system behavior is simula-

tion. It may be possible to observe emergent behavior (something that is not predicted by

individual component behaviors) as the system runs, but it is impossible to know for sure

that a system is non-emergent, or even that all emergent behaviors in the system have been

exposed.

Privosnik [72] proposed defining emergence at various levels of the hierarchy in agent-

based systems. Component behaviors contribute to emergent behaviors at the subsystem

25

CHAPTER 2. BACKGROUND AND RELATED WORK

level, which contribute to new emergent behaviors at the system level. Thus, system behav-

ior is achieved by defining the behaviors of combinations of agents, as well as the agents

themselves.

2.4.1 Feature interaction

Bowen et al. identified emergent behaviors that resulted from the integration of new fea-

tures into existing telecommunication systems as feature interactions [13]. A feature is

“a package of functionality incrementally added to a service to enhance or modify it” [84].

In a telecommunication system, caller-ID and call-waiting are examples of features that

have been added to basic telephone service (also known as Plain Old Telephone Service

or POTS). New interactions arise when features share resources, such as signaling inputs

or network messages, or when new behaviors violate feature assumptions [15]. This fea-

ture interaction problem applies to automotive systems as well. For example, new fea-

tures that introduce autonomous vehicle control, such as Adaptive Cruise Control (ACC)

or Collision Avoidance (CA) may violate previous assumptions that all brake commands

are driver-initiated. Likewise, multiple features may have conflicting throttle commands.

Zave suggested the use of formal specifications to eliminate many feature interactions

in telecommunication systems [88]. The basic idea is to eliminate ambiguities in feature

behavior or assumptions by formalizing them. In the approach, system-level invariants are

proposed as a means of limiting unwanted behavior across features. Jackson and Zave

proposed an architecture for composing features to eliminate unwanted feature interactions

called Distributed Feature Composition (DFC) [36]. In this architecture, features are mod-

eled as components with inputs and outputs. Calls between customers are directed by a

central router from feature to feature until completion. Feature interactions are limited

by the order in which the call was routed through the features. Although this may work

26

CHAPTER 2. BACKGROUND AND RELATED WORK

in telecommunication systems where each call has a source and destination, it is unclear

whether this pipe-and-filter architecture would work for automotive systems with closed-

loop control.

2.5 Safety goal monitoring

Feather et al. proposed a run-time monitoring system based on goal-driven requirements

[27]. In their approach, monitored parameters that can be violated are identified at design

time, and alternative system designs for recovery actions are explored. At run time, the

violated properties are reconciled by choosing an alternative requirement to enforce, or

by changing control parameters to restore the original invariant. Although the general

process is outlined, the approach does not identify specific tactics for choosing invariants

to monitor. Also, the run-time system adaptation seems better suited for systems that are

not safety critical.

Plale-Schroeder et al. proposed using a database query language to check safety con-

straints at run-time [78][70][69]. Safety constraints derived from hazard analysis are de-

fined as a triggering event, a set of conditions for a response, and a response action. The

technique was applied to a set of autonomous robots in which monitoring of constraints

was centralized. Although a database query language seemed well-structured for checking

constraints and performing recovery actions, it would not be easy to use in many embedded

systems where there are no existing similar systems and computing resources are limited.

Kim et al. proposed a run-time monitoring technique, Monitoring and Checking (MaC),

based on formal system models [40]. The basic idea is to use a model-checker on real

system values at run-time, rather than on a model of the specification, to verify that the

software is meeting its formal requirements. This required mapping of the low-level sys-

tem state variables to model state. Monitor scripts are written in Primitive Event Definition

27

CHAPTER 2. BACKGROUND AND RELATED WORK

Language (PEDL) and contain a monitored entity (software method, class, etc.), condi-

tions (statements that evaluate to true or false), and events (generated when state variables

change). Sokolsky et al. extended this work by defining index and attribute quantifiers for

each event [79]. Index quantifiers bind groups of events (e.g. airbag deployed messages

from a particular vehicle) and attribute quantifiers bind a variable in the checked formula

to the most recent occurrence of the event (e.g. the last airbag deployed message from a

particular vehicle). Whereas these techniques require a formal specification of the system

design, my goal is to provide run-time monitoring that will work whether or not a formal

design specification exists. Also, the focus of my approach is not functional correctness,

but rather the much narrower property of conformance to safety requirements.

Peters and Parnas [68] identified issues with requirements-based monitors for real-time

systems. Because physical devices have some range of precision, monitors that observe

those devices may have a range of outputs depending on whether they use the best-case

value, worst-case value, or something in between. This could also affect monitor accuracy,

as pessimistic monitors may be more likely to trigger false positives (indicate the system

is not functioning according to the requirements when it is). Likewise, optimistic moni-

tors may be more likely to trigger false negatives (indicate that the system is functioning

according to the requirements when it is not). Another problem arises when timing differ-

ences between the monitor and the system lead to nondeterminism, if the monitor samples

environmental variables independently of the target software system. This is not an issue

for monitors that share inputs with the software system being observed. Although the mon-

itors described by Peters and Parnas were non-hierarchical, the issues they identified are

relevant to my approach.

28

CHAPTER 2. BACKGROUND AND RELATED WORK

2.5.1 Safety kernels

Leveson et al. introduced the idea of a safety kernel to detect and recover from safety-

critical errors [56]. In their approach, assertions to check safety invariants are embedded in

the application software. A separate timer is used to monitor real-time requirements. When

a hazard is detected, the safety kernel executes a recovery action. One of the main purposes

of the safety kernel is to isolate the recovery mechanisms and the policies governing them

from the rest of the system. This reduces complexity for analysis and testing of critical

functions. My approach differs in that the monitoring functions are separate from the sub-

systems being monitored, rather than embedded in the application code as assertions. Also,

there is no centralized recovery mechanism; both monitoring and response in my approach

are distributed across the subsystems. Their version of the safety kernel design was neither

implemented nor evaluated in a real safety-critical system.

Rushby proposed using safety kernels to enforce, rather than monitor, safety properties

of the system [76]. He proposed that a safety kernel could be used to prevent negative be-

haviors from happening if all actuator commands were required to pass through the safety

kernel. This type of system could not be used to to ensure positive behaviors of the sys-

tem. The approach provided a general description of a safety kernel structure, along with

some suggestions for enforcing event sequencing, but the ideas were not evaluated in a

real system implementation. Wika and Knight extended the ideas proposed by Rushby by

classifying safety policies by fault type [86, 87]. They also provided a mechanism for

weakened policies whereby some of the enforcement is transferred to the application. The

work included application of the approach to two case studies, a neurosurgical device and

a nuclear research reactor, and a dependability evaluation of the safety kernel. As with

Rushby’s design, the safety kernel requires exclusive control over application devices. As

a single point of failure, this requires the safety kernel to exhibit a high degree of depend-

29

CHAPTER 2. BACKGROUND AND RELATED WORK

ability.

The safety kernel approach differs from my work in a number of ways. First, the focus

of the safety kernel is enforcement of safety policies, not monitoring. A true enforce-

ment kernel requires exclusive control of system actuation, something that is not practical

in many distributed embedded systems. The automotive application domain, with its dis-

tributed design and development processes is not likely to transition to an architecture that

will permit this type of centralized control. A second difference is the fail-stop nature of

the safety kernel; safety policies are enforced by blocking unsafe commands to actuators.

Once again, this may not work in some application domains where complete loss of the

application may be worse than a potential hazard caused by an occasional incorrect com-

mand. Third, the safety kernel approach is centralized by principle, whereas my run-time

monitors are distributed across multiple subsystems. Finally, the approaches to safety ker-

nels leave identification of the monitored properties to future work. As part of my results,

I provide specific techniques for identifying the safety invariants to be monitored.

30

Chapter 3

Emergence in Composite Systems

3.1 Overview

In general, emergence is problematic because the behaviors it produces are unexpected.

In telecommunications, emergence has been identified as the feature interaction problem,

when adding features to a system produces new behaviors not included in any single fea-

ture, or where the behavior of one feature is changed by the behavior of another [13]. For

example, features that hide call origination information may interfere with an automatic

call-back feature [15].

In safety-critical systems, emergence causes two types of problems. The first occurs

when interaction among components produces hazardous behaviors that are previously

unidentified. In this situation, one or more system safety goals are missing, which means

the set of subgoals obtained by goal elaboration will also be incomplete. The second prob-

lem occurs when interaction among components produces emergent behaviors that violate

a known system safety goal (i.e., the system was designed and built to satisfy the goal but

ultimately did not). In this case, the parent goal is not fully satisfied by the set of subgoals

for the components and their relationships to each other. This thesis addresses the second

problem: emergence that prevents a known system safety goal from being satisfied.

31

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

3.1.1 Motivation

In order to understand and handle emergence in system safety, it is useful to define emergent

and composable system behaviors within the context of the formal specification of the

safety goals because this makes explicit:

• uncertainty due to emergence from unknown dependencies or unrealizable goals

• goal redundancy to mitigate unknown emergence

• restriction tactics for handling unrealizable emergence

The aim of requirements elaboration is to precisely define the behavior of the system un-

der development. When formal definitions are used in the requirements specification, these

requirements can be mathematically verified. However, in any requirements specification

there is some degree of uncertainty. This uncertainty arises when assumptions supporting

the elaboration process fail, or when there are unanticipated dependencies between goals.

Formal specification of emergence acknowledges the presence of this uncertainty in the

system.

In goal elaboration, particularly for system safety goals, it may be desirable for certain

behaviors to be redundantly met by the system design. Redundancy may come in the form

of redundant functional behaviors, or redundant constraints on different functional behav-

iors. Formal specification of emergence provides a platform for including goal redundancy

in the system design.

Some known subgoals for a decomposition of a parent goal may be unrealizable in the

system. To guarantee a goal is met, alternate restrictive goals may be chosen to remove the

emergence from the functional design. Formal specification of emergent behaviors assists

in identifying these situations and alternative restrictive subgoals.

32

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

 G1

G2

G3

G

Figure 3.1. Complete andreduction {G1,G2,G3} of goal G

This chapter addresses the following questions posed in Chapter 1:

• What does it mean for a goal to be composable or emergent?

• When is it possible to decompose a system-level goal?

• Is partial decomposition possible, and if so, is it useful?

3.1.2 And-reductions

Darimont formally specified and-reductions as a representation of decomposition for pattern-

based goal refinement [19]. In his definition of decomposition, goals {G1,G2, ...Gn} are a

complete and-reduction of goal G iff:

1. G1,G2, ...Gn ⊢ G

The parent goal can be inferred from the conjunction of the subgoals.

2. (∀i, j)[∧ j,iG j 0 G]

The subgoals are minimally sufficient for inferring the parent goal.

33

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

G2
1

G2
2

 G1
1

 G1
2

 G1
3

 G

Figure 3.2. Andreductions {G1
1
,G2

1
,G3

1
} and {G1

2
,G2

2
} of goal G

3. G1,G2, ...Gn 0 f alse

The subgoals are not mutually incompatible.

4. i f (G ⇒ ∧1≤ j≤nG j) then either n > 1 or the proof relies on some domain knowledge

Simple restatement of the parent goal is not a decomposition

Figure 3.1 shows the state space of a complete and-reduction of goal G consisting of

subgoals {G1,G2,G3}. Because one particular and-reduction is minimally sufficient, but

not necessary for satisfying the parent goal, there may be multiple and-reductions for the

same goal (i.e., other sets of subgoals that also satisfy the parent goal). Figure 3.2 shows the

state space of two complete and-reductions of goal G consisting of subgoals {G1
1
,G2

1
,G3

1
}

and subgoals {G1
2
,G2

2
}.

The and-reductions are mapped over different state variables. Suppose goal G in Fig-

ure 3.2 is (A ⇒ B). Table 3.1 shows possible values for subgoals G1
1
,G2

1
,G3

1
,G1

2
, and G2

2
.

Note that {G1
1
,G2

1
,G3

1
} maps over state space defined by the state variables {A, B,C,D}, and

{G1
2
,G2

2
} maps over state space defined by the state variables {A, B, E}.

34

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

Table 3.1. Subgoals G1
1
,G2

1
,G3

1
,G1

2
,G2

2
for goal G

G: A B
Goal

G1
1: A C G1

2: C D G1
3: D B

G2
1: A E G2

2: E BG: A B

Subgoals

Darimont further defined a partial and-reduction of goal G as the set of subgoals

G1,G2, ...Gm iff:

1. ∃Gm+1, ...Gn such that {G1, ...Gm,Gm+1, ...,Gn} is a complete and-reduction

Given (2) in the conditions for a complete and-reduction, the parent goal cannot be inferred

from a partial and-reduction alone. In Figure 3.1, if subgoal G2 is missing, G cannot be

inferred.

3.1.3 Scope

In this chapter, goals are defined as propositional logic expressions of system state, using

the operators listed in Figure 2.5. Within the KAOS framework of goal-oriented specifica-

tion, these definitions appear at the domain level (i.e., for a specific decomposition of the

parent goal in the application domain). The system decomposition should reflect all behav-

iors the system produces and should prohibit any additional behaviors that are unspecified.

This chapter presents formal definitions of goals that are:

1. fully composable

2. fully composable with redundancy

3. emergent

4. emergent but partially composable

35

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

5. emergent but partially composable with redundancy

3.2 Composable goals

At the meta level of the KAOS framework [18], an and-reduction represents one decom-

position out of several possible decompositions of the parent goal. In pattern-based goal

decomposition, and-reduction patterns can be applied to generic goal patterns to identify

missing subgoal patterns. However, at the domain level of the KAOS framework [18], an

and-reduction representation is an inexact decomposition of the parent goal because the

decomposition it defines may not be realizable in the system, may not be chosen for a

given system design, or may be one of multiple redundant decompositions chosen by the

requirements engineers.

An exact decomposition of a goal in a requirements specification not only defines when

the goal is satisfied, but also when the goal is not satisfied. In other words, it defines both the

behavior of G and the behavior of ¬G. In and-reduction, if one subgoal is not satisfied (i.e.,

evaluates to FALS E), then the remaining subgoals are not sufficient conditions to allow one

to infer the parent goal. It is undefined whether or not the parent goal is satisfied, because

there may be other and-reductions that do satisfy the parent goal. As the design becomes

more complete, the number of possible alternative decompositions decreases. An exact

decomposition of a goal defines which particular decomposition, restrictive decomposition,

or combination of redundant decompositions is chosen by the requirements engineers for

the system design.

In some situations, inexact decomposition may not be problematic. In hazard detection,

for example, if the subgoals are unable to prove the system is in a safe state, a conservative

design approach would be to assume the system is in an unsafe state and commence hazard

mitigation and recovery actions. In essence, for hazard detection it is assumed that the

36

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

and-reduction subgoals are not only minimally sufficient, but also necessary conditions for

satisfying the parent goal.

For other purposes, however, simply assuming the behavior is not occurring may be

a problem. For example, suppose one system goal requires a brake to be applied when

an object is detected in the vehicle path, and that an and-reduction is chosen that assigns

that functionality to a collision avoidance subsystem. Another subsystem may have the

capability to achieve the same goal (e.g., an adaptive cruise control system with object

detection and braking abilities), but it is not desirable to have that subsystem do so without

making it an explicit goal for that subsystem. This is problematic for two reasons. First,

analysis of the behavior would be incomplete if other components produced the behavior in

a manner that is unspecified. Second, other goals and subgoals dependent on the behavior

could be incorrect or incomplete. For a system requirements specification, the definition of

decomposition should be more precise.

3.2.1 Fully composable

This thesis defines goal G to be fully composable if there exists a set of n subgoals

{G1,G2,G3, ...Gn} that are realizable by one or more components, such that G is materi-

ally equivalent to the conjunction of the subgoals:

G1 ∧G2... ∧Gn ⇔ G (3.1)

which is equivalent to the conjunction of expressions:

G1 ∧G2... ∧Gn ⇒ G (3.2)

37

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

 G1

G2

G3

GG

Figure 3.3. Goal G, fully composable by goals {G1,G2,G3}

and

¬G1 ∨ ¬G2... ∨ ¬Gn ⇒ ¬G (3.3)

Thus, the parent goal is satisfied (evaluates to TRUE) when all subgoals are satisfied and

is violated (evaluates to FALSE) when any subgoal is violated. This means that the parent

goal is satisfied by exactly one and-reduction, and that other and-reductions are prohibited

in the system specification. A goal G that is fully composable by goals {G1,G2,G3} is

illustrated in Figure 3.3.

Consider the goal that requires a brake to be applied when an object is in the vehicle

path:

ObjectInPath⇒ StopVehicle (3.4)

Subgoals that fully compose the goal for a collision avoidance subsystem are:

ObjectInPath⇔ CA.StopVehicle (3.5)

38

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

and

CA.StopVehicle⇒ StopVehicle (3.6)

These subgoals state that the collision avoidance always stops the vehicle when an object

is in the vehicle path, and only when an object is in the vehicle path.

3.2.2 Fully composable with redundancy

If redundant behaviors are required, that is if multiple and-reductions are chosen to satisfy

the parent behavior, a new definition for decomposition is required. Let G, Gi, and G
j

i
be

goals such that:

Gi ∈ {G1,G2, ...Gp} (3.7)

and

Gi ⇔ (G1
i ∧G2

i ... ∧G
q

i
) (3.8)

This thesis defines goal G to be fully composable with redundancy iff:

G1 ∨G2... ∨Gp ⇔ G (3.9)

which is equivalent to the conjunction of expressions:

G1 ∨G2... ∨Gp ⇒ G (3.10)

and

¬G1 ∧ ¬G2... ∧ ¬Gp ⇒ ¬G (3.11)

If one or more and-reduction Gi is satisfied, then the parent goal will also be satisfied.

39

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

G2
1

G2
2

 G1
1

G1
2

G1
3

G G

Figure 3.4. Goal G, fully composable with redundancy by goals {G1
1
,G2

1
,G3

1
}

and {G4
2
,G5

2
}

Likewise, if none of the and-reductions are satisfied, then the parent goal will not be satis-

fied. All other possible and-reductions are prohibited in the system specification. A goal

G that is fully composable with redundancy by and-reductions {G1
1
,G2

1
,G3

1
} and {G4

2
,G5

2
} is

illustrated in Figure 3.4.

Again, consider the goal that requires a brake to be applied when an object is in the

vehicle path in Equation (3.4). The goal can be redundantly satisfied by both collision

avoidance and adaptive cruise control. The subgoals that fully compose the goal with

redundancy are:

ObjectInPath⇔ CA.StopVehicle ∨ ACC.StopVehicle (3.12)

and

CA.StopVehicle ∨ ACC.StopVehicle⇒ StopVehicle (3.13)

40

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

These subgoals state that the collision avoidance and adaptive cruise control attempt to

stop the vehicle when an object is in the vehicle path, either of those attempts will cause

the vehicle to stop, and only collision avoidance or adaptive cruise control performs this

action.

3.3 Emergent goals

In an ideal world, all system-level goals could be fully composed, with or without re-

dundancy, by known and realizable subgoals. However, in reality systems are never fully

composed because some degree of uncertainty will remain in decomposition of any but

the simplest systems. For safety-critical systems that interface with or control other highly

complex systems, such as humans or the natural world, it may be impossible to remove

all emergence because doing so requires definitions of all possible state variables and their

relationships to the state variables in the safety goal. Emergence is a consequence of this

uncertainty.

We define goal G to be emergent if there is no set of subgoals realizable by any compo-

nent in the system that satisfy Equation (3.1).

3.3.1 Emergent but partially composable

If a safety goal is not fully composable, it may still be possible to isolate some portion of the

goal behavior that is partially composable. As discussed in Section 3.1.2, Darimont defines

a partial and-reduction as a partial decomposition [19]. In this thesis, partially composable

goals are similar to partial-and-reduction.

This thesis defines goal G to be emergent but partially composable if there exists a set

of m subgoals {G1,G2, ...Gm} that are realizable by one or more components in the system,

41

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

X

 G1

G2
G

Figure 3.5. Goal G, partially composable by goals {G1,G2} with emergent

behavior X

plus some undefined or unrealizable goal(s) X, such that G is materially equivalent to the

conjunction of the realizable and undefined subgoals:

G1 ∧G2... ∧Gm ∧ X ⇔ G (3.14)

which is equivalent to the conjunction of expressions:

G1 ∧G2... ∧Gm ∧ X ⇒ G (3.15)

and

¬G1 ∨ ¬G2... ∨ ¬Gm ∨ ¬X ⇒ ¬G (3.16)

In this definition, emergence exists as hidden or missing subgoals within the and-reduction.

A goal G that is partially composable by goals {G1,G2} with emergent behavior X is illus-

trated in Figure 3.5. If X evaluates to FALSE (i.e., there exists some unknown dependency

42

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

Table 3.2. Subgoals G1
1
,G2

1
,G3

1
,G1

2
,G2

2
for goal G, with emergence X1 and X2

G: A B
Goal

G1
1: A C G1

2: C D G1
3: D B

G2
1: A E G2

2: E BG: A B X2

Subgoals
X1

between the known subgoals and some unknown subgoal, and that unknown subgoal does

not evaluate to TRUE), then the parent goal is not satisfied, even if the defined subgoals G1

and G2 are satisfied.

For emergent but partially composable goals, emergence works against goal satisfaction.

That is, some emergent behavior is required, in addition to satisfying the known subgoals,

in order to satisfy the parent goal. Darimont’s reduction patterns [19] can be used to iden-

tify missing subgoals in a partial and-reduction, based on the patterns of the previously

identified subgoals. However, even if a goal G seems to be a complete and-reduction that

is realizable in the system, there remains some probability that one or more of the subgoals

are not realizable for all possible system states due to unknown dependencies.

For example, consider the subgoals listed in Table 3.1. Table 3.2 shows the same sub-

goals with emergence acknowledged. Suppose state variable C is dependent on some other

state variable F, defined by the expression (F ⇒ ¬C). If this dependency is unknown at

the time of goal elaboration, the partial and-reduction {G1
1
,G2

1
,G3

1
}may appear to be a com-

plete and-reduction. However, the dependency between F and C becomes an assumption

of the decomposition, essentially serving as a subgoal (G4
1
). With this added assumption, a

missing subgoal for the decomposition is q¬F, (G5
1
). In Table 3.2, these two new subgoals

exist in X1.

Consider again the goal defined in Equation (3.4). Uncertainty in object detection can

43

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

be expressed as a latent dependency between the object position and collision avoidance:

ObjectInPath⇔ CA.ObjectInPathDetected ∨CA.Ob jectInPathNotDetected (3.17)

Now, the actual goals that must be met in the system are:

CA.ObjectInPathDetected ⇒ CA.StopVehicle (3.18)

CA.ObjectInPathNotDetected ⇒ CA.StopVehicle (3.19)

CA.StopVehicle⇒ StopVehicle (3.20)

where Equation (3.19) exists in X.

In order for a goal to be fully composable, without emergence, all possible dependencies

between all possible state variables must be known and explicitly defined.

3.3.2 Emergent but partially composable with redundancy

Emergence in a system not only appears as an inhibitor of goal satisfaction, but also some-

times serves as a redundant source of goal satisfaction. Let G, Gi, and G
j

i
be goals, and Xi

and Y be some undefined or unrealizable goal(s) such that:

Gi ∈ {G1,G2, ...Gr} (3.21)

and

Gi ⇔ {G
1
i ∧G2

i ... ∧Gs
i ∧ Xi} (3.22)

This thesis defines goal G to be emergent but partially composable with redundancy

44

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

Y

G2
1

G2
2

 G1
1

G1
2

G1
3

X2

X1

G

G2

G1

Figure 3.6. Goal G, partially composable with redundancy by goals

{G1
1
,G2

1
,G3

1
}, {G1

2
,G2

2
} with emergent behaviors X1, X2, and Y

iff:

G1 ∨G2... ∨Gr ∨ Y ⇔ G (3.23)

which is equivalent to the conjunction of expressions:

G1 ∨G2... ∨Gr ∨ Y ⇒ G (3.24)

and

¬G1 ∧ ¬G2... ∧ ¬Gr ∧ ¬Y ⇒ ¬G (3.25)

Figure 3.6 illustrates a goal G that is emergent but partially composable with redundancy.

Whereas Xi represents hidden dependencies that make the and-reductions of G incomplete,

Y represents hidden dependencies and behaviors that satisfy G when no other defined and-

reduction of G is satisfied. Intuitively, emergent behavior Y serves as an “angel” in the

system that satisfies the parent goal when the system specification fails to do so, and emer-

45

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

gent behavior Xi serves as a “demon” that prevents the parent goal from being satisfied,

even though all defined system goals evaluate to TRUE.

In some cases, Y results when it is too difficult to exclude all unspecified behavior in the

system design and implementation. In the example from Section 3.2.1, even if collision

avoidance is the only subsystem assigned to satisfy the goal, adaptive cruise control may

happen to stop the vehicle at the same time an object is in the vehicle path. It may be

possible to prevent adaptive cruise control from accidentally satisfying the goal, perhaps

by prohibiting adaptive cruise control from performing any action when an object is in the

vehicle path, but it may not always be practical to do so.

Consider again the goal defined in Equation (3.4). Taking into account uncertainty in

object detection of both collision avoidance and adaptive cruise control (X1 and X2), and

uncertainty of other vehicle behaviors coincidentally causing the vehicle to stop when an

object is in the vehicle path, the new assumption is:

Ob jectInPath⇔

(CA.ObjectInPathDetected ∨CA.ObjectInPathNotDetected)

∧ (ACC.ObjectInPathDetected ∨ ACC.ObjectInPathNotDetected)

(3.26)

and the new subgoals are:

CA.ObjectInPathDetected ⇒ CA.StopVehicle (3.27)

CA.ObjectInPathNotDetected ⇒ CA.StopVehicle (3.28)

ACC.ObjectInPathDetected ⇒ ACC.StopVehicle (3.29)

ACC.ObjectInPathNotDetected ⇒ ACC.StopVehicle (3.30)

46

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

CA.StopVehicle ∨ ACC.StopVehicle ∨ Unknown.StopVehicle⇒ StopVehicle (3.31)

where Unknown.StopVehicle is Y and Equations (3.28) and (3.30) are X1 and X2

3.3.3 Usefulness of partial composability

Subgoals for a partially composable system goal are not very useful when the objective of

the goal is to produce a behavior. In order to produce behavior G in Equation (3.23), one

of the subgoals G1 through Gr (each is an and-reduction of G) or the unknown goal(s) in

Y would have to be satisfied. But to satisfy any Gi, Xi from Equation (3.22) also has to be

satisfied. Without knowing Xi it is impossible to say anything about whether or not Gi is

satisfied, and without knowing if any Gi is satisfied, it is impossible to say anything about

whether or not G is satisfied.

Alternatively, if the real objective is to prohibit a behavior, then a partially composable

system goal may be of some use. Safety goals specify the “safe” state of the system to

be maintained, but the real objective of system safety is to prevent a hazardous state from

occurring. If goal G is some safety goal and any G
j

i
evaluates to FALSE, then Gi is not

satisfied. If there is no goal redundancy (i.e. r = 1 in Equation (3.23), or if no Gi is

satisfied, then the system may be in a hazardous state. In this situation it is useful to know

specific conditions that could lead goal G to be violated, even if it is impossible to know all

conditions required to satisfy the goal. Although it is impossible to guarantee the system

will always be safe without knowing and guaranteeing at least one Gi (i.e. ensuring all G
j

i

and Xi are TRUE for at least one value of i), it is possible to prevent some known conditions

that put the system into a hazardous state.

In other words, it may be possible to specify some, but not all component behaviors or

interactions that cause a hazard. For example, it may be known that a vehicle will accelerate

47

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

if a subsystem applies the throttle. However, there may be additional unknown interactions

in the vehicle that also cause vehicle to accelerate (e.g., loss of brake fluid combined with

a slick, sloped road). If a safety goal restricts accelerations over a certain threshold, it is

important to prevent known sources of acceleration from violating the goal, in this case by

limiting the acceleration caused by a subsystem. Preventing or mitigating one hazard is

useful, even if the same cannot be done for others.

3.3.4 Conjunctive goals

In general, if a goal can be expressed as a conjunction of expressions, then it may be

partially composable. A parent goal of the form:

q(A ∧ X) (3.32)

can be divided into two subgoals:

qA (3.33)

and

qX (3.34)

Another goal of the form:

A ∨ X ⇒ B (3.35)

which is equivalent to:

q((¬A ∧ ¬X) ∨ B) (3.36)

can be divided into two subgoals:

A⇒ B (3.37)

48

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

and

X ⇒ B (3.38)

If X is unknown or unrealizable, the behaviors required by goals (3.33) and (3.37) may

still be ensured, even if all behaviors required by goals (3.32) and (3.36) cannot. Consider

a goal that requires a vehicle to be stopped whenever there is an object in the vehicle path.

If object detection is non-ideal, then the goal cannot be fully realized. This goal, including

the uncertainty, can be expressed in the same form as Equation (3.35):

InPathDetected ∨ InPathNotDetected ⇒ StopVehicle (3.39)

which can be divided into two subgoals:

InPathDetected ⇒ StopVehicle (3.40)

and

InPathNotDetected ⇒ StopVehicle (3.41)

In this example, subgoal (3.40) can be realized in the system, even if subgoal (3.41) cannot.

3.3.5 Disjunctive goals

An emergent goal with unknown or unrealizable subgoals may still be satisfied by making

it more restrictive in one of two ways. First, an OR reduction may be applied to disjunc-

tions [66]. A goal of the form:

q(A ∨ X) (3.42)

49

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

where X is an unknown or unrealizable subgoal, can be satisfied by the more restrictive

goal:

qA (3.43)

Likewise, a goal of the form:

A ∧ X ⇒ B (3.44)

which is equivalent to:

q(¬A ∨ ¬X ∨ B) (3.45)

can be satisfied by the more restrictive goal:

A⇒ B (3.46)

OR reduction is more restrictive because some functionality of the system that would

otherwise be acceptable is prohibited. In a system with goal (3.45), the state A ∧ ¬X ∧ ¬B

is acceptable, but in a system with goal (3.46) it is not.

Another way to make the goal more restrictive is to increase the safety envelope of a

given variable. Consider a goal that prohibits vehicle acceleration above a certain threshold

AccelerationLimit.

q(VehicleAcceleration < AccelerationLimit) (3.47)

A subgoal for subsystems that control vehicle acceleration might prohibit requests that

exceed a lower threshold, perhaps AccelerationLimit - SafetyEnvelope.

q(VehicleAccelerationRequests < (AccelerationLimit − SafetyEnvelope)) (3.48)

50

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

In this example, some safe acceleration requests are prohibited.

3.4 Composability

In this thesis, composability of a goal is defined as the extent to which emergent behaviors,

X and Y in Equations (3.14) and (3.23), are small. In all but the most simple systems, some

degree of emergence is unavoidable. There will always be a component whose behavior

cannot be fully specified or an unanticipated interaction among components. X and Y

could exist because you don’t know what to look for. Other times, they might occur if

observability and controllability requirements of the goal are not met by any subsystem or

combination of subsystems smaller than the entire system.

Just as it is impossible to determine whether a system is not emergent, it is also impossi-

ble to know if maximum composability has been extracted from an emergent but partially

composable goal. In other words, it is impossible to determine if X and Y are minimized. X

and Y could be estimated, however by run-time monitoring of the system goal and subsys-

tem subgoals. A violation of a subgoal that does not correspond to a violation of its parent

goal is considered a false positive (the subgoals indicate a hazardous state but the system

is not in a hazardous state). A violation of a goal that does not correspond to a violation

of one or more subgoals is considered a false negative (the subgoals do not indicate a haz-

ardous state but the system is in a hazardous state). False negatives can occur when the

unknown/unrealizable subgoal(s) are the cause of the goal violation (X in Equation (3.14)).

False positives can occur when the subgoals are more restrictive than the original safety

goal (Y in Equation (3.23)).

51

CHAPTER 3. EMERGENCE IN COMPOSITE SYSTEMS

3.5 Conclusion

This chapter proposed a formal representation of a system decomposition that includes

emergence, from both unrealizable and unknown sources, and goal redundancy. This rep-

resentation included definitions of composable and emergent but partially composable be-

haviors, with and without redundancy. In addition, the role of emergence in conjunctive

and disjunctive goal forms was discussed.

52

Chapter 4

Indirect Control Path Analysis

4.1 Overview

This chapter presents a new technique for decomposing system safety goals called Indi-

rect Control Path Analysis (ICPA) [11]. ICPA is a top-down search, similar to Fault Tree

Analysis [85]. Whereas FTA traces a top-level hazard to its lower-level causal events, ICPA

traces a top-level state variable through the design to all components that influence it. ICPA

uses a table structure similar to Failure Modes and Effects Analysis (FMEA) [50] to record

these indirect control relationships. Agents along the trace path belong to the indirect con-

trol path and require further analysis of their relationships to the root variable. The indirect

control relationships are then used in conjunction with the goal coverage strategy to define

the safety subgoals and assign them to subsystems. The various aspects of the technique are

demonstrated using an example distributed elevator system used in a graduate embedded

systems course.

4.1.1 Motivation

The process of decomposing system safety goals into subgoals that are realizable by indi-

vidual agents should provide:

• systematic analysis of the system design to identify system components that directly

53

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

or indirectly control state variables in the parent goal

• documentation of the goal decomposition process

• documentation of critical assumptions of the safety goal decomposition

• documentation of restriction and redundancy in the decomposition.

Existing goal elaboration tactics are insufficient for system safety because although they

provide support for comparing alternative decompositions [19][46], none provides a frame-

work for guiding those comparisons and documenting the process. Unlike most functional

requirements, which typically define the actions the system must take to accomplish some

task, system safety goals often define what the system should do to avoid a hazardous state.

In goal elaboration it is important to try to identify as many behaviors in the system as pos-

sible that could prevent the parent goal from being satisfied. In addition, the safety-critical

system assurance process may require a safety case, defined by Bishop and Bloomfield

as “a documented body of evidence that provides a convincing and valid argument that a

system is adequately safe for a given application in a given environment” [8]. In order to

assure the system is safe, the process for decomposing system safety goals and assigning

them to components must be deliberate, directed, and documented.

Another reason additional goal elaboration tactics are needed for system safety is be-

cause in general, the primary aim of goal elaboration is to define subgoals that meet the

parent goal and are realizable by agents in the system [47]. Prior work in tactics for iden-

tifying missing goals [19][20] and resolving unrealizable goals [46][47] has focused on

identifying subgoals that satisfy the parent goal without being restrictive and without em-

ploying redundancy. If emergence cannot be removed from the system, then a different

strategy for goal elaboration is required. In the presence of emergence due to uncertainty,

54

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

G

(o = c) G{c|o}

G

p q G{p|q}

AND

(a) introduce actuation goal on variable (b) introduce actuation goal on predicate

AND

Figure 4.1. Introduce accuracy/actuation goal elaboration tactic from [46]

it may be desirable to satisfy the goal with redundant subgoals. In the presence of emer-

gence due to unrealizability, it may not be practical, or even possible, to satisfy the parent

goal without restricting system behavior more than the parent goal requires. For safety

goal elaboration, where consequences of not satisfying the goal are severe, restriction and

redundancy in the decomposition may both be necessary.

This chapter addresses the following question posed in Chapter 1:

• How can full or partial decomposition of system safety goals be achieved?

4.1.2 Tactics for resolving goal unrealizability

ICPA relies upon the tactics developed by Letier and van Lamsweerde for identifying and

resolving goal unrealizability [46][47]. In particular, tactics associated with resolving lack

of monitorability and lack of control are used. An overview of the concept of realizability

can be found in Section 2.3.2. This section provides an overview of three specific goal

realizability tactics most-commonly used in ICPA: Introduce Accuracy/Actuation Goal,

Split Lack of Monitorability/Controllability by Chaining, and Split Lack of Monitorabil-

ity/Controllability by Case. All three tactics attempt to identify subgoals that are each real-

55

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

P Q

P M M Q

AND

Figure 4.2. Split Lack of Monitorability/Controllability by Chaining goal

elaboration tactic from [46]

izable by a single agent in the system by splitting the monitoring and control requirements

for each goal.

The first tactic, introduce accuracy/actuation goal, is illustrated in Figure 4.1 from [46].

The basic idea of this tactic is to identify some other state variable in the system such that

one function of a state variable in the parent goal is equivalent to another function of the

other state variable in the system. In this case, the equivalence relationship between the

two functions is one subgoal for the system (e.g., q(o = c) in Figure 4.1), and the function

of the other state variable is the other subgoal (e.g., G{c|o} in Figure 4.1). For lack of

monitorability, the equivalent state variable function could be a sensor to monitor the state.

For lack of control, the equivalent state variable would map to an actuator that changes the

state.

The second tactic, split lack of monitorability/controllability by chaining [46], is shown

in Figure 4.2. This tactic is applied to goals of the form P⇒ Q, where P is the state variable

or function of state variables to be monitored, and Q is the state variable or function of

state variables to be controlled. The basic idea is to identify a sequence of subgoals of the

same form that satisfy the parent goal that are each realizable by different agents. In other

56

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

P Q

P f(P) Q

AND

Case 1: f(P) = TRUE
Case 2: g(P) = TRUE

 (f(P) g(P))

P g(P) Q

Figure 4.3. Split Lack of Monitorability/Controllability by Case goal elab

oration tactic from [46]

words, this tactic employs coordination among agents that monitor and control different

state variables.

The third tactic, split lack of monitorability/controllability by case [46], is shown in Fig-

ure 4.3. This tactic is applied when different control actions are required to satisfy the goal

in different situations.

4.1.3 Scope

In this chapter, goals are defined as temporal, first-order logic expressions of system state,

using the operators listed in Figure 2.5. In systems specified with these expressions, up-

dates to a state variable cannot be observed by agents that monitor the variable until the

subsequent state. Therefore, in order for a goal to be realizable, control actions in the goal

cannot depend on future values of monitored state variables. Control actions can depend on

present values of state variables, if the agent realizing the goal is also the agent controlling

those state variables.

In addition, it is assumed that the system safety goals under review belong to a system for

which a functional decomposition already exists. In other words, the system has already

57

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

Actuator

Software Agent

Software Agent

Actuation Signal

System Response

Sensor

Shared Variable, Network Message

Indirect Control
Direct Control

Sensed Variable

Figure 4.4. Indirect control paths

been divided into subsystems that have each been assigned a particular set of functional

behaviors, and that communication between subsystems is known. The safety goal elabo-

ration process may reveal the need to modify the functional decomposition, but this process

begins with some baseline functional design.

The rest of this chapter is organized as follows: Section 4.2 introduces the notion of

indirect control to the KAOS framework. Section 4.3 describes the format of an ICPA

table. Section 4.4 discusses the procedure used to complete an ICPA. Finally, Section 4.5

defines the goal coverage strategies used in the ICPA process.

4.2 Indirect control

In the KAOS framework, goal realizability is driven by monitorability and controllability

of system state variables [46][47]. Monitorability means the ability to observe the value

of the state variable. Controllability means the ability to change the value of the state

58

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

variable. Furthermore, the KAOS framework specifies that only one agent may directly

change the value of a given state variable [46]. Thus, only one agent can control any given

state variable.

In composite systems, however, although one agent directly changes some state variable,

other agents may also influence that change. The terms direct control and indirect control

are introduced to distinguish between the ability to change and the ability to influence

change in variables. Figure 4.4 shows the direct and indirect control relationships for an

embedded system with sensing and actuation. Physical sources of indirect control may

include hardware actuation, system dynamics, and environmental agents that change sensed

state variables. The relationship between commands to an actuator and the actuator’s effect

on sensed system variables is indirect and defined by a function of the physical response

of the system to the actuator command. The actuator does not change the sensed value

directly. Rather, the sensor detects the sensed value from the system and environment.

Software agents directly control their own outputs, such as network messages, shared

variables, and actuation signals, and indirectly control the consumers of those outputs (e.g.,

an actuator’s response to an actuation signal). If one software agent Ag1 directly controls

state variable Z based on input from another software agent Ag2, then Ag2 may indirectly

control the system safety goal as well. If safety goal G restricts how Z can be controlled,

then both agents Ag1 and Ag2 must be analyzed to see if they require a safety subgoal.

Figure 4.5 shows a partial design for a distributed elevator system. In this system, soft-

ware agents DoorController and DriveController directly control the door motor and drive

actuators. In addition, separate software agents for each hall call button and car call button,

HallButtonController f ,d and CallButtonController f , process Passenger agent requests for

floor f and direction d. Another software agent DispatchController contains a dispatch

algorithm that tells the DoorController and DriveController agents the next scheduled des-

59

C
H

A
P

T
E

R
4
.

IN
D

IR
E

C
T

C
O

N
T

R
O

L
P
A

T
H

A
N

A
L

Y
S

IS

DoorMotor Drive

ElevatorSpeed

DoorController DriveController

DriveCommandDoorMotorCommand

DoorClosed

DispatchController

DispatchRequestDispatchRequest

DoorBlocked

Passenger

ElevatorWeight

HallButtonControllerf,d

CarButtonControllerf

HallButtonf,d CarButtonf

HallCallf,d

CarCallf

CarButtonPressf

HallButtonPressf,d

Figure 4.5. Partial design of a distributed elevator control system

6
0

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

Goal: Maintain[DriveStoppedWhenOverweight]

InformalDef: If the elevator weight exceeds the weight threshold,

then the elevator speed shall be STOPPED.

FormalDef: ∀ ew: ElevatorWeight, es: ElevatorSpeed, wt: WeightThreshold

l (ew > wt)⇒ IsStopped(es)

Figure 4.6. Goal restricting movement in an overweight elevator

tination. Sensors detect the elevator weight and speed, and whether the door is blocked or

closed.

Consider the goal Maintain[DriveStoppedWhenOverweight], shown in Figure 4.6, which

restricts movement in the elevator when the elevator weight is over the limit for safe oper-

ation. In the distributed elevator system shown in Figure 4.5, ElevatorWeight is indirectly

controlled by the Passenger agent. ElevatorSpeed is indirectly controlled by the Drive

actuator, which is directly controlled via the actuation signal DriveCommand by the Drive-

Controller agent. DriveController, in turn, is influenced by the DispatchController agent

via the network message DispatchRequest.

Unlike the notion of controllability in the KAOS framework, the notion of direct control

in this thesis does not require strict controllability (i.e., more than one agent may directly

control a system state variable). In networked distributed systems, multiple agents may

send the same type of message. For example, in the distributed elevator system, hall button

controllers on each floor may each generate a hall call message to other agents on a broad-

cast network. A goal that constrains control of hall call messages would apply to all hall

call button controllers. Agent behaviors to generate the messages may be the same for all

agents, such as different instantiations of the same car button controller, or they may differ

by agent, depending on the system design.

61

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #

Goal Coverage Strategy
 Goal Assignment

Goal Elaboration

Subsystem Safety Goals

System Safety Goal
Goal: ...
InformalDef: ...
FormalDef:

Indirect Control Path Analysis

 Goal Scope

1

2

3

4

5

Figure 4.7. ICPA table format

4.3 ICPA format

One of the primary purposes of ICPA is documentation. It necessary to document not only

the subgoals themselves, but also the process used to define them, the critical assumptions

made during that process, and restriction or redundancy in the decomposition. Documen-

tation of the safety goal elaboration process is necessary for several reasons. First, in an

independent review of the safety goals and subgoals, perhaps during development of a

safety case for the system [8], there needs to be a clear record of the critical goals and

assumptions, as well as which subsystems and components were analyzed for indirect con-

trol during the goal elaboration process. In addition, as the development cycle progresses,

changes to the design can be checked against the critical assumptions to determine if those

changes impact the safety subgoals. Finally, it is important to document when subgoals

62

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

are more restrictive than the parent goal, as well as which subgoals satisfy a parent goal

redundantly, to allow these decisions to be taken into account when future revisions to the

requirements specification are made.

The basic layout of an ICPA table is shown in Figure 4.7. The first major section contains

the system safety goal defined in the basic KAOS format [18]. The goal definition includes

the goal name, an informal definition of the goal, and the formal definition in first order

temporal logic.

The second major section includes fields for recording the state variables in the system

safety goal, the indirect control paths for those variables, and the indirect control relation-

ships along those paths. Indirect control paths include the subsystems that indirectly control

the parent goal variable and the variables those subsystems control directly. Indirect control

relationships are formal propositional logic expressions that relate the subsystem variables

to the parent goal variables. Each relationship is numbered.

The third major section records the goal coverage strategy chosen for a particular goal.

This includes fields for the goal assignment and goal scope. Goal coverage strategies are

covered in more detail in Section 4.5.

The fourth major section contains the the indirect control relationships and restriction

tactics used to define them. The goal relationships and restriction tactics listed here become

critical assumptions of the subgoals. These critical assumptions, combined with the derived

subgoals, form the decomposition of the parent goal.

The final section lists the subgoals themselves, using the same format as the parent goal

in the first section.

63

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

4.4 ICPA procedure

The other primary purpose of ICPA is to guide safety goal elaboration in a systematic way

that attempts to uncover all hidden dependencies related to the state variables in the parent

goal.

For functional requirements, the purpose of goal elaboration is usually creation of be-

havior. Functional goal elaboration is used to develop a system design that performs the

required actions. In contrast, the aim of safety goal elaboration is usually restriction. As

such, goal elaboration is used to to identify which system components that may affect the

system safety goal, and identify subgoals for some of those components to prevent the sys-

tem from entering a hazardous state. In some situations new components are required in

order to satisfy the system safety goal. However, in most situations safety goal elabora-

tion occurs once a functional decomposition has been established, and is about constraint,

rather than creation. A process for functional goal elaboration may entail brainstorming

about types of components that can be included to perform the required task, whereas a

systematic process for safety goal elaboration requires directed examination of all subsys-

tems that may influence the behavior of state variables in the system safety goal.

In addition, the dependencies among the state variables produced by the indirect control

sources and the state variables contained in the parent goal must be formally defined. These

dependencies serve as the starting point for applying tactics for pattern-based goal elabora-

tion [19][20] and resolving unrealizable goals [46][47]. In order to ensure the parent goal

is satisfied by the derived tactics, it is important to uncover all dependencies in the system.

This becomes more difficult to do as the system design gets more complex. Although a

directed search may not guarantee all such dependencies are uncovered, it may uncover

more dependencies than an undirected search.

The ICPA approach to safety goal elaboration is fairly straightforward. First, indirect

64

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

control sources are identified for each state variable in the parent goal, using the system’s

functional decomposition and subsystem inputs and outputs. Next, the relationships among

the state variables in the parent goal and the state variables controlled by agents in the

indirect control path are formally defined. The following sections explain these steps in

greater detail.

4.4.1 Identifying indirect control sources

The first step in ICPA is identifying the direct and indirect control sources of state variables

in the formally specified parent goal. To do this, the functional decomposition, including

communication paths between components, is reviewed. Depending on the stage of system

development, this decomposition may be documented in the functional requirements or the

design specification. A graphical illustration of the indirect control paths can be useful

for this this step, such as the one shown in Figure 4.5. However, in complex systems a

complete diagram may be difficult to construct. In these systems, other documentation of

the system design, such as input/output lists for each subsystem, may be used.

The first stop along the indirect control path is identifying the subsystems or components

that directly produce the state variable in the system. If the state variable is a command to

an actuator, then the source of direct control is usually some software agent. In Figure 4.5,

the subsystem DriveConroller directly controls the signal DriveCommand to the Drive ac-

tuator. In some situations, an environmental agent may have direct control of actuator

commands. In the same elevator, the Passenger agent directly controls the CarButton f and

DoorButton f ,d actuators. If the state variable in the parent goal is a sensed value in the sys-

tem, then there is no source of direct control. The nearest sources of indirect control are the

actuators that interact with the environment to change the system state variable detected by

the sensor, and those are directly controlled by set points. Once the source of direct control

65

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

Goal: Maintain[DoorClosedOrElevatorStopped]

InformalDef: At all times the door shall be closed or the elevator speed

shall be STOPPED

FormalDef: ∀ dc: DoorClosed, es: ElevatorSpeed

q (dc ∨ IsStopped(es))

Figure 4.8. Goal restricting door position and elevator movement in a

distributed elevator system

is known, input sources for that agent are examined, and the process repeats.

Consider the indirect control paths for the distributed elevator system shown in Fig-

ure 4.5. A safety goal that restricts state variables DoorClosed and ElevatorSpeed is shown

in Figure 4.8. In the system these state variables are directly controlled by motion detection

sensors. However, each is indirectly controlled by agents in the system.

The control path of ElevatorSpeed includes one branch, which contains Drive, Drive-

Controller, DispatchController, CarButtonController f , and HallButtonController f ,d. Drive

is an actuator that controls the physical elevator speed, which is then detected by the eleva-

tor speed sensor to generate the ElevatorSpeed state variable. DriveController is a software

agent that commands the Drive to a certain speed. DispatchController is another agent that

tells DriveController the desired destination of the elevator. CarButtonController f and

HallButtonController f ,d are software agents that tell DispatchController when a button is

pressed to request a specific destination.

The control path of DoorClosed is branched. The first branch contains DoorMotor,

DoorMotorController, and DispatchController. The second branch is the Passenger. Door-

Motor is an actuator that controls door position, which includes the closed position de-

tected by a sensor to generate the DoorClosed state variable. DoorMotorController is

66

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

a software agent that commands the DoorMotor to a certain speed. DispatchController

is another agent that tells DoorMotorController the desired destination of the elevator.

CarButtonController f and HallButtonController f ,d are software agents that tell Dispatch-

Controller when a button is pressed to request a specific destination. Passenger is an en-

vironmental agent who interacts with the elevator control system. Passenger can inhibit

DoorClosed from being TRUE by physically blocking the doors.

Similar to fault paths in FTA, indirect control paths in ICPA may have many branches.

That is, each source along an indirect control path of a parent goal variable may have

multiple sub-paths of control. Likewise, one particular path may include many sources.

Depending on the system design, the number of indirect control sources may be quite

numerous or circular. To keep this analysis manageable, the second and third steps of the

ICPA, described in Sections 4.4.2 and 4.4.3 below, can be performed at each level in the

indirect control path. If a set of subgoals for that level is found to satisfy the parent goal,

then further analysis of the indirect control path is only necessary for identifying redundant

subgoal sets. If not, then the process is repeated at the next level along the indirect control

path, or additional components may be needed to satisfy the goal.

4.4.2 Defining indirect control relationships

Once indirect control sources have been identified, their relationship to the original vari-

able must be defined in such a way that the general agent-based elaboration tactic Intro-

duce Accuracy/Actuation Goal, and Split Lack of Monitorability/Controllability by Chain-

ing from [46] can be applied. As described in Section 4.1.2 if these relationships can be

defined in the form (o = c) or (p⇔ q), then the goal G can be defined as G{o|c} or G{p|q}.

In other words, goals can be defined if the dependencies between state variables define

functions that relate the variable in the parent goal to the indirect control variables. If the

67

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

parent goal is of the form (P⇒ Q) and a relationship can be defined such that (P⇒ M), a

subgoal could be defined (M ⇒ Q). In this situation, the entailment in the original goal is

achieved by a sequence of entailments in the subgoals.

For paths with a single branch, the indirect control relationship is defined between state

variables controlled by each pair of agents along the path and state variables contained

in the parent goal. For paths with multiple branches, the indirect control relationship is

defined among state variables controlled by agents at a given level in the indirect control

path and state variables contained in the parent goal.

Indirect control relationships for the first indirect control path level of variables Door-

Closed and ElevatorSpeed in the goal Maintain[DoorClosedOrElevatorStopped] from Fig-

ure 4.8 are presented in Tables 4.1 and 4.2. The indirect control path for ElevatorSpeed has

one branch. Because ElevatorSpeed is a sensed value that is not directly changed by any

agent in the system, the closest indirect control source, Drive, is examined first. The rela-

tionship between sensed value ElevatorSpeed and the actuated value DriveSpeed indicates

that when the drive is stopped the elevator will be stopped also:

IsStopped(DriveSpeed)⇔ IsStopped(ElevatorSpeed) (4.1)

DriveSpeed, however, is not directly controlled by any software agent in the system,

either. Instead, it is indirectly controlled by DriveController using the actuation signal

DriveCommand. A drive that is commanded to stop will do so, but only after some delay:

ln<MaxStopDelay(DriveCommand = ‘STOP’)⇒ IsStopped(DriveSpeed) (4.2)

(l¬IsStopped(DriveSpeed) ∧l�<MinStopDelay@(DriveCommand = ‘STOP’))

⇒ ¬IsStopped(DriveSpeed)

(4.3)

68

C
H

A
P

T
E

R
4
.

IN
D

IR
E

C
T

C
O

N
T

R
O

L
P
A

T
H

A
N

A
L

Y
S

IS

Table 4.1. Indirect control paths for goal Maintain[DoorClosedOrElevatorStopped] (1 of 2)

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships
dc DoorController,

DoorMotor
dmc: DoorMotorCommand
maxcd: MaxCloseDelay
mincd: MinCloseDelay
maxod: MaxOpenDelay
minod: MinOpenDelay
dms: DoorMotorSpeed
ssd: SingleStateDuration

#

04

07

S0 ⊫ dc dmc = `OPEN’
% In initial state, door is OPEN and commanded OPEN
(dc (dmc = `CLOSE’)) dc
% Closed door that is commanded CLOSE remains closed

(dc (dmc = `OPEN’)) dc
% Unclosed door commanded OPEN remains unclosed

01

05

06

(dc < minod @(dmc = `OPEN’) dc
% Closed door that is closed and whose command switched to
OPEN from CLOSE within duration minod will be closed

 < maxcd (db (dmc = `CLOSE’)) dc
% Unblocked door commanded CLOSE for maxcd will be closed

 < maxod (dmc = `OPEN’) dc
% Door commanded OPEN for maxod will be unclosed

(dc < mincd @(dmc = `CLOSE’) dc
% Unclosed door whose command switched to CLOSE from
% OPEN within mincd will not be closed

02

03

System Safety Goal
Goal: Maintain[DoorClosedOrElevatorStopped]
InformalDef: At all times the door shall be closed or the elevator speed shall be STOPPED.
FormalDef: dc: DoorClosed, es: ElevatorSpeed

 (dc IsStopped(es))

maxcd > mincd >> ssd % CLOSE delays are greater than state
maxod > minod >> ssd % OPEN delays are greater than state

08
09

6
9

C
H

A
P

T
E

R
4
.

IN
D

IR
E

C
T

C
O

N
T

R
O

L
P
A

T
H

A
N

A
L

Y
S

IS

Table 4.2. Indirect control paths for goal Maintain[DoorClosedOrElevatorStopped] (2 of 2)

IsStopped(drs) IsStopped(es)
% If the drive is stopped, the elevator is stopped, and vice versa

DriveController,
Drive

drc: DriveCommand
maxsd: MaxStopDelay
minsd: MinStopDelay
maxgd: MaxGoDelay
mingd: MinGoDelay
drs: DriveSpeed
ssd: SingleStateDuration

es S0 ⊫ IsStopped(es) drc = `STOP’
% In initial state, elevator stopped and drive commanded STOP

(IsStopped(drs) < mingd @(drc = `GO’) IsStopped(drs)
% Stopped drive whose command switched to GO from STOP
% within duration mingd remains stopped

 < maxgd (drc = `GO’) IsStopped(drs)
% Drive commanded GO for maxgd will be unstopped

 < maxsd(drc = `STOP’) IsStopped(drs)
% Drive commanded STOP for maxsd will be stopped

(IsStopped(drs) (drc = `STOP’)) IsStopped(drs)
% Stopped drive commanded STOP remains stopped

(IsStopped(drs) < minsd @(drc = `STOP’)
IsStopped(drs)

% Unstopped drive whose command switched to STOP from GO
% within duration minsd remains unstopped
(IsStopped(drs) (drc = `GO’)) IsStopped(drs)
% Unstopped drive commanded GO remains unstopped

maxsd > minsd >> ssd % STOP delays are greater than state
maxgd > mingd >> ssd % GO delays are greater than state

14

15

12

13

16

17

18

19

20
21

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #
db dmc = `OPEN’

% if the door is blocked, the door shall be commanded OPEN
db dc

% if the door is blocked, the door shall not be closed

Passenger db: DoorBlocked 10

11

dc

7
0

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

Likewise, a drive that is commanded to go will do so, but only after some delay:

ln<MaxGoDelay(DriveCommand = ‘GO’)⇒ ¬IsS topped(DriveSpeed) (4.4)

(lIsStopped(DriveSpeed) ∧l�<MinGoDelay@(DriveCommand = ‘GO’))

⇒ IsStopped(DriveSpeed)

(4.5)

Variables with multiple branches require relationship among branches to be defined as

well. Sometimes, the branches represent independent control paths (i.e., one path traversed

at a time). In these situations each branch can be evaluated as if it were a single branch

path. Sometimes, however, the control paths in multiple branches are interdependent. In

the distributed elevator system of Figure 4.5, the door controller commanding the door

motor to close the doors should eventually set the DoorClosed sensor to ‘TRUE’. However,

objects or passengers blocking the doors can physically prevent the door from being closed,

as represented by the following relationship:

lDoorBlocked ⇒ ¬DoorClosed (4.6)

The relationship between blocking agents and the door motor is also constrained by a

related safety goal that requires a door reversal if the door is blocked.

lDoorBlocked ⇒ DoorMotorCommand = ‘OPEN’ (4.7)

As a design choice for this system, this safety goal is given priority over the safety goal

Maintain[DoorClosedOrElevatorStopped]. In other words, if the elevator enters a state

where the door is blocked and the elevator is moving, the preferred action is to open the

doors.

71

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

As a result, a door that is commanded to close will do so after some delay, provided no

agents or objects are blocking the door:

ln<MaxCloseDelay(¬DoorBlocked ∧ (DoorMotorCommand = ‘CLOSE’))

⇒ DoorClosed

(4.8)

(l¬DoorClosed ∧l�<MinCloseDelay@(DoorMotorCommand = ‘CLOSE’))

⇒ ¬DoorClosed

(4.9)

However, a door that is commanded to open will no longer be closed after some delay,

whether or not any agent or object is blocking the door:

ln<MaxOpenDelay(DoorMotorCommand = ‘OPEN’)

⇒ ¬DoorClosed

(4.10)

(lDoorClosed ∧l�<MinOpenDelay@(DoorMotorCommand = ‘OPEN’))

⇒ DoorClosed

(4.11)

4.4.3 Applying elaboration tactics and goal coverage strategies

The next step in ICPA is to use the indirect control relationships defined in the previous step

to identify subgoals for subsystems that satisfy the parent goal. This is done by application

of the goal realizability tactics defined by Letier and van Lamsweerde [46][47], and by

choosing and applying a particular goal coverage strategy. Goal coverage strategies are

discussed in more detail in Section 4.5. An overview of the concept of goal realizability

can be found in Section 2.3.2. That section provides descriptions of two specific goal

realizability tactics most-commonly used in ICPA: Introduce Accuracy/Actuation Goal, and

Split Lack of Monitorability/Controllability by Chaining. Further detail on those and other

72

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

tactics can be found in [46][47].

As mentioned in Section 4.4.1, a state variable in a system safety goal may be large

in breadth (number of branches) or depth (number of stops along each branch). ICPA

approaches goal coverage by starting from the indirect control level nearest the parent goal

variable, and working outward along the branches. When a particular level of indirect

control is branched, sources on all branches must be included in the examination. If a

goal decomposition that satisfies the parent goal can be obtained, further analysis along the

control path can be halted. However, if redundant goal coverage is required, the analysis

should continue outward along the branches from the parent goal variable.

Table 4.3 records the goal coverage strategy and goal elaboration for the indirect control

paths of the goal Maintain[DoorClosedOrElevatorStopped] from Tables 4.1 and 4.2. The

goal coverage strategy used to satisfy the parent goal includes a goal assignment of shared

responsibility between DoorController and DriveController, and a restrictive goal scope

(worst-case actuation delays are exploited to ensure the goal is satisfied). Further details

about the goal coverage strategy used in this example can be found in Section 4.5.

The goal elaboration section of the table includes the specific goal realizability tactics

and indirect control relationships used to determine the missing subgoals. These indirect

control relationships become critical assumptions that must be ensured in the system, in

addition to the newly defined subgoals, in order to satisfy the parent goal. For the goal

Maintain[DoorClosedOrElevatorStopped], the first critical assumption used in goal elab-

oration is the specification of the initial system state. That allows the goal, which requires

control of two different actuators, to to be made realizable by applying the split lack of

monitorability/controllability by case tactic shown in Figure 4.3. The first case is the initial

state, which is defined by critical assumptions (1) and (10). The second case includes all

subsequent states. In this second case, separate goals restrict control actions performed on

73

C
H

A
P

T
E

R
4
.

IN
D

IR
E

C
T

C
O

N
T

R
O

L
P
A

T
H

A
N

A
L

Y
S

IS

Table 4.3. Goal Elaboration for goal Maintain[DoorClosedOrElevatorStopped]

Goal Elaboration
 (dc IsStopped(es)) Indirect Control Relationships

dc IsStopped(es)) IsStopped(es) dc) 01, 12 – Goal satisfied in initial state,
 Split lack of monitorability/control by case

IsStopped(es) dc
 (IsStopped(es) (drc = `GO’)) db)) (dmc = `CLOSE’) 07, 09 – Minimum delay to open door

10 – Door reversal safety goal
13 – Introduce accuracy goal tactic
02 – Remain closed w/ CLOSE command
19, 21 – Minimum delay to move elevator

dc IsStopped(es)
dc dmc = `OPEN’)) (drc = `STOP’) 07, 09 – Minimum delay to open door

13 – Introduce actuation goal tactic
14 – Remain stopped w/ STOP command
19, 21 – Minimum delay to move elevator

System Safety Goal
Goal: Maintain[DoorClosedOrElevatorStopped]
InformalDef: At all times the door shall be closed or the elevator speed shall be STOPPED.
FormalDef: dc: DoorClosed, es: ElevatorSpeed

 (dc IsStopped(es))

Shared Responsibility (DoorController & DriveController)
Goal Coverage Strategy
 Goal Assignment

Restrictive (Assumes worst-case actuator response times; real response may be slower.) Goal Scope

7
4

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

DriveController and control actions performed on DoorController. This elaboration also

relies on actuation delays for both DoorMotor and Drive being much greater than a single

state.

Depending on the tactic used in goal elaboration, the goal elaboration field of an ICPA

may contain a proof showing how the subgoals and critical assumptions entail the parent

goal. In particular, the goal realizability tactics Introduce Accuracy/Actuation Goal, and

Split Lack of Monitorability/Controllability by Chaining from [46][47] are amenable to this

approach.

If other tactics are used, particularly when the goal assignment requires coordinated con-

trol, the goal elaboration field may not contain a formal proof. ICPA uses formal specifica-

tion of system goals to guide goal elaboration, but the intent of formal specification is not

necessarily to provide a formal proof of all subgoal decompositions. Rather, the primary

intent is to ensure that the safety goals and critical assumptions are precisely defined and

documented. The goal elaboration field should contain a list of the critical assumptions and

elaboration tactics used to define the subgoals. The parent goals could be verified against

the subgoals and indirect control relationships with model-checking [17], or monitored at

run-time along with the subgoals to detect when they become invalid.

4.4.4 Iteration and completion

Like the system development process in general, the ICPA process is not purely linear. The

products of previous stages are revisited during later stages and modified as necessary. For

example, a goal coverage strategy may be chosen or changed when goal realizability tactics

are applied.

Defining indirect control sources and the relationships among them is somewhat open-

ended. Each state variable in the parent goal has some indirect control path, with one or

75

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

more branches and one or more stops along the path. At a minimum, all indirect control

sources at the stops closest to the parent goal along all branches should be analyzed. For

goal redundancy, more stops along the path may be included in the analysis.

Indirect control relationships are gleaned from examination of the functional require-

ments, the control architecture, the design specification, and the implementation. There-

fore, the state of these artifacts during the ICPA influences how many indirect control rela-

tionships are defined. In general, the intent is to identify all dependencies among the state

variables identified as indirect control sources or included in the parent goal. As the de-

velopment cycle progresses, newly defined dependencies are added to the table of indirect

control relationships.

4.5 Goal coverage strategies

In any system design, there are often alternative subgoal decompositions that will satisfy

a given parent goal. Subgoals may or may not be required for every indirect control agent

in order to satisfy the parent goal. The system safety goal may be satisfied by one agent

in the system, or may require coordination among agents. The subgoals may exactly meet

the system safety goal, or may be more restrictive of functional behavior. Sometimes,

redundant goal coverage may be desirable.

A goal coverage strategy is a plan for allocating subgoals to ensure that a high-level

goal is met. Each goal coverage strategy is defined by goal assignment and goal scope. In

this section, different classifications of goal assignment and goal scope are defined. Sec-

tion 4.5.1 describes single responsibility, redundant responsibility, and shared responsibil-

ity goal assignments. In Section 4.5.2, nonrestrictive and restrictive goal scope are defined.

In both sections, subgoal patterns for common hazard reduction techniques are also pre-

sented.

76

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

Goal: Maintain[ElevatorBelowHoistwayUpperLimit]

InformalDef: The top of the elevator shall never exceed the upper limit

of the hoistway.

FormalDef: ∀ etp: ElevatorTopPosition, hul: HoistwayUpperLimit

q (etp ≤ hul)

Figure 4.9. Goal restricting elevator position in the hoistway

4.5.1 Goal assignment

Goal assignment defines which indirect control sources have subgoals and how those sub-

goals relate to each other. It may be driven by physical limitations of the system (e.g.,

actuation delays described in Section 4.4.2). It may also be influenced by potential loss

of monitorability and controllability by agents in the system. The three categories of goal

assignment presented in this section are single responsibility, redundant responsibility, and

shared responsibility.

Single responsibility. In the base case for general goal elaboration, the safety goal is met

by assigning one or more subgoals to a single agent. For system safety, a single responsibil-

ity goal assignment facilitates isolation of safety-critical behaviors from other non-critical

components. It also allows more rigorous (and expensive) development processes to be

applied to those isolated, fewer agents. The agent responsible for meeting the goal may

also be responsible for other, non-critical functionality. Alternately, an agent’s behaviors

may be limited to simply satisfying the safety goal (e.g., a safety monitor).

Consider a safety goal in a distributed elevator system that restricts elevator position

relative to the end of the hoistway, as shown in Figure 4.9. In the elevator control system

depicted in Figure 4.5, the goal could be met by requiring the drive controller to stop the

elevator before the hoistway limit is reached, as shown in Figure 4.10.

77

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

Goal: Achieve[StopBeforeHoistwayUpperLimit]

InformalDef: If the elevator nears the upper hoistway limit,

then the drive shall be stopped.

FormalDef: ∀ etp: ElevatorTopPosition, hul: HoistwayUpperLimit,

msd: MaxStoppingDistance, drc: DriveCommand

l(etp ≥ (hul - msd))⇒ drc = ‘STOP’)

Figure 4.10. Goal restricting elevator drive movement in the hoistway

Single responsibility requires an agent or group of agents to monitor or control all state

variables in the defined subgoals.

Redundant responsibility. A single responsibility strategy may be desirable for reduc-

ing development costs, but it also provides a single point of failure for the safety goal.

Functional redundancy is a common strategy for fault tolerance in which different agents

perform the same set of required functions [50]. This redundant functionality may be iden-

tical, such as duplicate networks for tolerating dropped messages, or different, such as a

backup that provides a minimal set of functions when the primary fails.

Goal redundancy is achieved by assigning primary responsibility to one group of agents;

secondary, to another group. If at least one group of agents satisfy their subgoals, the parent

goal will also be satisfied. Redundant subgoals may have the same goal scope, or may have

varying degrees of restriction compared to the original system safety goal. If subgoals vary

in restriction, agents with primary responsibility have the most restrictive subgoals and

agents with secondary responsibility have less restrictive subgoals (i.e., normal behavior

has a greater safety margin than emergency backup behavior). Goal scope is discussed in

Section 4.5.2.

In the elevator system, drive controller reliability may be too low or too unmeasurable to

ensure the safety goal is met, particularly for complex software control. Physical compo-

78

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

Goal: Achieve[EmergencyStopBeforeHoistwayUpperLimit]

InformalDef: If the elevator nears the upper hoistway limit,

then the emergency brake shall be applied.

FormalDef: ∀ etp: ElevatorTopPosition, hul: HoistwayUpperLimit,

mebd: MaxEmergencyBrakingDistance, eb: EmergencyBrake

l(etp ≥ (hul - mebd))⇒ eb = ‘APPLIED’)

Figure 4.11. Goal requiring emergency braking to avoid exceeding the

hoistway limit

nent reliability, such as a physical emergency brake trigger, is better known. A goal for an

emergency brake agent in the system is shown in Figure 4.11.

However, relying on the emergency brake alone to meet the safety goal is also undesir-

able because of equipment wear and harm to passengers with emergency braking stops. By

assigning primary responsibility to the elevator drive controller and secondary responsibil-

ity to the emergency brake, the safety goal may be more reliably met while largely avoiding

application of the physical emergency brake.

Shared responsibility. Sometimes a safety goal may require coordination among agents

if physical system dynamics limit variable controllability and observability. In shared re-

sponsibility, two or more agents have subgoals that must be met in order to meet the parent

goal.

The goal Maintain[DoorClosedOrElevatorStopped] defined in Section 4.4.2 cannot be

assigned to the drive controller or door controller alone because of physical actuation delays

and the inability to monitor and control in the same state. In order to achieve the goal, which

prohibits states in which the door is open and the elevator is moving, a single agent must

have the ability to control both the door motor and the drive. If an agent can only monitor

79

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

Goal: Achieve[CloseDoorWhenElevatorMoving]

InformalDef: If the elevator is moving,

then the door shall be commanded to ‘CLOSE’.

FormalDef: ∀ dmc: DoorMotorCommand, es: ElevatorSpeed,

db: DoorBlocked

(l¬IsStopped(es) ∧ l¬ db)⇒ (dmc = ‘CLOSE’)

Figure 4.12. Goal restricting elevator door movement

the behavior of one actuator while controlling the other, the goal cannot be satisfied for

two reasons. First, monitored values are only known for the previous state. Any goal that

requires a value to be monitored in the same state in which the control action occurs is not

realizable. Second, control actions by the agent are subject to actuator delays.

Suppose the door controller alone is given responsibility for the goal with the subgoal

defined in Figure 4.12. Operationalization of this goal prohibits opening the door while the

elevator is in motion and prescribes closing the door if the elevator moves, except when a

passenger is blocking the doors. If the drive controller activates the drive motor while the

doors are already open, the safety goal will be violated during the actuation delay required

to close the doors.

Now, suppose another subgoal is defined to prevent the drive controller from moving the

elevator while the doors are open, as shown in Figure 4.13. Operationalization of this goal

prohibits moving the drive while the doors are open and prescribes stopping the drive if the

elevator moves.

Even though the behavior of both controllers is restricted, the parent safety goal may

be violated when the elevator is stopped and the doors are closed, if the door controller

attempts to open the doors at the same time as the drive controller attempts to move the

elevator. In this situation, it is important to monitor both the sensed value of the parent goal

80

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

Goal: Achieve[StopElevatorWhenDoorOpen]

InformalDef: If the door is open,

then the drive shall be commanded to ‘STOP’.

FormalDef: ∀ drc: DriveCommand, dc: DoorClosed

(l¬dc)⇒ (drc = ‘STOP’)

Figure 4.13. Goal restricting elevator drive movement

and its indirect control actuation source.

Table 4.4 shows the subgoals for the door controller and drive controller defined during

the ICPA of the parent goal Maintain[DriveStoppedWhenOverweight]. The door controller

monitors both elevator motion and drive commands. The drive controller monitors both the

door closed sensor and the drive actuator commands. If a) the initial state of the system is

known and does does not violate the system safety goal, b) monitored values are delayed

one state, and c) the physical actuation delays are much greater than a single state, then

each controller will be able to cancel its own actuation command if it observes the other

controller commanding actuation, before the doors or drive have actually begun to move.

Sometimes physical actuation and network delays are insufficient for ensuring the goal

is met. An interlock [50] is a common solution for enforcing sequencing of coordinated

actions in systems. Suppose a safety goal coordinating two actions takes the form q (A ∨

B)), where A is indirectly controlled by agent agA and B, by agB. The basic patterns of the

primary subgoals are:

l¬B⇒ A (4.12)

l¬A⇒ B (4.13)

Before negating A, agA must set a variable LA and check that agB’s interlock variable

LB is not set. This is similar to a mutex or semaphore [24] used in software programs to

81

C
H

A
P

T
E

R
4
.

IN
D

IR
E

C
T

C
O

N
T

R
O

L
P
A

T
H

A
N

A
L

Y
S

IS

Table 4.4. Subgoals of Maintain[DoorClosedOrElevatorStopped] for DoorController and DriveCon

troller]

Subsystem Safety Goals
Subsystem: DoorController
Controls: DoorMotorCommand
Observes: ElevatorSpeed, DriveCommand, DoorBlocked
Goal: Achieve[CloseDoorWhenElevatorMovingOrMoved]
InformalDef: If the door is not blocked and the elevator a) is moving or b) has been commanded to move,

then the door shall be commanded to CLOSE.
 FormalDef: drc: DriveCommand, dmc: DoorMotorCommand, es: ElevatorSpeed

(IsStopped(es) drc = `GO’)) db)) (dmc = `CLOSE’)

Subsystem: DriveController
Controls: DriveCommand
Observes: DoorClosed, DoorMotorCommand
Goal: Achieve[StopElevatorWhenDoorOpenOrOpened]
InformalDef: If the doors a) are not closed or b) have been commanded open, then the drive shall be commanded to STOP.
 FormalDef: drc: DriveCommand, dmc: DoorMotorCommand, dc: DoorClosed

dc dmc = `OPEN’)) (drc = `STOP’)

System Safety Goal
Goal: Maintain[DoorClosedOrElevatorStopped]
InformalDef: At all times the door shall be closed or the elevator speed shall be STOPPED.
FormalDef: dc: DoorClosed, es: ElevatorSpeed

 (dc IsStopped(es))

8
2

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

coordinate the use of shared resources. Basic patterns of subgoals using an interlock are:

l(¬LA ∨ LB)⇒ A (4.14)

l(¬LB ∨ LA)⇒ B (4.15)

Now suppose A and B have actuation delays, where A1 causes A to be set after some

delay, and A2 causes A to be unset after some delay. The indirect control relationships for

setting and unsetting A are defined as:

ln<MaxDelayAA1 ⇒ A (4.16)

(l¬A ∧l�<MinDelayA@A1)⇒ ¬A (4.17)

ln<MaxDelay¬AA2 ⇒ ¬A (4.18)

(lA ∧l�<MinDelay¬A@A2)⇒ A (4.19)

q¬(A1 ∧ A2) (4.20)

If all variables shared between agents also have communication delays, the new subgoals

for agA are:

l�<MinComDelay(¬B ∨ B2)⇒ A1 ∧ ¬A2 (4.21)

l�<MinComDelay(¬LA ∨ LB)⇒ A1 ∧ ¬A2 (4.22)

q(MinComDelay < MaxDelay¬A) (4.23)

The subgoals for agB are analogous.

A lockout coordinates enforcement of safety goals by prohibiting an action from occur-

83

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

ring [50]. For example, a bus guardian [33] is used to prevent faulty nodes on a network

from interfering with communication by others. In time-triggered networks a bus guardian

will enable transmission access only during the node’s allotted time slot [81]. Suppose a

safety goal takes the form l�<T (D⇒ ¬C), where C is indirectly controlled by agent agA

and D is observed by agent agA. The control relationship of C by agA is defined by:

lA⇒ C (4.24)

l¬A⇒ ¬C (4.25)

and the safety goal for agent agA is:

l�<T D⇒ ¬A (4.26)

If a lockout agent agB is added to the system to prevent agent agA from violating the

safety goal, the new shared indirect control relationship would be:

l(A ∧ B)⇒ C (4.27)

l(¬A ∨ ¬B)⇒ ¬C (4.28)

The safety goal for agents agA and agB would be:

l�<T D⇒ ¬A (4.29)

l�<T D⇒ ¬B (4.30)

84

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

4.5.2 Goal scope

Goal scope defines how closely the safety subgoals meet the system safety goal. It may

be possible for agents to meet the original safety goal without restriction. However, it may

sometimes be necessary or desirable to assign subgoals that are more restrictive than the

original safety goal. This section identifies two categories of goal scope: nonrestrictive and

restrictive.

Nonrestrictive. Nonrestrictive subgoals meet the parent goal with no additional limita-

tions on functional behavior, other than what is defined in the parent goal. This is the base

case where the system-level goal is fully realizable as defined. Subgoals Achieve [StopBe-

foreHoistwayUpperLimit] and Achieve [EmergencyStopBeforeHoistwayUpperLimit] from

Section 4.5.1 are nonrestrictive if both the drive and emergency brake dynamics ensure the

elevator will stop at the very end of the hoistway when the emergency brake is triggered,

allowing full use of the hoistway.

Restrictive. In most systems, however, some amount of restriction is required to take into

account uncertainty in system behaviors. A restrictive subgoal meets the parent goal but

places additional limitations on system functionality. The most common restrictive subgoal

is achieved with a safety margin, a hazard reduction technique for handling variability in

failure rates of components [50]. Restrictive subgoals, which are usually less complex

and easier to implement correctly and analyze than the parent goal, may be necessary if

variables are not controllable, or if control delays are great.

In subgoals Achieve [StopBeforeHoistwayUpperLimit] and Achieve [EmergencyStop-

BeforeHoistwayUpperLimit], MaxStoppingDistance and MaxEmergencyBrakingDistance

could be increased so that the the elevator stops some distance before the hoistway limit,

rather than at the end of the hoistway limit. The elevator would have less use of the full

85

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

hoistway, but the safety goal could be satisfied in the presence of jitter in Drive and Emer-

gencyBrake actuation. In addition, the safety margin for the drive controller, the primary

redundant subgoal, is usually designed to be even more restrictive than the safety margin

for the emergency brake, to prevent the emergency brake from being activated frequently.

If a safety goal has the form q (A ≤ B), then a subgoal with a safety margin C would be:

q(A ≤ (B −C)) (4.31)

In the goal elaboration of Maintain[DoorClosedOrElevatorStopped] shown in Table 4.3,

the subgoals are more restrictive than the parent goal because they rely on worst-case actu-

ation delays. Assume that DoorController and DriveController simultaneously issue com-

mands to DoorMotor and Drive actuators respectively. If, in the following state, a controller

sees that the combined commands could violate the goal, it can cancel its own actuation

command before the actuation occurs. Technically, the safety goal would not have been

violated until both actuation delays had finished, but the subgoals cancel the commands

much earlier. This is an example of a type of safety margin used to restrict behavior.

OR reductions [66] are another common application of restriction. A goal of the form

q(A ∨ B) is always satisfied if subgoal A is always satisfied. A is more restrictive than the

parent goal because it excludes some functional behaviors that are non-hazardous: when A

is false and B is true. OR reductions are common when one or more state variables in the

parent goal are not observable or controllable by any agent in the system.

Restriction, though necessary, has its own limits (e.g., if the restrictions make the final

product unusable). The goalMaintain[ElevatorBelowHoistwayUpperLimit] can always be

met if the elevator is always stopped, but this trivial solution prevents functionality required

in an elevator.

86

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

4.5.3 Controllability, observability, and alternative/restrictive goals

Choosing which variables to monitor and which to control to satisfy the parent goal depends

on what sources of actuation and sensing are available, what software agent variables can

be shared, and the general pattern of the goal. It may be possible to represent a particular

goal with several different, but logically equivalent, goal patterns. The best representation is

one that more-closely represents the intended observability and control relationships of the

goal. For example, a goal pattern that uses a logical implication, such as (A⇒ B), is better

for representing a goal that restricts the controlled variable B based on the observed variable

A, whereas the logically equivalent goal pattern q(¬A ∨ B) is a better for representing a

goal that restricts two variables controlled by the same agent.

Figure 2.5 lists all of the temporal logic operators that may be used the formal definition

of the goals, subgoals, and indirect control relationships. However, some of these operators

are used more often than others. In order for a goal to be realizable, its observed state

variables must be observed at least one state prior to its controlled state variables.

In general it is most useful to define the goal such that controlled state variables are

represented in the present state, and observed state variables are represented in some prior

state. For example, the l, ln<T , and l�<T operators are often used to represent values

that are observed one state prior, for some duration T prior, and at least once in duration T

prior to control of another state variable, respectively. Operators n and � may also be used

to represent observed variables, but are somewhat more difficult to operationalize because

their duration of observation is unbounded. Variables that are intended to be controlled are

usually represented in the present state, but may also be represented by operators m and q.

Goals that contain ♦ are not realizable because they refer to some unbounded time in the

future [46].

Table 4.5 shows the controllability and observability requirements for some common

87

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

Table 4.5. Goal controllability and observability requirements for realiz

ability of goals of the form A⇒ B

A B A

ControllablePattern Observable

 A

Alternative Goal

 A

Restrictive

A B
 BB

B A
A, B

A B A A
 AA B

 BB
B A
A, B

 B

A B A A
A B

 BB
B A
A, B

 B

B A

B A

Yes

No

No
No

No

Yes
Yes
Yes

Yes
Yes
Yes

Yes

Yes
Yes
No

entailment goals. When the goal takes the form A ⇒ B, both variables in the goal are in

the same state. This means that both variables must be controllable by the same agent in

order for that agent to satisfy the goal. This goal form is equivalent to ¬A ∨ B. If only

one variable is controllable, an OR reduction is formed on the goal to produce an alternate

restrictive, but realizable goal.

When a goal takes the form lA ⇒ B, then the goal is realizable without restriction

if both A and B are controllable, or if A is observable and B is controllable. Otherwise,

restricted goals are required.

When the goal takes the form A ⇒ lB, then the goal is realizable without restriction

if both A and B are controllable, or if B is observable and A is controllable. In the latter

situation, the alternate goal ¬ lB ⇒ ¬A is not restrictive. Rather, it is an equivalent

88

CHAPTER 4. INDIRECT CONTROL PATH ANALYSIS

representation of the goal expression.

Common goal patterns and their controllability/observability requirements and alterna-

tive goals can be found in Appendix 7.2.

4.6 Conclusion

This chapter proposed the ICPA technique for safety goal elaboration. The concepts of

direct and indirect control were defined with respect to the KAOS goal elaboration frame-

work. In addition, the ICPA format and procedure were explained and illustrated with

examples from a distributed elevator-control system. The chapter also contained a catego-

rization of goal coverage strategies to use in safety goal elaboration, and an explanation of

controllability and observability requirements for goal realizability, including goal patterns

for those requirements and for alternative goals.

89

Chapter 5

Evaluation

5.1 Overview

In this Chapter, the ICPA technique is evaluated on a real semi-autonomous automotive sys-

tem from a commercial automotive research lab. The system safety goals and the subgoals

generated by applying ICPA are monitored at run-time in a simulation-based implemen-

tation of the automotive system in CarSimR© and SimulinkR©. The results show that some

system safety goal violations are detected in the subsystem monitors, but some are not, in-

dicating that the subgoals produced with ICPA only partially compose the parent goals. In

addition, monitoring at both the system and subsystem levels revealed defects in the system

design and implementation and detected hazards that may be imperceptible to the driver.

5.1.1 Motivation

Evaluation of the ICPA technique should answer the following questions:

• Can ICPA be applied to a real system of non-trivial complexity?

• Do the subgoals represent a full or partial decomposition of the system safety goal?

• Are the subgoals produced by ICPA useful?

90

CHAPTER 5. EVALUATION

Any analysis technique related to system safety ultimately must be evaluated in a real

complex safety critical system because the issues related to emergence are too easily ab-

stracted away in a toy example. In a real system, it may not be possible to identify a full

decomposition of a particular system safety goal. Guaranteeing that all emergence has

been removed from the parent goal is not possible. The usefulness of the technique de-

pends on how well it can be applied to a real safety critical system, with a believable level

of complexity.

A working implementation is required, as well, for the same reason. The requirements

and design specification are abstractions of the system that is actually built. The aim is for

those abstractions to reflect the behavior of the true system. In reality, the built system may

not conform to the requirements or design, or the requirements and design themselves may

be incorrect. In order to evaluate the ICPA technique, it must be applied to a real system

design, and the subgoals generated from it must be verified against a system implementa-

tion.

This chapter addresses the following question posed in Chapter 1:

• How do we evaluate the value of a partial decomposition?

5.1.2 Evaluation method

The method used to evaluate the ICPA technique in this thesis is proof of concept by case

study. The application used in the case study was a semi-autonomous automotive vehicle.

At the time the case study was performed, this automotive system was under development

at a commercial automotive research lab. Requirements, design, and a simulation-based

implementation of the automotive system were all partially complete. These materials

were used to perform the following steps:

91

CHAPTER 5. EVALUATION

1. Define the system safety goals.

2. Apply ICPA to the system safety goals to define subgoals for the primary subsystems.

3. Add monitors of the safety goals and subgoals to the system implementation.

4. Monitor the safety goals and subgoals at run-time in a suite of driving scenarios.

Although defining the system safety goals is not officially part of the ICPA process, at

the time of the study there were no requirements for the system under review that were

specifically designated “system safety.” Before ICPA could be applied, these safety goals

were obtained by review of the functional requirements, design, and implementation.

Monitoring of the goals and subgoals during run-time scenarios was used to determine

whether the subgoals represented a full or partial decomposition. In this thesis, a hit occurs

when a goal violation is detected and a corresponding subgoal violation is detected. A false

positive occurs when a subgoal violation is detected but no corresponding goal violation

is detected. A false negative occurs when a goal violation is detected but no correspond-

ing subgoal violations are detected. False negatives give an indication of the degree of

emergence still remaining in the system. False positives either indicate the subgoals do not

partially compose the parent goal, or redundant or restrictive goal coverage strategies are

in use.

Run-time monitoring of safety goals and subgoals, in general, is useful for several pur-

poses. Safety goal monitoring indicates whether or not the system is in a hazardous state.

As noted before, a hazard implies that an accident could eventually occur, but does not nec-

essarily indicate that an accident has occurred [50]. Subgoal monitoring indicates whether

or not the subsystem is conforming to its safety subgoals. In combined monitoring, false

positives can occur when subgoals are more restrictive than the parent goals, or if there

remains some emergent behavior, Y in equation 3.23, that also satisfies the goal. False

92

CHAPTER 5. EVALUATION

negatives can occur when critical assumptions of the subgoals are violated, or when emer-

gent behaviors remain in the system, Xi in equation 3.23, that prevent the subgoals from

satisfying the goal.

5.2 Evaluation system

In Chapter 4, the various aspects of the ICPA technique were illustrated using a distributed

elevator system from a graduate embedded systems course. This chapter presents the results

from applying ICPA to a distributed embedded system under development at a commercial

automotive research lab that is more complex than the distributed elevator example. This

automotive system was being developed to study the use of advanced sensors and sensor

fusion for a suite of semi-autonomous automotive features, not for a specific end-user com-

mercial product. Although the implementation used for this thesis was fully simulated,

subsequent implementations included hardware-in-the-loop and test vehicles.

5.2.1 Semi-autonomous automotive system

ICPA was applied to an automotive vehicle with safety-critical semi-autonomous features

from an automotive research lab. At the time of this work, the system design, implementa-

tion, and simulation environment were functional but incomplete. The vehicle subsystems

included in this study are shown in Figure 5.1. Other vehicle subsystems were excluded

from this study.

The feature subsystems include two active safety features and three driver convenience

features. Collision Avoidance (CA) detects objects in the forward path and stops the vehicle

before a collision occurs. Rear Collision Avoidance (RCA) performs a similar function

when the vehicle is moving in reverse, with the added behavior of detecting and stopping

93

C
H

A
P

T
E

R
5
.

E
V

A
L

U
A

T
IO

N

VehicleAcceleration

Arbiter

Adaptive Cruise
Control (ACC)

Collision
Avoidance (CA)

Driver

AccelerationCommand

BrakePedal

ThrottlePedal Rear Collision
Avoidance (RCA)

Park Assist
(PA)

Lane Change
Assist (LCA)

SteeringWheel
Steering
Request

VehicleSteering

SteeringCommand AccelerationRequest

Human-Machine Interface (HMI)

Powertrain

Engine Controller Steering Controller

ChassisBrake

Steering
Request

Brake Controller

Figure 5.1. Semiautonomous automotive system

9
4

CHAPTER 5. EVALUATION

for cross traffic behind the vehicle. Adaptive Cruise Control (ACC) commands the vehicle

to a speed set by the driver, or to a set following distance behind a slower lead vehicle. Lane

Change Assist (LCA) works in conjunction with ACC to perform a lane change maneuver

when requested by the driver. Park Assist (PA) finds a parking space and parks the vehicle,

also when requested by the driver.

In addition to the feature subsystems, the arbitration logic was included in this study as

another subsystem along the indirect control path of the system safety goals. In the sys-

tem implementation, this arbitration logic was distributed across multiple processors, with

separate arbitration of acceleration and steering. For the purposes of this study, the Arbiter

was treated as a single subsystem, rather than as a distributed subsystem. In other words,

the behavioral decomposition, rather than the structural decomposition was used [41]. The

behaviors of the feature subsystems were also distributed across a different structural de-

composition in a similar manner.

This automotive system is semi-autonomous because subsystems control vehicle mo-

tion under driver supervision. The driver enables and disables the features, and is able to

override feature control via the Human Machine Interface (HMI) or by application of the

brake pedal, throttle pedal, or steering wheel. In CA and RCA, the driver has primary re-

sponsibility for detecting imminent collisions and avoiding them by some means, such as

slowing, stopping, or steering the vehicle. In this case, CA and RCA provide backup safety

behavior if the driver fails to stop the vehicle in time to avoid the collision. In ACC, LCA,

and PA, the driver is responsible for monitoring the feature behaviors and intervening if

needed (e.g., if a deer is heading toward the road but not yet detectable in the vehicle path).

The driver may override any feature behavior except an emergency stop, in which case the

driver is only permitted to brake harder than the feature.

95

CHAPTER 5. EVALUATION

5.2.2 Simulation platform

The vehicle system was implemented in the CarSimR© simulation environment from Me-

chanical Simulation [64][1]. CarSimR© is a software system for simulating vehicle dynamic

responses to different acceleration and steering inputs. The software itself contains built-

in models of vehicle systems and driving environments. For customized designs, models

from other simulation environments such as MatlabR© SimulinkR© [2] or Labview
TM

[3] can

be added to the CarSimR© models.

The system under review was implemented in a SimulinkR© model by the automotive

research lab that designed it. Although some of the features were more fully implemented

than others, no feature subsystem was complete. This model was then executed in CarSimR©.

The scenarios used in this thesis were performed on the vehicle model in CarSimR© release

7.01 and SimulinkR© release r2008a running on Microsoft Windows XP.

5.2.3 Vehicle-level safety goals

In general, the system requirements were incomplete at the time of the study. In addition,

none of the requirements for the research vehicle were written in a formal specification

language and there were no requirements identified as system safety requirements. Thus,

the first step that had to be completed before ICPA could be applied was to identify the

system safety goals and define them formally. These safety goals were derived from in-

spection of the functional requirements, the hazard analysis that had been performed on the

preliminary system requirements, and an incomplete system design and implementation.

Tables 5.1 and 5.2 list the eight safety goals identified for this study.

The system safety goals define the safety-critical behaviors relevant to semi-autonomous

vehicle motion. This includes both longitudinal acceleration and lateral steering. In this

96

CHAPTER 5. EVALUATION

Table 5.1. Safety goals for a semiautonomous vehicle (1 of 2)

Goal: Achieve[AutoAccelBelowThreshold]
InformalDef: Vehicle acceleration caused by autonomous vehicle control shall not

exceed 2 m/s2.
FormalDef: va: VehicleAcceleration

IsSubsystem(va.source) va.value 2 m/s2

Goal: Achieve[AutoJerkBelowThreshold]
InformalDef: Vehicle jerk caused by autonomous vehicle control shall not exceed

2.5 m/s3.
FormalDef: vj: VehicleJerk

IsSubsystem(vj.source) vj.value 2.5 m/s3

Goal: Achieve[SubsystemAccelSteeringAgreement]
InformalDef: If a subsystem a) requests control of acceleration and steering and b) is

granted control of either acceleration or steering, then the subsystem shall
control both acceleration and steering.

FormalDef: va: VehicleAcceleration, vst: VehicleSteering, sn: SubsystemName
RequestingAcceleration(sn) RequestingSteering(sn)

 ((va.source = sn) (vst.source = sn)) (va.source = vst.source = sn)
Goal: Achieve[NoAutoAccelFromStop]
InformalDef: If a) the vehicle is stopped for a duration of StoppedTime and

b) the throttle pedal has not been applied within the preceding GoTime and
c) a subsystem is controlling acceleration and
d) the HMI has not sent a go signal to the controlling subsystem within the
preceeding AccelerationTime,
then there shall be no vehicle acceleration

FormalDef: va: VehicleAcceleration, vsp: VehicleSpeed, sn: SubsystemName,
hmi: HumanMachineInterface, tp: ThrottlePedal, st: StoppedTime, gt: GoTime
(<st IsStopped(vsp.value) <gt @IsApplied(tp) (va.source = sn)

<gt @Go(hmi, sn)) IsAccelerating(va.value)

1.

2.

3.

4.

System Safety Goals for a Semi-Autonomous Automotive System (1 of 2)

97

CHAPTER 5. EVALUATION

Table 5.2. Safety goals for a semiautonomous vehicle (2 of 2)

Goal: Achieve[DriverSteeringOverride]
InformalDef: If the driver is turning the steering wheel, then no subsystem shall control

vehicle steering
FormalDef: vst: VehicleSteering, sn: SubsystemName, sw: SteeringWheel

(sw.active) (vst.source = sn)

Goal: Achieve[ForwardBlockAccelSteering]
InformalDef: If the vehicle is moving forward, then the subsystem RCA shall not control

vehicle acceleration or steering
FormalDef: va: VehicleAcceleration, vst: VehicleSteering, vsp: VehicleSpeed

InForwardMotion(vsp.value)
((va.source = `RCA’) (vst.source = `RCA’))

Goal: Achieve[BackwardBlockAccelSteering]
InformalDef: If the vehicle is moving backward, then the subsystems CA, ACC, and

LCA shall not control vehicle acceleration or steering.
FormalDef: va: VehicleAcceleration, vst: VehicleSteering, vsp: VehicleSpeed

InBackwardMotion(vsp.value)
((va.source {CA, ACC, LCA}) (vst.source {CA, ACC, LCA}))

5.

9.

7.

8.

System Safety Goals for a Semi-Autonomous Automotive System (2 of 2)
Goal: Achieve[DriverForwardAccelOverride]
InformalDef: If a) the vehicle is moving in the forward direction and

b) the driver is applying the brake pedal or the throttle pedal and
c) a subsystem is requesting a vehicle acceleration greater than or equal to
-2 m/s2 (i.e., not requesting a “hard” stop of the vehicle),
then the subsystem shall not control vehicle acceleration.

FormalDef: va: VehicleAcceleration, sn: SubsystemName, bp: BrakePedal,
tp: ThrottlePedal

(InForwardMotion(vsp.value) (bp.active tp.active)
 RequestingAcceleration(sn) (RequestedAcceleration(sn) -2 m/s2))

(va.source = sn)
Goal: Achieve[DriverBackwardAccelOverride]
InformalDef: If a) the vehicle is moving in the backward direction and

b) the driver is applying the brake pedal or the throttle pedal and
c) a subsystem is requesting a vehicle acceleration less than or equal to 2 m/s2
(i.e., not requesting a “hard” stop of the vehicle),
then the subsystem shall not control vehicle acceleration.

FormalDef: va: VehicleAcceleration, sn: SubsystemName, bp: BrakePedal,
tp: ThrottlePedal

(InBackwardMotion(vsp.value) (bp.active tp.active)
 RequestingAcceleration(sn) (RequestedAcceleration(sn) 2 m/s2))

(va.source = sn)

6.

98

CHAPTER 5. EVALUATION

system, all features attempt to control acceleration, and LCA and PA attempt to control

steering. CA, ACC, and LCA are only operational when the vehicle is in forward motion,

RCA is only operational in reverse, and PA operates in both.

In semi-autonomous automotive systems, the driver remains engaged in the driving pro-

cess, even when subsystem features are controlling the vehicle. Autonomous control is

both initiated and overridden by the driver. As a result, many of the safety goals for

semi-autonomous driving constrain behaviors that interfere with the ability of the driver

to properly supervise the vehicle. Autonomous behaviors must be performed in a way that

allows the driver enough time to identify what is happening and intervene if necessary.

One historic concern for general automotive systems is unintended, or sudden accelera-

tion [71] [77]. Although most incidents of unintended acceleration have been attributed to

incorrect pedal application (hitting the throttle instead of the brake pedal), as vehicles move

closer to fully autonomous control, it becomes increasingly possible for such accelerations

to be caused by system defects.

The first guard against unintended accelerations is safety goal number 1, which prohibits

autonomous vehicle acceleration that exceeds 2 m/s2. The second is safety goal number

2, which prohibits autonomous vehicle jerk that exceeds 2.5 m/s3. These are reasonable

limits of comfortable acceleration and jerk in vehicle motion [58]. Note that the vehicle

is allowed to cause uncomfortable levels of negative acceleration (deceleration) because

the vehicle may need to perform a sudden, uncomfortable stop to avoid a collision. Fea-

tures that increase vehicle speed, such as ACC, LCA, or PA, are limited to more gradual

accelerations, to give the driver time to override if necessary.

Another guard against unintended accelerations is safety goal number number 4, which

prohibits autonomous accelerations when the vehicle is stopped (e.g., if ACC brings the

vehicle to a stop behind a stopping lead vehicle or if CA stops the vehicle to avoid an object

99

CHAPTER 5. EVALUATION

in the road). In these situations the driver is required to initiate acceleration by sending a

“Go” signal from the Human-Machine Interface (HMI), or by pressing the throttle pedal.

This ensures that the driver is aware the vehicle will begin moving from a stopped position.

Another concern is feature interaction [13], which was discussed in more detail in Sec-

tion 2.4.1. A feature interaction occurs when the combined behavior of two features is

undefined in the specification of either and must be different than the linear superposition

of the individual features. In the semi-autonomous automotive system under review, sev-

eral different features may attempt to control vehicle acceleration or steering, all at the

same time. If one feature controls steering while another controls acceleration, a behavior

may occur that is undefined by either, or by the system specification. Safety goal number 3

prohibits control of acceleration and steering by different subsystems if either is attempting

to control both.

Safety goals 5, 6, and 7 ensure the driver is allowed to override acceleration and steering.

Driver brake and throttle commands override acceleration control, unless the subsystem

feature is attempting a very hard brake of the vehicle. Because prior analysis of sudden

acceleration incidents has shown that drivers sometimes hit the accelerator pedal instead of

the brake pedal [71] [77], the features used for collision avoidance are allowed to override

driver throttle or brake pedal commands.

Finally, safety goals 7 and 8 prohibit features from controlling vehicle acceleration or

steering when the vehicle is moving in a direction in which the features were not intended

to operate. These goals essentially define which subsystems are allowed to perform vehicle

control actions in both the forward and reverse directions.

100

CHAPTER 5. EVALUATION

5.3 ICPA and subsystem subgoals

Once the system safety goals were determined, ICPA was applied to identify subgoals for

the subsystems. Appendix C contains the ICPA for all nine goals listed in Tables 5.1 and

5.1.

The goal coverage strategy contains a redundant responsibility goal assignment for eight

of the nine goals (1-2 and 4-9) As the final source of system acceleration and steering

commands, the Arbiter becomes the primary source for meeting the system safety goal. The

secondary safety goals of the feature subsystems provide protection against some single-

point failures of the Arbiter. If the Arbiter fails by choosing an acceleration or steering

command from the wrong feature subsystem source, then the system should still meet the

safety goal. However, if the Arbiter fails in a different way (e.g., summing requests from

different features), then the features will not provide backup protection against the failure.

The goal coverage strategy for goal 3 is single responsibility, with the Arbiter as the

only source satisfying the goal. This goal prohibits behaviors that mix acceleration and

steering control from different feature subsystems. An alternative redundant responsibility

strategy could require one feature subsystem to monitor the other feature subsystem control

requests and cancel their requests when higher-priority features request control. However,

this requires the arbitration logic to be maintained in each feature subsystem, which is

impractical in this distributed development environment.

The goal scope for all the goals is restrictive in some way or another. In all goals, worst-

case actuation delays are used for defining the subgoals. In some goals, OR-reduction is

used to limit the behavior of the feature subsystems. For example, goals 1 and 2 use OR-

reduction. The subgoals for the feature subsystems limit the value of acceleration requests

when those acceleration requests are the source of vehicle acceleration. However, it is

simpler to always prohibit the subsystems from requesting excessive vehicle acceleration

101

CHAPTER 5. EVALUATION

or jerk, rather than prohibiting it only when those requests are used to control vehicle

acceleration.

5.3.1 Goal and subgoal monitoring locations

The monitoring locations for the goals and subgoals are presented in Table 5.3. For goals

1, 2, and 4, the actual goal that is monitored at the system level is different from the goal

that is monitored for the Arbiter. For goals 3 and 5-8, the actual goal that is monitored

at the system level is the same as the goal that is monitored at the Arbiter level. This is

because the goals constrain state variables that have some source of direct control in the

subsystem. For example, there is no way to sense which subsystem is the source of vehicle

acceleration. The only way to monitor this is to monitor the source tag on the acceleration

command. However, vehicle acceleration is not directly controlled by any subsystem, and

can be monitored by an accelerometer. A goal can be monitored at the system level if

it constrains one or more sensed state variables or two or more state variables directly

controlled by different subsystems.

5.3.2 Lessons from applying ICPA

Applying the ICPA revealed the following information about the semi-autonomous auto-

motive system:

• Arbitration of feature subsystem control requests is divided between longitudinal

acceleration and steering. This complicates actions that coordinate the two types of

vehicle control.

• Prioritization of feature subsystem control requests in steering arbitration is the re-

verse of the prioritization in the acceleration arbitration. This can lead to feature

102

C
H

A
P

T
E

R
5
.

E
V

A
L

U
A

T
IO

N

Table 5.3. Monitoring locations of goals and subgoals.

 Goal/Subgoal
Achieve[AutoAccelBelowThreshold]

Arbiter CA ACCRCA LCA PA

Achieve[AutoJerkBelowThreshold]

Achieve[NoAutoAccelFromStop]

Achieve[SubsystemAccelSteeringAgreement]

Achieve[DriverForwardAccelOverride]

Achieve[DriverSteeringOverride]

Achieve[ForwardBlockAccelSteering]

Achieve[BackwardBlockAccelSteeringRequest]

Vehicle

Achieve[AutoAccelCommandBelowThreshold]
Maintain[AutoAccelRequestBelowThreshold]

Maintain[AutoJerkRequestBelowThreshold]
Achieve[AutoJerkCommandBelowThreshold]

Achieve[NoAutoAccelCommandFromStop]
Achieve[NoAutoAccelRequestFromStop]

Achieve[SubsystemAccelSteeringCommandAgreement]

Achieve[DriverForwardAccelOverrideAccelCommand]
Achieve[DriverForwardAccelOverrideAccelRequest]

Achieve[DriverSteeringOverrideSteeringCommand]
Achieve[DriverSteeringOverrideSteeringRequest]

Achieve[ForwardBlockAccelSteeringCommand]
Achieve[ForwardBlockAccelSteeringRequest]

Achieve[BackwardBlockAccelSteeringCommand]
Achieve[BackwardBlockAccelSteering]

X

X

X

X

X

X

X

X

X

X

X

X X X X X

X X X X X

X

X X X X X

X X X X X

X

X

X

X

X

Monitored In:

1
1A
1B
2
2A
2B

4
4A
4B
5
5A
5B
6
6A
6B
7
7A
7B
8
8A
8B

3
3A

Achieve[DriverBackwardAccelOverride]
Achieve[DriverBackwardAccelOverrideAccelCommand]
Achieve[DriverBackwardAccelOverrideAccelRequest]

X
X X X X X

9
9A
9B

1
0
3

CHAPTER 5. EVALUATION

interaction problems if different feature subsystems are chosen to control accelera-

tion and steering.

• The Arbiter indicates if a feature subsystem or the driver has control over longitudinal

acceleration with separate ‘selected’ flags. This could allow control actions to be

attributed to multiple sources, making it difficult to identify the true source of vehicle

control.

• ACC performs the longitudinal control for LCA. Thus ACC and LCA share accelera-

tion requests. Monitoring of subgoals that limit acceleration requests is not necessary

for LCA, if the same subgoals are monitored for ACC.

Applying the ICPA revealed the following information about the ICPA process itself, as

well as the subgoals it produced:

• Almost all safety subgoals are restrictive, often in multiple ways. Most goal restric-

tion comes from variability, or jitter, in the values monitored or controlled by the

system agents.

• Some goals can only be monitored at the subsystem level. If the goal restricts control

of a state variable directly controlled by some agent in the system, then the highest

level in the system hierarchy at which the goal can be monitored is the level contain-

ing the subsystem that controls the variable. If the goal restricts two or more state

variables directly controlled by different agents in the system, or one or more sensed

from system dynamics or the environment, then the goal can be monitored separately

from the subgoals.

• Goal redundancy between levels in a system’s behavioral hierarchy can only protect

against defects that occur in subsystems located earlier in the control flow. It does

104

CHAPTER 5. EVALUATION

not protect against defects in the subsystems located later in the control flow. If goal

redundancy is not used at the latest stage in control flow (i.e., the direct control source

or indirect control source closest to it), then goal redundancy does not protect against

single-point failures.

5.4 Evaluation scenarios and results

Although it is impossible to determine if the unknown/unrealizable part of the system safety

goal has been minimized, it is possible to determine whether or not the subgoals produced

by ICPA partially compose the parent goal. The purposes of goal elaboration are twofold.

First, it is important to identify subsystem behaviors that contribute to hazards at design-

time so that the subsystem development team can design and build the subsystem to help

satisfy the system goal. A second aim is to monitor the subsystem behaviors at run-time

to determine whether a subsystem is violating its safety goals. Violations of subgoals may

be predictors of system-level goal violations. In this thesis, the safety goals and subgoals

were monitored in an implementation of a vehicle in a simulation environment.

At the time this evaluation was performed, although all features were partially functional,

no feature was fully complete. In addition, the features were implemented independently

of the process for defining and elaborating the system safety goals. That is, the formal

specification of the safety goals and subgoals was not available to the teams designing

and implementing the system. The safety goals were obtained by the author of this thesis

by analysis of the functional requirements, hazard analysis, and partial implementation.

As such, this work cannot determine whether applying ICPA to obtain subgoals helps in

the design and implementation of the system. Rather, the purpose of this analysis is to

determine whether system safety in this case is partially, if not fully, composed by the

set of subgoals obtained from ICPA. To do this, we monitored the system safety goals

105

CHAPTER 5. EVALUATION

and subgoals at run-time in ten different driving scenarios, configured in CarSimR© and

SimulinkR©.

The following ten scenarios were chosen to test the goal and subgoal monitors. They are

representative of real driver behaviors, both those that the driver is expected to do regularly,

such as engage ACC at a reasonable speed, and those that the driver might do in error, such

as engage PA in the middle of an emergency braking action. Each scenario was scheduled

for a simulation time of 20 s. The goal and subgoal violations for all ten scenarios are listed

in Tables D.1-D.11 in Appendix 7.2. Descriptions of each scenario and evaluations of their

results are presented below.

5.4.1 Scenario 1: CA enabled, ACC enabled, stopped vehicle in path

Description. The host vehicle is traveling forward, starting from a stop 20 m behind an-

other stopped vehicle. ACC is enabled (“turned on” by the driver), but not engaged (oper-

ating in an internal state in which vehicle control actions are performed). CA is enabled.

CA is expected to initiate a hard braking action to stop the host vehicle before a collision

occurs.

Results. Table D.1 lists the goal violations for the first scenario. CA attempted to stop the

host vehicle upon its approach to the stopped vehicle in its path. This resulted in violation of

vehicle safety goals 1 and 2 shortly before early termination of the simulation, at simulation

time 12.681 s. The longest violation was 8 ms, and the shortest was 1 ms (the time interval

of one state). Vehicle acceleration exceeded its threshold for 4 ms, at time 12.589 s, 92 ms

before early termination. Although the vehicle acceleration threshold was exceeded once,

no violations of the corresponding subgoals were also detected.

Vehicle jerk was exceeded six times, for 8, 2, 1, 4, 6, and 1 ms, at 98, 83, 29, 20, 9, and

106

CHAPTER 5. EVALUATION

1 ms before early termination of the system. Similarly, although the vehicle jerk threshold

was exceeded six times, only violations in corresponding subgoals for CA and PA were

detected. The CA jerk threshold was violated only once for 1 ms, starting 80 ms before

early termination of the system. In addition, the jerk threshold for PA was violated once,

once for 1 ms at time 0.001 s, and once for 1ms at time 9.624 s, 3.057 s before early

termination of the system.

These results indicate that the subgoals do not fully compose the parent goal. Although

there was one violation of goal 1, there were no corresponding violations of subgoals 1A

and 1B. In addition, there were six violations of goal 2, but no violations of subgoal 2A,

and only three violations of 2B.

The results also indicate that there is restriction or redundancy built into the subgoals.

The subgoal 4B, no autonomous acceleration from a stop, was violated for PA at the start of

simulation time, but no violations were detected in 4 or 4A. The violations of 2B for park

assist appear to be false negatives; they do not appear to correspond to any of the violations

of 2.

A closer look at the acceleration requests for CA and PA illustrate what is happening in

the vehicle. Figure 5.2 shows the value of CA’s acceleration request at the end of simulation

time. It indicates that CA requests a hard brake of the system, but immediately releases it.

This violates the jerk goal for CA, but only for one state. The jerk goal for the Arbiter was

not violated, because when CA released the brake, control was also transferred back to the

driver. To the Arbiter, the jerk was violated by the driver’s throttle and brake pedal inputs

that took over when CA released the brake, not CA releasing the brake itself.

In actuality, a step-increase in the acceleration request alone should not violate the sys-

tem level safety goal because the vehicle response dynamics (e.g., inertia of the physical

mass of the vehicle) would make the transition from the current acceleration to the newly

107

CHAPTER 5. EVALUATION

12.3 12.4 12.5 12.6 12.7 12.8
-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Time (s)

m
/s

2

CA Acceleration Request

Figure 5.2. Scenario 1: CA begins a braking action, but cancels it briefly

before beginning it again.

requested acceleration more gradual. In this case, the subgoal is perhaps too restrictive for

what is practical to design. However, the sudden release of the hard stop, is incorrect CA

behavior. CA should continue braking until the vehicle stops, and then hold the vehicle at

that position until the driver initiates motion by applying the throttle pedal. It is possible

that the vehicle dynamics, in response to this sudden brake application and release, behaved

in a way that caused the other vehicle safety goals to be violated (the acceleration threshold

and jerk thresholds), because all of those violations occurred after this action by CA.

Further inspection of the PA acceleration requests, shown in Figure 5.3, also reveals

incorrect behavior by the PA. In this scenario, PA requests an acceleration of 2 m/s2 from

the start of simulation time to time 2.186 s, at which time PA requests no acceleration. At

108

CHAPTER 5. EVALUATION

0 2 4 6 8 10 12 14
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time (s)

m
/s

2

PA Acceleration Request

Figure 5.3. Scenario 1: PA requests acceleration without being enabled.

time 9.33 s, PA then requests an acceleration of -2 m/s2 until 9.624 s, when it again requests

an acceleration of 0 m/s2. Subgoal 4B was violated by this behavior because at the start

of simulation time the vehicle is stopped. The jerk thresholds were also violated each time

the acceleration requests switched from low to high. PA was never selected by the Arbiter

to control vehicle acceleration because PA never signaled that it was active. However, this

behavior is incorrect and potentially unsafe if a fault occurs that flips the PA active signal,

or if the Arbiter passes along the acceleration request without looking at the PA active flag.

Summary. Run-time monitoring in this scenario revealed the following additional infor-

mation about the semi-autonomous automotive system:

• PA is sending out acceleration requests when it is not enabled.

109

CHAPTER 5. EVALUATION

• Goal redundancy in the Arbiter blocks the improper acceleration requests from PA.

• The vehicle exceeds the acceleration limit for autonomous control shortly before

the simulation terminates in error. The two behaviors may be related to the same

underlying design or implementation defect.

Run-time monitoring in this scenario also revealed the following additional information

about the subgoals and ICPA:

• The jerk threshold goal is too restrictive to be implemented practically. A revised

goal would allow jerk thresholds to be violated for a single state.

• Goal 1 is not fully composed by subgoals 1A and 1B. This may indicate some of the

indirect control relationships used in the ICPA are incorrect.

5.4.2 Scenario 2: CA engaged, ACC enabled, PA enabled, stopped

vehicle in path

Description. The host vehicle is traveling forward, starting from a stop 20 m behind an-

other stopped vehicle. ACC is enabled, but not engaged. CA is enabled. Just after CA

begins to perform a hard braking action at time 12.55 s to avoid the stopped vehicle, the

driver engages PA at time 12.56 s. CA is expected to remain in control of vehicle accelera-

tion and stop the host vehicle.

This scenario was chosen to verify a design defect in the arbitration logic found while

reviewing the system requirements and design for the ICPA. In the design, acceleration and

steering were arbitrated separately. Inspection during ICPA indicated that prioritization of

feature requests in steering arbitration was reversed. The vehicle should continue to stop

and remain stopped, despite application of PA

110

CHAPTER 5. EVALUATION

Results. Table D.2 lists the goal violations for Scenario 2. As in Scenario 1, CA attempted

to stop the host vehicle upon its approach to the stopped vehicle in its path. Scenario 2,

however, resulted in violation of vehicle safety goals 1-3, also before early termination

of the simulation, this time at simulation time 12.588 s. In this situation, vehicle accel-

eration was exceeded for 1 ms at time 12.587 s, vehicle jerk was exceeded for 20 ms at

time 12.561 s, and the acceleration-steering agreement goal was violated for 27 ms at time

12.561 s. Each vehicle safety goal was still in violation at the time of early termination,

which occurred 93 ms earlier than early termination in the first scenario.

Similar to the first scenario, no subgoals for goal 1 were violated. In addition, subgoal

2A for the Arbiter was violated only once for 1 ms at time 12.561 s, 7 ms before vehicle jerk

was exceeded and 27 ms before early termination of the system. As in the first scenario,

the jerk subgoal 2B for PA was violated twice, once at the start of simulation and once at

time 9.624 s.

The acceleration/steering agreement subgoal 3A for the Arbiter was the same as the

system-level goal, as noted in Section 5.3.1, thus violations of the Arbiter’s goal corre-

sponded to those of the system.

Plots of the arbiter’s acceleration command, CA’s acceleration request, and CA’s ‘se-

lected’ tag are shown in Figure 5.4. CA was selected as the source of the acceleration

command at time 12.551 s, and remained selected until the simulation terminated. The ac-

celeration command was set to CA’s requested acceleration at time 12.551 s, but was reset

to 0 m/s2 at time 12.561, 1 ms after PA was enabled (one system state later). Thus, the

Arbiter was indicating that CA was chosen to be the source of the acceleration command,

but was choosing PA’s acceleration request as the actual source.

This confirmed the design defect in the arbitration logic discovered during the ICPA. In

the design, arbitration was divided by acceleration and steering, with acceleration arbitra-

111

CHAPTER 5. EVALUATION

-10

0

10

m
/s

2

Arbiter Acceleration Command

-10

0

10

m
/s

2

CA Acceleration Request

12.3 12.4 12.5 12.6 12.7 12.8
F

T

Time (s)

Fa
lse

/T
ru
e

CA Selected

Figure 5.4. Scenario 2: CA is not the source of the acceleration command

when PA is enabled, even though CA is selected to be in control of

acceleration.

tion occurring first. In the steering component of arbitration, the prioritization order was

reversed. Although arbitration of acceleration determined how the CA Selected tag was

set, arbitration of steering actually determined what values of both acceleration requests

and steering requests were passed along as acceleration commands. Thus, the Arbiter was

selecting CA as the source, but sending out PA’s requests.

Summary. Run-time monitoring in this scenario revealed the following additional infor-

mation about the semi-autonomous automotive system:

• The reverse arbitration logic found during application of the ICPA was confirmed.

• The Arbiter is a potential source of single-point failures of the system.

112

CHAPTER 5. EVALUATION

5.4.3 Scenario 3: CA engaged, ACC enabled, throttle pedal applied,

stopped vehicle in path

Description. The host vehicle is traveling forward, starting from a stop 20 m behind an-

other stopped vehicle. ACC is enabled, but not engaged. CA is enabled. Just after CA

begins to perform an emergency braking action at time 12.55 s to avoid the stopped vehi-

cle, the driver applies the throttle pedal at time 12.56 s. CA is expected to remain in control

of vehicle acceleration and stop the host vehicle.

Results. Table D.3 lists the goal violations for the third scenario. In this scenario, CA

began to stop the host vehicle, but canceled its braking request, allowing the vehicle to

‘hit’ the parked vehicle, and the simulation terminated normally at 20s. (CarSimR© does not

simulate vehicle collisions, therefore, in the simulation the host vehicle passed through the

stopped vehicle in its path).

Goal 1, the acceleration threshold, was violated once at time 13.652 s for a duration of

3 ms. Goal 2, the jerk threshold, was violated three times, at times 12.565 s for 2 ms,

at time 12.902 s for 3 ms, and at time 12.913 s for 4 ms. Subgoal 2A was not violated.

Subgoal 2B was violated four times for CA, from time 12.6 s to time 13.85 s, each for a

duration of 1 ms. Subgoal 2B was violated 47 times by ACC/LCA, for a duration of 1 ms

each, starting at time 12.75 s and ending at time 15.6 s.

PA experienced the same violations of goals 2B and 4B as in the first two scenarios.

Goal 5, which allows the driver to override acceleration if the subsystem is not performing

a hard brake, was violated four times between times 12.562 s, with durations ranging from

4 ms to 61 ms. Its subgoal, 5B was violated five times by CA, between times 12.6 s and

13.85 s, with durations ranging from 50 to 200 ms. PA experienced the same violations of

goals 2B and 4B as in the first two scenarios.

113

CHAPTER 5. EVALUATION

0

50

100
%

Ap
pli

ed
)

Throttle Pedal Position

-10
-5
0
5

m/
s2

Vehicle Acceleration

-10
-5
0
5

m/
s2

Arbiter Acceleration Command

-10
-5
0
5

m/
s2

CA Acceleration Request

12.6 12.8 13 13.2 13.4 13.6 13.8 14
F

T

Time (s)

Fa
lse

/Tr
ue

CA Selected

Figure 5.5. Scenario 3: CA engages to stop the host vehicle, even though

throttle pedal is applied. The CA braking action is intermittent, however,

and fails to stop the host vehicle before ‘hitting’ the parked vehicle in its

path.

114

CHAPTER 5. EVALUATION

Plots of the throttle pedal position, vehicle acceleration, acceleration command, CA ac-

celeration request, and CA selected variables are shown in Figure 5.5. Each time CA

applies the brake, it is selected by the Arbiter as the source of the acceleration command.

However, its request of -10 m/s2 is not achieved by the vehicle because acceleration is de-

layed by the vehicle response. During the time that the vehicle acceleration is not below -2

m/s2, safety goal 5 is violated. This corresponds to the four times CA is actively requesting

a hard brake. The Arbiter’s subgoal 5A is not violated because the Arbiter never sends

acceleration commands for CA greater than -2 m/s2. Subgoal 5B is violated five times

by CA. This occurs in-between the hard brake requests, when CA is engaged but entering

a preparation state in which no deceleration is requested. In these situations, CA is not

selected as the winner of arbitration over the driver, even though CA is engaged, because

CA’s requested acceleration is not less than -2 m/s2.

Plots of the throttle pedal position, vehicle speed, acceleration command, ACC accel-

eration request, and ACC selected are shown in Figure 5.6. The data show that ACC is

sending out requests to control the vehicle to a set speed of 0 m/s, even though ACC has

only been enabled, not engaged. When the CA braking action completes, ACC decreases

this deceleration request gradually back to zero acceleration. During this time, the vehicle

is stopped. Once the vehicle has been stopped for some time, ACC should wait for another

throttle application (i.e., a switch from not applied to applied) or a go signal from the HMI.

The results from this scenario show that both PA and ACC are sending acceleration

requests when they are not engaged. Although they both have ‘active’ tags to indicate

whether or not these requests are intentional, it would be better to not request acceleration

when it is not really needed. The results also show that the vehicle correctly continues to

perform the emergency stop when CA requests it, even though the driver is pressing the

throttle pedal. However, the braking actions performed by CA are insufficient to stop the

115

CHAPTER 5. EVALUATION

0

50

100
%

Ap
pli

ed
Throttle Pedal Position

0
1
2
3

m/
s

Vehicle Speed

-10

-5

0

m/
s2

Arbiter Acceleration Command

-2

-1

0

m/
s2

ACC Acceleration Request

0 2 4 6 8 10 12 14 16
F

T

Time (s)

Fa
lse

/Tr
ue

ACC Selected

Figure 5.6. Scenario 3: ACC sends acceleration requests to control the

vehicle to a set speed of 0 m/s, even though ACC is not engaged.

116

CHAPTER 5. EVALUATION

vehicle.

The only difference between this scenario and the first is the application of the throttle

pedal. It is possible that CA begins the same type of intermittent braking action in both sce-

narios, but in this scenario the added application of the throttle pedal allows the simulation

to continue. In this case, perhaps the intermittent braking action alone causes instability in

the vehicle dynamics. It is also possible that the application of the throttle pedal causes the

intermittent nature of the braking action. In either situation, a closer examination of CA is

required to troubleshoot the problem.

Summary. Run-time monitoring in this scenario revealed the following additional infor-

mation about the semi-autonomous automotive system:

• CA appears to continue to execute a hard brake when the driver applies the throttle

pedal. This is the intended behavior of the system.

• CA appears to execute the hard brake in a manner that is intermittent, rather than

continuous. This may be insufficient for braking the vehicle in time to avoid the

collision.

Run-time monitoring in this scenario also revealed the following additional information

about the goals obtained from ICPA:

• The nature of when CA performs its braking actions was misunderstood during the

ICPA. There are some states in which CA is engaged, but not performing a braking

action. These states should be excluded from the analysis of when CA is active.

• The indirect control relationships between the CA acceleration request, Arbiter ac-

celeration command, and resulting vehicle acceleration do not perform as defined in

117

CHAPTER 5. EVALUATION

the ICPA. There is a greater delay between the acceleration command and the re-

sulting acceleration. System goal 5 should be adjusted to account for these delays.

Subgoals 5A and 5B, however, seem to be correct. In this case, monitoring revealed

a parent goal that is too restrictive to be satisfied while still satisfying the functional

behavior of the CA feature subsystem.

5.4.4 Scenario 4: throttle pedal applied, ACC engaged, CA enabled,

slow vehicle in path

Description. The host vehicle is traveling forward, starting 25m behind another vehicle

that is traveling between 10-25 k/h (2.78-6.94 m/s). The driver accelerates the host vehicle

by applying the throttle pedal from time 0.5 s to 8.5 s. At time 2.0 s, ACC is engaged by

the driver. As the host vehicle approaches a slower lead vehicle, ACC is expected to slow

the host vehicle to follow a set distance behind the slower lead vehicle.

Results. Table D.4 lists the goal violations for the fourth scenario. In this scenario, ACC

attempted to slow down the host vehicle when it approached the slower lead vehicle, but

the simulation terminated early at time 13.142 s.

Goal 1, the vehicle acceleration threshold, was violated ten times between time 12.987 s

and time 13.127 s. The longest violation was 67 ms, and the shortest violation was 1 ms.

No subgoals for this goal were violated for the Arbiter or features. Goal 2 was violated

98 times between time 8.617 s and time 9.529 s. Its subgoal 2A was violated 48 times

between time 9.051 s and 13.051 s. Subgoal 2B was violated 49 times by ACC/LCA, from

time 2.05 s to time 13.05 s, and twice by PA at times 0.001 s and 3.906 s. Once again,

PA violated subgoal 4B, but this time only at the start of the simulation. Goal 5, which

allows the driver to override all but hard brake requests, was also violated at time 2.052 s.

118

CHAPTER 5. EVALUATION

-2

-1

0

m
/s

2

ACC Requested Acceleration

-300
-200
-100
0

100

m
/s

3

ACC Requested Jerk

8 9 10 11 12 13
F

T

Time (s)

Fa
lse

/T
ru
e

Maintain[AutoAccelRequestJerkBelowThreshold] for ACC

Figure 5.7. Scenario 4: ACC acceleration request and jerk profile.

Its subgoals 5A and 5B for the Arbiter and ACC were also violated, at times 2.051 s and

2.0 s, respectively. Finally, the two goals that block certain subsystems from controlling

the vehicle in forward and backward motion, goals 8 and 9 respectively, were each violated

once for 1 ms. Goal 9 was violated at time 13.074 s, withs subgoals 9A for the Arbiter and

9B for ACC were also violated at time 13.074 s.

Figure 5.7 shows ACC’s requested acceleration, the resulting jerk of that acceleration,

and the jerk threshold goal for ACC. All jerk violations were 1 ms violations. That is, they

occurred from a change in acceleration that occurred in a single state. Although it may be

possible to design out most of these jerk violations, it is probably not practical to do so.

Rather, this seems to indicate that the subgoal is too restrictive for normal vehicle use.

Figure 5.8 shows throttle pedal position, vehicle acceleration, Arbiter acceleration com-

119

CHAPTER 5. EVALUATION

0

50

100
%

Ap
pli

ed
Throttle Pedal Position

-5

0

5

m/
s2

Vehicle Acceleration

-2

-1

0

m/
s2

Arbiter Acceleration Command

-2
-1
0

m/
s2

ACC Acceleration Request

0 2 4 6 8 10 12 14
F

T

Time (s)

Fa
lse

/Tr
ue

ACC Selected

Figure 5.8. Scenario 4: ACC is engaged while the driver is applying the

throttle pedal. ACC briefly takes control of vehicle acceleration, but loses

control again until the driver releases the throttle pedal. ACC decelerates,

then accelerates the vehicle twice before the simulation terminates.

120

CHAPTER 5. EVALUATION

mand, ACC acceleration request, and ACC selected over the course of the simulation. The

driver begins to apply the throttle pedal at time 0.5 s. At time 2 s, the ACC is engaged,

and its target speed is set to the vehicle speed. ACC gains control of the vehicle accelera-

tion for 50 ms, the duration of one state in its internal state machine (the state duration of

the system state machine is 1ms). Because the driver continues to press the throttle pedal,

ACC then releases control of acceleration back to the driver on the next cycle. Although

this behavior briefly violates the safety goal that allows the driver to override control in the

forward direction, it is probably the desired behavior for an adaptive cruise control system.

Thus, for this particular situation, the safety goal may be too restrictive.

Later, at simulation time 8.5 s, the driver releases the throttle pedal and the ACC gains

control of the vehicle acceleration command. Note that ACC continues to produce accel-

eration requests during the time it is not selected by the Arbiter to control the acceleration

command. When ACC gains control, it briefly cycles through deceleration and acceleration

requests until at time 12.958 s the vehicle acceleration begins to spike erratically between

very low and very high values. ACC’s requested acceleration drops suddenly at time 13.1 s.

The sudden, significant changes in vehicle acceleration are likely due to wheel slip,

though it is unclear why this would occur. Wheel slip, combined with a deceleration request

from ACC, is likely to have caused the vehicle speed sensor to read a negative value, thus

causing the goal 9 and its subgoals 9A for the Arbiter and 9B for ACC to be violated. It is

clear at this point that the vehicle is in an unsafe state, regardless of the cause.

Summary. Run-time monitoring in this scenario revealed the following additional infor-

mation about the semi-autonomous automotive system:

• ACC appears to briefly engage, even when the driver continues to press the accel-

erator pedal. This behavior could be modified to satisfy safety goal 5B by allowing

121

CHAPTER 5. EVALUATION

the driver to set the ACC set speed while pressing the throttle pedal without allow-

ing ACC to become engaged at that point (i.e., record the set speed value but do

not request acceleration yet). Alternatively, the goal could be modified to allow this

specific behavior.

Run-time monitoring in this scenario also revealed the following additional information

about the goals obtained from ICPA:

• Some subgoals violations may be caused by error in a monitored state variable in the

goal, such as the vehicle acceleration sensor, rather than by a defect in an agent’s

control of another state variable.

• When subgoals are made more restrictive, there may be some situations that you

want to exclude. These may be handled by goal realizability tactic Split Lack of

Monitorability/Controllability by Case [46].

5.4.5 Scenario 5: throttle pedal applied, ACC engaged, CA enabled,

brake pedal applied, slow vehicle in path

Description. The host vehicle is traveling forward, starting 25m behind another vehicle

that is traveling between 10-25 k/h (2.78-6.94 m/s). The driver accelerates the host vehicle

by applying the throttle pedal from time 0.5 s to 2.5 s. At time 2.0 s, ACC is engaged by

the driver. The driver applies the brake pedal from time 4.0 s to time 9.0 s. As there are

neither subsequent ‘go’ signals nor throttle pedal applications by the driver, the host vehicle

is expected to remain stopped.

Results. Table D.5 lists the goal violations for the fifth scenario. After the vehicle is

brought to a stop by the driver’s braking action, it remains stopped until the simulation

terminates normally at time 20 s.

122

CHAPTER 5. EVALUATION

Goal 1, the acceleration threshold, was violated six times between time 2.641 s and

2.731 s, with durations ranging from 5-9 ms. None of its corresponding subgoals were also

violated. Goal 2, the jerk threshold, was violated 28 times between time 2.638 s and 3.41 s,

with durations raging from 1-8 ms. Goal 2A was violated 28 times between time 2.651 s

and 4.001 s, each with a duration 1 ms. Goal 2B was violated 30 times by ACC/LCA

between time 2.05 s and 4 s, and by PA at times 0.01 s and 4.123 s, each for 1 ms. Goal 4B,

which prohibits autonomous acceleration requests from a stopped position, was violated by

ACC/LCA at time 5.916 s for 103 ms and at time 6.302 s for 48 ms. It was, once again,

also violated by PA at time 0.01 s for 167 ms. Goal 5, which allows the driver to override

all autonomous acceleration except hard braking events, was violated at time 2.052 s for

50 ms and at time 4.02 s for 50 ms. Its subgoal 5A was violated at time 2.051 s for 50 ms

and at time 4.001 s for 50 ms. Subgoal 5B was violated once at time 2 s for 50 ms.

A closer look at acceleration and jerk for the vehicle, the Arbiter’s acceleration com-

mand, and ACC’s acceleration request, as well as the ACC Selected tag are shown in Fig-

ure 5.9. ACC is granted control of the acceleration command at time 2.601, after the throttle

pedal is released at time 2.5 s. At this time, some residual jerk from the release of the throt-

tle pedal is still being experienced by the vehicle. Thus, the vehicle-level safety goal is

violated, even though the jerk was not necessarily caused by ACC. The gradual changes

in acceleration command between times 2.601 s and 4.01 s cause many 1 ms violations of

its jerk threshold. Once again, this is an artifact of sampling, and are likely not signs of a

significant problem.

As in Scenario 4, ACC gains control of acceleration for one state when it is enabled at

time 2.0 s. ACC also stops requesting control when the brake pedal is applied at time 4.0 s.

Although ACC updates on a 50 ms cycle, the Arbiter updates its acceleration commands

and acceleration source tags every 1 ms. The Arbiter is not immediately releasing control

123

CHAPTER 5. EVALUATION

0

50

100
%

Ap
pli

ed
Throttle Pedal Position

-5

0

5

m/
s3

Vehicle Jerk

-2

0

2

m/
s2

Vehicle Acceleration

-2

0

2

m/
s2

Arbiter Accleration Command

-2
0
2

m/
s2

ACC Requested Acceleration

2 3 4 5 6 7
F

T

Time (s)

Fa
lse

/Tr
ue

ACC Selected

Figure 5.9. Scenario 5: The driver releases the throttle pedal. Control of

acceleration is gained by ACC 0.101 seconds later.

124

CHAPTER 5. EVALUATION

of acceleration when a brake pedal is applied, rather it is waiting for ACC to stop requesting

acceleration. The difference in state transition times between the two causes the Arbiter’s

goal to be violated for the duration of one ACC state.

Summary. Run-time monitoring in this scenario revealed the following additional infor-

mation about the semi-autonomous automotive system:

• The Arbiter appears to not be enforcing subgoal 5A. Rather, it relying on the feature

subsystems to enforce subgoal 5B.

• Different subsystems have different state transition times. This may complicate goal

satisfaction if a subsystem updates controlled state variables at a slower rate than the

overall system state period.

Run-time monitoring in this scenario also revealed the following additional information

about the goals obtained from ICPA:

• Transitions of control from one agent to another may have unavoidable residual de-

lays in jerk and acceleration that cause goals restricting those values to be violated.

More work needs to be done understanding what durations of jerk and acceleration

thresholds are acceptable in these situations.

5.4.6 Scenario 6: throttle pedal applied, ACC engaged, CA enabled,

LCA engaged, slow vehicle in path

Description. The host vehicle is traveling forward, starting 25m behind another vehicle

that is traveling between 10-25 k/h (2.78-6.94 m/s). The driver accelerates the host vehicle

by applying the throttle pedal from time 0.5 s to 2.5 s. At time 2.0 s, ACC is engaged by

125

CHAPTER 5. EVALUATION

-2

0

2
m/

s2
Arbiter Accleration Command

-2

0

2

m/
s2

LCA Requested Acceleration

-2

0

2

De
gre

es

Arbiter Steering Command

-2

0

2

De
gre

es

LCA Requested Steering

4.9 4.95 5 5.05 5.1
F

T

Fa
lse

/Tr
ue

LCA Selected

4.9 4.95 5 5.05 5.1
F

T

Time (s)

Fa
lse

/Tr
ue

ACC Selected

Figure 5.10. Scenario 6: LCA is enabled at time 5.0 s, and gains control

of acceleration and steering at time 5.001 s. At time 5.051, LCA requests

steering, but the steering command remains unchanged.

126

CHAPTER 5. EVALUATION

the driver. LCA is enabled by the driver at time 4.0 s, and engaged at time 6.0 s. LCA is

expected to perform the lane change maneuver as requested.

Results. Tables D.6 and D.7 list the goal violations for the sixth scenario. After LCA is

engaged by the driver, the vehicle continues moving in the same path. ACC attempts to

slow the vehicle behind the slower lead vehicle, but the simulation terminates early at time

13.954s.

Goal 1, the acceleration threshold, was violated 17 times, between time 2.641 s and

13.953 s, with durations ranging from 1 ms to 9 ms. As with all prior simulations, none of

its subgoals were violated. Goal 2, the jerk threshold was violated 108 times, between time

2.651 s and 13.951 s. Subgoal 2A was violated 83 times from time 2.651 s and 13.951 s.

Subgoal 2B for ACC/LCA was violated 85 times, from time 2.05 s to time 13.95 s. Goal

3 and the identical subgoal 3A, acceleration and steering agreement, was violated at time

5.052 for 8.902 sec. Goals 5, 5A, and 5B were again violated when ACC was engaged at

time 2 s. Also as before, PA violates subgoal 2B at times 0.001 s and 4.12 s, and subgoal 4B

at 0.01 s for 167 ms. Goals 9, 9A, and 9B (for ACC and LCA), which prohibits subsystems

from controlling acceleration and steering outside their intended vehicle directions, were

all violated at time 13.905 s.

A plot of the Arbiter’s acceleration command and steering command, LCA’s requested

acceleration and requested steering, and the LCA Selected and ACC Selected tag are shown

in Figure 5.10. LCA is enabled at time 5.0 s, and is granted control at time 5.001 s. In the

system design, LCA is only enabled when ACC is also enabled and engaged. When the

LCA Selected tag is set, the ACC Selected tag remains set. This means that two separate

features, one that requests no steering and the other that requests no acceleration, combine

to form the lane change functionality. However, when LCA changes its steering request

at time 5.051 s, the Arbiter’s steering command does not change, violating the accelera-

127

CHAPTER 5. EVALUATION

-10

0

10
m

/s
Vehicle Speed

0

5

10

St
at

e
#

LCA State

0

5

10

St
at

e
#

ACC State

F

T

Fa
lse

/T
ru

e

LCA Selected

13.9 13.91 13.92 13.93 13.94 13.95
F

T

Time (s)

Fa
lse

/T
ru

e

ACC Selected

Figure 5.11. Scenario 6: Vehicle speed becomes negative, LCA and ACC

are still active and selected to control vehicle acceleration.

128

CHAPTER 5. EVALUATION

tion/steering agreement subgoal.

A plot of the vehicle acceleration, acceleration command, and ACC/LCA acceleration

request is shown in Figure 5.11. Even though the vehicle speed has become negative,

indicating the vehicle is moving in the reverse direction, ACC and LCA continue to request

control, and the Arbiter continues to provide it. This results in violation of goal 9 and

subgoals 9A and 9B. It is unclear why the vehicle speed suddenly becomes negative. Once

again, this could be due to wheel slip during deceleration. If this is the case, it may be

desirable to allow the feature subsystem causing the deceleration to continue. However,

the simulation does terminate shortly after the vehicle speed becomes negative. This may

be due to the way the vehicle subsystems are handling this system condition.

Summary. Run-time monitoring in this scenario revealed the following additional infor-

mation about the semi-autonomous automotive system:

• LCA is not given control of steering, even though the Arbiter selected LCA for con-

trol. At the time of the study, LCA was less developed than ACC or CA, so this may

be simply a result of incomplete implementation or subsystem integration.

• The different tags indicating which subsystem is selected may a source of confusion

with regards to the acceleration/steering agreement goal. If both ACC and LCA are

selected, perhaps the ACC’s steering request (i.e., no steering) is overriding LCA’s

steering request.

Run-time monitoring in this scenario also revealed the following additional information

about the goals obtained from ICPA:

• Goals that prohibit certain features from gaining control of the vehicle when vehicle

is moving in the forward or reverse direction may need to be examined further to

consider what is the proper behavior when wheel slip occurs.

129

CHAPTER 5. EVALUATION

-2

0

2

m
/s

2

RCA Requested Acceleration

0

5

10

St
at

e
#

RCA State

0 5 10 15 20
F

T

Time (s)

Fa
lse

/T
ru

e

RCA Selected

Figure 5.12. Scenario 7: RCA is enabled at the simulation start, but never

engages to stop the host vehicle before reaching the stopped vehicle

behind it.

5.4.7 Scenario 7: in reverse, RCA enabled, stopped vehicle in path

Description. The host vehicle is traveling in reverse, 30 m in front of another stopped

vehicle, with RCA enabled. RCA is expected to perform a hard braking action to stop the

host vehicle.

Results. Table D.8 lists the goal violations for the seventh scenario. The vehicle makes no

attempt to stop and ‘collides’ with the parked vehicle in its rear path.

There were no goal violations for the vehicle. PA behaved as before in the previous sce-

narios, and continued to output acceleration requests, violating subgoal 2B at time 0.001 s

and 6.264 s, each for 1 ms. Because PA’s acceleration requests began when the vehicle

130

CHAPTER 5. EVALUATION

was still stopped, its subgoal 4B was also violated, for a duration of 44 ms. ACC and LCA

both also sent out acceleration requests, even though neither was enabled, causing 42 jerk

violations from 8.45 s to 15.6 s, each 1 ms in duration.

Figure 5.12 shows RCA’s acceleration request, internal state, and RCA Select tag. RCA

never engages to stop the host vehicle. This is most certainly due to an unfinished imple-

mentation.

Summary. Run-time monitoring in this scenario revealed the following additional infor-

mation about the semi-autonomous automotive system:

• ACC, LCA, and PA send out acceleration requests continuously, not only when they

are disabled, but also when the vehicle is traveling in the reverse direction.

• RCA implementation is not complete enough to evaluate.

Run-time monitoring in this scenario also revealed the following additional information

about the goals obtained from ICPA:

• There were no vehicle-level goal violations, even though the vehicle ‘collided’ with

the vehicle in its path. If the simulation environment were able to simulate vehicle

collisions, some vehicle-level violations might occur. However, any monitored val-

ues that would be detected from such a situation may only provide information for

post-accident analysis, not prevention.

5.4.8 Scenario 8: in reverse, ACC engaged, stopped vehicle in path

Description. The host vehicle is traveling in reverse, 30 m in front of another stopped

vehicle. ACC is enabled and engaged by the driver at time 2.0 s. The host vehicle is

expected to ignore the driver’s request and continue moving backward.

131

CHAPTER 5. EVALUATION

-1

0

1
m

/s
Vehicle Speed

-1

0

1

m
/s

2

ACC Requested Acceleration

0

1

2

3

St
at

e
#

ACC State

1.9 1.95 2 2.05 2.1
F

T

Time (s)

Fa
lse

/T
ru

e

ACC Selected

Figure 5.13. Scenario 8: After ACC is engaged at time 2.0 s, it is selected

as the source of the acceleration command at time 2.05 s.

132

CHAPTER 5. EVALUATION

Results. Table D.9 lists the goal violations for the eighth scenario. Shortly after ACC is

engaged, the simulation terminates early.

In this scenario, Goal 1, the acceleration threshold, is violated once at time 2.08 s, until

termination of the simulation 3 ms later. None of its subgoals were violated. Goal 2, the

jerk threshold, is violated at time 2.055 s for 8 ms, at time 2.07 s for 11 ms, and at time

2.083 s for 1 ms. Subgoal 2A was not violated, but subgoal 2B was for ACC/LCA at time

2.05, just after they were engaged. Once again, subgoals 2B and 4B were violated for PA

at the start of simulation. Goal 9 and subgoal 9A, restriction on subsystem control in the

backward direction, were violated at time 2.051 s for 32 ms. Subgoal 9B was violated by

ACC at time 2 s for 83 ms.

Figure 5.13 shows the vehicle speed, ACC’s acceleration command, ACC’s state, and

the ACC Selected flag. After ACC is engaged at time 2.0 s, the Arbiter selects ACC to be

in control of acceleration at time 2.05 s. The simulation terminates in error 33 ms later.

Summary. Run-time monitoring in this scenario revealed the following additional infor-

mation about the semi-autonomous automotive system:

• ACC can be engaged by the driver when the vehicle is moving in reverse. This should

not be allowed

• The Arbiter selects ACC as the source of acceleration commands when the vehicle is

moving in reverse. This also should not be allowed.

Run-time monitoring in this scenario also revealed the following additional information

about the goals obtained from ICPA:

• Goal redundancy does not protect against failure of both subsystems to satisfy the

goal.

133

CHAPTER 5. EVALUATION

5.4.9 Scenario 9: stopped, PA engaged, stopped vehicle in path

Description. The host vehicle is stopped 20 m behind another stopped vehicle. PA is

enabled and engaged by the driver at time 2.0 s. PA is expected to initiate a parking action.

Results. Table D.10 lists the goal violations for the ninth scenario. The simulation termi-

nates early 113 ms after PA is engaged by the driver.

Goal 1, the acceleration threshold, was violated at time 2.098 s for 15 ms. Goal 2 was

violated six times between time 2.003 s and 2.112 s, for durations ranging from 1 ms to

46 ms. Its subgoal 2B was violated by park assist again at time 0.001 s for 1 ms. Goal 3 and

3A, acceleration and steering agreement, was violated at time 2.001 s for 112 ms. Subgoal

4B was again violated by park assist at time 0.01 s.

Figure 5.14 shows the vehicle speed, vehicle acceleration, Arbiter acceleration com-

mand, PA acceleration request, PA state, and PA Selected flag. At time 2.001 s PA is

selected as the source of the acceleration command, but the acceleration command is not

set to the PA acceleration request. This causes Goal 3 and subgoal 3A to be violated, and

is likely to be a contributing factor to the early termination at time 2.113 s.

Summary. Run-time monitoring in this scenario revealed the following additional infor-

mation about the semi-autonomous automotive system:

• When PA is engaged while the vehicle is stopped, it is selected as the source of

vehicle acceleration and steering, but its acceleration request is not used to determine

the Arbiter’s acceleration command.

134

CHAPTER 5. EVALUATION

-1

0

1
m

/s
Vehicle Speed

-2

0

2

m
/s

2

Vehicle Acceleration

-2

0

2

m
/s

2

Arbiter Accleration Command

-2

0

2

m
/s

2

PA Requested Acceleration

0
1
2
3

St
at

e
#

PA State

1.9 1.95 2 2.05 2.1
F

T

Time (s)

Fa
lse

/T
ru

e

PA Selected

Figure 5.14. Scenario 9: When PA is engaged, it is selected as the source

of the acceleration command, but the acceleration command is not equal

to the PA acceleration request.

135

CHAPTER 5. EVALUATION

5.4.10 Scenario 10: stopped, ACC engaged, stopped vehicle in path

Description. The host vehicle is stopped 20 m behind another stopped vehicle, ACC is

enabled and engaged by the driver at time 2.0 s. ACC may either ignore the request or

accelerate the vehicle. If the driver initiates ACC control, then acceleration is acceptable

for safety goal 4. However, it is also safe for the vehicle to remain stopped.

Results. Table D.11 lists the goal violations for the tenth scenario. Although the driver

attempts to engage ACC, it neither enters an engaged state nor controls the acceleration

command. However, the vehicle begins to accelerate anyway, until CA engages to try to

stop the host vehicle before hitting the stopped vehicle in its path. The simulation termi-

nates early at 14.625 s during this hard brake attempt from CA.

Goal 1 is violated once at time 14.589 for 4 ms. None of its subgoals were violated. Goal

2, the jerk threshold, is violated at time 14.583 s for 8 ms and at time 14.598 s for 2 ms. Its

subgoal 2B was violated once for CA at time 14.6 s, for a duration of 1 ms. Once again,

PA experienced violations of subgoals 2B and 4B at time 0.01 s.

Figure 5.15 shows vehicle speed, vehicle acceleration, the Arbiter’s acceleration com-

mand, the ACC acceleration request, the ACC state, and the ACC Selected flag. Although

the driver attempts to engage ACC while the vehicle is stopped, ACC does not enter an

active state, and the Arbiter does not select ACC for the acceleration command. This is

within the bounds of safe system behavior. However, the vehicle begins to accelerate, and

it is unclear where the source of that acceleration is. Perhaps the ACC set speed is being

used, even though ACC is not requesting it to be.

Summary. Run-time monitoring in this scenario revealed the following additional infor-

mation about the semi-autonomous automotive system:

• Even though ACC is neither active nor selected as the source of the acceleration

136

CHAPTER 5. EVALUATION

-1
0
1
2

m
/s

Vehicle Speed

-1
0
1
2

m
/s

2

Vehicle Acceleration

-2
-1
0
1

m
/s

2

Arbiter Accleration Command

-2
-1
0
1

m
/s

2

ACC Requested Acceleration

0
1
2
3

St
at

e
#

ACC State

0 2 4 6 8 10 12 14
F

T

Time (s)

Fa
lse

/T
ru

e

ACC Selected

Figure 5.15. Scenario 10: When the driver attempts to engage ACC at

time 2.0 s, ACC does not become active, nor is it selected by the Arbiter

to control steering. The vehicle, however, does begin to accelerate.

137

CHAPTER 5. EVALUATION

command, the vehicle begins to accelerate when the driver attempts to engage ACC.

Run-time monitoring in this scenario also revealed the following additional information

about the goals obtained from ICPA:

• Perhaps there is some relationship between the driver’s request to engage ACC and

vehicle acceleration that bypasses the Arbiter and ACC. This indicates the indirect

control relationships defined in ACC are incorrect or incomplete.

5.5 Conclusion

ICPA was applied to nine system safety goals for a semi-autonomous automotive system

developed in a commercial automotive research lab. The goals and resulting subgoals were

then monitored at run-time in ten different driving scenarios. Although not all goal vi-

olations were detected in the subgoal monitors, subgoal monitoring did reveal a number

of design defects in the incomplete system implementation, sometimes when the hazard

was not yet visible at the system level. Monitoring at both the system and subsystem level

revealed some goal violations that may not be detectable by the driver. These results are

discussed in more detail in Chapter 6.

138

Chapter 6

Discussion

Even though the automotive system under review was a research system and not a commer-

cial product, it was a real automotive vehicle. Subsequent implementations of the system

included hardware-in-the loop simulation and a drivable test vehicle. There are several ad-

vantages to using a real system built in a commercial lab instead of a toy system developed

by an academic lab. First, the system under review in this thesis was designed and built

by application domain experts. This makes the system more representative of commercial

vehicles.

Second, although information about the system learned from ICPA was passed back to

development, ICPA and monitoring were done separately from design and development.

That is, the same engineers who built the system did not perform the ICPA and monitoring.

In addition, the system was incomplete when ICPA was performed. The system was rela-

tively functional, but certainly incomplete. These factors combined to provide a platform

that had real design defects, not ones that were added just for ICPA, but was functionally

complete enough to do run-time testing.

6.1 Lessons learned about the system

Some design issues were discovered during review of the system requirements and design

for ICPA, such as the reverse arbitration logic. Others were discovered during monitoring.

139

CHAPTER 6. DISCUSSION

This section describes the information learned about the system under review from the

ICPA and goal and subgoal monitoring.

6.1.1 Desired behaviors confirmed

ICPA and subgoal monitoring confirmed the following desired behaviors in the system

under review:

1. Goal redundancy in the Arbiter appears to block the improper acceleration requests

from PA, as intended. This was confirmed in all scenarios, except Scenario 9, when

PA was engaged and expected to take control of the vehicle.

2. CA appears to continue to execute a hard brake when the driver applies the throttle

pedal. This is the intended behavior of the system, and was confirmed in Scenario 3.

3. The RCA and LCA implementations are not complete enough to evaluate. This was

discovered in Scenario 6 and Scenario 7

6.1.2 Problems identified

ICPA and subgoal monitoring identified the following specific problems in the system un-

der review:

1. Prioritization of feature subsystem control requests in steering arbitration is the re-

verse of the prioritization in the acceleration arbitration. This defect was discovered

during the ICPA process and confirmed by subgoal monitoring when it caused 3A

to be violated in Scenario 2. This particular subgoal was assigned as a single re-

sponsibility subgoal to the Arbiter, so no subgoal violations occurred for the feature

subsystems. In addition, it was discovered that its parent goal 3 cannot actually be

140

CHAPTER 6. DISCUSSION

monitored in the subsystem. Thus, subgoal monitoring is the only way to identify

when violations of the goal occur.

2. PA is sending out acceleration requests when it is neither engaged nor even enabled.

This caused subgoal 4B to be violated in every scenario. As mentioned above, the

Arbiter appears to be blocking these commands, so the redundant subgoal 4A and

the parent goal 4 are not violated.

3. ACC and LCA often send out acceleration requests regularly, not only when they

are disabled or enabled but not engaged, but also when the vehicle is traveling in the

reverse direction. This causes goal 4B to be violated in scenario 5 for both.

4. The vehicle violates goal 1, the acceleration limit for autonomous control, shortly

before the simulation terminates in error in 7 out of 10 scenarios. This sudden spike

in acceleration may be caused by wheel slip. Early termination may occur because

the vehicle has entered an unsafe state, or may simply signify that the system imple-

mentation does not handle these type of extreme sensor values. When this occurs,

sometimes the vehicle direction suddenly changes. This causes subgoal 9A for the

Arbiter and 9B for ACC to be violated in scenarios 4, 6, and 8. Although in this in-

stance the subgoals are violated due to some error in the speed sensor or wheel slip,

and not necessarily due to the subsystem whose goal was violated, the subgoals do

identify an unsafe vehicle state.

5. CA appears to execute the hard brake in a manner that is intermittent, rather than

continuous. All CA braking scenarios resulted in early termination of the simulation,

or a ‘collision’ with the vehicle in the forward path. Each time CA releases and then

re-engages the brake, Goal 2, the autonomous jerk threshold, is violated for longer

141

CHAPTER 6. DISCUSSION

than one state in scenario 3. Subgoal 2A for the Arbiter and 2B for CA are also

violated, but only for one state.

6. If ACC is engaged by the driver while the driver is also accelerating, ACC engages

for one state, before releasing control back to the driver. This violates subgoals 5A

for the Arbiter and 5B for ACC in scenarios 4, 5, 6, and 8. This behavior could be

modified to satisfy the safety goal by allowing the driver to set the ACC set speed

while pressing the throttle pedal without actually allowing ACC to become engaged

at that point (i.e., record the set speed value but do not request acceleration yet).

Alternatively, the goal could be modified to allow this specific behavior.

7. The Arbiter appears to not be enforcing subgoal 5A. Rather, it is relying on the

feature subsystems to satisfy 5B. This is seen when subgoals 5A and 5B are violated

in scenarios 4, 5, 6, and 8.

8. LCA is not given control of steering when the Arbiter has selected LCA for control.

This violates goal 3 in scenario 6. At the time of the study, the implementation

of LCA was less developed than ACC or CA, so this may be simply a result of

incomplete implementation or subsystem integration.

9. ACC can be engaged by the driver when the vehicle is moving in reverse. This causes

goal 9B to be violated in scenario 8.

10. The Arbiter appears to not be enforcing subgoal 9A. It selects ACC as the source of

acceleration commands when the vehicle is moving in reverse and ACC is engaged.

This causes subgoal 9A to be violated in scenario 8.

11. When PA is engaged while the vehicle is stopped, it is selected as the source of vehi-

cle acceleration and steering, but its acceleration request is not used to determine the

142

CHAPTER 6. DISCUSSION

Arbiter’s acceleration command. This causes subgoal 3A to be violated in scenario 9.

These defects might be identified in regular system test. In testing, if the simulation

terminates in error or a simulated collision occurs, the design and simulation data would be

analyzed to identify the root cause of the fault. In these situations, safety goal and subgoal

violations aid root cause analysis by immediately identifying certain state variables that

may be related to the incorrect behavior.

Sometimes the feature subsystem subgoals are violated but faulty system behavior would

not be readily apparent to system testers, either because the fault is so transient it goes

unnoticed, such as when the ACC engages while the driver is still pressing the throttle

pedal, or because the subgoal violation is masked by goal redundancy in the Arbiter, such

as when PA, ACC and LCA continue to send acceleration requests without being engaged

or active.

6.1.3 General design insights

Applying ICPA and monitoring of goals and subgoals also led to the following insights

about design and implementation of this type of system, in general:

1. Divided arbitration of longitudinal acceleration and steering can complicate goals

that restrict coordinated behavior between the two types of vehicle control.

2. Using separate flags to indicate when a subsystem is selected for control makes it

possible to attribute control actions to multiple sources. This may make the actual

source of acceleration and steering commands ambiguous to subsystems that use that

information.

3. A centralized Arbiter is a potential source of single-point failures of the system.

143

CHAPTER 6. DISCUSSION

4. Using differing state transition times in different subsystems may complicate goal

satisfaction if a subsystem updates controlled state variables at a slower rate than the

overall system state period.

5. It is probably safer to not output any control requests when the subsystem is not

engaged, even if flags are used to indicate whether or not the request is active.

By discovering this information during system development, these issues can be cor-

rected prior to integration testing. After the system is complete, run-time monitors may be

able to provide diagnostic services for safety-related system and subsystem errors.

6.2 Lessons learned about ICPA

In addition to finding specific design defects in the system design and implementation, the

process of applying the ICPA and monitoring the goals and subgoals also provided insight

into the ICPA itself. The following information was learned about the ICPA and subgoals

it produced:

1. Monitoring of the goals and subgoals during subsystem and integration testing can

help identify potential defects in the design and implementation. The defects found

in this analysis are listed in Section 6.1.2.

2. Some goals can only be monitored at the subsystem level. If the goal restricts control

of a state variable directly controlled by some agent in the system, such as a command

to an actuator or a network message, then the highest level in the system hierarchy at

which the goal can be monitored is the level containing the subsystem that controls

the variable. If the goal restricts two or more state variables directly controlled by

different agents in the system, or one or more state variable that is sensed from system

144

CHAPTER 6. DISCUSSION

dynamics or the environment, then the goal is monitored independently from a single

subsystem. This is applicable to any system with closed-loop control of physical

actuation and sensing. For example, vehicle goal monitors for goals 3, 5, 6, 7, 8, and

9 are the same as the Arbiter subgoal monitors, because they restrict which subsystem

is controlling acceleration or steering. This cannot be detected by a sensor in the same

manner as the actual vehicle acceleration or jerk, but must be read from the flag set

by the arbiter.

3. When a subgoal is violated at one level, violations in subsystem goals may be able

to point toward a root cause. For example, when ACC is engaged by the driver as the

vehicle is traveling backward, the subgoal violation in 9B is also seen in the violation

of subgoal 9A.

4. In any system that employs a redundant goal coverage strategy, monitoring all the

subgoals as well as the safety goal can help identify when inappropriate subsystem

behaviors are being masked by other subsystems. Subgoal 4B is violated by ACC

and PA whenever the vehicle is stopped because those subsystems send accelera-

tion requests when they are not engaged. However, subgoal 4A and goal 4 are not

violated.

5. Almost all safety subgoals are restrictive, often in multiple ways. Most goal restric-

tion comes from variability, or jitter, in the values monitored or controlled by the

system agents. Any system with physical actuation or sensing will experience this

variability, and will require restrictive subgoals. All goals analyzed with ICPA in this

study had restrictive subgoals. For example, all feature subsystems restricted their

acceleration and steering requests to meet the threshold, whether or not they were

selected as the winner of arbitration. If a feature subsystem is not selected as the

145

CHAPTER 6. DISCUSSION

winner of arbitration, its requests that violate the acceleration threshold will not have

an affect on the vehicle acceleration. However, it is easier to implement the more

restrictive behavior.

6. Goal redundancy along a single indirect control path in a system’s behavioral hi-

erarchy can only protect against defects that occur in subsystems located earlier in

the control flow (i.e., more removed from the actual source of direct control). Goal

redundancy does not protect against defects in the subsystems located later in the

control flow, where single-point failures may still occur. For the particular auto-

motive system used in this evaluation, this means that the arbiter can guard against

failures in the feature subsystems, but is itself a source of single-point failures (as

seen in scenario 6 when it selects LCA as the winner of arbitration, but does not

actually use the steering request from LCA to control the vehicle). An example of

a type of goal redundancy at the same level in the control hierarchy is the elevator

control system from Chapter 4. In that example, the drive controller and emergency

brake have indirect control paths from the elevator position state variable.

7. The jerk threshold goal is too restrictive to be implemented practically. Every time

a different acceleration is requested by a feature subsystem or commanded by the

Arbiter, the jerk threshold subgoals are violated for at least one state. This occurs in

every scenario except scenario 7, where no subsystem engaged to control the vehicle

because RCA was incomplete. A revised goal would allow jerk thresholds to be

violated for a single state. This might be true of any type of digital control system.

8. Transitions of control from one agent to another may have unavoidable residual de-

lays in jerk and acceleration that cause goals restricting those values to be violated.

More work needs to be done understanding what durations of jerk and acceleration

146

CHAPTER 6. DISCUSSION

thresholds are acceptable in these situations. This residual jerk and acceleration is

likely to occur in any system with physical actuation and sensing. This occurs in

scenario 3, when CA engages and applies and releases the brake four times.

9. Goals 1 and 2 should be split by case, where the goal for forward motion is different

from the goal for backward motion (as was done for goals 5-6 and 8-9). This did not

actually cause any goal or subgoal violations in the evaluation because RCA never

engaged as it should to stop the vehicle in reverse. This was just something that came

up while uncovering the root cause of some violations of subgoals 5 and 9.

10. Goal 1 is not fully composed by subgoals 1A and 1B. The acceleration threshold for

autonomous control was exceeded just prior to early termination of the simulation

in scenarios 1, 2, 4, 6, 8, and 9. This may indicate the indirect control relationships

used to define acceleration response that were used in the ICPA are incorrect, or that

the vehicle has entered an unsafe state due to wheel slip.

11. Some subgoals violations may also be caused by an error or exceptional value in

a monitored state variable in the goal, such as the vehicle acceleration sensor that

experience wheel slip, rather than by a defect in an agent’s control of another state

variable. In scenarios 4, 6, and 8, the sudden spike in acceleration and violations

of subgoal 9A for the Arbiter and 9B for ACC appear to be caused by wheel slip.

In the ICPA, the possibility of wheel slip was not considered when defining goals

and subgoals that restrict acceleration, speed, or movement in a particular direction.

Thus, these goals and subgoals were violated any time wheel slip occurred in simu-

lation. However, wheel slip itself may indicate an unsafe system state. Issues related

to intense spikes in speed and acceleration need to be examined further during ICPA

for this system.

147

CHAPTER 6. DISCUSSION

12. The nature of when CA performs its braking actions was misunderstood during the

ICPA. There are some states in which CA is engaged, but not performing a braking

action. These states should be excluded from the analysis when CA is active. This

was seen in scenario 3, when CA continued to be selected as in control, but transi-

tioned four times from a hard brake to a preparation state. CA failed to stop the host

vehicle before reaching the stopped vehicle in its path, so this may actually be incor-

rect system behavior. The nature of this brake preparation state should be examined

further to see if CA should continue to override the driver when CA is engaged but

not performing a hard brake.

13. The indirect control relationships between the CA acceleration request, Arbiter ac-

celeration command, and resulting vehicle acceleration do not perform as defined in

the ICPA. There is a greater delay between the acceleration command and the result-

ing vehicle acceleration response. System goal 5 should be adjusted to account for

this delay. Subgoals 5A and 5B, however, seem to be correct. In this case, monitor-

ing revealed a parent goal that is too restrictive to be satisfied while still satisfying

the functional behavior of the CA feature subsystem. This was seen in scenario 3,

when CA requested a hard brake, and the Arbiter commanded a hard brake, but there

was a delay in the vehicle response performing the hard brake.

14. When subgoals are made more restrictive, there may be certain operational behaviors

that violate the goal but are desirable in the system. These may be handled by goal

realizability tactic Split Lack of Monitorability/Controllability by Case [46] (i.e., have

separate safety goals for each type of situation). For example, it may be desirable to

allow ACC to briefly engage when selected by the driver while the driver is also

accelerating. This situation caused subgoals 5A and 5B to be violated in scenarios 4,

148

CHAPTER 6. DISCUSSION

5, 6, and 8. The goal could be modified to exclude the case when the driver presses

the ACC engage button.

15. There were no vehicle-level goal violations in scenario 7, even though the vehicle

‘collided’ with the vehicle in its path. If the simulation environment were able to sim-

ulate vehicle collisions, some goals and subgoals may have been violated. However,

any monitored values that would be detected from such a situation may only pro-

vide information for post-accident analysis, not prevention. In this scenario, RCA

is not implemented completely enough to provide the needed functionality to stop

the vehicle. The unsafe situation occurs, not because the vehicle is violating any

of the defined safety goals, but because the feature itself is not performing its in-

tended functionality. Even though the driver is supposed to remain active and alert

in semi-autonomous automotive systems, perhaps the functional behavior of features

considered to provide ‘active safety,’ as opposed to those that provide ‘driver conve-

nience,’ should also be included in the set of system safety goals.

16. In scenario 10, there appears to be a relationship between the driver’s request to en-

gage ACC and vehicle acceleration that bypasses the Arbiter and ACC. This indicates

the indirect control relationships defined in ACC are incorrect or incomplete.

These results indicate that ICPA must be an iterative process, similar to hazard analysis

and requirements engineering. Subgoals defined before system design and implementation

may be found to be incorrect or impractical during those stages of the system development

cycle. This is true for any distributed embedded system with reasonable complexity.

149

CHAPTER 6. DISCUSSION

6.3 Conclusion

The primary purpose of this evaluation was to determine whether or not the ICPA technique

and resulting subgoals were useful. In a large-scale real automotive system, applying ICPA

and monitoring the subgoals it produced uncovered eleven critical design defects while the

system was still under development, which are listed in Section 6.1.2. In addition, goal

and subgoal monitoring revealed some of the limitations of ICPA, including impracticality

of some goal reductions, the unidirectional nature of some goal redundancy strategies, and

the inability to monitor some goals at the system level. These results show that ICPA

can be applied to large-scale embedded systems with closed-loop control that use physical

actuation and sensing.

150

Chapter 7

Conclusion

System safety, as an emergent system property, is difficult to handle in an hierarchical,

distributed design process because traditional decomposition tactics are not always appli-

cable. As safety-critical embedded systems become more pervasive and more complex, a

good requirements process becomes more and more essential for handling this emergence.

As part of that process, design and analysis of the system safety requirements should be

systematic and fully documented.

7.1 Thesis contributions

To address the problem of defining safety goals for subsystems in a composite system, this

thesis makes the following contributions:

7.1.1 Formal definition of emergent and composable behaviors

I provided a formal definition of emergence within a framework of goal decomposition.

The main idea used in creation of this definition is that emergence exists as residual

undefined behaviors in AND-reductions and OR-reductions of composite goals. This builds

on prior work in goal elaboration that defined goal decomposition, but did not account

for emergence in the missing subgoals of a partial decomposition. Emergence in AND-

reductions indicates unknown or unrealizable behaviors that could cause the goal to be

151

CHAPTER 7. CONCLUSION

violated, as defined in Equation 3.14. Emergence in OR- reductions indicates unknown or

unrealizable behaviors that could cause the goal to be satisfied, as defined in Equation 3.23.

Chapter 3 presents the formal representation of a system decomposition and emergence.

The scope of this representation is limited to system goals and subgoals defined within the

temporal logic goal specification framework used by ICPA, which comes from Goal Ori-

ented Requirements Engineering and the KAOS framework. It is also limited to describing

a single decomposition of the system, not all possible decompositions. Formal definitions

are presented for behaviors that are fully composable, emergent, and emergent but par-

tially composable, with or without goal redundancy. In addition, the role of emergence in

conjunctive and disjunctive goal forms is explained.

These definitions are generic mathematical representations that can be applied to any

system requirements specification that can be defined by goals to be achieved at the system

level and subgoals to be achieved by the subsystem. However, this means the formal def-

initions rely on the assumption that the system behaviors can be specified as expressions

of temporal logic in a state transition system. This may limit its application in continuous

systems, or systems with mixed continuous and discrete control.

For goal elaboration, particularly for system safety goals, formal representation of emer-

gence within a composite system helps identify where emergence may occur in system

decomposition, and how emergence may be handled. It also helps identify special cases in

which an emergent behavior may be partially composable. Although the partial decomposi-

tion may not ensure the goal is always satisfied, it may identify behaviors that will definitely

violate the goal, which is useful for safety. In this situation, it helps guide engineers in ‘best

effort’ design.

152

CHAPTER 7. CONCLUSION

7.1.2 Indirect Control Path Analysis (ICPA)

I created a technique for guiding system safety goal elaboration in a directed and docu-

mented way.

The main idea of ICPA is to combine familiar techniques from hazard analysis, such as

the top-down approach of FTA and the table structure of FMEA, for system safety goal

elaboration. Instead of tracing hazards back to potential faults, ICPA traces system safety

goals to their indirect and direct control sources, guided by control flow of system state

variables. The technique was applied to goals from an academic research system and a real

system of significant complexity. Run-time monitoring of the subgoals in the latter system

demonstrated that subgoals produced by ICPA partially compose the parent goals.

Chapter 4 proposed the ICPA technique for safety goal elaboration. The concepts of

direct and indirect control were defined in Section 4.2, with respect to the KAOS goal

elaboration framework. In addition, the ICPA format and procedure were explained in Sec-

tions 4.3 and 4.4, and illustrated with examples from a distributed elevator control system

used in a graduate distributed embedded system course. ICPA uses a top-down analysis

approach to trace state variables in a system safety goal to their indirect control sources in

the system control architecture. Relationships among agents along the trace path and from

agents to the parent state variable are defined. Goal coverage strategies, including a goal as-

signment and goal scope are used guide this process. The result of an ICPA is both a set of

subsystem safety goals that satisfy the parent goal, and a record of the critical assumptions,

goal realizability tactics, and goal coverage strategies used to define them. Section 4.5.3

also contained an explanation of controllability and observability requirements for goal

realizability, including goal patterns for those requirements and for alternative goals.

In Chapters 5 and 6, ICPA was applied to a semi-autonomous automotive system devel-

oped by a commercial automotive research lab. The system safety goals and set of subgoals

153

CHAPTER 7. CONCLUSION

produced by ICPA were then monitored in an implementation of the system in the CarSimR©

and SimulinkR© simulation environment. During monitoring, some goal violations were de-

tected in the subgoal monitors, but some were not. This demonstrates that the subgoals

produced in ICPA partially compose the parent goal, but not fully.

The techniques used in ICPA have been shown to be applicable to two types of dis-

tributed embedded systems, an elevator control system and an automotive system, and

should be generally applicable to systems with the same type of closed loop control of

physical actuation and sensing. ICPA relies on the assumption that the set of safety goals

defined at the system level is complete and correct. That is, if the system safety goals are

incorrect, the subgoals produced by ICPA will not ensure system safety. Another limita-

tion of the technique is that in complex systems with many state variables or state variables

with wide ranges of values, it is impossible to know if all indirect control relationships have

been defined. In these systems, ICPA assists in best-effort design and implementation. The

benefit of ICPA is that it presents a structured approach to identifying these indirect control

sources and relationships among state variables. It also provides a format for documenting

the design decisions used in defining the subgoals for the subsystems.

7.1.3 Hierarchical safety monitoring

I demonstrated that monitoring of system safety goals and subgoals can detect hazards at

run-time.

Monitoring not only can indicate whether or not the subgoals produced with ICPA par-

tially compose the parent goal, but also can identify key design defects that remain in the

system at run-time. By building monitors for the automotive goals and subgoals to test

ICPA, I also identified important design defects in the system under review, enumerated in

Section 6.1.2.

154

CHAPTER 7. CONCLUSION

Chapters 5 and 6 present the results of monitoring goals and subgoals produced by ICPA

for a semi-autonomous automotive system. This was a real vehicle, though one intended for

research and not as a commercial product. Run-time monitoring of the system safety goals

and subgoals identified eleven design defects while the system was still under development.

In some situations, subgoals were violated that did not result in parent goal violations, due

to redundant goal coverage, or were so transient they may not be observable to the driver.

Run-time monitoring allowed these design defects to be discovered and corrected when

they otherwise might have been missed.

In addition, the process of defining the monitors revealed that some system safety goals

cannot actually be monitored at the system level. In order to be monitored at the system

level, the goal must constrain control of a state variable that cannot be sensed, or the goal

must constrain control of state variables that are directly controlled by different subsystems.

This would be true of any similar closed-loop control of physical actuation and sensing.

One limitation of the contribution was that run-time monitoring was only performed in

one of the two systems used to illustrate the ICPA technique. Another limitation is that

run-time monitoring required observability of all state variables in the goals and subgoals.

In some system designs, this may require subgoal monitoring to be done locally in the sub-

systems. Despite these limitations, the system that was used for run-time monitoring was a

real commercial automotive system, rather than an academic system designed for course-

work. The issues uncovered with the system and information learned about ICPA during

run-time monitoring reflect the issues that might be encountered in real safety-critical sys-

tem development.

155

CHAPTER 7. CONCLUSION

7.2 Future work

Evaluation of the ICPA raised the following issues that could be investigated in future

research:

Physical sensing and actuation delay patterns. In the evaluation, any time acceleration

changed, the jerk threshold was exceeded for at least one system state. This is character-

istic of digital control, which uses sampled values rather than continuous values, and is

reasonably easy to factor into temporal logic-based goals. However, changes in actuation

have some residual delay in the resulting sensed values. Application of ICPA requires this

delay to be accurately characterized and included in the goal elaboration process. It is

likely that different types of actuation and sensing have characteristic delays. If so, perhaps

these characteristics could be generalized into specific patterns for defining indirect control

relationships in the ICPA, or perhaps a filtered value could be used instead.

Human factors of ICPA. One possible direction for future work would be to examine the

human-factors issues involved with applying the ICPA. As mentioned in Section 5.4, the

evaluation of ICPA in this thesis demonstrated that the technique can be applied to a real

safety-critical distributed embedded system with closed-loop control of physical actuation

and sensing to produce subgoals that partially compose the parent goal. This evaluation

was done by the author of this thesis, and not the system engineers who designed, built and

analyzed the system under review. As such, this evaluation does not show how well the

ICPA can be applied by engineers in a real industrial development environment.

Human factors evaluation, in general, is difficult because it requires access to many peo-

ple and many systems, preferably real developers working on real industrial products. For

this thesis, it was extremely difficult to gain access to a single system of reasonably realistic

complexity. In addition, the developers working on the system were too busy to participate

156

CHAPTER 7. CONCLUSION

much in any of the steps used to perform this evaluation. As such, this future work direction

would be extremely difficult without extensive participation by a specific organization.

157

Appendix A

Logic Operators, Acronyms, and

Definitions

158

APPENDIX A. LOGIC OPERATORS, ACRONYMS, AND DEFINITIONS

A.1. Temporal logic operators

P true in current state

¬P false in current state

lP true in previous state

�P true in some previous state

nP true in all previous states

mP true in next state

♦P true in current or some future state

qP true in current and all future states

P ∧ Q P AND Q

P ∨ Q P OR Q

P→ Q P implies Q in current state

P⇒ Q q(P→ Q); P implies Q in all states

P⇔ Q P iff Q in all states

ln<T P true for duration T in previous state

l�<T P true at least once in duration T in previous state

@P l¬P ∧ P; true in current state, false in previous state

S0 � P True in the initial state

Γ ⊢ P P is syntactically derivable from the premises Γ

Γ 0 P P is not syntactically derivable from the premises Γ

159

APPENDIX A. LOGIC OPERATORS, ACRONYMS, AND DEFINITIONS

A.2. Acronyms

ACC: Adaptive Cruise Control

CA: Collision Avoidance

FMEA: Failure Modes and Effects Analysis

FTA: Fault Tree Analysis

GORE: Goal Oriented Requirements Engineering

ICPA: Indirect Control Path Analysis

KAOS: Knowledge Acquisition in autOmated Specification

LCA: Lane Change Assist

PA: Park Assist

RCA: Rear Collision Avoidance

STPA Systems-Theoretic accident model and Process Analysis

160

APPENDIX A. LOGIC OPERATORS, ACRONYMS, AND DEFINITIONS

A.3. Definitions

direct control: ability to change a state variable directly; direct control may be limited

to one individual subsystem (e.g., one subsystem sends signals to an actuator) or

may be shared among subsystems (e.g., multiple subsystems send the same type of

request)

false negative: occurs when a goal violation is detected but no corresponding subgoal

violations are detected

false positive: occurs when a subgoal violation is detected but no corresponding goal

violation is detected

goal assignment: defines which indirect control sources have subgoals and how those

subgoals relate to each other; categories include single responsibility, redundant

responsibility, and shared responsibility.

goal coverage strategy: a plan for allocating subgoals to ensure that a high-level goal is

met; it includes the goal assignment and goal scope.

goal scope: defines how closely the safety subgoals meet the system safety goal; categories

include nonrestrictive and restrictive.

hit: occurs when a goal violation is detected and a corresponding goal violation is detected

indirect control: ability to influence change in a state variable; sources include hard-

ware actuation, system dynamics, and environmental agents that change sensed

state variables, or inputs from other subsystems

161

Appendix B

Goal Realizability Patterns and

Alternative Goals

162

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.1. Goal realizability patterns and alternative goals for A ⇒ B,

lA⇒ B, and A⇒ l B

A B A

ControllablePattern Observable

 A

Alternative Goal

 A

Restrictive

A B
 BB

B A
A, B

A B A A
 AA B

 BB
B A
A, B

 B

A B A A
A B

 BB
B A
A, B

 B

B A

B A

Yes

No

No
No

No

Yes
Yes
Yes

Yes
Yes
Yes

Yes

Yes
Yes
No

163

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.2. Goal realizability patterns and alternative goals for A ∨ B⇒ C

A B C

A, B C

C
C A
C B
C A, B
A, B

A, C B
A, C

B, C A
B, C

A, B, C

 C
 C
 C
 C

(A B)
(A B)

 C
 C
 C
 C

No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

ControllablePattern Observable Alternative Goal Restrictive
A
A B
A C
A B, C

Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction

B
B A
B C
B A, C

Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction

164

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.3. Goal realizability patterns and alternative goals for lA∨ B⇒ C

A B C

A, B C

C
C A
C B
C A, B
A, B

A, C B
A, C

B, C A
B, C

A, B, C

 C
 C
 C
 C

(A B)
(A B)

 C
 C
 C

No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

ControllablePattern Observable Alternative Goal Restrictive
A
A B
A C
A B, C

Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction

B
B A
B C
B A, C

Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction

165

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.4. Goal realizability patterns and alternative goals for A ∨ B ⇒ l

C

A B C

A, B C

C
C A
C B
C A, B
A, B

A, C B
A, C

B, C A
B, C

A, B, C

 C
 C
 C
 C

C (A B)
 C
 C
 C
 C

(A B)

No

Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes

C (A B)

A
A B
A C
A B, C

Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction

B
B A
B C
B A, C

Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction

ControllablePattern Observable Alternative Goal Restrictive

166

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.5. Goal realizability patterns and alternative goals for A ∧ B⇒ C

A B C

A, B C

C
C A
C B
C A, B
A, B

A, C B
A, C

A, B, C

 C
 C
 C
 C

(A B)
A C
A C

(A B)

No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

ControllablePattern Observable Alternative Goal Restrictive
A
A B
A C
A B,C

A
A
A
A

Yes
Yes
Yes
Yes

B
B A
B C
B A,C

B
B
B
B

Yes
Yes
Yes
Yes

B, C A
B, C

B C
B C Yes

Yes

167

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.6. Goal realizability patterns and alternative goals for lA∧ B⇒ C

A B C

A, B C

C
C A
C B
C A, B
A, B

A, C B
A, C

A, B, C

 C
 C
 C
 C

C (A B)
A C
A C

(A B)

No

Yes
Yes
Yes
Yes
Yes
No
Yes
Yes

ControllablePattern Observable Alternative Goal Restrictive
A
A B
A C
A B,C

A
A
A
A

Yes
Yes
Yes
Yes

B
B A
B C
B A,C

B
B
B
B

Yes
Yes
Yes
Yes

B, C A
B, C

B C
B C Yes

Yes

168

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.7. Goal realizability patterns and alternative goals for A ∧ B ⇒ l

C

A B C

A, B C

C
C A
C B
C A, B
A, B

A, C B
A, C

A, B, C

 C
A C
 C
A C

(A B)
A C
A C

(A B)

No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

A
A B
A C
A B,C

A
A
A
A

Yes
Yes
Yes
Yes

B
B A
B C
B A,C

B
A B

B
A B

Yes
Yes
Yes
Yes

B, C A
B, C B C Yes

No

ControllablePattern Observable Alternative Goal Restrictive

169

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.8. Goal realizability patterns and alternative goals for A⇒ B ∧C

A B C

B

ControllablePattern Observable Alternative Goal Restrictive
A
A B
A C
A B,C

A
A
A
A

Yes
Yes
Yes
Yes

B
B
B
B
C
C
C
C

A
C
A,C

A
B
A,C

Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction

C
Yes
YesA, B

A, B

A, C
A, C

A, B, C
B, C
B, C

A

A
A
A
A

 (B C)
 (B C)

Yes
Yes
Yes
Yes
No

170

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.9. Goal realizability patterns and alternative goals for lA⇒ B∧C

A B C

B

ControllablePattern Observable Alternative Goal Restrictive
A
A B
A C
A B,C

A
A
A
A

Yes
Yes
Yes
Yes

B
B
B
B
C
C
C
C

A
C
A,C

A
B
A,C

Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction

C
Yes
YesA, B

A, B

A, C
A, C

A, B, C
B, C
B, C

A

A
A
A
A

 (B C)

Yes
Yes
Yes
No
No

171

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.10. Goal realizability patterns and alternative goals for A ⇒ l

B ∧C

A B C

B

ControllablePattern Observable Alternative Goal Restrictive
A
A B
A C
A B,C

A
A
A
A

Yes
Yes
Yes
Yes

B
B
B
B
C
C
C
C

A
C
A,C

A
B
A,C

Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction
Not realizable with or without restriction

C
Yes
YesA, B

A, B

A, C
A, C

A, B, C
B, C
B, C

A

A
A
A
A

 (B C)
 (B C)

Yes
Yes
Yes
No
No

172

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.11. Goal realizability patterns and alternative goals for A⇒ B∨C

A B C

A, C B

C
C A
C B
C A, B

A, C

B, C A
B, C

A, B, C

 C
 C
 C
 C

A C
 (B C)
 (B C)

A C

No

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

ControllablePattern Observable Alternative Goal Restrictive
A
A B
A C
A B,C

A
A
A
A

Yes
Yes
Yes
Yes

B
B A
B C
B A,C

 B
 B
 B
 B

Yes
Yes
Yes
Yes

A, B C
A, B

A B
A B Yes

Yes

173

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.12. Goal realizability patterns and alternative goals for l A⇒ B∨C

A B C

A, C B

C
C A
C B
C A, B

A, C

B, C A
B, C

A, B, C

 C
A C
 C
A C

A C
 (B C)

A C

No

Yes
Yes
Yes
Yes

Yes
Yes
Yes
No

A
A B
A C
A B,C

A
A
A
A

Yes
Yes
Yes
Yes

ControllablePattern Observable Alternative Goal Restrictive

B
B A
B C
B A, C

 B
A B
 B
A B

Yes
Yes
Yes
Yes

A, B C
A, B

A B
A B Yes

Yes

174

APPENDIX B. GOAL REALIZABILITY PATTERNS AND ALTERNATIVE GOALS

Table B.13. Goal realizability patterns and alternative goals for A ⇒ l

B ∨C

A B C

A, B C

C
C A
C B
C A, B
A, B

A, C B
A, C

A, B, C

 C
 C

B C
B C

B A
A C
A B C

B A

No

Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

A
A B
A C
A B,C

A
B A
A
B A

Yes
Yes
Yes
Yes

B
B A
B C
B A,C

B
B
B
B

Yes
Yes
Yes
Yes

B, C A
B, C B C

B C
Yes
Yes

ControllablePattern Observable Alternative Goal Restrictive

175

Appendix C

ICPA for a Semi-autonomous

Automotive System

176

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships
va Arbiter ac: AccelerationCommand (va.value = ac.value)

% Acceleration is equal to the previous acceleration command value

#
01

System Safety Goal
Goal: Achieve[AutoAccelBelowThreshold]
InformalDef: Vehicle acceleration caused by autonomous vehicle control shall not exceed 2 m/s2.
FormalDef: va: VehicleAcceleration

IsSubsystem(va.source) va.value 2 m/s2

ICPA for Achieve[AutoAccelBelowThreshold] (1 of 4)

 (va.source = ac.source)
% The source of acceleration is equal to the source of the previous
acceleration command
 (ac.source {Driver, CA, RCA, ACC, LCA, PA})

% The source of an acceleration command is either the driver or one
% of the feature subsystems

02

03

Figure C.1. ICPA for Achieve[AutoAccelBelowThreshold] (1 of 4)

1
7
7

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

ICPA for Achieve[AutoAccelBelowThreshold] (2 of 4)
ac.source = ar.source ac.value = ar.value
% If the source of an acceleration command is the source of a
% previous acceleration request, then the value of the acceleration
% command is equal to the value of the previous acceleration request

CA, RCA,
ACC, LCA,
PA

ar: AccelerationRequest

IsSubsystem(ac.source) (ar: ac.source = ar.source)
% If the source of the acceleration command is a subsystem, then
% there exists an acceleration request such that the source of the
% acceleration command is the source of that acceleration request,
% and vice versa

 (ar.source {CA, RCA, ACC, LCA, PA})
% The source of an acceleration request is one of the feature
% subsystems

04

05

06IsSubsystem(ar.source)
% The source of the acceleration request is a subsystem

07

va

Figure C.2. ICPA for Achieve[AutoAccelBelowThreshold] (2 of 4)

1
7
8

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

ICPA for Achieve[AutoAccelBelowThreshold] (3 of 4)

Goal Elaboration
IsSubsystem(va.source) va.value 2 m/s2

IsSubsystem(ac.source)) (ac.value 2 m/s2)

ac.source = ar.source) ac.value 2 m/s2)

ac.source = ar.source) (ar.value 2 m/s2)

ar.value 2 m/s2)

Indirect Control Relationships

01, 02 – Introduce accuracy/actuation goal tactic
Assumes worst-case actuation delays for source
of acceleration and acceleration value (built-in to
definition of 01, 02)

05 – Introduce accuracy/actuation goal tactic

04 – Introduce accuracy/actuation goal tactic

OR-Reduction

Redundant Responsibility (Primary: Arbiter; Secondary: CA, RCA, ACC, LCA, PA)
Goal Coverage Strategy
 Goal Assignment

Restrictive (Assumes worst-case vehicle response to acceleration command; real response may be different.
Also, OR reduction is used for CA, RCA, ACC, LCA, and PA goals.)

 Goal Scope

Figure C.3. ICPA for Achieve[AutoAccelBelowThreshold] (3 of 4)

1
7
9

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Subsystem Safety Goals
Subsystem: Arbiter
Controls: AcelerationCommand
Observes: AccelerationRequest
Goal: Achieve[AutoAccelCommandBelowThreshold]
InformalDef: Vehicle acceleration commands caused by autonomous vehicle control shall not exceed 2 m/s2.
FormalDef: ac: AccelerationCommand, ar: AccelerationRequest

(ac.source = ar.source) ac.value 2 m/s2)
Subsystem: CA, RCA, ACC, LCA, PA
Controls: AcelerationRequest
Observes:
Goal: Maintain[AutoAccelRequestBelowThreshold]
InformalDef: Vehicle acceleration requests caused by autonomous vehicle control shall not exceed 2 m/s2.
FormalDef: ar: AccelerationRequest

(ar.value 2 m/s2)

ICPA for Achieve[AutoAccelBelowThreshold] (4 of 4)

Figure C.4. ICPA for Achieve[AutoAccelBelowThreshold] (4 of 4)

1
8
0

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships
vj Arbiter ac: AccelerationCommand (vj.value = VehicleJerkResponse(ac.value, ac.value))

% Jerk is equal to the jerk response caused by the values of the
% previous two acceleration commands

#

01

System Safety Goal
Goal: Achieve[AutoJerkBelowThreshold]
InformalDef: Vehicle jerk caused by autonomous vehicle control shall not exceed 2.5 m/s3.
FormalDef: vj: VehicleJerk

IsSubsystem(vj.source) vj.value 2.5 m/s3

ICPA for Achieve[AutoJerkBelowThreshold] (1 of 4)

 (vj.source = ac.source)
% The source of jerk is the source of the previous acceleration
% command

02

03
 (ac.source {Driver, CA, RCA, ACC, LCA, PA})
% The source of an acceleration command is either the driver or one
% of the feature subsystems

Figure C.5. ICPA for Achieve[AutoJerkBelowThreshold] (1 of 4)

1
8
1

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

CA, RCA,
ACC, LCA,
PA

ar: AccelerationRequest
04

05

06

07

ac.source = ar.source ac.value = ar.value
% If the source of an acceleration command is the source of a
% previous acceleration request, then the value of the acceleration
% command is equal to the value of the previous acceleration request
IsSubsystem(ac.source) (ar: ac.source = ar.source)
% If the source of the acceleration command is a subsystem, then
% there exists an acceleration request such that the source of the
% acceleration command is the source of that acceleration request,
% and vice versa

 (ar.source {CA, RCA, ACC, LCA, PA})
% The source of an acceleration request is one of the feature
% subsystems

IsSubsystem(ar.source)
% The source of the acceleration request is a subsystem

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #
vj

ICPA for Achieve[AutoJerkBelowThreshold] (2 of 4)

Figure C.6. ICPA for Achieve[AutoJerkBelowThreshold] (2 of 4)

1
8
2

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Goal Elaboration
ICPA for Achieve[AutoJerkBelowThreshold] (3 of 4)

Redundant Responsibility (Primary: Arbiter; Secondary: CA, RCA, ACC, LCA, PA)
Goal Coverage Strategy
 Goal Assignment

Restrictive (Assumes worst-case vehicle response to acceleration command; real response may be different.
Also, OR reduction is used for CA, RCA, ACC, LCA, and PA goals)

 Goal Scope

IsSubsystem(vj.source) vj.value 2.5 m/s3

IsSubsystem(ac.source)
VehicleJerkResponse(ac.value, ac.value) 2.5 m/s3)

ac.source = ar.source)
VehicleJerkResponse(ac.value, ac.value) 2.5 m/s3)

ac.source = ar.source)
VehicleJerkResponse(ar.value, ar.value) 2.5 m/s3)

VehicleJerkResponse(ar.value, ar.value) 2.5 m/s3)

Indirect Control Relationships

01, 02 – Introduce accuracy/actuation goal tactic
Assumes worst-case actuation delays for source
of acceleration and acceleration value (built-in to
definition of 01, 02)

05 – Introduce accuracy/actuation goal tactic

04 – Introduce accuracy/actuation goal tactic

OR-Reduction

Goal Elaboration

Figure C.7. ICPA for Achieve[AutoJerkBelowThreshold] (3 of 4)

1
8
3

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Subsystem Safety Goals
Subsystem: Arbiter
Controls: AcelerationCommand
Observes: AccelerationRequest
Goal: Achieve[AutoAccelCommandJerkBelowThreshold]
InformalDef: Vehicle acceleration commands caused by autonomous vehicle control shall not produce jerk that exceeds 2.5 m/s2.
FormalDef: ac: AccelerationCommand, ar: AccelerationRequest

ac.source = ar.source) VehicleJerkResponse(ar.value, ar.value) 2.5 m/s3)
Subsystem: CA, RCA, ACC, LCA, PA
Controls: AcelerationRequest
Observes:
Goal: Maintain[AutoAccelRequestJerkBelowThreshold]
InformalDef: Vehicle acceleration requests caused by autonomous vehicle control shall not produce jerk that exceeds 2.5 m/s2.
FormalDef: ar: AccelerationRequest

VehicleJerkResponse(ar.value, ar.value) 2.5 m/s3)

ICPA for Achieve[AutoJerkBelowThreshold] (4 of 4)

Figure C.8. ICPA for Achieve[AutoJerkBelowThreshold] (4 of 4)

1
8
4

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

System Safety Goal
Goal: Achieve[SubsystemAccelSteeringAgreement]
InformalDef: If a subsystem a) requests control of acceleration and steering and b) is granted control of either acceleration or

steering, then the subsystem shall control both acceleration and steering.
FormalDef: va: VehicleAcceleration, vst: VehicleSteering, sn: SubsystemName

RequestingAcceleration(sn) RequestingSteering(sn) ((va.source = sn) (vst.source = sn))
(va.source = vst.source = sn)

ICPA for Achieve[SubsystemAccelSteeringAgreement] (1 of 5)

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #
sn Arbiter

((ar.source = sn) ar.active) RequestingAcceleration(sn)
% If an acceleration request is active, then the source of that
% acceleration request is requesting acceleration, and vice versa

CA, RCA,
ACC, LCA,
PA

ar: AccelerationRequest
01

02

 (sn {Arbiter, CA, RCA, ACC, LCA, PA})
% A subsystem is either the arbiter or one of the feature subsystems

((sr.source = sn) sr.active) RequestingSteering(sn)
% If a steering request is active, then the source of that steering
% request is requesting steering, and vice versa

sr: AccelerationRequest
03

Figure C.9. ICPA for Achieve[SubsystemAccelSteeringAgreement] (1 of 5)

1
8
5

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships

ar.active (ac.source = ar.source)
% If a previous acceleration request is not active, then the source of
% an acceleration command is not the source of that previous
% acceleration request

#
va Arbiter ac: AccelerationCommand (va.value = ac.value)

% Acceleration is equal to the previous acceleration command value 04

 (va.source = ac.source)
% The source of acceleration is equal to the source of the previous
acceleration command
 (ac.source {Driver, CA, RCA, ACC, LCA, PA})

% The source of an acceleration command is either the driver or one
% of the feature subsystems
ac.source = ar.source ac.value = ar.value
% If the source of an acceleration command is the source of a
% previous acceleration request, then the value of the acceleration
% command is equal to the value of the previous acceleration request

CA, RCA,
ACC, LCA,
PA

ar: AccelerationRequest

 (ar.source {CA, RCA, ACC, LCA, PA})
% The source of an acceleration request is one of the feature
% subsystems

05

06

07

08

09

ICPA for Achieve[SubsystemAccelSteeringAgreement] (2 of 5)

Figure C.10. ICPA for Achieve[SubsystemAccelSteeringAgreement] (2 of 5)

1
8
6

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

11

12

13

14

15

10
vst Arbiter sc: SteeringCommand (vst.value = sc.value)

% The value of steering is equal to the value of the previous steering
% command
 (vst.source = sc.source)
% The source of steering is the source of the previous steering
% command
 (sc.source {Driver, CA, RCA, ACC, LCA, PA})
% The source of a steering command is either the driver or one of the
% feature subsystems
sc.source = sr.source sc.value = sr.value
% If the source of a steering command is the source of a previous
% steering request, then the value of the steering command is equal
% to the value of the previous steering request

CA, RCA,
ACC, LCA,
PA

sr: SteeringRequest

 (sr.source {CA, RCA, ACC, LCA, PA})
% The source of a steering request is one of the feature subsystems

sr.active (sc.source = sr.source)
% If a previous steering request is not active, then the source of a
% steering command is not the source of that previous steering
% request

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #

ICPA for Achieve[SubsystemAccelSteeringAgreement] (3 of 5)

Figure C.11. ICPA for Achieve[SubsystemAccelSteeringAgreement] (3 of 5)

1
8
7

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

ICPA for Achieve[SubsystemAccelSteeringAgreement] (4 of 5)

Single Responsibility (Arbiter)
Goal Coverage Strategy
 Goal Assignment

Restrictive (Assumes worst-case vehicle response to acceleration command; real response may be different.
Also, scope of the goal is expanded by incorporating critical assumption.)

 Goal Scope

Goal Elaboration
(RequestingAcceleration(sn) RequestingSteering(sn)

 ((va.source = sn) (vst.source = sn)))
(va.source = vst.source = sn)

(RequestingAcceleration(sn) RequestingSteering(sn)
 ((ac.source = sn) (sc.source = sn)))
(ac.source = sc.source = sn)

(((ar.source = sn) ar.active) ((sr.source = sn) sr.active)
 ((ac.source = ar.source) (sc.source = sr.source)))
(ac.source = sc.source = ar.source = sr.source = sn)

(((ar.source = sn) ar.active) ((sr.source = sn) sr.active)
 ((ac.source = ar.source) (sc.source = sr.source)))
(ac.source = sc.source = ar.source = sr.source = sn)

 (ac.value = sc.value = ar.value = sr.value = sn))

Indirect Control Relationships

05, 11 – Introduce accuracy/actuation goal tactic

02, 03 – Introduce accuracy/actuation goal tactic

07, 13 – Expanding scope by incorporating
critical assumption into the subgoal

Figure C.12. ICPA for Achieve[SubsystemAccelSteeringAgreement] (4 of 5)

1
8
8

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Subsystem Safety Goals
Subsystem: Arbiter
Controls: AcelerationCommand, SteeringCommand
Observes: AccelerationRequest, SteeringRequest
Goal: Achieve[AccelSteeringCommandAgreement]
InformalDef: If subsystem a) requests control of both the acceleration command and the steering command and

b) is granted control of either the acceleration command or the steering command,
then the subsystem shall be granted control of both the acceleration command and the steering command.

FormalDef: ac: AccelerationCommand, ar: AccelerationRequest, sc: SteeringCommand, sr: SteeringRequest
(((ar.source = sn) ar.active) ((sr.source = sn) sr.active)

 ((ac.source = ar.source) (sc.source = sr.source)))
(ac.source = sc.source = ar.source = sr.source = sn)

 (ac.value = sc.value = ar.value = sr.value = sn))

ICPA for Achieve[SubsystemAccelSteeringAgreement] (5 of 5)

Figure C.13. ICPA for Achieve[SubsystemAccelSteeringAgreement] (5 of 5)

1
8
9

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

System Safety Goal
Goal: Achieve[NoAutoAccelFromStop]
InformalDef: If a) the vehicle is stopped for a duration of StoppedTime and

b) the throttle pedal has not been applied within the preceding GoTime and
c) a subsystem is controlling acceleration and
d) the HMI has not sent a go signal to the controlling subsystem within the preceeding AccelerationTime,
then there shall be no vehicle acceleration

FormalDef: va: VehicleAcceleration, vsp: VehicleSpeed, sn: SubsystemName, hmi: HumanMachineInterface, tp: ThrottlePedal
st: StoppedTime, gt: GoTime
(<st IsStopped(vsp.value) <gt @IsApplied(tp) (va.source = sn) <gt @Go(hmi, sn))

IsAccelerating(va.value)

ICPA for Achieve[NoAutoAccelFromStop] (1 of 4)

Figure C.14. ICPA for Achieve[NoAutoAccelFromStop] (1 of 4)

1
9
0

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #
va Arbiter ac: AccelerationCommand

CA, RCA,
ACC, LCA,
PA

ar: AccelerationRequest

 (va.value = ac.value)
% Acceleration is equal to the previous acceleration command value 01

 (va.source = ac.source)
% The source of acceleration is equal to the source of the previous
acceleration command
 (ac.source {Driver, CA, RCA, ACC, LCA, PA})

% The source of an acceleration command is either the driver or one
% of the feature subsystems
ac.source = ar.source ac.value = ar.value
% If the source of an acceleration command is the source of a
% previous acceleration request, then the value of the acceleration
% command is equal to the value of the previous acceleration request
 (ar.source {CA, RCA, ACC, LCA, PA})

% The source of an acceleration request is one of the feature
% subsystems

02

03

04

05

ICPA for Achieve[NoAutoAccelFromStop] (2 of 4)

sn

CA, RCA,
ACC, LCA,
PA

06

07
 (ar.source = sn)

% The source of an acceleration request is a subsystem

Arbiter

ar: AccelerationRequest

 (sn {Arbiter, CA, RCA, ACC, LCA, PA})
% A subsystem is either the arbiter or one of the feature subsystems

Figure C.15. ICPA for Achieve[NoAutoAccelFromStop] (2 of 4)

1
9
1

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Goal Elaboration
(<st IsStopped(vsp.value) <gt @IsApplied(tp))

 (va.source = sn) <gt @Go(hmi, sn)))
IsAccelerating(va.value)

(<st-1 IsStopped(vsp.value) <gt-1 @IsApplied(tp))
 (ac.source = sn) <gt-1 @Go(hmi, sn)))

IsAccelerating(ac.value)

(<st-2 IsStopped(vsp.value) <gt-2 @IsApplied(tp))
<gt-2 @Go(hmi, sn)))

IsAccelerating(ar.value)

Indirect Control Relationships

01, 02 – Introduce accuracy/actuation goal tactic
Assumes worst-case actuation delays for source
of acceleration and acceleration value (built-in to
definition of 01, 02}

04 – Introduce accuracy/actuation goal tactic

Redundant Responsibility (Primary: Arbiter, Secondary: CA, RCA, ACC, LCA, PA)
Goal Coverage Strategy
 Goal Assignment

Restrictive (Assumes worst-case vehicle response to acceleration command, worst-case delays between
features & arbiter.)

 Goal Scope

ICPA for Achieve[NoAutoAccelFromStop] (3 of 4)

Figure C.16. ICPA for Achieve[NoAutoAccelFromStop] (3 of 4)

1
9
2

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Subsystem Safety Goals
Subsystem: Arbiter
Controls: AcelerationCommand
Observes: VehicleSpeed, SubsystemName, ThrottlePedal, HumanMachineInterface, StoppedTime, GoTime
Goal: Achieve[AutoAccelCommandBelowThreshold]
InformalDef: If a) the vehicle is stopped for a duration of StoppedTime and

b) the throttle pedal has not been applied within the preceding GoTime and
c) a subsystem is controlling acceleration and
d) the HMI has not sent a go signal to the controlling subsystem within the preceeding GoTime,
then the vehicle acceleration command shall be set to

FormalDef: ac: AccelerationCommand, vsp: VehicleSpeed, sn: SubsystemName, hmi: HumanMachineInterface,
tp:ThrottlePedal, st: StoppedTime, gt: GoTime
(<st-1 IsStopped(vsp.value) <gt-1 @IsApplied(tp)) (ac.source = sn) <gt-1 @Go(hmi, sn)))

IsAccelerating(ac.value)
Subsystem: CA, RCA, ACC, LCA, PA
Controls: AcelerationRequest
Observes: VehicleSpeed, SubsystemName, ThrottlePedal, HumanMachineInterface, StoppedTime, GoTime
Goal: Achieve[AutoAccelRequestBelowThreshold]
InformalDef: If a) the vehicle is stopped for a duration of StoppedTime and

b) the throttle pedal has not been applied within the preceding GoTime and
c) a subsystem is controlling acceleration and
d) the HMI has not sent a go signal to the controlling subsystem within the preceeding GoTime,
then the vehicle acceleration command shall be set to

FormalDef: ar: AccelerationRequest, vsp: VehicleSpeed, sn: SubsystemName, hmi: HumanMachineInterface,
tp:ThrottlePedal, st: StoppedTime, gt: GoTime
(<st-2 IsStopped(vsp.value) <gt-2 @IsApplied(tp)) <gt-2 @Go(hmi, sn)))

IsAccelerating(ar.value)

ICPA for Achieve[NoAutoAccelFromStop] (4 of 4)

Figure C.17. ICPA for Achieve[NoAutoAccelFromStop] (4 of 4)

1
9
3

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #

System Safety Goal
Goal: Achieve[DriverForwardAccelOverride]
InformalDef: If a) the vehicle is moving in the forward direction and

b) the driver is applying the brake pedal or the throttle pedal and
c) a subsystem is requesting a vehicle acceleration greater than or equal to -2 m/s2 (i.e., not requesting a “hard” stop of
the vehicle),
then the subsystem shall not control vehicle acceleration.

FormalDef: va: VehicleAcceleration, sn: SubsystemName, bp: BrakePedal, tp: ThrottlePedal
(InForwardMotion(vsp.value) (bp.active tp.active) RequestingAcceleration(sn)

 (RequestedAcceleration(sn) -2 m/s2)) (va.source = sn)

ICPA for Achieve[DriverForwardAccelOverride] (1 of 4)

va Arbiter ac: AccelerationCommand (va.value = ac.value)
% Acceleration is equal to the previous acceleration command value 01

 (va.source = ac.source)
% The source of acceleration is equal to the source of the previous
acceleration command
 (ac.source {Driver, CA, RCA, ACC, LCA, PA})

% The source of an acceleration command is either the driver or one
% of the feature subsystems

02

03

Figure C.18. ICPA for Achieve[DriverForwardAccelOverride] (1 of 4)

1
9
4

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

CA, RCA,
ACC, LCA,
PA

ar: AccelerationRequest ac.source = ar.source ac.value = ar.value
% If the source of an acceleration command is the source of a
% previous acceleration request, then the value of the acceleration
% command is equal to the value of the previous acceleration request

 (ar.source {CA, RCA, ACC, LCA, PA})
% The source of an acceleration request is one of the feature
% subsystems

04

05

ar.active (ac.source = ar.source)
% If a previous acceleration request is not active, then the source of
% an acceleration command is not the source of that previous
% acceleration request

06

va

ICPA for Achieve[DriverForwardAccelOverride] (2 of 4)

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #

sn Arbiter

CA, RCA,
ACC, LCA,
PA

ar: AccelerationRequest
07

08

09
((ar.source = sn) ar.active)

 (RequestedAcceleration(sn) = ar.value)
% If an acceleration request is active, then the requested acceleration
% of the source of the acceleration request is the value of the
% acceleration request.

((ar.source = sn) ar.active) RequestingAcceleration(sn)
% If an acceleration request is active, then the source of that
% acceleration request is requesting acceleration, and vice versa

 (sn {Arbiter, CA, RCA, ACC, LCA, PA})
% A subsystem is either the arbiter or one of the feature subsystems

Figure C.19. ICPA for Achieve[DriverForwardAccelOverride] (2 of 4)

1
9
5

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Goal Elaboration
(InForwardMotion(vsp.value) (bp.active tp.active)

RequestingAcceleration(sn) (RequestedAcceleration(sn) -2.5 m/s2))
(va.source = sn)

(InForwardMotion(vsp.value) (bp.active tp.active) ((ar.source = sn)
 ar.active) (ar.value -2.5 m/s2))

(ac.source = ar.source)

 (InForwardMotion(vsp.value) (bp.active tp.active))
ar.active (ar.value < -2 m/s2))

Indirect Control Relationships

01, 02, 08, 09 – Introduce accuracy/actuation goal
tactic. Assumes worst-case actuation delays for
source of acceleration and acceleration value
(built-in to definition of 01, 02)

OR reduction. Also restricts acceleration requests
one state earlier than necessary.

ICPA for Achieve[DriverForwardAccelOverride] (3 of 4)

Redundant Responsibility (Primary: Arbiter, Secondary: CA, RCA, ACC, LCA, PA)
Goal Coverage Strategy
 Goal Assignment

Restrictive (Assumes worst-case vehicle response to acceleration command; real response may be different.
Also, OR reduction is used for CA, RCA, ACC, LCA, and PA goals, and restricts acceleration requests one
state earlier than necessary.)

 Goal Scope

Figure C.20. ICPA for Achieve[DriverForwardAccelOverride] (3 of 4)

1
9
6

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Subsystem Safety Goals
Subsystem: Arbiter
Controls: AcelerationCommand
Observes: AccelerationRequest, BrakePedal, ThrottlePedal
Goal: Acheive[DriverForwardAccelOverrideAccelCommand]
InformalDef: If a) the vehicle is moving in the forward direction and

b) the driver is applying the brake pedal or the throttle pedal and
c) a subsystem is requesting a vehicle acceleration greater than or equal to -2 m/s2 (i.e., not requesting a “hard” stop of
the vehicle),
then the source of the acceleration command shall not be a subsystem

FormalDef: ac: AccelerationCommand, bp: BrakePedal, ar:AccelerationRequest, tp:ThrottlePedal
(InForwardMotion(vsp.value) (bp.active tp.active) ((ar.source = sn) ar.active) (ar.value -2 m/s2))

(ac.source = ar.source)

ICPA for Achieve[DriverForwardAccelOverride] (4 of 4)

Subsystem: CA, RCA, ACC, LCA, PA
Controls: AcelerationRequest
Observes: BrakePedal, ThrottlePedal
Goal: Acheive[DriverForwardAccelOverrideAccelRequest]
InformalDef: If a) a) the vehicle is moving in the forward direction and

b) the driver is applying the brake pedal or the throttle pedal
then the subsystem a) shall not request acceleration or
b) shall request acceleration less than -2 m/s2 (i.e., request a “hard” stop of the vehicle) .

FormalDef: ar: AccelerationRequest, vsp: VehicleSpeed, sn: SubsystemName, hmi: HumanMachineInterface,
tp:ThrottlePedal, st: StoppedTime, gt: GoTime
 (InForwardMotion(vsp.value) (bp.active tp.active))

ar.active (ar.value < -2 m/s2) ar.value < RequestedAcceleration(bp, tp))))

Figure C.21. ICPA for Achieve[DriverForwardAccelOverride] (4 of 4)

1
9
7

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #

System Safety Goal
Goal: Achieve[DriverBackwardAccelOverride]
InformalDef: If a) the vehicle is moving in the backward direction and

b) the driver is applying the brake pedal or the throttle pedal and
c) a subsystem is requesting a vehicle acceleration less than or equal to 2 m/s2 (i.e., not requesting a “hard” stop of
the vehicle),
then the subsystem shall not control vehicle acceleration.

FormalDef: va: VehicleAcceleration, sn: SubsystemName, bp: BrakePedal, tp: ThrottlePedal
(InBackwardMotion(vsp.value) (bp.active tp.active) RequestingAcceleration(sn)

 (RequestedAcceleration(sn) 2 m/s2)) (va.source = sn)

ICPA for Achieve[DriverBackwardAccelOverride] (1 of 4)

va Arbiter ac: AccelerationCommand (va.value = ac.value)
% Acceleration is equal to the previous acceleration command value 01

 (va.source = ac.source)
% The source of acceleration is equal to the source of the previous
acceleration command
 (ac.source {Driver, CA, RCA, ACC, LCA, PA})

% The source of an acceleration command is either the driver or one
% of the feature subsystems

02

03

Figure C.22. ICPA for Achieve[DriverBackwardAccelOverride] (1 of 4)

1
9
8

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

CA, RCA,
ACC, LCA,
PA

ar: AccelerationRequest ac.source = ar.source ac.value = ar.value
% If the source of an acceleration command is the source of a
% previous acceleration request, then the value of the acceleration
% command is equal to the value of the previous acceleration request

 (ar.source {CA, RCA, ACC, LCA, PA})
% The source of an acceleration request is one of the feature
% subsystems

04

05

ar.active (ac.source = ar.source)
% If a previous acceleration request is not active, then the source of
% an acceleration command is not the source of that previous
% acceleration request

06

va
Variable

Indirect Control Path
Subsystem Variables Indirect Control Relationships #

sn Arbiter

CA, RCA,
ACC, LCA,
PA

ar: AccelerationRequest
07

08

09
((ar.source = sn) ar.active)

 (RequestedAcceleration(sn) = ar.value)
% If an acceleration request is active, then the requested acceleration
% of the source of the acceleration request is the value of the
% acceleration request.

((ar.source = sn) ar.active) RequestingAcceleration(sn)
% If an acceleration request is active, then the source of that
acceleration request is requesting acceleration, and vice versa

 (sn {Arbiter, CA, RCA, ACC, LCA, PA})
% A subsystem is either the arbiter or one of the feature subsystems

ICPA for Achieve[DriverBackwardAccelOverride] (2 of 4)

Figure C.23. ICPA for Achieve[DriverBackwardAccelOverride] (2 of 4)

1
9
9

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Goal Elaboration
(InBackwardMotion(vsp.value) (bp.active tp.active)

RequestingAcceleration(sn) (RequestedAcceleration(sn) 2 m/s2))
(va.source = sn)

(InBackwardMotion(vsp.value) (bp.active tp.active) ((ar.source = sn)
 ar.active) (ar.value 2 m/s2))

(ac.source = ar.source)

 (InBackwardMotion(vsp.value) (bp.active tp.active))
ar.active (ar.value > 2 m/s2))

Indirect Control Relationships

01, 02, 08, 09 – Introduce accuracy/actuation goal
tactic. Assumes worst-case actuation delays for
source of acceleration and acceleration value
(built-in to definition of 01, 02)

OR reduction. Also restricts acceleration requests
one state earlier than necessary.

ICPA for Achieve[DriverBackwardAccelOverride] (3 of 4)

Redundant Responsibility (Primary: Arbiter, Secondary: CA, RCA, ACC, LCA, PA)
Goal Coverage Strategy
 Goal Assignment

Restrictive (Assumes worst-case vehicle response to acceleration command; real response may be different.
Also, OR reduction is used for CA, RCA, ACC, LCA, and PA goals, and restricts acceleration requests one
state earlier than necessary.)

 Goal Scope

Figure C.24. ICPA for Achieve[DriverBackwardAccelOverride] (3 of 4)

2
0
0

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Subsystem Safety Goals
Subsystem: Arbiter
Controls: AcelerationCommand
Observes: AccelerationRequest, BrakePedal, ThrottlePedal
Goal: Acheive[DriverBackwardAccelOverrideAccelCommand]
InformalDef: If a) the vehicle is moving in the backward direction and

b) the driver is applying the brake pedal or the throttle pedal and
c) a subsystem is requesting a vehicle acceleration less than or equal to 2 m/s2 (i.e., not requesting a “hard” stop of
the vehicle),
then the source of the acceleration command shall not be a subsystem

FormalDef: ac: AccelerationCommand, bp: BrakePedal, ar:AccelerationRequest, tp:ThrottlePedal
(InBackwardMotion(vsp.value) (bp.active tp.active) ((ar.source = sn) ar.active) (ar.value 2 m/s2))

(ac.source = ar.source)

ICPA for Achieve[DriverBackwardAccelOverride] (4 of 4)

Subsystem: CA, RCA, ACC, LCA, PA
Controls: AcelerationRequest
Observes: BrakePedal, ThrottlePedal
Goal: Acheive[DriverBackwardAccelOverrideAccelRequest]
InformalDef: If a) a) the vehicle is moving in the backward direction and

b) the driver is applying the brake pedal or the throttle pedal
then the subsystem a) shall not request acceleration or
b) shall request acceleration greater than 2 m/s2 (i.e., request a “hard” stop of the vehicle) .

FormalDef: ar: AccelerationRequest, vsp: VehicleSpeed, sn: SubsystemName, hmi: HumanMachineInterface,
tp:ThrottlePedal, st: StoppedTime, gt: GoTime
 (InBackwardMotion(vsp.value) (bp.active tp.active))

ar.active (ar.value > 2 m/s2) ar.value < RequestedAcceleration(bp, tp))))

Figure C.25. ICPA for Achieve[DriverBackwardAccelOverride] (4 of 4)

2
0
1

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #

System Safety Goal
Goal: Achieve[DriverSteeringOverride]
InformalDef: If the driver is turning the steering wheel, then no subsystem shall control vehicle steering
FormalDef: vst: VehicleSteering, sn: SubsystemName, sw: SteeringWheel

(sw.active) (vst.source = sn)

ICPA for Achieve[DriverSteeringOverride] (1 of 4)

01

02

03

Arbiter sc: SteeringCommand (vst.value = sc.value)
% The value of steering is equal to the value of the previous steering
% command

 (vst.source = sc.source)
% The source of steering is the source of the previous steering
% command

 (sc.source {Driver, CA, RCA, ACC, LCA, PA})
% The source of a steering command is either the driver or one of the
% feature subsystems

vst

Figure C.26. ICPA for Achieve[DriverSteeringOverride] (1 of 4)

2
0
2

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

sn Arbiter

CA, RCA,
ACC, LCA,
PA

ar: AccelerationRequest
07

08

09

 (sn {Arbiter, CA, RCA, ACC, LCA, PA})
% A subsystem is either the arbiter or one of the feature subsystems
((sr.source = sn) sr.active) RequestingSteering(sn)
% If a steering request is active, then the source of that steering
request is requesting steering, and vice versa

06

04

05

((sr.source = sn) sr.active)
 (RequestedSteering(sn) = sr.value)

% If a steering request is active, then the steering value requested by
% the source of the steering request is the value of the steering
% request

sc.source = sr.source sc.value = sr.value
% If the source of a steering command is the source of a previous
% steering request, then the value of the steering command is equal
% to the value of the previous steering request

CA, RCA,
ACC, LCA,
PA

sr: SteeringRequest

 (sr.source {CA, RCA, ACC, LCA, PA})
% The source of a steering request is one of the feature subsystems

sr.active (sc.source = sr.source)
% If a previous steering request is not active, then the source of a
% steering command is not the source of that previous steering
% request

vst

ICPA for Achieve[DriverSteeringOverride] (2 of 4)

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #

Figure C.27. ICPA for Achieve[DriverSteeringOverride] (2 of 4)

2
0
3

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Goal Elaboration
(sw.active) (vst.source = sn)

(sw.active) (sc.source = sr.source)

(sw.active) sr.active

Indirect Control Relationships

01, 02, 03, 05 – Introduce accuracy/actuation goal
tactic. Assumes worst-case actuation delays for
source of acceleration and acceleration value
(built-in to definition of 01, 02)

06 – Split Lack of Monitorability/Controllability by
Chaining.
Restricts acceleration requests one state earlier
than necessary.

ICPA for Achieve[DriverSteeringOverride] (3 of 4)

Redundant Responsibility (Primary: Arbiter, Secondary: CA, RCA, ACC, LCA, PA)
Goal Coverage Strategy
 Goal Assignment

Restrictive (Assumes worst-case vehicle response to acceleration command; real response may be different.
Restricts acceleration requests one state earlier than necessary.)

 Goal Scope

Figure C.28. ICPA for Achieve[DriverSteeringOverride] (3 of 4)

2
0
4

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Subsystem Safety Goals
Subsystem: Arbiter
Controls: SteeringCommand
Observes: SteeringRequest, SteeringWheel
Goal: Acheive[DriverSteeringOverrideSteeringCommand]
InformalDef: If the driver is turning the steering wheel, then the source of steering commands shall not be a steering request

from a subsytem.
FormalDef: sc: SteeringCommand, sr: SteeringRequest, sw: SteeringWheel

(sw.active) (sc.source = sr.source)

Subsystem: CA, RCA, ACC, LCA, PA
Controls: SteeringRequest
Observes: SteeringWheel
Goal: Acheive[DriverSteeringOverrideSteeringRequest]
InformalDef: If the driver is turning the steering wheel, then subsystem shall not request steering
FormalDef: sr: SteeringRequest, sw: SteeringWheel

(sw.active) sr.active

ICPA for Achieve[DriverSteeringOverride] (4 of 4)

Figure C.29. ICPA for Achieve[DriverSteeringOverride] (4 of 4)

2
0
5

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #

System Safety Goal
Goal: Achieve[ForwardBlockAccelSteering]
InformalDef: If the vehicle is moving forward, then the subsystem RCA shall not control vehicle acceleration or steering
FormalDef: va: VehicleAcceleration, vst: VehicleSteering, vsp: VehicleSpeed

InForwardMotion(vsp.value) ((va.source = ‘RCA’) (vst.source = ‘RCA’))

ICPA for Achieve[ForwardBlockAccelSteering] (1 of 4)

ar.active (ac.source = ar.source)
% If a previous acceleration request is not active, then the source of
% an acceleration command is not the source of that previous
% acceleration request

va Arbiter ac: AccelerationCommand (va.value = ac.value)
% Acceleration is equal to the previous acceleration command value 01

 (va.source = ac.source)
% The source of acceleration is equal to the source of the previous
acceleration command
 (ac.source {Driver, CA, RCA, ACC, LCA, PA})

% The source of an acceleration command is either the driver or one
% of the feature subsystems
ac.source = ar.source ac.value = ar.value
% If the source of an acceleration command is the source of a
% previous acceleration request, then the value of the acceleration
% command is equal to the value of the previous acceleration request

CA, RCA,
ACC, LCA,
PA

ar: AccelerationRequest

 (ar.source {CA, RCA, ACC, LCA, PA})
% The source of an acceleration request is one of the feature
% subsystems

02

03

04

05

06

Figure C.30. ICPA for Achieve[ForwardBlockAccelSteering] (1 of 4)

2
0
6

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

08

09

10

11

12

07
vst Arbiter sc: SteeringCommand (vst.value = sc.value)

% The value of steering is equal to the value of the previous steering
% command
 (vst.source = sc.source)
% The source of steering is the source of the previous steering
% command
 (sc.source {Driver, CA, RCA, ACC, LCA, PA})
% The source of a steering command is either the driver or one of the
% feature subsystems
sc.source = sr.source sc.value = sr.value
% If the source of a steering command is the source of a previous
% steering request, then the value of the steering command is equal
% to the value of the previous steering request

CA, RCA,
ACC, LCA,
PA

sr: SteeringRequest

 (sr.source {CA, RCA, ACC, LCA, PA})
% The source of a steering request is one of the feature subsystems

sr.active (sc.source = sr.source)
% If a previous steering request is not active, then the source of a
% steering command is not the source of that previous steering
% request

ICPA for Achieve[ForwardBlockAccelSteering] (2 of 4)

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #

Figure C.31. ICPA for Achieve[ForwardBlockAccelSteering] (2 of 4)

2
0
7

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

ICPA for Achieve[ForwardBlockAccelSteering] (3 of 4)

Redundant Responsibility (Primary: Arbiter, Secondary: RCA)
Goal Coverage Strategy
 Goal Assignment

Restrictive (Assumes worst-case vehicle response to acceleration command; real response may be different.
Restricts acceleration requests one state earlier than necessary)

 Goal Scope

Goal Elaboration
InForwardMotion(vsp.value)

((va.source = ‘RCA’) (vst.source = ‘RCA’))

InForwardMotion(vsp.value)
((ac.source = ‘RCA’) (sc.source = ‘RCA’))

InForwardMotion(vsp.value) (ar.active sr.active)

Indirect Control Relationships

02, 08 – Introduce accuracy/actuation goal tactic.
Assumes worst-case actuation delays for source
of acceleration and acceleration value (built-in to
definition of 01, 02)

06, 12 – Split Lack of Monitorability/Controllability
by Chaining. Also restricts acceleration requests
one state earlier than necessary

Figure C.32. ICPA for Achieve[ForwardBlockAccelSteering] (3 of 4)

2
0
8

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Subsystem Safety Goals
Subsystem: Arbiter
Controls: AccelerationCommand, SteeringCommand
Observes: VehicleSpeed
Goal: Acheive[ForwardBlockAccelSteeringCommand]
InformalDef: If the vehicle is moving forward, then the source of acceleration commands and steering commands shall not be

RCA
FormalDef: ac: AccelerationCommand, sc: SteeringCommand, vsp: VehicleSpeed

InForwardMotion(vsp.value) ((ac.source = ‘RCA’) (sc.source = ‘RCA’))

Subsystem: RCA
Controls: AccelerationRequest, SteeringRequest
Observes: VehicleSpeed
Goal: Acheive[ForwardBlockAccelSteeringRequest]
InformalDef: If the vehicle is moving forward, then RCA a) shall not request acceleration and b) shall not request steering
FormalDef: ar: AccelerationRequest, sr: SteeringRequest, vsp: VehicleSpeed

InForwardMotion(vsp.value) (ar.active sr.active)

ICPA for Achieve[ForwardBlockAccelSteering] (4 of 4)

Figure C.33. ICPA for Achieve[ForwardBlockAccelSteering] (4 of 4)

2
0
9

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

System Safety Goal
Goal: Achieve[BackwardBlockAccelSteering]
InformalDef: If the vehicle is moving backward, then the subsystems CA, ACC, and LCA shall not control vehicle acceleration or

steering.
FormalDef: va: VehicleAcceleration, vst: VehicleSteering, vsp: VehicleSpeed

InBackwardMotion(vsp.value) ((va.source {CA, ACC, LCA}) (vst.source {CA, ACC, LCA}))

ICPA for Achieve[BackwardBlockAccelSteering] (1 of 5)

Figure C.34. ICPA for Achieve[BackwardBlockAccelSteering] (1 of 5)

2
1
0

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #

ar.active (ac.source = ar.source)
% If a previous acceleration request is not active, then the source of
% an acceleration command is not the source of that previous
% acceleration request

va Arbiter ac: AccelerationCommand (va.value = ac.value)
% Acceleration is equal to the previous acceleration command value 01

 (va.source = ac.source)
% The source of acceleration is equal to the source of the previous
acceleration command
 (ac.source {Driver, CA, RCA, ACC, LCA, PA})

% The source of an acceleration command is either the driver or one
% of the feature subsystems
ac.source = ar.source ac.value = ar.value
% If the source of an acceleration command is the source of a
% previous acceleration request, then the value of the acceleration
% command is equal to the value of the previous acceleration request

CA, RCA,
ACC, LCA,
PA

ar: AccelerationRequest

 (ar.source {CA, RCA, ACC, LCA, PA})
% The source of an acceleration request is one of the feature
% subsystems

02

03

04

05

06

ICPA for Achieve[BackwardBlockAccelSteering] (2 of 5)

Figure C.35. ICPA for Achieve[BackwardBlockAccelSteering] (2 of 5)

2
1
1

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

ICPA for Achieve[BackwardBlockAccelSteering] (3 of 5)

Variable
Indirect Control Path

Subsystem Variables Indirect Control Relationships #

08

09

10

11

12

07
vst Arbiter sc: SteeringCommand (vst.value = sc.value)

% The value of steering is equal to the value of the previous steering
% command
 (vst.source = sc.source)
% The source of steering is the source of the previous steering
% command
 (sc.source {Driver, CA, RCA, ACC, LCA, PA})
% The source of a steering command is either the driver or one of the
% feature subsystems
sc.source = sr.source sc.value = sr.value
% If the source of a steering command is the source of a previous
% steering request, then the value of the steering command is equal
% to the value of the previous steering request

CA, RCA,
ACC, LCA,
PA

sr: SteeringRequest

 (sr.source {CA, RCA, ACC, LCA, PA})
% The source of a steering request is one of the feature subsystems

sr.active (sc.source = sr.source)
% If a previous steering request is not active, then the source of a
% steering command is not the source of that previous steering
% request

Figure C.36. ICPA for Achieve[BackwardBlockAccelSteering] (3 of 5)

2
1
2

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Goal Elaboration
InBackwardMotion(vsp.value)

((va.source {CA, ACC, LCA}) (vst.source {CA, ACC, LCA}))

InBackwardMotion(vsp.value)
((ac.source {CA, ACC, LCA}) (sc.source {CA, ACC, LCA}))

InBackwardMotion(vsp.value) (ar.active sr.active)

Indirect Control Relationships

02, 08 – Introduce accuracy/actuation goal tactic.
Assumes worst-case actuation delays for source
of acceleration and acceleration value (built-in to
definition of 01, 02)

06, 12 – Split Lack of Monitorability/Controllability
by Chaining. Also, restricts acceleration requests
one state earlier than necessary.

ICPA for Achieve[BackwardBlockAccelSteering] (4 of 5)

Redundant Responsibility (Primary: Arbiter, Secondary: CA, ACC, LCA)
Goal Coverage Strategy
 Goal Assignment

Restrictive (Assumes worst-case vehicle response to acceleration command; real response may be different.
Restricts acceleration requests one state earlier than necessary.)

 Goal Scope

Figure C.37. ICPA for Achieve[BackwardBlockAccelSteering] (4 of 5)

2
1
3

A
P

P
E

N
D

IX
C

.
IC

P
A

F
O

R
A

S
E

M
I-A

U
T

O
N

O
M

O
U

S
A

U
T

O
M

O
T

IV
E

S
Y

S
T

E
M

Subsystem Safety Goals
Subsystem: Arbiter
Controls: AccelerationCommand, SteeringCommand
Observes: VehicleSpeed
Goal: Acheive[ForwardBlockAccelSteeringCommand]
InformalDef: If the vehicle is moving backward, then the source of acceleration commands and steering commands shall not be

CA, ACC, or LCA.
FormalDef: ac:AccelerationCommand, sc: SteeringCommand, vsp: VehicleSpeed

InBackwardMotion(vsp.value) ((ac.source {CA, ACC, LCA}) (sc.source {CA, ACC, LCA}))

Subsystem: RCA
Controls: AccelerationRequest, SteeringRequest
Observes: VehicleSpeed
Goal: Acheive[BackwardBlockAccelSteeringRequest]
InformalDef: If the vehicle is moving forward, then CA, ACC, and LCA a) shall not request acceleration and

b) shall not request steering
FormalDef: ar:AccelerationRequest, sr: SteeringRequest, vsp: VehicleSpeed

InBackwardMotion(vsp.value) (ar.active sr.active)

ICPA for Achieve[BackwardBlockAccelSteering] (5 of 5)

Figure C.38. ICPA for Achieve[BackwardBlockAccelSteering] (5 of 5)

2
1
4

Appendix D

Evaluation Scenario Results

215

APPENDIX D. EVALUATION SCENARIO RESULTS

Table D.1. Goal and subgoal violations for Scenario 1

First Last Longest Shortest Total #

Vehicle Start (sec) 12.589 12.589 12.589 12.589 1
Duration (sec) 0.004 0.004 0.004 0.004

Vehicle Start (sec) 12.583 12.68 12.583 12.68 6
Duration (sec) 0.008 0.001 0.008 0.001

CA Start (sec) 12.6 12.6 12.6 12.6 1
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.001 9.624 0.001 0.001 2
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.01 0.01 0.01 0.01 1
Duration (sec) 0.119 0.119 0.119 0.119

Scenario 1: The host vehicle is travelling forward, starting from a stop 20 m behind
another stopped vehicle. ACC is enabled, but not engaged. CA is enabled.
Notes: The simulation terminated early at time 12.681 s.

Goal 1: Maintain[AutoAccelBelowThreshold]

None

None

None

None

None

None

Goal 2: Maintain[AutoJerkBelowThreshold]

Goal 7: Achieve[DriverSteeringOverride]

Goal 8: Achieve[ForwardBlockAccelSteering]

Goal 9: Achieve[BackwardBlockAccelSteering]

Goal 3: Achieve[SubsystemAccelSteeringAgreement]

Goal 4: Achieve[NoAutoAccelFromStop]

Goal 5: Achieve[DriverForwardAccelOverride]

Goal 6: Achieve[DriverBackwardAccelOverride]

216

APPENDIX D. EVALUATION SCENARIO RESULTS

Table D.2. Goal and subgoal violations for Scenario 2

First Last Longest Shortest Total #

Vehicle Start (sec) 12.587 12.587 12.587 12.587 1
Duration (sec) 0.001 0.001 0.001 0.001

Vehicle Start (sec) 12.568 12.568 12.568 12.568 1
Duration (sec) 0.02 0.02 0.02 0.02

Arbiter Start (sec) 12.561 12.561 12.561 12.561 1
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.001 9.624 0.001 0.001 2
Duration (sec) 0.001 0.001 0.001 0.001

Vehicle Start (sec) 12.561 12.561 12.561 12.561 1
Duration (sec) 0.027 0.027 0.027 0.027

Arbiter Start (sec) 12.561 12.561 12.561 12.561 1
Duration (sec) 0.027 0.027 0.027 0.027

PA Start (sec) 0.01 0.01 0.01 0.01 1
Duration (sec) 0.119 0.119 0.119 0.119

None

None

Scenario 2: The host vehicle is travelling forward, starting from a stop 20 m behind
another stopped vehicle. ACC is enabled, but not engaged. CA is enabled. Just after
CA begins to perform an emergency braking action at time 12.55 s to avoid the stopped
vehicle, the driver engages PA at time 12.56 s.
Notes: Simulation terminated early at time 12.588 s.

Goal 1: Maintain[AutoAccelBelowThreshold]

Goal 2: Maintain[AutoJerkBelowThreshold]

Goal 7: Achieve[DriverSteeringOverride]

Goal 8: Achieve[ForwardBlockAccelSteering]

Goal 9: Achieve[BackwardBlockAccelSteering]

Goal 3: Achieve[SubsystemAccelSteeringAgreement]

None

None

Goal 4: Achieve[NoAutoAccelFromStop]

Goal 5: Achieve[DriverForwardAccelOverride]

Goal 6: Achieve[DriverBackwardAccelOverride]
None

217

APPENDIX D. EVALUATION SCENARIO RESULTS

Table D.3. Goal and subgoal violations for Scenario 3

First Last Longest Shortest Total #

Vehicle Start (sec) 13.652 13.652 13.652 13.652 1
Duration (sec) 0.003 0.003 0.003 0.003

Vehicle Start (sec) 12.565 12.913 12.913 12.565 3
Duration (sec) 0.002 0.004 0.004 0.002

CA Start (sec) 12.6 13.85 12.6 12.6 4
Duration (sec) 0.001 0.001 0.001 0.001

ACC Start (sec) 12.75 15.6 12.75 12.75 47
Duration (sec) 0.001 0.001 0.001 0.001

LCA Start (sec) 12.75 15.6 12.75 12.75 47
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.001 9.624 0.001 0.001 2
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.01 0.01 0.01 0.01 1
Duration (sec) 0.119 0.119 0.119 0.119

Vehicle Start (sec) 12.562 13.652 12.902 12.562 4
Duration (sec) 0.04 0.063 0.061 0.04

CA Start (sec) 12.6 13.85 13.85 12.6 5
Duration (sec) 0.05 0.2 0.2 0.05

Goal 3: Achieve[SubsystemAccelSteeringAgreement]
None

None

None

Scenario 3: The host vehicle is travelling forward, starting from a stop 20 m behind
another stopped vehicle. ACC is enabled, but not engaged. CA is enabled. Just after
CA begins to perform an emergency braking action at time 12.55 s to avoid the stopped
vehicle, the driver applies the throttle pedal at time 12.56 s.
Notes: Simulation terminated normally at time 20 s.

Goal 1: Maintain[AutoAccelBelowThreshold]

Goal 2: Maintain[AutoJerkBelowThreshold]

Goal 7: Achieve[DriverSteeringOverride]

Goal 8: Achieve[ForwardBlockAccelSteering]

Goal 9: Achieve[BackwardBlockAccelSteering]

None

None

Goal 4: Achieve[NoAutoAccelFromStop]

Goal 5: Achieve[DriverForwardAccelOverride]

Goal 6: Achieve[DriverBackwardAccelOverride]

218

APPENDIX D. EVALUATION SCENARIO RESULTS

Table D.4. Goal and subgoal violations for Scenario 4

First Last Longest Shortest Total #

Vehicle Start (sec) 12.987 13.127 13.002 13.074 10
Duration (sec) 0.004 0.014 0.067 0.001

Vehicle Start (sec) 8.617 13.127 12.997 11.248 98
Duration (sec) 0.004 0.006 0.039 0.001

Arbiter Start (sec) 9.051 13.051 9.051 9.051 48
Duration (sec) 0.001 0.001 0.001 0.001

ACC Start (sec) 2.05 13.05 2.05 2.05 49
Duration (sec) 0.001 0.001 0.001 0.001

LCA Start (sec) 2.05 13.05 2.05 2.05 49
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.001 3.906 0.001 0.001 2
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.01 0.01 0.01 0.01 1
Duration (sec) 0.167 0.167 0.167 0.167

Vehicle Start (sec) 2.052 2.052 2.052 2.052 1
Duration (sec) 0.05 0.05 0.05 0.05

Arbiter Start (sec) 2.051 2.051 2.051 2.051 1
Duration (sec) 0.05 0.05 0.05 0.05

ACC Start (sec) 2 2 2 2 1
Duration (sec) 0.05 0.05 0.05 0.05

Vehicle Start (sec) 13.074 13.074 13.074 13.074 1
Duration (sec) 0.002 0.002 0.002 0.002

Arbiter Start (sec) 13.074 13.074 13.074 13.074 1
Duration (sec) 0.002 0.002 0.002 0.002

ACC Start (sec) 13.074 13.074 13.074 13.074 1
Duration (sec) 0.002 0.002 0.002 0.002

Goal 8: Achieve[ForwardBlockAccelSteering]

Scenario 4: The host vehicle is travelling forward, starting 25m behind another vehicle
that is travelling between 10-25 k/h (2.78-6.94 m/s). The driver accelerates the host
vehicle by applying the throttle pedal from time 0.5 s to 8.5 s. At time 2.0 s, ACC is
engaged by the driver.
Notes: Simulation terminated early at time 13.142 s.

Goal 1: Maintain[AutoAccelBelowThreshold]

Goal 2: Maintain[AutoJerkBelowThreshold]

Goal 9: Achieve[BackwardBlockAccelSteering]

Goal 3: Achieve[SubsystemAccelSteeringAgreement]

Goal 4: Achieve[NoAutoAccelFromStop]

Goal 5: Achieve[DriverForwardAccelOverride]

Goal 6: Achieve[DriverBackwardAccelOverride]

None

None

None

None

Goal 7: Achieve[DriverSteeringOverride]

219

APPENDIX D. EVALUATION SCENARIO RESULTS

Table D.5. Goal and subgoal violations for Scenario 5

First Last Longest Shortest Total #

Vehicle Start (sec) 2.641 2.731 2.641 2.653 6
Duration (sec) 0.009 0.005 0.009 0.005

Vehicle Start (sec) 2.638 3.41 2.726 2.837 28
Duration (sec) 0.006 0.001 0.008 0.001

Arbiter Start (sec) 2.651 4.001 2.651 2.651 28
Duration (sec) 0.001 0.001 0.001 0.001

ACC Start (sec) 2.05 4 2.05 2.05 30
Duration (sec) 0.001 0.001 0.001 0.001

LCA Start (sec) 2.05 4 2.05 2.05 30
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.001 4.123 0.001 0.001 2
Duration (sec) 0.001 0.001 0.001 0.001

ACC Start (sec) 5.916 6.302 5.916 6.302 2
Duration (sec) 0.103 0.048 0.103 0.048

LCA Start (sec) 5.916 6.302 5.916 6.302 2
Duration (sec) 0.103 0.048 0.103 0.048

PA Start (sec) 0.01 0.01 0.01 0.01 1
Duration (sec) 0.167 0.167 0.167 0.167

Vehicle Start (sec) 2.052 4.002 2.052 2.052 2
Duration (sec) 0.05 0.05 0.05 0.05

Arbiter Start (sec) 2.051 4.001 2.051 2.051 2
Duration (sec) 0.05 0.05 0.05 0.05

ACC Start (sec) 2 2 2 2 1
Duration (sec) 0.05 0.05 0.05 0.05

Goal 5: Achieve[DriverForwardAccelOverride]

Goal 6: Achieve[DriverBackwardAccelOverride]

Scenario 5: The host vehicle is travelling forward, starting 25m behind another vehicle
that is travelling between 10-25 k/h (2.78-6.94 m/s). The driver accelerates the host
vehicle by applying the throttle pedal from time 0.5 s to 2.5 s. At time 2.0 s, ACC is
engaged by the driver. The driver applies the brake pedal from time 4.0 s to time 9.0 s.
Notes: Simulation terminated normally at time 20 s.

Goal 1: Maintain[AutoAccelBelowThreshold]

Goal 2: Maintain[AutoJerkBelowThreshold]

Goal 3: Achieve[SubsystemAccelSteeringAgreement]
None

None

None

Goal 7: Achieve[DriverSteeringOverride]

Goal 8: Achieve[ForwardBlockAccelSteering]

Goal 9: Achieve[BackwardBlockAccelSteering]

None

None

Goal 4: Achieve[NoAutoAccelFromStop]

220

APPENDIX D. EVALUATION SCENARIO RESULTS

Table D.6. Goal and subgoal violations for Scenario 6 (1 of 2)

First Last Longest Shortest Total #

Vehicle Start (sec) 2.641 13.953 2.641 13.911 17
Duration (sec) 0.009 0.001 0.009 0.001

Vehicle Start (sec) 2.638 13.953 13.828 2.837 108
Duration (sec) 0.006 0.001 0.038 0.001

Arbiter Start (sec) 2.651 13.951 2.651 2.651 83
Duration (sec) 0.001 0.001 0.001 0.001

ACC Start (sec) 2.05 13.95 2.05 2.05 85
Duration (sec) 0.001 0.001 0.001 0.001

LCA Start (sec) 2.05 13.95 2.05 2.05 85
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.001 4.12 0.001 0.001 2
Duration (sec) 0.001 0.001 0.001 0.001

Vehicle Start (sec) 5.052 5.052 5.052 5.052 1
Duration (sec) 8.902 8.902 8.902 8.902

Arbiter Start (sec) 5.052 5.052 5.052 5.052 1
Duration (sec) 8.902 8.902 8.902 8.902

PA Start (sec) 0.01 0.01 0.01 0.01 1
Duration (sec) 0.167 0.167 0.167 0.167

Vehicle Start (sec) 2.052 2.052 2.052 2.052 1
Duration (sec) 0.05 0.05 0.05 0.05

Arbiter Start (sec) 2.051 2.051 2.051 2.051 1
Duration (sec) 0.05 0.05 0.05 0.05

ACC Start (sec) 2 2 2 2 1
Duration (sec) 0.05 0.05 0.05 0.05

Scenario 6: The host vehicle is travelling forward, starting 25m behind another vehicle
that is travelling between 10-25 k/h (2.78-6.94 m/s). The driver accelerates the host
vehicle by applying the throttle pedal from time 0.5 s to 2.5 s. At time 2.0 s, ACC is
engaged by the driver. LCA is enabled by the driver at time 4.0 s, and engaged at time
6.0 s. (1 of 2)
Notes: Simulation terminated early at time 13.954 s.

Goal 1: Maintain[AutoAccelBelowThreshold]

Goal 2: Maintain[AutoJerkBelowThreshold]

Goal 3: Achieve[SubsystemAccelSteeringAgreement]

Goal 4: Achieve[NoAutoAccelFromStop]

Goal 5: Achieve[DriverForwardAccelOverride]

221

APPENDIX D. EVALUATION SCENARIO RESULTS

Table D.7. Goal and subgoal violations for Scenario 6 (2 of 2)

First Last Longest Shortest Total #

Vehicle Start (sec) 13.905 13.905 13.905 13.905 1
Duration (sec) 0.049 0.049 0.049 0.049

Arbiter Start (sec) 13.905 13.905 13.905 13.905 1
Duration (sec) 0.049 0.049 0.049 0.049

ACC Start (sec) 13.905 13.905 13.905 13.905 1
Duration (sec) 0.049 0.049 0.049 0.049

LCA Start (sec) 13.905 13.905 13.905 13.905 1
Duration (sec) 0.049 0.049 0.049 0.049

Notes: Simulation terminated early at time 13.954 s.

None
Goal 6: Achieve[DriverBackwardAccelOverride]

Scenario 6: The host vehicle is travelling forward, starting 25m behind another vehicle
that is travelling between 10-25 k/h (2.78-6.94 m/s). The driver accelerates the host
vehicle by applying the throttle pedal from time 0.5 s to 2.5 s. At time 2.0 s, ACC is
engaged by the driver. LCA is enabled by the driver at time 4.0 s, and engaged at time
6.0 s. (2 of 2)

Goal 7: Achieve[DriverSteeringOverride]

Goal 8: Achieve[ForwardBlockAccelSteering]

Goal 9: Achieve[BackwardBlockAccelSteering]

None

None

222

APPENDIX D. EVALUATION SCENARIO RESULTS

Table D.8. Goal and subgoal violations for Scenario 7

First Last Longest Shortest Total #

ACC Start (sec) 8.45 15.6 8.45 8.45 42
Duration (sec) 0.001 0.001 0.001 0.001

LCA Start (sec) 8.45 15.6 8.45 8.45 42
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.001 6.264 0.001 0.001 2
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.01 0.01 0.01 0.01 1
Duration (sec) 0.044 0.044 0.044 0.044

None

None

None

None

None

Goal 6: Achieve[DriverBackwardAccelOverride]

Goal 7: Achieve[DriverSteeringOverride]

Goal 8: Achieve[ForwardBlockAccelSteering]

Goal 9: Achieve[BackwardBlockAccelSteering]

Scenario 7: The host vehicle is travelling in reverse, 30 m in front of another stopped
vehicle, with RCA enabled.
Notes: Simulation terminated normally at 20 s.

Goal 1: Maintain[AutoAccelBelowThreshold]
None

Goal 2: Maintain[AutoJerkBelowThreshold]

Goal 3: Achieve[SubsystemAccelSteeringAgreement]

Goal 4: Achieve[NoAutoAccelFromStop]

Goal 5: Achieve[DriverForwardAccelOverride]

None

223

APPENDIX D. EVALUATION SCENARIO RESULTS

Table D.9. Goal and subgoal violations for Scenario 8

First Last Longest Shortest Total #

Vehicle Start (sec) 2.08 2.08 2.08 2.08 1
Duration (sec) 0.003 0.003 0.003 0.003

Vehicle Start (sec) 2.055 2.083 2.07 2.083 3
Duration (sec) 0.008 0.001 0.011 0.001

ACC Start (sec) 2.05 2.05 2.05 2.05 1
Duration (sec) 0.001 0.001 0.001 0.001

LCA Start (sec) 2.05 2.05 2.05 2.05 1
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.001 0.001 0.001 0.001 1
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.01 0.01 0.01 0.01 1
Duration (sec) 0.044 0.044 0.044 0.044

Vehicle Start (sec) 2.051 2.051 2.051 2.051 1
Duration (sec) 0.032 0.032 0.032 0.032

Arbiter Start (sec) 2.051 2.051 2.051 2.051 1
Duration (sec) 0.032 0.032 0.032 0.032

ACC Start (sec) 2 2 2 2 1
Duration (sec) 0.083 0.083 0.083 0.083

Goal 8: Achieve[ForwardBlockAccelSteering]

Scenario 8: The host vehicle is travelling in reverse, 30 m in front of another stopped
vehicle. ACC is enabled and engaged by the driver at time 2.0 s.
Notes: Simulation terminated early at time 2.083 s.

Goal 1: Maintain[AutoAccelBelowThreshold]

None
Goal 3: Achieve[SubsystemAccelSteeringAgreement]

Goal 9: Achieve[BackwardBlockAccelSteering]

Goal 4: Achieve[NoAutoAccelFromStop]

Goal 5: Achieve[DriverForwardAccelOverride]

Goal 2: Maintain[AutoJerkBelowThreshold]

Goal 6: Achieve[DriverBackwardAccelOverride]
None

None

None

None

Goal 7: Achieve[DriverSteeringOverride]

224

APPENDIX D. EVALUATION SCENARIO RESULTS

Table D.10. Goal and subgoal violations for Scenario 9

First Last Longest Shortest Total #

Vehicle Start (sec) 2.098 2.098 2.098 2.098 1
Duration (sec) 0.015 0.015 0.015 0.015

Vehicle Start (sec) 2.003 2.112 2.042 2.003 6
Duration (sec) 0.001 0.001 0.046 0.001

PA Start (sec) 0.001 0.001 0.001 0.001 1
Duration (sec) 0.001 0.001 0.001 0.001

Vehicle Start (sec) 2.001 2.001 2.001 2.001 1
Duration (sec) 0.112 0.112 0.112 0.112

Arbiter Start (sec) 2.001 2.001 2.001 2.001
Duration (sec) 0.112 0.112 0.112 0.112

PA Start (sec) 0.01 0.01 0.01 0.01 1
Duration (sec) 2.093 2.093 2.093 2.093

None

Scenario 9: The host vehicle is stopped 20 m behind another stopped vehicle. PA is
enabled and engaged by the driver at time 2.0 s.
Notes: Simulation terminated early at time 2.113 s.

Goal 1: Maintain[AutoAccelBelowThreshold]

None

Goal 3: Achieve[SubsystemAccelSteeringAgreement]

Goal 4: Achieve[NoAutoAccelFromStop]

Goal 5: Achieve[DriverForwardAccelOverride]

Goal 2: Maintain[AutoJerkBelowThreshold]

Goal 6: Achieve[DriverBackwardAccelOverride]

Goal 7: Achieve[DriverSteeringOverride]

Goal 8: Achieve[ForwardBlockAccelSteering]

Goal 9: Achieve[BackwardBlockAccelSteering]

None

None

None

225

APPENDIX D. EVALUATION SCENARIO RESULTS

Table D.11. Goal and subgoal violations for Scenario 10

First Last Longest Shortest Total #

Vehicle Start (sec) 14.589 14.589 14.589 14.589 1
Duration (sec) 0.004 0.004 0.004 0.004

Vehicle Start (sec) 14.583 14.598 14.583 14.598 2
Duration (sec) 0.008 0.002 0.008 0.002

CA Start (sec) 14.6 14.6 14.6 14.6 1
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.001 11.538 0.001 0.001 2
Duration (sec) 0.001 0.001 0.001 0.001

PA Start (sec) 0.01 0.01 0.01 0.01 1
Duration (sec) 2.133 2.133 2.133 2.133

Scenario 10: The host vehicle is stopped 20 m behind another stopped vehicle, ACC is
enabled and engaged by the driver at time 2.0 s.
Notes: Simulation terminated early at time 14.625 s.

Goal 1: Maintain[AutoAccelBelowThreshold]

Goal 2: Maintain[AutoJerkBelowThreshold]

Goal 3: Achieve[SubsystemAccelSteeringAgreement]
Goal 4: Achieve[NoAutoAccelFromStop]

Goal 5: Achieve[DriverForwardAccelOverride]

None

None

None

None

None

Goal 6: Achieve[DriverBackwardAccelOverride]

Goal 7: Achieve[DriverSteeringOverride]

Goal 8: Achieve[ForwardBlockAccelSteering]

Goal 9: Achieve[BackwardBlockAccelSteering]

226

Bibliography

[1] (2009) The CarsimR© website. Accessed on April 6, 2009. [Online]. Available:
http://www.carsim.com/

[2] (2009) The MathWorks
TM

SimulinkR© website. Accessed on April 6, 2009. [Online].
Available: http://www.mathworks.com/products/simulink/

[3] (2009) The National Instruments LabVIEW website. Accessed on April 6, 2009.
[Online]. Available: http://www.ni.com/labview/

[4] E. A. Addy, “A case study on isolation of safety-critical software,” in Proceedings of
the 6th Annual Conference on Computer Assurance (COMPASS’91), June 1991, pp.
75–83.

[5] Aristotle, Metaphysics: Book VIII. Trans. by W.D. Ross,
350 B.C.E., accessed on April 6, 2009. [Online]. Available:
http://classics.mit.edu/Aristotle/metaphysics.8.viii.html

[6] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and taxon-
omy of dependable and secure computing,” IEEE Transactions on Dependable and
Secure Computing, vol. 1, no. 1, pp. 11–33, Jan. 2004.

[7] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed.
Reading, MA, USA: Addison-Wesley, 1972.

[8] P. Bishop and R. Bloomfield, “A methodology for safety case development,” in Pro-
ceedings of the 6th Safety-Critical Systems Symposium (SSS’98), Birmingham, UK,
Feb. 1998.

[9] F. Bitsch, “Classification of safety requirements for formal verification of software
models for industrial automation systems,” in Proceedings of the International Con-
ference on Software and Systems Engineering and their Applications (ICSSEA 2000),
Paris, France, Dec. 2000.

[10] F. Bitsch, “Safety patterns - the key to formal specification of safety requirements,” in
Proceedings of the 20th Intl. Conference on Computer Safety, Reliability and Security
(SAFECOMP ’01), ser. Lecture Notes in Computer Science, U. Voges, Ed., vol. 2187.
Budapest, Hungary: Springer-Verlag, Sept. 2001, pp. 176–189.

[11] J. Black and P. Koopman, “Indirect control path analysis and goal coverage strategies
for elaborating system safety goals in composite systems,” in Proceedings of the 14th

IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’08),
Taipei, Taiwan, Dec. 2008, pp. 184–191.

227

http://www.carsim.com/
http://www.mathworks.com/products/simulink/
http://www.ni.com/labview/
http://classics.mit.edu/Aristotle/metaphysics.8.viii.html

BIBLIOGRAPHY

[12] J. Black and P. Koopman, “System safety as an emergent property in composite sys-
tems,” in Proceedings of the 39th IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’09), Estoril, Portugal, June 2009, p. (in press).

[13] T. F. Bowen, F. S. Dworack, C. H. Chow, N. Griffeth, G. E. Herman, and Y.-J. Lin,
“The feature interaction problem in telecommunications systems,” in Proceedings of
the 7th International Conference on Software Engineering for Telecom. Switching
Sys., Bournemouth, UK, July 1989, pp. 59–62.

[14] M. Brown and N. G. Leveson, “Modeling controller tasks for safety analysis,” in
Proceedings of the 2nd Workshop on Human Error, Safety, and System Development
(HESSD’98), Seattle, WA, USA, Apr. 1998, pp. 80–89.

[15] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, W. K. Schnure, and H. Velthui-
jsen, “A feature-interaction benchmark for IN and beyond,” IEEE Communications
Magazine, vol. 31, no. 3, pp. 64–69, Mar. 1993.

[16] P. Cariani, “Emergence and artificial life,” in Artificial Life II: Proceedings of the 2nd
Workshop on Artificial Life, C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen,
Eds. Addison-Wesley, 1991, pp. 775–797.

[17] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-state
concurrent systems using temporal logic specifications,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 8, no. 2, pp. 244–263, 1986.

[18] A. Dardenne, A. v. Lamsweerde, and S. Fickas, “Goal-directed requirements acquisi-
tion,” in Science of Computer Programming, M. Sintzoff, C. Ghezzi, and G. Roman,
Eds. Amsterdam, The Netherlands: Elsevier Science, Apr. 1993, no. 1-2, pp. 3–50.

[19] R. Darimont, “Process support for requirements elaboration,” Ph.D.
dissertation, University catholique de Louvain, Louvain, Belgium,
June 1995, accessed on April 6, 2009. [Online]. Available:
http://www.info.ucl.ac.be/Research/Publication/Theses/darimont-phd.pdf

[20] R. Darimont and A. v. Lamsweerde, “Formal refinement patterns for goal-driven re-
quirements elaboration,” in Proceedings of the 4th ACM SIGSOFT Symposium on
Foundations of Software Engineering, ser. Software Engineering Notes, vol. 21, no. 6.
ACM SIGSOFT, Nov. 1996, pp. 179–190.

[21] V. Darley, “Emergent phenomena and complexity,” in Artificial Life IV: Proceedings
of the 4th Workshop on Synthesis and Simulation of Living Systems, R. A. Brooks and
P. Maes, Eds. MIT Press, 1994, pp. 411–416.

[22] J. Dehlinger and R. R. Lutz, “Software fault tree analysis for product lines,” in Pro-
ceedings of the 8th IEEE International Symposium on High Assurance Systems Engi-
neering (HASE04), Tampa, FL, USA, Mar. 2004, pp. 12–21.

228

http://www.info.ucl.ac.be/Research/Publication/Theses/darimont-phd.pdf

BIBLIOGRAPHY

[23] DOE Guideline: Root Cause Analysis Guidance Document, Department of Energy
(DOE) Office of Nuclear Energy and Office of Nuclear Safety Policy and Standards
(NESTD) Std. DOE-NESTD-1004-92, 1992.

[24] E. Dijkstra, “The structure of the “THE”-multiprogramming system,” Communica-
tions of the ACM, vol. 11, no. 5, pp. 341–346, 1968.

[25] N. Dulac and N. G. Leveson, “An approach to design for safety in complex systems,”
in Proceedings of the 14th Annual International Symposium on Systems Engineering
(INCOSE’04). Toulousse, France: International Council on Systems Engineering,
June 2004, pp. 33–407.

[26] M. S. Feather, “Language support for the specification and development of composite
systems,” ACM Transactions on Programming Languages and Systems, vol. 9, no. 2,
pp. 198–234, Apr. 1987.

[27] M. S. Feather, S. Fickas, A. v. Lamsweerde, and C. Ponsard, “Reconciling system
requirements and runtime behavior,” in Proceedings of the 9th International Workshop
on Software Specifications and Design (IWSSD ’98), Ise-Shima, Japan, Apr. 1998, pp.
50–59.

[28] B. W. Finnie, “Design for safety,” in Proceedings of the IEE Colloquium on Safety
Critical Software in Vehicle and Traffic Control, Feb. 1990.

[29] K. Forsberg and H. Mooz, “The relationship of system engineering to the project cy-
cle,” in Proceedings of the 1st Annual Conference of the National Council For Systems
Engineering (NCOSE’91), Chattanooga, TN, USA, Oct. 1991.

[30] P. L. Goddard, “Software FMEA techniques,” in Proceedings of the Annual Reliability
and Maintainablity Symposium, Los Angeles, CA, USA, Jan. 2000, pp. 118–123.

[31] A. Hall, “Seven myths of formal methods,” IEEE Software, vol. 7, no. 5, pp. 11–19,
Sept. 1990.

[32] K. M. Hansen, A. P. Ravn, and V. Stavridou, “From safety analysis to software re-
quirements,” IEEE Transactions on Software Engineering, vol. 24, no. 7, pp. 573–
584, Sept. 1998.

[33] A. L. Hopkins and T. B. Smith, “The architectural elements of a symmetric fault-
tolerant multiprocessor,” IEEE Transactions on Computers, vol. C-24, no. 5, pp. 498–
505, May 1975.

[34] IABG, “V-model lifecycle process model: Brief description,” Industrieanlagen-
Betriebsgesellschaft mbH (IABG), Ottobrunn, Germany, Tech. Rep., Feb. 1993.

[35] Functional Safety of Electrical / Electronic / Programmable Electronic Safety-Related
Systems, International Electrotechnical Commission (IEC) Std. IEC61 508, 1997.

229

BIBLIOGRAPHY

[36] M. Jackson and P. Zave, “Distributed feature composition: A virtual architecture for
telecommunications services,” IEEE Transactions on Software Engineering, vol. 24,
no. 10, pp. 831–847, Oct. 1998.

[37] C. W. Johnson. (2003) Tutorial: Causal analysis for incident and ac-
cident investigation. Accessed on May 1, 2009. [Online]. Available:
http://www.dcs.gla.ac.uk/advises/tutorials/chris accidents.html

[38] C. Johnson and M. Bowell, “Using software development standards to analyse acci-
dents involving electrical, electronic or programmable electronic systems: The blade
mill case study,” in 2nd Workshop on the Investigation and Reporting of Incidents and
Accidents 2003, C. C.J. Hayhurst and B. Strauch, Eds., no. NASA/CP-2003-212642.
Virginia, USA: NASA Langley Research Centre, 2003, pp. 111–128.

[39] S. E. Keller, L. G. Kahn, and R. B. Panara, “Specifying software quality requirements
with metrics,” in System and Software Requirements Engineering, R. H. Thayer and
M. Dorfman, Eds. Los Alamitos, CA, USA: IEEE Computer Society Press, 1990,
ch. 3, pp. 145–163.

[40] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and O. Sokolsky,
“Formally specified monitoring of temporal properties,” in Proceedings of the 11th

Euromicro Conference on Real-Time Sys. 1999, York, UK, June 1999, pp. 114–122.

[41] P. Koopman, “A taxonomy of decomposition strategies based on structures, behaviors,
and goals,” in Proceedings of the 9th Conference on Design Theory and Methodology,
Boston, MA, USA, Sept. 1995, pp. 611–618.

[42] R. Koymans, Ed., Specifying Message Passing and Time-Critical Systems With Tem-
poral Logic, ser. Lecture Notes in Computer Science. Berlin, Germany: Springer-
Verlag, 1992, vol. 651.

[43] A. v. Lamsweerde, “Requirements engineering in the year 00: a research perspec-
tive,” in Proceedings of the 22nd International Conference on Software Engineering
(ICSE00), Limerick, Ireland, June 2000, pp. 5–19.

[44] A. v. Lamsweerde, “Goal-oriented requirements engineering: A guided tour,” in
Proceedings of the 5th IEEE International Symposium on Requirements Engineering
(RE01), Toronto, Canada, Aug. 2001, pp. 27–31.

[45] A. v. Lamsweerde, R. Darimont, and E. Letier, “Managing conflicts in goal-driven
requirements engineering,” IEEE Transactions on Software Engineering, vol. 24,
no. 11, pp. 908–926, Nov. 1998.

[46] E. Letier, “Reasoning about agents in goal-oriented requirements engi-
neering,” Ph.D. dissertation, Univ. catholique de Louvain, Louvain, Bel-
gium, May 2001, accessed on April 6, 2009. [Online]. Available:
http://www.info.ucl.ac.be/Research/Publication/Theses/letier.pdf

230

http://www.dcs.gla.ac.uk/advises/tutorials/chris_accidents.html
http://www.info.ucl.ac.be/Research/Publication/Theses/letier.pdf

BIBLIOGRAPHY

[47] E. Letier and A. v. Lamsweerde, “Agent-based tactics for goal-oriented requirements
elaboration,” in Proceedings of the 24th International Conference on Software Engi-
neering (ICSE’02), Orlando, FL, USA, May 2002, pp. 83–93.

[48] E. Letier and A. v. Lamsweerde, “Deriving operational software specifications from
system goals,” in Proceedings of the 10th ACM SIGSOFT Symposium on Foundations
of Software Engineering (FSE-10), Charleston, SC, USA, Nov. 2002, pp. 119–128.

[49] E. Letier and A. v. Lamsweerde, “Reasoning about partial goal satisfaction for re-
quirements and design engineering,” SIGSOFT Software Engineering Notes, vol. 29,
no. 6, pp. 53–62, 2004.

[50] N. G. Leveson, Safeware - System Safety and Computers. Reading, MA, USA:
Addison-Wesley, 1995.

[51] N. G. Leveson, “Intent specifications: An approach to building human-centered spec-
ifications,” IEEE Transactions on Software Engineering, vol. 26, no. 1, pp. 15–35,
Jan. 2000.

[52] N. G. Leveson, “A new approach to hazard analysis for complex systems,” in Proceed-
ings of the 21st International System Safety Conference (ISSC’04). Ottawa, Canada:
System Safety Society, Aug. 2003.

[53] N. G. Leveson, “Model-based analysis of socio-technical risk,” Massachusetts Insti-
tute of Technology, Cambridge, MA, USA, Tech. Rep. ESD-WP-2004-08, Dec. 2004.

[54] N. G. Leveson, “A systems-theoretic approach to safety in software-intensive sys-
tems,” IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp.
66–86, Jan. 2004.

[55] N. G. Leveson and P. R. Harvey, “Analyzing software safety,” IEEE Transactions on
Software Engineering, vol. 9, no. 5, pp. 569–579, Sept. 1983.

[56] N. G. Leveson, T. J. Shimeall, J. L.Stolzy, and J. C. Thomas, “Design for safe soft-
ware,” in Proceedings of the 21st AIAA Aerospace Sciences Meeting, Reno, NV, USA,
Jan. 1983.

[57] G. H. Lewes, Problems of Life and Mind (First Series). Boston, MA, USA: James
R. Osgood and Co., 1875, vol. 2.

[58] P. Li, L. Alvarez, and R. Horowitz, “AHS safe control laws for platoon leaders,” IEEE
Transactions on Control Systems Technology, vol. 5, no. 6, pp. 614–628, Nov. 1997.

[59] R. R. Lutz, “Analyzing software requirements errors in safety-critical, embedded sys-
tems,” in Proceedings of the IEEE International Symposium on Requirements Engi-
neering, San Diego, CA, USA, Jan. 1993, pp. 126–133.

[60] R. R. Lutz and C. Mikulski, “Empirical analysis of safety-critical anomalies during
operations,” IEEE Transactions on Software Engineering, vol. 30, no. 3, pp. 172–180,
Mar. 2004.

231

BIBLIOGRAPHY

[61] R. R. Lutz and H. Shaw, “Applying adaptive safety analysis techniques,” in Proceed-
ings of the 10th International Symposium on Software Reliability Engineering (IS-
SRE’99), Boca Raton, FL, USA, Nov. 1999, pp. 42–49.

[62] R. R. Lutz and R. M. Woodhouse, “Requirements analysis using forward and back-
ward search,” Annals of Software Engineering, vol. 3, pp. 459–475, Nov. 1997.

[63] R. R. Lutz and R. M. Woodhouse, “Bi-directional analysis for certification of safety-
critical software,” in Proceedings of the 1st International Software Assurance Certifi-
cation Conference (ISACC’99), Washington, DC, USA, Mar. 1999.

[64] Mechanical Simulation, VehicleSim SGUI (Simulation Graphical User Inter-
face)Reference Manual. Ann Arbor, MI, USA: Mechanical Simulation Corporation,
2007.

[65] J. Mylopoulos, L. K. Chung, and B. A. Nixon, “Representing and using nonfunc-
tional requirements: A process-oriented approach,” IEEE Transactions on Software
Engineering, vol. 18, no. 6, pp. 483–497, June 1992.

[66] N. J. Nilsson, Problem-Solving in Artificial Intelligence, ser. McGraw-Hill Computer
Science Series, R. W. Hamming and E. A. Feigenbaum, Eds. New York, NY, USA:
McGraw-Hill, 1971.

[67] B. Nuseibeh and S. Easterbrook, “Requirements engineering: A roadmap,” in The
future of software engineering 2000 : 22nd International Conference on Software
Engineering, A. Finkelstein, Ed. New York, NY, USA: Association for Computing
Machinery, 2000, ch. 10, pp. 35–46.

[68] D. K. Peters and D. L. Parnas, “Requirements-based monitors for real-time systems,”
IEEE Transactions on Software Engineering, vol. 28, no. 2, pp. 146–158, Feb. 2002.

[69] B. Plale and K. Schwan, “Run-time detection in parallel and distributed systems:
Application to safety-critical systems,” in Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems (ICDCS’99), Austin, TX, USA, June
1999, pp. 163–170.

[70] B. A. Plale, “Software approach to hazard detection using on-line analysis of
safety constraints,” Ph.D. dissertation, State University of New York at Binghamton,
Binghamton, NY, USA, 1998, accessed on April 6, 2009. [Online]. Available:
http://www.cs.indiana.edu/∼plale/documents/Plale PhDthesis.pdf

[71] J. Pollard and E. D. Sussman, “An examination of sudden acceleration,” National
Highway Traffic Safety Administration, Washington, DC, USA, Tech. Rep. DOT-HS-
807-367, 1989.

[72] M. Privosnik, M. Marolt, A. Kavcic, and S. Divjak, “Evolutionary construction of
emergent properties in multi-agent systems,” in Proceedings of the 11th Mediter-
ranean Electrotechnical Conference (MELECON’02), Cairo, Egypt, May 2002, pp.
327–330.

232

http://www.cs.indiana.edu/~plale/documents/Plale_PhDthesis.pdf

BIBLIOGRAPHY

[73] Software Considerations in Airborne Systems and Equipment Certification, Radio
Technical Commission for Aeronautics (RTCA) Std. DO-178B, 1992.

[74] D. T. Ross, “Structured analysis (SA): a language for communicating ideas,” IEEE
Transactions on Software Engineering, vol. 3, no. 1, pp. 16–34, Jan. 1977.

[75] D. T. Ross and K. E. S. JR., “Structured analysis for requirements definition,” IEEE
Transactions on Software Engineering, vol. 3, no. 1, pp. 6–15, Jan. 1977.

[76] J. Rushby, “Kernels for safety?” in Safe and Secure Computing Systems, T. Anderson,
Ed. Blackwell Scientific Publications, 1989, ch. 13, pp. 210–220.

[77] W. D. Salyer and D. J. Bizzak. (2002) An overview of research and findings in the
investigation of sudden acceleration incidents involving model year 1991 through
1995 jeep cherokee and grand cherokees. Accessed on April 6, 2009. [Online].
Available: www.rdaweb.com/jeepsa/NHTSA%20Defect%20Petition.pdf

[78] B. Schroeder, K. Schwan, and S. Aggarwal, “Software approach to hazard detection
using on-line analysis of safety constraints,” in Proceedings of the 16th Symposium on
Reliable Dist. Sys. (SRDS’97), Durham, NC, USA, Oct. 1997, pp. 80–87.

[79] O. Sokolsky, U. Sammapun, I. Lee, and J. Kim, “Run-time checking of dynamic
properties,” in Proceedings of the 5th Workshop on Runtime Verification, Edinburgh,
UK, July 2005.

[80] N. Storey, Safety-Critical Computer Systems. Reading, MA, USA: Addison-Wesley
Publishing Company, 1996.

[81] C. Temple, “Avoiding the babbling-idiot failure in a time-triggered communication
system,” in Proceedings of the 28th International Symposium on Fault-Tolerant Com-
puting (FTCS-28), Munich, Germany, June 1998, pp. 218–227.

[82] A. M. Turing, “On computable numbers, with an application to the Entschei-
dungsproblem,” Proceedings of the London Mathematics Society, vol. 42, pp. 230–
265, 1936.

[83] Procedures for Performing a Failure Mode, Effects and Criticality Analysis, U.S. De-
partment of Defense Std. MIL-STD-1629A, 1980.

[84] H. Velthuijsen, “Distributed artificial intelligence for runtime feature-interaction res-
olution,” IEEE Computer, vol. 26, no. 8, pp. 48–55, Aug. 1993.

[85] W. E. Veseley, F. F. Goldberg, N. H. Roberts, and D. F. Haasl., Fault Tree Handbook,
U.S. Nuclear Regulatory Commission Std. NUREG-0492, 1981.

[86] K. G. Wika, “Safety kernel enforcement of software safety policies,” Ph.D.
dissertation, University of Virginia, Charlottesville, VA, USA, May 1995, accessed
on April 6, 2009. [Online]. Available: citeseer.ist.psu.edu/wika95safety.html

233

www.rdaweb.com/jeepsa/NHTSA%20Defect%20Petition.pdf
citeseer.ist.psu.edu/wika95safety.html

BIBLIOGRAPHY

[87] K. G. Wika and J. C. Knight, “On the enforcement of software safety policies,” in
Proceedings of the 10th Annual Conference on Computer Assurance (COMPASS ’95,
‘System Integrity, Software Safety and Process Security’), Gaithersburg, MD, USA,
June 1997, pp. 83–93.

[88] P. Zave, “Feature interactions and formal specifications in telecommunications,” IEEE
Computer, vol. 26, no. 8, pp. 20–29, Aug. 1993.

234

	System Safety as an Emergent Property in Composite Systems
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Problem and scope
	1.2 Indirect Control Path Analysis
	1.3 Thesis contributions

	2 Background and Related Work
	2.1 Overview
	2.2 System safety
	2.2.1 Hazard analysis

	2.3 Requirement elicitation, specification, and refinement
	2.3.1 Specifying non-functional requirements
	2.3.2 Goal Oriented Requirements Engineering (GORE)

	2.4 Emergence
	2.4.1 Feature interaction

	2.5 Safety goal monitoring
	2.5.1 Safety kernels

	3 Emergence in Composite Systems
	3.1 Overview
	3.1.1 Motivation
	3.1.2 And-reductions
	3.1.3 Scope

	3.2 Composable goals
	3.2.1 Fully composable
	3.2.2 Fully composable with redundancy

	3.3 Emergent goals
	3.3.1 Emergent but partially composable
	3.3.2 Emergent but partially composable with redundancy
	3.3.3 Usefulness of partial composability
	3.3.4 Conjunctive goals
	3.3.5 Disjunctive goals

	3.4 Composability
	3.5 Conclusion

	4 Indirect Control Path Analysis
	4.1 Overview
	4.1.1 Motivation
	4.1.2 Tactics for resolving goal unrealizability
	4.1.3 Scope

	4.2 Indirect control
	4.3 ICPA format
	4.4 ICPA procedure
	4.4.1 Identifying indirect control sources
	4.4.2 Defining indirect control relationships
	4.4.3 Applying elaboration tactics and goal coverage strategies
	4.4.4 Iteration and completion

	4.5 Goal coverage strategies
	4.5.1 Goal assignment
	4.5.2 Goal scope
	4.5.3 Controllability, observability, and alternative/restrictive goals

	4.6 Conclusion

	5 Evaluation
	5.1 Overview
	5.1.1 Motivation
	5.1.2 Evaluation method

	5.2 Evaluation system
	5.2.1 Semi-autonomous automotive system
	5.2.2 Simulation platform
	5.2.3 Vehicle-level safety goals

	5.3 ICPA and subsystem subgoals
	5.3.1 Goal and subgoal monitoring locations
	5.3.2 Lessons from applying ICPA

	5.4 Evaluation scenarios and results
	5.4.1 Scenario 1: CA enabled, ACC enabled, stopped vehicle in path
	5.4.2 Scenario 2: CA engaged, ACC enabled, PA enabled, stopped vehicle in path
	5.4.3 Scenario 3: CA engaged, ACC enabled, throttle pedal applied, stopped vehicle in path
	5.4.4 Scenario 4: throttle pedal applied, ACC engaged, CA enabled, slow vehicle in path
	5.4.5 Scenario 5: throttle pedal applied, ACC engaged, CA enabled, brake pedal applied, slow vehicle in path
	5.4.6 Scenario 6: throttle pedal applied, ACC engaged, CA enabled, LCA engaged, slow vehicle in path
	5.4.7 Scenario 7: in reverse, RCA enabled, stopped vehicle in path
	5.4.8 Scenario 8: in reverse, ACC engaged, stopped vehicle in path
	5.4.9 Scenario 9: stopped, PA engaged, stopped vehicle in path
	5.4.10 Scenario 10: stopped, ACC engaged, stopped vehicle in path

	5.5 Conclusion

	6 Discussion
	6.1 Lessons learned about the system
	6.1.1 Desired behaviors confirmed
	6.1.2 Problems identified
	6.1.3 General design insights

	6.2 Lessons learned about ICPA
	6.3 Conclusion

	7 Conclusion
	7.1 Thesis contributions
	7.1.1 Formal definition of emergent and composable behaviors
	7.1.2 Indirect Control Path Analysis (ICPA)
	7.1.3 Hierarchical safety monitoring

	7.2 Future work

	Appendix A: Logic Operators, Acronyms, and Definitions
	A.1: Temporal logic operators
	A.2: Acronyms
	A.3: Definitions

	Appendix B: Goal Realizability Patterns and Alternative Goals
	Appendix C: ICPA for a Semi-autonomous Automotive System
	Appendix D: Evaluation Scenario Results
	Bibliography

